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Advances in mechanical metamaterials
for vibration isolation: A review

Mohammed Al Rifaie1 , Hasanain Abdulhadi2 and Ahsan Mian2

Abstract
The adverse effect of mechanical vibration is inevitable and can be observed in machine components either on the long-
or short-term of machine life-span based on the severity of oscillation. This in turn motivates researchers to find solu-
tions to the vibration and its harmful influences through developing and creating isolation structures. The isolation is of
high importance in reducing and controlling the high-amplitude vibration. Over the years, porous materials have been
explored for vibration damping and isolation. Due to the closed feature and the non-uniformity in the structure, the por-
ous materials fail to predict the vibration energy absorption and the associated oscillation behavior, as well as other the
mechanical properties. However, the advent of additive manufacturing technology opens more avenues for developing
structures with a unique combination of open, uniform, and periodically distributed unit cells. These structures are called
metamaterials, which are very useful in the real-life applications since they exhibit good competence for attenuating the
oscillation waves and controlling the vibration behavior, along with offering good mechanical properties. This study pro-
vides a review of the fundamentals of vibration with an emphasis on the isolation structures, like the porous materials
(PM) and mechanical metamaterials, specifically periodic cellular structures (PCS) or lattice cellular structure (LCS). An
overview, modeling, mechanical properties, and vibration methods of each material are discussed. In this regard, thor-
ough explanation for damping enhancement using metamaterials is provided. Besides, the paper presents separate sec-
tions to shed the light on single and 3D bandgap structures. This study also highlights the advantage of metamaterials
over the porous ones, thereby showing the future of using the metamaterials as isolators. In addition, theoretical works
and other aspects of metamaterials are illustrated. To this end, remarks are explained and farther studies are proposed
for researchers as future investigations in the vibration field to cover the weaknesses and gaps left in the literature.

Keywords
Vibration isolation, porous materials, metamaterials, vibration attenuation, damping ratio, frequency ratio, natural
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Introduction

Studying vibration behavior of machines is essential to
analyze the source of malfunction and find out the best
isolation technique to mitigate its adverse effects. It can
be predicted through studying the experimental and
analytical methods on a specific part or machine ele-
ment. Several works have been done to study the vibra-
tion behavior of specific machine elements. Also,
different cellular materials have been proposed as good
replacements to provide the essential isolation to
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machines for the purpose of controlling the vibration
and suppressing its effects through absorbing the asso-
ciated energy.

Starting with a simple feature of cellular materials,
porous materials (PM) historically emerged first, which
are composed of cells recognized with closed shape, dif-
ferent sizes, and distributed randomly in the 3D-space.
PM could be found in nature like cancellous bone, coral
reefs, and sponge. Besides, artificial PM could be manu-
factured using different methods to create metal foams.
The mechanical properties and vibration behavior of
such materials were tested experimentally and using
finite element methods. First of all, it has been observed
that the feature of the foam unit cell, which is almost
closed from all directions, has limited damping capacity
and strength. In addition, it is difficult to design and
control mechanical properties of PM due to the sto-
chastic distribution of the unit cells. For the same rea-
son, single unit cell-based modeling will not work
efficiently for predicting the mechanical properties of
PM. Hence, complex designs with predictive properties
are being explored as a growing solution for vibration
isolation. From this point, researchers and experts put
their focus on studying the behavior of these complex
models. Table 1 summarizes the important literatures
related to the mechanical metamaterials as a vibration
isolation and control over the years. The literatures
were published between 2003 and 2021, included several

studies about PM, PCS, or LCS. In addition, these
structures were studied in several applications like pas-
senger seat, gear, and vibration isolator. These studies
were conducted experimentally and numerically to
investigate vibration isolation performance of the men-
tioned structures, as listed in Table 1. In this paper, fur-
ther studies are discussed and explored thoroughly to
provide a broader insight of the mechanical metama-
terials for vibration isolation.

Of these complex designs, mechanical metamaterials
built in the form of periodic cellular structures (PCS) or
lattice cell structures (LCS) are developed to enhance
vibration properties compared to solid materials. Strut
based metamaterials can be designed in many ways like
body-centered cubic (BCC) and face-centered cubic
(FCC) unit cells. Recently, vibration isolation of meta-
materials is gradually increasing in academic research.
When the vibration wave passes through metamaterials,
it is attenuated based on the topology and geometry of
metamaterials, and the associated amplitudes will be
reduced. BCC unit cell created by fused deposition
modeling (FDM) 3D printer has been investigated by
Azmi et al.10 to study the effect of manufacturing para-
meters like the print density on the vibration character-
istics. Obviously, it has been shown that the solid
density printing creates struts with larger cross-sectional
area, heavier weight, and good integrity compared to
the corresponding ones printed with almost solid

Table 1. Important literatures for mechanical metamaterials.

Reference Studied phenomena Year

Martinsson and Movchan1 Vibration analysis of lattice structures and bandgaps 2003
Jaouenet al.2 Experimental analysis of the elastic characterization of porous materials under

various vibrating states
2008

Sunet al.3 Modeling, analysis, and design of metamaterial beams for broadband vibration
isolation

2010

Baravelli and Ruzzene4 Numerical and experimental investigations of bandgaps on periodic chiral
arrangements

2013

Yin and Rayess5 vibration isolation of polymer-metal foam hybrids 2014
Wuet al.6 Vibration bandgap properties of three-dimensional Kagome lattices 2015
Maoet al.7 Porous material as vibration isolator 2015
Dahil and Karabulut8 Decreasing vibration on the foam legged of passenger seat in vehicle 2016
Liet al.9 Vibration bandgaps analysis of different unit cells 2017
Azmiet al.10 Vibration analysis of 3D printed lattice structure bar 2017
Sheet al.11 Vibration behaviors of porous nanotubes 2018
Ramadaniet al.12 Reduce gear vibration and weight by using lattice structure 2018
Yalcxınet al.13 Modal and stress analysis of cellular structures by FEA 2018
Elmadihet al.14 Metamaterials for low-frequency vibration attenuation 2019
Anet al.15 Vibration isolation performance of meta-truss lattice composite structures 2019
Simseket al.16 Vibration characteristic of sandwich gyroid unit cell structure 2019
Hajhosseini17 Vibration bandgaps of a new periodic lattice model 2020
Sahmaniet al.18 Elastic mechanical properties of nanoporous materials under large-amplitude

vibrations
2020

Fanet al.19 Vibration isolation of metastructures with quasi-zero dynamic stiffness 2020
Andresenet al.20 Eigenfrequency analysis of irregular lattice structures 2020
Liet al.21 Vibration bandgap of 4D printed metamaterial 2021
Monkovaet al.22 Mechanical vibration damping and compression behavior of a lattice structure 2021
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density through which some cavities are involved. It has
been concluded that any increase in the area induces
obvious increase in the corresponding value of the area
moment of inertia and, hence, the strut stiffness,
thereby affecting the natural frequency. The effect of
printing orientation of the 3D printed structures on
vibration characteristics was studied by Singh et al.23

The Dynamic Mechanical Analysis (DMA) was used to
predict the complex modulus of the printed structures
as well as vibration characteristics. The results show
that the printing orientation has an influence on the
complex modulus and the natural frequency. Besides,
LCS can be used to attenuate the vibration. Elmadih24

in his thesis project selected LCS to perform vibration
reduction based on shifting the natural frequency. In
this regard, the attenuation can be either high or low
based on amplitude ratio. The below 0dB amplitude
ratio in the bandgap frequency region shows high level
of attenuation and vice versa. Figure 1 shows the vibra-
tion damping and isolation through the LCS. In this
case, the LCS itself can serve as a combination of
springs and dampers.25 With appropriate design, the
stiffness and the damping properties of metamaterials
can be controlled to obtain the required vibration miti-
gation based on the selection of the topology, material
type, and physical parameters.26 In addition, finite ele-
ment analysis (FEA) could be used to study the static
and dynamic mechanical properties of LCS and to pre-
dict natural frequencies.4,5,22,26

Metamaterials can be fabricated by either conven-
tional method or additive manufacturing (AM)
method. Several researchers used the conventional

manufacturing method by which it is usually difficult
to fabricate metamaterials and requires highly skilled
labors as well as needs more raw material. For exam-
ple, Feng et al.27 reported to use many steps to create
the metastructure. On the other hand, AM can be used
to fabricate complex structures in shorter time with
saving more bulk material. Different AM technologies
used to fabricate complex structures are extrusion
based fused deposition method (FDM), selective laser
melting (SLM), selective laser sintering (SLS), stereo-
lithography (SLA), etc.20,22,28–32

The current study aims to cover modeling, mechani-
cal properties, and vibration methods of PCS and meta-
materials along with theoretical works. Emphasis is
given on metamaterials through explaining the damp-
ing enhancement by such materials in details. Besides,
the paper presents separate sections to shed the light on
single and 3D bandgap structures. This study highlights
the advantage of metamaterials over the porous ones,
thereby showing the potential applications of metama-
terials and the future of using them as isolators. Other
aspects of metamaterials are also discussed thoroughly.
To this end, remarks are explained, and further studies
are proposed for researchers as future investigations in
the vibration field to cover the weaknesses and gaps left
in the literature.

Theory of vibration isolation and control

The excitation force is usually expressed as F(t)=F0

sin (vt), where F0 is the amplitude of the excitation
force and v is the frequency of the excitation.
Vibration isolation occurs when the frequency ratio,
r. O2. The frequency ratio is the frequency of the exci-
tation divided by natural frequency. Furthermore, the
occurrence of isolation is affected by damping, the iso-
lation is better when damping is smaller.33–35

To control and adjust the vibration of any machine,
it is essential to use two main parameters: natural fre-
quency and damping ratio. The natural frequency of an
undamped system is indicated as vn and is measured in
Hertz (Hz) unit or the number of oscillations per sec-
ond. The damped natural frequency vd is the natural
frequency of a damped system and is defined as equa-
tion (1).

vd =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
vn ð1Þ

Where, z is the damping ratio. The displacement trans-
missibility (T) (equation (2)) is considered the main
parameter for vibration isolation.22

T=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 2zrð Þ2

1� r2ð Þ2 + 2zrð Þ2

s
ð2Þ

Figure 1. Vibration damping and isolation through the LCS.
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The damping ratio denoted by z is a unitless mea-
surement expressing how fast the oscillations can dimin-
ish between the successive bounces. This means that the
damping generally induces dissipating in the energy of
the vibratory system to prevent it from the oscillations
and to bring it to the stable or static mode in a certain
period of time based on the intensity of the damping
coefficient. If the damping ratio is zero (z=0), the
machine is undamped. While, if it is smaller than one (z
\ 1), this means the vibration system is in underdamped
mode. The critically damped case occurs when the
damping ratio is one (z=1) and the overdamped mode
usually occurs if the damping ratio is higher than 1 (z
. 1). In essence, the higher values of damping ratio give
an indication that the oscillations decay rapidly and vice
versa. In addition to the damping ratio, the frequency
ratio can tell whether the isolator is working properly by
checking r. O2.32 The theory of vibration isolation is
studied and explained by Crede and Ruzicka.35 The
transmissibility or absolute transmissibility is considered
one of the most common factors upon which the isola-
tion of vibration system can be evaluated. It refers to
the reduction obtained in the oscillating force or motion
transmitted through the isolation system of an equip-
ment. In the case of force excitation, the transmissibility
represents the ratio of the force amplitude reached the
foundation to the corresponding one initiated within the
equipment. Also, it can be defined as the ratio of the
motion amplitude transmitted to the equipment to the
amplitude applied at the foundation in the case of
motion excitation. In consequence, the minimal trans-
missibility is a sign of good isolator, for example, only
little amount of force or motion could be transmitted
through the isolator of minimal transmissibility and vice
versa. An analytical study has been presented by Xu
et al.36 for equipment-isolator system consisting of two-
stage isolation. To this end, modeling and controlling of
active structures like LCS, foam material, and other
structures under vibration excitation have received a lot
of considerations in the past decades. There are several
studies conducted on this topic.16,37–42

Cellular materials as vibration isolation
and control

In this section, PM and PCS are explained in details,
thereby showing the main differences in the modeling,
mechanical properties, and vibration methods along
with more emphasis on PCS.

Porous materials

PM can be found in nature like fork and can be created
using complex technique like steel foam or using 3D
printing like a material built with voids inside. It is used
commonly in biomedical engineering. Figure 2 shows

the foamed aluminum as an example of porous
material.

Modeling of porous material. Altintas43 worked on the
dynamic analyses of porous bone and used image pro-
cessing technique as essential part involved within the
finite element analyses (FEA) to create the shape of
bone close to reality. Sliced images of 480 cross-
sectional area of the bone were scanned by Micro-CT
and collected together to build an accurate 3D geome-
trical feature of the porous bone with emphasis on
including the microstructural details. After that, the
whole model was created and investigated in Abaqus
software to conduct the vibration analyses. To show
the significance of FEA based on image processing
technique, another homogeneous model for the bone
was created and analyzed in Abaqus. Then, the results
of the porous model were compared with homogeneous
one, thereby not only showing numerical differences in
the values of the modes between the two models but
also revealing other unique modes in the porous model
which were not appeared in the homogenous one.

Furthermore, Sahmani et al.44 started from the fact
that the porous biomaterials of nano-scale pore size
help improving the capacity of material isolation. After
exploring the mechanical properties based on truncated
cube cell model, dynamic behavior of nano-porous bio-
material was investigated to predict the size-dependent
nonlinear secondary resonance for both sub-harmonic
and super-harmonic cases based on nonlocal strain gra-
dient beam model. Then, the nonlocal strain gradient
response and amplitude response under strong excita-
tion were achieved for the non-linear vibration through
using Galerkin-theory and multiple-time scale method.
They presented the following governing equation (3) of
a refined hyperbolic beam.

EI
d4d

dx4
=EI

cosh
1

2

� �
�12 cosh

1

2

� �
�2 sinh

1

2

� �� �� �
d3u
dx3

+q(x)

ð3Þ

Figure 2. Porous material, foamed aluminum.
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where, E is the Young’s modulus, I is the moment of
inertia, d is the deflection, and u is the angle of rotation
of unit cell links. It is worth mentioning that
Hamilton’s principles were adopted here to initiate the
nontraditional governing equation of motion.

Mechanical properties of porous material. Wang et al.45

proposed a new method for fabricating porous cellular

structures using polymer matrix composites based on
fused deposition modeling (FDM) technology. The
FDM filament was made from a combination of three
materials, including acrylonitrile butadiene styrene
(ABS) as a matrix material, Babbitt alloy powders
(LSn-03), and p-Toluene sulfonyl semicarbazide
(PTSS). Then, the mechanical properties of the 3D
printed cellular structure made from composite mate-
rial based on FDM were studied after applying heat
treatment through electromagnetic furnace to ensure
creating various pores inside the printed structures. In
this regard, the effect of heating time on the pore size
and the influence of adding different percentages of
(LSn-03) and (PTSS) to the ABS matrix on the pore
size were investigated. In other word, the porosity and
heat treatment have been analyzed together to improve
mechanical properties. In addition, polycarbonate was
used as a shield to gain further improvement in the
mechanical properties. The results showed that increas-
ing the heating time within a certain limit helps improv-
ing the mechanical properties and the polycarbonate
shield induces an improvement in the tensile and com-
pressive strength with percentages about 20% and 25%
respectively. Finally, a composite honeycomb cellular
structure was fabricated efficiently by using the pro-
posed methodology, thereby showing that this study is
very helpful when the design requires a great mechani-
cal property with low weight.

Shahverdi and Barati46 developed a model based on
nonlocal strain gradient theory for analyzing the vibra-
tional behavior of nano-porous plate made from gradi-
ent material and placed on elastic base. To get more
accurate results, additional two parameters were con-
sidered for the first time in this model to mimic the
dynamic behavior of nano-scale plate used as a nano-
senor in the real-life application. These parameters are
the temperature and moisture, which were applied at
the same time on the nano-scale plate as loading

conditions. To create this model in an efficient way,
first of all, the authors employed a new power function
to express the gradient in the compositions of nano-
porous plate material. Then, Hamilton theory was
adopted to formulate the governing equations of nano-
scale plate in the elastic field made from gradient mate-
rial and subjected to thermal and moisture loadings
simultaneously. After that, Galerkin method was used
to solve the governing equations and find the natural
frequencies as defined in equation (4).

k1, 1 k1, 2 k1, 3 k1, 4

k2, 1 k2, 2 k2, 3 k2, 4

k3, 1 k3, 2 k3, 3 k3, 4
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0
BBB@

1
CCCA+v2
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8>>><
>>>:

9>>>=
>>>;
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Vmn
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Wsmn

8>>><
>>>:
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>>>;
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where Umn, Vmn, Wbmn, and Wsmn are the unknown
coefficients of the displacement fields. By setting them
to zero, the natural frequency can be obtained. The
results of this investigation revealed that both tempera-
ture and moisture should be incorporated in the vibra-
tional analyses of nano-porous plate since the increase
of both parameters induces a significant decrease in the
natural frequencies. For this reason, the structural
design of the nano-scale plate used for vibrational appli-
cation like nano-senor could be modified when includ-
ing the effect of both the temperature and moisture.

Hedayati et al.47 investigated the effect of material type
and structural parameters (relative density and topology)
on the mechanical characteristics of different unit cell types
created by additive manufacturing technology. Co-Cr, Ti-
6Al-4V, and CPT porous structures with three to four dif-
ferent porosities and three topological features have been
explored experimentally under quasi-static compression in
biomedical applications to find out whether the material
type has a major influence on the normalized mechanical
properties or unit cell topology. It has been found that the
topological design of the porous biomedical material has
an effect on the normalized mechanical properties with a
percentage quantified as 1000%. Whereas, the material
type shows an influence on the normalized mechanical
properties with 200% only. This means, the topology
design of the unit cells out of which the core of porous bio-
medical material is made has more dominant effect than
the material type by five times.

Vibration analysis of porous materials. As stated previously,
porous materials can be examined analytically or experi-
mentally. Dahil and Karabulut8 performed an experimen-
tal vibration analysis on aluminum foam leg of bus seat.
They measured the vibration on the seat and the comfort
of the passenger. The results showed that the legs with
porosity has good vibration absorption capabilities and
comfort improvement than the original legs. Yin and
Rayess5 performed vibration excitation on a composite

Al-Rifaie et al. 5



aluminum foam and polymer. They applied a variable
compressive force on the specimen. This force was fluctu-
ated sinusoidally in which the specimen was investigated
theoretically and experimentally. The universal testing
device used for this experimental work consisted of bot-
tom plate and upper shaker with a specimen in between.
They examined three group of specimens at 1 and 2Hz
together with a mean force of 50 lbs and a double ampli-
tude of 50 lbs. Dynamic stiffness and loss factor were
obtained to study the interference at 1 and 2Hz.5

Viscoelastic material like melamine foam can be used in
vibration isolation application which is investigated by
Jaouen et al.2 Figure 3 show several loading setups of
vibration device. Figure 3(a) illustrates the vibration in
vertical loading direction, Figure 3(b) shows torsional
vibration setup, Figure 3(c) shows a pure shear, Figure
3(d) illustrates a traction-compression vibration, Figure
3(e) shows the vibration as point force, and Figure 3(f)
shows the vibration as line loading.

Metamaterials

Metamaterials are engineered materials to have specific
mechanical properties which are difficult to obtain

from other materials manufactured using traditional
methods. LCSs are used in this paper as an example of
metamaterials which are used to show the differences
between metamaterials and porous materials. In this
paper, the aim is to cover a complete review of the
vibration analysis methodologies, so this study is done
for the researchers to investigate the mechanical perfor-
mance of metamaterial by experimental work, FEA,
and other methods. Based on recent studies, conven-
tional vibration isolation for metamaterial, investiga-
tion of 1D bandgaps and investigation of 3D bandgaps
are considered in this paper to explore the vibration
attenuation methods. The purpose of conventional
vibration isolation is to survey the ability of LCS for
reducing the vibration at frequencies greater than the
natural frequency. Secondly, the purpose of 1D and 3D
bandgaps is to study the wave propagation across the
LCS and to explore their ability to bandgaps.15,24,48

Several studies have been done on the porous material.
This type of material can be used for vibration and
noise isolation. It is very good in reducing the waves of
vibration and sound.43

Modeling of metamaterials. First, LCS can be designed
using CAD software like SolidWorks and AutoCAD
since the LCS is usually complex in shape. However, it
can be built either by conventional methods or by 3D
printing. Al Rifaie et al.49 explored the mechanical
properties of LCS which was modeled using
SolidWorks as shown in Figure 4.

Figure 3. Vibration device with different loading setups (a) The
vibration in vertical loading direction, (b) Torsional vibration
setup, (c) The pure shear, (d) The traction-compression
vibration, (e) The vibration as point force and (f) The vibration
as line loading. (adopted from Jaouen et al.2).

Figure 4. (a) BCC unit cell, (b) side view of BCC lattice
structure, and (c) 3D view of the BCC lattice structure.
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Usually, researchers study the effect of changing the
shape of the LCS such as changing length, diameter,
and angle of the strut which forms a singular unit
cell.50–54 This gives a change in natural frequency and
influence the vibration response as well as vibration
bandgaps properties. Modeling can be introduced in
various ways like LCS, composite structures, mass
spring structure, and porous structure. Porous struc-
ture can be similar to LCS with a periodic pattern of
unit cell or with a stochastic pattern. The shape of the
model depends on the requirement of vibration applica-
tion like requiring a stiff and light structure, metaplate,
and isolator.

Mechanical properties of metamaterials. The vibration
attenuation in metamaterials can occur due to their
appropriate stiffness and damping properties. These
parameters can be measured experimentally. Sahmani
et al.18 explored the behavior of nano-beam under
vibration to evaluates difference in frequency ratio with
dimensionless maximum amplitude. It is important to
find the mechanical properties which is the stiffness of
the structure to find out the frequency. Computational,
experimental, or analytical approach can be used to
find the natural frequency. In analytical approach, the
degrees of freedom for the link of a unit cell is crucial
to construct the stiffness matrix for the entire structure.
Furthermore, the mechanical properties of the LCS can
be found experimentally19 to measure the stiffness
property. In addition, the experimental and FEA
approaches were used to verify the theoretical results.
In this case, the structure consisted of two parts com-
bining sinusoidal-beam and semicircular-arch as shown
in Figure 5 and was 3D printed. Finally, they studied
the performance of vibration isolation of this structure.

ABS material was used by Li et al.9 who introduced
its mechanical properties in their paper. It is not men-
tioned the tests done to get the Young’s modulus,
Poisson’s ratio, and density of ABS. An et al.15 created
load-displacement curves of various metatruss LCS to
find mechanical properties of the specimens which were
3D-printed by selective laser sintering (SLS).
Furthermore, Wu et al.6 carried out analytical work on
3D Kagome lattice structure as a Timoshenko beam
model. Mechanical properties of the structure elements
were investigated by using beam element, tension ele-
ment and torsional element as well as a whole element.
In addition, dynamic mechanical analysis was explored
for both steel and epoxy materials with known mechan-
ical properties of Young’s modulus, Poisson’s ratio,
and density.

Vibration measurement of metamaterials. The same experi-
mental techniques as shown in Figure 3 can be used to
characterize metamaterials as well. For instance, Liu
and Hu55 have used an electromagnetic shaker to study
vibration responses of three types of 3D knitted fabrics
as a spacer made from polymer. Resonant frequency
and isolation frequency were investigated for the three
types of samples. Each sample was loaded by different
amount of mass to study the response by calculating
resonant frequency and isolation frequency.
Furthermore, Elmadih et al.28 explored several types of
lattice structures under vibration excitation using sha-
ker with signal producer. They have explored vibration
modes, natural frequency, and isolation frequency of
each specimen. They have concluded that LCS can be
used to attenuate the vibration, and using large unit cell
and low volume fraction can reduce the natural
frequency.

Figure 5. Quasi-zero stiffness isolator (a) Structural model, (b) Unit cell, (c) Sinusoidal beam and (d) Semicircular arch.19

Al-Rifaie et al. 7



Damping enhancement of metamaterials. The enhancement
in the damping properties of metamaterials has been
done using several techniques. For instance, Wang
et al.56 developed a new mechanism for improving the
damping behavior of lattice through filling the air gaps
existed within the structure of the lattice with an appro-
priate viscoelastic material. The selected lattice type was
Kagome, which is a common configuration in the field
of lattice design consisting of six cylindrical struts
radiating out from the same central junction. Three of
them are located in the upper side and the others are
placed in the lower or opposed side. A single lattice
layer of 3 3 3 unit cells was fabricated using Nylon
PA6 based on selective laser sintering technology and
placed between two plates to create a sandwich struc-
ture of fixed-fixed boundary conditions. In addition,
polyurethane was used as viscoelastic material filling
(VMF). The damping behavior of the developed sand-
wich structure combining the VMF and Kagome lattice
was analyzed using finite element methods and experi-
mental work. Besides, the results of developed sandwich
structure (Kagome and VMF) were compared with
Kagome sandwich structure (without VMF) and solid
plate made of the same Nylon material. Significantly, it
has been found that adding VFM to the Kagome lattice
structure helps improving the damping capacity with a
reduction of 18.19 and 6.03 dB in the acceleration
amplitudes comparing with the classical Kagome lattice
without VFM and the solid plate, respectively. In the
same way,57 another feature of sandwich structure
called pyramidal lattice made of Aluminum alloy was
combined with two types of filling foam materials, hard
polyurethane (B-II-HPF) and soft polyurethane (B-II-
SPF). By this way, the damping efficiency of the created
hybrid material was improved up to two to four times,
comparing with the basic feature of pyramidal sand-
wich structure.

Sterling et al.58 worked on the effect of material type
on damping performance of subordinate oscillator
array (SOA), which is defined as an array of small
structures. SOA is designed to be placed on a machine
or mechanical system to dissipate or move its vibration
energy. The design and distribution of these arrays
could be varied based on the required frequency band.
Also, the SOA is primarily fabricated from metals,
whose Q-factors have higher values. This factor is an
indicator of damping and is related directly to the num-
ber of arrays. To obtain higher values of Q-factor,
higher number of arrays is required. At the beginning,
metal SOA looks like a good choice to increase the
damping due to its higher Q-factor. However, the draw-
backs behind using metal SOA are the need for larger
space. Besides, any imperfection even in a single array
can cause significant impact on the frequency response
of the metal SOA. These drawbacks stimulated the
researchers to look for other materials as a replacement

for metals, especially that the advances in 3D-printing
technologies filled the gaps and helped them to build
parts using various material with shedding the light on
using light materials. In this regard, stereolithography
apparatus (SLA) 3D-printer, Form2 produced by
FormLabs, was used to fabricate thermoplastic SOA
based on curing partially the GPBK-03 resin material
using ultraviolet waves. Then, the fabricated samples
were put in Alcoholic path for 30min using Form
Wash machine. Next, they were fully cured at 50�C
temperature for 60min using Form Cure machine.
After testing the thermoplastic SOA, it has been found
that thermoplastic material has lower values of Q-fac-
tor and the produced SOA is not affected by the irregu-
larities that could be induced by the manufacturing
parameters. This draws a conclusion that even the
higher percentages of irregularities involved within the
3D-printed materials will not disrupt the thermoplastic
SOA frequency response. Most importantly, the cost of
production will be reduced and the related time will be
shorter, as well as less space is required for installing
3D-printed thermoplastic SOA. Gietl et al.59 investi-
gated the sensitivity of the subordinate oscillator array
(SOA) as a 3D-printed structure to the imperfections
ensued from changing the printing parameters. There is
also an emphasis on how the manufacturing parameters
could affect the damping and natural frequency of the
3D-printed structures with considering the external
sources that could cause additional damping, such as
the environment and base attachment. This in turn
helped providing more accurate estimations regarding
internal damping of the 3D-printed structures. In this
study, two types of 3D-printing technologies based on
thermoplastic materials were adopted to print cantile-
ver parts instead of using 3D-metal printers. First, the
fused deposition modeling (FDM) based on solid fila-
ment materials was used to print one sample corre-
sponding to each type of the seven thermoplastic
materials, where the printed samples are fully hardened,
and there is no need for the post-print curing. The other
printing technology is stereolithography apparatus
(SLA) based on resin material, where the printed sam-
ples are partially hardened, and the post-print curing is
required to fully harden these samples. In this case,
only one type of resin material was used, and the sam-
ples were printed with nine different orientations. After
fabricating process, Q-factor as an indicator of damp-
ing, natural frequency, elastic modulus, and density
were determined for all printed samples and compared
with the corresponding manufacturing values. The
results showed that the printing orientations of SLA
technology have no significant influences except on the
elastic modulus values, while both the density and elas-
tic modulus of the samples printed by FDM technology
are apparently different from the manufacturing values.
Besides, the Q-factor values of the samples fabricated
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using Acrylonitrile Butadiene Styrene (ABS) and
Polylactic acid (PLA) thermoplastic materials were
found to vary with a percentage more 10% when mak-
ing a comparison between the vibration behavior of the
same parts in two environments, one with vacuum and
the other without vacuum. This means the damping of
the SOA structures made of ABS and PLA materials
has such a light sensitivity to the external damping
mechanisms.

Furthermore, a new method was presented by
Dunaj et al.60 to increase the damping efficiency of
thin-walled structures by using covering components
made of 3D-printd light materials. These components
are simple in design and could be pressed directly on
the target structures to make the right connection with-
out the need for special kits. Also, a parametric study
was conducted using finite element methods to find out
the best thickness and distribution of these covers, that
could improve the vibration damping properties. Then,
an experimental work was done as a validation for the
efficiency of the proposed method and finite element
models. The results showed that the covering compo-
nents made of 3D-printed PLA material are able to
reduce the vibration amplitude of free-free steel beam
by 90%. Besides, it was proven that these covers are
efficient in mitigating the vibration amplitude of a steel
frame by 37%.

Monkova et al.22 explored experimentally the influ-
ence of geometrical parameters on the vibration damp-
ing behavior and compressive mechanical properties of
thermoplastic BCC lattice structures. In this study, a
single unit cell of BCC lattice was designed with three
different sizes in X, Y, and Z-direction (5 3 5 3 5
mm3, 7 3 7 3 7mm3, and 10 3 10 3 10mm3).
Corresponding to each size, three different relative den-
sities were selected (25%, 50%, and 75%) through
changing the strut diameter such that nine cases of
BCC lattice design were considered. For the purpose of
providing accurate results from the experimental work,
five samples were repeated corresponding to each lat-
tice design; thus, the total number of samples were 45.
In this regard, All the BCC lattice samples were fabri-
cated using Acrylonitrile Butadiene Styrene (ABS)
material based on FDM technology with a layer thick-
ness of 0.254mm. The material class was ABSplus-
P430 Ivory and the 3D-printer type is uPrint SE,
provided by Stratasys. After that, the vibration damp-
ing response of the printed lattice samples was evalu-
ated based on a linear-viscous system of harmonic
excitation and single degree of freedom (SDOF). In
addition, a destructive quasi-static axial compression
test was conducted on BCC lattice samples to estimate
the corresponding mechanical characteristics. In short,
it has been concluded that increasing the relative den-
sity of BCC lattices leads to increasing the stiffness
and, hence, reducing the damping influence of the

lattices. While, there is an evident increase in the damp-
ing capacity of BCC lattices with increasing the lattice
size. Also, it has been observed that the ultimate tensile
strength of BCC lattices increases in a non-linear man-
ner with increasing the relative density.

Xu et al.61 presented novel techniques for improving
the damping response of metamaterials made from car-
bon fiber reinforced polymer (CFRP). The high stiff-
ness and light weight are far-famed characteristics of
CFRP structures; thus, there is an increasingly demand
on these types of structure in the today market.
However, they are not suitable for the applications that
required energy reduction due the lack of good damp-
ing properties. Consequently, Xu et al.61 introduced a
technique of projection stereolithography at microlevels
to print lattice structures consisting of two materials
for the purpose of obtaining a combination of high
damping and stiffness at the same time. In this regard,
octet single lattice unit cell was fabricated by this tech-
nique from a combination of CFRP composite and
polyethylene glycol diacrylate resin to prove the effi-
ciency of the proposed technique. Besides, Xu et al.61

suggested another method for enhancing the damping
behavior of composite metamaterials based on creating
multiple phases within the same structure of the printed
material. For this aim, octet lattice structures were built
based on the suggested method from two-phase CFRP
composite material, where a soft phase of smaller frac-
tion was embedded in the middle of each strut of stiff-
phase. Thereafter, the damping characteristics of the
created lattice structures were tested experimentally at
small and large strains, thereby showing the efficiency
of the suggested methods in producing accurate com-
posite lattice structures of both high damping and stiff-
ness properties.

In consequence, the enhancement in damping could
be attained by adding external components to the struc-
ture of lattice to improve its capability for absorbing
the vibration energy, such as viscoelastic material, sub-
ordinators, special types of dampers, and novel ele-
ments. Also, the damping properties of metamaterials
could be enhanced based on the 3D-printing technol-
ogy by manipulating the manufacturing parameters.
The rapid developing of this technology enables the
researchers to design and print PLSs of complicated
topologies and various geometries. However, there is
still lack of information about how the topology of the
metamaterials could affect the damping properties.
Besides, studies regarding the influences of gradient
geometrical parameters on the vibration behavior of
the metamaterials are limited up to date. Thus, it is
highly recommended to conduct future work on how to
enhance the damping performance of metamaterials
based on testing different lattice topologies, using gra-
dient lattice structures, and changing geometrical para-
meters like the cross-sectional area shape.
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Specialized metamaterials. New advances in metamater-
ials for vibration isolation and damping enhancement
were achieved by using novel elements, such as inerters
and viscoelastic dampers. Inerter is a mechanical com-
ponent coming with two terminals used to produce a
force, which is in a direct proportional relationship with
the acceleration difference across these terminals. In
this regard, Kulkarni and Manimala62 developed five
features of inertant metamaterials. Three of them had
inerters set in local attachments (purely, series and par-
allel), which were modeled based on the lattice effec-
tive-mass. The others had inerters set in the lattice
(parallel and series), which were modeled using the lat-
tice effective-stiffness. Then, the propagation properties
of longitudinal elastic wave for the developed inertant
metamaterials were investigated relative to the local
resonant metamaterials using one-dimensional models
with their discrete element representations. In short, it
has been found that the developed inertant metamater-
ials have a narrow bandwidth and cannot work effi-
ciently as barriers against the seismic waves. For this
reason, Sun and Xiao63 worked farther on developing
inerter-in-lattice metamaterials by adding a series com-
bination of spring elements and inerters to the tuned
viscous mass damper. Also, they conducted parametric
study for the influence of unit cell number, mass ratio,
and damping coefficient on the characteristics of
attenuation zones. This in turn helped introducing a
new design for the unit cells of inerter-in-lattice meta-
materials that could be used as good barriers against
the seismic waves. Besides, Al Ba’ba’a et al.64 investi-
gated thoroughly the wave dispersion and band gap
characteristics as well as the band gap formulation for
the inertially amplified acoustic metamaterials (IAAM).
For this purpose, a unit cell of IAAM with both local
and nonlocal inerters was considered at the beginning.
Then, an alternative design of IAAM unit cell was
introduced with only local inerter elements due to the
fact that the presence of nonlocal inerters in the IAAM
system creates anti-resonance behavior. By this way,
the new design of IAAM could provide wave dispersion
similar to the traditional acoustic metamaterials, but
without the need for local resonators. In this research,
vibration performance was evaluated for actual finite
IAAM system with n-number of unit cells, instead of
the traditional infinite IAAM system. The results show
that unique phenomena could be created based on the
positions and values of the inerters in the IAAM sys-
tem, including wave dispersion of zero group velocity
and transition from a metamaterial to phononic beha-
vior. The results also reveal that adding inerters to the
IAAM system is not necessary to expand the band gap
width, and the requirements to avoid narrower band
gap.

As an attempt to exploit the inerters in vibration sys-
tems, Fernados et al.65 probed the geometrical effect of

adding inerters in a horizontal direction with respect to
the vibration system motion on the isolation behavior.
The analyses were done based on harmonic balance
method, and the results were compared with traditional
vibration isolators of a linear behavior. Computational
analyses were also used to complete the study. It is
shown that the behavior of the generated force and
acceleration between the terminals of horizontal iner-
ters is nonlinear. This leads to possible advantages in
the region of high frequencies. In this regard, the non-
linear effects coming from the geometrical arrangement
were noticed to be disappeared for large-amplitude
motion. A similar study was conducted by Wang
et al.66 to explore the influence of placing lateral iner-
ters in a vibration isolation system. The dynamic analy-
ses were achieved by averaging method and compared
with computational results, as well as the stability of the
system was involved as a part of the dynamic analyses.
The isolation competence of the lateral inerters-based
vibration isolator was compared with parallel- and
series-placed inerter-based isolators, as well as linear
vibration isolators using four vibration indices.
Comparing with a linear vibration isolator, it is found
that the vibration isolator based on lateral inerters can
have smaller maximum force transmissibility and larger
isolation frequency range, corresponding to the same
force transmissibility in the larger isolation frequency
range. In short, the proposed lateral inerters-based
vibration isolator of nonlinear behavior shows the same
benefits of the parallel- and series-placed inerters-based
isolators along with a better performance based on the
four indices considered here. In the same manner, Yang
et al.67 added two oblique inerters to the linear spring-
damper vibration system and nonlinear quasi-zero-
stiffness (QZS) isolator to investigate the influence of
nonlinear inertance mechanism (NIM) on the isolation
performance of vibration isolators. The oblique inerters
were assembled together in a way such that the two
terminals of the inerters were connected through one
common hinge located at the upper side and the other
two terminals were fixed separately at the lower side.
Thus, the motion of the isolator will be restricted in
two-dimensional space or a single plane. The isolation
systems were excited by applying a harmonic force and
the associated dynamic analyses were conducted using
harmonic balance method. It is concluded that the
behavior of nonlinear inerter-based vibration isolator,
comprising NIM and linear stiffness, is the same as that
of Duffing oscillator with a softening stiffness.
Furthermore, adding oblique inerters of geometrical
nonlinearity to nonlinear QZS isolators helps improving
the vibration isolation capabilities through providing
wider frequency range of smaller amplitude response
and force transmissibility.

In addition to the inerters, a new type of dampers
called double shear lab-joint (DSLJ) could be added
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within the structures of lattices to improve their damp-
ing capabilities. For example, the vibration isolation
properties of honeycomb lattice structures were
enhanced through embedding DSLJ damper inside hex-
agonal unit cell of the same structure.68 The damping
capacity of DSLJ dampers was compared with that of
optimized features of constrained layer dampers
(CLDs) on beam and plate structures, where simply
supported and cantilever boundary conditions were
used. Significantly, it has been noticed that the damp-
ing performance of DSLJ dampers is considered better
than that of CLDs corresponding to the cantilever
boundary conditions and plate structures, while it is
considered comparable with CLDs regarding the other
type of boundary conditions and the same structures.

Investigation of metamaterials in vibration
bandgaps

Modeling 1D waves

In this case, the model can be built using unit cells pat-
terned in one directional array, as shown in Figure 6.
Matlack et al.69 investigated wave propagation of 1D
model experimentally and analytically based on FEA
model using COMSOL software. The whole LCS is
created by arranging unit cell in one-dimension and the
wave propagation through the 1D structure and its
bandgap frequency were analyzed. In addition, 1D-per-
iodic rod combined with local resonators was intro-
duced to produce very low-frequency band gap for the
longitudinal waves propagated along it.70 The rod com-
prised rigid frames and rubbers, and the local resonator
is called high-static-low-dynamic stiffness (HSLDS)
resonator, which is recognized with negative stiffness
mechanism based on the geometrical nonlinearity. The
dispersion of longitudinal waves when passing along
the 1D-periodic rod was analyzed by using harmonic
balance method to reveal the influence of the damping
and nonlinearity of HSLDS resonator. It is shown that
the damping can affect the width and depth of the band
gap, and the nonlinearity can only influence the central
frequency and the band gap depth.70 Besides, multiple
resonators of negative stiffness mechanisms in a unit
cell are used to allocate multi-low-frequency band gaps

of flexural waves in beams. Each one comprises a verti-
cal spring connected to the resonator mass along with
two oblique springs such that the stiffness could be
controlled and reduced to the required values.71 The
band gaps of the flexural waves in beams were analyzed
based on the plane wave expansion method, and then
verified by the computational methods. Significantly, it
is found that using multiple resonators of negative stiff-
ness in a unit cell leads to expanding the band gaps at
low frequencies range.71

Modeling 3D bandgaps

Works have been done to study the vibration bandgaps
in 3-direction using 3D models. Yao et al.30 examined
vibration isolation on a metaplate which was created
by a periodic repetition of a unit cell. The model was
fabricated using 3D printer in a shape of mass-spring
system to reduce the vibration. The specimen was mod-
eled using FEA software COMSOL Multiphysics, and
the experiment was performed for comparison. They
applied an external vibration on the anchor points and
measured the response at the center to predict the
vibration isolation within the bandgap of the specimen.
Similarly, Li et al.9 studied the vibration attenuation in
a cantilever beam made form ABS which was also fab-
ricated by a periodic repetition of a unit cell but with a
different pattern. The specimen was coated with polyvi-
nylidene difluoride (PVDF) thin films to convert
kinetic energy to electric energy. This is done to study
both vibration isolation and energy harvesting of the
specimen.

Bandgap properties of metamaterials

Analyzing 3D bandgaps can be done in different ways,
for instance spectral element method, finite element
analyses, experimental work, and analytical solutions.
Yao et al.30 used a spectral element method (SEM) to
study the bandgaps properties of the 3D printed meta-
plate specimen. This method which is numerical solu-
tion of partial differential equations can be successfully
used to study vibration bandgap attenuation of LCS
and composite structures.72 The same method of spec-
tral element was also used by Wu et al.73 to probe the
bandgap properties of rectangular 2D lattice structure
designed with cross-shape unit cells distributed uni-
formly in x- and y-directions. Each single unit cell was
made of two materials. In the analyses of the 2D lattice
structure, two types of elements were employed, the
beam and piezoelectric elements. Besides, the effects of
adding defects (central column, central row, and alto-
gether) to the 2D lattice on the wave propagation and
vibration isolation performance were investigated.
Other influences on the vibration behavior of the lattice
structure were also studied, such as increasing theFigure 6. 5 3 5 3 5 mm3 unit cell patterned with 10 cells.
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thickness of piezoelectric, and involving material at the
central and outer frame of the lattice. After comparing
the results with finite element methods, very accurate
outcomes of the modal analyses and mechanical vibra-
tion response were provided by the spectral element
method based on deriving the dynamic stiffness matrix
of the 2D lattice structure, thereby showing the profi-
ciency of SEM in analyzing the vibration behavior of
metamaterials. Baravelli and Ruzzene4 studied the
bandgap properties of a chiral core unit cell fixed as a
cantilever beam from both ends. The study included
both experimental and finite element approaches to pre-
dict the vibration bandgaps properties. The device setup
consisted of vibrating table in which the beam is fixed,
and accelerometer fixed at the beam end. Resonance
properties and vibration bandgap attenuation can be
obtained from this study. In a similar way, Zouari
et al.74 used finite element methods to simulate both
finite and infinite dynamic models, and experimental
work to investigate the capability of metaplate for
absorbing and isolating an elastic flexural vibration
wave. This type of metamaterials was created as a
single-layer lattice structure consisting of a thin
Aluminum plate and unit cells distributed regularly on
the plate. The geometrical shape of the unit cell was
designed as a screw with mass attached at its head.
These unit cells worked as resonators for the metama-
terials. In addition, Hajhosseini17 introduced an analy-
tical approach to study the vibration bandgaps of a
periodic LCS. Within the analyses of the vibration
bandgaps, differential equations of three setups of
vibration which are longitudinal, torsional, and trans-
verse vibration were obtained. Then, these equations
were solved by differential quadrature method (DQM)
to find the derivatives of the function. After solving the
equations, an example was introduced to examine the
results of the sample, which was proven to be a good
absorber. To this end, the differential quadrature
method was recently developed by Liang et al.75 to
introduce a numerical technique for solving the elastic
bandgaps of periodic structures, especially those distin-
guished with local resonant. In addition to the DQM,
other methods like matrix-partitioning and variable
substitution were involved in the developing process of
the proposed numerical procedure. Finally, very accu-
rate results comparing with finite element and plane
wave expansion methods were achieved in a relatively
short time by the developed numerical method.

Advantage of metamaterials over porous
materials

Metamaterials are open-celled engineered materials
with uniformly distributed unit cells. On the other
hand, the whole structure of porous material is closed-

form in three directions. This influences the vibration
capabilities and the strength of material. In addition,
the mechanical properties of metamaterial can be found
and predicted more accurately than porous material.
This is because the porous material is shaped in such a
way with different cell sizes and dimension. Unlike por-
ous materials, properties of metamaterials can be easily
predicted and controlled. The mechanical properties of
metamaterials can be investigated using one-unit cell or
the whole structure.76 Both metamaterials and porous
materials have good strength-to-weight ratio. However,
finding structure stiffness and strength of porous mate-
rial could be a little bit challenging due to a stochastic
distribution of the unit cells which its shape is
unknown. However, LCS can be designed on the basis
of periodic arrangements of unit cells and their proper-
ties can almost accurately predicted. In addition, the
metamaterials can be also fabricated using various AM
methods.

Applications of metamaterials

The metamaterials have participated clearly in expand-
ing the range of engineering applications and the mar-
ket demands on such materials have increased rapidly.
In this regard, 3D-printed Kagome lattice was made of
Nylon PA6 and placed between two plates. Then, it
was combined with polyurethane viscoelastic material
to create metamaterials having a unique combination
of high stiffness and competitive vibration properties.
This composite material was considered as a good can-
didate in aerospace applications, especially for con-
structing the airplane wings as shown in the Figure 7.
Also, it helped reducing significantly the vibration
amplitude comparing with both a Kagome lattice with-
out viscoelastic material and solid structure made only
of Nylon.56

In addition, two-phase composite metamaterials,77

consisting of non-traditional feature design as a star-
shaped fiber inserted inside a matrix, were introduced
in this study to build a turbine blade as shown the
Figure 8. This composite material was fabricated from
Aluminum and Epoxy, and tested experimentally using
shear-dynamic rig and a dynamic mechanical analyzer.
Also, the vibration parameters of the composite meta-
materials were evaluated based on finite element meth-
ods. The results of star-shaped cells were compared
with those of cylinder-shaped ones to reveal the impor-
tance of the proposed design. It has been found that
star-shaped composite material showed an evident
improve in the energy dissipation and tangent loss
properties comparing with classical-shaped cells.77

Besides, a novel technique for placing double shear lab-
joint dampers inside the unit cells of honeycomb lattice
structures as an enhancement for the lattice damping
performance was proposed for specific applications,
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where external dampers are not applicable, such as gas
turbine blades.68

Furthermore, large-scale metamaterials (LSMs)78

were proposed to be applied for seismic applications to
mitigate remotely the influences of seismic waves by
creating a barrier of metamaterials around the entire
area required to be protected as shown in the Figure 9.
For this purpose, three types of unit cells were adopted,
including cross-cavity cell surrounded by soil, hollow
cylinder cell made of stiffer material surrounded intern-
ally and externally by soil, and a cylinder cell made of

stiffer material surround by a rubber hollow cylinder
and then surrounded by soil. These unit cells were
repeated in a periodic way to build a square array
around the target place to be protected from earth-
quakes. These features of metamaterials were selected
to work effectively within the frequency range of seis-
mic waves.

Also, full 3D-simulation based on finite element
analyses for the seismic waves (surface and guided),
including the viscoelastic effect of the soil, was con-
ducted for the three types of metamaterials with consid-
ering certain ranges of mechanical properties. The
results showed that seismic waves could be attenuated
and their amplitudes could be reduced theoretically by
using LSMs, thereby enabling the protection of civil
fields and saving mankind from the risk of earth-
quakes.78 For the same applications, a unit cell design
of inerter-in-lattice metamaterials was proposed to be
used as a remote shield to attenuate the love waves
based on one-dimensional analyses. The design of the
unit cell includes viscous mass dampers on the upper
and lower sides to resist the shear deformation of love
waves and two plates on the right and left sides to sup-
port the structure of metamaterials in the vertical
direction.63

To this end, not only the metamaterials have been
used in the applications that required a good damping
capacity but also there are other emerging materials
showing good capabilities for dissipating the vibration
energy. Of these materials, the carbon nanotubes
(CNTs) have been exploited recently for assembling
macroscopic materials of high damping properties.79

For instance, the compression behavior of CNT bundle
during loading and unloading conditions, especially
that the material returned to its original state in the
case of unloading without any residual strain, could be
used to design an elastic damper.80 Besides, the influ-
ences of adding CNTs in the matrix of fiber-reinforced
composite materials on the vibration damping charac-
teristics were explored. It has been found that damping
performance could be raised by more than 130%
through adding CNTs to a stationary composite beam
and by more than 150% in the case of adding CNTs to
a composite beam spinning at 500 rpm.81 In addition,
hybrid composites for structural damping applications
were developed based on covering the surface of woven
graphite fabrics with a thin film of silicon dioxide.
Then, CNTs were grown on this film by using the tech-
nique of Graphitic Structures by Design (GSD), by this
way creating so-called multi-walled carbon nanotubes
(MWCNTs). The dynamic mechanical analyses showed
that the tangent loss factor of the hybrid composites
was improved by 56% in the frequency range 1–60Hz,
compared with other composites that did not undergo
any type of surface treating or covering with grown
CNTs.82 It is also worthwhile mentioning that the

Figure 7. Metamaterials combining Kagome lattice and
viscoelastic materials used for structural damping of airplane
wing.53

Figure 8. Two-phase composite metamaterials applied for
turbine blade.68

Figure 9. Large scale metamaterials developed for attenuating
remotely the seismic waves, including three unit cell types.69
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characteristics of transverse elastic waves moving
through three-dimensional groups of vertically aligned
single-walled carbon nanotubes (SWCTs) were investi-
gated using continuous and discrete models.83 Also, the
recent studies revealed that the mechanical properties
of vertically aligned SWCNTs could be improved in
the direction of applying longitudinal magnetic field.
For this purpose, the properties of elastic waves travel-
ing within the three-dimensional forests of magnetically
influenced SWCNTs were explored using non-local
higher order beam theory.84 In addition to the
SWCNTs and MWCNTs, the bilaterally nonlocal
dynamics of vertically aligned double-walled carbon
nanotubes (DWCNTs) built in the form of layer-by-
layer was studied as a free vibration using developed
nonlocal continuum models.85 Another material class,
termed as interlocked CNT, was developed by utilizing
floating catalyst chemical vapor deposition method. As
a comparison with other CNT species, the interlocked
CNT networks showed higher damping factor and
storage modulus due to the abundant inter-bundle slip-
stick motion.86 Most importantly, it was noticed that
the damping behavior of this material relies on the fre-
quency, where both the tangent loss factor and the
dynamic modulus increased clearly with increasing the
frequency from 1 to 200Hz.86 Finally, CNT-reinforced
cementitious composite materials were produced by
dispersing CNTs within the cement dehydrate by using
two methods, aromatic modified polyethylene glycol
ether termed (TNWDIS) and polyvinylpyrrolidone
named (PVP).87 Indeed, it was observed by the scan-
ning electron microscopy there is a good compatibility
between CNTs and cement hydrate, which was seen to
grow successfully on the surface of CNTs. These struc-
tures were tested experimentally, and the results
showed that the damping ratio was enhanced by 25.9%
for CNTs/hydrate cement composites dispersed by
TNWDIS technique. This is almost double the corre-
sponding value of PVP-based CNTs/hydrate
composites.87

Theoretical works verified experimentally

Many works have been done theoretically to study
vibration suppression and damping enhancement. It is
crucial to verify the results experimentally. Gantzounis
et al.88 investigated low-frequency bandgaps of local
resonators (granular crystals) numerically and validated
the results experimentally. Wang et al.56 performed
vibration analysis on a Kagome lattice structure using
FEA compared with and experimental measurements,
and found good agreement between the results.
Moreover, beam-like structure was studied by Baravelli
and Ruzzene4 who analyzed the bandgap properties of
a chiral core structure which is fixed as a cantilever

beam from both ends. The study included both experi-
mental and finite element approaches to predict the
vibration bandgaps properties. The results show a good
match of the experimentally measured frequency
response function with the predicted one numerically
according to Euler–Bernoulli beam theorem, as shown
in equation (5). This equation can be used to find the
frequencies of the beam-like structure. When n equals
to 1, an is approximately equal to 4.73.
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The following governing equation (6) is used for
plate-like metamaterial which is used in vibration
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where, r is the density and u is the displacement.
Therefore, the numerical method can be used for

predicting the frequencies that might be used to
enhance and possibly optimize this design in the future.

Future of metamaterials as vibration
isolators

Metamaterials are increasingly being used in the devel-
opment of vibration isolator systems. It is expected to
receive more attention in the years to come due to the
development of additive manufacturing field.
Metamaterials can be easily fabricated using AM tech-
nologies due to their layer-by-layer fabrication process.
This can offer more research opportunities in the field
of vibration isolation and control. Zadpoor90 has
explored metamaterial in detail in his recent research.
Also, Li et al.21 provided a new research about a 4D
printed shape memory polymers which can be used in
many applications as an intelligent device for vibration
isolation and control. Kelkar et al.91 also presented a
review on recent studies and future opportunities of
metamaterial in different fields like sensors and actua-
tors. Furthermore, Mu et al.92 presented a future
research possibilities of vibration attenuation of seismic
waves. They have provided many models and systems
to study a wide range of metamaterial as an isolation
and control. Metamaterials are being used to measure
seismic wave to predict waves of earthquakes. Brûlé
et al.93 discussed this field in his recent research.
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Other aspects of metamaterials

In this section, other aspects of metamaterials will be
discussed. For instance, Chen et al.94 proposed three-
dimensional double-arrow-head (3D DAH) auxetic
metamaterials fabricated based on hot molding press
method using carbon fiber reinforced polymer (CFRP)
material as shown in the Figure 10. Six configurations
of 3D DAH metamaterials were designed with different
angles, including (15�, 30�), (15�, 45�), (15�, 60�), (30�,
45�), (30�, 60�), and (45�, 60�). Then, the samples were
tested experimentally using a quasi-static axial com-
pression test as a static mechanism and resonant test as
a dynamic mechanism to obtain the damping proper-
ties. Then, function-fitting and half-band methods were
used to estimate tangent loss factor and energy dissipa-
tion for the six configurations, and hence the associated
results were compared with each other. It was found
that the 3D DAH auxetic metamaterials offered high
damping capacity, relatively high compressive strength,
and light weight. In addition, the configurations of
(15�, 30�) and (45�, 60�) showed the best damping per-
formance among the others.

Sun95 introduced membrane acoustic metamaterials
to work as a damping mechanism for reducing the
amplitudes of vibration structures, like steel plates.
Such metamaterials consist of two layers of plastic
frame connected together firmly by the means of pins
and holes, a medium layer of rubber membrane, and a
group of metal platelets. The plastic frame includes 70
grids distributed as 5 along the frame width of 80mm
and 12 along the frame length of 192mm, where the
frame thickness is 7mm. Also, there are 24 half-circle-
shaped iron plates distributed as four in each of six-unit
cells or platelets located at the center of the polymeric
frame as shown in Figure 11. Four samples of the
membrane acoustic metamaterials were fabricated and
located at the upper, lower, right, and left positions of
the host structure (a steel plate).

An experimental work was conducted to compare
the vibration behavior of the steel plate without

anything, with membrane acoustic metamaterials, and
a commercial rubber plate. The results revealed that
the proposed metamaterials have participated evidently
in reducing the resonant vibration amplitude of the free
plate by 24.7 dB as an overall value over the frequency
range from 100 to 1200Hz. These metamaterials
showed also a better damping performance compared
with the commercial rubber plates in both low (100–
500Hz) and high frequency ranges (500–1200Hz).
Significantly, this aspect of metamaterials is recognized
with relatively light weight, thereby putting them within
the top candidate structures for aerospace applications.

He et al.96 presented a new design of laminate acous-
tic metamaterials. It is composed of two orthotropic
parallel laminates made of carbon-fiber-reinforced
polymer and an array of periodically distributed mass-
spring elements mounted between the two laminates as
seen in Figure 12. These elements usually work as
absorbers. In this regard, any unit cell of laminate
acoustic metamaterials consists of a middle absorber
mass connected with upper and lower springs of similar
stiffness. And, the other ends of the two springs are
connected with the upper and lower pieces of laminates,
respectively. Significantly, the dispersion analyses

Figure 10. The general feature of 3D double arrow head AH auxetic metamaterials (a) Representative volume element of the 2D
DAH structure and the geometry parameters, (b) The 3D DAH structure and (c) Photos of the specimens.94

Figure 11. Membrane acoustic metamaterials act as a damping
mechanism.86
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revealed that the new laminate acoustic metamaterials
have wider bandgaps due to using the carbon-fiber-
reinforced polymer, which is far-famed with its high
specific-strength to weight ratio. For this reason, the
new laminate acoustic metamaterials are better than
the traditional ones in suppressing the vibration beha-
vior. The results showed that the width of the bandgap
depends on the ratio of absorber-mass to the unit-cell-
mass of laminate metamaterials, and the position of
bandgaps depends on local resonant frequency of the
absorbers. Up to this point, the new laminate acoustic
metamaterials were applied to build vehicle doors and
succeeded in reducing their vibration by a noticeable
amount.

In addition to the three types of metamaterials
aforementioned, there are other two aspects of meta-
materials so-called large scale and granular used for
dissipating the vibration energy. The large-scale meta-
materials63 were applied for the seismic applications to
protect the areas from the risk of natural hazards,
which was explained in details in the section
(Applications of metamaterials). And, the granular
acoustic metamaterials88 were recognized with their
capabilities to be used for many applications of low-
frequency stopbands, where the vibration isolation is of
high importance. The granular acoustic metamaterials
were discussed earlier in the section (Theoretical works
verified experimentally).

Summary and conclusions

This paper presents a review of metamaterials and por-
ous structures with a particular focus on metamaterials
in vibration isolation and control. Metamaterials can
be used in several applications and technologies but the
most essential application is used for the vibration iso-
lation and control. It offers unique capabilities regard-
ing vibration attenuation. In conclusion, metamaterials
can be used in a wide range of mechanical vibration sys-
tems and structures. It showed that metamaterials have
great capabilities to reduce the vibration of the system
as presented by many researches. The opportunities of

research in this field have an outstanding range of pos-
sibilities in recent advances and the following gaps are
recommended to be covered as future studies.

1. Studying the structural parameters of metama-
terials that influences the mechanical vibration
characteristics in a systematic way, which could
be summarized as listed below.
a. Corresponding to each topology, a range of

relative densities could be set to determine
the corresponding values of the damping
coefficients. Based on the latter, the damp-
ing ratio could be found to identify the type
of damping whether it is over, under, or
critical damping. This in turn will give, in
advance, the machine operators a good
insight about the isolation capability of the
structure that they are planning to use in
the field, thereby providing a good control
for the vibration system and a safer envi-
ronment for the operators. The same thing
is valid when testing the bandgap properties
of new topologies corresponding to the
same relative density. Now, putting the
above-mentioned two structural parameters
together (relative density and topology)
under investigation will be the main key for
optimizing the vibration behavior of a
mechanical system in order to obtain the
required damping ratio at a minimal cost.

b. An advance analysis for the influence of
strut distributions and strut angle varia-
tions on the cellular material stiffness could
be conducted to manipulate the associated
natural frequency. This is of high impor-
tance in avoiding the resonant mode that
could cause a catastrophic failure to the
components of a vibration system.

c. The gradient in the structure of metamater-
ial could be a good point of investigation
to control the wave propagation. In this
case, the direction of applying load is essen-
tial since the structure is not symmetric,
which in turn opens more avenues for the
researchers to apply farther studies in the
field of mechanical vibration.

2. Exploring the effect of material type on the natu-
ral frequency and damping coefficient of metas-
tructures. In this regard, the manufacturing
parameters of 3D printers using certain materials
could also be probed to reveal their influence on
the corresponding vibration isolation.

3. Finding out which one has a more dominant
influence on the vibration energy absorption,
the structural parameters or the material type.
In this regard, this study will require large data

Figure 12. The design of laminate acoustic metamaterials.87
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set. Also, it will be very helpful in providing
wide-range selections out of which the designers
of mechanical vibration systems could choose
what is suitable for them, based on the avail-
ability, the site environment, the targeted appli-
cation, and, of course, the cost.

4. Predicting the essential parameters of a vibra-
tion attenuation system, such as the frequency
ratio and damping factor. To explain that,
potential correlations relating the damping fac-
tor with the relative density, and the frequency
ratio with the relative density could be obtained
for the purpose of predicting the vibration char-
acteristics of machine elements. These correla-
tions are supposed to be similar to the scaling
laws and are very beneficial in reducing the size
of the experimental work, and saving human
time and effort.

5. Investigating the impact of dynamic-loadings
and boundary conditions on the isolation of
vibration systems. Toward this goal, the vibration
isolation of a metamaterial in the longitudinal
direction might be different from that in the lat-
eral one, especially when structure of the meta-
material is not symmetric. For this reason, it is
important to realize and analyze the vibration
response and the associated attenuation when
applying loads for the purpose of inducing vibra-
tion in both longitudinal and lateral directions
with respect to the metamaterial structure. In
addition, the boundary conditions of LCSs
whether constraint or unconstraint might have an
influence on the vibration properties due to their
evident impact on the overall mechanical beha-
vior of LCSs.
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