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Weak lensing by large-scale structure is a powerful probe of cosmology and of the dark universe. This
cosmic shear technique relies on the accurate measurement of the shapes and redshifts of background
galaxies and requires precise control of systematic errors. Monte Carlo control loops (MCCL) is a forward
modeling method designed to tackle this problem. It relies on the ultra fast image generator (UFig) to
produce simulated images tuned to match the target data statistically, followed by calibrations and tolerance
loops. We present the first end-to-end application of this method, on the Dark Energy Survey (DES) Year 1
wide field imaging data. We simultaneously measure the shear power spectrum Cl and the redshift
distribution nðzÞ of the background galaxy sample. The method includes maps of the systematic
sources, point spread function (PSF), an approximate Bayesian computation (ABC) inference of the
simulation model parameters, a shear calibration scheme, and a fast method to estimate the covariance
matrix. We find a close statistical agreement between the simulations and the DES Y1 data using an array of
diagnostics. In a nontomographic setting, we derive a set of Cl and nðzÞ curves that encode the cosmic
shear measurement, as well as the systematic uncertainty. Following a blinding scheme, we measure the
combination of Ωm, σ8, and intrinsic alignment amplitude AIA, defined as S8DIA ¼ σ8ðΩm=0.3Þ0.5DIA,
where DIA ¼ 1 − 0.11ðAIA − 1Þ. We find S8DIA ¼ 0.895þ0.054

−0.039 , where systematics are at the level of
roughly 60% of the statistical errors. We discuss these results in the context of earlier cosmic shear analyses
of the DES Y1 data. Our findings indicate that this method and its fast runtime offer good prospects for
cosmic shear measurements with future wide-field surveys.

DOI: 10.1103/PhysRevD.101.082003

I. INTRODUCTION

Recent observations combining different cosmological
probes have led to the establishment of the ΛCDM
concordance model for cosmology. One of these probes
is cosmic shear, the measurement of spatial correlations in
the apparent shape of background galaxies due to the weak
gravitational lensing effect. Since the first statistical detec-
tions of the effect [1–4], there have been a large number of
measurements with larger sample sizes and improved
accuracies. Recently, several wide-field surveys have
reported cosmic shear measurements with unprecedented
accuracies, such as the Kilo Degree Survey (KiDS) [5],
the Subaru HSC survey [6] and the Dark Energy Survey
(DES) [7].
A key requirement in cosmic shear measurements is the

control of systematics both for the measurement of the
shear correlation function and for the redshift distribution

nðzÞ of the galaxy sample used for the shape measurements.
To tackle this problem, a number of shape measurement
methods have been proposed [8–11] and have been reach-
ing an increasing precision. In parallel, various photometric
redshift methods have been developed to derive galaxy
redshifts from multiband imaging data [12–16].
Recently, the Monte Carlo control loop [17] (MCCL)

method was proposed to tackle the shear and nðzÞ meas-
urement jointly. It is based on a forward modeling approach
using the ultra fast image generator (UFig) [18]. In this
method, image simulations are first tuned to agree sta-
tistically with the target data set and then used to calibrate
the cosmic shear measurement and to quantify its system-
atic uncertainty. The method was first tested at the 1-point
[19] and 2-point level [20] using simulations as mock
observed data, which were also used to study the propa-
gation of systematic effects onto the final cosmic shear
measurement. The MCCL method was also used to
determine the redshift distribution of cosmological samples
of galaxies [21]. Recently, the galaxy population model
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resulting from the MCCL method derived from broad-
band imaging data was successfully compared to the Sloan
Digital Sky Survey (SDSS) spectroscopic sample [22] and
the narrow band imaging Physics of the Accelerating
Universe Survey (PAUS) [23].
In this paper, we present the first end-to-end cosmo-

logical analysis using the MCCL method, applied to the
DES Year 1 (Y1) survey. It constitutes a nontomographic
reanalysis of this data set with an independent approach.
We start from coadded images and perform object detec-
tion, point spread function (PSF) modeling, shear calibra-
tion, nðzÞ measurement, covariance matrix calculation,
power spectra measurement and cosmological likelihood
analysis. At the heart of this approach is the simultaneous
measurement of the shear angular power spectrum Cl and
the redshift distribution nðzÞ of the galaxy sample. After
describing the method and its specific implementation for
DES Y1, we present our results and cosmological con-
straints, and compare our results to the earlier DES Y1
analysis. We follow a blinding scheme throughout our
work. Finally, we discuss the application of our method to
future data sets, such as DES future releases.
This paper is organized as follows. In Sec. II, we review

the main features of the MCCL approach. In Sec. III, we
describe how the simulations are matched to the data. Our
measurements of the weak lensing power spectrum and the
redshift distribution of the lensed galaxies is presented in
Sec. IV. We present our cosmology constraints in Sec. V
and conclusions in Sec. VII. The appendix describes our
blinding scheme, the PSF modeling, the implementation of
approximate Bayesian computation (ABC), and the internal
tests on simulations.

II. MONTE CARLO CONTROL LOOPS
METHODOLOGY

In [17], a framework called Monte Carlo control loops
was presented as a method for making robust cosmological
measurements. The key principle of this approach is to
heavily rely on realistic simulations and to analyze simu-
lations in exactly the same way as is done for the
observations. In doing this, we are able to rigorously test
all aspects of the measurement process in the regime used
in the analysis. The MCCL method divides the measure-
ment process into three key steps that we identify as control
loops. In the first step, control loop 1, the simulations are
tested against the data using a set of diagnostics to ensure
that the simulations have a high fidelity to the data in the
spanned space. The forward model includes the intrinsic
galaxy population and the Milky Way (stars and dust), as
well as measurement features, such as the point spread
function (PSF) and noise properties of the images. The
result of this first step is a set of model configurations that
agree with the data. In the second step of the MCCL
process, control loop 2, these simulations are used to
calibrate the galaxy shear and redshift measurement

sections of the pipeline. In the third step, control loops
3.1 and 3.2, the robustness of these measurements is tested
by taking excursions away from the fiducial simulation
configurations that were used to calibrate the measure-
ments. As well as allowing us to perform a tolerance
analysis, this exploration of measurement sensitivities also
allows us to account for uncertainty stemming from
systematic errors in a probabilistic way. The shear power
spectrum and redshift distribution measurements are then
used for cosmological inference that accounts for both
statistical and systematic errors.
The implementation of MCCL in this work follows these

steps in order to obtain the final cosmology constraint:
(i) we build parametric models for simulating co-added

DES images including systematic maps, Milky Way
and galaxy populations,

(ii) we find a posterior on the model parameters us-
ing ABC,

(iii) we run an ensemble of simulations of the full DES
area using the points from the ABC posterior,

(iv) we calculate shear calibration parameters and red-
shift distribution for each simulation,

(v) we apply the calculated shear calibration parameters
to the galaxy catalogs obtained from the DES images
to create a family of pairs of Cl and nðzÞ corre-
sponding to the ABC posterior,

(vi) we calculate cosmology constraints for each pair of
Cl and nðzÞ,

(vii) we combine the ensemble of cosmological con-
straints to create the final constraint that margin-
alizes over shear calibration and redshift distribution
uncertainties.

Step (i) above corresponds to control loop 1, step (iv) to
control loop 2, step (ii) to control loop 3.1, while testing the
model extensions in Sec. IV C to loop 3.2. This pipeline
was accompanied by an array of tests, such as recovery of
input Cl from simulations, the impact of model extensions,
and discrepancies in systematic maps. These tests are
described in the sections below. We follow a blinding
scheme and define a set of conditions to be met before
unblinding in Sec. V E.

III. FIDUCIAL SIMULATION
PARAMETERS (LOOP 1)

As stated earlier, the MCCL approach implemented in
this work relies on modeling of all important features that
have an impact on the key measurements of shear and
redshifts of galaxies. These include the intrinsic properties
of the galaxy population over cosmic time, a model of the
Milky Way, and observational features linked to the data
taking. In this section, we present a brief description of
these components along with our measurement and results
that lead to our fiducial simulation parameters for the later
work. The method to choose the fiducial simulation is
described in Sec. III D.
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A. Galaxy population model

A detailed description of the features of the intrinsic
galaxy population model used in this study is given in [21].
In order to render images of galaxies, we need to assign
fluxes, light profiles, and positions to each galaxy. We do
this by first modeling the galaxy luminosity distributions of
different galaxy populations, red and blue, using Schechter
functions ϕ, which can evolve with redshift. By drawing
from these functions, we are able to generate a sample of
galaxies with redshifts and absolute magnitudes. Next, we
draw a rest-frame spectral energy distribution (SED) for
each galaxy. We model the SEDs as a linear combination of
five template spectra, which are based on the Bruzual-
Charlot stellar evolution synthesis models [24] and which
are also used by KCORRECT [25]. The corresponding
coefficients are sampled from a Dirichlet distribution,
which is motivated empirically by data from the SDSS,
as described in [21]. At this step, we again make a
distinction between the red and the blue galaxy populations
by using two distinct Dirichlet distributions. After each
galaxy has been assigned a spectrum, we are able to
compute apparent fluxes in arbitrary filter bands, which
are used to render the objects on our simulated images. We
also include reddening by Galactic dust using the extinction
map derived by [26]. The positions of galaxies on the sky
are drawn uniformly, without clustering.
After assigning fluxes to our galaxies, we randomly draw

a light profile for each object. We use Sérsic profiles [27]
parametrized by the Sérsic index n and the half-light radius
r50 to model the light distributions of our galaxies. To
assign half-light radii, we use the model given by [21], i.e.,
we sample physical half-light radii for our galaxies from a
log-normal distribution with a fixed standard deviation and
a mean that depends on the absolute magnitudes of the
galaxies. We then transform the physical size to an angular
size on the sky using the angular diameter distance,
calculated using the fiducial cosmological model.
We assign the same Sérsic index nblue to all galaxies

sampled from the blue population and the same Sérsic
index nred to all galaxies sampled from the red population,
whereby nblue ≠ nred. This is motivated by results from the
literature, which suggest that blue galaxies are on average
well described by a Sérsic index n ¼ 1 and red galaxies are
well matched using n ¼ 4 [28,29]. The value of nblue is
found using the ABC scheme, while nred ¼ 4 is fixed (see
Sec. III D).
Finally, each simulated galaxy is assigned an intrinsic

ellipticity described by two components e ¼ ðe1; e2Þ. We
do it by drawing an ellipticity magnitude jej from the pðjejÞ
distribution and rotate it by a random angle. We use a pðjejÞ
based on the Beta distribution. Our model uses two
parameters: eratio and esum, which map to Beta distribution
parameters α, β in the following way: α ¼ esumeratio and
β ¼ esumð1 − eratioÞ. Variation in eratio corresponds to shift-
ing the mode of the distribution between 0 and 1. Value of

esum close to zero results in an distribution that is close to
uniform, while large esum in a narrow spread around the
mode. The prior on these parameters is specified in
Appendix D 1. The posterior is found using the ABC
scheme, see Fig. 11.
We assume a cosmological model to calculate the

angular diameter distances in the calculation of magnitudes
and sizes of galaxies. We use the same cosmological
parameters as in [21]. The ABC posterior is constrained
by magnitudes, sizes, and colors of the galaxies detected in
the images, as well as the spectroscopic redshift sample
from VVDS. Using a slightly different cosmology param-
eters would modify angular diameter and luminosity
distances, and these changes would be, to first order,
compensated by modifying other model parameters, such
as the normalization or redshift evolution of the luminosity
and size functions. As these parameters are degenerate and
the posterior is anchored on the imaging and spectroscopic
data, we do not expect the calculated nðzÞ and shear
calibration to change significantly. Therefore, we do not
expect this assumption to influence the cosmological
constraints measured in this work. It may prove useful
to investigate this dependence in more detail for future
lensing surveys.

B. Milky Way model

To generate a catalog of stars for rendering the
simulated image, we combine the stars in the Gaia
Data Release 2 (DR2) [30], with the Besançon model
[31] of the Milky Way [32]. The Gaia objects are placed
on the image according to their actual position on the sky,
such that we estimate the PSF in the simulations at the
same positions as in the data. To generate the faint end of
the stellar population, we use the Besançon model, which
is based on stellar population synthesis and reaches the
magniture of r < 25. We evaluate the model for all
HEALPix [33] pixels of a map with nside=8 that
overlap with the DES Y1 area. We create Besançon
catalogs that cover an area of 5 deg2 and subsample these
catalogs according to the area covered by the simulated
images. This way the variation in density is included in
the simulations.
To combine the stars from Gaia with the ones generated

by the Besançon model, we map the apparent CFHT-
MegaCam magnitudes of the Besançon stars to the Gaia
G-band using the relation provided in [34] (second equa-
tion in Sec. V. B and Table 7). For each Gaia object, we
then find the closest match from the Besançon stars in
terms of the G-band apparent magnitude. The matched
Besançon stars are subsequently placed at the positions
of the corresponding Gaia objects. While not all objects in
the Gaia catalog are true stars, at this stage we do not
attempt to improve the purity of the sample. This is,
however, addressed at the PSF modeling step (See
Appendix C).
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C. Model of the measurement process

We analyze coadded DES images, as well as simulate
coadds with UFig. We do not analyze single exposure
images in our method, although we use information about
them to create systematic maps of the PSF and noise in the
co-adds. Each exposure taken by the dark energy camera
[35] comprises of 62 images, each taken by a single chip.
Additional 12 chips are used for guiding and focus.
However, the Y1 images were constructed mostly from
67 CCDs due to various instrumental issues [36]. In the
DES pipeline, each co-add image is created by adding
single chip images from multiple exposures. Before the
co-addition, the chip images are resampled to the co-add
coordinate system using an astrometric solution [37,38].
Therefore, the coadd image properties, such as noise levels
or the PSF, can sharply change across the image in places
corresponding to boarders of single chip images. To include
this effect in simulations, we create a set of Boolean maps
for each coadd, which contains information about each
exposure’s contribution to each pixel in the coadd. We
create the Boolean exposure maps for all grizY bands and
use them to create noise level and PSF maps.
Noise level maps contain information about the noise

standard deviation for each pixel in the coadd. They are
created using the noise level estimate in the headers of
single chip images, based on the SKYSIGMA field. This
field contains the standard deviation of the sky background
noise. A weighted estimate is created for the coadd pixels
with multiple single image contributions using the same
weighting scheme as used in the coadd production process.
An example noise map is shown in Figure 1. To fine-
tune the noise level, the map is then multiplied by a
scaling parameter sbkg, which is found using ABC (see
Appendix D). For each simulated image, we draw the
Gaussian noise realization from the noise map. To emulate
the effects of the coaddition process on the images, we
convolve the drawn noise with a specially designed kernel,
which is created so that the autocorrelation of the con-
volved noise image is similar to that expected from the

Lanczos resampling with n ¼ 3, as employed by the DES
pipeline [37] (see Appendix H for details).
Objects in the images are detected by SEXTRACTOR [39].

We analyze DES and UFig images using the same
SEXTRACTOR settings (see Appendix E). While running
SEXTRACTOR on DES data, we used the noise maps
accompanying the coadd images and produced by the
DES pipeline. For simulations, the noise maps are taken
from the inverse variance maps described above. We verify
that there is no significant difference on measured moments
when using one or the other map, as SEXTRACTOR rescales
the noise maps internally after performing noise level
estimation.
In the DES pipeline, the background is subtracted from

each single exposure before coaddition. We simulate the
coadds directly according to noise and PSF maps, and do
not include a background light model. We do, however,
subtract the global mean of the image. To address this slight
discrepancy, we turn on both global and local background
subtraction in the SEXTRACTOR configuration on the DES
images and simulations. We verified that the SEXTRACTOR

output is robust to the level of background on the images
for our data.
The PSF model is based on three key elements: para-

metric PSF models, fast parameter measurement with deep
learning, and interpolation on coadds. This pipeline is
independent of that used in [40], and allows for fast
modeling inside the control loops. We measure the PSF
parameters only from the objects identified in the Gaia
catalogs, with magnitudes in the DES r-band 17<m<22.
The PSF model is based on a double Moffat [41] profile,
with β1 ¼ 2 and β2 ¼ 5. It has 9 parameters: size, ellipticity
(2x), flexions (4x), kurtosis, and the ratio of fluxes between
the two Moffat profiles. We obtain the parameters of that
model using a deep learning method described in [42], with
few modifications (see Appendix C). PSF maps are created
using the Boolean exposure maps described above. We
interpolate these parameters across the co-add plane using
a basis that combines Chebyshev polynomials and
the information from the Boolean exposure maps (see
Appendix C for more details). This way, the discontinuities
in the PSF variations across the coadd can be included. We
use a robust fitting algorithm with a σ-clipping procedure,
which aims to remove unusual stars, including false
positives in the Gaia catalog. For each tile, a randomly
chosen set of 15% of the stars is excluded from being used
as an input to PSF model fitting. These stars constitute a
validation sample, which is used to calculate residuals
between the interpolated PSF and measured star parame-
ters. Figure 2 shows an example PSF map for the PSF size
and ellipticity parameters. These models are used for
making the forward simulations, as well as for the shear
measurement.
We simulated the full DES area in the i-band using our

forward model and used the exact same set of DES and

FIG. 1. Example noise map for tile DES0622-6039. The color
shows the inverse variance of the pixel noise. The tiling pattern is
constructed using the astrometric information of every chip that is
used for constructing the co-added image.
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UFig tiles to perform our analysis. Figure 3 shows the
agreement between simulations and DES data in terms of
PSF power spectra. The power spectra are calculated using
POLSPICE and described in Appendix B. The parameters of
the PSF, calculated at the positions of galaxies, are: PSF
FWHM rp and ellipticity ep (top panels). Middle panels

show the power spectra of the residual between the PSF
estimates, rp, ep, and the measurement from validation
stars rs, es. Bottom panels show the cross power spectrum
between the PSF model and the residual es − ep, rs − rp, at
the positions of validation stars. The residual auto and
residual × model power spectra are noise-corrected. The
bands correspond to 1σ standard deviation and are calcu-
lated from multiple realizations of the fiducial survey with
different random seeds. The agreement is generally very
good for the PSF parameters and the residual power
spectra. Small discrepancy is observed in the PSF size
residual auto power spectrum. Model × residual spectra are
very low and also in agreement. The PSF power spectra for
different simulations vary slightly due to different star
sample selection and their measured parameters. This was
caused by random selection of validation stars, pixel noise,
which affected the star parameter measurement, and blend-
ing of the PSF stars with other objects. The differences
between these power spectra are, however, very small, and
we do not show them here.

FIG. 2. Example PSF maps for tile DES0622-6039. Maps for
PSF FWHM rp and ellipticity e1 are shown in the left and right
panels, respectively. Maps for flexions, kurtosis and flux ratio
from two Moffat profiles are also created in the same way.

FIG. 3. Agreement between the PSF 2-pt functions in the DES data (red lines) and UFig simulations (blue lines). The upper left panel
shows the TT power spectrum for PSF FWHM r̃p, calculated in fractional deviation form r̃ ¼ ðr − r̄Þ=r̄, where r̄ is the mean size. The
remaining upper panels show EE, BB, and BE spectra for shape parameters ep of the PSF model calculated at the positions of galaxies.
The spectra of the residuals r̃p − r̃s and es − ep between the measured sizes and shapes of validation stars r̃s; es and PSF model r̃p; ep at
positions of stars is shown in the middle panels. Cross-spectrum between the residuals r̃p − r̃s, es − ep, and PSF estimates r̃s; es, are
shown in the bottom panels. Middle and lower panels show the harmonic space equivalent of D1 and D2 statistics proposed in [43] as
diagnostic tools for PSF model selection. The error-bands correspond to 1σ standard deviation calculated from multiple realizations of
the fiducial simulation with different random seeds.
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D. ABC fits to DES data

We follow the method detailed in [21] to generate a
family of image simulations that are statistically consistent
with the DES Y1 data. We use approximate Bayesian
computation [44,45] to adjust our model to the survey data.
It allows for Bayesian inference in situations where the
likelihood function is not tractable, which is the case for our
simulations: there is no clear empirical expression for the
likelihood, neither on the image nor on the catalog level.
However, since we are able to compare the simulations to
survey data using distance metrics, the ABC framework
allows us to approximate the corresponding true Bayesian
posterior.
The parameter space we sample during the ABC analysis

has 35 dimensions. We vary six sets of parameters: (i) the
parameters controlling the redshift evolution of the lumi-
nosity functions, (ii) the parameters of the Dirichlet dis-
tributions used to sample galaxy SEDs, (iii) the parameters
of our model for the intrinsic size of galaxies, (iv) the value
of the Sérsic index nblue for galaxies sampled from the blue
population, (v) the parameters controlling the distribution
from which we sample intrinsic galaxy ellipticities, (vi) a
parameter scaling the background level of our simulated
images (see Table II for more details). The Sérsic index for
red galaxies nred is fixed because it impacts nðzÞ and the
shear calibration only very weakly. Furthermore, we have
little constraining power on this parameter due to difficulty
in measuring it with SEXTRACTOR. In Appendix D 1, we
give more information on our parameter space and specify
the priors.

The distance metrics we use probe basic properties of the
simulated images such as number counts, the distribution of
measured galaxy magnitudes, sizes and ellipticities as well
as galaxy colors. Furthermore, we include spectroscopic
data from the VIMOS VLT Deep Survey (VVDS [46–48])
to tighten the constraints on nðzÞ. In total, we use a
combination of five distance metrics to obtain a posterior;
further information on this is given in Appendix D 2. To
compute the distance values for one sample, we evaluate
our model on 20 randomly chosen DES tiles in griz filters,
which corresponds to an area of 10.7 deg2 (we use the same
tiles for all samples). We then compute distance metrics
tile-by-tile and average the resulting values to reduce the
impact of cosmic variance. In total, we evaluate our model
for 110000 prior samples.
In Appendix D, we show the ABC posterior obtained

from the analysis described above. We do not show the
parameters controlling the coefficient distributions used to
assign spectra to galaxies, since we have little constraining
power on these parameters, so that we effectively margin-
alize over them. Furthermore, we compare histograms of
various galaxy quantities measured from the DES data and
from the posterior simulations in Fig. 4. We find that the
DES histograms (red line) lie within the histograms
measured from UFig simulations of ABC posterior (light
blue lines). The fiducial simulation is marked with a dark
blue line. That is the case for the bulk of the distributions,
some small discrepancy is visible in the tails. Small
discrepancy is visible in the FLUXERR_AUTO parameter,
but the overall shape of the curves match well. The overall

FIG. 4. Agreement between ABC posterior and DES data. The red line shows the histograms from DES data, the light blue lines from
the 30 UFig simulations from ABC posterior, and the dark blue line to the fiducial simulated survey. These normalized histograms are
created using the full DES catalog, as well as catalogs created from simulating the full area in the i-band. The bottom right panel shows
the number of galaxies in the DES data (red line) and 30 UFig simulations (blue dots). The y-axis corresponds to the indices of 30
simulations. The galaxy size was calculated using Eq. (E1). The signal-to-noise ratio (S/N) has been calculated from SEXTRACTOR

parameters as FLUX_AUTO/FLUXERR_AUTO.
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agreement ensures that the DES data lies within the
simulation space, according to our metrics. The uncertainty
on the overall number of galaxies and the pðeÞ is larger
than for the other parameters. It can be improved in future
work by running the ABC algorithm for longer until full
convergence. However, it is not necessary to decrease this
uncertainty further at this point, as the ABC posterior is
always a conservative approximation to the true posterior.
Lack of convergence results in a larger systematic uncer-
tainty on nðzÞ and shear calibration and propagates to the
cosmological parameters. The uncertainty in the number of
galaxies does not affect the covariance matrix for the DES
power spectrum, as it is calculated using the DES shapes
directly, as described in Sec. V D.
We choose the sample with the lowest combined distance

measure as our fiducial parameter set. This set is then used
to create the fiducial simulation, on which many of the
following basic tests are performed.

IV. JOINT SHEAR POWER SPECTRUM AND
REDSHIFT MEASUREMENT (LOOP 2 AND 3)

In the MCCL method, we jointly measure the redshift
distribution of source galaxies nðzÞ and the shear power
spectrum Cl. To achieve this, we use exactly the same
simulated galaxy catalog from UFig simulations to calcu-
late an nðzÞ distribution and shear calibration parameters.
Moreover, by using a set of surveys from the ABC posterior
that are compatible with the DES data, we effectively
quantify the uncertainty on nðzÞ and the shear calibration.
Our method is designed to measure the shear power

spectrum and nðzÞ only [20,21]. The shear estimates are not
designed to be robust to all systematics; in fact, the
measurement relies heavily on calibration for a dataset
with specific properties. The shear bias as a function of
various quantities, like signal-to-noise ratio or galaxy size,
may remain nonzero [20]. This way, the calibrated shear
catalog can be considered only to be an intermediate
product. The confidence about the accuracy of the results
stems from the fact that the simulations are well matched to
the observations and display similar biases, and that we
correctly recover the shear power spectrum in simulations.
As long as similar biases are present between the DES and
UFig data, and the power spectrum is recovered correctly in
the simulations, the DES measurement should be expected
to be equally accurate.
We simulate 30 UFig surveys of the full Y1 area using

the points from the ABC posterior, including the fiducial
survey. Each of these 30 simulations is used to calculate the
redshift distribution and a set of shear calibration param-
eters. These parameters are then applied to the fiducial
UFig catalog and to the DES catalog, and the power spectra
are computed. This way, we obtain 30 Cl and nðzÞ pairs,
for both DES and the fiducial UFig survey. Variations in
these parameters capture the uncertainty in shear and
redshift inside the ABC posterior.

A. Shear calibration and power
spectrum measurement

We follow the method presented in [19,20] with several
modifications. The method in [19,20] uses quantities
measured by SEXTRACTOR [39] and PSF parameters to
create the shear estimator for each galaxy. In this work, we
use the PSF parameters output by the convolutional neural
network (CNN), described in [42]. Further modifications
include the correction of the effect of the SEXTRACTOR

weight function used to measure the quadrupole moments.
For the details of SEXTRACTOR run, see Appendix E. Then,
we create shear maps using the HEALPix pixelization
scheme [33] and measure their power spectrum with
POLSPICE [49–51]. This process is described in detail in
Appendix B.

1. Shear measurement and calibration

Weuse SEXTRACTORweightedmomentsX2WIN_IMAGE,
Y2WIN_IMAGE and XYWIN_IMAGE to create the moment
matrix M. Similarly, we use the PSF size and ellipticity to
create the PSF moment matrix P. To measure the weighted
moment, SEXTRACTOR uses a Gaussian weight function
with width σw ¼ 0.5 ⋅ FLUXRADIUS2= logð2Þ, where
FLUX_RADIUS is the measured half-light radius [39]. The
estimated, deconvolved galaxy moment is then

Q ¼ ½M−1 − α2W−1�−1 − α1P; ð1Þ

whereW is diagonal withWii ¼ σw. Parameters α1, α2 and η
(defined below) control the shear calibration and are found
using simulations. This equation gives the correct, decon-
volved moment for α1 ¼ α2 ¼ 1 if the observed galaxy, the
PSF, and the weight are all Gaussian. The shear estimators
are given by

γ1 ¼ η
Q11 −Q22

Q11 þQ22

; ð2Þ

γ2 ¼ η
2Q12

Q11 þQ22

: ð3Þ

The calibration parameter α2 is set to α2 ¼ 1. We vary α1 on
200 grid points between α1 ∈ ½0.6; 0.8� and select the value
that minimizes the PSF leakage, for PSF ellipticity binned in
50 bins of equal size between emin

p ¼ −0.1 and emaxp ¼ 0.1.
For each value of α1 we choose η that minimizes the shear
multiplicative bias for these bins. For the fiducial simulation,
the calibration parameters are: η ¼ 0.7616 and α1 ¼ 0.7246.
Across the 30 simulations from the ABC posterior, we find
η ¼ 0.7742� 0.0222 and α1 ¼ 0.7280� 0.0050.
The source galaxy sample is created by applying a

range of cuts on galaxy and PSF size ratio, signal-to-noise,
SEXTRACTOR flags, maximum ellipticity, and others, as
described in Appendix E. The catalogs are created using
i-band objects only, and contain 15,432,057 objects for
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DES data and 15,370,564 for fiducial UFig survey, and
vary slightly when different calibration parameters are
applied. This corresponds ≈3 galaxies=arcmin2 using the
definition in [52].

2. Systematics model

We assess the quality of the shear measurement by
examining the 2-pt statistics: the B-modes and shear-PSF
cross power spectra. We additionally investigate shear 1-pt
statistics by looking at the mean shear as a function of PSF
and galaxy parameters. We find small PSF leakage and
significant mean shear for the γ1 component. We do not
expect it to significantly affect the 2-pt measurement, as
discussed in Sec. IV D and Appendix G.
We model the systematic contributions to the measured

ellipticity γobs from the PSF in the following way:

γiobs ¼ γtrueð1þ βimδrpÞ þ αieipr2p þ βieδeipr2p þ βireipδr2p

ð4Þ

where rp is the PSF size, eip is the PSF shape and δrp, δeip
are the errors in the PSF model for size and shape,
respectively, calculated at the position of validation stars.
Coefficient αi quantifies the effect of the error in PSF
deconvolution. Coefficients βe, βr capture the effect of
errors in the PSF model. Coefficient βm is responsible for
multiplicative bias arising from the error in PSF size model.
This model is loosely based on the linearized error
propagation model in [53] and extends the model used
in [54] by adding an additional scaling by PSF size. We can
estimate α directly from the data by measuring the slope of
γobs as a function of eipr2p. Coefficients βe, βr and βm can be
obtained from simulations, as the true PSF parameters are
needed for this measurement. We calculate them by
measuring the slope of γobs as a function of the δeipr2p
and eipδr2p for βie and βir, respectively. These coefficients
should not differ much between the DES data and simu-
lations, as the estimators should respond in the same way to
PSF errors for similar galaxy samples. Coefficient βm can
be obtained from simulations by measuring the slope of
multiplicative shear bias as a function of δr.
We aim for each of these terms to have only a small

contribution to the shear Cl, such that the systematic
error is smaller than roughly half of the statistical error.
For Nl ¼ 15 data points chosen in this analysis, this
corresponds to a systematic contribution by less than
0.5=

ffiffiffiffiffiffi
Nl

p
≈ 0.15 of the statistical error to each Cl vector

element; for example α2C
eipr2p
l < 0.5σ½Cγ

l�=
ffiffiffiffiffiffi
Nl

p
. Note that

to achieve a 50% shift in contours relative to the statistical
uncertainty for our Cl vector, all its elements would have to
shift consistently by 15% in the same direction, if covari-
ance is neglected. We consider this requirement with
respect to a measurement that does not include the

marginalization of systematic error contributions from
shear calibration and nðzÞ uncertainty. As this marginali-
zation significantly increases the constraints, our require-
ment can be considered as conservative. Our requirement
ignores the cross correlations between the elements of
the Cl vector. As the power spectrum is fairly independent
(see Sec. V D) and dominated by the shape noise, we do not
expect our requirement calculation to be significantly
affected by this simplification.
The cross power spectrum between the measured shear

γobs and each of the additive terms will scale linearly with

the coefficient, for example C
γ×eipr2p
l ¼ αC

eipr2p
l . We use this

relation to check the level of systematic contribution
against the requirement stated above, by comparing the
cross power spectra systematic uncertainty divided by a
corresponding coefficient. For example, for the contribu-
tion of the deconvolution error, we have

C
γ×eipr2p
l <

0.5ffiffiffiffiffiffi
Nl

p σ½Cγ
l�

α
: ð5Þ

Cross power spectra γ × δeipr2p and γ × eipδr2p should
satisfy the same condition, divided by coefficients βe
and βr, respectively. It is not possible to estimate the
multiplicative contribution from cross power spectra, but

we can estimate it directly as β2mC
δrp
l . We calculate the

requirement on the multiplicative bias by comparing the
diagonal of the covariance matrix with the amplitude of
the signal

C
δrp
l <

0.5ffiffiffiffiffiffi
Nl

p σ½Cγ
l�

Cγ
lβ

2
m
: ð6Þ

We find 0.15σ½Cγ
l�=Cγ

l ≈ 0.016 for the l ¼ 200 using the
covariance matrix and the fiducial cosmology power
spectrum. Larger l have larger requirement. We ignore
the contribution of the cross-correlations between the
systematics in this calculation, as we found that they are
typically very small.
We measure the following values of the coefficients:

α1DES; α
2
DES ¼ −0.0122;−0.0105� 0.0003

α1UFig; α
2
UFig ¼ þ0.0001;−0.0013� 0.0003

β1e; β2e ¼ −0.0646;−0.0673� 0.0007

β1r ; β2r ¼ −0.109;−0.040� 0.009

β1m; β2m ¼ þ0.55;þ0.39� 0.33:

The leakage parameters αi are calculated from the DES data
and the UFig simulations separately. Remaining coeffi-
cients are calculated from the simulations. The measure-
ment of βm is limited by the number of simulations of the
fiducial model, which in our case was 30. No significant
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asymmetry in these coefficients between the two ellipticity
components is found, except for βir. The source of this
asymmetry may be connected to the asymmetry in mean
shear, but is not well understood. We leave it for the
future work as both values are within our requirements. In
the subsequent calculations we use the higher value out
of the two components. For βm we use the upper limit
jβmj < 1. The difference between the αiDES and αiUFig is not
affecting the power spectrum measurement, as both
values are below the requirements, as described in the
following section.

3. 2-pt statistics

We calculate the shear power spectrum B-modes, as well
as cross-power spectra between shear and PSF ellipticity
and size, and residual of these quantities. Figure 5 shows
the shear B-mode auto power spectrum (BB) and cross
power spectrum between the E- and B-modes (EB). Red
and blue lines show the measurement for DES and fiducial
UFig survey, respectively, for 30 calibration parameters
found from ABC posterior. The shaded regions correspond
to the statistical uncertainty on the measurement. The
B-mode of the DES data is found to have reduced
χ2 ¼ 0.997, which corresponds to the p-value of
p ¼ 0.454, as calculated using the full B-mode covariance
matrix (see Sec. V D). The EB cross correlation is also not
statistically significant.
The cross spectra of shear E-mode and PSF parameters

are shown in Fig. 6. Again, red and blue lines correspond to
the DES and UFig data, respectively. Blue shaded regions
signify the 1σ uncertainty, measured from 30 random seed
realizations of the fiducial UFig survey (see Appendix F
for details). The gray lines correspond to the requirement
described in Sec. IVA 2, calculated using Eq. (5) and αiDES.

Note that in order to achieve a 0.5σ shift in the contours, all
the points would have to consistently exceed the require-
ment in the same direction. This requirement considers
only the statistical error and does not include the system-
atics, which makes it conservative.
There is a slight correlation of the shear with PSF

ellipticity epr2p E-mode, with χ2red ¼ 1.79. This is consistent
with the PSF leakage calculated at the 1-pt level. We also
notice a significant cross power spectrum between the shear
E-mode and PSF size residual B-mode, but that seems to be
dominated by one outlier point at l ∼ 900. This trend is not
visible for equivalent EE cross power spectrum. The
reduced χ2 for other cross power spectra are generally
close to χ2red ¼ 1. It is important to note that the distribution
of the cross power spectra is not expected to be Gaussian,
and therefore the reduced χ2 may not be the best way to
quantify the systematic significance for this problem. We
leave this investigation to future work. Nevertheless, none
of these cross correlations consistently exceed the given
requirements calculated with the coefficients calculated in
Sec, IVA 2 in our considered l range. This suggests that
the PSF is removed well enough for our requirements.
The multiplicative error resulting from the error in the PSF
size measurement will depend on the coefficient βm,
calculated in Sec, IVA 2 and the PSF size error power
spectrum, calculated in Sec, III C, so that Cγ;obs

l ¼
Cγ;true
l ð1þ β2mC

δrp
l Þ. We measured C

δrp
l < 2 × 10−4 and

jβmj < 1, and therefore we expect the multiplicative error
stemming from the PSF size error to be smaller than the
requirement.
These requirements, however, are exceeded for l

outside considered range. For low l, the leakage contri-
bution started to exceed the requirement. For high l, the
PSF ellipticity residual increased greatly which lead to

FIG. 5. The shear B-mode auto power spectrum (left panel) and BE cross power (left panel). The red lines correspond to the DES shear
catalogs calibrated with 30 different calibration factors from the ABC posterior. The blue lines correspond to fiducial UFig simulation,
also calibrated with these 30 factors. The spread between these data points corresponds to the systematic uncertainty. The shaded region
corresponds to 1σ statistical uncertainty on the measured quantity. For the BB spectrum, these values are taken as the square root of the
diagonal of the covariance matrix (see Sec. V D). The uncertainty on the EB spectrum is measured from 30 simulations of the fiducial
survey, with different random seeds.
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γ × ðes − epÞr2p exceeding the requirements. We there-
fore decided to limit the l range in our analysis to
l ∈ ½200; 950�.
The EE power spectrum measured from the DES source

galaxy sample is shown on the left panel in Fig. 7. The
black line corresponds to the fiducial survey found by
the ABC scheme (see Sec. III D). The error bars show the

standard deviation estimate, calculated by taking the square
root of the diagonal of the covariance matrix. The full
covariance matrix of Cl is shown in Sec. V D. The red lines
correspond to the Cl calculated from the DES sample, but
calibrated using 30 different parameter sets, which are
obtained from different ABC posterior points. The size of
the source galaxy catalog is varying slightly within the

FIG. 6. Diagnostic 2-pt functions of the DES data. The panels show the cross power spectrum between the shear E-mode and PSF
model parameters: ellipticity ep and FWHM rp at the galaxy position, as well as the residual between the PSF model and star
measurement es − ep and r2s − r2p. Red and blue lines correspond to DES and fiducial UFig simulation, respectively, calibrated with 30
calibration parameter sets from the ABC posterior. The blue error bands correspond to the statistical uncertainty σ2sys and is calculated
from the standard deviation of Cl calculated from 30 simulations of the fiducial survey with different random seeds. The χ2 neglects the
covariance between the elements of the Cl vector. The number of degrees of freedom is Ndof ¼ 15. The gray lines correspond to the
requirements described in Sec. IVA 2. In order to shift the cosmology contours by 0.5σ, all Cl elements would have to consistently
exceed the requirement. The requirements are conservative, as they are based on statistical uncertainty only, and not including systematic
errors from shear calibration and nðzÞ.

FIG. 7. Joint n(z) and shear Cl measured from the DES Y1 data set. Multiple red lines correspond to points from the ABC posterior.
The black line shows the measurement using the calibration parameters calculated from the fiducial survey. The error-bars correspond to
1σ errors and are taken from the diagonal of the covariance matrix (see Sec. V D). The best fit theory model for the fiducial survey is
shown with the gray line.
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30 sets, as each time we removed galaxies with large
ellipticities jej > 1. The number of galaxies removed this
way is typically < 1%. This cut can, in theory, introduce a
selection bias, which will be removed by the shear
calibration, similarly to other cuts on the galaxy size and
S/N ratio.
The spread between the 30 Cl measurements represent

the systematic uncertainty in our calibration scheme. The
Cl corresponding to the best fit cosmological model for the
fiducial survey is shown in gray line. The reduced χ2 of this
fit is χ2 ¼ 0.813.

B. Redshift measurement

In this analysis we use a single redshift bin, without
tomography. We apply the method given in [21] to infer the
redshift distribution of our lensing sample. The key idea of
this method is to make realistic simulations of the observed
data and apply exactly the same image processing pipeline
to the observed and the simulated data. This way the
detection method and the cuts are the same, which allows
us to calculate the nðzÞ distribution by simply taking the
true redshift of all simulated galaxies in the sample. The
ABC uses distance measures based on properties of
galaxies in the image data, as well as the distribution of
redshifts in the VVDS spectroscopic sample, to obtain the
posterior distribution on the input parameters, and con-
sequently corresponding nðzÞ. The VVDS sample is
complete to the i-band magnitude ofmi < 22. The distance
metric that used the VVDS spectroscopic sample compared
i-band magnitudes and redshifts of UFig galaxies with
mi < 22 in the input catalog, before rendering the images,
with the VVDS sample. This was possible due to small
errors on the VVDS measurements of redshifts and
magnitudes and the completeness of the sample.
Note that this method can only be use to calculate the

nðzÞ distribution of a sample of galaxies, not redshifts of
individual galaxies.
In this work, we obtain a posterior set of likely nðzÞ

curves for our lensing sample from the ABC posterior
described in Sec. III D. The redshifts of the galaxies in the
simulated lensing samples are then used to construct a
family of 30 nðzÞ curves. This result is shown in the right
panel of Fig. 7. We compute an average hz̄i of mean
redshifts z̄i of each curve. Using that ensemble we compute
the hz̄i ¼ 0.598� 0.024. The mean nðzÞ for the fiducial
survey is z̄ ¼ 0.596.
A tomographic approach could be straightforwardly

accommodated in the MCCL framework. It would never-
theless require more development of the pipeline, which we
leave for future work on the following DES data releases.

C. Robustness to model extensions (loop 3.2)

The robustness of the measurement can be tested
against extensions to the forward model (loop 3.2). If

the measurement does not significantly respond to the
extension, there is no need to incorporate it into the model.
Here we perform one such extension in this work for the
fiducial simulation. We allow scatter in the Sérsic index of
blue and red galaxies. The Sérsic index is drawn from a
truncated normal distribution in the limits between 0.5 and
5. The mean, before truncation, is set to the original value
obtained with ABC, and the standard deviation is set to
σn ¼ 0.5. We run a new simulation with this model using
the fiducial parameter set and calculated calibration param-
eters and nðzÞ for the extended model the same way as
before. We obtain α1 ¼ 0.731, η ¼ 0.783, z̄ ¼ 0.594.
These parameters are close to the ones calculated from
the base model and within the uncertainty calculated from
30 surveys. This indicates that the measurement is robust
to this extension and we do not incorporate it into the
base model.

D. Discussion

The mean shear for the DES and UFig catalogue
calculated with fiducial calibration factor is

hγDES1 i; hγDES2 i ¼ −0.00203; 0.00077� 0.00007

hγSIM1 i; hγSIM2 i ¼ −0.00049; 0.00053� 0.00007:

The dispersion in the mean shear from cosmic variance is
expected on the level of σ½hγi� ≈ 2 × 10−4. The mean shear
in DES catalog is significantly higher than expected from
the cosmic variance. For simulations, the mean shear is
consistent with cosmic variance. The mean shear, however,
does not influence the power spectrum analysis, as we
found that it affects only l < 100, and is subtracted before
calculating the power spectrum. More details about 1-pt
statistics can be found in Appendix G. Nevertheless, it can
be a sign of remaining systematics. We look for the source
of this mean shear by examining its dependence of various
effects that can cause systematic ellipticity shifts. We
consider 17 possible variables, including brightness, colors,
PSF parameters, distance to bright stars, and position in the
footprint. We do not find any significant trends that are not
present in the simulations. Given that the mean shear seems
to be independent of the systematic variables, we conclude
that it should not have a significant impact on the 2-pt
measurements.
The difference in PSF leakage αi measured from the DES

data and the simulations, described in Sec. IVA 2, may be a
sign of a small imperfections in the forward model used in
this work. Therefore, it can be the case that the parameters
βe, βr, and βm, which are measured from simulations, are
slightly inaccurate for the survey data. However, we do not
expect theCγ

l measurement to be affected by that: the cross-
correlations with PSF size and shape error are generally
consistent with zero, and the multiplicative bias stemming
from PSF size error δrp is well within the requirement.
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The discrepancy in βm would have to be of order 10 for the
requirement to be exceeded.

V. COSMOLOGICAL CONSTRAINTS

We measure the cosmological parameters from the
nontomographic shear power spectra. We focus on the flat
ΛCDM model and vary 5 cosmological parameters
θ ¼ fh;Ωm;Ωb; ns; σ8g, where h is the dimensionless
Hubble parameter, Ωm is the fractional matter density
today, Ωb is the fractional baryon density today, ns denotes
the scalar spectral index and σ8 is the r.m.s. of linear matter
fluctuations in spheres of comoving radius 8 h−1 Mpc.

A. Theory prediction with PyCosmo

To compute theoretical predictions for cosmic shear
power spectra, we follow [55,56] and use the Limber
approximation [57–59], which is a valid approximation for
large multipoles, typically l > Oð10Þ, and broad redshift
bins [60]. The expression for the spherical harmonic power
spectrum Cγγ

l at angular multipole l can be found in [55].
We compute all theoretical predictions using PyCosmo [61]
and use the transfer function derived by [62] to calculate the
linear matter power spectrum. To compute the non-linear
matter power spectrum we use the HMCODE fitting function
[63,64]. To account for the effects of the survey mask, we
multiply the predicted Cl with the POLSPICE kernels, which
are output during the Cl calculation from the survey data
(POLSPICE command argument kernelsfileout). The
power spectrum is then binned into 15 linearly spaced bins,
from lmin ¼ 200 to lmax ¼ 950. The choice of scales is
informed by requirements on systematic errors, described
in Sec. IVA 2.

B. Intrinsic alignments

To model the intrinsic alignments, we implement the
“nonlinear linear alignment model” [65], which is used in
[54,66,67]. It consists of two contributions, from intrinsic-
intrinsic (II) and shear-intrinsic (GI) shape correlations, so
that the measured Cobs

l is

Cobs
l ¼ Cγγ

l þ A2
IAC

II
l þ AIACGI

l ; ð7Þ

where AIA is the intrinsic alignment amplitude parameter.
The impact of AIA is almost perfectly degenerate with the
σ28 for a non-tomographic measurement in the Cl range
considered. That is why, in this work, we put constraints on
a combination of σ8 and AIA, and report the product σ8DIA,
where DIA is a scaling factor dependent on the strength of
intrinsic alignment AIA, as described below.
To do this, we first calculate the ratio between the

intrinsic alignment and shear power spectra for our fiducial
cosmological model parameters and AIA ¼ 1. We find
that it is a constant fraction to a good approximation:
CII
l ¼ f1C

γγ
l and CGI

l ¼ f2C
γγ
l , where f1 ¼ 0.019 and

f2 ¼ −0.117. As σ28 is proportional to Cγγ
l , σ8 will depend

on deviation from AIA ¼ 1 in the following way

σ8ðAIA ¼ 1Þ ≈ σ8ðAIAÞ
�
1þ f1A2

IA þ f2AIA

1þ f1 þ f2

�
1=2

ð8Þ

and at the fiducial cosmology can be further linearized to:

σ8ðAIA ¼ 1Þ ≈ σ8ðAIAÞ ·DIA ð9Þ

whereDIA ¼ 1 − 0.11ðAIA − 1Þ is the parameter that scales
σ8 according to the intrinsic alignment amplitude.

C. Baryonic corrections

For the baryonic corrections we use prescription in [63],
who parametrizes the effects of baryons on the nonlinear
power spectrum. Specifically, we follow the implementa-
tion of [54], who uses a flat prior in the range Bbaryon ∈
½2; 4� of [63]. This range corresponds to feasible range
associated with different baryonic feedback models, as seen
with hydrodynamic simulations. The dark matter only case
corresponds to Bbaryon ¼ 3.13. The second baryon correc-
tion parameter η0 in [63] is set by the equation 30 in
that paper.

D. Covariance matrix estimation with L-Picola

We compute the covariance matrix used for the like-
lihood analysis by following the method described in [68].
The method used here avoids the survey geometry-related
effects described in [69]. The matter density field is
simulated using the fast approximate N-Body code
L-Picola [70] with the number of particles Npart ¼ 1024

and the mesh density set to Nmesh ¼ 2048 per side of the
simulation volume. The all-sky past-lightcone is con-
structed by fixing the observer at the center of the
simulation volume and by slicing the volume between
z ¼ 0.0 and the final redshift of z ¼ 1.5 with no gaps into
comoving concentric spherical shells of thickness Δχb ¼
χðzb þ ΔzÞ − χðzbÞ with a redshift-shell thickness of
Δz ¼ 0.01, whereas zb is the redshift of the particles
within the shell of index b. We do not replicate the
simulation volume for this construction, since this could
potentially lead to statistical artifacts in the power spectra
and therefore in the covariance matrix. Furthermore, in this
way we ensure that super-survey modes are correctly
captured. In order to obtain accurate results for the
spherical harmonic power spectra up to angular scales of
l ∼ 103, we nest three simulation volumes with different
box-sizes L1 ¼ 700 Mpc=h, L2 ¼ 4.2 Gpc=h and L3 ¼
6.3 Gpc=h. This is done by first constructing the lightcone
in the smallest simulation volume from redshift 0.0 to its
edge at 0.1 and then continuing the construction in the
larger volume from 0.1 to 0.8 using L2 and from 0.8 to 1.5
using L3.
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We run 10 L-Picola realizations with different seeds
(running three simulations with box-sizes L1, L2 and L3

per realization) and applied the above described pipeline to
calculate 10 full-sky convergence maps using the nðzÞ
distribution obtained using the method described in
Sec. IV B. Each map is processed with the DES Y1 survey
mask resulting in 10 nonoverlapping patches on the sphere.
We then add 10 different shape noise realizations to each
patch and compute the cosmic shear power spectra. The
shape noise is created by rotating the galaxy ellipticity by a
random angle, similarly to the noise-correction to the power
spectrum (see Appendix B). The covariance matrix used
for the analysis it then computed using 1000 realizations
(10 maps ×10 patches ×10 noise realizations) of the cosmic
shear power spectra for the same binning as for the
measurement. The resulting correlation matrix for the shear
power spectrum is shown in Fig. 8. The left panel shows the
Cl correlation matrix when no shape noise is added, while
the right panel includes the shape noise, which is used in
the likelihood. We notice that the covariance matrix is
dominated by the shape noise contribution.

E. Blinding

Throughout the analysis we follow the blinding scheme
applied to the EE shear power spectrum, described in
Appendix A. We define the following set of quality
conditions to be met by our measurement before unblind-
ing: (Q1) properties of the DES galaxy population have to
lie within the space covered by the simulations, (Q2) for the
fiducial simulation, the input cosmology should be accu-
rately recovered, (Q3) the impact of the possible discrep-
ancies in systematic maps can not be larger than the
statistical errors on the measurement, (Q4) small shear
B-mode and small cross power spectra between shear and
PSF, and (Q5) analysis versions that include well-motivated
extensions to the model should not cause significant
difference in final result. We review the satisfaction of
these conditions in Appendix A and conclude that these

conditions are met. Additional actions taken after the
unblinding are documented (Appendix A).

F. Constraints

We obtain the posterior distribution on cosmological
parameters for each of the 30 nðzÞ and Cl pairs. We create
the final constraint with nðzÞ and shear calibration uncer-
tainty marginalized by adding together the 30 posterior
probabilities.
To compute cosmological parameter constraints, we

assume the cosmic shear likelihood to be Gaussian, with
log-likelihood of the following form

LðDjθÞ¼ 1

j2πΣj12−
1

2
ðCobs

l −Cthe
l ÞTΣ−1ðCobs

l −Cthe
l Þ ð10Þ

where Cobs
l and Cthe

l are the power spectra from observa-
tions and theory, respectively, Σ denotes the covariance
matrix.
We assume flat priors on the cosmological parameters:

h ∈ ½0.5; 1.0�, Ωm ∈ ½0.2; 0.5�, Ωb ∈ ½0.01; 0.09�, n ∈
½0.75; 1.25�, σ8 ∈ ½0.5; 1.1�, Bbaryon ∈ ½2.0; 4.0�. The intrin-
sic alignment parameter was fixed to AIA ¼ 1 for the main
result, or sampled inside the uniform prior AIA ∈ ½−5; 5�.
To obtain the posterior distribution, we evaluate 200,000

likelihoods in 6D parameter space at points chosen from a
Sobol sequence [71]. A Sobol sequence is a set of points in
a high-dimensional space designed such that the projec-
tions of the space are sampled as regularly as possible.
Sobol sequence integration is an effective technique to
approximate multidimensional integrals [72]. The Sobol
sequence was continued for each of the 30 Cl and nðzÞ
pairs, such that likelihoods for each pair are evaluated at
different points in this space. We use this technique instead
of Monte Carlo Markov Chain (MCMC), as the total
turnaround time of this calculation, including queuing
time, with single-core jobs is faster and more stable than
the parallelized MCMC, despite larger number of like-
lihood evaluations. To create a 2D posterior for a cosmo-
logical parameter pair, we calculate a 2D histogram of all
the Sobol sequence points, weighted by their probability.
That histogram is then normalized and the confidence
intervals are calculated. The posteriors from 30 surveys
capture the uncertainty from nðzÞ and shear calibration, and
to marginalize this uncertainty we add the 30 PDFs. This
corresponds to discretizing the integral

pðθ1Þ ¼
Z

dθ2pðθ1jθ2Þpðθ2Þ ≈
X

θi
2
∼pðθ2Þ

pðθ1jθi2Þ ð11Þ

where θ1 are the parameters of interest and θ2 are the
nuisance parameters, and θi2 ∼ pðθ2Þ is a set of samples
from pðθ2Þ. Note that individual distributions pðθ1jθi2Þ are
not normalized.

FIG. 8. Correlation coefficient matrix of the power spectrum for
angular scales 102 < l < 103 using the nðzÞ for the fiducial
survey (see Sec. IV B) and a binning of Δl ¼ 50 using 1000
realizations including shape noise in the right plot and using 100
realizations without shape noise in the left plot.

T. KACPRZAK et al. PHYS. REV. D 101, 082003 (2020)

082003-14



In this nontomographic, cosmic shear only analysis
we can only effectively constrain the combination of
Ωm, σ8, and AIA. Other parameters remain unconstrained.
The left panel on Fig. 9 shows the constraints in the
Ωm − σ8DIA plane with marginalized uncertainty on nðzÞ
and shear calibration. The lines represent 68% and
95% confidence intervals. The shape of the contour follows
a degeneracy characteristic for Ωm − σ8. We calculate the
constraint on the combination of these parameters S8DIA ¼
σ8ðΩm=0.3Þ0.5DIA. For this fiducial configuration, we find
S8DIA ¼ 0.895þ0.054

−0.039 . The right panel on Fig. 9 shows the
dependence of the S8 constraint on the intrinsic alignment
amplitude AIA. There is a clear degeneracy between those
parameters. The constraint from the Planck survey [73] is
shown with the green bar (TT,TE,EEþ lowEþ lensing).
We calculate the results for other analysis variants and

summarize them in Table I. When the systematic uncer-
tainty is ignored, we find S8DIA ¼ 0.881þ0.050

−0.033 for the
fiducial survey. This indicates that the contribution of
the systematic uncertainty to the error budget is on the

level of 60% of the statistical uncertainty. The main source
of systematic uncertainty is the shear calibration, but it does
not dominate it completely. We calculated the standard
deviation σ½Cthe

l � of theory power spectrum predicted from
the same cosmological parameter set using 30 nðzÞ, and
the standard deviation of the measurement σ½Cobs

l � when
30 calibration parameters are applied. We find that
σ½Cthe

l �=σ½Cobs
l � ≈ 0.6 for large scales, and decreases to

≈0.05 for small scales.
We give the main result for the α ¼ 0.5 in the S8 ¼

σ8ðΩm=0.3Þα definition in order to easily compare
with other measurements. We find, however, that the
best-fitting value of the α-parameter is α ¼ 0.6 and
gives slightly narrower constraint, S8DIA ¼ σ8ðΩm=0.3Þ0.6
DIA ¼ 0.907þ0.047

−0.040 .

G. Comparison with previous DES measurements

The width of the contours is larger in our analysis than in
main DES Y1 [74], mainly due to different choices of the

FIG. 9. Cosmological constraints on Ωm and σ8DIA marginalized over nðzÞ and shear uncertainties (left panel). The parameter
DIA ¼ 1 − 0.11ðAIA − 1Þ depends on the amplitude of intrinsic alignments (see Sec. V B). The lines show the 68% and 95% confidence
intervals. The right panel shows the S8 parameter constraint as a function of the intrinsic alignment amplitude. The green bar
corresponds to the Planck 2018 measurement of S8 (TT,TE,EEþ lowEþ lensing) [73].

TABLE I. Comparison of S8DIA measurements from the non-tomographic MCCL analysis with the tomographic DES Y1 cosmic
shear [74], which is additionally marginalized over the uncertainty in the intrinsic alignment modeling. Parameter DIA ¼
1 − 0.11ðAIA − 1Þ controls the strengths of intrinsic alignment, so that DIA ¼ 1 for AIA ¼ 1. The α parameter in the S8 definition
was set to α ¼ 0.5, similarly to the previous DES Y1 analysis [74], unless otherwise stated. We find the best-fitting α parameter in the S8
definition to be α ¼ 0.6. See Sec. V G for details about the Cl analysis with IM3SHAPE.

Analysis variant S8DIA ¼ σ8ðΩm=0.3ÞαDIA

MCCL non-tomo with marginalized systematics 0.895þ0.054
−0.039

MCCL non-tomo with statistical uncertainty only 0.881þ0.050
−0.033

MCCL non-tomo with marginalized systematics, α ¼ 0.6 0.907þ0.047
−0.040

MCCL non-tomo, HALOFIT, no baryons 0.880þ0.047
−0.038

IM3SHAPE non-tomo, Cl analysis 0.857þ0.063
−0.048

IM3SHAPE non-tomo, HALOFIT, no baryons, Cl analysis 0.846þ0.054
−0.045

DES Y1 cosmic shear fiducial (METACALIBRATION), tomographic (Troxel et al. 2017) 0.782þ0.027
−0.027

DES Y1 IM3SHAPE, tomographic (Troxel et al. 2017) 0.799þ0.048
−0.045
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data vector. First, we use a single tomographic bin, as
opposed to four bins used in [74]. This results in weaker
constraining power in our analysis, roughly by a factor of
two. While no nontomographic constraints were measured
in the main DES Y1 analysis, the Science Verification [66]
analysis compared the fiducial 3-bin tomographic and
nontomographic measurements. The constraining power
was found to decrease roughly by a factor of two. We find a
similar error scaling between our nontomographic MCCL
analysis and the 4-bin tomography in DES Y1. Second, the
choice of scale cuts were slightly different: the DES Y1
used scales < 7 arcmin for ξþ, which corresponds to
l > 1500. The range of ξ− was restricted to large angular
scales. The minimum scale was different in each redshift
bin. We restrict our analysis to l ∈ ½200; 950�.
Detection and measurement of objects in the DES

images is a part of the MCCL method. We use the i-band
only for creating the source galaxy sample, and all five
bands (grizY) to obtain the ABC posterior on the param-
eters of the forward model. Our fiducial source sample
contains 15,432,057 galaxies after applying the cuts
described in Appendix E. This is similar to ∼22 million
selected from the r-band only IM3SHAPE catalog in the main
Y1 analysis [40,74]. The METACALIBRATION sample is
larger and contains ∼34 million objects using joint mea-
surements from three bands. This results in a higher mean
nðzÞ from 4 tomographic bins with hzi ≈ 0.67 (based on
Fig. 16 in [74]). This is higher than the nðzÞ we obtained,
which was hz̄i ¼ 0.598� 0.024. The uncertainty on both
mean redshift is close to that calculated for IM3SHAPE by
[12], which ranged from σðΔzÞ ∈ ð0.11; 0.22Þ among
tomographic bins. The error on the shear calibration is
also close; [8] calculated σðmÞ ¼ 0.025, while the spread of
the calibration parameter η (see Sec. IVA) in our ABC
posterior is σðηÞ ¼ 0.022.
Finally, we do not include marginalization over the

intrinsic alignment amplitude and present a combination
of S8DIA. In the tomographic analysis of DES Y1 by [74],
the uncertainty increased by ∼30% due to marginalization
over wide IA prior. Marginalization over intrinsic align-
ment in the nontomographic analysis would lead to a more
significant increase of the uncertainty on the cosmology
parameters. Moreover, the DES analysis by [74] uses
HALOFIT [75,76] to model the nonlinear power spectrum
and removes the dependence on the baryons by applying
scale cuts. In our analysis, we use the HMCODE model by
[64] and marginalize over a wide prior on baryonic
corrections.
The tomographic DES Y1 analysis by [74] found

σ8ðΩm=0.3Þ0.5 ¼ 0.782þ0.027
−0.027 with the METACALIBRATION

data, and σ8ðΩm=0.3Þ0.5 ¼ 0.799þ0.048
−0.045 with the IM3SHAPE

data. We investigate the main source of the difference
between the MCCL and IM3SHAPE results by comparing the
theory modeling, shear calibration, and nðzÞ measurement,
between the pipelines. We calculate constraints for the

MCCL Cl and nðzÞ using the HALOFIT [76] theory
prediction, without marginalization of the strength of
baryon effects, keeping the rest of the analysis configura-
tion the same as for the main result. We find S8DIA ¼
0.880þ0.047

−0.038 for that configuration, which is a small shift at
the 0.5σ level from the value obtained with HMCODE in the
fiducial configuration.
We calculate the cosmological constraints from the

IM3SHAPE shape catalog and the corresponding nðzÞ, with
the likelihood analysis used for the MCCL result. To do it,
we create a nontomographic source galaxy sample with a
single nðzÞ bin, by adding four tomographic nðzÞ, weighted
by the corresponding effective galaxy densities [40][see]
[for more details]. We add the redshift calibration shifts
calculated by [12]. The mean redshift of this sample is
z̄ ¼ 0.591, which is similar to the one obtained with
MCCL. IM3SHAPE and MCCL use different galaxy selec-
tion, with roughly 70% galaxies overlapping between these
two catalogs. The difference in the selection can be
attributed to cuts on the PSF size, which is different in
the two bands. Moreover, different bands were used: r-band
for IM3SHAPE and i-band for MCCL, which results in
different pixel noise.
We create shear maps with the IM3SHAPE catalog by

pixelizing the shapes using Eq. (7.3) in [40] and calculate
the Cl. We find that it largely agrees with the one obtained
by MCCL, with the average difference of 3.5% on the Cl,
which would correspond to ≈1.75% multiplicative shear
bias m if the nðzÞ were identical. This level of difference is
within our uncertainty on m. We create the covariance
matrix for the nontomographic IM3SHAPE Cl using the
same method as for the MCCLCl, using the IM3SHAPE nðzÞ
and shape noise. We marginalize over the redshift and
multiplicative shear errors by creating 30 Cl and nðzÞ pairs,
similarly as in the MCCLmethod. For each pair, we modify
the Cl to account for the shear calibration error drawn from
the Gaussian prior with σ ¼ 0.025 [40], and a shifts drawn
from a the prior on Δz [12] for each redshift bin, during the
creation of the nontomographic nðzÞ. With that configu-
ration, we obtain S8DIA ¼ 0.857þ0.063

−0.048 . With HALOFIT, we
obtain S8DIA ¼ 0.846þ0.054

−0.045 . This is somewhat higher than
the tomographic result in [74], at the level of ≈1σ, and
lower than the MCCL (nontomographic) analysis. This
indicates that the specific analysis choice of the DES Y1
data, using nontomographicCl in the range l ∈ ½200; 950�,
gives somewhat higher S8DIA values than that of the
tomographic, real space analysis in [74]. This level of
differences is not unexpected, as selecting different scales
for the analysis can cause shifts of the constraints within the
statistical uncertainty.

VI. IMPLEMENTATION AND RUNTIME

The integrated MCCL pipeline is designed to achieve a
fast, integrated analysis. Our optimized implementation
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allows to run multiple full-area i-band simulations in the
control loops framework within less than 48 hours. This
process includes: simulating 30 full-area DES Y1 simu-
lations from ABC posterior points, measurement of the
nðzÞ curves and shear calibration parameters, calculation of
power spectra and covariance matrix, and calculation of
the cosmological constraints. The simulation of a single
DES Y1 survey area in the i-band takes about 2 hour on
400 cores. Several elements of the pipeline are precom-
puted: the ABC posterior on astrophysical and instrument
parameters, the trained CNN for PSF estimation and the
L-Picola simulations. From the above, the most time con-
suming part is the ABC posterior calculation, which takes
several days on 1000 cores. The fast integrated analysis
pipeline, which spans the analysis from image pixels to the
cosmological constraints, allows for rapid testing of various
parameter configurations and their direct impact on result-
ing cosmology measurement.

VII. CONCLUSIONS

We present the application of the MCCL to a nontomo-
graphic cosmic shear reanalysis of the DES Y1 data.
Using this method, we simultaneously measure the shear
E-mode angular power spectrum Cl and the redshift
distribution nðzÞ of the galaxy samples used for the shape
measurements.
After giving an overview of the method, we discuss the

specific implementation for this data set. In particular, we
develop and apply detailed systematic maps for the DES
Y1 coadds. We also model the PSF using deep learning,
followed by an interpolation scheme. We then perform a
first control loop to match the simulation to the real data
and find a good match following an ABC inference for the
simulation parameters. In the next control loop, we cali-
brate the shear measurement at the 1-point level and test it
using a series of 2-point statistics. In the third loop, we
perform a tolerance analysis for the cosmic shear meas-
urement and derive statistical and systematic uncertainties
for both Cl and nðzÞ.
Given the resulting set of measurements for these two

quantities and after unblinding, we derive cosmological
parameter constraints and give an error budget. Including
both statistical and systematic uncertainties, we find
S8DIA ¼ σ8ðΩm=0.3Þ0.5DIA ¼ 0.895þ0.054

−0.039 , where DIA ¼
1 − 0.11ðAIA − 1Þ is a factor that scales σ8 according to
the intrinsic alignment amplitude (see Sec. V B). We find
that the systematic uncertainties contribute to the error
budget on the level of ≈60% of the statistical error. Given
that our nontomographic analysis does not lift the degen-
eracy between S8 and AIA, a direct comparison with the
earlier tomographic analysis [74] is not straightforward.
Considering the degenerate product S8DIA our results yield
a somewhat higher value of this parameter than can be
anticipated from this earlier analysis. To investigate the
source of this difference we analyze the DES Y1 IM3SHAPE

catalog using our choices of data vector (nontomographic
Cl ∈ ½200; 950�) and the MCCL likelihood pipeline, using
the HMCODE power spectrum. We find a similar nontomo-
graphic nðzÞ between the MCCL and IM3SHAPE, as well as
Cl in agreement on the 3.5% level. The measurement of
S8DIA with IM3SHAPE with these settings is close to the
MCCL results, and differs on< 1σ level. This indicates that
the specific analysis choice we made for the DES Y1 data
yields a higher S8DIA result than expected from the
tomographic analysis of [74]. The remaining difference
can be attributed to different pixel noise between r and
i-bands, as well as differences in galaxy selection (see
Sec. VG). Moreover, we find an additional difference in
measured S8DIA stemming from the use of the HMCODE

instead of HALOFIT, on the level of 0.5σ.
The analysis presented here is the first end-to-end

application of the MCCL method on a full data set and
demonstrates the feasibility and accuracy of the method. In
particular, the fast implementation and integrated nature of
the MCCL pipeline offers a very short turnover time thus
enabling the exploration, correction and quantification of
systematics. This offers excellent prospects for the appli-
cation of the MCCL to future weak lensing data sets. It can
also be naturally extended to a tomographic configuration.
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APPENDIX A: BLINDING SCHEME

We adopt a blinding scheme to avoid confirmation
biases. For this purpose, we introduce a blinding normali-
zation and tilt in the EE weak lensing power spectrum Cl.
These two parameters are kept blinded until the results pass
predefined tests.

To blind a Cl, we transform it the following way:

Cblinded
l ¼ Clðc0 þ μðl=l0 − 1ÞÞ ðA1Þ

where c0 and μ are blinding factors, and l0 ¼ 500. The
blinding factors were unknown to us, and were drawn from
a uniform distribution with ranges c0 ∈ ½0.8; 1.2� and
μ ∈ ½−0.3; 0.3�. This configuration effectively blinds the
Cl amplitude in 40% range, and adds tilt of up to 30%. This
blinding scheme was different than the one used in [74],
where shear values are multiplied by a factor of between
0.9 and 1.1. The allowed modification of the shear 2-pt
function is similar for both strategies.
In Sec. V E we list a set of conditions that need to be

satisfied before unblinding. We consider these conditions to
be satisfied, below we summarize the sections in the paper
which correspond to each of them.

(Q1) The histograms of relevant quantities are described
in Sec. III D and Fig. 4. The histograms obtained
from the DES data are contained within the ones
from simulations for most of their range, except for
tails on several panels. As these tails contain relatively
few objects compared to the bulk of the distribution,
we do not expect these differences to impact the result.
We find a small difference in the FLUX_RADIUS
parameter.

(Q2) The recovery of the input cosmology for fiducial
simulation is satisfactory, as described in Appendix F.

(Q3) According to the systematics model presented in
Sec. IVA 2, the contribution of remaining systematic
maps due to PSF leakage and PSF ellipticity and size
modeling errors should not significantly affect the
measurement.

(Q4) We do not detect significant B-mode (see
Sec. IVA 3, which satisfies this condition.

(Q5)We test one extension to the model in Sec. IV C.We
checked if adding scatter to the Sérsic index of blue
galaxies changes the measurement. We found that
neither the shear calibration parameters nor the nðzÞ
change significantly.

The following actions were taken after unblinding. We
found and corrected a mistake in calculation of the GI
contribution to the power spectrum. This change results in
an increase in measured S8DIA by ≈0.5σ. We also found
two minor mistakes in the calculation of covariance
matrix concerning the subtraction of the mean of the
convergence maps and rotation of the shear for some of
the ten patches. As the covariance matrix is dominated by
shape noise, we found that these mistakes did not notice-
ably affect the final result.

APPENDIX B: POWER SPECTRUM
CALCULATION

We create pixelized shear maps from the source galaxy
sample by averaging the shapes of all galaxies in each
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pixel, with no weighting of shapes applied. We use the
HEALPix scheme to create the maps. We compute all
spherical harmonic power spectra using the publicly
available code POLSPICE [77] [49–51]. In order to estimate
the values of the maximal angular scale used by POLSPICE,
θmax, and the apodization parameter θFWHM, we follow the
method outlined in [55,56]. From this stage onwards, we
follow the blinding scheme described in Appendix A.
Calculated Cl were averaged into 15 linearly spaced bins
in the range between lmin ¼ 200 and lmax ¼ 950.
For the ellipticity maps, the mean of the map, corre-

sponding to l ¼ 0, is subtracted before passing it to
POLSPICE. We process scalar quantities, such as PSF size,
in the form of fractional difference maps, ðx − x̄Þ=ðx̄Þ,
where x̄ is the mean of the map.
We subtract the contribution of the noise from auto

power spectra. The noise contribution is calculated by
taking a mean of 100 Cl calculated from maps with
removed signal. For scalar maps, the positions of the
stars/galaxies were randomly permuted. For spin-2 ellip-
ticities, the signal was removed by randomly rotating the
shapes. This procedure still contains a small contribution of
the shear to the noise estimate, which slightly increases the
variance. This increase is extremely small and does not
make any effective difference to the noise model.
To account for variable number of galaxies in each

pixel, we compute the power spectrum using an additional
weight map. The weight map corresponds to inverse
variance weights and is simply a map of source galaxy
number counts.

APPENDIX C: PSF ESTIMATION
AND MODELING

As described in Sec. III, we rely on the approach
presented by [42] to estimate and model the PSF.
However, we modify the parametrization of the PSF model,
parameter estimation details, and neural network training
strategy. We detail and motivate these changes in this
section. We also present the details of the interpolation
method on coadded images.

1. PSF model and parameter estimation

The updated model contains a modified base profile.
We use a mixture of two Moffat profiles with β1 ¼ 2 and
β2 ¼ 5. Parameter fβ ∈ ½0; 1� controls the fraction of the
photons sampled from the first profile. Note that in [42] this
parameter was fixed and labeled γ. We also modify the
perturbation of the photon position associated with the
kurtosis operation. The position of photons θi is perturbed
by δθi in the following way:

δθi ¼ k · kθk22 · β−1 · θi · ks; ðC1Þ

ks ¼ exp ½−0.5kθk22=ð0.2β2Þ�: ðC2Þ

where k is the kurtosis parameter and ks is a suppression
factor dependent on the profile. This factor prevents
extremely large displacements for photons in the wings
of the profile. In total, the model has 11 parameters:
centroid positions x, y, full width half maximum
(FWHM) rh, ellipticities e1, e2, flexions f1, f2, g1, g2,
flux ratio between two Moffat components fβ and kurtosis
k. See [42] for the definitions of these parameters. The
centroid positions are not used later in any way. We found
that it is difficult to measure the kurtosis parameter, as it
does not modify the profile in a significant way within the
prior range we considered.
We used image cutouts of size 19 × 19 pixels. To

generate the training data, we draw magnitudes between
17 and 22, gain values between 3 and 5.5e−=ADU, the
number of exposures between 1 and 9 and we use a
magnitude zero point of 30, which is the value of the DES
Y1 data. During the training, we add Gaussian background
noise with standard deviations sampled from the interval
0ADU to 10ADU on the fly.
We train the CNN using a different objective function

than [42], the likelihood loss, similarly to [78]. We use
single parameter variances instead of a full covariance
matrix. Another modification to the cost function is the use
of averaging of multiple noise realizations before taking the
square of the residuals, which greatly reduces the bias of
the recovered parameters. The cost L is

L ¼
X
i∈Nb

X
p∈Np

��
θ̂pi;n − θpi;n

σp

�2

Nn

þ log hσpi2Nn

�
; ðC3Þ

where Nb ¼ 2048 is the number of images in a batch,
Np ¼ 11 is the number of parameters in the model,
Nn ¼ 64 is the number of noise realizations per parameter
set, θ̂pi;n is the network’s prediction, θpi;n is the true
parameter and σp is the uncertainty of parameter p, the
logarithm of which is also predicted by the network.
Angular brackets denote averaging over the number of
noise realizations Nn. To train using this loss function, we
generated a training set consisting of 109 star images
samples using latin hypercube sampling in ranges of
magnitude, gain and number of exposures mentioned
above. The remaining parameters had the following
span: rh ∈ ½2.5; 5�, e1; e2; f1; f2; g1; g2 ∈ ½−0.1; 0.1�, k ∈
½−0.5; 0.5�, x; y ∈ ½9; 10�, fβ ∈ ½0.; 1.�.
In the training process we progressively increase the

noise levels and decreased the learning rate. We train the
network with no added Gaussian noise (the training images
already contained Poisson noise) on 100’000 iterations,
then we gradually increase the noise level until it reaches
σn ¼ 10 at 200’000 iteration. The learning rate is initiated
at lr ¼ 0.001, decreased at steps [5 × 104, 105, 2 × 105] to
lr ¼ ½10−4; 5 × 10−5; 2 × 10−5�, respectively. We stored the
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network that gave us the best loss value, which happened at
iteration 562,186.

2. PSF interpolation

We interpolate the PSF across the coadded images. We
model the PSF surface for each of the parameters, except
the x, y positions, using a Chebyshev polynomial basis of
maximum order 4. The basis also includes information
about the tiling pattern coming from the coadds. We create
a pseudo-Vandermonde matrix Φijk of degree 4 for sample
points x and y in the coadd pixel coordinate system

Φijkðx; yÞ ¼ TiðxÞTjðyÞWkðx; yÞ; ðC4Þ

where Ti is the Chebyshev polynomial of order i andWk is
a weight corresponding to exposure k. If an object at
position ðx; yÞ was recorded by exposure k, then the weight
is nonzero, and has a value Wkðx; yÞ ¼ 1=Ne

x;y, where Ne
x;y

is the total number of exposures contributing to the image at
position ðx; yÞ. This model assumes equal-weighted con-
tributions to the PSF parameters from each exposure, which
may not be true in general; we do not attempt to make a
more detailed model of this process, leaving that to future
work. The basis in Eq. (C4) has total of 42Nexp parameters
for each coadd, where Nexp is the maximum number of
exposures for that coadd. We fit a surface for each
parameter iteratively, using a robust technique based on
σ-clipping. After the initial fit, the 3σ outliers in rp; e1; e2

FIG. 10. Accuracy of the PSF measurement and interpolation for PSF model parameters: size rp, ellipticities ei flexions fi, gi, flux
ratio of profile components fβ, and kurtosis k. Each panel shows the residual between the interpolated value and the true value of the
parameter as a function of the true value. Red points correspond to the mean of the residual in bins, and the error bars represent the
standard deviation. Red lines show the line fit to these points, with parameters stated in the legend, where m, c are the slope and
intercept, respectively.
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are removed, and the fit is performed again until con-
vergence, and at maximum 10 times. The final model is
stored. The iterative fitting procedure makes the model
more robust to stars with unusual parameters, extreme
measurement errors, stars blended with galaxies and false
positives in the Gaia catalog. Before fitting, we exclude
15% of stars randomly to create a validation star sample,
used later for testing the PSF interpolation.
Figure 10 shows the accuracy of the PSF modeling from

our fiducial simulation. We plot the difference between
PSF parameters estimated from ∼60; 000 validation stars
in DES and simulations at the exact same positions. The
errors in predictions are shown as a function of the
parameter estimated for the DES star. The red points show
the means of residuals in bins spanning the range shown,
and the error bars correspond to error on the mean. The red
line shows a linear fit to these points. We notice that the
PSF recovery is generally good; small biases exist for size,
ellipticities and flexions, while the recovery is worse for
kurtosis and profile flux ratio. Similar level errors is
observed when the full sample of stars is used, including
the ones used for PSF estimation, as well as in simulations,
when the estimated PSF model parameters are compared
with the true input. As the overall error in E-mode
reconstruction in simulations is satisfactory with respect
to the requirements (see Appendix F), we conclude that
these differences do not have a significant impact on the
shear calibration.

APPENDIX D: ABC ANALYSIS

1. Variable parameters and priors

In this section, we present more details on the parameters
we vary during the ABC analysis and specify the priors used
the sample the 35-dimensional parameter space. As described
in Sec. III D, the parameters we vary can be divided into six
groups, which are listed below. The combined prior is a
product of the individual priors. Table II summarizes the
information presented in this section.
(1) Galaxy luminosity function parameters. These

parameters are referred to as aM, bM, aϕ, bϕ in
[21] for the blue and the red population, respectively.
They control the redshift evolution of the luminosity
functions from which we sample the galaxy pop-
ulation. We use a modified version of the prior
specified in [21], which was sampled with COSMO-

HAMMER using data given in [79]. Since this prior is
well described by a multivariate normal distribution,
we use the mean and covariance matrix computed
from the COSMOHAMMER samples used by [21] to
generate the new prior data for this work, which
simplifies the sampling. We retain the enlarged prior
volumes used in [21] for bϕ. However, we reduce the
enlargement for blue galaxies by multiplying each
sample with a random number between 0.5 and 2.5

(instead of 0.5 and 4, as in [21]). Furthermore, we
decided to limit the range of bϕ to the interval
[0, 0.0075] for blue galaxies and to [0, 0.0175] for
red galaxies. If a sample does not fall within these
boundaries, we redraw. These modification were
inspired by earlier ABC analyses, they are effec-
tively a by-hand application of the ABC algorithm
proposed by [80].

(2) Galaxy SED parameters. The parameters αi;0 (at
redshift z ¼ 0) and αi;1 (at redshift z ¼ 1) control the
Dirichlet distributions, from which we sample the
template coefficients used to assign restframe SEDs
to galaxies, see [21]. We retain the prior used by [21]
for this work.

(3) Galaxy size parameters. The parameters aμ, bμ, σphys
from [21] set our model for the distribution of
intrinsic galaxy sizes. As for the galaxy luminosity
function parameters, we sample this part of param-
eter space using a multivariate normal distribution
with the mean and covariance matrix computed
from the corresponding COSMOHAMMER samples
used by [21]. Since σphys denotes a standard
deviation, this parameter cannot be negative, there-
fore, we redraw if this happens. Furthermore, as was
done in [21], we relax the prior on bμ. Here, we use a
uniform prior ranging from 0.8 to 1.4.

(4) Sérsic index for blue galaxies.We sample nblue from
a uniform prior extending from 0.5 to 1.5.

(5) Intrinsic ellipticity distribution for galaxies. The
uniform prior for eratio ranges from 0.3 to 0.6 and
the uniform prior for esum from 2 to 5.

(6) Background noise scale. This parameter scales the
background level noise globally for all simulated
images. We place a uniform prior extending from
1.06 to 1.09 on this parameter.

2. Distance metrics

We use the five distance metrics listed below to infer our
ABC posterior. As described in Sec. III D, we evaluate all
samples on 20 DES tiles and average the individual values
of the distance metrics to reduce cosmic variance.
(1) Magnitude histogram distance. This distance metric

ensures that our posterior simulations match the
DES data in terms of galaxy number counts and
r-band magnitude distributions. It is computed by
subtracting the binned r-band magnitude distribu-
tion of the DES lensing galaxies from the magnitude
distribution of the simulated lensing galaxies and
summing up the absolute differences, see [21]. This
distance metric is averaged by stacking the histo-
grams from the individual tiles and averaging the bin
entries. The distance metric is then evaluated on the
averaged histograms.

(2) MMD distance for magnitudes, sizes and ellipticity.
We compute a 11-dimensional MMD distance
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(maximum mean discrepancy, see [21,81]) using
the measured magnitudes and sizes in the five DES
filter bands as well as the measured ellipticity in
the r-band. This distance metric selects samples
which match the DES data in terms of colors,

magnitude-size-distributions and i-band ellipticities.
To evaluate the MMD distance, we use the lensing
galaxies. The values of the distance metrics com-
puted from the individual DES tiles are directly
averaged to obtain a mean value for one sample.

TABLE II. Variable parameters and priors for the ABC analysis. See Sec. III A, Appendix D 1 as well as [21] for more information.
The values of σ2 for the multivariate normal distributions correspond to the diagonal element of the full covariance matrix.

Parameter Meaning Prior

Luminosity
functions

ablueM Slope of the redshift of evolution of the parameter M� in
the Schechter luminosity function for blue galaxies

Multivariate normal, μ ¼ −9.43 × 10−1,
σ2 ¼ 2.09 × 10−1

bblueM Intercept of the redshift of evolution of the parameter M�
in the Schechter luminosity function for blue galaxies

Multivariate normal, μ ¼ −2.04 × 101,
σ2 ¼ 8.33 × 10−2

aredM Slope of the redshift of evolution of the parameter M� in
the Schechter luminosity function for red galaxies

Multivariate normal, μ ¼ −7.07 × 10−1,
σ2 ¼ 1.35 × 10−1

bredM Intercept of the redshift of evolution of the parameter M�
in the Schechter luminosity function for red galaxies

Multivariate normal, μ ¼ −2.04 × 101,
σ2 ¼ 7.46 × 10−2

ablueϕ Decay constant of the redshift of evolution of the
parameter ϕ� in the Schechter luminosity function for
blue galaxies

Multivariate normal, μ ¼ −1.17 × 10−1,
σ2 ¼ 3.49 × 10−2

bblueϕ Amplitude of the redshift of evolution of the parameter ϕ�
in the Schechter luminosity function for blue galaxies

Multivariate normal, μ ¼ 3.76 × 10−3,
σ2 ¼ 2.29 × 10−7, multiplied by
random variate from [0.5, 2.5],
bounded to ½0; 7.5 × 10−3�

aredϕ Decay constant of the redshift of evolution of the
parameter ϕ� in the Schechter luminosity function for
red galaxies

Multivariate normal, μ ¼ −8.96 × 10−1,
σ2 ¼ 2.47 × 10−1

bredϕ Amplitude of the redshift of evolution of the parameter ϕ�
in the Schechter luminosity function for red galaxies

Multivariate normal, μ ¼ 3.91 × 10−3,
σ2 ¼ 1.14 × 10−6, multiplied by by
random variate from [0.5, 4], bounded
to ½0; 1.75 × 10−2�

Galaxy sizes aμ Slope of the evolution of the average intrinsic physical
size of galaxies with absolute magnitude

Multivariate normal, μ ¼ −0.24 × 100,
σ2 ¼ 3.31 × 10−6

bμ Intercept of the evolution of the average intrinsic physical
size of galaxies with absolute magnitude

Uniform in [0.8, 1.4]

σphys Standard deviation of the normal distribution we use to
sample intrinsic physical galaxy sizes

Normal multivariate, μ ¼ 0.57 × 100,
σ2 ¼ 6.36 × 10−6, bounded
to positive values

Galaxy profiles nblue Sérsic index of blue galaxies Uniform in [0.5, 1.5]

Galaxy
ellipticities

eratio Parameters controlling the beta distribution from which
we sample intrinsic galaxy ellipticities

Uniform in [0.3, 0.6]
esum Uniform in [2, 5]

Background
noise

sbkg Scale factor for the background noise level in the
simulations

Uniform in [1.06, 1.09]

Template
coefficients

αbluei;0 Concentration parameters of the Dirichlet distribution at
redshift z ¼ 0 from which the template coefficients for
blue galaxies are sampled, i ¼ 1;…; 5

Dirichlet distributions with equal concen-
tration parameters; the sums of the con-
centration parameters are uniformly
distributed in [5, 15]αbluei;1 Concentration parameters of the Dirichlet distribution at

redshift z ¼ 1 from which the template coefficients for
blue galaxies are sampled, i ¼ 1;…; 5

αredi;0 Concentration parameters of the Dirichlet distribution at
redshift z ¼ 0 from which the template coefficients for
red galaxies are sampled, i ¼ 1;…; 5

αredi;1 Concentration parameters of the Dirichlet distribution at
redshift z ¼ 1 from which the template coefficients for
red galaxies are sampled, i ¼ 1;…; 5
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(3) VVDS-Wide MMD distance.As was done in [21], we
use the VVDS-Wide spectroscopic sample to com-
pute a two-dimensional MMD distance using mea-
sured i-band magnitudes as well as redshifts. The
VVDS-Wide sample is purely magnitude-limited in
the i-band, such that we can easily emulate that
sample from our simulations and use it to tighten our
constraints on the redshift distribution. To average
this distance metric over multiple DES tiles, we

directly average the distance values obtained from
the individual coadded images.

(4) Galaxy profile distance. To constrain the Sérsic
index for blue galaxies, we use a distance metric
based on the light distributions of our lensing
galaxies in the r-band. We cut out 21 × 21 pixel
stamps of these objects and compute the pixel-wise
mean, which yields the average lensing galaxy
profile for one tile. We normalize the profile to

FIG. 11. Posterior distribution on the parameters of the forward model. This distribution was found using ABC. Parameters of the
template coefficients are not shown. The shaded regions show 68% and 95% confidence intervals.
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have a maximum pixel flux of 1 and then compute
the pixel-wise sum of the squared difference of the
profile from the simulated data and the one obtained
from DES data. To average this distance metric over
multiple tiles, we first average the mean profiles
extracted from the individual tiles and then evaluate
the distance metric.

(5) Background level distance. To constrain the param-
eter scaling the background level of the simulated
images, we use histograms of pixel values between
−10 and 10ADU, which characterize the back-
ground noise. We compute these histograms from
the DES data and from the simulations. We then
subtract the histogram computed from DES from the
histogram obtained from a simulated image and sum
up the absolute differences in the bin entries to
obtain a distance metric. To average this distance
metric over multiple tiles, we stack the correspond-
ing histograms and average the bin entries. The
distance metric is then evaluated on the averaged
histograms.

3. ABC posterior

Concerning the thresholding prescription, we adapt the
method given by [80]. We scale all distance metrics to cover
similar numerical ranges by dividing by the corresponding
10th percentiles. Furthermore, we downweight distances
number 1 and 5 by a factor of 0.2, which results in tighter
constraints on nðzÞ and the size and ellipticity distributions.
We then combine all five distance metrics into a single value
by taking the maximum. This combined distance metric is
subsequently used to select a number of best samples.
The ABC posterior on 15 parameters in the forward

model is shown in Fig. 11. The remaining 20 parameters
corresponding to the template coefficients at redshifts
z ¼ 0 and z ¼ 1 for red and blue galaxies are not shown
here. We summarize the information about galaxy colors in

Figure 12. This figure shows the histogram of galaxy g − r,
r − z and i − z colors. The red contours correspond to the
DES survey sample, the dark blue to the UFig simulation
from the fiducial ABC posterior point, and the light blue to
the simulations from the 30 posterior points used through-
out the analysis. There is a good match between the colors
in the survey data and the simulations.

APPENDIX E: GALAXY SAMPLE SELECTION

The minimum and maximum galaxy-to-PSF size ratios
are set to rg=r

p
h > 0.75 and rg=r

p
h < 100, respectively,

where

rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM00 þM11Þ · 2 · logð2Þ

p
ðE1Þ

is the measured galaxy size [20], and the elements of the
moment matrixM are the SEXTRACTOR windowed moments
M00=X2WIN_IMAGE and M11=Y2WIN_IMAGE.
The minimum signal-to-noise ratio to S=N > 10,

where S=N ¼ FLUXAUTO=FLUXERRAUTO. We require
the objects in the Galaxy and PSF sample to have
SEXTRACTOR flags FLAGS=0 or FLAGS=16. This ensures
the removal of blended objects. We find that excluding
objects with FLAGS=16 set to 1 was causing large
selection biases on the shape. This is due to FLAGS=16
parameter being affected by the row-by-row scanning
strategy employed by SEXTRACTOR. We additionally
remove all galaxies from the source galaxy sample that
had sizes outside the range rg ∈ ½2; 20� and ellipticities
of the SEXTRACTOR windowed moments jeMj > 1. This
ellipticity is simply calculated as eM;1 ¼ ðM00 −M11Þ=
ðM00 þM11Þ and eM;2 ¼ ð2M01Þ=ðM00 þM11Þ. We also
removed galaxies for which the PSF prediction is unreli-
able, with the criterion: rh ∈ ½2; 12� and jePSFj < 0.5.
We remove all objects which lie on the border between

chip images. We require that there are no breaks in the
exposure maps (see Sec. III C) inside the galaxy’s postage
stamp of size 20 pixels. We expect the images lying on the
boarder to have unreliable PSF models.
We remove all objects in areas covered by less than 3

exposures.We find that this cut greatly improves the B-mode
statistics. This is due to the fact that a lot of these objects lie
in areas between chips. These areas can have an unreliable
PSF model. This cut removes around 25% galaxies.
The analysis used 3373 tiles associated with the Y1A1

tag. However, we remove 18 tiles for which the
SEXTRACTOR run or PSF estimation was consistently fail-
ing. These tiles were: DES0001-5705, DES0319-6456,
DES0030-4331, DES2019-5957, DES2335-5705,
DES2008-5248, DES0346-6456, DES0347-4123,
DES0339-6039, DES2225-5957, DES0622-5248,
DES0434-3957, DES2248-4706, DES2240-4623,
DES2244-4706, DES0044-4123, DES0620-5331,
DES2312-5123.

FIG. 12. Colors of galaxies in the DES (red) and fiducial UFig
(blue) samples. The contours signify 65% and 95% confidence
limits. The light blue contours correspond to the 30 ABC
posterior points. These simulations are made during the ABC
run; they use griz bands and 20 randomly selected tiles (see also
Sec. III D).
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The SEXTRACTOR parameters are
DETECT_TYPE=CCD, DETECT_MINAREA=5, DETECT_THRESH=1.7,
ANALYSIS_THRESH=1.7, FILTER_NAME=gauss_2.0_5x5.conv,
DEBLEND_NTHRESH=32, CLEAN=Y, DEBLEND_MINCONT=0.000005,
CLEAN_PARAM=1.0, MASK_TYPE=CORRECT, PHOT_APERTURES=5,
FILTER=Y, PHOT_AUTOPARAMS=2.5, 3.5, SATUR_LEVEL=300000,
PIXEL_SCALE=0.263, PHOT_FLUXFRAC=0.5, BACK_SIZE=64,
BACK_FILTERSIZE=3, BACKPHOTO_TYPE=LOCAL,
MEMORY_OBJSTACK=20000, MEMORY_PIXSTACK=50 \\00000,
MEMORY_BUFSIZE=2000., BACKPHOTO_THICK=24.

APPENDIX F: SIMULATION INTERNAL TEST

We perform an end-to-end test of the analysis pipeline to determine if we can recover the input cosmological parameters.
We simulate a Gaussian shear field using Synfast, a part of HEALPy package, with the input power spectrum corresponding to
the parameters h ¼ 0.7, Ωb ¼ 0.05, Ωm ¼ 0.3, σ8 ¼ 0.8, and an nðzÞ of the fiducial survey. We run another 30 simulations
with the fiducial survey parameters (see Sec. III D), changing only the random seeds in UFig. The input shear map and
systematic maps are the same, while pixel noise, galaxy positions and parameters are randomly drawn from 30 different
seeds. We analyze these 30 surveys separately in the exact same way as the DES data and apply the calibration parameters
from the fiducial survey. Finally, we average the power spectra after noise correction. This allows us to reduce the statistical
uncertainty of the power spectrum measurement. Left and right panels on Fig. 13 show the average EE and BB Cl. The true
Cl is shown with magenta line. The blue line shows the Cl obtained with estimated PSF parameters used as an input for
shear calibration. The cyan line shows the mean Cl calculated using the true PSF parameters. This is the best-case scenario,
when the PSF information is perfectly known. Error bars on the lines correspond to the errors on the mean Cl and they
exclude the cosmic variance. The light blue band corresponds to the 1σ errors for a single survey, and are taken from the
covariance matrix diagonal, similarly to Fig. 5.
The recovery of the power spectrum is generally good for the case when true PSF parameters were used in Eq. (1). We

notice, however, a slight error on the recovered mean Cl when the estimated PSF parameters are used. To examine the
impact of that error, we calculated cosmological constraints using the mean Cl of multiple realizations of the UFig full
simulations. We averaged the 30 Cl and passed it as an input to the likelihood analysis, the same way as for the main result
presented in Sec. V, including the same covariance matrix. No baryons or intrinsic alignments were used in this test. The left
panel of Fig. 14 presents the σ8 −Ωm constraints for the average Cl. The input cosmology is marked with a star. These
constrains do not include marginalization over the systematic uncertainty from nðzÞ and shear calibration. The constraint
lies within 0.5σ away from the input. The difference would be even less significant if the systematic uncertainty was also
marginalized. The right panel shows the constraints if the true Cl is used. We also do not see any significant deviation of the
constraint from the truth. Both experiments indicate that the errors arising from the imprecisions in PSF modeling and

FIG. 13. E-mode (left) and B-mode (right) average power spectra of 30 UFig simulations from the fiducial survey, with different
random seeds. The true Cl is shown with the magenta line. The blue (cyan) line shows the power spectrum calculated using estimated
(true) PSF parameters. Error bars on the lines show the error on the mean from 30 power spectra. Light blue bands correspond to 1σ
errors as calculated from the covariance matrix (see Sec. IV).
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interpolation, as well as finite number of simulations used to create the covariance matrix, are not affecting the constraints
on a significant level. We conclude that the analysis pipeline recovers the input cosmological parameters well from
internally created simulations.

APPENDIX G: SHEAR 1-PT STATISTICS

We compare the DES and UFig catalogs in terms of the mean shear of the entire sample as a function of various
properties. The mean shear for the full sample is given in Sec. IV D and is much larger than expected from cosmic variance.
In our method, the mean shear is subtracted from the maps before power spectrum estimation. This information would not
be used anyway, as it contributes only to l < 100. Because of this, we can tolerate mean shear in the data, as long as the 2-pt
statistics, and especially the B-mode, remain low. Nevertheless, a statistically significant mean shear would be an indication
of possible remaining issues. In Fig. 15 we investigate the behavior of the mean shear as a function of various parameters:
PSF shape, size, flexions, position in the survey footprint, brightness and signal-to-noise, colors, and distance to near bright
star of magnitude m < 12, taken from the SKY2000 catalog [82]. We plot only f1 and g1 flexion, as the other components
looked very similar. Colors are plotted only for the DES data, as we simulate the full survey area only for the i-band. We plot
only the r − i and g − r colors here, other combinations looked similar. We also do not plot dependence on the PSF kurtosis
and ration of the Moffat components, as the mean shear as a function of these parameters does not display any trends.
A trend that differs between the DES data and the UFig simulations would be an indication of a remaining issue that was

not properly accounted for in the analysis or not modeled correctly in the simulations. We notice a PSF leakage on the level
of≈4% in the DES data. We do not expect it to affect the measurement significantly, as described in Sec. IVA 2. Mean shear
in the γ1 direction is consistently low, and does not seem to depend in a different way than the simulations on any of the
variables considered. This suggests that the mean shear behaves purely like a constant offset, which would not have an
influence on the shear power spectrum.

FIG. 14. Constraints from average Cl from 30 UFig simulations of full Y1 area with different random seeds (left panel). The input
cosmology, true shear map, and systematic maps are kept the same. The estimated PSF parameters are used in the Cl calculation. The
true input cosmology is marked with a black star. The right panel shows the constraints obtained when the true Cl is used as input. The
covariance matrix used is the same as in the main analysis. These constraints contain only the statistical uncertainty, no marginalization
over systematics from nðzÞ or shear calibration is performed.
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FIG. 15. Mean shear as a function of various parameters. Galaxy size was calculated using SEXTRACTOR weighted moments with
Eq. (E1).
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APPENDIX H: NOISE CORRELATION

The process of image resampling using the Lanczos
kernel causes noise to become correlated. We include this
correlation in the UFIG simulations by convolving the noise
image with a specially designed kernel. We create this
kernel such that its autocorrelation is matched to that
expected from Lanczos-resampled images. We calculate
this expected autocorrelation by measuring the average
auto-correlation of a set of 20000 resampled noise images
of size 100 × 100 pixels. These images are resampled to a
shifted coordinate system, with a random uniform shift
of maximally �0.5 pixel in both x and y directions. The
final kernel image calculated this way was contained in
7 × 7 pixel stamp, shown in Fig. 16.
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[32] A. Robin, C. Reylé, S. Derrière, and S. Picaud, Astron.

Astrophys. 409, 523 (2003).
[33] K. M. Gorski, B. D. Wandelt, F. K. Hansen, E. Hivon, and

A. J. Banday, arXiv:astro-ph/9905275.
[34] C. Jordi, M. Gebran, J. M. Carrasco, J. de Bruijne, H. Voss,

C. Fabricius, J. Knude, A. Vallenari, R. Kohley, and A.
Mora, Astron. Astrophys. 523, A48 (2010).

[35] B. Flaugher et al. (DES Collaboration), Astron. J. 150, 150
(2015).

[36] A. Drlica-Wagner et al. (DES Collaboration), Astrophys. J.
Suppl. Ser. 235, 33 (2018).

[37] E. Morganson et al. (DES Collaboration), Publ. Astron. Soc.
Pac. 130, 074501 (2018).

[38] G. M. Bernstein et al. (DES Collaboration), Publ. Astron.
Soc. Pac. 129, 074503 (2017).

[39] E. Bertin and S. Arnouts, Astron. Astrophys. Suppl. Ser.
117, 393 (1996).

FIG. 16. Convolution kernel used to introduce noise correlation
in the simulated images.

T. KACPRZAK et al. PHYS. REV. D 101, 082003 (2020)

082003-28

https://doi.org/10.1046/j.1365-8711.2000.03851.x
https://doi.org/10.1046/j.1365-8711.2000.03851.x
https://arXiv.org/abs/astro-ph/0003338
https://arXiv.org/abs/astro-ph/0003338
https://doi.org/10.1038/35012001
https://doi.org/10.1051/0004-6361/201834878
https://arXiv.org/abs/1809.09148
https://doi.org/10.1103/PhysRevD.98.043526
https://doi.org/10.1093/mnras/stt1125
https://doi.org/10.1093/mnras/stx200
https://doi.org/10.1093/mnras/stx200
https://doi.org/10.3847/1538-4357/aa704b
https://doi.org/10.1093/mnras/sts454
https://doi.org/10.1093/mnras/sty957
https://doi.org/10.1103/PhysRevD.94.042005
https://doi.org/10.1103/PhysRevD.94.042005
https://doi.org/10.1051/0004-6361/201731942
https://doi.org/10.1093/mnras/stw3208
https://doi.org/10.1093/mnras/stw3208
https://doi.org/10.1093/mnras/stu1836
https://doi.org/10.1093/mnras/stu1836
https://doi.org/10.1016/j.dark.2014.01.002
https://doi.org/10.1016/j.dark.2014.01.002
https://doi.org/10.1016/j.ascom.2013.01.001
https://doi.org/10.1016/j.ascom.2013.01.001
https://doi.org/10.3847/0004-637X/817/1/25
https://arXiv.org/abs/1707.06233
https://doi.org/10.1088/1475-7516/2017/08/035
https://arXiv.org/abs/1803.06343
https://arXiv.org/abs/1805.05340
https://doi.org/10.1046/j.1365-8711.2003.06897.x
https://doi.org/10.1046/j.1365-8711.2003.06897.x
https://doi.org/10.1086/510127
https://doi.org/10.1086/305772
https://doi.org/10.1086/305772
https://doi.org/10.1093/mnras/sty1970
https://doi.org/10.1093/mnras/sty1970
https://doi.org/10.1088/0004-637X/744/2/159
https://doi.org/10.1051/0004-6361/201833051
Http://model.obs-besancon.fr
Http://model.obs-besancon.fr
Http://model.obs-besancon.fr
https://doi.org/10.1051/0004-6361:20031117
https://doi.org/10.1051/0004-6361:20031117
https://arXiv.org/abs/astro-ph/9905275
https://doi.org/10.1051/0004-6361/201015441
https://doi.org/10.1088/0004-6256/150/5/150
https://doi.org/10.1088/0004-6256/150/5/150
https://doi.org/10.3847/1538-4365/aab4f5
https://doi.org/10.3847/1538-4365/aab4f5
https://doi.org/10.1088/1538-3873/aab4ef
https://doi.org/10.1088/1538-3873/aab4ef
https://doi.org/10.1088/1538-3873/aa6c55
https://doi.org/10.1088/1538-3873/aa6c55
https://doi.org/10.1051/aas:1996164
https://doi.org/10.1051/aas:1996164


[40] J. Zuntz et al., arXiv:1708.01533.
[41] A. F. J. Moffat, Astron. Astrophys. 3, 455 (1969).
[42] J. Herbel, T. Kacprzak, A. Amara, A. Refregier, and A.

Lucchi, J. Cosmol. Astropart. Phys. 07 (2018) 054.
[43] B. Rowe, Mon. Not. R. Astron. Soc. 404, 350 (2010).
[44] M. Sunnåker, A. G. Busetto, E. Numminen, J. Corander,

M. Foll, and C. Dessimoz, PLoS Comput. Biol. 9, e1002803
(2013).

[45] J. Akeret, A. Refregier, A. Amara, S. Seehars, and C.
Hasner, J. Cosmol. Astropart. Phys. 08 (2015) 043.
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