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Abstract
The objective of this study is to develop generalized empirical closed-form
equations to predict the compressive mechanical properties and determine geo-
metrical parameters. To achieve that, 117 models are built and analyzed using
ABAQUS/CAE 2016 to provide two types of reliable data: one for lattice mechan-
ical properties based on finite element method and the other for geometrical
parameters using the measurements of ABAQUS diagnostic tool. All the mod-
els are created by modifying the basic feature of body-centered cubic lattice
structure based on a range of strut angles, a set of relative densities, and two
design sets. Also, the influence of lattice cell tessellations and material dis-
tribution at strut intersections are considered within these models to provide
accurate results. The first data set is fitted with the scaling laws, relating rela-
tive elastic modulus and stress with the relative density, to determine Gibson
and Ashby’s coefficients. The second type of data regarding lattice geometries
is correlated with the relative density to estimate actual lattice volume, strut
radius, aspect ratio, and overall lattice volume. By this way, these equations can
be used to predict directly the lattice characteristics and geometrical param-
eters without the need for ABAQUS. The results show that the generalized
empirical closed-form equations can predict well both the lattice characteristics
and geometries. In addition, the relative stresses and elastic modulus increase
with increasing the strut angles since the main deformation mechanisms move
toward stretch-dominated rather than bending. Besides, Gibson and Ashby’s
coefficients along with the geometrical factors of aspect ratios are found to be
approximately similar for both generations. This study contributes to develop-
ing efficient equations to provide the researchers with a preliminary insight
about the best lattice design and its compatibility in a certain application before
starting the fabrication process.
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1 INTRODUCTION

Lattice structure (LS) is defined as an interconnected array of solid struts or assembly of multiple micro-trusses. It is
recognized as a periodic architecture, comprising of unit cells of the same shape and size placed at equal distances in
the principal directions. The periodic LSs exhibit better mechanical properties (for example, the specific stiffness and
strength) than those offered by traditional foams, which are considered good candidates for the energy-absorption appli-
cations. The foams belong to the category of stochastic cellular materials,1,2 and have irregular cell structures in which
unit cells of different shapes or sizes are distributed randomly. The irregularity in the microstructure of the foam mate-
rials induces localized damage at the point of weakness, leading to an overly conservative design.3,4 While, the regular
distribution of the unit cells enables adjusting the mechanical properties of LSs. Thus, the periodic materials, LSs, are gen-
erally preferable than the stochastic ones, foam materials. As such, they have attracted much attention in recent studies,
and become a good candidate in various applications, including biomedical science, aerospace engineering, and vibration
isolation.5

Previously, the design field of periodic cellular materials was limited to using two-dimensional channels, namely,
prismatic materials for instance honeycomb. This limitation is traced back to the difficulty of manufacturing complex
geometries using conventional manufacturing methods. While in recent years, the emergence of additive manufactur-
ing technology facilitates the fabricating process of 3D complex parts and makes it simple compared to the traditional
methods. The variety in the designs of LSs, accompanied by controllability of the pore size and shape along with manufac-
turability at a good level of accuracy, is attributed to the advancement of additive manufacturing (AM) or 3D printing.6–9

This in turn stimulates the field of lattice design to grow and expand broadly in order to meet the needs of many
applications, not only because of their lightweight, but also due to their interesting mechanical characteristics.

The mechanical characteristics of cellular materials are dependent on the solid constitutive material properties, the
topology of the lattice, and relative density (RD).10,11,12,13 It is defined as the ratio of actual lattice material volume to
the overall block volume that encloses the lattice (RD = Vlatt./Vsol.). Similarly, RD is also defined as the ratio of the
lattice density to the corresponding one of solid block enclosing the lattice (RD = ρlatt./ρsol.). In essence, holes, voids, or
pore sizes of the cellular materials are reduced with increasing RD, resulting in higher mechanical properties. Besides,
the deformation mode of the cellular materials whether bending- or stretch-dominated relies mainly on the lattice topol-
ogy, which has a major influence on the mechanical response of cellular materials.14 Significantly, the coupled effects of
RD and lattice topology on the mechanical response of the cellular materials have been formulated into a set of useful
relationships introduced by Gibson and Ashby.10,11 The one that correlates the relative elastic modulus (RE) with the RD,
that is, RE = c1RDn, has attracted much attention in the earlier studies, and there is another correlation for the relative
stress (RS) with RD, namely, RS = c5RDm. Here, RE is defined as the ratio of equivalent lattice modulus to solid consti-
tutive material modulus (RE = Elatt./ESol.) and RS is the ratio of the equivalent yield stress of lattice to yield stress of solid
constitutive material (RS = Ylatt./YSol.). Also, c1, c5, and n, m are called Gibson and Ashby’s coefficients and exponents,
respectively. It has been found that the exponent (n) depends on the lattice topology such that it has approximately a
value of 1 for stretch-dominated cellular materials whose cell structures resist tension or compression.1,12,15,16 Also, it can
have roughly a value of 2 for cellular materials with bending-dominated topologies in which cell walls undergo bend-
ing.10–12 Thus, the stretch-dominated cellular materials at a certain value of RD exhibit extraordinary stiffness, whereas;
the bending-dominated ones corresponding to the same RD are more complaint.1,10,11,15,16 In addition, Maskery et al.17

and Ahmadi et al.18 proved that the scaling exponent (n) can have values less than 1, between 1 and 2, or greater than
2, based on various lattice cell configurations. Furthermore, Ahmadi et al.18 classified a set of LSs based on the scaling
exponent (n): n ≤ 1.5 for stiff structures, and n> 1.5 for compliance ones. In this regard, the other scaling exponent (m)
can have a value of 1.5 for bending-dominated structures and 1 for stretch-dominated ones.19 In addition, the values of
m can be within a range of 1 to 2 or higher than 2 based on the geometrical shape of lattice unit cells.18

The scaling relationship between the RE and RD plays a crucial role in designing the cellular materials. This is due to
the possibility of tailoring the elastic modulus directly by adjusting the RD. For that purpose, the scaling constants (n and
c1) should be determined based on the power curve fitting of the measured data. Also, the scaling law relating RS with RD
is of high importance in identifying the failure limit of the lattice. The associated coefficients (m and c5) can be estimated
in a similar way to the former scaling constants. Likewise, the yield stress can also be manipulated by changing RD.

Significantly, the scaling laws are efficient techniques not only for analyzing lattice behavior based on deformation
modes but also for predicting elastic modulus and yield stress. This could be much better than the experimental work,
analytical solution, or finite element method (FEM), especially when thinking about saving human time and effort.
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Typically, fabricating the lattice specimens and conducting experimental tests on them usually require a longer time
and higher cost.18,20–25 In addition, the traditional analytical approaches to predicting the mechanical behavior of the
lattice are not without limitations. The most significant one is the inaccurate measurement of the actual lattice volume
due to not considering the material overlapping at the strut joints.26,27 In addition, neglecting the effect of deformation
induced by the shear loadings renders them applicable only to LSs of small RDs.26 Also, most of the analytical methods
are commonly created to be appropriate for single lattice unit cells with equal dimensions.26,28 Besides, the mechanical
behavior of LSs with the higher number of unit cells cannot be captured accurately from the behavior of single-unit cells.
For this reason, homogenization is needed when working on single-unit cells to predict the mechanical characteristics
of LSs with the higher number of unit cells.27,29 To this end, many researchers dedicated FE models to predicting the
mechanical properties of LSs. However, these models were limited to specific lattice configurations of equal dimensions,
for instance, body-centered cubic (BCC), reinforced BCC, triply periodic minimal surfaces (TPMS), cube, face diagonal
cube, octahedron, octet, void octet, truncated cube, and truncated octahedron.16,17,25,29,30

It is also worthwhile explaining the most recent studies about the multi-scale design and optimization methods,
as well as the strategies of modeling the lattice structures. Bertolino and Montemurro31 applied a topological opti-
mization of two scales on anisotropic cellular material for a single unit cell representing the microscale level and
entire lattice considered as macroscale level under nonzero Neumann–Dirichlet boundary conditions. In this regard,
a multi-scale topology optimization method for lattices was introduced by Reference 32, including a description for
a representative volume element based on the nonuniform rational basis spline hyper-surfaces, solid isotropic mate-
rial with penalisation approach, and homogenization method using strain energy to conduct the scale transition. In
addition, a general multi-scale optimization method was used to design lattice materials subjected to boundary con-
ditions of various nature (i.e., geometric, manufacturing, and thermodynamic constraints) and different scales. The
geometric and manufacturing constraints are considered at mesoscopic scale, while the thermodynamic constraints
are regarded within macroscopic scale. The main goal of this method is to apply a surface optimization for the rep-
resentative volume element of a lattice, comprising both the local and global geometric parameters of the surface.33

To this end, a gradient lattice structure was designed using computer-added design-compatible topology optimiza-
tion method based on spline hyper-surfaces and solid isotropic material with penalization approaches. This study was
conducted to evaluate the effective thermal conductivity of periodic cellular materials starting with 31 various configu-
rations. After that, seven configurations were selected to design the gradient lattice feature with the help of optimization
method. In general, the effective thermal conductivity was found to be dependent on the relative density and the lattice
topology.34

In the current research, the elastic–plastic compressive mechanical behavior and the structural parameters of
modified BCC LSs are investigated based on FEM and scaling law analysis in order to create generalized empirical
closed-form equations for the purpose of accurately and efficiently predicting the compressive mechanical proper-
ties (CMPs) and determining the geometrical parameters (GPs) by including the effect of lattice cell tessellation and
material distribution at strut joints. To achieve that goal, the following steps as the main strategy of this work are
carried out:

1. Thirteen models of modified BCC LSs with 3× 3× 3 cells having the same strut diameters are adopted here.
2. These models are categorized based on strut length into two sets, fixed and varied strut length models, referred to

here as FSLMs and VSLMs, respectively. Each one comprises seven models corresponding to strut angle variation
from 40◦ to 100◦ with a step of 10◦.In the first set, the strut length as a design constraint is kept fixed with strut
angle variation. While in the second set, it is varied from one model to another with strut angle variation. The lat-
tice model with 70.53◦ strut angle is selected as a reference model denoted by RM. This model represents the basic
configuration of BCC LS with equal dimensions, 15 mm× 15 mm× 15 mm in x, y, and z directions. Due to the repe-
tition of the RM in both sets, the number of modified BCC lattice models created initially is 13. In this respect, the
experimental work will be conducted on the reference model for the purpose of validating the boundary and loading
conditions.

3. Corresponding to each one of the 13 models, other nine lattice models of different RDs within a range from 0.14 to 0.3
with a step of 0.02 are created by changing the strut diameters. As such, the total number of models adopted in the
current research is 117.

4. Elastic–plastic FE simulation of the quasi-static axial compression behavior is conducted for all lattice models using
ABAQUS FE software to find the CMPs. In addition, ABAQUS diagnostic tools are used to measure accurately the GPs
of all adopted models.
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4 of 26 ABDULHADI et al.

5. The data extracted from ABAQUS are fitted with Gibson and Ashby’s scaling laws and correlated with RDs to find
Gibson and Ashby’s constants and the other geometrical factors, thereby creating five main empirical closed-form
equations. Two of them relate RE and RS with RD, and the others correlate the actual lattice volume, strut radius and
aspect ratio with RD.

6. Validation of these equations is achieved by comparing their results with those of ABAQUS FE software, showing
a good agreement in the results between them. In the meanwhile, prediction results of GPs based on the empirical
equations are proved to be more accurate than those of the traditional geometrical equations. This is mainly due to
considering the effect of material overlapping at strut junctions when creating the empirical equations and ignoring
that effect in the formulation of the traditional equations.

7. The influence of lattice cell tessellation is also considered when developing the empirical closed-form equations in
order to generalize them. By this way. The prediction range of CMPs will be expanded to cover the elastic modulus,
yield stress, and the associated mechanical characteristics for ≥3× 3× 3 unit cells. In addition, the prediction capacity
of the GPs is extended to comprise the actual lattice volume, strut radius, aspect ratio, strut length, and the overall
lattice solid volume for ≥1× 1× 1 unit cells.

8. In essence, the generalized empirical-closed form equations developed in the current research provide lattice designers
swift and thorough insight into the elastic–plastic compressive mechanical behavior and structural parameters of a
wider range of BCC LSs before starting the fabrication process or conducting FE simulation, thereby saving more time,
effort, and expenses.

The outline of this article starts with an experimental work about fabricating the lattice samples and testing their
mechanical response under compressive loading. Hence, the design features of all lattice models adopted in the current
research are explained. Then, finite element modeling is discussed with an emphasis on the mechanical properties of
material forming the lattice struts, boundary and loading conditions, and effective lattice modulus and yield strength.
After that, meshing the lattice models with using hexahedron elements is illustrated. In addition, mesh convergence
analyzes and the influence of lattice cell tessellation are investigated for the adopted lattice models. Up to this point, the
results of the finite element models and experimental work are discussed, and a validation of the closed-form equations
is performed. The final section of this manuscript includes a short summary and conclusion of the current study as well
as a future work.

2 EXPERIMENTAL WORK

The experimental work utilized in the current investigation is to validate the boundary and loading conditions adopted
for the finite element models. First, the reference model was designed with the help of smart procedure using ABAQUS
software, then saved in standard tessellation language (STL) format, and exported to the 3D-printer software, CatalystEX.
Next, three specimens of the reference model were printed on a fused deposition modeling (FDM) based 3D printer
uPrint-SE-Plus provided by Stratasys. In this regard, the default processing parameters (0.254 mm layer thickness and high
sparse density) were selected to print these specimens. Furthermore, the printing chamber and head temperatures were
about 70 and 300◦C, respectively. In addition, the material used to fabricate the specimens was acrylonitrile butadiene
styrene (ABSplus-P430), which is a thermoplastic material. After completing the printing process, the specimens need to
be washed using Stratasys cleaning apparatus (SCA), 1200HT, to remove the support material. As shown in Figure 1, the
compression test was conducted on three samples to confirm the repeatability using a mechanical testing machine called
TESTRESOURCES with a load capacity and displacement rate of 250 lbf and 0.5 mm/min, respectively.

3 GENERATING THE OVERALL LATTICE MODELS

The structural design of the lattice adopted in the current research is a modified version of the BCC lattice configura-
tion based on strut length and orientation. As mentioned earlier, 13 lattice models were divided as FSLMs and VSLMs,
each with strut angle variations from 40◦ to 100◦ with a step of 10◦. As part of the structural design of FSLMs, the strut
length is kept fixed through the layers of a certain model and for all seven models with varying strut angles. To achieve
that, both the square base area and the height are manipulated from one model to another as shown in Figure 2A. To
explain that, the height increases and the base area decreases with increasing the strut angles and vice versa. On the other
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ABDULHADI et al. 5 of 26

F I G U R E 1 A mechanical testing machine used to apply a compressive loading on the 3D-printed lattice

F I G U R E 2 The structural design of (A) FSLMs and (B) VSLMs for (i) Ø = 100◦, (ii) Ø = 70.53◦ and (iii) Ø = 40◦

side in the design of VSLMs, the square base area of a single unit cell or an entire lattice is kept the same through one
model and for all other seven models with changing the strut angles, but the height increases with increasing the strut
angles as shown in Figure 2B. Therefore, the strut length also increases with increasing the strut angles. This means,
the strut length is fixed through the layers of the same model but varied from one model to another with strut angle
variation.

The next step after introducing the LS design is to create additional models of various RDs corresponding to each
one of the 13 modified BCC lattice models. For that purpose, a range of RDs from 0.14 to 0.3 with the step of 0.02 is
set as a target to build nine lattice models based on varying the strut radius. In other words, a parametric study was
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6 of 26 ABDULHADI et al.

F I G U R E 3 Classifications of the modified BCC LSs adopted in the current research with respect to the strut angles, strut length and RDs

applied to each modified BCC LS in both FSLMs and VSLMs, starting with an initial value for the strut radius and
then building the entire lattice model with ABAQUS FE software. After that, the actual lattice volume and the over-
all lattice block volume of the generated model were measured by using ABAQUS diagnostic tool to determine the RD.
Then, the resultant value will be compared with the required or target one in order to check whether the assumption
or the initial value of the strut radius is correct or not. If the resultant one matches with the required RD, it means
that the initial value of the strut radius is correct. While in the case that the value of the resultant RD and the target
one does not agree with each other, another assumption will be initiated based on the feedback from the difference
between these two values. The last procedure will be repeated several times till estimating the exact strut radius and the
associated geometries corresponding to each RD within the specified range for all lattice models in both sets. In con-
sequence, 63 lattice models of fixed strut length listed within the FSLMs and other 63 models of variant strut length
considered as a part of the VSLMs have been generated. Thus, as shown in Figure 3, the total number of models adopted
in the current research is 117 models, not 126, owning to the repetition of 9 RMs corresponding to 70.53◦ strut angle
with 9 different RDs of the specified range. To this end, since the parametric study can take a longer time for generat-
ing the lattice models of various RDs, empirical closed-form equations relating the RD with strut radius will be created
based on the data of the geometries for the 117 models. This in turn aims to determine strut radius directly without the
need for applying further parametric studies. Also, these equations will be provided in the result and discussion part,
Section 5.3.2.

4 FINITE ELEMENT MODELING

All the models adopted in the current investigation were built and analyzed explicitly using ABAQUS/CAE 2016 from
Dassault Systemes, Providence, RI, USA. Elastic–plastic FE simulation (including strain hardening) of a quasi-static axial
compression test was conducted on all modified BCC LSs by defining the material properties and boundary conditions,
estimating elastic modulus and yield stress, generating the appropriate mesh type, applying mesh convergence analysis,
and studying the effect of lattice cell tessellations.
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ABDULHADI et al. 7 of 26

4.1 Material properties

The solid constitutive material assigned to all elastic–plastic FE models was acrylonitrile butadiene styrene
(ABSplus-P430). This material was adopted here since it is widely used in the field of additive manufacturing or 3D print-
ing technology. In this regard, Table 1 shows ABS properties, where this data were already measured and introduced in
the literature by conducting standard tensile (ASTM D882) and compression (ASTM D695, ISO 604) tests on ABS speci-
mens fabricated by FDM technology.29,30,35,36 Up to this point, the mechanical behavior of solid ABS material, that is, the
printed one based on a layer-by-layer fabrication approach using fused deposition modeling technology, was assumed to
be isotropic for the purpose of modeling simplification.

4.2 Boundary conditions

In order to simulate the quasi-static axial compression behavior of the lattice, each model of the modified BCC LSs was
placed between two rigid plates, as shown in Figure 4, which are tied to the upper and lower faces of the lattice. The
boundary conditions were assumed based on the experimental observation. For the base plate, fixed boundary conditions
were used, which are ENCASTER (U1=U2=U3=UR1=UR2=UR3= 0). Whereas for the top plate, moveable boundary
conditions were conducted by applying a displacement in Z directions (U3), and all other directions were restricted and
kept zeros (U1 = U2 = UR1 = UR2 = UR3 = 0).37,38 In this regard, the other four faces or sides of the lattice are totally
free or unconstrained. In general, LS under these types of conditions is referred to as a constrained lattice.26 Additionally,
the displacement rate was 0.5 mm/min, which is identical to the displacement rate used for the experimental work.30,35

The solver used to run the models of the current study is Abaqus/Explicit, aiming to create general-purpose models that
could be used in the future to predict post-yielding behavior.13 To this end, two steps (Initial STEP and STEP1) were used,
and the computational time required for a single analysis is usually within the range from 10 to 20 min based on lattice
geometries.

T A B L E 1 ABS properties

Quantity Observation Value

ABS Poison’s ratio 𝜈 0.35

ABS density 𝜌 7.92E-4 g/mm3

Yield stress 𝜎Y 861.5 MPa

Ultimate failure strength 𝜎u 33.32 MPa

F I G U R E 4 The applied loading and boundary conditions of the finite element modeling
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8 of 26 ABDULHADI et al.

F I G U R E 5 The essential geometries required for determining the elastic modulus of the lattice

4.3 Elastic modulus and yield stress estimation

In order to estimate the elastic modulus of the modified BCC LSs in the direction of applying the displacement, the
reaction force was measured at the upper plate and the associated data were extracted from ABAQUS and exported to an
Excel file in order to plot the load–displacement curve.

The slope of the curve represents the load–displacement stiffness, denoted by K measured in (N/mm). Hence, the
elastic modulus was determined as follows.16,17,23,39,40

E = σ
𝜀

=
F
A
δ
H

= H
A
× F
δ
= H

A
× K, (1)

where E is the modulus of elasticity, sometimes called equivalent elastic modulus since it represents the modulus of the
whole LS, as well as to distinguish it from the one of solid constitutive material, measured in (MPa). Also, δ is the applied
compressive displacement, H is the total height of the lattice and A is the cross-sectional area of the lattice. All of these
are explained as shown in Figure 5 and measured in (mm), (mm), and (mm2), respectively. Regarding the yield stress of
the lattice, it is also called the crush or collapse stress. Indeed, it comes directly after the end of the elastic region where
the curvature of the load–displacement plot starts, or it represents the beginning of the plateau regime where the collapse
or crush of the cell struts begins. At this point, a new deformation mechanism of the cell struts could be noticed.41 To this
end, it is important to indicate that the lattice yield stress signifies the equivalent yield stress of the entire LS and does not
stand for the real stresses in individual struts.14

4.4 Mesh generation

The most widely used elements in finite element analysis (FEA) are tetrahedron and hexahedron. The former can be
generated automatically, while the latter requires an intervention by the software users.42 The hexahedral elements are
generally more preferred than tetrahedral elements. Because employing hexahedral mesh elements in FEA leads to reduc-
ing the computational time and increasing the accuracy of the results.43 Accordingly, all the models in the current research
have been meshed with hexahedral elements using smart procedure. It is a meshing technique developed in ABAQUS
software for the purpose of generating hexahedral elements. This procedure was presented in our earlier study,44 and
proved to work efficiently in generating hexahedral elements for all modified BCC LSs (i.e., FSLMs and VSLMs).

In short, to create a mesh for a certain model that cannot be meshed directly with hexahedron elements, a volume
decomposition is required for its geometries. It means that certain planes should be allocated at the right positions to

 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12566 by W

right State U
niversity D

unbar L
ibrary A

cquisitions, W
iley O

nline L
ibrary on [16/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ABDULHADI et al. 9 of 26

F I G U R E 6 Creating (A) solid single strut, (B) single strut with volume decomposition, (C) meshable single strut, (D) meshable unit
cell, and (E) entire lattice meshed with hexahedron elements

partition the entire model or part into subparts. These subparts are similar to the ones provided by ABAQUS library
that could be self-meshed with hexahedron elements; by this way, the entire model could be meshed with hexahedron
elements directly. The same idea was applied as a part of smart procedure on the lattice models. Starting with a single
strut as shown in Figure 6A, three planes are used to split the strut geometry into six subparts as shown in Figure 6B.
The subparts of the single strut have the same geometrical features as those of ABAQUS library that could be meshed
directly using hexahedron elements. Then, the hexahedron mesh is generated automatically for the single strut as seen
in Figure 6C. This type of mesh is maintained even with creating a single unit cell and entire lattice structure as shown
in Figures 6D,E, respectively.

Also, the element type was selected to be continuum stress-displacement, 3D (three-dimensional, break, or solid
element), first order interpolation (i.e., linear behavior), and reduced-integration (i.e., one sampling point to deter-
mine numerically the stiffness and mass of the element). This element is designated as C3D8R according to ABAQUS
scheme. For more explanation, the first order reduced-integration elements are cheaper and more effective than first-order
full-integration elements due to their capability for removing shear locking, overcoming hour glassing with using sev-
eral elements in the thickness direction, and saving computational time. However, the elements with Incompatible mode
C3D8I were tested for this study, and it was observed to exhibit higher computational time. Finally, the relative elastic
modulus of the entire lattice was selected to apply a convergence analysis. The seed size or number of elements was var-
ied several times, and the corresponding relative elastic modulus was determined. This process continued till reaching a
convergence in the values of the relative elastic modulus with insignificant error, which is less than 2% when the num-
ber of elements became 220,000 or higher as will be discussed in Section 4.5 (mesh convergence analysis and the effect
of unit cell number). By this way, we could guarantee that the finite element models will provide accurate results. For
the top and bottom plates, a planar element type (R3D4) with a discrete rigid characteristic was chosen because of its
higher elastic modulus such that it will not undergo deformation under any type of loading conditions. In this regard,
the upper and lower rigid plates were fixed on the corresponding lattice faces. This means constrained boundary condi-
tions between the lattice and plates were used. In consequence, the rigid plates and the constrained boundary conditions
as well as employing hexahedron mesh elements for both lattice and plates ensured a good compatibility, especially that
high deformation stages were not included in this research.
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10 of 26 ABDULHADI et al.

4.5 Mesh convergence analysis and the effect of unit cell number

It has been found that mechanical characteristics of lattice are influenced by the number of unit cells due to the effect of
boundaries.16,17,45 To explain that, a preliminary study for the effect of unit cell number on the elastic–plastic mechan-
ical behavior of lattice (engineering stress–strain curve) was carried out by using FE modeling of the quasi-static axial
compression test considering the same boundary conditions, mesh element type and the other details discussed earlier.
Corresponding to each unit cell number as an essential step, the mesh convergence analysis was conducted between
the RE and the number of elements per unit cell to ensure that the results are accurate enough. In this regard, the
number of elements per unit cell is considered a kind of normalization, which means that the total number of ele-
ments for a certain model is divided by the number of unit cells out of which it is built.17,46 It has been noticed that
the convergence error can be reduced to insignificant values by using the number of elements per unit cell higher
than or equal to 2000 for all lattice cell repetitions. Simply, multiplying that number, 2000, with the number of unit
cells ranging from 1× 1× 1 to 5× 5× 5 yields the corresponding total number of elements with a range from 2000 to
250,000. In consequence, the effect of lattice cell tessellations on the elastic–plastic compressive mechanical behav-
ior using the above results of convergence analysis is shown in Figure 7, for the RM of 0.3 RD or 0.6747 mm strut
diameter.

As noticed in Figure 7, the mechanical response is relatively high for 1× 1× 1 lattice cell tessellation due to the con-
strained boundary conditions and the direct effect of the boundary conditions, which are applied on all solid struts of
a single unit cell. However, that effect is reduced with increasing the number of unit cells since the cells located at the
boundaries are decreased in number with respect to the total number of unit cells out of which the LS is composed.
This means that smaller number of cell struts with respect to the total number of struts are under the impact of bound-
aries. Thus, the mechanical behavior and the corresponding CMPs clearly begin approaching each other for 3× 3× 3,
4× 4× 4, and 5× 5× 5 unit cell distributions. For this reason, the last three lattice cell arrangements were frequently used
in the literature by several researchers.16,17,47,48 In the current research, 3× 3× 3 lattice cell tessellation was selected to
simulate the elastic–plastic compressive mechanical behavior of all modified BCC LSs in both sets for the purpose of
saving further computational time. In other words, all the results regarding the strut angle variation and changing the
RD with considering both the fixed and variant strut length as design constraints will be provided for 3× 3× 3 unit cell
repetitions in the next sections. Using the former lattice cell tessellation, a convergence analysis was conducted on the
seven models of fixed strut length and the other seven models of variant strut length with 30% RD and strut angle vari-
ation from 40◦ to 100◦ as shown in Figures 8 and 9, respectively. As a result, the total number of elements that reduce
the convergence error to insignificant values is higher than or equal to 50,000, corresponding to all lattice models of
fixed and variant strut length with 30% RD. In a similar way, as a convergence study was conducted on other lattice
models of different RDs, it was significantly observed that the same number of elements can also provide reasonable
results.

F I G U R E 7 The effect of cell repetitions on the elastic–plastic mechanical response of the lattice, starting with 1× 1× 1 to 5× 5× 5 unit
cells for the RM of 0.3 RD.
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ABDULHADI et al. 11 of 26

F I G U R E 8 Mesh convergence analysis of the seven models in the FSLMs of 0.3 RD and strut angle variation from 40◦ to 100◦

F I G U R E 9 Mesh convergence analysis of the seven models in the VSLMs of 0.3 RD and strut angle variation from 40◦ to 100◦

5 RESULTS AND DISCUSSION

5.1 Comparison between experimental work and FE models

Load–displacement curves obtained experimentally by compression test were compared with the corresponding one of
the FE simulations for the reference model as shown in Figure 10. It is obvious that the mechanical response for both
the experiment and FE model was within the linear elastic limit since the applied displacement is relatively small. Sig-
nificantly, a good agreement was noticed between the load–displacement curve predicted by the FE model and those of
experimental work. The average value and standard deviation of the measured load–displacement stiffness by experiment
were 149 and 2.8% in N/mm unit, respectively. Comparing with the load–displacement stiffness of FEM (154.19 N/mm),
there is a discrepancy in the results with a small percentage (i.e., 3.37%). The sources of discrepancy are various; for
example, human error is a very common source of error when conducting an experimental work. Also, the defects shown
in the printed samples due to the manufacturing parameters might be another source of discrepancy. In general, this
amount of discrepancy is considered small, and it could be neglected since it has not major effect on the results. Up to
this point, the boundary and loading conditions were validated for the reference model. Hence, the same conditions were
adopted for all other models in this study to make sure these models could work efficiently and provide accurate results.

5.2 Mechanical characteristics of the modified BCC LSs

After the elastic–plastic FE simulation of the quasi-static axial compression behavior of all modified BCC LSs, elastic mod-
ulus and yield stress corresponding to each lattice model were determined using the same ways explained in Section 4.3.
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12 of 26 ABDULHADI et al.

F I G U R E 10 The load–displacement behavior within elastic limit of the RM under compressive loading for both the FE model and
experimental work

To provide the readers with better understanding, the quasi-static compression behavior means that the piston or platen
used to apply compressive loading on the lattice samples moves very slowly, thereby inducing a very slow deforma-
tion such that the inertial effects could be ignored. Also, the influence of the acceleration on the instrument measuring
compressive loading is insignificant and could be neglected too.

5.2.1 Elastic modulus and yield stress of FSLMs and VSLMs

The measured data of elastic modulus and yield stress corresponding to the strut angle variation and RD values of all
lattice models were normalized relative to the modulus and yield stress of the solid constitutive material, respectively.
These data were thereafter fitted with Gibson and Ashby’s scaling laws, illustrated in Equations (2) and (3).

RE = c1(RD)n, (2)

RS = c5(RD)m, (3)

RE = Elatt.

Esol.
,

RS = Ylatt.

Ysol.
,

RD = Vlatt.

Vsol.
,

where Elatt., Ylatt., and Vlatt. are the equivalent elastic modulus, the effective yield stress, and the actual volume of the
lattice, measured in MPa, MPa, and mm3 units, respectively. In addition, Esol. and Ysol. represent the modulus of elasticity
and the yield stress of the solid constitutive material that the lattice is made of, both measured in MPa units. In addition,
Vsol. refers to the overall lattice block volume, measured in mm3 units. c1, c5, n, and m are indicated as Gibson and Ashby
coefficients.

After data fitting with the scaling laws, the coefficients (c1 and n) were determined for both FSLMs and VSLMs as
shown in Figures 11 and 12, respectively, thereby providing empirical closed-form equations through which the elastic
modulus of the modified BCC LSs can be controlled by varying the RDs for different strut angles and two design sets
(FSLMS and VSLMS). In this respect, all the values of c1 are within the range specified by Gibson and Ashby, that is,
0.1–4.10,11 Besides, the values of n are of high importance not only for predicting elastic modulus values but also for ana-
lyzing how the deformation mechanisms of LSs can change with strut angle variation, which has a major influence on the
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ABDULHADI et al. 13 of 26

F I G U R E 11 Empirical closed-form equations relating RE with RD for FSLMs ensued from fitting ABAQUS data with the scaling laws

F I G U R E 12 Empirical closed-form equations relating RE with RD for VSLMs ensued from fitting ABAQUS data with the scaling laws

associated mechanical characteristics. Accordingly, the n-values were plotted separately with strut angles for both FSLMs
and VSLMs as shown in Figures 13A,B, respectively. Based on the latter, it can be seen apparently that the exponent values
of both sets are approximately similar to each other and decreases with increasing the strut angles, giving a conclusion
that the main deformation moves toward axial loading rather than bending of the struts with increasing the strut angles.
For this reason, RE values go up with increasing the strut angles for a given value of the RD. Furthermore, it has been
frequently reported in the literature that the RE of a lattice increases with increasing the RD values.10,12,17,18,20,21,25,49–51

Similarly, in the current work, the values of RE also increase with increasing the RD for both FSLMs and VSLMs as
shown in Figures 11 and 12, corresponding to a certain strut angle. In addition, it was noticed that values of c1 and n of the
RM are approximately similar to the ones arising from the previous investigations,14,52 which were also conducted on BCC
LSs. Most importantly, it was observed from Figures 11 and 12 that c1 and n have roughly the same values for both FSLMs
and VSLMs when making a comparison between two lattice models of similar strut angles and RDs but from different
sets, thereby revealing the dominant effect of the strut angles on the elastic modulus values. Up to this end, a validation of
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14 of 26 ABDULHADI et al.

F I G U R E 13 The trend of exponent values (n) with strut angle variation for (A) FSLMs and (B) VSLMs

F I G U R E 14 Validation of the empirical closed-form equations relating RE with RD for (A) FSLMs and (B) VSLMs with respect to
ABAQUS prediction from the previous work

the empirical closed-form equations was carried out by testing their abilities for predicting the elastic modulus behavior
with strut angle variation of the constant and variable weight models which were presented in the previous study.44 The
modified BCC LSs of constant and variable weight were simulated based on ABAQUS FE software using acrylonitrile
butadiene styrene (ABS) material. As it can be seen from Figure 14A,B, there is a good agreement between the results of
the empirical equations and ABAQUS FE software.

In a similar way, the constants (c5 and m) were found as shown in Figures 15 and 16, resulting in another set of
empirical closed-form equations to predict directly the yield stress by changing the RD for all modified BCC lattice models
in both sets. Again, the constants of FSLMs were noticed to be approximately similar to the corresponding ones of VSLMs.
The values of the scaling factor (c5) were found to be almost within or close to the range specified by Gibson and Ashby,
which is between 0.1 and 1.11 Furthermore, the coefficients (c5 and m) of the RM were found to be nearly the same as
those from an earlier investigation conducted by Reference 52 on BCC lattice configuration. Similar to the elastic modulus
trends, the yield stress increases with increasing RD at a given strut angle, and it goes up with increasing the strut angle
at a specific value of RD. This means the general tendency for changing the deformation mechanisms from bending-
to stretch-dominated with maintaining the same RD induces an improvement not only in the elastic modulus but also
in the yield stress for all modified BCC LSs.12,48,52–54 Indeed, changing the deformation mechanisms for the purpose of
improving the mechanical response of the lattice was conducted before, conventionally by adding vertical struts in the
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ABDULHADI et al. 15 of 26

F I G U R E 15 Empirical closed-form equations relating RS with RD for FSLMs ensued from fitting ABAQUS data with the scaling laws

F I G U R E 16 Empirical closed-form equations relating RS with RD for VSLMs ensued from fitting ABAQUS data with the scaling laws

direction of applying the load to the basic feature of BCC LS to create other features, thereby exhibiting higher CMPs at
the same RD.4,14,21,51–53

In the current research, the leverage of switching the deformation mechanisms toward axial mode instead of bending
the struts was used by reshaping the actual lattice volume or weight of BCC LS longitudinally in the load direction to
create other features of different strut angles starting from 40◦ to 100◦, thereby offering higher values of elastic modulus
and yield stress at the same RD. The improvement in the CMPs is attributed to the ability of the lattice to resist more
axial deformation under compressive loading when changing strut angles in the direction of applying the load, which
means improving the structural stability of the lattice by increasing the strut angles. Eventually, in a similar fashion to the
validation of elastic-modulus empirical equations, it is worthwhile indicating that there is a good agreement between the
yield stresses predicted directly by the empirical closed-form equations and those extracted from ABAQUS FE models as
shown in Figure 17.

It has been observed that some values of the coefficients (c1, c5, m, and n) resulting from the current investiga-
tion might be close to the upper limit, lower limit, or even beyond the range of values specified by Gibson and Ashby,

 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12566 by W

right State U
niversity D

unbar L
ibrary A

cquisitions, W
iley O

nline L
ibrary on [16/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 of 26 ABDULHADI et al.

F I G U R E 17 Validation of the empirical closed-form equations relating RS with RD for (A) FSLMs and (B) VSLMs with respect to
ABAQUS prediction from the previous work44

c1=(0.1–4), c4=(0.1–1), m = (2 or 1), and n = (1.5 or 1).10–12,19 This can be traced back to the fact that the geometrical
shape of lattice unit cells and their distribution in the 3D-space, that is, whether distributed in a periodic or stochastic
way, have an influence on these coefficients,14,50,55 especially that Gibson and Ashby’s model is an open-foam stochastic
cellular structure, while all the lattice models adopted in the current research were modified BCC LSs with regular dis-
tribution of the unit cells. In this regard, it has been shown in the literature that the polymeric BCC and reinforced-BCC
lattice configurations have different values of c1 and c5 even though they were manufactured with the same RD, thereby
showing the dependency of these coefficients on the type of lattice unit cell.14 Besides, it has been reported that the scaling
factor (c5) of titanium triply periodic minimal surface (Ti-4 V-6Al TPMS) LSs was found to be out of the range specified by
Gibson and Ashby with the values (1.31 and 1.39) for gyroid and diamond, respectively, which is in turn attributed to the
same reasons mentioned above regarding the shape and distribution of the lattice unit cells, as well as the residual stresses
and the irregularities in the struts due to manufacturing process.50 Also, it has been observed based on FEMs that the
exponent (n) can have a range of values within (0.8–2.6) for polymeric TPMS and BCC LSs.17 In related work, it was char-
acterized the state of deformation for photopolymer-resin TPMS LSs (P- and G-type) as a stretch- and bending-dominated
with n-values, 1.741 and 2.256, respectively.47 Likewise, it has also been found that the exponents (n) and (m) can have
a range of values (between 0.92 and 2.84), and (between 1.75 and 3.5), respectively, for different periodic metal LSs.4,18

In short, this means that n-values are not necessary to be 2 and 1 for bending- and stretch-dominated structures, respec-
tively. In essence, these coefficients are dependent on the topology of the unit cells and the direction of applying the load,
as well as the other factors associated with the manufacturing process.14,17,47,50

5.3 Structural parameters of the modified BCC LSs

Not only predicting the CMPs of modified BCC LSs is of such importance in the field of lattice design but also predicting the
associated structural parameters is of similar interest. Since any LS should have a unique combination of relatively high
strength and lightweight in its intrinsic feature in order to make the required design feasible and functional. Regarding
this combination, the former is related to the mechanical performance of the lattice while the latter is associated with the
structural parameters. For this reason, in the current section, empirical closed-form equations will be created to predict
the actual lattice volume, strut diameter, aspect ratio, and the overall lattice block volume, all with respect to the RD for
the modified BCC LSs in both sets.

5.3.1 Actual lattice volume of FSLMs and VSLMs

The actual lattice volumes of all models in both sets were measured precisely using ABAQUS diagnostic tool with con-
sidering the material distribution at strut joints. Then, they were correlated with the RD to generate the corresponding
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ABDULHADI et al. 17 of 26

F I G U R E 18 Empirical closed-form equations correlating actual lattice volume with RD of FSLMs for strut angles (A) less and (B)
higher than 70◦

F I G U R E 19 Empirical closed-form equations correlating actual lattice volume with RD of VSLMs for strut angles (A) less and (B)
higher than 70◦

empirical closed-form equations for both FSLMs and VSLMs as shown in Figures 18 and 19. Obviously, there is a linear
relationship between the actual lattice volume and RD for all models in both sets.

Also, it has been found that the actual lattice volumes of FSLMs increase with increasing the strut angles, only for strut
angles lower than 70◦ as shown in Figure 18A, and decrease with increasing the strut angles for strut angles higher than
70◦ as shown in Figure 18B. Whereas, the actual lattice volumes of the VSLMs increase monotonically with increasing the
struts angles for both strut angles lower and higher than 70◦ as shown in Figure 19A,B, respectively. This is due to the fact
that the strut length of VSLMs is not fixed. Indeed, it goes up with increasing the strut angles. In addition, it is worth noting
that the VSLMs of strut angles (40◦, 50◦, and 60◦) offer actual lattice volumes lower than their counterparts of FSLMs since
the strut lengths of the VSLMs corresponding to strut angles (40◦, 50◦, and 60◦) are lower than the corresponding ones of
FSLMs which have a fixed strut length equal to the one of the RM. However, the reverse occurs with the VSLMs of strut
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18 of 26 ABDULHADI et al.

F I G U R E 20 Validating the results of the empirical closed-form equations relating actual lattice volume with RD for (A) FSLMs and (B)
VSLMs with respect to those of ABAQUS diagnostic tool from the previous study and comparing them with those of Equation (4)

angles (80◦, 90◦, and 100◦). That means, since they have strut lengths higher than corresponding ones of the FSLMs, their
actual lattice volumes are expected to be higher than those of FSLMs. Furthermore, it has been demonstrated that these
equations work well in predicting accurately the actual lattice volumes of all lattice models in both sets by comparing their
results with the corresponding ones of the ABAQUS diagnostic tool from the previous study,44 that is, the constant and
variable weight models as shown in Figure 20. The good agreements between the results are attributed to considering the
influence of material distribution at strut junctions when creating the current empirical-closed form equations, thereby
making them more efficient and practical than the geometrical Equation (4), listed below. The latter is the same as other
geometrical equations, which were invoked in the literature by several researchers.26,27,56,57

Vlatt. = 4πR2 ×
√

X2 + Y2 + Y2 ×N3
, (4)

where R is the strut radius and N is the number of unit cells in a certain direction assuming that the entire LS has the
same number of unit cells in all directions. Besides, X, Y, and Z represent the unit cell edges or dimensions in the x, y, and
z directions, respectively. Significantly, the actual lattice volume determined by the above-mentioned equation was not
accurate enough comparing with the results of both the ABAQUS diagnostic tool and the empirical closed-form equations
developed in the current study as shown in Figure 20. This is due to not taking into account the material overlapping at
strut joints, resulting in a discrepancy in the results. Accordingly, the aforementioned equation or the other geometrical
equations introduced in the literature were limited to small RDs. In this regard, the values of the actual lattice volume
estimated by Equation (4) were higher than those of the ABAQUS diagnostic tool and the empirical closed-form equations
as can be noticed in Figure 20. The reason for that was attributed to overestimating the actual lattice volume at strut
junctions by four times, which in turn has a major impact on the corresponding values of RD and the associated values
of the RE and RS.

5.3.2 Strut radius of FSLMs and VSLMs

The data of strut radius were determined corresponding to all modified BCC LSs based on the parametric study con-
ducted in Section 3 by using ABAQUS diagnostic tool. Afterward, they were correlated with the values of RD to generate
empirical-closed form equations corresponding to each strut angle of the FSLMs and VSLMs as shown in Figures 21 and
22, respectively. Based on that, there is a power-function relationship between the strut radii and RDs with an exponent
value around 0.57 for all lattice models of different strut angles in both sets. In general, the trends of strut radius with
RD are similar to those of actual lattice volumes with RDs for both FSLMs and VSLMs. In addition, there is no need
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F I G U R E 21 Empirical closed-form equations correlating strut radius with RD of FSLMs for strut angles (A) less and (B) higher than 70◦

F I G U R E 22 Empirical closed-form equations correlating strut radius with RD of VSLMs for strut angles (A) less and (B) higher than 70◦

to validate the closed-form equations of the strut radius since all the geometries are related together. This means that if
the empirical closed-form equations required to estimate the actual lattice volumes with respect to RDs provide accurate
results, the corresponding ones of the strut radius will give precise results too.

Though, the results of the RM with different values of RD for both the empirical closed-form equations of the strut
radius and the geometrical Equation (5) were compared with those of the ABAQUS diagnostic tool to show the accuracy of
the former and the discrepancy of the latter as shown in Figure 23. Equation (5) given below is similar to other geometrical
equations presented in the literature by several researchers.26,27,56,57

RD = Vlatt.

Vsol.
= 4πR2 ×

√
X2 + Y2 + Z2

X × Y × Z
. (5)

As it can be seen from Figure 23, there is a good matching between the results of the empirical closed-form equations
relating strut radius with RD and the ABAQUS diagnostic tool. While, Equation (5) shows a discrepancy in the results,
which increases clearly with increasing the strut radius due to magnifying the error ensued from not considering prop-
erly the material overlapping at the strut joints when formulating the geometrical Equation (4) required to estimate
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F I G U R E 23 Comparing the results of the closed-form equations of the strut radius and the geometrical Equation (5) with those of
ABAQUS diagnostic tool corresponding to the RM with different values of the RD.

F I G U R E 24 Empirical closed-form equations correlating aspect ratio with RD of FSLMs for strut angles (A) less and (B) higher than 70◦

the actual lattice volume of the modified BCC LSs. In this regard, Equation (4) is considered an essential part of
Equation (5), so any error embedded in Equation (4) will have an effect on the results of Equation (5). To this end, the
empirical closed-form equations correlated with the strut radius with RD are really important in saving human time
and effort. Because using them makes it possible to reduce the long procedure of the parametric study discussed ear-
lier in Section 3, thereby enabling to determine directly and precisely the values of strut radius corresponding to any
proposed RD.

5.3.3 Aspect ratio of FSLMs and VSLMs

The aspect ratio (R/L) can be simply defined as a ratio of strut radius (R) to strut length (L). The latter is considered as a
diagonal length measured from one edge to another of a single BCC lattice unit cell. Based on ABAQUS diagnostic tool,
the strut lengths corresponding to each strut angle of all models in both sets were measured. Then, the strut radii were
divided by the measured strut lengths to create the corresponding data of aspect ratio, which were thereafter correlated
with RD to determine the empirical closed-form equations of the aspect ratio for both FSLMs and VSLMs as shown in
Figures 24 and 25.
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F I G U R E 25 Empirical closed-form equations correlating aspect ratio with RD of VSLMs for strut angles (A) less and (B) higher than 70◦

As it can be noticed, there is a power-function relationship between aspect ratio and RD with an exponent value
around 0.57 for both FSLMs and VSLMs similar to the one ensued from the correlations of strut radius with RD. Indeed,
this is reasonable since including the strut length in the empirical closed-form equations of strut radius will only have
an effect on the values of the scaling factors while the exponent values do not change. In addition, the general trends of
aspect ratio with strut angle variation for FSLMs are the same as those of the actual lattice volume and strut radius since
the strut length is kept fixed for all FSLMs. However, the trends of aspect ratio with strut angle variation for VSLMs are
different from those of actual lattice volume and strut radius. In other words, the actual lattice volume and strut radius
trends of VSLMs with strut angle variation increase monotonically with increasing the strut angles. Whereas the trends
of aspect ratio with strut angle variation increase with increasing the strut angles, strictly for strut angles lower than 70◦
as shown in Figure 25A and decrease with increasing the strut angles, only for strut angles higher than 70◦ as shown in
Figure 25B. This is ascribed to the fact that VSLMs have variant strut lengths which increase with increasing the strut
angles but do not vary through the layers of the same model corresponding to a specific strut angle. Significantly, even
though the trends of strut radius with strut angle variation for VSLMs are different from those of FSLMs, the outcome of
dividing the strut radius by the strut length makes the resultant trend of aspect ratio for VSLMs similar to FSLMs. This
means that the scaling factors and exponent values of the empirical closed-form equations relating aspect ratio with RD
for both VSLMs and FSLMs are identical. Up to this end, the aspect ratio of the empirical closed-form equations facilitates
determining the strut length after estimating the strut radius, which is an essential step in estimating the dimensions of
the lattice or overall lattice solid volume as it will be illustrated in the next section.

5.3.4 Overall lattice solid volume of FSLMs and VSLMs

The overall lattice solid volume depends on the dimensions of a single unit cell (X, Y, and Z), which are related to the strut
length (L) and angle (θ). After estimating the strut length from the previous section, these dimensions can be determined
using Equations (6) and (7).

X = Z = 0.7071L

2

√(
1 +

(
tan

(
θ
2

))2
) , (6)

Y =
L × tan

(
θ
2

)

2

√(
1 +

(
tan

(
θ
2

))2
) . (7)
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22 of 26 ABDULHADI et al.

Therefore, the overall volume of a single unit cell and entire lattice can be estimated using Equation (8).

Vsol. = X × Y × Z ×N3
, (8)

where N is the number of unit cells, assuming that the entire lattice has a cubic architecture or the same number of unit
cells in all directions. As a backward step, the overall lattice solid volume will be used in estimating the RD.

5.4 Generalization of the empirical closed-form equations

It is important to mention that all the empirical closed-form equations presented here to predict both the CMPs and GPs
were developed based on 3× 3× 3 lattice cell tessellation for the purpose of reducing the computational time as mentioned
earlier in Section 4.5. That number of unit cells was selected after a preliminary investigation of the lattice cell tessellation
effect on the elastic–plastic compressive mechanical behavior of the lattice (engineering stress–strain curve). Significantly,
it has been found that a single unit cell offers higher CMPs, which decrease with increasing the number of unit cells.
Besides, it has been observed that the general trends of the lattice mechanical response under compressive loading, that
is, the resultant stress–strain curves, approached each other for lattice cell tessellations (3× 3× 3, 4× 4× 4, and 5× 5× 5)
due to reducing the effect of boundaries. Based on that, it has been deduced that the empirical-closed form equations
developed for predicting the values of the elastic modulus and yield stress of 3× 3× 3 lattice cell arrangements can be
employed to predict the same values, but for a higher number of unit cells including small error percentages. In addition,
the effect of lattice cell tessellation was embedded in the empirical closed-form equations required to predict the actual
volume occupied by the lattice and its dimensions to make them more general purpose. While there is no need to include
that effect in the corresponding ones of the strut radius and aspect ratio since both are independent of the number of unit
cells. In this regard, it is worthwhile mentioning that the empirical closed-form equations required to predict the GPs
after including the effect of lattice cell tessellation are applicable for any unit cell number, that is, higher than or equal to
1× 1× 1. In essence, corresponding to given values of RD, strut angle, and whether the type of modified BCC LSs is FSLM
or VSLM. First, the elastic modulus, yield stress, and the associated mechanical properties can be predicted properly for
unit cell numbers higher than or equal 3× 3× 3 as explained in Figure 26.

F I G U R E 26 The logical sequence of the prediction process, starting with GPs and ending with CEMPs from top to bottom
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Second, the GPs comprising the actual lattice volume, strut radius, aspect ratio, strut length, and the overall solid
volume of the lattice or its dimensions can also be predicted well for any unit cell number as shown in Figure 26.
To this end, it is clear to notice that there is a logical sequence in the prediction process as illustrated in Figure 26.
It is starting from the top to bottom with the GPs (1) since the ensued strut length (L) is important in predicting the
GPs (2). Then, the height (H) and the base area of the lattice (A) resultant from GP (2) are essential in predicting
the CMPs.

6 CONCLUSION

In the current research, generalized empirical closed-form equations were developed using scaling laws and FEMs in
order to predict the CMPs and GPs of the modified BCC LSs based on strut length and orientation, including the effect of
lattice cell tessellation and material distribution at strut joints. To achieve that goal, 117 models were built and analyzed
with ABAQUS FE software. These models can be categorized based on the strut length as FSLMS and VSLMs. Each one
has 63 lattice models distributed on seven strut angles (7), 40◦ to 100◦ with the step of 10◦, and nine RDs (9), 0.14 to 0.3
with the step of 0.02, corresponding to each strut angle. As a design constraint applied to the FSLMs, the strut length is
kept fixed through the layers of a certain model and fixed with strut angle variation from one model to another. Whereas
in VSLMs, the strut length is varied with strut angle variation from one model to another. In addition, there are nine
models corresponding to 70◦ strut angle duplicated in both sets called as RMs. For this reason, the total number of mod-
els adopted in this study is 117 models, not 126. After simulating the elastic–plastic compressive mechanical behavior of
all lattice models and measuring their structural parameters, the data extracted from ABAQUS were fitted with Gibson
and Ashby’s scaling laws and correlated with RD to develop the empirical closed-form equations required to predict both
the CMPs and the GPs.

It has been observed that the empirical closed-form equations can predict very well the CMPs of modified BCC LSs
for 3× 3× 3 unit cells. Also, it has been shown that these equations are still capable of predicting the CMPs for a higher
number of unit cells with small error rates. This is done based on an investigation for the effect of the lattice cell tessellation
on the elastic–plastic compressive mechanical performance of the modified BCC LSs. With including the number of unit
cells as part of these equations, prediction of the GPs at a good level of accuracy has been demonstrated to be valid for any
lattice cell repetitions using the empirical-closed form equations. Furthermore, it has been found that Gibson and Ashby’s
coefficients as well as the factors of aspect ratios are identical for both FSLMs and VSLMs. For this reason, the VSLMs of
strut angles (40◦, 50◦, and 60◦) are preferred over their counterparts of the FSLMS corresponding to the same values of RD
since the actual lattice volumes or weight of the VSLMs are smaller or lighter than the corresponding ones of the FSLMs.
However, the reverse occurs with strut angles higher than 70◦ where VSLMs are heavier than FSLMs, thereby making
the latter preferable. Also, it has been noticed that the elastic modulus and yield stress increase with increasing the strut
angles due to the tendency of the deformation mechanism to move toward stretch-dominated instead of bending with
increasing the strut angles. The conclusion of this research can be summarized in two main points. First, the two lattice
design sets with a variety of strut angles and RDs play a major role in space-based applications where the optimization
of lattice volume or weight is of high significance. Second, the generalized empirical-closed form equations provide an
efficient and straight-forward technique through which the CMPs and GPs can be varied or controlled by changing the RD.
Indeed, this is a good way for giving the lattice designers a thorough insight into the elastic–plastic mechanical properties
and structural parameters of a broader range of BCC LSs before starting the fabrication process. By that means, it will be
possible to save more computational time, human efforts, and expenses required to conduct finite element simulation or
experimental work.

To this end, it might be useful to mention that the current research focuses more on the computational tech-
niques than the experimental work. Indeed, the manufacturing parameters (for example, layer thickness, in-fill density,
building orientation) have influences on the mechanical characteristics of lattices.58,59 In addition, the printed lat-
tices are different from the ones that are designed and modeled using software. It usually includes some drawbacks,
for instance residual stresses, struts’ corrugations, high stress concentration at the strut nodes, and surface rough-
ness, which in turn affect the lattice mechanics.50,60,61 All these parameters and drawbacks were not considered in
the current research. However, developing finite element models that could cover the manufacturing parameters and
capture the real printed feature of lattices as well as could include gradient geometries will be a good topic for
future study.
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