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Abstract—Currently the best deterministic polynomial-time
algorithm for approximating the permanent of a non-negative
matrix is based on minimizing the Bethe free energy function of
a certain normal factor graph (NFG). In order to improve the
approximation guarantee, we propose a modified NFG with fewer
cycles, but still manageable function-node complexity; we call the
approximation obtained by minimizing the function of the modi-
fied normal factor graph the modified Bethe permanent. For non-
negative matrices of size 3ˆ3, we give a tight characterization of
the modified Bethe permanent. For non-negative matrices of size
n ˆ n with n ě 3, we present a partial characterization, along
with promising numerical results. The analysis of the modified
NFG is also interesting because of its tight connection to an
NFG that is used for approximating a permanent-like quantity
in quantum information processing.

I. INTRODUCTION

Given a matrix Θ “ pθijqi,j of size n ˆ n, the permanent
of Θ is defined to be

permpΘq :“
ÿ

σPSn

n
ź

i“1

θiσpiq, (1)

where Sn denotes the symmetric group on n elements. In this
paper, we will assume that Θ is a nonnegative matrix (i.e.,
θij ě 0 for all i, j) and that permpΘq ą 0.

Computing the permanent has several applications including
finding the number of perfect matchings in a bipartite graph,
particle tracking in images [1], and maximum-likelihood es-
timation of histograms of distributions [2]. Unfortunately, the
best known deterministic algorithm [3] for permpΘq takes
time Opn2nq for the worst-case instance even if we restrict
the entries of Θ to be binary, and computing the permanent
of a binary matrix is known to be #P-complete [4]. Several
approximation algorithms have been proposed [5], [6], [7],
and the best known randomized algorithm [8] uses Markov-
Chain Monte-Carlo methods. The best known deterministic
approximation algorithms are sum-product algorithm (SPA)
based methods. See [1], [9], [10] and references therein.

In the language of [10], the papers [1], [9], [10] formulated a
normal factor graph (NFG) NBpΘq whose underlying topology
is that of a complete bipartite graph with two times n vertices
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and whose partition sum equals permpΘq for a given matrix Θ.
The approximation of permpΘq that is obtained by minimizing
the Bethe free energy function [11] associated with NBpΘq
is called the Bethe permanent and denoted by permBpΘq.
For stating results about the Bethe permanent, it turns out
to be useful to define ηBpΘq :“ 1

n log permpΘq
permBpΘq

, where Θ is a
nonnegative matrix of size n ˆ n, and the logarithm is taken
to the base two.

It was shown in [10] that the Bethe free energy function [11]
and the SPA are very well behaved for the NFG NBpΘq. In
particular, the Bethe free energy function is, when suitably pa-
rameterized, a convex function. Moreover, the SPA converges
to the minimum of the Bethe free energy function. Finally, a
series of papers established that 0 ď ηBpΘq ď 1{2, where both
the lower and the upper bounds are tight. Namely, Gurvits [12]
showed that ηBpΘq ě 0 for all Θ. (An alternative proof of
this was recently given in [13].) Moreover [12] conjectured
that ηBpΘq ď 1{2. Later, [14] showed that ηBpΘq ď 1.
Very recently, [15] showed that, indeed, ηBpΘq ď 1{2. When
Gurvits [12] conjectured that ηBpΘq ď 1{2, he noticed that
this bound holds with equality for the Kronecker product of
the n

2 ˆ
n
2 identity matrix with the 2ˆ2 all-ones matrix 12ˆ2.

In this paper, we propose a modified NFG NMBpΘq that
overcomes this worst-case instance. (“MB” stands for “modi-
fied Bethe”.) The resulting Bethe approximation will be called
permMBpΘq and its approximation of the true permanent will
be characterized in terms of ηMBpΘq :“ 1

n log permpΘq
permMBpΘq

.
The modified NFG NMBpΘq strikes a good balance between
removing cycles in NBpΘq and not increasing the function
node complexity by too much.1

We will study the NFG NMBpΘq, in particular the associated
Bethe free energy function and the behavior of the SPA when
operating on NMBpΘq.
‚ For n “ 2, the NFG NMBpΘq has no cycles and therefore
ηMBpΘq “ 0. This case will not be discussed further.

‚ For n “ 3, we show that the NFG NMBpΘq is very well
behaved in the sense that the Bethe free energy function
is convex, that the SPA converges to the minimum of the
Bethe free energy function, and that 0 ď ηMBpΘq ď 1{3,
where both the lower and the upper bounds are tight.

‚ For n ą 3, empirical results show that ηMBpΘq is always
much less than 1{2. Moreover, the SPA converges to an

1Our approach at obtaining a better approximation can be seen as somewhat
similar to region approximations [11]. For such region approximations it is
clear that the larger the regions are, the better the approximation will be.
However, the complexity will also grow exponentially with the region sizes.978-1-7281-8895-9/20/$31.00 c© 2020 IEEE
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Fig. 1: From NBpΘq to NMBpΘq for n “ 3. (See text for
details.)
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Fig. 2: NBpΘq and NMBpΘq for general n.

interior point of the local marginal polytope when none of
the vertices are optimal. This is despite the fact that we can
establish that the Bethe free energy function is not convex
everywhere and despite the fact that there are vertices of
the local marginal polytope where the directional derivative
has infinite slope. This means that vertices with directional
derivatives with infinite slope have also directional deriva-
tives with finite slope, thereby allowing the SPA to escape a
non-optimal vertex. (This behavior is in contrast to binary
LDPC codes with bit node degree at least three, whose
Bethe free energy function is such that at codeword vertices
of the local marginal polytope all directional derivatives
have infinite slope.)

Let us highlight two aspects which make NMBpΘq a worth-
while object of study:

‚ Because NMBpΘq breaks some symmetry in NBpΘq, it is
advisable to reorder the rows and columns of Θ (which
leaves the permanent invariant) towards optimizing the
properties of NBpΘq. In particular, it is advisable to per-
mute the rows and columns of Θ such that

śn
i“1 θiσpiq is

maximized by the trivial permutation σ in Sn. The required
row and column permutations can be found with the help of
an algorithm that finds the maximum-weight matching. This

can be accomplished efficiently, e.g., by running the max-
product or min-sum algorithm on a suitable NFG (see [16],
[17] for details). Such a low-complexity pre-processing of
an NFG might also be interesting in other contexts.

‚ There is a tight connection between NMBpΘq and an NFG
in [18] that was used for approximating a permanent-like
quantity in quantum information processing. Similar NFGs
have been used to represent quantum systems with multiple
measurements [19], [20] and estimate rates of quantum
channels with memory [21]. Insights gained for NMBpΘq
are also relevant for these other NFGs.
The rest of the paper is structured as follows. In Section II

we introduce NMBpΘq. In Section III we discuss an efficient
implementation of the SPA for NMBpΘq. In Section IV we
analyze NMBpΘq for n “ 3 and in Section V for n ą 3.
Finally, in Section VI we discuss some simulation results.
Due to a lack of space, we have omitted proofs and detailed
calculations, which can be found in [22]. For an introduction
to factor graphs and the SPA, we direct the reader to [11],
[23], [24].

II. THE MODIFIED NFG NMBpΘq

In this section we introduce the modified NFG NMBpΘq. It
is most easily explained by first looking at the case n “ 3.
The following steps are used to obtain NMBpΘq from NBpΘq
(see also Fig. 1):
1) Fig. 1(a): we define NBpΘq as in [10]. (See [10, Fig. 1

and Sec. II] for all the details.) Note that the blue function
nodes on the left and right encode the entries of Θ.

2) From Fig. 1(a) to Fig. 1(b): we modify the NFG such that
green function nodes encode the entries of the matrix Θ.
The blue function nodes on the left and the right are now
merely suitable indicator functions.

3) From Fig. 1(c to d): for every i P rns, the function nodes
within the ellipse containing v1L,i, v

1
ii, and v1R,i are replaced

by a single blue function node wi in Fig. 1(d). Moreover,
for every 1 ď i ă j ď n, the function nodes v1ij and v1ji are
merged to the green function node vij in Fig. 1(d). Finally,
pairs of parallel edges are replaced by a single edge and
the corresponding variables concatenated.

For general n, the procedure is essentially the same. We
start with the NFG NBpΘq in Fig. 2(left) and obtain the NFG
NMBpΘq in Fig. 2(right). Note that the NMBpΘq has

`

n
2

˘

green
function nodes of degree 2 on the left and n blue function
nodes of degree n on the right.

Given NMBpΘq, we use the standard approach [11] for
formulating the Bethe free energy function FMB. The modified
Bethe permanent is then defined to be

permMBpΘq :“ exp

ˆ

´min
b
FMBpbq

˙

,

where the minimization is over the local marginal polytope
associated with NMBpΘq. The quality of the approximation
will be measured by

ηMBpΘq :“
1

n
log

permpΘq

permMBpΘq
.
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III. SPA FOR THE MODIFIED NFG NMBpΘq

In this section we first discuss the SPA message update rules
for NMBpΘq. Afterwards, we show that a suitable reparame-
terization leads to noticeable complexity gains.

A. SPA Message Update Rules

Define W :“ twi, i P rnsu and V :“ tvij , 1 ď i ă j ď nu.
For 1 ď i ă j ď n, let Bwi denote the set of all neighbors vij
of factor node wi, i.e., let Bwi – tvij : i ă juYtvji : j ă iu,
and, likewise, Bvij :“ twi, wju. For any neighbouring vertices
v, w in the NFG, let µptqvÑw denote the message sent from v
to w in iteration t.

The SPA message update equations are as follows: Let
gijpaq :“ θa1ij θ

a2
ji . For a P t0, 1u2, 1 ď i ă j ď n, w,w1 P Bvij

with w ‰ w1, and v :“ vij , we have

µptqvÑwpaq 9 gijpaqµ
pt´1q
w1Ñvpaq,

where the appropriate proportionality constant ensures that
ř

a µvÑwpaq “ 1. Moreover, for any i P rns, w :“ wi, and
v P Bw, we have

µptqwÑvp11q 9
ź

v1PBwztvu

µ
ptq
v1Ñwp00q,

µptqwÑvp01q 9
ÿ

v1PBwztvu

µ
ptq
v1Ñwp10q

ź

v2PBwztv,v1u

µ
ptq
v2Ñwp00q,

µptqwÑvp10q 9
ÿ

v1PBwztvu

µ
ptq
v1Ñwp01q

ź

v2PBwztv,v1u

µ
ptq
v2Ñwp00q,

µptqwÑvp00q 9 θii
ź

v1PBwztvu

µptqvÑwp00q

`
ÿ

v1PBwztvu

”

µ
ptq
v1Ñwp11q

ź

v2PBwztv,v1u

µ
ptq
v2Ñwp00q

` µ
ptq
v1Ñwp10q

ÿ

v2PBwztv,v1u

´

µ
ptq
v2Ñwp01q

ź

v3PBwztv,v1,v2u

µ
ptq
v3Ñwp00q

¯ı

.

The proportionality constants enforce that
ř

aPt0,1u2 µwÑvpaq “ 1. The messages are updated until
convergence, or until some suitable stopping criterion is
reached.

B. Improved SPA Message Update Rules

By reparameterizing the messages, we can reduce the num-
ber of multiplications required in each iteration, thereby reduc-
ing the computational complexity. (This reparameterization is
also of relevance for the NFG in [18].) For a P t01, 10, 11u,
and neighbours u, u1 in the factor graph, define

V
ptq
uÑu1paq :“ µ

ptq
uÑu1paq{µ

ptq
uÑu1p00q,

The components of the µ-messages sum to 1, hence there is
a bijection between the µ messages and the V messages.

In terms of the new messages, we obtain the following mes-
sage update rules. For every 1 ď i ă j ď n, a P t01, 10, 11u,
w,w1 P Bvij and v :“ vij we have

V ptqvÑwpaq :“ gijpaqV
pt´1q
w1Ñv paq.

Moreover, for each i P rns, w :“ wi, and v P Bw, we have

DptqwÑv – θii `
ÿ

v1PBwztvu

V
ptq
v1Ñwp11q

`
ÿ

v1,v2PBwztvu,v1‰v2

V
ptq
v1Ñwp10q ¨ V

ptq
v2Ñwp01q,

V ptqwÑvp11q :“
1

D
ptq
wÑv

,

V ptqwÑvp10q :“

ř

v1PBwztvu V
ptq
v1Ñwp01q

D
ptq
wÑv

,

V ptqwÑvp01q :“

ř

v1PBwztvu V
ptq
v1Ñwp10q

D
ptq
wÑv

.

IV. THE BETHE PERMANENT OF A 3ˆ 3 MATRIX

The n “ 3 case is rather special as the Bethe free energy
function and the SPA algorithm have some nice properties. The
NFG is a cycle, illustrated in Fig. 1. In this special case, the
SPA message update rules at each node can be represented as
linear transformations followed by renormalization. Further-
more, the Bethe entropy function can be written as a sum of
conditional entropy functions. We use this to show that the
Bethe free energy function is convex.

Viewing the messages µ
ptq
vijÑwi , µ

ptq
wiÑvij as column vec-

tors of length 4, we can write µ
ptq
wiÑvij 9 Aiµ

ptq
vij1Ñwi and

µ
ptq
vijÑwi 9 Aijµ

pt´1q
wjÑvij . Here, for i “ 1, 3,

Ai :“

¨

˚

˚

˝

θii 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

˛

‹

‹

‚

, A2 :“

¨

˚

˚

˝

θ22 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

˛

‹

‹

‚

,

whereas for i ă j,

Aij :“

¨

˚

˚

˝

1 0 0 0
0 θij 0 0
0 0 θji 0
0 0 0 θijθji

˛

‹

‹

‚

.

1) Convergence: We can write the recursion

µptqw2Ñv23 9 Aw2Ñv23µ
pt´1q
w2Ñv23

where Aw2Ñv23 :“ A23A3A13A1Av12A2 “

pA2A12A1A13A3A23q
T
. The message from v23 to w2

can be written as

µptqv23Ñw2
9 Av23Ñw2

µpt´1q
v23Ñw2

9 ATw2Ñv23µ
pt´1q
v23Ñw2

Likewise, we can write µ
ptq
wiÑvij in terms of µ

pt´1q
wiÑvij as

a linear transformation followed by renormalization. Since
this factor graph has a single cycle, we can invoke the
results of [25], which tell us that the SPA converges and
the messages converge to the eigenvector corresponding to
the largest eigenvalue of Aw2Ñv23 , and the partition function
is equal to this eigenvalue. We cannot apply directly the
Perron-Frobenius theorem to guarantee the existence of a
unique largest eigenvalue because the matrices AwiÑvij and
AvijÑwi

need not be positive. However, with some minor
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modifications (permuting rows and columns), we can write
AwiÑvij as a block diagonal matrix, and try to apply the
Perron-Frobenius theorem to each block. Yet, the existence of
a unique largest eigenvalue for the matrix is not guaranteed.
If the largest eigenvalue has multiplicity greater than one,
then the SPA might oscillate. However, these scenarios can
typically be circumvented by damping the messages.2 The SPA
is guaranteed to converge if the initial messages have nonzero
projection onto the largest eigenvector. If we choose the initial
vector randomly, then it will have a nonzero component in the
direction of the eigenvector for the largest eigenvalue with
high probability. We can prove the following.
Proposition 1. If the messages are initialized at random
according to any distribution with full support over the proba-
bility simplex, then the SPA converges with probability 1, and
permMBpΘq is equal to the largest eigenvalue of Aw2Ñv23 .

Proof. See [22].

2) Convexity: The Bethe entropy function can be written
as a sum of conditional entropy functions, which in turn is a
concave function of the joint distribution. This lets us conclude
that the Bethe free energy function is convex.

Proposition 2. The Bethe entropy function is a concave
function of the beliefs. Hence, the Bethe free energy function
is convex.
Proof. See [22].

3) Correctness: We can prove the following proposition by
explicitly computing an expression for the largest eigenvalue
and comparing it with the permanent. Moreover, the bounds
for ηMB are tight.

Proposition 3. For every 3ˆ 3 nonnegative matrix Θ with a
nonzero permanent, 0 ď ηMBpΘq ď

1
3 .

Proof. See [22].

V. THE GENERAL CASE

A. Convexity of the Bethe free energy function

We now proceed to study the case when n ą 3. In this
scenario, the Bethe entropy function is not a concave function
of the beliefs. In fact, we show in [22] that there exist vertices
bv in the belief polytope B, direction ξ and a small ε ą 0
such that HBpbv ` tξq is a convex function of t for t P r0, εs.
The proof follows by computing expressions for the second
directional derivative, and showing the existence of ξ for which
this is equal to `8.

Proposition 4. For n ą 3, FMB is not convex.

Proof. See [22].

Although there are directions along which FMB is concave,
simulations lead us to conjecture that for every point in B,
there are always directions along which FMB is convex, and
that FMB does not have non-global local minima.

2This is generally done by updating the messages using µptq Ð αµptq `
p1´αqµpt´1q at the end of each iteration, where α is the damping constant
and is chosen heuristically.

B. Vertices of the local marginal polytope

The structure of the local marginal polytope can give us
insight into the behavior of the SPA and the Bethe free energy
function. Let us call a point b in B integral if all the entries of
b are either 0 or 1. Likewise, b P B is called fractional if there
is some entry of b which is strictly between 0 and 1. Clearly,
every integral point in B is a vertex. In fact, it is also easy to
see that every integral point corresponds to a permutation. We
initially suspected that B contains no fractional vertices, but
a numerical search showed that this is not true. See [22] for
more details.

C. An exact expression for the approximation ratio
The expression in the following lemma is of interest because

of the permanent expression in the numerator of the fraction.

Lemma 1. For any stationary point b of the Bethe free energy
function, we have

ηMBpΘq “
1

n
log

¨

˝

ř

σPSn

ś

i ϕipσq

ś

i

ś

jPrnsztiu

b

b
pijq
00

˛

‚,

where

ϕipσq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

b
piq
ii , if σpiq “ i
b

b
pijq
00 b

pijq
11 , pσpiq, σpjqq “ pj, iq, for j ‰ i

b
piq
lm

c

b
pilq

00 b
pimq

00

b
pilq

10 b
pimq

01

, pσpiq, σpmqq “ pl, iq,

for distinct l,m, i.

Proof. See [22].

VI. SIMULATION RESULTS

In our simulations, we first run a maximum-weight matching
algorithm on a randomly generated matrix Θ and then permute
the columns to give a Θpre (superscript indicates preprocessed)
for which

ś

i θ
pre
iσpiq is maximized by the identity permutation

σ. Fig. 3 illustrates that this preprocessing greatly improves
the performance of the algorithm.

The main results are tabulated in Tables I and II. We observe
that the proposed algorithm performs particularly well when
Θ is close to being block diagonal. In all our simulations,
we observed that the proposed algorithm converges (after
introducing suitable damping). We observed that for even
moderately large n, the value ηMB is much smaller than 1{2.
We ran a numerical search for the worst matrix that maximizes
ηMB, but only obtained values very close to those in Table I.
We also performed the simulations with initial messages cor-
responding to integral vertices of the local marginal polytope,
and observed that the SPA converges to an internal point in the
polytope even if convergence is slowed by damping. We saw in
Sec. V-A that for certain integral vertices, there exist directions
along which the Bethe entropy function has infinite slope.
This suggests that even though the Bethe free energy function
has “steep hills” near certain vertices, there are also “valleys”
along which the SPA can escape these hills to move towards
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the interior of the polytope. We conjecture that for every point
in the local marginal polytope, there exist directions along
which the Bethe free energy function is convex, and that FMB

can have multiple local maxima but has no non-global local
minima.
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Fig. 3: Simulation results for n “ 3. Entries of the random
matrix were generated uniformly at random from r0, 1s. Here,
preprocessing refers to the permutation of the rows/columns
using the max-weight matching algorithm. The preprocessing
significantly improves the performance of our algorithm.
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Fig. 4: Simulation results for n “ 12. The random matrix Θ is
obtained by adding random noise to the tensor product of 12ˆ2

and I6. Here, preprocessing refers to the permutation of the
rows/columns using the maximum-weight matching algorithm.
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