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Abstract 

Remote sensing and GIS are often used to assess spatiotemporal variations for land use/land cover 
(LULC) monitoring and classification. While LULC monitoring and classification has been 
undertaken in Eswatini, little attention has been given to ascertaining covered thematic areas, 
methods of image classification, and approaches and techniques for improving classification 
accuracy. This paper summarises and synthesizes the progress made in the Kingdom of Eswatini 
regarding the application of remote sensing and GIS in LULC monitoring and classification. Eight 
thematic areas (water resources mapping; land degradation; forestry; wildfire detection; urban 
expansion; crop production; disease surveillance; general mapping) dominate evaluated LULC 
studies, employing three LULC classification methods (classic; manual; advanced). While some 
studies include strengths and weaknesses of LULC classification techniques applied, others do not. 
This review shows that only two advanced classifiers (random forest; object-based) were identified 
from the reviewed articles. In addition, reviewed studies applied only two approaches (use of multi 
temporal data; fine spatial resolution data) and three techniques (use of ancillary data; post-
classification procedure; the use of multisource data) for improving classification accuracy. 
Furthermore, the review finds that limited LULC investigations have been covered in Eswatini with 
a specific focus on the Sustainable Development Goals (SDGs). As such, this review recommends 1) 
the inclusion of higher resolution imagery for mapping purposes, 2) the adaptation of strengths and 
weaknesses for any image classification technique employed in future publications, 3) the use of more 
varied approaches and techniques for improving classification accuracy and area estimates, 4) 
inclusion of standard errors or confidence intervals for error-adjusted area estimates as part of 
accuracy assessment reporting, 5) the application of advanced image classifiers, and 6) the 
application of Earth Observation (EO) Analysis Ready Data (ARD) in the production of information 
for the support of the SDGs.  
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1. Introduction 

The continuous monitoring of the Earth’s surface through remote sensing technologies is an 
essential source of spatiotemporal data for deriving useful land use/land cover (LULC) information 
(Mudau, Mhangara & Gebreslasie, 2014; Phiri & Morgenroth, 2017). Furthermore, the use of land 
use and/or land cover classification is an important means for monitoring environmental variations. 
Thematic maps, which are outputs from LULC classification are key for the formulation of effective 
land management, planning and urban policies (Hlatywayo & Masvosve, 2015; Rimal et al., 2017).  

The advancement of technology has resulted in the provision and integration of remote sensing 
derived data with other forms of data that assist in the production of meaningful information. This is 
further enhanced by initiatives that provide access to remote sensing (and other) data, such as the 
automated Landsat data processing system, which facilitates the provision of globally consistent 
Analysis Ready Data (ARD) for earth observation through an application known as the Global Land 
Analysis and Discovery Analysis Ready Data (GLAD ARD) tool (Potapov et al., 2020). Furthermore, 
the notable collaboration between Earth Observation (EO) data scientists and statisticians to produce 
official statistics offers increasing opportunities for novel future LULC studies globally, including 
those for the Kingdom of Eswatini (formerly known as Swaziland). Some important contemporary 
initiatives that promote the integration of EO data and non-remotely sensed data include Digital Earth 
Australia (Dhu et al., 2017), and Digital Earth Africa (DEAfrica) (Agrawal, 2019). DEAfrica is an 
advanced technological initiative aimed at providing access to free satellite data, also referred to as 
EO data at an ARD stage through data cubes. Digital Earth Africa also comes with analytical tools 
and high-performance computing (HPC) infrastructure meant to facilitate easy access and analysis of 
large volumes of EO data, specifically Sentinel 2 and Landsat series imagery, without necessarily 
downloading these to the analysts’ local hard drive (Agrawal, 2019). Earth Observation data is part 
of big data (data that is characterized by high volume, velocity and variety), requiring high 
management capabilities (Baumann et al., 2015). To demonstrate the relevance of EO data in the 
production of LULC statistics, the Departamento Administrativo Nacional de Estadistica (DANE) in 
Colombia validated the accuracy of the classification of their study (United Nations, 2017). The 
validation was performed by creating a confusion matrix for different LULC classes, which showed 
a precision of 92.5%, 91.4% and 86.8% for the years 2005, 2010 and 2015 respectively at a 95% 
confidence interval. The authors concluded that the results were satisfactory and that the project has 
potential to be replicated in other areas. With the advent of DEAfrica, there is a potential for similar 
studies in future in Africa, including for Eswatini. 

In 2015, the United Nations agreed on 17 Sustainable Development Goals (SDGs) (United 
Nations, 2015). In line with Vision 2022 of the National Development Strategy (NDS) and Strategy 
for Sustainable and Inclusive Growth 2030 (SSDIG), Eswatini is committed to the implementation of 
the SDGs, as well as Africa’s Agenda 2063 (Ministry of Economic Planning and Development, 2019). 
In addition to the opportunities presented by the advancement in remote sensing technology and the 
initiatives promoting access to such technologies and concomitant data (discussed above), there is 
evidence that many of the global SDGs indicators cannot be successfully measured without the 
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inclusion of EO data (Paganini, 2018; Walter, 2020), as illustrated by the efforts of the United Nation 
Global Working Group on Big Data for Official Statistics (United Nations, 2017). Well-managed 
natural resources ensure sustainable food security (SDG 2), clean water supply (SDG 6), and forest 
use (SDG 15), among others. For Eswatini, for example, SDG 2 and SDG 6 are a national priority, 
with SDG 11 a cross cutting issue (Ministry of Economic Planning and Development, 2019), and 
their achievement can be supported by the use of remote sensing approaches and EO data. In addition, 
many SDG indicators require high quality, timely and accessible data in order to be achieved 
(Anderson et al., 2017). Furthermore, EO data provide information for SDGs through the reduction 
of survey costs while simultaneously providing data at more explicit geographical levels (Paganini, 
2018; Walter, 2020), supporting the implementation of the SDGs targets. For example, the Australia 
Bureau of Statistics has since 2014 used EO data for estimating crop yields and for the production of 
official environmental statistics, with such statistics ultimately informing SDG indicators (Halderen 
et al., 2016). In South Africa, the government, aiming to reduce hunger and other deprivations 
associated with society and the environment (Cumming et al., 2017), monitors and manages its 
natural and human-built resources partially through the use of EO data and remote sensing methods. 
For example, Mudau et al. (2020) used SPOT 6 satellite imagery to detect built-up from non-built up 
areas, providing detailed information for monitoring the urban built environment, with such results 
contributing to, e.g. SDG 11. Furthermore, land cover, land use and land cover change are among the 
statistics that can be derived from EO data (United Nations, 2017).  

In Eswatini, various studies on LULC have been undertaken using remote sensing and Geographic 
Information Systems (GIS). Little work has been done to assess the different methods of LULC 
classification, thematic areas addressed, and classification accuracy assessments done for such studies 
completed within Eswatini. This review does not attempt to conduct a review of remote sensing 
methods, approaches, and classifiers in LULC mapping, since these have been done elsewhere (e.g. 
Costa et al., 2018; Sepuru & Dube, 2018; Bégué et al., 2020). Rather, we summarise and synthesise 
available remote sensing and GIS studies for Eswatini, identifying the types of classifiers used and 
how these compare to advanced classifiers found in literature, establishing covered thematic areas, 
and compare classification approaches and technologies for improving classification accuracy to 
those of recent literature. Furthermore, this paper contributes towards existing literature and promotes 
the use of remote sensing and GIS data for LULC investigations in Eswatini, as well as the adoption 
of these technologies towards realisation of the SDGs (specifically 2, 6, 11, and 15). As such, this 
paper advances knowledge relating to LULC classification, its uses, applications, and implications in 
Eswatini, while placing such studies within the context of the SDGs and their realisation.  

This paper provides a brief overview of Eswatini (2. Study Area), followed by the results derived 
from the reviewed articles (3. Review). The identified themes are also presented in this section. This 
is followed by an evaluation of remote sensing classification methods (4. Classification Methods in 
Remote Sensing), a discussion of the results and interpretation thereof (5. Discussion), as well as 
areas of suggested future research (6. Future Directions). 
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2. Study area 

Eswatini is a landlocked country located in Southeastern Africa (Figure 1). The country is mostly 
bordered by the Republic of South Africa on the North, West and partly Southeast. Towards the East, 
the country borders the Republic of Mozambique. Its approximate land area is 17 364km2, lying 
between latitudes 25o43’S and 27o19’S and longitudes 30o47’E and 32o08’E. The country has four 
administrative regions and four agro-ecological zones. The agro-ecological zones are based on 
elevation, topography, geology, and soils, as well as climatic conditions. On average, the country’s 
altitude is 1,200m above sea level. Eswatini has dry winters and wet summers, with the annual rainfall 
highest in the Highveld (1,000-2,000mm) and lowest in the Lowveld (500-900mm). The Highveld 
temperature is relatively cold, while temperatures in the Lowveld reach around 40°C in summer 
(World Meteorological Organization, 2011). With an approximate population of 1.1 million, about 
three quarters reside in the rural areas where subsistence farming is predominantly practiced (Central 
Statistical Office, 2017).  

 

  
Figure 1. Location of Eswatini, depicting some of the specific study areas from the reviewed 

articles. 
 

3. Review 

Table 1 lists evaluated research articles (n=15) focusing on LULC change studies conducted for 
Eswatini. A majority (n=8), of the reviewed articles used Landsat imagery, three used aerial 
photographs, two used RapidEye imagery, one used Worldview-2 imagery, and one study used 
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Moderate Resolution Imaging Spectroradiometer (MODIS) data. Notably, while Radar has some 
advantages compared to optical remote sensing, including the capacity to acquire images in all 
weather conditions and day or night (Markert et al., 2018), none of the reviewed articles used imagery 
from this remote sensing technique. In all the reviewed studies, only one study applied remote sensing 
classification on land use, whereas 11 studies applied remote sensing classification on land cover, 
while four studies combined remote sensing classification techniques on both land cover and land 
use. Seven of the studies applied classic classification, while four used manual classification. The 
remaining four studies applied advanced classification. These classification categories are explained 
in Section 4 of this paper.  

Only five studies highlighted limitations or implications for future research, while ten did not. 
Similarly, only four studies made recommendations for future research. In two research papers, the 
authors recommended that further research should be done to produce more enriched findings on 
specific subjects, while in the remaining two studies a suggestion to include ancillary data in future 
studies was made. 

This review establishes that LULC classification methods applied by different researchers in the 
reviewed Eswatini articles can be grouped into three categories (manual, classic and advanced LULC 
classification), and eight thematic areas that can be broadly classed into natural resource management 
(1: water resource mapping, 2: land degradation mapping, 3: forestry, 4: wildfire detection), urban 
monitoring (5: urban expansion), agriculture (6: crop production), health monitoring 7: (disease 
surveillance), and other mapping (8: general mapping). Manual or visual classification is a result of 
image interpretation based on recognition of objects, from an aerial view, through the use of visible 
image properties such as the differences in tones, shapes, texture, sizes, colour and patterns to 
delineate land cover (Phiri & Morgenroth, 2017). Classic classifiers assume that the dataset has a 
normal distribution, and that statistical parameters such as the mean vector and covariance matrix 
generated from the training samples are representative of the sample. As such, classic classifiers are 
largely dependent on the accuracy of the parameters estimated by the model while the lack of capacity 
to integrate spectral data with ancillary data is a limitation (Lu & Weng, 2007; Salah, 2017). In 
comparison, advanced classifiers do not assume that the dataset has a normal distribution, and do not 
consider statistical parameters to compute class separation. These type of classifiers are suitable for 
the integration of ancillary data into a classification procedure and for handling complex landscapes 
(Maxwell, Warner & Fang, 2018). Their categories are explored in Section 4 of this review. The eight 
identified themes are discussed in greater detail in the subsections below. 
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Table 1. A list of reviewed articles with variables of interest. 
Author(s) 

 

Title Classifica
tion 

LC/LU/ 
Both 

Type of 
classifier 

Data Spatial 
resolution 

(m) 

Temporal 
resolution

(days) 

Limitations/gaps 
mentioned: 

Yes/No 

Implications for future 
research indicated: 

Yes/No 

Cohen et 
al. (2013)  

Rapid case-based mapping of seasonal 
malaria transmission risk for strategic 
elimination planning in Swaziland. 

Land 
cover 

Advanced Landsat ETM 

 

 

30 16 No No 

Dlamini 
(2011a) 

 

Application of a Bayesian network for 
land-cover classification from a Landsat 7 
ETM + image. 

Both Classic 

 

Landsat 
ETM+ 

30 16 Poor classification 
of roads and 
rocks. 

Inclusion of ancillary 
data to improve 
classification accuracy.  

Dlamini 
(2011b)  

Application of Bayesian networks for fire 
risk mapping using GIS and remote 
sensing. 

Land 
cover 

Classic 

 

 

MODIS 
imagery 

 

  

1 500 BN inability to 
allow feedback 
loops. 

Real time fire risk 
analysis possible if there 
is improved data quality. 

Dlamini 
(2014) 

 

 Probabilistic graphical models for 
feature-based detection. 

Land 
cover 

Classic  WorldView-
2 imagery 

2 1.1 No No 

Dlamini 
(2017) 

Mapping forest and woodland loss in 
Swaziland: 1990–2015. 

Land 
cover 

Classic 

 

Landsat TM 
and OLI 

 

 

 

30 16 No A need to evaluate forest 
cover dynamics over 
longer period to 
determine drivers.  

Dlamini & 
Mabaso 
(2011) 

 

  

Effect of Infrastructural development on 
land use and cover of urban areas in 
Swaziland; case of Mbabane. 

Both Manual 

 

 

Aerial 
photograph 

 

 

 

1:50,000 - Inaccurate change 
detection due to 
poorly produced 
topographic maps. 

 

 

 

No 

Dlamini et 
al. (2015) 

 

Assessing the relationship between 
environmental factors and malaria vector 
breeding sites in Swaziland using multi-
scale remotely sensed data. 

Both Advanced 

 

 

RapidEye 
satellite 
image  

 

 

 

5 1 No 

 

No 

Franke et 
al. (2015) 

Earth observation in support of malaria 
control and epidemiology: monitoring 
approaches. 

Land 
cover 

Advanced RapidEye 
satellite 
image 

5 1 No No 
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Khalili 
(2007) 

Monitoring of Incomati River Basin with 
Remote Sensing. 

Land 
cover 

Manual  Landsat 7 
ETM+ 

30 16 No No 

Manyatsi et 
al. (2008)  

Mapping of soil erosion using remotely 
sensed data in Zombodze South, 
Swaziland. 

Land 
cover 

Classic Landsat ETM 
and Digital 
aerial photo 

30 16 Field crops 
classified as 
moderate 
vegetation. 

No 

Mkhabela 
et al. 
(2005) 

Early maize yield forecasting in the four 
agro-ecological regions of Swaziland 
using NDVI data derived from NOAA’s 
AVHRR. 

Land 
cover 

Classic NOAA-
AVHRR 

 

1100 16 Limited 
availability of 
NDVI data 
weakened model. 

Inclusion of rainfall, 
temperature and solar 
radiation could improve 
model performance. 

Muyambi 
(2016)  

Strengthening the National Protected 
areas system in Swaziland Swaziland 
Land Cover, Land Cover change analysis 
and vegetation types for 1990, 2000, 
2010, and 2015. 

Land 
cover 

Advanced Landsat TM, 
ETM and 
OLI 

30 16 No No 

Sidorchuk 
et al. 
(2001)  

Gully erosion modelling and landscape 
response in the Mbuluzi River catchment 
of Swaziland. 

Land 
cover 

Manual  Aerial 
photograph 

1:30,000 - No No 

Tengbeh 
(2006) 

Crime analysis and police station location 
in Swaziland: a Case study in Manzini. 

Land use Manual 

 

 

Orthophoto, 
topographical 
maps, and 
street guides.  

Un-
identified 

- No No 

Tfwala et 
al. (2012) 

Assessment of Land Degradation at 
Velezizweni, Swaziland. 

  

Land 
cover 

Classic Landsat ETM 

 

30 16 No No 
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3.1. Water resources mapping  

Different LULC classification methods have been used for monitoring and identifying water 
resources using remotely sensed data in various countries (e.g. Kaplan & Avdan, 2017). Mapping 
water resources using EO data can improve information generation in areas where there are limited 
infrastructure resources for in situ measurements and instruments. In Eswatini, Khalili (2007) 
manually digitised the extent of the reservoir of the water body at Incomati River Basin using Landsat 
Enhanced Thematic Mapper plus (ETM+) imagery. While manual digitisation is a time-consuming 
process, the researcher argued that it minimises classification errors. The digitised output was 
validated with water level data obtained from the Department of Water and Sanitation of South Africa 
(Khalili, 2007).  

 

3.2. Land degradation mapping 

This theme focuses on using remote sensing and GIS technologies to monitor and quantify land 
degradation (e.g. Mararakanye & Nethengwe, 2012; Ahmad & Pandey, 2018). In a study to assess 
land degradation at Velezizweni, Tfwala, Manyatsi & Wang (2012) used Landsat ETM+ imagery and 
aerial photography to manually digitise training data polygons for the development of different land 
cover spectral signatures. In Zombodze South, Manyatsi & Ntshangase (2008) used both reflectance 
and Normalized Difference Vegetation Index (NDVI) values to determine the extent of land 
degradation. These authors provided producer’s accuracy and user’s accuracy values for all the 
different classes in addition to a KHAT statistic of 78%, attributing inaccurate classification of field 
crops to the medium spatial resolution of the ETM+ imagery used. Improvements in spatial resolution 
of the latest satellite platforms such as PlanetScope (3-4 m resolution) will ensure that crop fields can 
be mapped with higher accuracies, thus, providing useful information such as agricultural statistics 
that can assist the government to improve policy implementation and food security.  

 

3.3. Forestry  

LULC mapping with a forestry application makes use of satellite data captured through different 
remote sensing sensors to monitor, classify, and quantify forest coverage (Wulder, 1998). In mapping 
forest and woodland loss for the period 1990-2015 in Eswatini,  Dlamini (2017) used Carnegie 
Landsat Analysis SystemLite (CLASlite) software to extract data from satellite images to identify 
forest from non-forest areas and used Google Earth™ images in the validation process. While the 
classification was successful, Dlamini (2017) suggested a need to evaluate forest cover dynamics over 
a longer period to determine the spatiotemporal developments and their drivers. 
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3.4. Wildfire detection  

EO data derived from remote sensing rather than field surveys is now commonly used to map the 
occurrence of fire on grasslands ecosystems (Buthelezi et al., 2016). In Eswatini, Dlamini (2011b) 
applied a Bayesian Network (BN) model, a supervised classification parametric artificial intelligence 
(AI) approach, to map fire risk areas. The author enhanced the classification process by including 
additional data such as altitude, soil class, annual temperature, mean annual rainfall, and other data. 
Dlamini (2011b), as already noted by Korb & Nicholson (2004), stated that strengths of the BN model 
include its capacity to use incomplete datasets and its cost effectiveness. However, the BN model is 
unable to allow for feedback loops, and Dlamini (2001b) concluded that with the improvement of 
data collection, near real time fire risk analysis could be possible in future. Advanced Fire Information 
System (AFIS) and Global Wildfire Information System (GWIS) are examples of existing fire 
detection systems. 

 

3.5. Urban expansion  

Satellite data can be applied to the monitoring of urban expansion (e.g. Mohammadian, Tavakoli, 
& Khani, 2017). In order to determine the extent of the result of development caused by infrastructure 
on land use and land cover in Mbabane, Dlamini & Mabaso (2011) used scanned topographic maps 
and a set of colour aerial photographs to manually digitise different LULC within the Mbabane city 
boundary for the years 1976, 1992, and 2006 through ArcMap 9.3. The authors, as already noted by 
Kraak & Ormeling (2003), highlighted the reliability of on-screen manual digitisation, but also 
acknowledged its tedious and time-consuming nature. Furthermore, the topographic maps used for 
digitisation contained inconsistences that subsequently resulted in poor classification and inaccurate 
change detection analysis. 

 

3.6. Crop production 

Geospatial technologies are now commonly used in precision management of agricultural crops 
(e.g. Panda, Hoogenboom, & Paz, 2010). In Eswatini, Mkhabela & Mashinini (2005) utilised NOAA, 
AVHRR, NDVI data for forecasting maize yield in the four ecological zones of the country. Mkhabela 
& Mashinini (2005), as already noted by Baez-Gonzalez et al. (2002), acknowledged that the presence 
of atmospheric effects associated with satellite images had negative implications on the analysis. The 
authors also cited limited availability of NDVI data for the country as a factor that weakened their 
model, noting that the model could be improved by including more NDVI and maize yield data. They 
further recommended the inclusion of additional data on rainfall, temperature, and solar radiation. 
These datasets can be easily obtained from the European Centre for Medium-Range Weather 
Forecasts (ECMWF) World Radiation Data Centre (WRDC), National Aeronautics and Space 
Administration (NASA) and other sources. For instance, Zhang et al., (2016) successfully compared 
reanalysis climate data with surface observations using data from the ECMWF.  
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3.7. Disease surveillance  

Here advances in remote sensing and GIS are used to apply geospatial tools to public health related 
studies (Dhewantara et al., 2019). In Eswatini, Cohen et al. (2013) used a gridded 100m resolution 
population map and Landsat ETM image to map seasonal malaria transmission risk areas. The 
researchers used NDVI and Normalized Difference Water Index (NDWI) (classic classification 
methods) to identify water bodies (potential breeding sites for malaria vectors), using GIS to establish 
the potential risk areas for malaria transmission. In a different study to support malaria control and 
epidemiology monitoring using EO, Franke et al. (2015) conducted land cover classification using 
eCognition software, applying the advanced classification method of object-based supervised 
classification. Accuracy assessment was done to validate the classification technique and an overall 
accuracy of 80.7% and Kappa coefficient of 0.78 were provided. Similarly, Dlamini, et al. (2015) 
used high resolution RapidEye satellites imagery, land surface temperature and emissivity, rainfall 
estimates (RFE), and digital elevation model (DEM) datasets to create LULC classification in the 
malaria-endemic regions of Eswatini, by applying the advanced classification method of object-based 
supervised classification. The authors further supplied an overall accuracy of 80.7% and a Kappa 
coefficient of 0.78 for the classification of water bodies and wetlands.  

 

3.8. General mapping 

The final theme concerns itself with the mapping of various land cover types and land use changes 
(e.g. Szabó et al., 2019). In a study in Eswatini, Dlamini (2011a) applied the BN model on Landsat 7 
ETM+ images to perform LULC classifications. Dlamini (2011a) noted that the BN model can 
indicate which variable contributes most to the classification accuracy, is able to classify medium 
spatial resolution with little confusion and misclassification, and is easy to program and adopt to other 
remote sensing problems. However, Dlamini (2011a), as already noted by Jensen (2001), stated that 
the BN model requires continuous data to be discretized first, and that the model could not accurately 
classify some roads or granite rocks, as already observed by Stefanov et al. (2001) and Herold et al. 
(2003), due to the similarity of spectral signatures with roofing materials of buildings. The author 
recommended the inclusion of additional data such as DEMs or texture information for future studies, 
arguing that these could improve classification accuracy. In another study by Dlamini (2014), the BN 
model was used to successfully classify invasive alien plants in Eswatini using Worldview-2 imagery. 
The success of the BN model classification approach lay in its probabilistic strength to identify unique 
phenological or reflectance values based on spectral properties, allowing for the differentiation of 
individual plant species. Dlamini (2014) concluded that the findings of his study could be applied to 
broader applications in remote sensing.  

Muyambi (2016) in turn employed object-based classification and on-screen manual digitisation 
on Landsat TM, Landsat ETM+, and Landsat OLI imageries to generate a land cover classification 
for years 1990, 2000, 2010 and 2015 and ending by performing change detection analysis for different 
land cover features. Muyambi (2016) further performed accuracy assessment, which employed high-
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resolution Google Earth™ imagery and a ground truthing exercise as a map reference. An overall 
accuracy of 85.71% and a Kappa coefficient of 83.86% for the 2015 land cover classification map 
were provided.  However, the author indicated that this approach generally requires the researcher to 
have thorough knowledge about the study area. Figure 2 is a 2015 land cover map for Eswatini 
generated by Muyambi (2016). In comparison, Tengbeh (2006) used visual and manual classification 
techniques to identify different land use classes in a study aimed at analysing crime and police station 
location in Manzini, Eswatini. In digitising the different land use classes through ArcGIS, Tengbeh 
(2006) used topographic maps, digital street guides, aerial photographs, and direct field observation. 
Finally, the researcher created nine land use feature classes. 

 
Figure 2. Eswatini land cover 2015. Source: (Muyambi, 2016). 
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4. Classification methods in remote sensing  

Land use and / or land cover classification methods may be grouped into five categories, which 
can be further aggregated into three classifications methods. The five LULC classification methods 
are pixel-wise, sub-pixel, per-field and object-based classification; soft and crisp classification; 
parametric, non-parametric and non-metric classification; spectral, contextual and spectral-contextual 
classification; and supervised, unsupervised and hybrid classification. The three LULC classification 
methods are classic, manual, and advanced. These have already been discussed in Section 3. In this 
section, special attention is given to advanced classifiers, as applicable to even complex landscapes, 
and research shows that advanced image classifiers produce better results compared to classic 
classifiers (Huang et al., 2002; Rogan et al., 2003). 

The need to provide LULC classification even in heterogeneous landscapes and the desire to 
improve classification accuracy output from remotely sensed data has resulted in the development of 
advanced classifiers. Based on literature (Lu & Weng, 2007; Nath et al., 2014¸ Prasad et al., 2015), 
this review has grouped these advanced classifiers into six categories namely 1) pixel-based 
algorithms, 2) subpixel algorithms, 3) per-field algorithms, 4) contextual based approaches, 5) 
knowledge-based algorithms, and 6) combinative approaches of multi classifiers. Examples of 
advanced pixel-based classifiers include non-parametric classifiers such as Support Vector Machines 
(SVM) and Random Forest (RF). These classifiers, unlike parametric classifiers, do not assume that 
the data set has a normal distribution, and they have the capacity to incorporate non-spectral data into 
a classification procedure (Maxwell et al., 2018).  

Subpixel classifiers were developed for providing a more suitable representation and accurate 
estimation of land features, which pixel based approaches cannot efficiently handle because of the 
mixed pixel challenge (Kamavisdar, Saluja & Agrawal, 2019). Per-field classifiers, unlike the per-
pixel approach, which group each pixel into a specific category, use land parcels as individual units 
using vector data (referred to as fields). This approach addresses the problem of environmental 
heterogeneity (Lu & Weng, 2007). Contextual-based approaches have been designed to address the 
intra-class spectral variation challenge. As such, this approach improves classification results by 
making use of spatial information from neighbouring pixels (Lu & Weng, 2007). Knowledge-based 
classifiers group land cover types by considering auxiliary data, such as slope, aspect, DEMs, soil 
data, as well as housing and population density. The process involves developing rule sets with 
specific binding thresholds to determine the class of a particular land cover type (Lu & Weng, 2007). 
Combinative approaches of multi-classifiers are based on the premise that different classifiers have 
their own strengths and limitations, and studies have confirmed that the combination of different 
approaches or classifiers can contribute to the quality and accuracy of land cover classification (Phiri 
& Morgenroth, 2017). When this approach is used, it is important to develop suitable rules for 
combining the classification results obtained through different classifiers. Such rules include 
production rules, majority voting, a sum rule, and stacked regression methods (Lu & Weng, 2007). 
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In addition to using advanced classifiers, research indicates that specific approaches are used by 
different researchers in the remote sensing community to improve classification accuracy. This 
review established six approaches for improving classification accuracy. These are the use of textures, 
fusion of multi sensor or multi resolution data, use of multi-temporal data, image transforms, fine 
spatial resolution data, and hyper-spectral data (Lu & Weng, 2007; Prasad et al., 2015). Use of texture 
refers to the consideration of the placement and spatial arrangement of recurrence of tones, which 
essentially describes how pixels vary in a neighbourhood (Jensen, 2009). For instance, texture 
metrices improve classification accuracy since they mitigate spectral confusion where there are 
spectrally similar classes (Carleer & Wolff, 2006). Fusion of multi sensor or multi resolution data in 
remote sensing is the process of integrating imagery with different bands or different resolutions to 
produce one image containing more detailed information than each of the original sources (Zhang, 
2020). There are indications that this procedure enhances classification accuracy (Hedhli et al., 2017). 
Multi-temporal data refers to data that have been captured at different time intervals. Research 
indicates that the use of high temporal resolution data result in improved classification accuracy, 
particularly where vegetation classification is required (Zhang, 2020). Image transforms such as 
Principal Component Analysis (PCA), minimum noise fraction, and others are important techniques 
for feature extraction, reducing dimensionality of datasets, and improving classification accuracy, 
especially with high resolution datasets (Salah, 2017). Fine spatial resolution data such as QuickBird 
provide an opportunity for extracting more detailed information on different LULC features because 
it reduces the mixed-pixel problem. However, the analyst should ensure that challenges associated 
with fine spatial resolution such as shadows caused by tall building, topography and trees are well 
handled. Hyperspectral data is imagery with multiple bands. Such imagery have a potential of 
improving classification accuracy, especially where numerous bands have an effect in discriminating 
the classes of interest (Lu & Weng, 2007).  

Research also indicates that there are specific techniques applied to enhance classification 
accuracy of remotely sensed data. These are the use of ancillary data, stratification, post classification 
processing and the use of multisource data (Salah, 2017).  Examples of ancillary data include 
topography, soil, road, and census data. However, caution has to be taken when identifying the 
variable that is most effective in separating land-cover classes (Peddle & Ferguson, 2002). 
Stratification may be useful in improving classification accuracy. For instance, census data can be 
used to create different strata (Prasad et al., 2015), and this may be done as a pre-classification step, 
during classification, and as a post-classification procedure (Lu & Weng, 2007). The post-
classification process is another technique that can be applied to enhance classification accuracy. For 
instance, Prasad et al. (2015) used housing density data for improving their initial classification 
output. Lastly, the use of multisource data also assist in improving classification accuracy, and it 
requires different classification approaches such as knowledge based or fuzzy contextual 
classification (Lu & Weng, 2007).  Multisource data refers to the involvement of data from different 
sources such as combining digital elevation models, soil, spectral data, texture data and existing GIS-
based maps from different sources (Prasad et al., 2015). Table 2 provides a summary of advanced 
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classifiers, and these have been grouped into the six categories that have been explained above. 
Specific examples of advanced classifiers are provided as well as the frequency they appear in the 
reviewed articles and their references where applicable. In addition, the table provides categories of 
approaches for improving classification accuracy, the frequency at which they appear in the reviewed 
articles, the data used for improving classification accuracy and references where applicable. Table 2 
illustrates that only two advanced classifiers and two approaches for improving classification 
accuracy have been applied in the reviewed Eswatini remote sensing and GIS reviewed articles. 

 
Table 2. Categorization of classification methods and examples of advanced classifiers for each 

method together with approaches for improving classification accuracy and the frequency at which 
each classifier (Column 3) and approach (Column 6) appear in the reviewed articles. 

Classification 
method 

Category 

Advanced 
classifier 

Freq 
(class.) 

Ref 
 

Improving 
classification 

accuracy 

Freq 
(appr.) 

Improving 
classification 

accuracy 
Ref 

Pixel-based 
algorithms 

Support 
Vector 

Machines 
0 

- 

Use of textures 0 - - 
Random 
Forest  1 

Cohen et al. 
(2013) 

Subpixel 
algorithms 

Multiple 
Endmember 

Spectral 
Mixture 
Analysis 

0 

- 

Fusion of multi 
sensor or multi 
resolution data 

0 

 

 

- - 
Fuzzy 

Classifier-
Visual 

Attention 
Feature 

0 

- 

Expert 
knowledge 0 - 

Decision rule 0 - 

Per-field 
algorithms 

Parcel based 
classification 0 - 

Use of multi 
temporal data 3 

MODIS, 
RapidEye and 
WorldView-2 

imagery 

(Dlamini 
et al., 
2015; 

Dlamini, 
2014 & 

Franke et 
al., 2015) 

Object based 
classification 

3 

(Dlamini et 
al., 2015; 

Franke et al., 
2015 & 

Muyambi, 
2016) 

Contextual based 
approaches 

Iterative 
Context 
Forest 

0 
- 

Image 
transforms 0 - - 

Extraction 
and 

Classificatio
n of 

Homogeneou
s Objects 

0 

- 

Knowledge- 
based algorithms 

Rule-Based 
Classificatio

n 
0 

- 

Fine spatial 
resolution data 3 

MODIS, 
RapidEye and 
WorldView-2 

imagery 

(Dlamini 
et al., 
2015; 

Dlamini, 
2014 & 

Franke et 
al., 2015) 

Knowledge-
Based 

Classificatio
n 

0 

- 

Combinative 
approaches of 

multi classifiers 

MLC, 
ISODATA 

and DT 
0 

- Hyper-spectral 
data 0 - - 
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Classification 
method 

Category 

Advanced 
classifier 

Freq 
(class.) 

Ref 
 

Improving 
classification 

accuracy 

Freq 
(appr.) 

Improving 
classification 

accuracy 
Ref 

Artificial 
Neural 

Network and 
Expert 

Knowledge 

0 

- 

 

5. Discussion  

Since there are only eight thematic areas that were identified in the reviewed articles, this article 
suggests that future research should investigate, using remote sensing and GIS, the unexplored topics. 
In addition, The United Nations (2017) promote the application of remote sensing in producing data 
for monitoring and supporting the implementation of SDGs. As such, in addition to the use of remote 
sensing and GIS in enhancing the production of SDGs related information, potential themes for 
investigation include geological mapping and identification of mineral surface deposits, mapping of 
soil types, human settlement mapping, soil moisture mapping (Harris, 1998), and climate change 
(Yang, Fu, Chen, & Xu, 2013).  

From the examples of some of the advanced remote sensing classifiers shown in Table 2, only two 
were used in the reviewed articles. These are random forest (Cohen et al., 2013), which fall under 
advanced per-pixel category, and object-based classification (Dlamini et al., 2015; Franke et al., 
2015; Muyambi, 2016), which falls in the group of per-field algorithms. Advanced classifiers from 
the remaining classification method categories, such as sub-pixel algorithms, contextual-based 
approaches, knowledge-based algorithms, and combinative approaches of multi classifiers categories 
have not been identified in any reviewed articles. These can be explored in future research.  

This review has established that out of the six suggested approaches for improving classification 
accuracy discussed in this article, only two of these were applied (the use of multi-temporal, and the 
use of fine spatial resolution data). The multi-temporal approach was illustrated through the use of 
WorldView-2 imagery with a temporal resolution of 1.1 day and RapidEye imagery, 1 day temporal 
resolution (Dlamini et al., 2015; Franke et al., 2015), and MODIS data with a 2 days temporal 
resolution (Dlamini, 2014). The use of fine spatial resolution data was demonstrated using RapidEye 
imagery, 5m spatial resolution, and the use of WorldView-2 imagery, 2m spatial resolution (Dlamini 
et al., 2015; Franke et al., 2015). Other approaches for improving accuracy classification discussed 
in this review including the use of textures, fusion of multi sensor or multi resolution data, image 
transforms, and hyper-spectral data have not been identified in the reviewed articles.  

Among the techniques for improving classification accuracy discussed, three were implemented 
in the reviewed articles. These are the use of ancillary data, post-classification procedure and the use 
of multisource data. Cohen et al. (2013) used ancillary data including rainfall, temperature, elevation, 
and other data sets. Franke et al. (2015) used land cover map, wetlands, population density, malaria 
incidence and other data sets to improve accuracy classification in a study for malaria control, while 
Dlamini (2011b) included 13 ancillary datasets (such as altitude, slope angle, slope aspect, mean 



South African Journal of Geomatics, Vol. 10. No. 2, August 2021 

196 

annual rainfall, mean annual temperature, relative humidity) that enhanced classification in a study 
for fire risk mapping. Franke et al. (2015) computed the NDVI as a post-classification procedure to 
improve classification accuracy. On the use of multisource data, Franke et al. (2015) included, 
RapidEye satellites imagery, Advanced Space borne Thermal Emission and Reflection Radiomer 
(ASTER), GeoEye-1, and IKONOS-2, rainfall estimates, DEMS, surface temperature, and emissivity 
datasets in the study on Earth observation in support of malaria control and epidemiology. Still on 
the use of multisource data, Dlamini, et al. (2015) used RapidEye satellites imagery, land surface, 
temperature and emissivity, rainfall estimates, and DEM datasets. However, the stratification 
technique for improving classification accuracy, one of the suggested techniques for improving 
classification accuracy, has not been applied in any of the reviewed articles.  

The review further shows that some authors were able to demonstrate that different LULC 
classification approaches employed have different strengths and weaknesses. Referring to the 
strengths of the BN model, Dlamini (2011a) noted its cost effectiveness and capability to use 
incomplete datasets. He also observed that it is able to separate spectral signatures for individual plant 
species (Dlamini, 2014). Researchers that used manual digitisation, (Khalili, 2007; Dlamini & 
Mabaso, 2011), rated the manual method as the most accurate compared to the other methods. 
Inaccuracies in the various LULC classifications outputs were a result of the medium spatial 
resolution of Landsat ETM+ imagery (Manyatsi & Ntshangase, 2008) as well as  the general 
atmospheric effect associated with satellite images, and limited availability of NDVI data (Mkhabela 
& Mashinini, 2005). The inability of the BN model to separate spectral signatures for roads and rocks 
from those of roofing materials for building (Dlamini (2011a) also caused poor LULC classification. 

Several authors provided information on the validation of their LULC classification outputs. 
Khalili (2007) used a different data source as ground truth data for water levels for the Incomati River 
Basin (including Maguga Dam). In validating the LULC classification outputs, various authors 
(Manyatsi & Ntshangase, 2008; Dlamini, 2011a; Dlamini, 2011b; Dlamini, et al., 2015; Franke et al., 
2015; Muyambi, 2016; Dlamini, 2017) provided either the overall accuracy and Kappa coefficient 
values or the kappa coefficient values only. However, not all authors provided such measures, a trend 
already noted by Costa et al. (2018). Furthermore, in addition to these measures of accuracy, Olofsson 
et al. (2013) argue that computing standard errors or confidence intervals for error-adjusted area 
estimates where land cover and / or land cover change has been mapped should also be included, 
since this quantifies the uncertainty attributable to sampling variability, which should be taken into 
account by users of the final classification map. Olofsson et al. (2013) further cite researchers such 
as Card (1982) and Stehman and Foody (2009), who have published methods and formulas for 
accuracy estimates and the standard errors for area estimation. Figure 2 is a typical LULC map 
extracted from one of the reviewed articles (Muyambi, 2016). Olofsson et al. (2013) argue that such 
maps should be presented together with accuracy assessment quantifiers including standard errors or 
confidence intervals for error-adjusted area estimates. Notably, in all the reviewed articles none of 
the researchers provided error-adjusted area estimates as part of their accuracy assessment reports. 
Nevertheless, some of the authors for the reviewed articles made recommendations for future studies. 
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Dlamini (2017) and Mkhabela, & Mashinini (2005) suggested that additional data such as DEMs, 
rainfall, temperature, and solar radiation should be included in future studies to enhance the accuracy 
of LULC classification. Lastly, Dlamini (2014) recommended that findings from his study that 
classified invasive alien plants could be applied to broader applications in remote sensing. 

The remote sensing community has explored and continues to explore different types of remotely 
sensed images in working toward providing improved LULC classification results. Remote sensing 
images that have been explored for improving LULC classification include Radar remotely sensed 
imagery, fused imagery, hyperspectral imagery, and Very High-Resolution imagery (VHR). Optical 
remotely sensed imagery is unable to capture usable images during adverse weather conditions or at 
night. Furthermore, low resolution optical imagery exhibits the mixed pixel problem, and the 
similarities of spectral reflectance on landscape associated with optical images features are 
problematic (Muthukumarasamy et al., 2019). In comparison, Synthetic Aperture Radar (SAR) 
imagery captures imagery based on the geometry instead of the reflectance of the target features, 
overcoming some of these issues inherent to optical imagery (Muthukumarasamy et al., 2019). 
Furthermore, Krishna et al. (2018) argue that hyperspectral remote sensing is a solution to the 
problem of mixed pixels and spectral similarity associated with optically derived imagery, due to the 
numerous bands of hyperspectral data that provide spectral information per pixel, allowing for the 
discrimination of feature classes, yielding improved LULC classification accuracy. However, this 
imagery comes with high dimensionality and huge volumes of data resulting in the Hughes 
phenomenon (Christovam et al., 2019). In addition, hyperspectral imagery is relatively difficult to 
process compared to multispectral imagery, demanding bigger storage capacity (Zhang & Sriharan, 
2005). Regardless, such imagery can yield improved accuracy relating to LULC classification. 

Krishna et al. (2018) further indicate that the development of VHR remotely sensed imagery 
enables the extraction of detailed level LULC information, yielding improved classification accuracy. 
Improved results have also been observed in the use of fused imagery. For instance, Zhang et al. 
(2020), argue that the advantages of imagery produced through fused optical and SAR images is that 
specific features not clearly detected on passive sensor imagery may instead be relatively observable 
and delineated on microwave imagery and vice versa. This is because of the complementary 
characteristics of the different sensors involved, yielding a sharpened and improved geometrically 
corrected imagery (Amarsaikhana et al., 2010).  

In addition to extracting LULC information from various types of remotely sensed imagery, 
researchers have applied diverse techniques for producing LULC maps that have improved 
accuracies. These techniques include applying object-based classification instead of pixel based, 
utilizing non-parametric classifiers, and machine learning ensemble classifiers. In a study conducted 
by Ai et al. (2020), the researchers applied object-based classification, a method that considers 
contextual information. The researchers noted that object-based classification produced better-quality 
maps compared to traditional pixel-based classification, while Robertson et al. (2011) state that object 
based methods are increasingly applied in LULC classification because of their superiority over pixel-
based methods. However, object-based classification is often associated with image segmentation 
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(over- and under-segmentation). Where under-segmentation has occurred, the resultant image objects 
cover more than one class, causing classification errors. On the other hand, over-segmentation yields 
misrepresentations of the real earth object (Liu & Xia, 2010). Regardless, object-based classification 
yields improved classification compared to pixel-based methods. 

Non-parametric classifiers (RF or SVM), also produce improved classification compared to 
traditional classifiers such as Maximum Likelihood, Minimum Distance, and others (Breiman, 1996). 
Furthermore, machine-learning ensemble, a technique that combines different machine learning 
classifiers such as RF and SVM, is also being increasingly utilised because of its superiority over 
single base classifiers. For instance, Vasilakos et al. (2020) compared classification results from 
SVM, RF, K-Nearest Neighbour (KNN), and Artificial Neural Networks (ANN), and concluded that 
in cases where no classifier clearly performed better than others, the ensemble approach was the best 
alternative. 

The types of remote sensing images and techniques discussed above undoubtedly contribute to 
increased LULC classification accuracy and LULC work completed for Eswatini would improve 
through the application of such imagery and techniques. Furthermore, Eswatini researchers can adopt 
the highlighted techniques on local data to produce novel LULC classification results based on 
Eswatini context. While the types of images and applied techniques referred to have their limitations, 
Eswatini researchers can adopt such for future studies and explore means of mitigating their 
weaknesses.  

Based on the sources of remote sensing data mentioned by different authors in the reviewed 
articles, there is a need for the remote sensing and GIS community in Eswatini to prepare an EO data 
hub. Preparations for emerging EO data initiatives such as DEAfrica and other big data initiatives 
that promote the production of useful local, regional, and global information are critical for future 
research purposes. The main aim behind DEAfrica is to assist potential but disadvantaged EO data 
users – those that lack the capacity, infrastructure, and appropriate internet bandwidth to access and 
subsequently process EO data (United Nations, 2017). The United Nations (2017) also noted that 
where expertise to handle EO data exists, the data are limited to a small number of users, subsequently 
limiting the use of EO data. This situation has necessitated the need to provide EO data at ARD stage, 
through initiatives such as Digital Earth Australia (Dhu et al., 2017), DEAfrica (Agrawal, 2019), and 
others. Even with such initiatives in place, several EO data users may still lack reliable Internet 
connection to access EO ARD. To mitigate this challenge, once EO ARD become available for 
Eswatini, it is recommended that the data should be downloaded through automated systems to big-
capacity local servers, such as those available at the National Data Development Center (NDDC) 
located at the Surveyor General’s Department, where all interested users may freely access the data. 
Different government departments, researchers and other private consultants may thus benefit from 
this EO data hub. Furthermore, EO can also be adopted by the Ministry of Education and Training 
where EO data and applications can form part of the secondary school curriculum. This can assist 
Eswatini in taking advantage of the Fourth Industrial Revolution, which is characterized by big data 
and data analytics.  
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This review notes that among the four reviewed articles published in 2015 and onward, no LULC 
study was done to explicitly provide information on different SDGs nor their indicators. Paganini 
(2018) states that using EO data for SDGs information is useful in producing timely statistical reports, 
reduction of survey frequencies, and provision of data at more explicit geographical levels. Specific 
SDGs that require the use of remote sensing include SDG 2-Hunger and Food security, SDG 6-Water 
and sanitation, SDG 11-Cities, SDG 13-Combating climate changes, SDG 14-Marine and coastal 
ecosystems, and SDG 15-Terrestrial ecosystems (United Nations, 2017). Friedl (2016) notes that out 
of the 17 SDGs, 14 have indicators that need information from EO data, and such information can be 
derived through LULC mapping. Specific SDGs indicators that can directly benefit from LULC 
mapping using EO data include, but are not limited to, SDG 2, indicator 2.4.1 Proportion of 
agricultural area under productive and sustainable agriculture; SDG 6, indicator 6.6.1 Change in 
the extent of water-related ecosystems over time; SDG 11, indicator 11.3.1 Ratio of land consumption 
rate to population growth rate; and SDG 15, indicator 15.2.1 Forest cover under sustainable forest 
management. In future, Eswatini researchers should take advantage of already established 
international EO initiatives and combine these with other data sets in the production of information 
required by national development programmes and global frameworks, such as the SDGs. For 
instance, the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) is a global 
initiative that conducts monthly reports on four main crop conditions in main production areas and 
potential countries with food insecurity (Anderson et al., 2017). These reports utilise satellite, in-situ, 
and ancillary data. Furthermore, the University of Maryland (USA), which is part of the global forest 
watch initiative of World Resources, has developed an EO-based methodology that informs SDGs 
indicators 15.1.1 and 15.2.1. Peru has adopted this methodology for official reporting (Anderson et 
al., 2017). Other studies on the adoption of EO data in support of SDGs include evaluating the fraction 
of the population with convenient access to public transport (Moller, 2016), and determining the 
number of households with access to basic services in Mexico (Ocampo, 2016).  

Like in any country, different sectors or departments working on SDGs in Eswatini can thus benefit 
from LULC mapping using EO data. With a specific focus on Eswatini, SDG 2 can be supported by 
information management systems for effective planning (Ministry of Economic Planning and 
Development, 2019), achievable using LULC mapping and EO data. Eswatini aims to achieve the 
reduction of Malaria (SDG 3), something that can be done through remote sensing as demonstrated 
by Cohen et al. (2013), Dlamini, et al. (2015), and Franke et al. (2015). Monitoring of water 
resources, including wetland areas in support of SDG 6, can further be achieved using remote sensing 
approaches, including those of LULC mapping. With reference to SDG 6, an area of support identified 
is sanitation and hygiene mapping (Ministry of Economic Planning and Development, 2019), which 
can be supported by EO data derived from remote sensing. As such, LULC studies can explicitly 
contribute to the achievement of the SDGs and associated indicators for Eswatini. Furthermore, the 
above indicators and goals are a responsibility of different sectors that can clearly benefit from the 
use of EO data in support of SDGs indicators in Eswatini. The proposed EO ARD hub at the NDDC 
can be used to assist in the realisation of such goals. 
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6. Future directions  

Based on results derived from this review, LULC exercises should use emerging high spatial 
satellite images, such as Sentinel and PlanetScope for future research. The use of Radar remotely 
sensed imagery and the fusion of radar and optical imagery is also encouraged since literature 
indicates that these imagery types and data fusion approach enhance LULC classification accuracy. 

Researchers are further encouraged to provide, where possible, weaknesses and strengths for any 
LULC classification methods or techniques applied in their research to assist future researchers to 
minimise those weaknesses. This includes the inclusion of computation of standard errors or 
confidence intervals for error-adjusted area estimates as part of accuracy assessment reporting. The 
adaptation of some of the advanced image classifiers such as Support Vector Machines, Multiple 
Endmember Spectral Mixture Analysis, Knowledge-Based Classification, and Combinative 
Approaches of Multi Classifiers are also recommended for future studies.  

Once EO ARD becomes available for Eswatini, automated systems that will download the data 
into big-capacity local servers, such as those available at the National Data Development Center 
(NDDC) located at the Surveyor General’s Department, are recommended to facilitate free and easy 
access to EO data. EO related topics are recommended to the Ministry of Education and Training 
where EO data and applications can form part of the secondary school curriculum. This will assist 
Eswatini to take advantage of the Fourth Industrial Revolution, which is characterised by big data 
and data analytics. 

Lastly, based on the findings, this review, recommends undertaking of future studies on geological 
mapping and identification of mineral surface deposits, mapping of soil types, human settlement 
mapping, soil moisture mapping, climate change, and SDGs related mapping. LULC-focused 
research articles should explicitly indicate their applicability to the achievement of SDGs and their 
indicators, in support of Eswatini’s Vision 2022 of the National Development Strategy (NDS), the 
Strategy for Sustainable and Inclusive Growth 2030 (SSDIG), as well as Africa’s Agenda 2063. 

 

7. Conclusion 

This paper assesses current knowledge on the use of remote sensing and GIS in LULC monitoring 
and classification in Eswatini. It establishes that the reviewed articles cover eight thematic areas 
namely 1) water resources, 2) land degradation, 3) forestry, 4) urban expansion, 5) crop production, 
6) wildfire detection, 7) disease surveillance, and 8) general mapping. LULC classification methods 
of reviewed articles can be categorised into three major groupings namely manual, classic, and 
advanced methods. Where provided, limitations and /or strengths of each specific classification 
approach are captured. Special attention was given to the use of advanced remote sensing classifiers. 
Based on literature, some advanced remote sensing image classification algorithms are provided 
(grouped into six categories). Notably, most of these advanced image classification algorithms were 
not applied in the reviewed articles. Furthermore, this paper ascertains that few classification 
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approaches to improve classification accuracy, as suggested by recent remote sensing classification 
reviews, were applied in the reviewed articles. However, most (three out of four) of the classification 
techniques for improving classification accuracy suggested by literature were applied.  

Finally, none of the reviewed articles, even those published from 2015 onward, explicitly aim to 
achieve an SDG or any indicator. However, remote sensing and EO data have the potential to greatly 
contribute to the realisation of the SDGs (Friedl, 2016; United Nations, 2017; Paganini, 2018; Walter, 
2020). This must be seen in light with Eswatini’s commitment to achieving the SDGs, in particular 
the priority SDGs (1-4, 6-8, 13, 16, 17) (Ministry of Economic Planning and Development, 2019).  

In conclusion, this review recommends: 1) the inclusion of higher resolution imagery for mapping 
purposes, 2) the adaptation of strengths and weaknesses for any image classification technique 
employed in future publications, 3) the use of more varied approaches and techniques for improving 
classification accuracy and area estimates, 4) inclusion of standard errors or confidence intervals for 
error-adjusted area estimates as part of accuracy assessment reporting, 5) the application of advanced 
image classifiers, and 6) the application of Earth Observation (EO) Analysis Ready Data (ARD) in 
the production of information for the support of the SDGs.  
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