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A B S T R A C T

For microgrids with limited generation capacity, allocating a daily
equal energy budget to each household is one way of ensuring that
all households are provided with sufficient energy to be used in a
day without compromising the daily operation of the power system.
With the same daily energy quota, households are given freedom on
how to spend energy according to their preferences and priorities.
Issues in this type of energy management scheme include 1) power
outage in households that use up all their energy allowance before
the scheduled replenishment and 2) unused energy allocation turned
to waste from households that are unable to consume the energy
allowance. Energy waste in terms of unused energy allocation of some
households can be beneficial to other households. The unused energy
can be distributed to other households that experience a power outage
and need more energy than the allocated. One approach to solving the
above issues is to frame the problem as an optimisation problem that
aims to minimise the energy wastage and maximise energy availability.

This research proposes an optimal energy allocation for households
connected to generation-constrained microgrids. The proposed op-
timal energy allocation scheme has two main parts. First, the ideal
energy utilisation of each household is predicted using a multi-layer
perceptron (MLP); secondly, the optimal energy allocations for the
households based on their predicted utilisations are derived using
Karush-Kuhn-Tucker (KKT) optimality conditions. From the applica-
tion of the KKT conditions, a methodology for optimal energy alloca-
tion that is adaptive to each household is proposed. The approach is
optimal as it minimises the energy wastage/deficit while maximising
energy availability to households, and adaptive because it uses the
household’s historical data and demographic information.

To support the development of the MLP-based forecast model, this
thesis implemented an energy monitoring system called Philippines
Micro-Off-Grids (PMOG) system to gather the actual historical energy
usage data in representative households from select villages in Cebu,
Philippines which have microgrids with limited generation capacity.
In the Philippines, there are 40 million people without access to elec-
tricity [Och13] and microgrids are used to provide electricity access
to villages that are not accessible by the traditional grid. There are
three villages selected with two of them being off-grid communities
and one being grid-tied community. The energy data from PMOG
system serves as the baseline data for the development of the forecast
model and the optimal allocation scheme. A survey is also conducted
to gather the household demographic information that affects their
daily energy consumption.

This thesis presents an experimental method to determine the best
combination of hidden layers and neurons of the neural network along
with the input delay window in shaping the input variables that allows

iii
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the forecast model to generate the lowest possible root mean squared
error (RMSE). Since the optimal energy allocation is dependent on the
accuracy of MLP-based load forecast model, the right combination of
those design parameters of the neural network together with the delay
window used in shaping the inputs is crucial. These parameters are
considered as the main factors affecting the performance of the neural
network in forecasting.

Experimental results show that as the households’ demographic
information is included as input variables secondary to the historical
energy data and weather information, the performance of the neural
network improves significantly. The RMSE decreases from 92 W to 81

W, which represents a 12 % decrease for a neural network with three
hidden layers, 20 neurons and seven delays.

Given the limited generation capacity of the microgrid, the objective
is to minimise the squared difference between the ideal utilisation of
the household (which is estimated by the MLP-based forecast model)
and the (calculated) allocated energy. Results from the data from
the select villages show an aggregated unused or deficit energy per
household (for a day) from the existing equal allocation can be reduced
from 0.24 kWh to 0.11 kWh using the proposed dynamic/adaptive
allocation, which is about 54 % reduction in unused or deficit energy.
For 288 days, a total of 44 % reduction of energy wastage is achieved
with the proposed methodology when compared with equal allocation,
that is 112 kWh using equal energy allocation, and 62 kWh using the
proposed optimal energy allocation.

In summary, the proposed approach of allocating the daily energy
allowance of the household which is a hybrid approach using an MLP-
based forecast model and KKT optimality conditions minimises the
unused energy and enables households to maximise their energy usage
without compromising the minimum energy requirement of each
household in villages powered by microgrids with limited generation
capacity. By incorporating household profiles as inputs to the MLP-
based forecast model, prediction accuracy was improved by 12% in
terms of RMSE. From my experiments, employing MLP-based forecast
model ensures better forecasting performance than other techniques
such as Autoregressive Integrated Moving Average (ARIMA), Radial
Basis Function Network (RBFN) and Gaussian Process Regression
(GPR). The overall average accuracy for the MLP-based forecast model
is 91% with the highest accuracy of 93% for House 5 predictions, and
the lowest is 91% for House 3.

This approach is expected to work on households with similar
profiles connected to any off-grid power systems. Optimising the daily
energy quota will enable the village to maximise the usage of the
available energy with minimum wastage in terms of unused energy
quota. This approach will also lead the village to have a better payment
scheme based on their actual usage of electricity.
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1
I N T R O D U C T I O N

Electricity access is one of the problems faced by many developing
countries, such as the Philippines. According to the World Bank, there
are 1.2 billion people in the world without access to electricity, and
most of them are in Asia [DW17]. Areas with no or limited access to
electricity are mostly located in rural or remote regions of the countries.
In the Philippines, there are approximately 2.3 million households that
do not have access to electricity [IRE17]. While conventional electricity
providers aim to connect every village and community in the country,
they can be restricted by accessibility and geographical locations for
some island communities and remote villages. Remote areas where
households are dispersed and have meagre income are often less
prioritised or left with no access to electricity for years. Microgrid
power systems have been utilised to address this issue [IRE17; Int14].

Microgrid power systems can provide electrification to villages or
communities where traditional grids are not economically feasible.
Microgrid power systems are small-scale versions of a traditional grid
which can operate in both grid-tied (on-grid systems) or stand-alone
(off-grid systems) modes of operation. Most microgrid power systems
use renewable energy resources available locally to the community
such as water for mini-hydropower systems, wind for wind turbines,
solar energy for solar power systems and biomass or agricultural
wastes for biomass power plants [IRE17; HA12; Ene12]. Back-up power
sources such as batteries and diesel generators are used in case of
system failures [Int14].

1.1 motivation of the research

Access to electricity for remote areas in The Philippines has been a
great challenge. Remote areas, outside the reach of the traditional
grid providers, opt to have an off-grid power system to provide their
electricity needs [Ene12; RS16]. In rural communities and villages,
off-grid power systems are designed and implemented in order to
accommodate the basic electricity needs of each household. In a typical
Filipino household, basic electricity needs consist of a television, an
electric fan or ceiling fan, lighting bulbs, and a radio [Phi13].

While off-grid power systems are expected to provide the basic elec-
tricity needs of each household all the time, they are also expected to

1
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do so without having to restrict the amount of energy that can be used
by each household [Uni12]. However, most off-grid power systems are
operating with restrictions such as load shedding and load shifting,
time-based operation and daily energy quota in providing electricity to
the consumers because of its limited generation capacity [Ene12]. Load
shedding allows the power system to offload some of its load when
the threshold for safe operation is breached [Mar+16]. This approach is
used to save the power system from system failure due to overloading.
The consumers have no control over their electricity access. The power
system shed off parts of its distribution whenever necessary [Xu+16].
Load shifting is to defer the operation time of the load when demand
is higher than the available energy at the time. Shifting is done based
on load priorities [EAR20]. The implementation of load shedding or
load shifting as part of the energy management system of microgrids
is too costly. This makes it impractical to implement in off-grid power
systems. Time-based operation is used when the power system can not
operate for 24 hours daily due to technical issues [ARP16]. To save the
power system from breakdown, a time-based operation is employed.
The system will operate in a specific period in a day. Only at that time,
customers will have access to electricity [Mar+13].

Daily energy quota is one of the common energy management
scheme employed in off-grid microgrids with limited generation ca-
pacity [Sun+16]. Dwellings are given a daily energy quota to be used
in a day [ZXT12]. This scheme is employed to ensure that each house-
hold will have sufficient energy for their basic electricity needs. The
advantage of this approach is that the households control their en-
ergy usage, but they can not use any more than to what is being
provided. Restrictions on household appliances are applied to main-
tain the power systems operation and prevent systems failure due to
overloading.

For example, consider the Red Cross village located in Daanban-
tayan, Cebu, Philippines, the village is powered by community-based
off-grid solar power systems with an aggregate generation capacity
of 119 kW, serve 128 households including a community livelihood
centre, and a day-care centre [Han15]. The solar power systems of the
village are not capable of supplying the estimated peak power demand
of 2 kW for each household without energy usage restrictions to the
households and without compromising the operation of the whole
off-grid power system. These peak demands are estimated to occur
at different times according to household profile. Hence, the energy
management system of the solar power systems was then designed to
allocate an everyday power allowance to each household equivalent
to 0.8 kWh for 24-hour use at their own times, in such a way that the
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total generation capacity is not exceeded. When the allocated energy
is surpassed, the system would automatically cut off the connection
of that household from the solar power system, and the energy quota
would be restored the subsequent day. The solar power system was
designed by Technician without Borders, a French non-government
organisation, that helps install and implements the solar power sys-
tems in the village [Han15]. Restrictions on the power consumption
of each household are imposed to cater to the needs of the whole
community while ensuring a steady operation of the off-grid power
system. Implementing such restrictions with fixed monthly fees is
necessary to provide the basic electricity services to each household.

With an equal amount of energy allocated daily and considering the
limited generation capacity of the off-grid power system, two main
drawbacks can be highlighted:

1.) Some households use up the allocated daily quota and expe-
rience power outage but may require more energy than what is
currently provided to them.

2.) Some households do not use all the allocated energy daily
and pay the same fixed monthly tariffs as the households that
use all their allocated energy.

The two issues above are based on the assumption that all house-
holds have equal energy requirements and that the basic electricity
needs of the households do not change. This assumption is flawed
since the household’s electricity needs can vary through time. These
variations depend on several factors, such as the household’s size,
total monthly income, household’s head occupation, household’s head
education, and the number of children who are attending school
and staying at home. Furthermore, the fact that some households
experience power outage almost every day may indicate that those
households require more energy than what is allocated and those
households that do not use up all the energy allocation daily might
require less energy than the daily quota. All household is required to
pay a fixed amount of monthly fees even though their daily energy al-
location is not fully utilised. Paying a fixed amount for unused energy
is unfair.

Increasing the generation capacity can resolve the issues with the
limited energy allocation to each household. However, this approach
is only appropriate if the community has the necessary finances to pay
the cost of increasing the capacity of the off-grid power systems. Since
increasing the generation capacity is not feasible without the necessary
finances, one way of resolving the above drawbacks is to adaptively
allocate energy to different households based on their expected energy
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usage so that billing can be based on the actual amount of energy
used. The adaptive energy allocation scheme considers not only the
basic loads of the households but as well as the individual household
profiles. This way, each household would have the freedom to control
how they spend their energy without worrying about a shortage, or
not using all their energy allocation. The unused allocated energy
is considered to be a waste that could have been useful to other
households that needs more energy.

All conditions mentioned above are similar to any households in
remote areas connected to microgrids which the generation capacity
is not designed with the demand of the households but with the
available resources for the implementation power systems. In villages
such as the Red Cross Village which are built for people who suffers
natural calamities, the issues surrounding electricity access are similar
[IRE17].

Hence, this research proposes a new method of allocating the daily
energy allowance of household in off-grid villages such as the Red
Cross village in Daanbantayan, Cebu. Specifically, this research investi-
gates a way of optimising the allocation of energy proportional to the
consumption of each household with the following considerations:

1.) Case 1: If the energy allocation is more than the basic needs
for a given household, they pay for something they do not use.
Therefore, they want an allocation commensurate with their
usage.

2.) Case 2: If the allocation is less than the desired utilisation for a
given household, they would be dissatisfied with the amount of
energy they have, as they would experience a shortage every day.
Therefore, they want to have an energy allocation that is within
their usage.

3.) The allocations in cases 1 and 2 are not guaranteed to be same.

4.) Energy allocation is constrained within the limited generation
capacity of the off-grid power system.

1.2 research aim

Given that there are remote communities that are powered by a limited
supply of electricity from an off-grid power system, with no capability
of increasing the generation capacity of the power system, this research
aims to provide a solution in maximising the energy usage of the
available energy from limited supply and satisfy the basic electricity
needs of the households.
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To achieve this aim, an optimised energy allocation is proposed
based on the forecasted energy usage of the households with con-
straints from the limited generation capacity of the microgrid, and
the minimum energy threshold for each household. A Multilayer per-
ceptron (MLP)-based load forecast model is developed that uses the
individual household profile along with the historical electricity usage
and temperature as its inputs to predict the energy that is likely to
be consumed by the household a day-ahead. The proposed optimal
energy allocation is limited to a dataset gathered from a village in
Daanbantayan, Cebu, Philippines. Amongst the forecast models, the
most widely used forecasting model is the Artificial Neural Network
(ANN) [BGK15; Dud16; Moo+19]. One of the advantages of neural
networks is their ability to generate a general map between inputs
and outputs and does not require a priori knowledge that is needed
in conventional statistical and econometric modelling. When using a
neural network, the input data does not need to satisfy assumptions
that are required in other statistical methods. Neural network-based
forecast model is known for being robust in handling real-world data.

Load forecasting is essential for efficient energy management op-
eration. When the generation capacity of the system is not capable
of providing the desired energy of the households, forecasting the
energy consumption is important to ensure maximum usage of the
available energy and also to provide the basic electricity needs of the
households whilst maintaining a balanced operation of the power
systems.

1.3 research questions

To achieve the above aim in the context of microgrid off-grid power
systems, this study investigates the following research questions:

1. Can the household’s daily energy consumption be forecast with
reasonable accuracy? For this research, optimising the daily en-
ergy allowance of each household requires a forecast model that
can estimate the next-day energy consumption of the household
to minimise the energy wastage in terms of unused/deficit en-
ergy. When a household is using a lamp with a 10 W power
rating, this lamp consumes 100 Wh energy for ten hours of use.
When another household uses an electric fan with a 60 W power
rating, this appliance will consume 120 Wh for two hours of
use. The forecast model should predict as close as the expected
usage of energy of each household to provide the households
energy needs as accurate as possible. Since the performance of
the load forecast model affects in optimising the daily energy al-
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location of each household, a reasonable accuracy in forecasting
is desired. The goal is to determine the combinations of network
parameters such as the hidden layer HL, and neurons N and
delay window D for historical data points that would produce
the least root-mean-squared error (RMSE). The aim is to have
RMSE that is equal or less than 120 Wh, a 15% tolerance from
the current daily energy allocation of the selected village. The
tolerance is derived as the minimum allowable error in daily
energy allocation of the household. According to the work of
Hsiao [Hsi15] and Moriano et al. [Mor+16], 20% or less is an
acceptable error difference in load forecasting in terms of RMSE
or 10% or less in terms of mean-absolute-per cent error (MAPE)
[Mor+16]. Answers to this research question are presented in
Chapter 5.

2. Can knowledge of consumer profiles aid in optimal and adaptive
energy allocation?

Economic factors such as type of consumer, price of electric-
ity, and demographic information of the households such as
household income and the number of occupancies, are major
factors affecting energy consumption [Hsi15; Che17; Har+15].
The performance of the load forecast model can be improved by
incorporating consumer profiles as inputs. An MLP-based fore-
cast model is developed with consumer profiles as inputs along
with the historical energy usage, and temperature. Integrating
the consumer profiles as inputs in the forecast model makes it
possible to predict individually the daily energy consumption
of the households using an adaptive model for the whole com-
munity. Chapter 6 presents how the consumer profiles to aid in
achieving an optimal and adaptive energy allocation.

3. Can the energy allocation be optimised to improve energy effi-
ciency under the limited generation capacity?

Energy efficiency can be improved by providing an optimal and
adaptive energy allocation to each household through forecast-
ing using ANN-based forecast model and calculating the optimal
daily energy allocation using Karush-Kuhn-Tucker (KKT) con-
ditions given the limited generation capacity of the off-grid
power system while ensuring the basic electricity needs of the
households. KKT approach is used as the constraints of the opti-
misation problem meets the requirements of the KKT conditions.
In this research, energy efficiency is defined as the adaptive en-
ergy allocation to reduce energy wastage by households that use
less energy, or to provide more energy to those households that
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have higher needs. Energy wastage refers to the unused energy
allocation of some households that could be redistributed to
other households that needs more energy than to what is being
provided.

This research aims to allocate each household some energy that
is as close as possible to their ideal utilisation. This measure of
closeness can be defined by the Euclidean distance (a measure
of how far the proposed energy allocation for the household
deviates from their actual energy consumption). Consequently,
for all households, the aim is to minimise the summation of
all Euclidean distances, or equivalently, the squared Euclidean
distances, under the constraint that the sum of all allocations
do not exceed the total generation capacity of the solar system
and each allocation is not less than the energy threshold for all
households.

Section 6.2 of Chapter 5 answers this question by comparing
the difference between optimal energy allocation and the ideal
energy usage as predicted by ANN-based forecast model and the
difference between fixed energy allocation and the ideal usage.
With the proposed optimal energy allocation, the difference
between the optimal energy allocation and the ideal usage of
energy is minimised. With optimal allocation, the ideal electricity
needs of each household are met, and the usage of the available
energy generated by the off-grid system is maximised.

1.4 structure of the thesis

This chapter describes the research questions and aim of this research
work and presents an overview on the proposed optimal energy allo-
cation to each household that would allow dynamic energy allocations
per day based on the forecasted energy consumption.

The rest of the thesis, as shown in Figure 1.1, is structured as fol-
lows. Chapter 2 presents the related literature on load forecasting
techniques such as Artificial Neural Networks (ANNs), Gaussian Pro-
cess Regression (GPR) and Autoregressive Integrated Moving Average
(ARIMA) in time series. Approaches for optimising the energy alloca-
tion in remote communities with off-grid power systems to maximise
the usage of generated electricity are also discussed. The gaps in the
existing literature on energy allocation are identified and explained in
the context of the off-grid communities.

[ October 13, 2020 at 14:07 – version 2.0 ]



8 introduction

Figure 1.1: Structure of the thesis
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Chapter 3 presents the methods used in this research from data
gathering to calculating the optimal energy allocation of the house-
holds.

Chapter 4 details the design and the deployment of an energy
monitoring system which is referred to as Philippine Micro-Off-Grid
(PMOG) system. PMOG systems are used to gather the electricity
consumption data of the selected households. In this chapter, the
survey conducted to collect data about the off-grid communities is also
discussed, as well as the design of the survey. The survey questionnaire
was evaluated by conducting a pre-survey to check the reliability of the
questionnaire. PMOG systems are evaluated by allowing the system to
run for almost 2 months before the actual installation in the selected
households.

Chapter 5 describes the load prediction model for each household
based on the historical electricity usage and the profile of the indi-
vidual household. In this chapter, the modelling of the MLP-based
forecast model and its experimental results are presented. The per-
formance of the forecast model is evaluated in terms of RMSE and
MAPE. The results were also compared to the performance of other
forecasting techniques such as ARIMA, RBFN, and GPR.

Chapter 6 presents the mathematical solution of the optimisation
problem of the proposed optimal energy allocation based on the fore-
casted energy consumption of each household, as discussed in chapter
5. The methodology for this allocation is presented in this chapter. The
results were evaluated by comparing to the other energy allocation
scheme as presented in Section 6.2. Analysis of Variance (ANOVA)
is used to determine if the means between the proposed optimal en-
ergy allocation and the other two techniques (equal allocation and
allocation by ratio and proportion) are statistically significant.

Chapter 7 then concludes the work of the thesis and discusses
possible directions for future work.
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2
L I T E R AT U R E R E V I E W

This chapter presents the theoretical background for load forecasting
and the existing related literature for this work. Energy management
systems for microgrids, energy allocation, and load forecasting are
the focus of this chapter. Energy allocation is one of the many ways
of addressing the limited generation capacity of the microgrids in
remote communities. This chapter discusses the current works on
different techniques for energy allocation and presents applications
of different load forecasting techniques. The chapter also discusses
the considerations in selecting the forecasting technique used in this
research.

This chapter presents the gap in the literature that this research
work is trying to address, and the existing literature on forecasting
techniques and optimisation applied in energy management systems
that made a good change in improving the performance of a power
system.

This chapter discusses the following major topics that are relevant
to the work of this thesis:

• Microgrids and its energy management systems

• Challenges in remote communities with generation-constraint
microgrids

• Energy allocation schemes

• Load forecasting techniques

Off-grid microgrid systems with limited generation capacity distribute
the available energy to the consumers through energy management
schemes such as equal energy allocation daily, load shedding, load
shifting, or time-based operation [IRE17]. With limited generation
capacity, off-grid microgrids may not be able to supply the demand
of the consumers [Ene12]. For most of the off-grid power systems,
equal daily energy allocation is practical and the simplest to imple-
ment among others [Ene12]. However, this approach does not ensure
maximum utilisation of the available energy, and with limited daily
energy quota or allocation, households experience power outage be-
fore replenishment of the quota [Pal16]. On the other hand, some
households do not use all the energy given to them daily but pay the
same amount as other houses that use all of their allocated energy
daily [Pal16]. These issues motivate this research.

11
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2.1 microgrid power systems

A microgrid consists of generation units, such as wind turbines, solar
panels, mini-hydro plants, diesel generators, and electricity generators
that use biomass, power lines for distribution and transmission, power
control systems, and power loads [ZB16]. Microgrids are a compact
type of electrical power infrastructure designed to have better effi-
ciency, reliability, and integration of renewable energy sources than
the traditional power grid[Kua+16]. A microgrid has two modes of
operation: grid-connected or online and islanded or off-line (referred
to as off-grid power systems) [KI06; HD14]. When operating in grid-
connected mode, the microgrid provides support to the main grid by
drawing power from the localised source, and provide the energy de-
mand of the consumers whenever necessary. The main grid provides
the deficit power in the microgrid when needed [HB12]. When a crisis
occurs, and the main grid operation is interrupted, microgrids supply
the power temporarily and operate in isolated mode to maintain the
operation of the grid [Zhe+11]. In this operation, the microgrid must
operate separately from the main grid and maintain the integrity of
the process. The process refers to as the off-line mode of operation of
the microgrid [Xu+17]. In an off-line mode of operation, the generated
power must be in balance with the demand of the local loads [Oli+14].
Microgrids are typically implemented in areas where a conventional
grid is not possible. These areas are usually in remote places far from
the urban setting. Although, a microgrid is used as a backup power
source to the traditional grid when power crisis occurs, providing elec-
tricity to remote areas with renewable energy resources gains more
impact than as being an alternative source of energy for the main grid
[IRE17].

Microgrids operate permanently in off-line or stand-alone mode
when implemented in the remote areas where the conventional grid
is not feasible because of economic or technical constraints. These
microgrids are commonly referred to as the off-grid power systems
that usually use renewable energy (RE) resources, such as water (mini-
hydropower), sun (solar power), wind (wind energy), biomass and
other RE resources available locally. Localised microgrids can lead to
tremendous opportunities to increase power system efficiency, sustain-
ability, and reliability [ZDM12].

For off-grid power systems, maintaining a balanced operation can
be difficult, especially when the generation capacity of the system is
limited [AR20]. Power systems are required to operate with a reliable
operation between the generation and demand side. Power systems
are in balanced operation when the generation side generates sufficient
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energy for the demand of the consumers [MSS20]. Energy management
system (EMS) controls the operation of the power systems. The EMS
monitors the status of each generation plant, and each consumer
connected to the plant. A good EMS can determine the next load or
energy consumption of each consumer and generates energy according
to the demand [Kip+20].

For an off-grid power system with a limited generation capacity,
to meet the demand of the consumers while maintaining proper
operation of the power system, energy allocation approaches are
deployed such as load shedding [SSP11; Gu+14; Moh+18], daily energy
allocation (quota based) [ZXT12; LL18] and time-based operation
[Hu+17; Shu+19; Xu17]. Section 2.4 discuss the details about each
approach.

Some energy providers employed a smart EMS to control the op-
eration of the system to avoid unnecessary operational cost due to
excessive generation of energy over what is demanded by the con-
sumers [LC16].

This research proposes a new scheme of allocating the daily energy
allowance of each household connected to the off-grid power systems
with a limited generation capacity to avoid the above problems.

2.1.1 Benefits and challenges of off-grid power systems

There are several benefits of having off-grid power systems than a
conventional grid. As a localised grid, implementation of an off-grid
power system is cheaper than a traditional grid as off-grid power
system uses renewable energy resources that are available locally like
water for a hydropower plant, and sun for the solar plant [IRE18].
Other implementation uses biomass such as rice hay and animal
wastes in areas where biomass are abundant. Furthermore, localisation
of microgrid can provide jobs to the community [Kir+09].

According to the study of Meng et al. [Men15a], the following are
the benefits of having microgrids

1) better power quality and reliability in case of a power outage;

2) economic advantages for microgrids that uses renewable energy
(RE) resources, such as the wind and solar energy which have
low carbon emission;

3) minimum cost for transmission infrastructure (for localised RE)

These advantages can be classified as economic, environmental, and
technical benefits [Rol11].

For remote areas, it is assumed that having access to electricity will
lead to an increase in the economic condition of the users [IRE18].
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The absence of a reliable energy source or electricity can hinder their
economic progress [IRE17]. Access to energy or electricity can give to
the people in remote communities a way to meet their basic needs such
as home lighting [Int14; IRE17]. Moreover, if the generated power will
be used by the farmers for their farm activities and small businesses
in the local community to be more productive, economic progress is
expected [Man+16].

The challenges include technology transfer to the community, gen-
eration capacity, and maintenance of the plant [Sap+18]. Maintaining
a reliable operation of the microgrid can be a challenge when there is
no available engineer in the community to do the job [BK07; FHC16].
Thus, technical transfer to local people is essential for the sustainability
of the power system [Per+12; FHC16]. Issues such as stability of the
frequency and voltages of the distribution network can also arise, es-
pecially in the islanded mode of operation. This issue is addressed by
using a load shedding technique in managing the generation and the
demand side [Sap+18]. The work of Schnitzer et al. presented several
methods and recommendations based on actual practices employed in
off-grid communities for sustaining the operation of off-grid power
systems [Sch+14]. According to their study, the sustainability of the
off-grid systems implemented in the remote areas can be achieved
with good business model and cooperation between the provider,
consumer and government that subsidised part of the cost of imple-
mentation and operation. This was also highlighted by the work of
Frame et al. [Fra+11]. They argue that for the off-grid power system to
be sustainable, the community needs to be involved in the design and
implementation stages. The community must be educated on how to
maintain the power systems on their own. Several case studies were
presented to assessed their chosen methods. This comprises their pro-
posed community approach for the sustainability of the power system.
Aside from community involvement, another factor that is worthy
of attention is the chosen technology to be implemented. Aberilla et
al. [Abe+20] emphasised the importance of suitable technology to be
installed in the community. Through a series of simulations using
Homer, they found out that the house level PV power system combine
with wind turbines at the community level with back up batteries is
most likely to be a sustainable configuration for off-grid communities.
Homer is a software that allows the design of power systems with
vast choices of components with real-life characteristics [Abe+20].

The challenges on the implementation of the microgrid systems
occur in the off-grid power system in remote areas. According to the
study of Schafer et al. [SKN11], these are
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1. Installed off-grid power system technology is not suitable to the
state of the locality and does not satisfy the user’s requirements.

2. Reliability of the power systems is not assured with issues on
the implementation.

3. Design and management of the power system are not built with
economical financing schemes for the local people.

Other studies such as Ahlborg and Sjostedt [AS15], Miller et al.
[Mil+15], and Ulsrud et al. [Uls+15], have mentioned that socio-
technical design aspect of the project must be considered to have
successful project implementations. Long-term sustainability can be
achieved when this design aspect of the project is examined at the
planning stage [IRE18; Uls+15].

2.2 energy management system (ems)

An energy management system (EMS) is considered to be an essential
unit of power systems [ZDM12]. EMS is the control unit of the off-grid
systems designed to ensure reliable operations 2.1. EMS ensures the
balanced operation between the generation units and the demand side
by synchronising the operation schedule of the distributed generation
(DG) sources while managing the efficient use of the power loads
[ZDM12; Shi+15]. EMS has two distinct approaches in managing and
controlling the power system operations 2.2: one is called centralised,
and the other is decentralised [Oli+14]. In centralised control and
management, the system operates based on the information from a
controller that determines the actions taken by all units at a time. This
approach entails extensive communications between the controller
and the controlled units to ensure a balanced operation [Shi+15]. In a
decentralised approach, a controller is used to control each unit. This
approach requires a local controller that process information from
the local unit only and is isolated from other controllers [Gu+14]. A
dynamic consensus algorithm-based distributed hierarchical control
method ensures an accurate current sharing and voltage restoration
for microgrids with distributed generation sources [Men+15]. With
consensus algorithm, the DG units share information and communi-
cate in the network. For off-grid microgrids, the EMS can have either
of the two controls depending on the available renewable resources.

In planning an off-grid power system, all significant parameters
such as the load capacity, the generation capacity, the expected load,
the storage size, the distribution networks, and the EMS, must be taken
into consideration to secure successful project implementations [SW12;
DM13]. Projection of power load is crucial for a thorough power
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Figure 2.1: Energy management system (EMS) [GG15].
Legend: LC - Local controller

system design. The power load must be appropriately established as
well as the projected level of daily energy consumption and the factors
that influence the variations of this level through time [KK15].

2.3 significance of optimising the usage of the electric-
ity in off-grid communities

In optimising the distributed generation system, the general objective
is to find the timetable and the commitment level for each generator
and load to minimise the aggregated operation costs and maximise
the power usage [ZDM12]. Aggregated operation cost includes the
local generation resources and the cost of energy obtained from the
power market for grid-tied microgrids. Several studies, such as Meng
et al., [Men15b], Zelazo et al. [ZDM12], Shi et al. [Shi+15], and Meng
and Zhao et al. [Men15a] conducts experiments and simulation on
how to optimise the operation of the EMS.

Other problems for optimisation of EMS is the scheduling of the
local sources to generate energy. To optimise the generation cost,
Zakariazadeh et al. [ZJS14] adopts demand response programs that
enable them to use the energy resources using the stochastic method
efficiently. Various types of demand response were considered and
participated in the program that represents consumers from resi-
dential, commercial and industrial zones. Meanwhile, the work of
Rigo-Mariani et al. [RM+14] proves that having optimal scheduling for
the next day minimises the generation cost. The confirmation comes
from the results of their investigation for different procedures for the
optimal power dispatch of a grid-tied microgrid.

On the other hand, the study of Shi et al. [Shi+15], the design of
a distributed EMS for optimum operation of microgrids where em-
phasised addressing the issues on the distribution network and the

[ October 13, 2020 at 14:07 – version 2.0 ]



2.3 significance of optimising usage 17

Figure 2.2: Architecture of EMS control A.) centralised and B.) decentralised
illustrated by Espín-Sarzosa et al. [EPBN20]
Legend: LC - Local controller
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associated constraints. As pointed out in the study of Meng et al.
[Men+16], and Nasirian et al. [Nas+14], the problem with most of
the existing approaches with regards to the EMS of the microgrids
(grid-connected or off-grid), the demand-supply matching algorithm
considers the demand to be always equal to the generated supply.
All generation sets and loads are assumed to be connected to one
single bus distribution line and ignore the power distribution net-
work, power flow, and system operational constraints. When those
algorithms are applied, the system may not work correctly [Shi+15].
Other energy optimisation approaches include incentive-based and
price-based demand response [Ima+18; Zha+18; PNS15].

For off-grid communities, the generation capacity of the off-grid
power systems is often limited [IRE17]. Most often, the generated elec-
tricity is distributed according to their basic needs for lightings. The
available energy is allocated to each household equally to maintain
a reliable power system operation [Shi+15; Gup17]. However, some
households need more electricity for other purposes such as entertain-
ment (e.g., television and radio), and comfort (e.g., electric fans). This
situation leads to a power shortage for some households. Therefore,
to maximise the available generated electricity, optimisation of the
electricity utilisation by providing sufficient electricity to households
is necessary. That is to ensure that the basic electricity needs of the
households are provided. This can be done by predicting load and
allocating energy of the households based on their previous electricity
usage. With accurate forecasting, wastage in terms of unused energy
allocation can be reduced if not eliminated. The remaining energy can
now be allocated to the households that need more energy, and this
ensures that the generated electricity is used efficiently.

2.3.1 Generation-constrained off-grid microgrids

Off-grid microgrids operate off-line and not tied to the traditional
grid. The available energy is limited with the installed generation
capacity of the power system may it be from solar, hydro, wind or
biomass source [Xu+16]. For this research, the off-grid microgrid of
interest is the solar power system. For this system, the generation
capacity is dictated by the solar panels total capacity of converting the
solar source to electricity. The capacity of the off-grid microgrid is not
always sufficient to supply the electricity needs of the village; hence
the different energy management schemes such as load shedding,
load shifting, time-based operation and energy consumption quota are
important. The next section presents the details of these approaches.

[ October 13, 2020 at 14:07 – version 2.0 ]



2.4 energy management schemes 19

2.4 energy management schemes

There are three common energy allocation schemes employed in a
microgrid. These are

• load shedding and load shifting,

• time-based operation or scheduling

• energy consumption quota

When the power system is not able to supply the electricity demand
of its customers such as households, commercial buildings, hospitals,
etc., the available energy should be managed in a way that the basic
electricity needs of all customers is served [Kha+18]. Load shedding
is used when a threshold of usage of the available energy is breached
[Gu+14; D’A+17]. Identifying the critical load is the key to make
this approach successful [AAM20]. Load shifting is used when there
is a need to defer in time the load operation [EAR20]. Time-based
operation is used when the microgrid is only allowed to operate in
a specific period of the day due to technical or management issues
[Maz+14]. Energy consumption quota is used when the available
energy is not sufficient to meet the electricity demands of customers
and that they are encouraged to take charge of their energy usage in a
day [ZXT12].

2.4.1 Load shedding and load shifting

Load shedding is one of the techniques used by the energy providers
to address issues of stability of frequency and voltages in the distri-
bution network. The stabilisation is done by shedding some load to
ensure that there is a right balance between the generation and con-
sumer end [Sap+18; Bak+17]. Furthermore, the technique is used in a
microgrid with limited generation capacity to cater to the demand of
the consumer by shedding loads identified as less prioritised [Gu+14].
The process of load shedding involves disconnecting the load from the
power system when the energy demands are higher than the available
energy.

In load shedding, energy management control is actively monitoring
the conditions and status of both the generation and demand side.
When a crisis occurs, load shedding commences ensuring the balance
of the operation of the power system. Maintaining the stability of
the system is one of the crucial processes in operating the microgrid.
Multiple crises can occur depending on the current conditions of
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the microgrid that are caused by either energy sources, distribution
network, and control instrumentations.

Traditional load shedding approaches, under frequency load shed-
ding (UFLS) and voltage load shedding (UVLS), are usually de-
signed separately to protect the system independently from frequency
and voltage instability, respectively [SSP11]. However, they are not
equipped to handle mixed fluctuations from frequency and voltage.
This instability, if not addressed properly, would result in power
system breakdown [Tan+13]. The inflexibility of the traditional ap-
proaches fails to consider the other sources of the instability of the
system as they are designed independently and separately imple-
mented, which made strategies unfavourable [SSP11].

To improve the traditional load shedding approaches, the adaptive
approach was introduced as presented in the work of Mohamad et al.
[Moh+18], Terzija et al. [Ter06], Chin et al. [Chi+08], Hooshmand et
al. [HM12], and Santos et al. [San+19]. These research studies employ
either machine learning algorithms such as artificial neural networks
and a centralised, hierarchical multi-agent scheme that coordinates
different stages of the monitoring and decision-making process or a
combination of the approaches. However, all these studies have only
considered frequency information and not the voltage information
in dealing with instability issues in power systems. Kanimozhi et
al. [KSB14], and Tamilselvan and Jayabarathi [TJ16] proposed new
schemes of improving the stability of the power systems using volt-
age information combined with genetic algorithm (GA) and artificial
neural network (ANN). As the techniques are working separately in
dealing with the voltage and frequency instabilities, this motivates
other researchers to address the issue by proposing techniques that
deal with both the frequency and voltage information as presented in
the works of Tang et al. [Tan+13], Hsu et al. [HCC11], and Giroletti et
al. [GFS12].

Adopting load shedding help maintains the balance between the
generation and demand side of the power systems but this lead to
power blackout for some consumers that are off-loaded from the power
systems [Xu+16]. Load shedding is good for the generation side of
the power system but will have a negative impact on the off-loaded
consumers. Load shedding as presented by Xu et al. [Xu+16] was
proposed to address the issue with microgrid with limited genera-
tion capacity. In order to continue supply power to the critical load
of the power system, a dynamic load shedding was proposed. They
formulated the load shedding as a stochastic optimisation problem
where uncertainties caused by the intermittent power resources and
the loads are considered as constraints. They aim to maximise the
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economic performance of the microgrid considering the limitations of
the generation resources. Then they develop a model using a Markov
decision process (MDP) to determine the optimal load shedding pro-
cess. With their approach, they were able to maximise the economic
factor of the power system by providing an optimal load shedding
strategy for a microgrid with limited generation capacity.

2.4.2 Time-based operation

The EMS schedules the availability of the power to the consumers.
The operation can be scheduled hourly or daily depending on the
availability of the generated energy. This is done to maintain a well-
balanced operation of the microgrid. For a traditional grid, scheduling
is done to have an optimal system operation. This approach has been
addressed extensively in the recent research work in the field as the
most efficient means to optimally coordinate the controllable and
uncontrollable resources [Ima+18; CMP14; Zha+16; MMS16b; Jia+15;
GZ16].

Carpinelli et al. [Car+17] proposed a way of minimising imbalances
in low-voltage microgrids by the scheduling of distributed resources.
Their work is based on a multi-objective approach that considers the
structure of the low-voltage microgrid systems which have inherent
imbalances of lines, loads, and generation systems. They formulated
their model to be a multi-objective optimisation problem. The objec-
tive functions are defined as dependent to power, line current and
the positive and negative component of voltages in minimising the
imbalance factor, cost of energy, peak shaving, losses, security margin
and voltage deviation. The constraints relating to the technical limita-
tions and operation requirements are all considered from the buses
(such as load bus, distributed bus, and electric vehicle bus), and the
microgrid constraints such as different phase-voltage magnitude, and
the line phase-currents. Their experimental results show that using
a multi-objective approach for the scheduling of unbalanced micro-
grids provide advantages in terms of savings and efficiency in system
operations.

In most cases, scheduling the operation of microgrid has been a chal-
lenge. The work of Mazidi et al. [Maz+14] presents an efficient way of
solving the operational scheduling problem of microgrids with differ-
ent generation sources. The problem was formulated considering the
various constraints related to microgrid operations such as allocating
the reserve capacity, battery scheduling, and the uncertainty innate to
the renewable resources like the wind and solar power generations. A
Latin hypercube sampling method was employed to combine and gen-
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erate the different scenarios relating to the two sources, which in this
case were wind and solar power generations. Their results showed that
a lower reserve requirement is achievable with the stochastic method
they used compared with a conventional deterministic approach.

Mazidi et al. [MMS16a] present an effective and efficient day-ahead
scheduling of smart distribution networks by incorporating price-
responsive customers in their method. They formulated an optimisa-
tion problem to maximise the profit while maintaining the customers’
satisfaction. The optimisation considers the hourly sale prices offered
to customers, purchase or sale transactions made to the market, a
commitment of the distributed generation units, dispatch of battery
energy storage systems and the planning of interruptible loads. The
models were formulated as a Mixed Integer Linear Programming
(MILP) optimisation problem. The model formulation covers both the
demand and consumer side that benefits both sides. Mathematical
models were formulated for both distribution network and demand
response (DR) including price-based and incentive-based DR models.
These formulation leads to the objective function to maximise the dif-
ference between the profit and cost of operations. Constrains relating
to power balance, distribution network, and distributed generation
units were considered. The optimisation problem was then solved
using Karush-Kuhn-Tucker (KKT) conditions. According to the results
of their implementations and case studies, higher profit is achievable
while keeping their customers satisfied. Their method even results in
the customer’s motivation to use energy efficiently and have a reduced
electricity bill.

Most of these approaches are focused on the generation side and not
on the customers’ side in scheduling the operations of the microgrid.
Most of these approaches are made for microgrids that are grid-
connected and not in stand-alone. There are very few published works
addressing the time-based scheduling operation of the off-grid power
systems [Mar+13; Mar+16]. Hence, this necessitates us to look into
the possible method that can work in any stand-alone microgrid
systems that allocate daily energy to each customer to maintain a
stable operation.

2.4.3 Energy consumption quota

Another popular technique in dealing limited generation capacity of
the microgrid is allocating energy consumption quota (ECQ) to each
household daily [Sun+16]. This is to maintain a stable operation of the
power system. In this setup, all households connected to the power
system is given an equal energy allocation daily for a fixed amount of
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monthly fees. Some use energy quota to encourage energy savings in
commercial buildings [ZXT12]. Another application of energy quota
is influencing the energy consumption of commercial buildings. By
giving them energy quota, commercial buildings will be encouraged
to limit their energy consumption within the given quota [Xin+12].

For example, the study of Xin et al. [Xin+12] presented a method on
how to calculate the energy consumption quota of different hotels in
China as a way of promoting the development of building efficiency.
The method covers from data collection to analysis, and calculation of
energy consumption data using statistical analysis methods such as
the mean index of total energy consumption (MITEC), mean of EUIs,
quadratic average method, median, percentile method and mode. For
data collection, they used a questionnaire to be field up by the building
owners. The data gathered involved the basic building information
such as building area, age, number of guestrooms and occupancy
rates as well as the energy consumption of the hotels in recent years.
The basic building information was considered as factors affecting
energy consumption of hotels. Basically, they gathered the information
through a questionnaire answered by building owners, and then the
energy providers verified the energy consumption. The approach is
susceptible to biases as answers, and the verification process is based
on the memory of the respondents (owners and energy providers).
The study does not mention that the information was verified from
the archives of the energy providers. Hence, the validity and reliability
of the data may be compromised. However, their study underpins the
importance of actual historical energy data for the development of
energy consumption quota of the hotels. A correlation was performed
to determine the factors affecting building energy consumption (BEC).
These factors refer to the basic building information they have gath-
ered. For the analysis of the energy data, they used the statistical
analysis, and this approach serves its purpose right for calculating
the energy consumption quota of each hotel. This is because there are
no constraints involve except for promoting the building efficiency
in China. However, for off-grid microgrids with limited generation
capacity, this approach may not be adequate to address the constraints.

All three energy management schemes have their advantages and
disadvantages, as presented in this section. Regardless of the type
of renewable energy resources, these approaches are applicable in
ensuring balanced operation of off-grid microgrids. For most cases in
off-grid communities, energy daily quota is the most common tech-
nique used for its simplicity in implementation [IRE18]. However, this
approach can be improved by combining machine learning algorithm
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such as a neural network to improve the energy management system
of the microgrid [ZXT12].

Daily energy allocation is quite popular in off-grid power systems
implemented in remote areas [Int14; IRE17; IRE18]. This approach
can be improved by incorporating the load forecasting technique that
would predict day-ahead daily consumption. By doing this, the energy
allocation can be done optimally, and better energy utilisation of the
generated energy by the off-grid microgrid with limited generation
capacity can be achieved.

2.5 load forecasting techniques

Forecasting is considered an essential component of any power
providers [Gup17]. Forecasting the load helps operation planning
which can lead to reducing unnecessary power production. Currently,
power providers gather the power usage of their customer to help
them predict the next day average power usage [Chi+15]. The accuracy
of predicting the power usage of any building or industry has
improved a lot since the application of neural network for forecasting
as presented in the study of Dudek et al. [Dud16]. With accurate load
forecasting, efficient generation scheduling can be achieved [Gup17].
The main objectives of accurate load forecasting can be categorised as

• Scheduling the operation of the generation of the power system

• Securing the reliable operation of the power system

Moreover, the allocation of generation resources, the operational limi-
tations, environmental and equipment constraints can be determined
and properly addressed [ESMK11; DM13]. For example, in the case
of hydropower generation units, the optimal release of water from
the reservoir and the generation scheduling of power systems can be
carried out based on the short-term load forecasting (STLF) [RK15].
Load forecasting is also used to ensure power systems operations
regardless of the distributed generation units used to generate the
power [Maz+14; Dud16; RK15]. Accurate load forecasting is a crucial
tool to determine the optimal operational state of the power system
[ESMK11; RK15]. Additionally, forecast data can be used to prepare
the power system per future load state and corrective actions. All these
objectives lead to saving the cost of operation of the power system
[FA14; RK15].

Load forecasting is used by the energy provider to ensure stable
operations of power systems and to predict the necessary power to
be generated to meet the demand [Gup17]. Unnecessary expendi-
tures in generating excessive power can be avoided when an accurate

[ October 13, 2020 at 14:07 – version 2.0 ]



2.5 load forecasting techniques 25

prediction of the load is performed [FA14]. Moreover, accurate load
forecasting is a necessary tool to determine the optimal operation of
power systems [Sol+15].

Predictors such as historical load data, time information (i.e. year,
month, day of the month, and day of the week), and minute-dependent
context features (e.g., temperature, humidity, wind speed, UV index,
and time index) were identified as factors affecting energy consump-
tion [Hsi15]. These factors are used as the inputs for the backpropaga-
tion neural network to predict the household’s electricity consump-
tion volume. A strong correlation between weather information and
load demand is evident as presented in the paper of Hernandez et
al., [Her+12] and Hsiao et al., [Hsi15]. A study claims that incorpo-
rating appliance usage patterns for non-intrusive load monitoring
improves the performance of load identification and forecasting using
non-intrusive load monitoring approach [Wel+17]. A long short-term
memory (LSTM) recurrent neural network (RNN) based framework
was used to address the issues such as uncertainty and high volatility
in load forecasting for an individual household [Kon+17].

Depending on the available data, prediction can be made a day
ahead, a week, a month, or even a year [Moo+19]. The prediction can
be categorised as follows:

• Short-Term Load Forecasting (STLF)

SLTF refers to forecasting the load in the range of minutes, hours,
days or a week. A short period where the load is specifically
determined to provide better accuracy in forecasting [TS16].
Short-term load forecasting is used for reliable and efficient
energy management and is influenced by many factors, such as
weather, house occupancy and household income [KRF13].

• Medium-Term Load Forecasting (MTLF)

MTLF refers to forecasting the load in the range of several weeks,
months and a year [Gup17]. This is done when the industry
wants to know the next week or next month average power
usage. The result may not be as accurate as it can be like the
STLF, but the results give an idea of how much energy is needed
to be generated for the next week/month. Medium-term load
forecasting is used for efficient operation and maintenance of
the power system [Bor+17].

• Long-Term Load Forecasting (LTLF)

LTFL, as the name implies, is in the range of years. This can be
done when there are lots of data for years (10 to 15 years worth
of data) [TS16]. So the prediction is made for the entire year
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of average power usage. Long-term load forecasting is used for
long-term power system planning according to the future energy
demand and energy policy of the state [Cha00].

2.5.1 Time series forecasting

Analysis of time series can be divided into two essential parts. The
first part focuses on the derivation of the structure and the underlying
trend of the observed data. The second part emphasises on the fitting
of the model to perform future predictions [LLC09].

Time series analysis is used in many applications, such as economic
forecasting, yield projections, process and quality control, workload
projections, and any other predictions that use history data with
inherent correlations, trends, and complexity [PB17; Deb+17].

The general approach in analysing the time series is to divide the
time-series into three elements [Dud16; Tay10; Bor+17]:

1. Trend – The general characteristics that the variable exhibits
within the considered period without taking into consideration
the seasonality and irregularities of the data [Dud16].

2. Seasonality – This refers to the cyclic variations of the variable
concerning weather information. The seasonality consists of the
effects that are steady and unwavering through time [Tay10].

3. Residual – This is the remaining part of the time series after the
above two features are considered. Most of the time, this part
of the time series is mostly unexplained. Sometimes, residuals
can be large enough to conceal the trends and seasonality of the
variable [Bor+17].

Model fitting of the time series is a complex and challenging pro-
cess.Time series forecasting can be grouped into univariate and mul-
tivariate analysis [TMM06]. Univariate time series analysis is a time
series forecasting that has a single observation recorded sequentially
over time while multivariate time series analysis deals with a group
of time series variables that interacts with each other [TMM06].

2.6 fundamentals of artificial neural networks (anns)

ANN-based load forecasting models are used by many energy
providers for decades now since the earliest published paper on
electric load forecasting using an ANN [Par+91; MS97]. Energy is
then generated according to the forecasted energy consumption
using the ANN model. Many research works are published to show
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how ANN-based load forecasting models used to resolve issues in
the energy management system, particularly the generation side [].
However, there are few published research works for forecasting
energy consumption for the benefit of consumers (demand side).
Since the goal of this research is to provide sufficient energy to the
households from a source with limited generation capacity, forecasting
the energy consumption of the households is important.

Artificial neural networks (ANN) are modelled after the cognitive
learning process and the neurological functions of the human brain.
Neural networks are capable of predicting new observations from
the existing observations after learning from data. A specific neural
network architecture must be designed and built. This includes choos-
ing a specific number of hidden layers, each consisting of a certain
number of neurons. The training process commences once the number
of hidden layers and neurons are established. An iterative process is
applied by the neurons to the number of inputs to adjust the weights
of the network to optimally predict the sample data on which the
training is performed. After learning from the given existing data set,
the neural network is now ready to forecast. In forecasting, the output
of the network represents the pattern it has detected from the training
data set [LBH15].

Neural networks are considered to be one of the best techniques in
load forecasting. One of the desirable features of the neural network
is its robustness and flexibility in handling real-world data that have
both linear and nonlinear components. It can handle well both the
linear and nonlinear aspects of the data in generalising when used
as approximators [HSW89]. Good modelled neural network-based
forecast model can make a precise prediction of new observation after
learning from the existing data. A specific network architecture must
be designed specifying the network’s hidden layers and neurons. In
the training process, the network is learning specific features of the
data. The network developed and trained with the existing data can
be used to predict new values from the pattern it has detected and
learned from the training.

Figure 2.3 shows the basic architecture of neural network. Tradi-
tionally, the neural network is fed with an input vector (or matrix
depending on the architecture of neural network) Vx and generates
the output vector Vy in which the network’s topology defines the
relationship between them. For multilayer perceptron (MLP)-based
model, 3-layer back propagation neural network is widely accepted
to generate an estimation of any continuous function with sufficient
mid-layer units.
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Figure 2.3: The simplest architecture of neural network has an input layer, a
hidden layer, and an output layer.
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2.6.1 Back-Propagation Neural Network

Backpropagation (BP) learning algorithm is used to train the ANN. The
BPN learning algorithm uses the gradient descent method to update
the weights of the network [LBH15]. The BPN network consists of an
input layer, a hidden layer, and an output layer that are connected by
synaptic weights.

There are several issues with BPN algorithm that affects the perfor-
mance of the network while training. These are as follows:

• Local minima – The training algorithm aims to reduce the error
to the global minimum value to achieve higher training perfor-
mance of the network. However, sometimes the network can get
stuck in the local minimum even though the weight values keep
updating and adjusting. This results in poor performance in
training the model. This problem can be avoided by applying a
modified error function that harmonises the updates of weights
between the hidden layer and the output layer [Bi+05].

• Network paralysis – The weights of the network can be varied
and adjusted for large values of output where the derivative of
the triggering function is small during the training process. This
is to send back the error of the network according to its derivative
during the training process. Network paralysis happens when
the network comes to a standstill during the training process that
may lead to erroneous network output due to poor learning. By
using the rectified backpropagation neural network called Mor-
bidity neuron Rectified Backprogation network (MRBP)[JS05].
MRBP identifies and corrects the defective neurons making the
network more adaptive and robust that can easily escape from a
local minimum.

[ October 13, 2020 at 14:07 – version 2.0 ]



2.6 ann fundamentals 29

• Temporal instability – For the training algorithm to learn, the
neural network needs to imitate the whole training set without
disruptions according to what it has already learned. When a
backpropagation training algorithm fails to learn from complex
systems, network learning is suffering from temporal instability.
This happens when the network fails to remember what it has
already learned while trying to learn something new during
the training process [RK15]. This issue can be minimised using
Self-Partitioning Neural Network (SPNN). SPNN measures the
conflict amongst the datasets during the training process and
split into smaller groups by partitioning. The partitioning is
done in such a way that the conflict between groups is signifi-
cantly reduced. Reducing the conflict between groups speeds up
the training process of the network and decreases the network
paralysis and temporal instability [RKS95].

• Generalisation and the over-fitting problem of the neural network
– In modelling, the ultimate goal of the training is to minimise the
Mean Squared Error (MSE) of the network with its training set.
When the output of the network is accurate or close to the target
values of the data that are not included during the training, the
network is considered to be well generalised. Several factors
affect the generalisation of the network. The factors include the
quality and size of the data and the architecture and complexity
of the neural network [Bas07]. With more complicated models,
the possibilities of over-fitting are high. An over-fitted model can
describe the training data well but poorly predict when given
with new dataset [Cha+16a].

2.6.2 Issues in designing neural network-based forecasting models

Unlike other forecasting models such as Auto-Regressive Integrated
Moving Average (ARIMA), the selection of parameters, such as the
Akaike Information Criterion (AIC) or the Bayesian Information Crite-
rion (BIC), for a neural network is not straightforward. The approach
usually starts with the simplest architecture and gradually explores
more complex structures. Kaastraa and Boyd [KB96] presented a de-
sign process for ANN-based forecasting. They aim to provide an intro-
ductory guide for designing an artificial neural network for forecasting.
They presented the 8-steps design procedure of the neural network
for forecasting. The steps start from input variables selection until
the implementation of the model. The procedure was implemented in
forecasting financial and economic series.
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Raza and Khosravi [RK15] conducted a systematic literature review
of Artificial Intelligence (AI) based on short-term load forecasting
techniques to identify, evaluate and analyse the performance of AI-
based load forecasting model. They have concluded that the accuracy
of ANN-based forecast model is dependent on several parameters such
as model architecture, input combination, activation functions and
training algorithm of the network and other variables that affect the
input of the forecasting model. A technique that can generate a diverse
and effective neural network, a group-based chaos genetic algorithm
was developed by Chen et al. [Chi+16] to improve the performance
of STLF. They also developed an ANN-based nonlinear ensemble of
partially connected NN predictors to enhance the accuracy of the STLF
further.

In determining the design parameters of the artificial neural net-
work, the procedure become complex for finding the right combina-
tions of the network’s hidden layers HL and neurons N, in which a
trial and error approach is usually employed.

Palmer et al. [PJS06] also presents a step-by-step methodology in
designing ANN-based forecasting for tourism. They point out that
there is no definite rule in choosing the number of hidden layers HL
and neurons N to build a neural network that generates accurate pre-
diction. They provided a trial and error approach for a specific range
of hidden layers HL and observed the effects on the performance of the
network. The models were assessed in terms of Root-Mean-Squared
Error (RMSE) and Mean Absolute Percentage Error (MAPE) for perfor-
mance accuracy using validation data. According to their experimental
results, MLP architecture with eight inputs, one hidden and one out-
put neurons performs best with the most accurate prediction with the
validation data. For this research, both RMSE and MAPE is used to
evaluate the performance of the proposed MLP-based forecast model.

Hunter el al. [Hun+12] also pointed out the difficulty of the re-
searchers in deciding the proper sizes and architectures when using
neural networks. Their work presented a comparative analysis of
the performance of 3 neural networks, namely Multilayer Perceptron
(MLP), Bridged Multilayer Perceptron (BMLP), and Fully Connected
Cascade (FCC). They also presented a detailed comparison of learning
algorithms used for training the neural networks. Amongst the learn-
ing algorithms they have used, they pointed out that the Levenberg
Marquardt (LM) algorithm is the most efficient from their theoretical
analysis and experimental results. LM algorithm is used in MatLab
neural network toolbox. This research used MatLab neural network
toolbox in building the load forecast model that utilises household
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demographic profile as inputs together with the historical energy data
to forecast the next-day energy consumption of the households.

Given the advanced configurations of neural network for load fore-
casting, MLP, as one of the basic architecture of ANN, is commonly
used. This is because MLP allows simple implementation of the net-
work, and it can handle both linear and nonlinear features of real-
world data. For this reason, MLP-based forecast model is preferred
in forecasting the next-day energy consumption of the households in
this research. The details are presented in Chapter 5.

2.7 factors influencing load forecast model perfor-
mance

In load forecasting, selecting the right inputs is one of the crucial
processes. This process is conducted to determine what are the key
factors affecting the energy consumption of households, buildings,
or any other dwellings[Che17]. In determining factors affecting load
forecasting, there are several parameters to be considered. According
to the study of Hsiao [Hsi15], behavioural patterns of similarity and
difference in electricity consumption are caused by external factors
called context factors. These factors are time, weather, calendar days
and economic indicator. Aside from historical data, these factors sig-
nificantly affect load forecasting. The work of Bedir and Kara [BK17]
used factor analysis to determine the factors influencing the behaviour
of households towards electricity consumption. Then they used these
factors in correlation analysis to determine the relationship between
the behavioural factors and the household characteristics. These ap-
proaches made them identify what the drivers and behavioural profiles
that significantly affects the way dutch dwellings consumes electricity
are. The factors they identified are household appliances, presence
(in terms of frequency of lighting usage in different rooms), house-
hold characteristics (this includes the household size, occupants age,
monthly household income, education, working schedule), and type of
dwellings. According to their results, there is a significant correlation
between behavioural factors and electricity consumption. Also, recall
from Section 2.4.3 that these factors are similar to the factors consid-
ered by the work of Xin et al. [Xin+12] as they determined the factors
affecting BEC using the same method, the correlation analysis. Thus,
these factors were considered important demographic information in
the proposed load forecasting model used in this thesis.

Chae et al. [Cha+16b] use variable important analysis to select key
features that affect electricity consumption of commercial buildings.
The features include the day type indicator, time-of the day, HVAC set
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temperature schedules, outdoor air dry-bulb temperature and outdoor
humidity as the most critical factors. These factors can be categorised
into subgroups such as historical data, economic factor and weather
information [Che17].

In the study of Mandal et al. [Man+06], it was pointed out that the
performance of the forecast model is improved as the temperature is
added as one of the input. Moon et al. [Moo+19] present an ANN-
based model that considers factors affecting energy consumption such
as calendar data, weather information and historical data.

For every subgroup of the factors affecting load forecasting, each
needs corresponding data. Using actual data can achieve more realistic
results in load forecasting as opposed to computer-generated data
from a formulated function. The work of Hsiao [Hsi15] presents how
the data being used for pattern analysis to determine the demand of
the household for each trend and daily behaviour patterns of electricity
usage from the actual data.

2.8 user preferences

Another parameter that needs to be considered in forecasting the
household’s load in off-grid communities is user preferences. User
preferences refer to the household’s behaviour related activities that
use electricity. Accuracy in load forecasting can be improved when
the behavioural-related parameters such as daily frequency of usage
of deferrable loads, and non-deferrable are being considered in the
modelling and prediction. The studies of Hsiao et al. [Hsi15] and Kong
et al. [Kon+17] reported that user behaviour towards energy usage
affects the aggregated energy consumption of the consumers. Electric-
ity usage can be determined by studying the behavioural electricity
usage patterns of individual households. Behavioural patterns can be
determined based on the actual occupant behaviour towards lighting
and appliance use [BK17]. Mixed methods approach was used to de-
termine the importance of occupant’s behaviour towards electricity
usage. Data were collected and analysed to determine the effect of
individual comfort and household attributes on occupant’s behaviour
towards energy [GS+16]. Occupant’s behaviour is one of the factors
influencing energy usage. A study presented an approach to estimate
potential energy savings using behavioural measures. The approach
includes the profiling of the occupant’s behaviour, then simulate and
analyse the individual and integrated impacts on energy usage. The
study concluded based on the simulation results that the behaviour
measures can save energy significantly, and the main energy savings
came from the energy savings on unoccupied rooms [SH17]. Individ-
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ual residential loads are usually volatile to forecast because of the
resident’s various activities. An extended short-term memory-based
deep learning forecasting framework with appliance consumption
sequences has been proposed by Kong et al. [Kon+17] to address the
issue.

2.9 research data

Most of the data used in research can be taken from any repository
that is available for the public. For microgrids, there are several data
available for public consumption and research purposes, and the
most popular ones are from GitHub [Tia18; Bye19], government do-
main (Department of Energy) and electric company that are available
upon request. However, for energy data of households connected to
generation-constrained microgrids, there are very few to none data
available for public or research use. Also, as pointed out in section
2.4.3, historical data is vital in determining the ECQ of the buildings.
Thus, this research developed and deployed an energy monitoring
system to gather household data and to study the energy usage of
the households. The energy monitoring system is designed to gather
specific information from the households about their energy usage.
Chapter 4 presents the development and deployment of the system.

Factors affecting energy consumption are also collected. As dis-
cussed in section 2.7, demographics of the households is gathered
through face-to-face surveys. The survey is used as this is the simplest
way of gathering information. Chapter 4 presents the development
of the survey questionnaire and the deployment of the survey to the
selected villages in Cebu, Philippines.

Using these collected data in the development of the load forecast
model (detailed in Chapter 5) will give real-world results that are more
reflective of the actual usage of the households. For this research, the
data gathered is used for the development of the load forecast model
and the proposed optimal energy allocation scheme. The process of
gathering the data is presented in Chapter 4.

Chapter 4 presents the gathering and preprocessing of the data
from the deployed PMOG systems in the households at the selected
remote villages in Cebu, Philippines. The real-world data serves as
the baseline data for the development of the MLP-based load forecast
model, as discussed in Chapter 5.
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2.10 chapter summary

In this chapter, the importance of energy consumption quota in the con-
text of an off-grid microgrid is presented. Energy consumption quota
(ECQ) promotes building efficiency. For households in off-grid com-
munities, it ensures the basic electricity needs of the household while
using the available energy efficiently from a generation-constrained
microgrid. The actual data from the households or buildings is the key
to calculate the ECQ. The method used by Xin et al. [Xin+12] in data
collection can be improved by employing actual energy monitoring
systems. The approach of calculating the ECQ can be improved by
using machine learning and optimisation techniques that can handle
defined constraints.

The need for optimising the energy management system of a power
system is discussed. Different schemes of the energy management
system (EMS), such as load shedding, time-based operation, and
energy allocation are presented and how they are being employed to
maintain the balanced operation of the power systems (Section 2.4).
For off-grid microgrids, energy allocation is commonly used to cater
and provide the basic electricity needs of the connected households.

In optimising the operation of the power system, load forecasting
is incorporated into the energy management control system (EMCS).
MLP-based load forecasting is one of the popular techniques along
with ARIMA, GPR and other forecasting techniques such as RBFN.
The fundamental architecture of the neural network is presented as
well as its robustness in dealing both linear and nonlinear features of
data which makes the neural network as a good approximator (Section
2.6). Furthermore, applications of neural networks on load forecasting
are discussed.

Finally, factors affecting load forecasting are also presented and
discussed (Section 2.7) as well as the importance of gathering an actual
energy usage (Section 2.9) for the development of MLP-based forecast
model in Chapter (5) and the proposed optimal energy allocation
in Chapter (6) for households connected in off-grid microgrids with
limited generation capacity.

Within the presented literature, studies about optimal energy alloca-
tion in the context of off-grid microgrids are limited. Although there
are several studies (Section 2.4) in optimising the energy management
system, these approaches are not implemented in an off-grid micro-
grid with limited generation capacity. In providing an optimal solution
for an optimisation problem, real-world research data is crucial. Thus,
this thesis focuses on the following areas:
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1. In addressing the importance of historical energy data in deter-
mining the ECQ, an energy monitoring system (EmS) is devel-
oped. PMOG system is built using readily available components
and sensors to gather energy data. For this research, gathering
real-world data of load consumption from the selected villages
that will serve as the baseline data for the load forecasting model.
The deployment of the PMOG system to gather historical energy
data is discussed in Chapter 4.

2. Development of MLP-based load forecasting model that includes
household demographic profile as inputs to achieve better pre-
diction performance of the network. The need for forecasting
the next-day energy consumption is crucial in calculating the
optimal energy allocation, hence MLP-based load forecast model
is proposed. The process of finding the best combination of
parameters of the neural network is presented in Chapter 5.

3. An optimal energy allocation based on forecasted load consump-
tion considering the limited generation capacity of the microgrid
and maintaining the basic electricity needs of the households. In
the context of off-grid power systems, ECQ ensures sufficient en-
ergy for the households while maintaining a balanced operation
of the power systems and efficiently use the available energy.
The analytical approach of allocating daily energy allowance
optimally to each household is presented in Chapter 6.
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M E T H O D S

This chapter describes the methods used in this research for the data
gathering as discussed in Chapter 4, developing the forecast model
presented in Chapter 5, and optimising the daily energy allocation of
the households as shown in Chapter 6. Figure 3.1 shows the flow of
work of this research from data gathering to allocating of daily energy
quota using the proposed scheme.

3.1 data gathering

Data gathering is divided into two parts. First is the collection of
demographic profile through field survey, and second is the collection
of the energy usage using the PMOG system.

As discussed in Section 2.7 and 2.9, real-world data is essential
in developing models that would describe the characteristics of the
household’s energy consumption [Che17]. These data include the
factors affecting their energy consumption and drivers of using energy
[BK17]. Since data are important in developing the load forecast model,
the factors influencing the behaviour of the households towards energy,
as identified by surveying the existing literature, are classified as
demographic information. A survey is conducted to collect this data.

To do the first part of the data gathering, we need a survey question-
naire. The survey questionnaire serves as a guide while conducting
the survey to the participants. The development of the survey and
its deployment is discussed in Chapter 4, Section 4.2 and Section 4.4,
respectively.

A survey was done with the developed survey questionnaire with
the aim of gathering the demographic information of the households.
A face-to-face survey was employed as this approach is the most
suitable for the selected villages that are located in remote areas.
Another approach, such as online survey is not doable as the people
in the villages have no access to the Internet.

For the second part of the data gathering, a PMOG system was
developed and installed to the selected households of the two villages.
PMOG system is an energy monitoring system (EmS) that is designed
to gather the energy consumption of the households in two levels
– household level and appliance level, using wireless sensors. The

37
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Figure 3.1: Flow of methods used in this research.

development and the deployment of the system are presented in
Chapter 4, Section 4.3 and Section 4.4.

For the historical data, energy monitoring systems called
Philippines-Micro-Off-Grid (PMOG) systems were installed in the
selected households to monitor and gather their electricity usage.
PMOG systems were developed and tested in the laboratory before
the deployment.

3.1.1 Evaluation of the survey questionnaire and testing of PMOG system
before deployment

The survey questionnaire was tested by conducting a pre-survey in the
laboratory with colleagues act as participants. This is done to ensure
that the questionnaire is readable, understandable and each question
written serves with a purpose for the research as a whole.

For the PMOG system, the testing was done by allowing the system
to run for two months prior to the deployment to test its reliability. The
output is being recorded and monitored in the remote server. When
data gathering is interrupted, the systems were checked for errors.
If code bugs caused the errors, the system code is adjusted to make
sure that the error will not happen again if external factors like power
blackout cause the interruption, the system will just stop recording.
This will appear as blank or N/As in the data for the duration of
the blackout. No data or N/As will appear in the records whenever
the system is experiencing a blackout or power interruption. Chapter
4, Section 4.3.1 presents the details of the PMOG system flow and
operations.
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3.2 load forecast modelling

A Multi-layer Perceptron (MLP) based model is employed for load
forecasting in this research. MLP network is used because of its sim-
plicity and straightforward approach in forecasting and can perform
best while dealing with the nonlinearities of the data. Four forecasting
techniques were considered in the development stage of the fore-
cast model for this research. These four techniques are MLP, ARIMA,
RBFN and GPR. Both MLP and RBFN can handle well with nonlinear
features of the data, and both ARIMA and GPR are best suitable in
handling linearities.

The MLP-based forecast model is developed by using the Matlab
tool. Functions are available to use with an option of designing the
network by determining the best combinations of the network’s layer
and neurons, as well as the number of the historical electricity usage of
the households. Different simulation and experiments were conducted
to determine the right combinations of the networks’ hidden layers
HL, neurons N, and delay window D. Simulations were conducted to
observe the influence of these three parameters in the performance of
the network in forecasting. The model is trained using the energy data
from PMOG system and demographic information from the survey
data. During the training stage of the model, several case scenarios
involving a number of inputs for the network were considered—all for
the purpose of finding best performance of the model in forecasting
in terms of RMSE. The goal is to find the lowest possible RMSE given
the inputs and the chosen architecture of the neural network. The
process of determining the forecast model includes the input shaping,
as discussed in Section 5.1.2.

In the development of the forecast model, the following inputs were
considered:

1.) Historical energy data (PMOG data) such as power consump-
tion of the household

2.) Household’s temperature (indoor)

3.) Calendar days such as weekdays

4.) Household profiles from the survey data (demographics, and
monthly energy tariff)

The steps on how to design a neural network for load forecasting is
presented in Chapter 5 as well as the details of the simulation and its
results.
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The final model with the lowest RMSE is chosen through a grid
search where all possible combinations of inputs and neural architec-
tures are considered.

3.2.1 Evaluation of the loaf forecast model

The forecast model was validated using k-fold validation with k = 10

in all input combinations used to determine the best combinations of
the three networks parameters. This is presented in Section 5.1.1 The
MLP-based forecast model is evaluated by comparing its performance
to three other techniques such as Gaussian Process Regression (GPR),
Autoregressive Integrated Moving Average (ARIMA), and Radial Basis
Function Network (RBFN) (see Section 5.4). Furthermore, the perfor-
mance of the proposed load forecast model used in this thesis is
compared with two other works that also used neural network-based
models in load forecasting as detailed in Chapter 5 Section 5.15.

3.3 optimising energy allocation of the households

The optimisation of the energy allocation of the households consider in
this research takes two-steps process. The first step is the forecasting of
the next-day energy consumption based on their historical usage and
households profile. The second step is the calculation of the optimal
energy allocation, considering the known constraints.

The first step is done using the proposed forecast model developed
using MLP that uses the historical energy data and the household
profiles. The second step is done by solving the optimisation problem
using the Karush-Kuhn-Tucker (KKT) approach, given the constraints
of the microgrid generation capacity and the minimum energy level
for each household. The optimisation process aims to minimise the
difference between the forecasted values and the calculated optimal
energy allocation of each household. At the same time, it is ensuring
that the total optimal energy allocation does not exceed to the gener-
ated energy by the microgrid and that the optimal energy allocation
of each household should not be lesser than the minimum energy
required by the households. This is to ensure maximum utilisation of
the available energy while ensuring that households that need more
energy than what is allocated will get sufficient energy. There will
be no wasted energy allocation in terms of excess of energy alloca-
tion or unused energy allocation. The formulation of the optimisation
problem is presented in Chapter 6, Section 6.1

KKT approach is one of the optimisation techniques that is used in
solving an optimisation problem that subjects to constraints written
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in the form of inequalities. The formulated optimisation problem
described in Chapter 6 meets the requirements of KKT conditions that
involves inequality equation in the optimisation conditions allows us
to use the KKT approach. These conditions are the constraints written
in the form of equality and inequality. The two constraints meet the
requirement of KKT conditions; hence the approach is used to solve
the optimisation problem. The details of solving the optimisation
problem is presented in Chapter 5, Section 6.1.1.

3.3.1 Evaluation

Using the available data from PMOG system, the approach is evaluated
by carrying sample calculations on what would be the optimal energy
allocation using the proposed method and compared with the other
existing methods such as the equal daily allocation and ratio and
proportion approach. Chapter 6, Section 6.1.4

Analysis of Variance (ANOVA) is employed to determine the differ-
ence between the average energy allocation of each household. This is
to show that the difference between each households energy allocation
is statistically different. ANOVA is the most common and easy to
implement in comparing the averages of the two or more groups to
determine whether the difference between the averages are statistically
significant. The null hypothesis is tested by comparing the means of
the different groups, that is

H0 = φ1 = φ2 = φ3 = φn (3.1)

where φ is the means and n is the number of groups. The alter-
nate hypothesis HA is accepted that the group means are statistically
different from each other when the result of ANOVA test returns
statistically significant.

The proposed optimal energy allocation is validated using the values
forecasted by MLP-based forecast model. It is important that the
results of the calculation of the optimal energy allocation should
meet the stated constraints of the optimisation problem. The detailed
validation process is presented in Chapter 6, Section 6.1.4.

In this research, three methods in daily energy allocation are consid-
ered together with the proposed optimal energy allocation that uses
load forecasting and KKT conditions to be compared using ANOVA.
The detailed discussion is presented in Chapter 6, Section 6.2.
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3.4 chapter summary

This chapter presents the methods used in the proposed optimal
energy allocation of households connected in off-grid microgrids with
limited generation capacity. The methods cover the data gathering to
the development of the forecast model and calculating the optimal
energy allocation of each household.

In collecting the necessary data for the development of the forecast
model and the solving the optimisation problem, a survey question-
naire and PMOG system were developed and deployed. For fore-
casting the next-day energy consumption of the household, an MLP-
based forecast model is proposed that uses both historical energy
data and households profiles. A mathematical approach is proposed
in determining the optimal energy allocation using KKT approach
incorporated with the forecasted values by the MLP-based forecast
model.

In this chapter, a two-step process of finding the optimal energy
allocation is proposed using MLP-based forecast model and KKT
approach.
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Given this research project is done with the support of British Coun-
cil, Philippines in partnership with the Department of Science and
Technology-Science Education Institute to positively impact the chosen
local communities, this chapter presents the selected villages and the
data gathered from these villages. The data collected serves as the
baseline of this research in the development of the load forecast model
presented in Chapter 5 and the optimal energy allocation shown in
Chapter 6. The problem this research stated in Chapter 1 is a real-
world problem faced by the people in off-grid villages. For this reason,
the profiles of the villages are also presented in this chapter.

This chapter also presents how the data collection process using
the energy monitoring system called PMOG system and the survey
questionnaire. The demographic information collected includes the
factors affecting their energy consumption as discussed in Section 2.7
that falls to the three subgroups, namely historical data, economic
factor, and weather information. Furthermore, this chapter presents
the foundation of the proposed adaptive energy allocation, given the
collected data from the selected households.

To perform load forecasting and calculate the optimal daily en-
ergy allocation for households connected to generation-constrained
microgrids, the following data are needed:

• Historical data such as power usage, weather information such as
temperature, and monthly tariff to identify patterns and trends
in the usage.

• Demographic information such as the household’s total monthly
income, education and employment of the household head, total
number of household’s occupants, number of children, and the
number of working members of the household, to understand
the influence of socio-economic factors on household consump-
tion.

A survey and PMOG system was deployed to gather demographic
and the historical energy data of the households, respectively.

The historical energy data is necessary for the development of the
load forecast model, and the proposed scheme for optimally allocating
the available energy adaptively while meeting the basic needs of
each household. In forecasting the energy usage, the demographic
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Table 4.1: Village profiles: The 3 villages have different levels of access to
electricity. Village 1’s access to electricity is limited to a 5-hour
window, Village 2’s is constrained with daily energy quota, and
Village 3 is connected to the conventional grid.

Village Location Electricity Water Total HH Surveyed
(Philippines) service service with electricity HH

Village 1 Pangan-an Yes No 204 152

Island, (5-h daily)
Cebu Off-grid

Village 2 Paypay, Yes Yes 128 121

Daanbantayan, (0.8 kWh daily) (4-h daily)
Cebu Off-grid

Village 3 Aguho, Yes Yes 67 50

Daanbantayan, (unlimited)
Cebu Grid

information of each household is also essential, second to the historical
energy data, since it helps the load forecast model to identify the
different households according to their profile [Hsi15]. Both historical
energy data and the household profile are therefore considered to be
essential factors affecting the load forecasting [Gup17]. The monthly
tariff can be used as inputs to identify the electricity usage patterns of
the households. The corresponding monthly tariffs of each household
is reflective of how much electricity they have used for the month. To
understand the community’s energy usage as a whole, community
profile in terms of electricity and water services is presented in the
following section.

4.1 off-grid villages’ profiles

Three villages were selected in the province of Cebu, Philippines as
the communities of interest for this research.

These three off-grid communities are located in remote areas of the
province of Cebu that are powered by stand-alone power systems or
connected to the traditional grid. Table 4.1 presents the profile of the
villages surveyed for this study. The villages were selected according
to their electricity access – limited access (off-grid) and unlimited
access (traditional grid). A total of 366 sample households (HH) were
surveyed, 195 from Village 1 which 152 households are connected to
the off-grid power system and 43 of which have no electricity access,
121 from Village 2, and 50 from Village 3.
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4.1.1 Village 1

Village 1 is a small island located in Pangan-an, Lapu-lapu city, Cebu,
Philippines, with a household total of 405 with an average of 5 mem-
bers for each family (Figure 4.1). Out of 405 households, only 204

households are connected to the off-grid power system (diesel gen-
erators) and only 152 of which participated in the survey along with
other 43 households that are not connected to the off-grid power sys-
tem. Diesel generators are scheduled to operate around 6:00 PM to
11:00 PM daily, and the community has electricity access only at this
time. In exceptional cases, the power system can operate in day time
upon request with corresponding fees for diesel and other operating
expenses. The Pangan-an Island Cooperative for Community Devel-
opment (PICCD) manages the operation of the power system in the
village.

The village used to be serviced by an off-grid solar power plant with
a generation capacity of 45 kW. The solar plant was composed of 504

solar modules (90 W), 118 lead-acid batteries with 12V 1800AH rating,
charge controllers, inverters and a low voltage distribution system.
However, the solar plant stopped operating sometime in 2011 on the
recommendation of the Department of Energy Visayas Field Office
(DOE VFO) after they had conducted an assessment. According to the
assessment of the DOE VFO, the solar plant needed full replacement
of the battery bank and 150 solar modules that would cost around
PHP 6 million before the plant could go back to its regular operation.
The management of PICCD decided to purchase diesel generators to
continue to provide electricity to the community instead of doing an
overhaul of the solar plant because of financial constraint. Without
external help, the community cannot implement the recommendation
of the DOE FVO as there is no funding available for them to avail and
purchase the necessary components and devices for replacement.

Village 1 has no access to potable water supply within the island.
Almost all households store rainwater for daily use. Rainwater is
used for bathing, washing of clothes, cleaning and other household
activities that require water, except for cooking for which they need to
use potable water. Some households use rainwater for drinking after
boiling and cooling it. The island sources its potable water from the
nearest mainland.

4.1.2 Village 2

Village 2 is located in Paypay, Daanbantayan, in the southern part
of Cebu province (Figure 4.2). In 2013, the super typhoon Yolanda
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Figure 4.1: Village 1 is located in a remote island in Lapu-lapu city, Philip-
pines. Houses are typically made of light materials such as bam-
boos, plywood, and weaved coconut leaves.

devastated several villages, towns, and cities in the Philippines. Many
people died, while others lost their homes and livelihoods. Village
2 is located in one of the towns affected severely by the typhoon,
and where many people lost their houses. Aside from food and other
relief goods, selected survivors of the super typhoon were provided
with houses to help them recover faster. The Philippine Red Cross
in cooperation with their partners and the local government unit of
Daanbantayan, Cebu, built houses in a small community called Red
Cross Village for the benefit of a selected few survivors of typhoon
Yolanda. The village is composed of 128 households, a daycare centre,
and a community livelihood centre. Five mini solar plants service
the whole community. Three of the mini solar plants have 33 kW
generation capacity, and two have 10 kW that aggregates to 119 kW.
With this generation capacity, each household is allocated with 0.8
kWh of energy for daily use (4.1). Each household is installed with
energy usage indicator that the households can check the level of their
energy usage. The indicator has three levels with different colours.
Green for "go" status that means the remaining energy is still high.
Orange for "warning" status that the available energy is low and the
allocated energy is at a critical level. Red is for "stop" status that
means the allocated energy is at an empty level and signifies that the
households consume all their allocated energy for the day. Once the
red level is breached, the energy management system automatically
cut-off the connection of the household to the off-grid power system.
The power system is using batteries that serve as energy storage
during the day and back-up source during the night. The allocation
is done to control the energy usage of the households according to
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Figure 4.2: Village 2 is a community whose houses are built by the Red Cross,
Philippines in cooperation with the Local Government Unit (LGU)
of Daanbantayan, Cebu for the survivors of typhoon Yolanda. The
community has an off-grid solar power that allocates 0.80 kWh as
the daily energy quota for each household.

the generation capacity of the available solar plants. The remaining
energy is then used to supply the community livelihood centre and
the daycare centre.

All households are connected to the local water supply that operates
4-hours daily, 2-hours in the morning (randomly selected) that runs
between 6:00 AM to 10:00 and 2 hours in the afternoon that runs
between 2:00 PM to 6:00 PM.

4.1.3 Village 3

Village 3 is located in Aguho, Daanbantayan, Cebu, Philippines (Figure
4.3). The community is composed of 67 households and a community
livelihood centre. Out of 67 households, 65 are occupied, and five
households are not connected to the grid. The community was built
by Human Habitat Philippines, a non-government organisation with
the aide of their building partners and the local government. This
community is another project of the non-government organisation for
typhoon Yolanda survivors of the town.

The community is connected to a local water supply operating
24-hours daily.

4.2 development of survey questionnaire (sq)

In this study, collected data includes energy usage of households in
terms of the number of appliances and frequency of use each day,
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Figure 4.3: Village 3 is a community built by Human Philippines in coor-
dination with the help of the LGU of Daanbantayan, Cebu. The
community is donated to the survivors of typhoon Yolanda. The
community is connected to the conventional grid.

apart from their demographic information. Thus, a personal interview
or face-to-face survey with a questionnaire was employed.

Aside from gathering the demographic information of the house-
holds, the survey is used to:

1) determine the household energy usage pattern based on the
number of appliances and frequency of usage and

2) understand their energy needs in the context of the available
services such as water and electricity in their villages.

The questionnaire was designed to have three sections that covered
the following profiles of the selected villages: Demographics, Energy,
and User-empowerment.

4.2.1 Profiles

4.2.1.1 Demographic Profile

The Demographic Profile (DP) section includes questions that gather
information, such as their:

• role in the family,

• age,

• gender,

• educational attainment,

• house occupancy type,

• occupation,

• number of children in
school,
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• total number of people liv-
ing in the household,

• total number of people
working, and

• total monthly income of the
household.

The demographic information is considered important in determin-
ing the different factors that affect the energy consumption of the
household. These information were selected based on the works of
Hsiao [Hsi15], Chae et al. [Cha+16b], Mandal et al. [Man+06], and
Moon et al. [Moo+19] as discussed in Chapter 2.

4.2.1.2 Energy Consumption Profile

The Energy Consumption Profile (ECP) section covers information,
such as:

• the list of household appliances,

• the frequency of use,

• monthly electric bill, and

• the list of people who stay at home at night and day with their
corresponding ages.

An open-ended question was also included in the ECP section to
determine whether their electricity usage would change when there is
no power interruption or quota for day use.

4.2.1.3 User-empowerment Profile

The last part of the questionnaire is the User-empowerment Profile
(UEP) section. This section allows the participants to rank ten enumer-
ated items according to their priorities. The 10 items are:

• water,

• sanitation,

• electricity,

• housing,

• roads,

• employment/job,

• community livelihood pro-
gram,

• health facilities,

• education/school,

• flood/typhoon protection.

These items are considered to be the basic needs of the people
according to Maslow’s hierarchy of needs [Mas43]. These items also
represent the two levels (low and high) of the needs of the people.
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Water, sanitation, electricity, housing, and roads represent the low-level
needs, and the items represent the high-level needs: employment/job,
community livelihood program, health facilities, education/school,
and flood/typhoon protection.

In User Empowerment Profile section (UEP), participants awareness
level on the impact of their energy use on the environment is also
surveyed, as well as their motivation for saving energy. The data from
this section is used in comparing the three villages concerning their
needs in Section 4.6.2.

The survey questionnaire is attached as appendix A.3 of this thesis.

4.3 development of pmog system

For collecting the energy data of the households, an Energy Moni-
toring System (EmS) is developed and deployed. The EmS used in
this research is based on an existing monitoring system available in
the Cogent Laboratory of Coventry University called Cogent-House
[Cog15]. The EmS is a modified version of Cogent-House that caters
for the requirements of this research, which is to gather the electricity
usage of the households in the remote communities powered by an
off-grid power system, with limited generation capacity. The Cogent-
House system is designed to run individually from a group of sensors
communicating with a centralised server, and sending the data by
hopping from one local server to another. For this research, the EmS
is designed to collect the total household’s energy usage using a Cur-
rent Transformer (CT) jaw sensor of the Current Cost Envi energy
monitor, and the appliance energy usage using Individual Appliance
Monitors (IAMs). This modified version of the EMS is referred to as
the Philippines micro-off-grid (PMOG) system.

Apart from energy usage (house and appliance levels), the PMOG
system is enabled to gather environmental data such as the tempera-
ture inside the households. The PMOG systems can store and transmit
data to a remote server, where it can be accessed and viewed through
a web browser. Full details of PMOG system deployment are attached
in this thesis as appendix A.4.

4.3.1 PMOG system flow

The PMOG system is composed of the Envi energy monitor and
IAMs, gateway (Raspberry Pi (RPi), and internet dongle) as shown
in Figure 4.4. The PMOG system uses an RPi 2, Model B, with 1 GB
RAM and external internet dongle as its local server devices and
internet gateway. RPi is installed with a micro Secure Digital (SD)
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card which serves as the storage unit of the system and the house of
the codes. The codes govern the system’s operations from logging,
storing, sending, and displaying data to the webpage intended for
the PMOG (see appendix C for the RPi set up guide). The webpage
displays power consumption and temperature of the household for
a given date and time. The Current Cost Envi energy monitor and
IAMs are both off-the-shelf devices. The Current Cost Envi energy
monitor consists of two integral parts: 1) the function display monitor
with built-in receiver and 2) the CT jaw sensor with energy transmitter
[Cur]. CT jaw sensor is clamped to the electricity mainline of the house
to monitor the household level energy consumption without altering
the existing electricity circuits connections to contact the probe to
the electrical lines physically. The Envi energy monitor gathers data
from the generated energy of the microgrid, and the total power
usage of the selected households in the community. IAMs monitor the
appliance level power consumption of each appliance plugged into
it. An external antenna is attached to the 4G modem internet dongle
to enhance the signal for data transmission. Sensors and the local
server communicate wirelessly through the Envi energy monitor. The
Envi display monitor displays all current readings of both CT jaw and
IAM sensors. All data recorded in the local server are transmitted to
the remote server using the internet dongle. The current clamps and
IAMs take power reading every 6 s and the PMOG system stores the
data temporarily in the local server and push all the recorded data
to the remote server every hour (Figure 4.5). PMOG system gathers
electricity reading from the household and appliance level every 6

seconds and update the remote server every hour. The PMOG system
was deployed without altering the existing set up of the microgrid on
both the generation and utilisation side during installation.

4.4 deployment of the survey and pmog systems

The deployment of both the survey and PMOG system were carried
out with the help of the University of San Carlos (USC) in Cebu
City, Philippines. The survey and the installation of the PMOG to the
selected households were conducted between August – September
2016. This research project has undergone the Ethical approval process
of Coventry University.

4.4.1 Field survey: Household face-to-face interview

The survey was done in the three remote villages in the Philippines.
The survey took 40 – 50 minutes for each respondent. The survey
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CT Jaw sensor

|

Figure 4.4: PMOG System Architecture. The PMOG system is designed to
collect energy data on both household and appliance levels using
CT jaw sensor and IAMs, respectively. Energy data is stored
locally and pushed through to the remote server.

questionnaire was written in English, so orientation was conducted for
the interviewees to familiarise the questions and get acquainted with
the local language translations. Orientation was done to ensure that
the interviewees knew how to explain the questions from the survey
questionnaire to the respondent when needed, as not all respondents
were expected to understand English.

All answers were recorded in English or Cebuano – the local dialect,
according to the preference of the interviewer.

4.4.2 PMOG system installation

There were 10 PMOG systems installed in the selected households
and microgrid at the two villages; Village 1 and Village 2. These
two villages are both powered by an off-grid power system with
limited generation capacity. Each village had 5 PMOG systems, 1 for
monitoring the generation side and 4 for the households representing
the household profiles as discussed in Section 4.8. The maximum
number of IAMs installed in each household is 3 for television, electric
fan, and DVD players, respectively. Full details of the installation is
shown in Table 4.2.

Households were selected after the survey was done where the
demographic information was already gathered. The number of house-
holds with the same profile was considered in the selection process.
Parameters such as number of appliances, number of occupancies and
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Figure 4.5: PMOG Data Flow. Each household has 1 PMOG system, as shown
in Figure 4.4. CT jaw sensors sense the total energy consumption
of the households as they are connected to the main panel and
communicate with the local server RPi for storage. Each IAM
monitors the energy of the assigned appliance into it and sends
the data to the local server through wireless transmission.
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Figure 4.6: Face-to-face interview with the respondents in one of the villages.
Participants are asked to rank and give scores to the 10 items as
enumerated in Section 4.2.1.3 according to their priorities.

Table 4.2: Summary of installed PMOG systems in Village 1 and Village 2

Location Server Device Dwelling/ No. of Date Monthly Monthly
No. Appliance occupants installed Income bill

(PhP) (PhP)

Village 1 PMOG1 0 Generator 02-Sep-16

PMOG2 0 House 1 7 01-Sep-6 10000 270

1 TV 01-Sep-16 (£164) (£ 4.5)
PMOG3 0 House 2 4 02-Sep-16 14000 525

1 TV 02-Sep-16 (£230) (£8.6)
2 Fan 02-Sep-16

PMOG4 0 House 3 10 02-Sep-16 17800 800

1 TV 02-Sep-16 (£292) (£13.1)
PMOG5 0 House 4 11 02-Sep-16 6500 560

1 TV 02-Sep-16 (£107) (£9.2)
VIillage 2 PMOG6 0 Solar Plant 21-Sep-16

PMOG7 0 House 5 3 21-Sep-16 6500 100

1 Fan 21-Sep-16 (£107) (£1.6)
2 TV 21-Sep-16

3 DVD player 21-Sep-16

PMOG8 0 House 6 9 21-Sep-16 8000 100

1 TV 21-Sep-16 (£131) (£1.6)
2 Fan 21-Sep-16

3 DVD player 21-Sep-16

PMOG9 0 House 7 5 22-Sep-16 10000 100

1 TV 22-Sep-16 (£164) (£1.6)
2 Fan 5 22-Sep-16

PMOG10 0 House 8 4 22-Sep-16 2500 100

1 TV 22-Sep-16 (£41) (£1.6)
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total household’s monthly income were considered in the selection
process. The number of households with the same count of those three
parameters was tallied. Then a household was selected in each profile
to represent them. Figure 4.7 shows the actual PMOG system installed
in households. The details of PMOG system installation are attached
to this thesis as appendix A.2

The webpage, which is running from the remote server, updates the
displayed data every 20 minutes after each hour. When the webpage
is not updated, PMOG system may need to be checked to confirm its
status.

Figure 4.8 is the actual webpage of the PMOG monitoring system.
The webpages display sender, device number, server time for both
local and remotes servers, and the readings from IAMs, CT jaw sensors
and built-in temperature sensors. Appliances monitored by the IAMS
were assigned to a specific channel display in the Envi display monitor
in which the devices number is displayed on the webpage. The Envi
display monitor can display individual energy consumption of the
appliances through IAMs with channel numbers from 1 to 9 with
channel 0 reserved for the CT jaw sensor. The transmitted data can
be retrieved from the remote server designated to the PMOG system
by accessing the server from any computer connected to the internet.
The data is in the form of .csv file that can be viewed with Microsoft
Excel. It includes the date and time, electricity usage (power (W)),
temperature (degree C), device number, and the server number of the
nodes.

The technical report of the deployment is available online for public
consumption (http://cogentee.coventry.ac.uk/ gene/).

4.5 data processing

From the six seconds interval, the data is preprocessed to convert
the raw data into the targeted interval of forecasting, which is a day
ahead load forecasting. The data used for this research is collected
from September 2016 to December 2018.

The PMOG data is processed to clean the data and eliminate the
possible extreme values recorded from the CT jaw sensor (household
level monitoring) and the IAMs (appliances level monitoring).

Table 4.3 shows the summary statistics of the energy data from
the PMOG system. With 5 hours operation daily for Village 1, the
data points are much lesser when compared with Village 2 which
households have 24 hours access to electricity depending on their
usage of the given energy quota. For households in Village 2, the
energy quota can last for 24 hours when used accordingly. Although
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Figure 4.7: PMOG systems deployed in the villages collecting energy data
on both the off-grid power systems (generation side) and the
households with individual appliance monitors (IAMs).
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Figure 4.8: PMOG system node report interface. The webpage displays the
newest transmitted data to the remote server. The data includes
the date and time, device number, and PMOG number aside from
the main data which are the temperature and power usage of the
household.

some households experience power outage as their demand is much
higher to what is provided. If households use their energy quota in 5

hours, the number of data points will be similar to that of Village 1.
Energy data shows that households from Village 1 have much higher
energy usage than households from Village 2, as shown in Table 4.3.
This can be attributed to the available energy of each village. Village
1 is not limited to how much electricity they use within the 5 hours
operation while Village 2 is limited with the daily quota.

It can be observed that House 3 from village 1 has the highest
average power usage of 261.8 W, and House 8 of village 2 has the
lowest average power usage of 13.4 W. To confirm that the tabulated
average from the PMOG system reflects the expected power usage
of each household, reference is made to the survey data. During the
survey, the households were asked to list all their appliances and their
frequency of use every day or per week. According to our survey data,
household 8 has listed a television, and two ceiling fans as their main
load aside from 3 light bulbs used during the night. From this list,
an average of at least 50 W of electricity usage is expected per day
when the television is used. However, from the energy data gathered,
the television has not been used since the TV is broken (confirmed
with the survey data). This explains why household 8 has an average
power usage of 13.4 W instead of the expected average power usage
of at least 50 W.

Most of the households have the same electricity load, which include
television, electric fan or ceiling fan, light bulbs, and DVD players
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Table 4.3: Descriptive summary for the households daily energy usage
Dwelling Number of Power usage, (W)

data points Mean SD Median MAD Min Max Range Skew Kurtosis Std. Error

Village 1
House 1 9288 78.2 33.0 93.5 16.6 1.3 146.2 144.9 -1.0 -0.4 0.34

House 2 9116 112.5 29.1 116.8 19.0 0.0 610.2 610.2 -0.1 10.6 0.30

House 3 7667 261.8 67.3 273.6 80.2 0.0 767.3 767.3 0.4 1.6 0.77

House 4 9369 80.5 70.5 75.9 52.2 6.5 718.7 712.2 3.6 19.3 0.73

Village 2
House 5 68657 55.0 53.6 35.7 43.9 0.0 452.5 452.5 1.2 1.3 0.20

House 6 82514 22.9 32.0 7.6 7.1 1.0 254.5 253.5 1.8 2.0 0.11

House 7 58692 33.0 40.6 14.5 13.1 0.0 378.4 378.4 1.6 1.4 0.17

House 8 61136 13.4 11.3 11.0 10.4 0.0 122.9 122.9 1.9 6.6 0.05

Legend: SD - Standard Deviation, MAD - Median Absolute Deviation

with speakers. Their electricity usage varies in time of use, frequency
of use, and availability of the electricity.

The data is processed by eliminating all extreme values or spikes
reading of the PMOG system. PMOG reading beyond 1000 W for
house level monitoring is suppressed and 200 W for appliance level.
The thresholds are approximate values calculated from the total power
rating for the available appliances of the households. The elimination
of power surges or spikes are done before the daily average of the
power usage is performed.

Daily average power consumption is calculated by getting the area
under a curve. A trapezoidal method is used to estimate the daily
average power usage. The generalised form of the trapezoidal method
in getting the area under a curve in integrating a sine function with
N+ 1 evenly spaced points is expressed as

∫q
p

f(x)dx =
q− p

2N

N∑
n=1

(
f(Xn) + f(Xn+1)

)
(4.1)

where the scalar value of q−p2N is the spacing between each point.
The trapezoidal method is readily available as a Matlab function. This
function is then used in getting the average power usage per day.

The calculated daily average power consumption is used as the input
data of the forecast model in Chapter 4. The aim is to forecast the next
day power usage and used it as one of the basis in determining the
optimal energy allocation of the household.

4.6 description of data

The preprocessing of the dataset is done using R tool, free software for
computing and one of the popular programming languages used in
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Table 4.4: Statistics of households temperature data
Dwelling Number of Temperature, (°C)

data points Mean SD Median MAD Min Max Range Skew Kurtosis Std. Error
House 1 9288 34.0 5.2 35.9 4.9 21.6 39.4 17.8 -0.6 -1.2 0.05

House 2 9116 35.0 3.7 35.9 4.1 23.9 39.4 15.5 -0.6 -0.8 0.04

House 3 7667 30.2 1.4 30.1 1.1 25.4 39.4 14.0 2.5 13.5 0.02

House 4 9369 35.4 4.0 36.8 3.6 22.8 39.4 16.6 -0.9 -0.5 0.04

House 5 68657 28.8 2.2 28.4 2.1 23.6 37.3 13.7 0.8 0.3 0.01

House 6 82514 28.0 2.6 27.5 2.4 21.9 37.3 15.4 0.8 0.2 0.01

House 7 58692 29.5 1.9 29.5 2.0 24.6 39.4 14.8 0.2 -0.4 0.01

House 8 61136 29.6 2.4 29.3 2.4 23.4 39.4 16.0 0.5 -0.2 0.01

Legend: SD - Standard Deviation, MAD - Median Absolute Deviation

the field of Data Science [Rto]. Tables 4.3 and 4.4 present the statistics
of the household’s energy consumption and the temperature data. The
energy consumption and temperature data of the households were
collected from September 2016 to December 2018. For the forecasting
model, the dataset was divided into 70:15:15 ratio for training, test, and
validation purposes. Both energy consumption and temperature data
were used as inputs for the forecast model, as presented in Chapter 5.
All data are stored and available for public consumption at Cogentee
repository (url: http://cogentee.coventry.ac.uk/ gene/researchdata/)
[Pal19].

4.6.1 Energy data yield

The average data yield every day is determined to check if the data
points collected are adequate to represent the daily energy usage of the
households. Figure 4.9 shows the average data yield for each PMOG
system installed in selected households at village 1 and village 2. The
average yield of the data collected daily is above 80 %, as shown in
Table 4.5.

For any system that collects data, missing values are often one of the
issues. There are many possible reasons as to why missing values occur.
This issue can be attributed to the system’s malfunction (i.e. short
circuit, system breakdown), interrupted operation (i.e. systems are
turned off), loss of contact (i.e. lossy cable), or no internet connection
for wireless transmissions. All these are difficult to address within
the system itself to avoid all the possible causes of missing data. In
this study, to ensure that daily energy usage of the household is
represented well by the data points from the PMOG system, daily
data points must at least have 80% yield. This is equivalent to 4 hours
of electricity usage in a day for Village 1 and 19.2 hours for Village
2. For Village 1, the average daily yield is above 90% and for Village
2 is above 80% as shown in Table 4.5. A data yield of at least 80%
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Figure 4.9: PMOG system data yield. The daily yield of the data in % (y-axis)
for each household (x-axis). The daily average of yield (%) is
above 80% for all PMOG systems installed in the households.

Table 4.5: Daily yield of PMOG systems

Dwelling N Daily yield
mean std. dev min max median

House1 307 95.17 14.93 22.55 100.00 100.00
House2 315 94.18 17.33 10.94 100.00 100.00
House3 232 94.94 18.12 2.99 100.00 100.00
House4 314 95.90 14.06 22.55 100.00 100.00
House5 266 94.23 16.40 8.33 100.00 100.00
House6 314 95.81 14.72 2.78 100.00 100.00
House7 263 81.52 23.00 0.35 100.00 89.58
House8 246 89.18 24.97 0.35 100.00 100.00

is considered necessary to build the forecasting model to maintain
the integrity of the data as logged by the PMOG system for each
household that is monitored.

Figure 4.10 shows the actual electricity usage of one of the house-
holds from Village 1 over 5 hours that the off-grid power system is
operating. It can be observed that the household immediately uses
electricity as soon as the power system is up around 6:00 PM. Power
level variations reflect certain changes in electricity usage of the house-
holds. From Figure 4.10, the house-level power lever changes as soon
as the TV is turned on and off. When the electric fan is turned on,
total power usage increase reflecting the power consumption by the
fan on house level.

According to the survey data [Pal19], households usually use televi-
sions during dinner time (around 7:00 PM) until the last TV program
they like which is generally around 9:30 PM to 10:30 PM daily. This
can be observed that the power usage in this hour is high, as shown
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Figure 4.10: Actual electricity usage pattern of house 1 from Village 1. House-
level power usage (y-axis) varies as the usage of TV and electric
fans change reflecting the power usage of each appliance over
time (x-axis). Data: 1 day (5 hours) electricity usage.
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Figure 4.11: Households energy usage pattern. House level power usage
(y-axis) of the selected households in village 1 varies in time
(x-axis) when the load is changed. Most of the households use
electricity as soon as the power system is up. Some households
maintain almost the same load throughout the operation of the
power system (e.g., House 3); thus very few variations on power
usage is reflected.

in Figure 4.10 Otherwise households just use light bulbs, electric fans
and phone chargers until the operation cuts down.

Figure 4.11 shows the house-level power usage of the selected house-
holds in village 1. The variations in electricity depend on how the
household uses their appliances at any time. The house level power
usages reflect the general characteristics of the electricity usage of the
household. According to our survey, people in village 1 use electricity
as much as they can during the operation time of the off-grid system.
From figure 4.11, it can be observed that some households register
power usage higher than 100 W just before the cut off time. According
to the survey data, correspondents used electricity by watching televi-
sion until the end of operation of the microgrid. This explains the 100

W usage of power right before the cut-off time.
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Figure 4.12: Daily energy usage pattern. Power usage (y-axis) at the house
level varies significantly for the entire day (x-axis) for each
household. Most of the households peak their usage of electricity
around 6:00 PM to 9:00 PM (dinner time)

For Village 2, households have an energy quota every day, which is
0.8 kWh. Households are given the responsibility to use their energy
quota wisely if they want the 0.8 kWh energy to last for 24 hours.
As shown in Figure 4.12, each household reflects their power usage
at different times of the day. Figure 4.12 shows high power usage
happens between 6:00 AM and 10:00 in the evening.

Figures 4.11 and 4.12 show an actual electricity usage of the house-
holds in Village 1 and Village 2, respectively for a given day. A similar
usage can be observed on the households in Village 1 from 7:00 PM
up to 9:00 PM where their electricity usage peaks. For households in
Village 2, most of them peak their electricity usage from 6:00 PM to
9:00 PM. Since Village 1 has electricity available for them from 6:00 PM
until 11:00 PM only, all households utilise the available power for the
entire duration of the operation of the microgrid, showing a constant
electricity usage of the households. However, for Village 2, electricity
can be available for 24 hours depending on their usage as they are
given a specific energy quota daily. From Figure 4.12, households have
several peaks of electricity usage spread in 24 hours compared with
households from Village 4.11 that depicts a stable usage from the
beginning of the operation of the microgrid.

Both villages have a fixed amount of monthly fees for the corre-
sponding energy allowance. Hence the impact of the monthly bill may
have minimal influence on how they use their energy allowance. The
electricity usage pattern of Village 1 is perceived to be almost constant
for the entire duration of operation of the microgrid however Village 2

presents interesting electricity characteristics as the usage varies for 24

hours depending on their usage of the given energy quota. According
to the survey data, 46 % of the households experience a power outage,
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Table 4.6: Household composition: Age, household members working and
attending school (%).

Household composition Village 1 Village 2 Village 3

Age
less than 5 years old 9.81 13.31 15.63

5 to 18 years old 34.97 36.53 38.67

more than 19 years old 55.23 50.15 45.70

Attending school 31.48 35.45 37.11

Working (with regular income) 5.55 7.89 5.86

and 54 % are satisfied with the existing quota and do not use all up
the given energy quota daily.

4.6.2 Description of survey data

Here, survey data are the responses recorded from the conducted
face-to-face interviews with the households in the three villages based
on the survey questionnaire. As mentioned in Chapter 2, the survey
questionnaire gathers the demographic profiles of the households.
In this section, the tabulated responses of the correspondents are
presented.

4.6.2.1 The respondents

All respondents are identified to be mothers, fathers, or head of the
households. This is to ensure that the responses to the questionnaires
reflect the household’s conditions and status on energy usage. Ta-
ble 4.6 shows the breakdown of the age of all the participants and
their household members, as well as the number of family members
working and attending school.

Village 3 has the highest percentage of children attending school
with 37.11 %, followed by Village 2 (35.45 %), and Village 1 (31.48 %),
as shown in Table 4.6. These percentage values indicate that more than
1/3 of the total population of the villages are children and attending
school. Village 1 has the lowest portion of the household members
with ages less than 5. These children stay at home with their mother or
father attending to them. The number of family members with regular
work and sources of income, aside from the household head and
spouse, is few with only 5.55 % in Village 1, 7.89 % in Village 2, and
5.86 % in Village 3. Most of the adults are working on a contractual
basis with no regular source of income.
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Table 4.7: Characteristics of household head and spouse, and average number
of occupants per household.

Characteristics Village 1 Village 2 Village 3

Average age (years)
Household head 44.69 42.19 41.27

Spouse 44.85 40.34 38.93

Average level of education (completed years)
Household head 7.92 9.27 8.31

Spouse 7.41 8.93 8.09

Gender of household head (%)
Female 28.48 16.53 6.67

Male 71.52 83.47 93.33

Average number of occupants per household 6 7 7

4.6.2.2 Characteristics of household head and spouse and average number
of occupants per household

AS shown in Table 4.7, overall, household heads across all three vil-
lages finished at least primary level of education (average education
years is 8.50). In Village 2, household heads have average education
years of 9.27, the highest of the three villages, indicating 3rd year level
in high school, followed by Village 3 with 8.31 and Village 1 with 7.92.

Across all villages, female heads are only 17.22 % while male heads
are 82.78 %. Village 1 has a relatively high female head of 28.48

%, followed by Village 2 with 16.53 %, and Village 3 has 6.67 %
(the lowest). On the other hand, the average number of household
occupants for both Village 1 and Village 2 is 7, 1 point higher than
Village 1, which has 6.

4.6.2.3 Households income and household head occupations

The majority of the household heads in the selected three villages
earn less than the poverty threshold and some even less than the
food thresholds (Table 4.8 and Figure 4.13). Both food and poverty
thresholds are set by the Philippine Nutrition and Food Research Insti-
tute. The food threshold is defined as the minimum monthly income
needed to meet the monthly food needs and the nutritional require-
ment for a Filipino family with five members. The poverty threshold
is an expanded food threshold to include non-food needs such as
clothing, housing, education, transportation, and health expenses.

As shown in Table 4.7, the average number of occupancy per house-
hold for the three villages is higher than 5. From the given thresholds
shown in Figure 4.13, there are more than half of the surveyed house-
holds in all three villages living with a monthly income under the
Food threshold. Table 4.8 shows the breakdown of the monthly income
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Table 4.8: Monthly income (range) of the households

Income Range Households (%)
(PhP) Village 1 Village 2 Village 3

Less than the food threshold 68.88 59.84 60.47

(6,300.00), approx. £87.5
Within the food and poverty 10.71 24.59 27.91

threshold ( 6,301.00 ~ 9,100.00),
approx. £87.51 ~ £125)
Above the thresholds 19.90 13.93 16.28

(9,101.00), approx. £125.1 and up

Figure 4.13: Monthly income of the 3 villages compared with the poverty
and food thresholds.
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Table 4.9: Percentage (%) of Households, by occupation of the HHs head

Percentage (%)
Occupation Village 1 Village 2 Village 3

Manager, supervisor, official, professional 0.66 4.96

Technician or assoc. professional 6.58 4.96 6.67

Clerk 1.32 2.48 2.22

Service, shop, or market sales worker 17.11 14.88

Farmer, forester, fisher 45.39 19.01 48.89

Trader 11.84 0.83

Plant or machine operator or assembler 0.66 2.48

Laborer or unskilled worker 5.92 41.32 33.33

Housewife 3.29 5.79 2.22

Shellcraft/Special occupation 7.24 3.31 6.67

of the households in each village. There are 68.88 % from Village 1,
59.84 % from Village 2, and 60.47 % from Village 3.

Poverty is common to most of the families in the communities who
make a living from agriculture, construction, fishing and any other
related activities as shown in Table 4.9. The average income of the three
communities, as shown in Figure 4.13, is below the national minimum
monthly income, which is PHP 9,064 (£145) and is referred to as the
poverty threshold. There are approximately 82 % of the respondents
have a monthly income below the poverty threshold. There are 15 %
of them earning between PHP 9100 (£150) and PHP 20,000 (£325), and
only three % of the households have monthly income more than PHP
20,000 (£325).

The household heads commonly work as farmers, fishers, foresters,
labourers, and unskilled workers (Table 4.9). Since most of the house-
hold heads completed high school education only (Table 4.7), the
occupations they engage in are limited to jobs that do not require a
college degree. The income from this type of job is minimum wage,
and sometimes even less than the minimum wage mandated by the
law.

4.6.2.4 Households electricity experience

One of the open-ended questions in the survey questionnaire is "If you
will have 24-hour access to energy, what would change in your energy
consumption?" in the pretext that the energy available is unlimited.
This means that for Village 1, electricity will be available 24 hours
daily and not 5 hours and for Village 2, there will be no quota. Their
electricity usage will be similar to the households from Village 3 that
are connected to the traditional grid.

For Village 1, 96% of the respondents when given to have 24 hours
access to electricity want to use it during the day as the temperature
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in the island can be too warm. With electricity, they can use some
electric fan to cool down. Other reasons include to be able to use
a refrigerator for the food storage, to watch television any time of
the day for entertainment purposes, and want to use electricity for
business purposes. The other 4% of the respondents are quite happy
with the 5 hours of electricity access.

For Village 2, 83 % of the respondents want to have 24 hours access
with no quota so that they can use more electricity for food storage, en-
tertainment, business, and for their children’s education. They believe
that 24 hours of access can improve the study habits of their children
that go to school. For the other 17 %, the existing energy scheme is
sufficient for their electricity needs; however if the electricity will be
available 24 hours similar to the traditional grid, they may change their
electricity usage. Currently, there are 46% of the households in Village
2 that experience electricity outage with the given quota and wanted to
have more energy when possible. Other households are quite satisfied
as they do not use all up their daily quota, these comprise the 54%
of households connected to the microgrid but express willingness to
change their electricity usage when the access has no limitation.

Village 3 enjoys electricity access 24 hours as they are connected
to the traditional grid, and the only factor that limits them to use
electricity is their capability to pay. Their income dictates on how
much electricity they use.

4.7 energy usage of the households

In this section, the average energy usage of each household in Village 2

is investigated as a case study for this research. The data from Village
1 was dropped as the electricity usage of the households is almost con-
stant for the entire 6 hours operation of the microgrid. What makes the
data from Village 2 interesting is the fact that households use different
electricity in 24 hours depending on their available energy quota daily.
The households are given the responsibility to utilise the given quota
that would serve them best for 24 hours. It is hypothesised that some
households are using energy twice more than the other households.
Moreover, these households are expected to experience an energy
shortage. From the survey data that 46 % of the household experience
electricity outage daily as their energy quota is not sufficient for their
needs and there are 54 % of the households that used all up their
energy quota daily as they used less electricity than what is given.
Hence the motivation of this work can be simplified from this reality
of Village 2 that the excess energy quota of the other households can
be used by other households that need more energy.
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Figure 4.14: Average energy usage of the households in Village 2

To determine the actual energy usage of the households, the average
energy usage of the households are determined from the available
energy data of PMOG systems. Figure 4.14 shows the average energy
usage of households. It can be observed that house 5 has the high-
est average energy usage and house 8 has the lowest. House 5 also
presents the characteristics that it uses beyond the quota given. At first,
it was thought that the PMOG monitoring system has some faulty
reading the electricity usage of the households. However, it was found
out that the household is allowed to have more than the quota being
the president of their association in the village. The electricity usage of
House 5 is also reflective of the demand of households with a similar
profile. On the other hand, House 8 electricity usage is too little when
compared to House 5. House 8 is one of the households that do not
use all up their given quota daily. According to the survey data, House
8 uses electricity for lightings and ceiling fan only. The light bulbs
used for lightings are rated 10W, and the ceiling fan is 15W. House 6

and House 7 can be considered an average user that most of the time,
use their energy quota efficiently. Sometimes they experience a power
outage, but most of the time they do not use all up their energy quota.

4.8 household profiles

This section identifies the features of the household profile that would
be used as the consumer profiles for the development of the load
forecast model in Chapter 5. The forecast model is to predict the next
day energy usage of the households. The data needs to represent the
24 hours usage fo the households. Since Village 1 operates for 5 hours
only, this does not meet the required 24 hours usage; hence the data
was dropped. The features are selected from the survey data that are
considered to be significant factors of influencing households use of
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Table 4.10: Household profiles
Profile Occupants Average Family members

Monthly No. of Freq. of use Working Home
income appliances (hr/day) School

A 1 ∼ 3 4987 4 23 1 0 1

B 4 ∼ 6 7056 4 23 1 2 2

C 7 ∼ 8 7030 4 26 2 3 2

D 9 up 6529 3 17 3 5 3

energy. From Section 5.2.3, demographic information survey data, and
from the literature review, the following factors (shown in Table 4.10)
are selected to be the main features of the household affecting their
energy usage. There are four household profiles from grouping the
number of occupants of the household. The first group has one to
three occupants, the second group has four to six occupants, the third
group has seven to nine occupants, and the last group has ten or more
occupants. These groups represent the size of the family members
occupying a house. According to the study of Hu et al. [Hu+17], the
family size and the number of appliances are major influencers of en-
ergy consumption for Chinese urban households based on the results
of their online survey for 4964 households. Other features as discussed
in Chapter 2 such as the monthly income, number of appliances and
its frequency of usage, number of family members working, schooling
and staying at home were selected from the survey data. Table 4.10

shows the full details of the household profiles considered as inputs
aside from the historical energy data, temperature and the weekdays
of the forecast model developed in Chapter 5. Households are then
selected to represent each profile and to cover the variability of the
households in Village 2. House 5 is to represent profile A, House 6 is
for profile D, House 7 is for profile C, and House 8 is for profile B.

These data are then used for the training of the MLP-based neural
network presented in Chapter 5 to enable the model to predict the
energy consumption of each household.

4.9 chapter summary

In this chapter, the process of gathering the data and initial analysis
of the data is presented. All the necessary data needed for the devel-
opment of a load forecast model is successfully collected using the
developed survey questionnaire and the PMOG systems installed in
the selected households. The processing of historical energy data is
presented. The processing of the data is done to eliminate the extreme
values that may affect the real energy consumption of the households.
The extreme values were eliminated by applying a threshold on both
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house level and appliance level monitoring based on the power rating
of the available appliances of the households.

The PMOG data from Village 1 and Village 2 is scrutinised and
studied well to deduced the electricity usage of each village that is
connected to the microgrid. Both villages are powered with different
microgrids that are both operating offline. Village 1 is powered by a
diesel generator that operates 5 hours daily during night time while
Village 2 is powered by a solar power plant that provides energy quota
daily to the households. This energy quota allows the households to
use the energy for 24 hours depending on their usage. Some house-
holds use all up the given energy daily, and experience power outage
while other households are satisfied with the existing energy man-
agement scheme and do not use all up the given energy quota. There
are 46% of the households in Village 2 that experience power outage
and 54% do not use all up the given quota. The excess or unused
energy quota was given to those households are considered energy
wastage that could be used by other households that experience the
power outage. Given this scenario, the need to optimally allocate the
available energy is considered. This is explained in details in Chapter
6.

The data is also processed to create the necessary input matrix
needed for the neural network and the other techniques considered in
this research such as RBFN, GPR, and ARIMA.

With the real-world data gathered from the conducted survey and
the installed PMOG system to the households, this research is achiev-
ing realistic results on the proposed optimal daily energy allocation for
households connected to microgrids with limited generation capacity
as discussed in Chapter 6. The proposed optimal energy allocation is
derived by calculating the optimal value in the formulated optimisa-
tion problem considering the constraints posed by the power systems
and the number of households connected to the microgrid. The details
of this optimisation problem are presented in Chapter 6. The needs of
having an optimal energy allocation are also presented in Section 4.5
where some households consume more energy than the others. Also,
in this chapter, the consumer profiles are identified as discussed in
Section 4.8.

The next chapter presents the process of development of the load
forecast model.
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Chapter 4 presents the process of gathering energy and survey data.
These data are used for the development of energy forecast model and
consequently for the development of optimal energy allocation scheme
of daily energy allowance of each household in generation-constrained
microgrids, as shown in Chapter 6. Generation-constrained microgrids
are microgrids with limited generation capacity. This type of micro-
grids uses energy management restrictions such as energy consump-
tion quota to provide the basic electricity needs of the households
while maintaining a balanced operation. Microgrids that can sup-
ply the electricity needs of the households without restrictions are
considered to have unconstrained generation capacity.

This chapter presents the development of the energy forecast model
based on artificial neural networks (ANN), specifically the multilayer
perceptron (MLP). When using the neural network, choosing the
proper neural network sizes can be complicated as these affect the
performance of the network. Hidden layers and number of neurons
influence the networks’ forecasting performance in terms of root-
mean-square error (RMSE) along with the number of delay window
considered in the input stage. The process of selecting values for these
three parameters is discussed first. The process includes on how the
number of hidden layers HL, number of neurons N, and the number
of delay window D affect the performance of the MLP-based forecast
model in predicting the next day energy usage of the households. This
procedure is done to all input considered in the modelling of MLP-
based forecast model. MLP is preferred for being robust in handling
real-world data compared to the other techniques mentioned and does
not require a priori knowledge as most statistical-based approaches.
The data used in developing the forecast model is from village 2,
where the data reflects the 24-hours energy usage of the households.

This chapter aims to find the answers for the research question,

RQ1: Can the household’s daily energy consumption be forecast
with reasonable accuracy?

To answer the above research question, experiments were conducted
using four forecasting techniques namely MLP, Radial Basis Function
Neural Network (RBFN), Gaussian Progress Regression (GPR), and

71
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Figure 5.1: Load forecasting model development flow.

Autoregressive Integrated Moving Average (ARIMA). For MLP-based
forecast model, simulations were conducted to determine the com-
bination of hidden layer HL, neurons N, and delay window D that
generates the least values of RMSE. The RMSE value should meet
the threshold set for the forecast model that is 15 % of the actual
energy usage. The threshold is set based on the acceptable RMSE as
laid out in the work of Hsiao [Hsi15] and Moriano et al. [Mor+16],
20%. All forecast models were developed using the same data as with
the MLP-based model for comparison purposes. The performance of
the proposed MLP-based forecast model is also compared to existing
works of Marnerides and Din [DM17] and Ryu et al. [RNK16].

All forecast models are trained and validated using the data gath-
ered from the survey and the PMOG monitoring systems, as presented
in Chapter 4. Figure 5.1, shows the flow of the development of the load
forecasting model developed based on the MLP neural network. Gath-
ering the data is described in chapter 4, as well as the pre-processing
of data to eliminate unreasonable readings from the PMOG systems.
The succeeding sections described the process to determine the proper
size of the neural network for parameters such as hidden layers and
number of neurons and the appropriate number of historical data
delay window D. The results were graphed and tabulated to compare
the RMSE results. At the end of the experiment, the combination with
the least RMSE values is chosen for the MLP-based forecast model.
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5.1 finding the best combination of neural network

parameters

It has been established in Section 2.6.2 that the design parameters of
the neural network affect the performance of the network in forecast-
ing. Particularly, design parameters such as hidden layers HL, number
of neurons N, and delay D, as well as the training data, affect the
forecast model performance and generality [Cha+16b]. In this regard,
the best combination of the three parameters must be determined to
improve the forecast accuracy based on the available data for train-
ing. For the neural networks, the selection of the network size is not
a straightforward process. The traditional approach usually starts
with the simplest architecture and gradually explores complex struc-
tures. This approach is followed in the development of the MLP-based
forecast model.

The neural network MATLAB toolbox is used in the development
of the model. The toolbox’s train function is used to train the network
using the Levenberg-Marquardt algorithm. To identify the values of
hidden layers HL and the number of neurons N that would generate
the lowest RMSE possible; a heuristic approach is employed. The
three variables were considered in the simulations of the model using
MATLAB toolbox. A reasonable range for hidden layers HL, number
of neurons N and delay D is considered to avoid over-fitting that may
lead to erroneous load forecasting.

The process of selecting the values of hidden layers HL, the number
of neurons N, and delay D to generate the best performing forecast
model is presented in the next section.

5.1.1 Steps in determining the best combination of hidden layers HL, num-
ber of neurons N, and delay D?

Following the guide on the design procedure of the neural network
for forecasting from the work of Palmer et al. [PJS06], below are
considered important when designing and developing the network
for the MLP-based forecast model.

1.) Determining the number of outputs: Any MLP neural network
model can have one or more outputs that could correspond
to the desired outcome from the model. It could represent the
hourly, daily, weekly, monthly, or annual energy consumption.
In this work, a single-output model with the output being the
next day energy consumption (kWh) of the households is used.
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2.) Identifying the number of inputs: Determining the inputs be-
fore the development of the model is important. The inputs are
selected depending on the available data. In this study, the in-
puts for forecasting the daily energy usage of each household
include the historical energy data, weather variables such as
temperature, and calendar such as days of the week.

3.) Identifying the number of hidden layers (HL): There are no
existing common rules in determining the suitable number of
hidden layers of the MLP. In this work, a heuristic approach is
used to identify the appropriate number of hidden layers with
the best performance in terms of root mean square error (RMSE).
From the selected range of the HL, more than 100 combinations
were used during the simulations.

4.) Identifying the number of neurons per layer (N): Same with
the hidden layers, there are no common methods in determining
the number of neurons per layer that would guarantee a good
performance of the network in forecasting. A heuristic approach
is also employed in identifying the number of neurons for the
MLP with the ultimate goal of having the best performance in
predicting the energy consumption of the households.

5.) Identifying the number of delays, (D): The number of delays
refers to the window of the inputs to be considered in reshaping
the historical energy data to form the input matrix. Determining
the right number to be used in the network together with the
hidden layers HL and the neurons N, requires more than 100

simulations from the selected range of 1–30 days of equivalent
energy usage.

The simulation is done using a heuristic approach, and then the
selection is made from the tabulated results where the model with
the smallest RMSE is chosen. In this research, the desired level of
accuracy corresponds to an RMSE of less than 15% of the 0.8 kWh
(existing allocation), which is equivalent to an energy of 0.12 kWh
or 120 Wh. This amount is considered to be the allowable error for
forecasting the energy usage of the households. RMSE is a measure
of the difference between the predicted and the actual value over the
number of observed data as described by equation 5.1. This error
represents the average difference between the predicted values and
the actual values. The 15% error is the maximum error allowable based
on the previous usage of the households as gathered from the PMOG
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systems. Thus, the 15% error or less is desirable for forecasting the
next day usage of the households.

RMSE =

√√√√ n∑
i=1

(Êi − Ei)2

n
(5.1)

where Ê1, Ê2, Ê3, ...Ên is the predicted values, E1,E2,E3, ...En is the
actual values, and n is the number of observations.

The number of neurons was simulated in the range of five to thirty
with 5-unit steps. This range was chosen to observe the performance
of the network through its RMSE. The range is considered to be
reasonable to avoid the complexity of the network and overfitting
due to a large number of neurons in the network. On the other hand,
the delay was set in the range of 1 to 21 with 2-unit step. The neural
network given with knowledge of a household’s current energy usage,
the future usage (state) may depend on the previous consumption
(states) only to a small degree, i.e. the behaviour is Markovian up to
a certain point. Therefore, few days historical data should suffice to
have an acceptable accuracy in forecasting. For the number of hidden
layers, the network was trained with hidden layers ranging from one
up to five hidden layers. This range was chosen to have a possible
model that is shallow (with 1 to 2 hidden layers) and not so deep (with
4 to 5 hidden layers) neural network.

To validate the forecast model a k-fold validation was performed
with k equal to 10 in all the combinations of inputs used in determining
the best combinations of the three parameters that would allow the
neural network to provide the lowest RMSE. This is to make sure that
each observation from the original data has the chance to appear in
training and testing datasets [Koh95]. The validation method works,
as shown in Figure 5.2 where I is the number of iterations.

5.1.2 Input shaping (delay D) and the effect of the network size on the
performance of the model in forecasting

This section aims to investigate the effects of the number of energy
historical data points considered as input window or delay (D) to the
performance of the neural network in load forecasting.

The performance of the network can be improved or worsen de-
pending on the number of delay window D. If the value of delay D is
too small, there may be not sufficient information to make an accurate
prediction, and if the value of D is too large, there may be over-fitting.

To avoid over-fitting, simulations were conducted. The number
of delay window D is varied to observe the effect of delay D on
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Figure 5.2: K-Fold Cross Validation

the performance of the network and to determine the best value of
delay D, which generates the lowest RMSE. The concept of delay
D is shown in Figure 5.3. For this research, the experiment is done
by considering the past points of historical data to predict the next
day energy consumption. This also serves as the input matrix of the
MLP-based forecast model.

For example, if N = 10 and D = 5, so

Energy data: P1,P2,P3,P4,P5,P6,P7,P8,P9,P10

Input: Output:

P1,P2,P3,P4,P5 → P6

P2,P3,P4,P5,P6 → P7

P3,P4,P5,P6,P7 → P8

P4,P5,P6,P7,P8 → P9

P5,P6,P7,P8,P9 → P10

Suppose the energy consumption for 5th of May 2020 is to be
predicted with D equal to 5, then the historical data from 30th of April
2020 to 4th of May 2020 will be taken into consideration.

RMSE is used as the performance metric of the MLP-based fore-
cast model [CD14]. RMSE is the measure of difference between the
actual energy consumption (Ea) and the forecasted values (Ei). Hence,
smaller value of RMSE is preferred. The lower the RMSE, the better
the performance of the model to forecast. There are several sets of
input tried during the simulation to observe the effects of the input to
the performance of the neural network. Since the off-grid system is
using batteries, the generation side is considered constant and hence
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Figure 5.3: Input delay window concept where DW1 is delay window 1,
DW2 is delay window 2 and DWm is the total number of delay
windows for the given input series.

the variations caused by the solar panels and other factors that affect
the generation of the electricity is neglected. Below is the list of inputs
(and its combinations) used in developing the forecast model:

1.) Historical energy data (PMOG data) such as power consump-
tion of the household

2.) Household’s temperature (indoor)

3.) Calendar days such as weekdays

4.) Household profiles from the survey data (demographics, and
monthly energy tariff)

5.1.3 Standard load forecasting using historical energy data as input

This section aims to investigate how the delayD affect the performance
of the neural network in forecasting. Simulations were conducted us-
ing the daily average energy consumption of the households as inputs.
It assumes that the number of D significantly affects the performance
of the forecasting model. Figure 5.4 shows the results of the simulation
with the network’s number of neurons are 15, and the hidden layer
is one. It can be observed that the performance of the network varies
as the delay D increases. At some point, it may seem that the RMSE
values decrease as the delay D increases; however, RMSE standard
variations are also changing randomly. The lowest average RMSE for
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Figure 5.4: RMSE (Wh) results where x-axis shows the delay D and y-axis is
the RMSE (Wh) for each delay D showing variations of a k-fold
validation.

this network is 0.102 kWh or 102 Wh with a standard deviation of 9

for D = 21. Table 5.1, shows the performance of the network for each
neuron considered in this part of the experiment. Across all the values
neurons together with values for Figure 5.4, the lowest RMSE is 0.099

kWh or 99 Wh with a standard deviation of 6 for a network with one
hidden layer, 30 neurons and historical energy data of 11.

To observe further the effects of the hidden layers and neurons
along with the number of historical energy data considered as inputs,
the number of hidden layers is increased to 3 and then 5. Tables
5.2 and 5.3 show the RMSE results as the number of hidden layers
is increased with historical energy data as the inputs. For a neural
network with three hidden layers, the lowest RMSE is 87 Wh with a
standard deviation of 22 for a network with 30 neurons N and the
delay D is 21. On the other hand, for a network with five hidden
layers, the lowest RMSE is 85 Wh with a standard deviation of 15

for a network that 30 neurons and 21 delays. For both networks, the
network’s performance is at its best when the number of neurons is
30, and D is 21. Both values are extreme values considered in the
simulations. Same trends are observed for the values of RMSE that is
decreasing as the values of both neurons, and D are increasing with
big variations as reflected in the standard deviations of each RMSE
corresponding to each neuron N and delay D.

Since the goal is to find the best combination of neurons per layer
N, hidden layer HL, and the delay D that generates the lowest RMSE
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Table 5.1: Average RMSE (Wh) and the standard deviation as D increases for
each neurons of neural network with 1 hidden layer

Number of Neurons, N
5 10 15 20 25 30

Delay, D RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD

1 116 6 116 6 116 7 116 6 115 5 115 7

3 108 9 109 7 108 10 107 9 108 7 107 8

5 108 10 107 7 106 7 106 8 105 8 103 10

7 106 8 105 9 106 8 102 9 103 7 104 9

9 105 7 105 6 105 5 106 5 102 8 102 6

11 107 7 103 6 104 6 102 7 104 7 99 6

13 106 10 103 7 105 8 104 8 100 9 103 9

15 104 10 107 9 106 11 100 6 101 9 103 8

17 103 11 106 8 106 10 101 11 106 6 99 12

19 105 11 105 11 103 8 99 9 104 10 105 11

21 106 10 104 12 102 9 101 12 99 12 103 13

Table 5.2: Average RMSE (Wh) and its standard deviation as the delay D
increases for each neurons of neural network with 3 hidden layer

Number of Neurons, N
5 10 15 20 25 30

Delay, D RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD

1 115 8 116 8 115 5 115 8 116 7 115 6

3 108 8 107 11 106 9 106 12 104 8 104 12

5 107 9 105 10 102 6 101 7 102 10 101 11

7 105 10 106 7 104 8 105 9 102 10 100 8

9 106 5 103 6 103 8 97 13 98 10 95 13

11 106 6 102 6 101 8 97 10 94 11 92 8

13 103 11 103 11 100 11 102 9 91 13 87 18

15 104 11 106 14 101 12 100 8 84 24 97 14

17 105 11 105 9 100 14 96 13 96 11 86 18

19 107 12 104 11 100 12 100 9 91 14 95 15

21 107 10 105 12 104 10 94 13 102 12 87 22
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Table 5.3: Average RMSE (Wh) and its standard deviation as the delay D
increases for each neurons of neural network with 5 hidden layer

Number of Neurons, N
5 10 15 20 25 30

Delay, D RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD

1 116 6 116 7 115 6 116 10 115 4 115 5

3 108 10 108 8 104 11 106 9 106 11 104 8

5 107 6 104 9 104 9 103 11 99 13 101 12

7 105 7 106 8 104 9 100 11 103 7 103 11

9 106 6 101 8 99 7 99 8 100 7 104 9

11 106 8 101 9 98 9 98 5 100 10 96 9

13 105 8 101 9 98 10 97 8 102 12 94 13

15 105 10 101 11 92 15 98 14 97 12 95 12

17 102 12 102 9 102 12 92 14 98 12 96 15

19 105 9 99 13 92 13 98 8 100 14 94 10

21 101 12 105 10 94 13 100 12 96 14 85 15

possible, this process is repeated for all input (temperature, weekdays,
and households profiles) and then the acceptable RMSE is chosen.

Note: From this point onwards, the results presented are from MLP-based
forecast model with one hidden layer unless otherwise specified. A neural
network with one hidden layer is widely accepted in forecasting as discussed
in Section 2.6.2.

5.2 improving the performance of mlp-based forecast

model

As mentioned in Chapter 2, factors affecting load forecasting include
weather information such as temperature, calendar days such as days
of the week, and household demographics such as income, number
of household occupants, number of working people and number of
children still in school. The next section presents the performance of
the neural network, as these inputs are added.

5.2.1 Adding temperature as input

With the goal of improving the performance of the forecast model,
the temperature inside the houses is added as input. Table 5.4 shows
the RMSE results with energy and temperature data as inputs for a
neural network with one hidden layer. The lowest average RMSE is
86 Wh with a standard deviation of 8 for a neural network with N
= 25 and D = 19. The smallest standard deviation is 4, with average
RMSE of 94 Wh for a neural network with N = 10 and D = 21. This is
the overall performance of the model for all households in village 2,
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Table 5.4: Average RMSE (Wh) and its standard deviation as D increases for
each neurons of neural network with 1 hidden layer for energy
and temperature data as inputs

Number of Neurons, N
5 10 15 20 25 30

Delay, D RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD

1 102 7 103 6 102 7 100 6 101 5 102 7

3 98 7 99 9 98 9 98 7 97 6 100 9

5 96 8 95 8 96 6 97 7 98 8 93 10

7 97 11 96 7 96 8 95 7 95 7 94 8

9 96 6 98 6 94 7 95 8 94 12 96 7

11 95 9 95 8 93 8 91 9 92 6 91 8

13 94 10 94 10 92 11 93 9 91 14 91 14

15 92 10 96 11 92 10 95 8 90 9 91 11

17 96 10 92 10 91 11 95 11 93 8 91 11

19 96 10 95 9 93 9 95 10 86 8 91 10

21 95 5 94 4 94 5 93 5 91 8 92 7

considering the temperature inside all houses as input. Results show
that the performance of the forecast model continues to improve as
the number of input increased.

5.2.2 Adding weekdays as input

To improve further the performance of the forecast model, the number
of weekdays is added as the input of the neural network. Table 5.5
shows the performance of the network for each neuron and delay. The
lowest average RMSE is with 88 Wh with a standard deviation of 15

for a neural network with N = 30 and D = 15. The smallest standard
deviation is 3, with an average RMSE of 94 Wh for a neural network
with N = 5 and D = 21.

5.2.3 Adding demographic information as input

This section aims to evaluate the effect of adding the demographic
information of each household or the consumer profiles as inputs to
the neural network’s performance in load forecasting.

An assumption was made that MLP-based load forecast model can
perform better when demographic information of the households are
considered as inputs.

The demographic information included in the model are:

• HHs total monthly income,

• number of occupants,
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Table 5.5: Average RMSE (Wh) as D increases for each neurons of neural
network with 1 hidden layer for energy, temperature and weekdays
as inputs

Number of Neurons, N
5 10 15 20 25 30

Delay, D RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD

1 102 6 105 4 102 8 104 5 102 6 102 5

3 99 8 99 8 97 7 96 5 98 6 93 8

5 96 6 96 10 94 7 96 8 96 11 93 9

7 96 6 97 8 95 8 96 8 93 10 93 9

9 96 6 96 6 95 6 93 8 92 8 91 10

11 96 7 96 6 93 8 92 11 93 11 88 13
13 96 10 95 10 94 11 93 9 91 14 91 12

15 95 7 95 7 94 10 92 11 92 11 88 15

17 95 10 93 10 93 8 94 8 92 8 91 8

19 95 8 93 9 90 6 92 8 91 9 92 9

21 94 5 94 6 93 7 90 5 91 5 89 10

• number of appliances,

• frequency of using the appliances in a day (in terms of total
hours),

• number of children with age less than five years old,

• number of children who are in school, and

• number of HHs member who is working.

The household’s total monthly income is selected to be one of the
input as income represents the economic status of the household. The
number of occupants affects on how the household spend their energy.
It is assumed that the larger the family, the more electricity is used.
The total number of hours used of the appliance each day gives an
idea to the model that this is how long they spend the energy given
to them. The children with age less than five are expected to be at
home at all time and having the kids at home, means the households
need to have some entertainment for them and may use electricity.
The number of working members tells the model how many people
are inside the house during the day and how many people are away.
All this demographic information is considered to be affecting directly
or indirectly to energy consumption by using electricity through home
appliances as the socio-economic factor in the load forecast model.

By integrating this information, the model has become adaptive to
each household.

Table 5.6 shows the average RMSE and the standard deviation for
the neural network with HL = 1 for each number of neurons N and
delay D. The lowest average RMSE is 85 Wh with a standard deviation
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Table 5.6: Average RMSE (Wh) as the delay D increases for each neuron
per layer N of neural network with 1 hidden layer HL for energy,
temperature and weekdays and the demographic information as
inputs

Number of Neurons, N
5 10 15 20 25 30

Delay, D RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD

1 102 5 102 7 100 7 102 8 101 8 100 7

3 97 6 96 7 95 5 95 6 95 6 95 6

5 95 8 95 8 95 6 93 8 93 9 93 11

7 94 7 94 6 93 7 93 8 92 10 90 10

9 95 7 95 6 91 9 92 10 91 7 91 11

11 94 6 94 7 92 6 94 8 87 10 90 12

13 93 9 93 12 92 10 89 11 92 14 88 12

15 95 7 92 9 91 9 90 10 88 12 92 10

17 94 12 92 9 88 10 91 11 92 9 86 8

19 95 11 93 8 90 8 91 9 91 7 90 15

21 96 5 92 7 93 7 88 7 85 12 87 14

of 12 for a neural network with N = 25 and D = 21. The smallest
standard deviation is 5, with average RMSE of 95 Wh for a neural
network with N = 15 and D = 3.

The performance of the model is assessed not only in terms of RMSE
but also with the time needed to train the network. Training time for
a neural network with one hidden layer HL for the range of neurons
per layer N from 5 to 30 and delay D from 1 to 21 is shown in Figure
5.5. Training time increases as the number of neurons per layer N and
delays D increases.

5.2.4 How does the number of hidden layers HL affects the performance of
the network in load forecasting?

In this section, the effect of the number of hidden layers to the perfor-
mance of the neural network in load forecasting is evaluated. To see if
the RMSE results vary significantly with the number of hidden layers
HL and with all the inputs considered, hidden layer HL was increased
from 1 to 3 and then 5. Table 5.7 shows the network’s performance
with three hidden layers in terms of average RMSE and standard devi-
ation for each number of neurons N, and delay D. The lowest average
RMSE is 83 Wh with a standard deviation of 8 for a neural network
with N = 25 and D = 21. The smallest standard deviation is 5 for a
network with N = 5 for both D = 3 and D = 21 with corresponding
average RMSE of 96 Wh and 94 Wh, respectively.
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Figure 5.5: Time needed to train the model for each delay, D with the corre-
sponding neurons per layer N for neural network with HL = 1 .
X-axis is the range of delay D and Y-axis is the time in minutes
m.

Table 5.7: Average RMSE (Wh) as D increases for each number of neurons
with 3 hidden layer for energy, temperature, weekdays and the
demographic information as inputs

Number of Neurons, N
5 10 15 20 25 30

Delay, D RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD

1 103 8 101 6 101 8 99 8 101 6 99 7

3 96 5 96 7 94 6 90 9 91 9 92 9

5 93 11 94 10 95 7 93 11 85 13 89 9

7 96 7 91 10 93 10 88 11 89 10 87 15

9 96 6 96 7 93 10 85 18 83 20 88 13

11 93 9 93 12 91 8 93 12 85 17 83 17

13 94 7 92 11 89 16 89 13 87 22 85 16

15 96 11 93 10 88 13 84 13 83 16 83 20

17 94 9 92 9 86 11 85 13 86 7 89 10

19 95 9 92 11 94 13 88 16 86 15 84 17

21 94 5 91 8 88 9 93 8 83 8 83 20
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Figure 5.6: Time needed to train the model for each delays, D with the
corresponding neurons, N . X-axis is the range of D and Y-axis is
the time in minutes, m.

Figure 5.6 the time needed to train the network for each value of
neuron for the range of delay D for a network with three hidden layers
HL.

For a network with five hidden layers, the tabulated RMSE results
are shown in Table 5.8. The lowest RMSE is 80 Wh with a standard
deviation of 12 for a neural network with 20 neurons and 21 delays.

Figure 5.7 and Table 5.9 show the time needed to train the network
with five hidden layers for each N and range of D. When HL was
raised from 3 to 5, training time has increased accordingly.

To understand the effect of hidden layers HL to the performance
of the network, the following simulations were conducted. For these
simulations, we used HL value from one to five for a neural network
with 20 neurons.

As the number of hidden layers of the neural network for the
MLP-based forecast model was increased, training time increases
proportionally with the number of hidden layers as well as with the
number of neurons and the delays.

It was observed from the simulation results that the smallest average
RMSE does not have the least standard deviation that makes the selec-
tion of the combination of the hidden layers HL, neurons per layer N
and delay D even more difficult. The goal is to have the smallest RMSE
as possible with the least standard deviation to have a minimum error
in prediction using the MLP-based forecast model. From the gathered
results of the experiments, there was no instance that the lowest av-
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Table 5.8: Average RMSE (Wh) and standard deviation of neural network
with 5 hidden layer with energy, temperature, weekdays and the
demographic information as inputs for each neuron (N) and delay
(D)

Number of Neurons, N
5 10 15 20 25 30

Delay, D RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD

1 103 8 101 7 101 7 100 7 99 9 97 7

3 97 9 95 9 96 7 94 6 92 6 94 8

5 91 10 95 9 90 9 93 10 89 14 89 10

7 94 9 93 9 89 11 94 7 87 13 86 13

9 97 7 95 9 93 9 92 7 90 11 88 15

11 92 7 96 9 89 16 90 13 94 12 94 10

13 95 7 91 9 86 16 85 14 88 13 92 12

15 93 8 90 13 94 14 85 16 82 20 86 11

17 95 9 91 10 87 11 89 9 91 11 92 14

19 95 9 93 12 89 10 88 9 84 11 93 9

21 94 6 97 4 94 9 80 12 81 21 95 7
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Figure 5.7: Time needed to train the model for each delays, D with the
corresponding neurons, N with HL = 5. X-axis is the range of D
and Y-axis is the time in minutes, m.

[ October 13, 2020 at 14:07 – version 2.0 ]



5.2 improving the performance of mlp-based forecast model 87

Table 5.9: Training time as the delay D increases for each neurons per layer
N of neural network with 5 hidden layer for energy, temperature,
weekdays and the demographic information as inputs

Training time in minutes, Tm
Number of neurons, N

Delay, D 5 10 15 20 25 30

1 0.04 0.09 0.29 0.85 1.78 4.42
3 0.08 0.18 0.62 1.75 3.73 8.85
5 0.12 0.27 0.96 2.70 5.82 13.50
7 0.16 0.38 1.34 3.77 8.04 18.52
9 0.20 0.50 1.73 4.89 10.34 23.83

11 0.24 0.62 2.20 6.11 12.82 29.24
13 0.28 0.76 2.67 7.37 15.36 35.03
15 0.33 0.91 3.17 8.73 18.04 41.06
17 0.37 1.07 3.70 10.20 20.86 47.56
19 0.42 1.24 4.31 11.79 23.81 54.50
21 0.48 1.43 4.90 13.58 27.00 62.18

Table 5.10: Performance of the NN as D increases for each hidden layer
for neural network with N = 20 and with energy, temperature,
weekdays and the demographic information as inputs

Number of hidden layer(s), HL
1 2 3 4 5

Delay, D RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD

1 100 9 100 7 102 8 100 8 100 8

3 93 6 95 8 92 11 93 6 94 7

5 94 7 90 9 92 11 91 10 94 8

7 91 9 94 10 89 12 88 8 87 10

9 92 9 91 11 91 12 92 9 83 16
11 91 7 85 11 96 17 84 12 85 12

13 93 12 92 11 91 8 87 17 92 10

15 88 11 91 12 89 10 78 23 93 9

17 93 8 87 11 87 16 84 8 90 10

19 91 7 88 7 81 11 87 13 85 13

21 89 7 88 15 90 11 88 9 95 4
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Figure 5.8: RMSE (Wh) values for neural network with 3 hidden layers HL
and 20 neurons per layer N for each delay D with energy, temper-
ature, weekdays and the demographic information as inputs.
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perature, weekdays and the demographic information as inputs.
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Figure 5.10: RMSE (Wh) values for neural network with 3 hidden layers
HL and 20 neurons per layer N for each delay D with energy,
temperature, weekdays and the demographic information as
inputs.

erage RMSE has the least standard deviation. Results show that the
lowest average RMSE sometimes has the largest standard deviation.
This made the network undesirable as the forecast model needed to
be precise as it can be in forecasting the next-day consumption of
the households, hence lowest RMSE with small standard deviation is
preferred. Note that the data used for training the forecast model is
from September 2016 to December 2018 with 70% for training, 15% for
testing and 15% for validation purposes. Finding the best combination
of the three parameters which generates the smallest average RMSE
with minimum standard deviation needs to be examined thoroughly
to ensure the accuracy of the prediction.

5.3 discussion of results

Recall that delay D represents the delay window as presented in Sec-
tion ??. From the input shaping and determining the best number of
delay D to provide low average RMSE, results show that the delay
D affects the performance of the model directly. However, this rela-
tionship between the delay D and the RMSE is nonlinear as shown
in Figure 5.4 and Figure 5.8. And as for the number of neurons and
hidden layers, the effect of these two hyper-parameters to the perfor-
mance of the neural network in load forecasting is also nonlinear and
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can be observed in Figure 5.4 and Figure 5.8 as well as from Table 5.1
to Table 5.10.

From the lowest RMSE value in Table 5.1 which is 99 Wh with
a standard deviation of 6 (for a neural network with 30 neurons N
per layer and delay D of 11), with historical energy data as input,
lowest RMSE value goes to 86 Wh with a standard deviation of 8 for
a network with 25 neurons N per layer and delay D of 19 (Table 5.4)
when households temperature was added as inputs. When calendar
information such as weekdays was added as inputs, the lowest RMSE
values is 88 Wh with a standard deviation of 13 for a network with
30 neurons per layer and delay D of 11 (Table 5.5). And when the
demographic information of the household are added as inputs, the
lowest RMSE value is 85 Wh with a standard deviation of 12 from
a network with 25 neurons per layer and delay D of 21 (Table 5.6).
All these networks have one hidden layer only. From these results, an
RMSE of 85 Wh was achieved when the demographic information was
added.

To continue to observe the effects of the number of hidden layers
HL values is increased from 1 to 3 with the four inputs considered.
Results are shown in Section 5.2.4. The performance is improved as the
possible lowest RMSE is 83 Wh with a standard deviation of 8 from
a network with 25 neurons per layer and delay D of 21. For a neural
network with five hidden layers, the lowest RMSE value is 85 Wh with
a standard deviation of 15 with 30 neurons per layer and delay D
of 21 with energy data as inputs. However, adding the temperature,
weekdays and demographic information of the households, the lowest
RMSE is down to 80 Wh with a standard deviation of 12 from a
neural network with ten neurons per layer and delay D of 21. It can
be observed that the average RMSE is decreasing when the number
of delay D is less than or equal to 9. This is true for all inputs as
seen in Figure 5.4 and Figure 5.8 however RMSE values seem to be
unstable when delay D is higher than 10. Several RMSE outliers occur
for the range of delay D from 11 to 21. Furthermore, in this range, the
standard deviation is bigger than with the lower values of delay D.

The lowest RMSE with the lowest standard deviation is desired as
this model can forecast better with small variations in the performance
of the network. However, considering the results, the lowest RMSE
does not have the lowest standard deviation, which is the ideal pref-
erence, and the lowest standard deviation does not have the lowest
RMSE. To aid in deciding the proper sizes of the network, the time
parameter is considered. The training time is compared for each hid-
den layer with different neurons per layer N for the range of delay
window D. Figures 5.5, 5.6, and 5.7, shows the training time needed
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to train networks with 1, 3, and 5 hidden layers respectively for each
value of neurons per layer and the range of delay D inputs.

It can be observed that the training time takes longer as the delay
D increases as well as the values of neurons N per layer and hidden
layers HL increases.

Therefore, to maintain a good performance in forecasting, a neural
network with 20 neurons per layer N, three hidden layers HL and
seven delays D is chosen to be the best network for a load forecast
model to generate the lowest RMSE of 81 with a standard deviation
of 9 and training time of 24 seconds. Simulation results show that
the RMSE values are smaller with demographic information of the
households added as input than without it. For the same number of
hidden layer HL, neurons N per layer and window delay D, without
demographic profile as input, the lowest RMSE result is 128 Wh with
a standard deviation of ± 14.1 and the % error is 20.11 %. When the
demographic profile is added, the RMSE value decreased to 81 Wh
with a standard deviation of ± 9 and % error of 13.58 %. The % error
improved by 32.47 %. The RMSE of 81 Wh is an acceptable value for
this research that is below 15% of the allowable error. As stated earlier,
the goal is to develop a forecast model that would generate an RMSE
less than 120 Wh or 15 % of the actual energy usage.

Figure 5.11 shows the regression plot of the model that validates the
network’s performance in forecasting, which exhibits the output of
the model for the given data sets for training, validation and test. For
the proposed MLP-based model, the regression fit is fairly acceptable
with R equal to 0.92, 0.91, and 0.90 for training, validation and test,
respectively, with R equal to 0.92 for overall response.

Figure 5.12 shows the actual energy usage and the predicted values
using the proposed model from the test data. The data used in this
experiment is from Village 2, dated from September 2016 up to De-
cember 2018. The performance of the model in terms of RMSE is 93

Wh with a standard deviation of 9. The mean absolute per cent error
(MAPE) is 6.2 %. Table 5.11 shows the MAPE and absolute per cent
error between the actual energy usage and forecasted energy usage.

The main reason why household profiles are taken into consider-
ations in developing the load forecast model is not only to improve
the performance of the network but to make the model adaptive that
would enable the model to do village-wide forecast using a single
model rather than having one model for each household. This model
is expected to work with similar household profiles of Village 2 in
forecasting their next-day energy consumption.

Table 5.12 and Figure 5.13 show the performance of the model to
forecast for each household load. The highest accuracy is 93.22% for
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Figure 5.11: Regression plot of the neural network for load forecast model.
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Figure 5.12: MLP-based forecast model performance. The actual energy us-
age is almost the same with the predicted values with the neural
network’s MAPE of 6.2 % and RMSE 93 Wh and standard devia-
tion of 90.
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Table 5.11: MAPE and absolute percentage error between the actual and
forecasted energy usage of the households.

No. Actual Predicted Absolute percent MAPE
error %

1 0.3695 0.3747 0.5255 6.2
2 0.8000 0.7449 5.5130

3 0.5977 0.6702 7.2436

4 0.6515 0.6264 2.5083

5 0.6392 0.7330 9.3832

6 0.6629 0.6560 0.6902

7 0.7351 0.6446 9.0556

8 0.5010 0.6003 9.9298

9 0.7613 0.6771 8.4213

10 0.5304 0.6131 8.2791

11 0.6752 0.7380 6.2812

12 0.8000 0.7630 3.6984

13 0.7423 0.6950 4.7251

14 0.7899 0.7436 4.6375

15 0.8000 0.7480 5.1960

16 0.8000 0.7198 8.0227

17 0.7107 0.7575 4.6820

18 0.8000 0.7771 2.2945

19 0.7858 0.7228 6.3018

20 0.2027 0.2854 8.2730
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Table 5.12: Average forecasting accuracy of the MLP-based load forecast
model for households in village 2

House N Average accuracy

H5 50 93.2%
H6 50 88.6%
H7 50 90.6%
H8 50 92.5%

Overall 200 91.3%

0 20 40 60 80 100 120 140 160 180 200

Day

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
n
e
rg

y
, 
(k

W
h
)

Actual

Predicted

Figure 5.13: Prediction results using MLP-based forecast model

forecasting the energy usage of House 5 H5, and the lowest is 88.6%
for House 6 H6. The overall accuracy is 91.3% for forecasting the
energy usage of all households.

5.4 evaluation and comparison of results

The performance of the proposed MLP-based load forecast model is
compared to the existing models using the same data from village 2.
Table 5.13 shows the comparison of the neural network architecture
and the performance of the model in terms of RMSE.

The lowest RMSE is 77 Wh from the forecast model of Ryu et al.
[RNK16] that uses DNN with four hidden layers and 50 neurons.
However, this model has a standard deviation of 30, the highest stan-
dard deviation amongst the models. This model can forecast the next
day energy consumption of the households more accurately than the
others. However, the variations are more significant compare to other
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Table 5.13: Comparing the performance of the proposed MLP-based load
forecast model to the existing models.

Reference Input NN Hidden Neurons RMSE Std. Training
Variables layer(s) Deviation Time (s)

Din and Calendar data, RNN 1 20 105 7 62

Marnerides [DM17] weather conditions,
and Din historical energy data

Ryu et al. [RNK16] Calendar data, DNN 4 50 77 30 1411

weather conditions,
historical energy data

weather conditions
This work Calendar data, MLP 3 20 81 9 24

weather conditions,
historical energy data,

household’s profile

models with lower standard deviation. Moreover, this model takes
1411 s or 23.5 minutes to train the network to learn. A very long time
compared to other MLP-based models presented. The work of Din
and Marnerides [DM17] is similar to this work. The differences are
on the neural network architecture, the former uses RNN with one
hidden layer, and the latter uses MLP with three hidden layers, and the
input variables considered. This work includes a household’s profile
aside from the three input variables mentioned in the work of Din
and Marnerides. The proposed model offers RMSE of 81 Wh with a
standard deviation of 9 compared to the model from the work of Din
and Marnerides that generates an RMSE of 105 Wh with a standard
deviation of 7. For the training time, the proposed MLP-based forecast
model needs 24 s to train the neural network compared to the work of
Din and Marnerides that needs 62 s. The training time takes longer as
the number of input, and the NN hidden layers increases.

The performance of the network varies with respect to the number
of the hidden layers HL, neurons per layer N, and the delay D. Since
these parameters influence the performance of the network to forecast
the energy usage significantly, the network is trained and evaluated
with different data to avoid overfitting and to ensure that the model is
working not only with the trained data but also with the new data.

It can be observed that this process can be beneficial in handling
big data without performing a specific pre-processing to exclude
outliers and still able to get good and acceptable results in forecasting.
Since the approach does not require a special process on the data
before using it as inputs of the network, makes this method easy to
implement.

The MLP-based forecast model presented in this chapter estimated
the next day energy consumption of the household within the accepted
tolerance, which is 12 % of the current fixed energy allowance that is
equivalent to 120 Wh. Since the model is using both historical energy
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data and household profiles, the model generally estimates the energy
consumption of each household. The model is to predict the next-day
energy consumption of the households as the inputs were indexed for
each profile. The model is then trained to learn the difference between
households by the given index for each profile. Hence, when the data is
similar to one of the profiles, the model is able to recognise the pattern
and predict the next day energy consumption accordingly. Indexing
the data through the profiles of the households enables the proposed
model to predict the next-day energy consumption of each household
without the need of creating another model for each household. For
this study, the total number of households profiles is 4, as presented
in Chapter 4 Section 4.8. The performance of the model in predicting
the next-day usage of the households can be improved further when
the number of profiles is increased. Practically, the proposed forecast
model with household profile as one of the inputs can predict each
household’s energy consumption without having special features. The
proposed model also shows better performance in terms of RMSE
when compared with the other two existing works, as presented in
Table 5.13 that use neural networks.

5.5 experimental results using other forecasting tech-
niques

To assess the overall performance of the MLP-based forecast model,
the results were compared with three other existing forecasting tech-
niques such as radial basis function neural network (RBFN), Gaussian
progress regression (GPR) and autoregressive integrating moving av-
erage (ARIMA).

5.5.1 Gaussian Process Regression

For comparison purposes, a Gaussian process regression (GPR) model
is also developed to forecast a next-day energy usage of the house-
holds in an off-grid community. GPR models are non-parametric
probabilistic models.

Matlab GPR tool is used to develop the model for forecasting the
next-day energy consumption of the households. The algorithm used
in this tool includes estimating the important parameters from the
given data such as the covariance function k(xi, ji ÷ θ), noise covari-
ance, σ2, vector coefficient of fixed basis function, β. The function
’fitrgp’ makes use of the values of the aforementioned parameters
to determine the kernel parameters. The vector value of the kernel
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Figure 5.14: Prediction performance of GPR model

parameters argument consists of all the initial values of the data’s
standard deviation σf and the characteristic length scale σl.

The performance of the model in terms of RMSE is 97 Wh with a
standard deviation of 4.

5.5.2 Radial basis function neural (RBFN) networks

Another model is developed for comparison purposes; in this section,
the RBFN model is presented. RBFN is one of the simplest forms of
neural networks. It consists of 3 layers only: the input layer, a hidden
layer, and the output layer. The network has one hidden layer that
connects all the neurons from the input layer and the output based
on the specific weights specified by the network. Building the RBFN
network follows a specific procedure like the feedforward neural
networks. The four essential parameters in designing or building the
RBFN network considered in this chapter are the initial centroid, the
number of neurons, β, and delay.

Training the RBFN network is a bit tricky since in each simulation,
the initial values for centroids, neurons, and the beta β need to be
initialised. Determining the right combinations of these three hyper-
parameters are critical as they dictate the performance of the network
in forecasting. Table 5.14 shows the performance of RBFN in terms
of RMSE. The lowest RMSE recorded in this simulation is 0.169 kWh
with a beta β of 0.001, neurons per layer N of 10, centroid C of 110,
and delay D of 3.
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Table 5.14: RBFN RMSE Results

(N = 10, β = 0.001)
Initial Delay, RMSE (kWH) Delay, RMSE (kWh)

Centroids, C d (Lowest) d (Highest)

20 1 0.224 7 0.275

30 1 0.235 13 0.271

40 1 0.212 7 0.271

50 1 0.181 9 0.270

60 1 0.181 15 0.261

70 2 0.171 8 0.253

80 1 0.172 14 0.249

90 3 0.171 13 0.233

100 2 0.171 12 0.231

110 3 0.169 14 0.219

120 3 0.172 14 0.217

130 3 0.171 12 0.214

150 3 0.171 13 0.207

200 4 0.171 14 0.196

The performance of the RBFN network is presented in Table 5.14. It
can be observed that as the values of beta β are varied and keeping
the values for centroids and neurons, the RMSE results either increase
or decrease. The beta β controls the range of the variation of the radial
function and thus affects the results in a symmetrical manner. The
performance of the network depends on the values of the beta β.
When the number of neurons is varied while keeping the values of
beta β, and centroids C, constant, the performance of the network also
varies. Depending on the number of the delay window D, the RMSE is
either increased or decreased or both. When the number of centroids
C is varied while keeping the values for neurons per layer N, beta β,
and the delay D constant, the performance of the network is either
increase and decreased. This result is the same when the number of
neurons per layer and the beta β are varied. Since the performance of
the network does not convey a specific pattern when the parameters
are varied, selecting the right combination takes time until all the
combinations were considered and simulated. For the RBFN model,
the lowest RMSE is selected and compared with the performance of
the proposed MLP-based forecast model (Table 5.15).
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Figure 5.15: Daily predicted values of energy consumption (y-axis)

Table 5.15: Comparison of performance of the forecast model

Techniques Network size, RMSE (Wh) SD
delays, and model

MLP N=20, HL=3, D =7 81 9

RBFN C=10, D=3, N=10, β=0.001 169 20

GPR D=7 103 15

ARIMA p=1, d=0, q=0 120 20

5.5.3 Autoregressive integrating moving average (ARIMA)

Another forecasting technique that is popular in load forecasting is
ARIMA. The output is determined by averaging the entire data given
to the model. Figure 5.15 shows the prediction performance of the
ARIMA-based load forecasting with RMSE of 119.9 Wh and a standard
deviation of 20.

5.6 comparison of results

The performance of the proposed model is comparable with the exist-
ing model using the available data. From the results shown in Table
5.15, MLP-based model is outperforming the three other techniques
in terms of RMSE.

When using MLP-based model forecasting, the model is expected
to have an error around 72 Wh to 90 Wh from the actual usage as
represented by the RMSE results of 81 Wh with nine a standard devia-
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tion. The performance of the other three techniques are comparable
however to have an optimal energy allocation, the performance of the
forecast model is important thus the lowest RMSE model is preferred
which in this case, the MLP-based forecast model.

5.7 chapter summary

In this chapter, the development of the MLP-based forecast model
is presented. The procedure on selecting the value for the three pa-
rameters of the network namely the hidden layer HL, the neurons N)

and the delay D – the number of the historical data points taken as
inputs of the neural network is discussed. The right combination of
these three parameters affects the performance of the model directly
to forecast the next day energy usage of the households. Thus, in this
chapter, a step-by-step process of finding the right combination of the
hidden layer HL, number of neurons per layer N and delay D of the
neural networks is presented. The range considered in the selection
is also explained in details. Careful selection of the values for the
three parameters aid the model to have a better prediction as these
parameters directly affect the performance of the forecasting model.
The model was trained and validated using the data gathered from
using PMOG systems, as presented in Chapter 4.

The performance of the MLP-based forecast model was assessed
in terms of RMSE and MAPE. Results show that as the input of the
network is changed, the RMSE results also change accordingly. The
lowest possible RMSE for MLP-based forecast model with historical
data as input is 99 Wh, when temperature and weekdays were added
as inputs, the lowest values of RMSE are 86 Wh and 88 Wh, respec-
tively. This value goes down to 85 Wh when demographic information
was added as input. This shows that the performance of MLP-based
forecast model is improved when the demographic information of
the households was included as inputs. The final MLP-based forecast
model used in this research has 20 neurons, three hidden layers, and
seven delays that has 81 Wh RMSE with a standard deviation of 9.
This means that the highest possible error would be 89 Wh and the
lowest possible error is 72 Wh. This model gives an overall accuracy
of 91.3 % with 93.2 % accuracy for House 5 as the highest.

It was hypothesised that the energy consumption of the households
could be forecast with reasonable accuracy. From the given results
that fall within the threshold set as the allowable error, the hypothesis
was answered yes. From the experiment results, the next-day energy
consumption of the households can be forecasted within the threshold
using MLP-based forecast model employing households profiles as
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input aside from the historical data, temperature, and weekdays. The
RMSE of the proposed model was improved from 128 Wh without
household profile as input to 81 Wh with a household profile. The %
error is improved by 32.5 %.

The performance of the proposed model is compared with three
other existing forecasting techniques such as RBFN, GPR and ARIMA.
Compared to the other three models, MLP-based forecast model out-
performs RBFN, GPR and ARIMA in terms of RMSE as shown in Table
5.15. The proposed MLP-based forecast model was also compared to
two existing works that use the neural network in forecasting. Table
5.13 shows that the proposed MLP-based forecast model outperforms
the two other forecast models with the difference in the input sets.
The performance of the proposed MLP-based forecast model is better
in terms of RMSE and training time.

The forecast model’s performance has improved as the consumer
profiles were added as inputs together with the historical data. The
model’s RMSE is less 15%, which successfully achieved the goal. There-
fore, the next day energy consumption of the household is forecasted
with reasonable accuracy using MLP-based forecast model.
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6
O P T I M A L D A I LY E N E R G Y A L L O C AT I O N B A S E D O N
M L P - B A S E D F O R E C A S T M O D E L

This chapter presents the mathematical framework of determining
the optimal energy allocation of each household in a community
based on their forecasted energy demand. The purpose of determining
the optimal energy allocation is to ensure that the utilisation of the
available energy is maximised while minimising the energy wastage.

An optimisation is used when a certain variable needs to be min-
imised or maximised based on known constraints. These constraints
are the guiding parameters of the optimisation process. Using Karush-
Kuhn-Tucker (KKT) conditions, the function can be minimised when
the conditions are met. KKT is one of the optimisation techniques
that allow a function to be evaluated with constraints in the forms of
equalities and inequalities as shown in the following equations as the
general form of optimisation problem:

min
E∈Rn

f(E) (6.1)

subject to

hi(E) 6 0, i = 1, 2, ...,m (6.2)

lj(E) = 0, j = 1, 2, ..., r (6.3)

where
f(E) is the objective function to be minimised,
hi(E) and lj(E) are the constraints.
The KKT conditions are expressed in the following equations:

0 ∈ ∂f(E) +

m∑
i=1

µi∂hi(E) +

r∑
j=1

υj∂lj(E) (6.4)

µihi(E) = 0 ∀ i (6.5)

hi(E) 6 0, lj(E) = 0 ∀ i, j (6.6)

µi > 0 ∀ i (6.7)

where equation 6.4 is the called stationary, equation 6.5 is the com-
plementary slackness, equation 6.6 is the primal feasibility, and equa-
tion 6.7 is the dual feasibility. These are the KKT conditions that are
vital in solving the optimisation problem. In order to be able to use

103
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the KKT approach in solving the optimisation problems, the above
conditions must be met. Complementary slackness is the 2nd condi-
tion that deals with both primal and dual feasibilities. Complementary
slackness states that if the dual variable is greater than zero, then the
primal constraint is zero. It also states that if the primal constraint is
greater than zero, then the dual variable is zero.

In this research, the aggregated supply from the solar-powered off-
grid power systems is considered as constant since the system is using
batteries to ensure uninterrupted power source to the households
and for simplicity of the calculations. The summation of the proposed
optimal energy allocation must be equal to the generated energy by the
solar power systems. This is one of the constraints of the optimisation
as expressed in equation 6.9. Another constraint considered in the
formulation of the optimisation problem is that the proposed energy
allocation should be higher or equal to the calculated energy threshold
of the households as presented in equation 6.10. The energy threshold
ensures that the optimal energy allocation is sufficient for the electricity
needs of the households in a day. The constraints for this optimisation
problems meet the KKT conditions. Thus KKT approach is used in
solving the optimisation problem.

This chapter intends to provide answers to the Research Questions
(RQs) 2 and 3:

RQ2: Can knowledge of consumer profiles aid in optimal and
adaptive energy allocation?

RQ3: Can the energy allocation be optimised to improve the
energy efficiency under the limited generation capacity?

Note that for RQ 2, as presented in Chapter 5, knowledge of con-
sumer profiles are used in forecasting the household’s energy usage,
and the predicted energy usage is used in determining the optimal
daily energy allocation of each household. Note also that there is only
one load forecast model used in predicting the households next-day
energy consumption. The model is adaptive to each household since
it uses the historical energy data and the demographic profiles. The
optimisation problem is formulated from the issues raised due to
the limited generation capacity and the power outage experienced by
households as presented in Chapter 4.

6.1 problem description

In order to address the above research questions, an optimisation
problem is defined. As discussed in chapter 1, two main issues arise
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within the current existing energy allocation, whereby each household
has equal daily energy quota. These issues are re-stated below:

1.) Some households use up the allocated daily quota and expe-
rience power outage but may require more energy than what is
currently provided to them.

2.) Some households do not use all the allocated energy daily
and pay the same fixed monthly tariffs as the households that
use all their allocated energy.

The excess energy quotas of the households in scenario 2 can be
allocated to the households in scenario 1 and minimise the power
outage duration if not eliminated, without increasing the generation
capacity of the microgrid.

To address the above issues, a new approach to allocating the daily
energy quotas of the household is proposed. This approach involves
forecasting the ideal energy usage of the households daily from the
historical data first before allocating their optimal energy quotas.
The method utilises the forecasted household energy demand from
Chapter 4. The approach also considers the limited generation capacity
of the microgrid and the basic electricity needs of the households.
The proposed approach of allocating the daily energy quota of each
household will enable new payment scheme based on their actual
usage.

Given the limited generation capacity of the power system, the goal
is to minimise the difference between the forecasted energy and the
allocated energy. This is to make sure that the allocated energy is as
close as possible to the ideal energy demand of the households.

Thus, the optimisation problem is defined to minimise the cost
function J as given in equation 6.8 subject to two constraints which
are the generation capacity and the minimum threshold energy level
for each household.

Note that the ideal demand is the forecasted energy consumption
based on the household’s historical usage and the households individ-
ual profile.

The nonlinear optimisation problem is expressed in the differen-
tiable standard form in equation 6.8,
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min J =

n∑
i=1

(Eai − Ei)
2 (6.8)

subject to
n∑
i=1

Eai = EG (6.9)

Eai > Emin, ∀ i ∈ {1, 2, ...,n} (6.10)

where
Eai is the calculated optimal energy allocation for each household,

which is the optimisation variable,
Ei is the ideal energy usage as predicted by the MLP-based forecast

model,
EG is the generated supply by the off-grid power system,
n is the total number of households, and
Emin is the daily energy threshold for each household.
Equation (6.8) is the objective function, while equations (6.9) and

(6.10) are the equality and inequality constraints (Note that other
power losses are neglected). The presence of the inequality constraint
allows the optimisation problem to be solved using Karush-Kuhn-
Tucker (KKT) conditions.

6.1.1 Solving the optimisation problem using KKT approach

In this section, the mathematical analysis of the optimal energy alloca-
tion is presented. The methodology for obtaining the optimal energy
allocation for each household is derived by solving the optimisation
problem presented in the previous section considering the given con-
straints. The optimal solution is derived by solving the equations
analytically using the first-order optimality conditions. Using KKT
methods, the equality and inequality equations are expressed in the
standard forms g(x) = 0 and h(x) 6 0, respectively. So, equations 6.9
and 6.10 can be written as

n∑
i=1

Eai − EG = 0 (6.11)

Emin − Eai 6 0, ∀ i ∈ {1, 2, ...,n} (6.12)

Given the minimisation problem in equation (6.8), the Langrangian
function, L is defined by combining the three equations, (6.8), (6.11),
and (6.12) in the form of

L = f(x) +
∑
i

λigi(x) +
∑
j

µjhj(x) (6.13)
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which results in:

L =

n∑
i=1

(Eai − E1)
2 + λ(

n∑
i=1

Eai − EG) +

n∑
i=1

µi(Emin − Eai ) (6.14)

where

µi > 0, ∀ i ∈ {1, 2, ...,n} (6.15)

The optimality conditions are obtained by taking the partial deriva-
tive of the Lagrangian (equation 6.14) with respect to Eai as follows:

∂L

∂Eai
= 0

2(Eai − Ei) + λ− µi = 0 (6.16)

and the partial derivative of the Langrangian with respect to λ,

∂L

∂λ
= 0

n∑
i=1

Eai − EG = 0 (6.17)

The complementary slackness is given as follows:

µi(Emin − Eai ) = 0, ∀ i ∈ {1, 2, ...,n} (6.18)

which implies that either

Emin < E
a
i and µi = 0 (6.19)

or

Emin = Eai and µi > 0 (6.20)

In order to solve the systems of equations given in equation 6.16 and
6.17, let

s := arg min
i
Ei

That is, s is the index used to identify the households with the smallest
amount of predicted ideal demand and (Emin) is the minimum energy
to be allocated to the households without compromising their basic
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electricity needs.
From equation (6.14), for i = s, the following is obtained:

2(Eas − Es) + λ− µs = 0

λ = µs + 2(Es − E
a
s ) (6.21)

The expression for the optimal energy allocation for each household
is obtained as follows:
∀j = 1, 2, ...,n; j 6= s,

2(Eaj − Ej) + λ− µj = 0 (6.22)

Substituting equation 6.21 into 6.22 gives:

2(Eaj − Ej) + µs + 2(Es − E
a
s ) − µj = 0

so that,

Eaj =
µj − µs
2

− (Es − E
a
s ) + Ej (6.23)

On the other hand, from equation 6.17, the aggregate optimal energy
allocation,

∑n
i=1 E

a
i can now be expressed in terms of s and j as

follows:

n∑
i=1

Eai = Eas +

n∑
j=1,j6=s

Eaj = EG (6.24)

Then Eas by substituting equation 6.23 into 6.24, the following is
obtained:

Eas +

n∑
j=1

(
µj − µs
2

− (Es − E
a
s ) + Ej

)
= EG (6.25)

Eas +

n∑
j=1,j6=s

µj − µs
2

−

n∑
j=1,j6=s

(Es − E
a
s ) +

n∑
j=1,j6=s

Ej = EG (6.26)

Eas +

n∑
j=1,j6=s

µj − µs
2

− (n− 1)(Es − E
a
s ) +

n∑
j=1,j6=s

Ej = EG (6.27)

So,

Eas =
EG −

∑n
j=1,j6=s Ej −

∑n
j=1,j6=s

µj−µs
2 + (n− 1)Es

n
(6.28)
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or expressed as

Eas =
1

n

(
EG −

n∑
j=1,j6=s

Ej −

n∑
j=1,j6=s

µj − µs
2

+ (n− 1)Es

)
(6.29)

From equation 6.18, the complementary slackness,

µi(Emin − Eai ) = 0, ∀i (6.30)

for i = s,

µs(Emin − Eas ) = 0 (6.31)

In order that the minimum energy, Emin is allocated to the household
with the smallest ideal energy demand, let

Emin = Eai (6.32)

This implies from equation 6.19 and 6.20, the complimentary slackness,
that

µs 6= 0 (6.33)

This also implies that the minimum energy allocation to any household
does not fall below Eas , i.e., what is allocated to the household with the
smallest ideal energy demand Es amongst all households. Moreover,
since the remaining households must be allocated with energy higher
than the household with the smallest ideal demand, it follows that

Eaj > E
a
s , ∀j ∈ {1, 2, ...,n}, j 6= s (6.34)

resulting in

Eaj > Emin, ∀j ∈ {1, 2, ...,n}, j 6= s (6.35)

since Eas = Emin. Therefore, µj = 0, ∀j ∈ {1, 2, ...,n}, j 6= s as given in
equation 6.19

Thus, to find the optimal energy allocations for all other households
∀j ∈ {1, 2, ...,n}, j 6= s, let µj = 0, and from equation 6.29

Eas =
1

n

(
EG −

n∑
j=1,j6=s

Ej −

n∑
j=1,j6=s

µj − µs
2

+ (n− 1)Es

)
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becomes

Eas =
1

n

(
EG −

n∑
j=1,j6=s

Ej +
(n− 1)µs

2
+ (n− 1)Es

)
(6.36)

Since Eas = Emin, equation 6.36 can be rewritten as:

Emin =
1

n

(
EG −

n∑
j=1,j6=s

Ej +
(n− 1)µs

2
+ (n− 1)Es

)

so that:

µs =
2

n− 1

(
nEmin − EG +

n∑
j=1,j6=s

Ej − (n− 1)Es

)
(6.37)

From equation 6.23,

Eaj =
µj − µs
2

− (Es − E
a
s ) + Ej

thus for µj = 0, ∀j ∈ {1, 2, . . . ,n}, j 6= s, the following is obtained: we
have,

Eaj =
−µs
2

+ (Eas − Es) + Ej (6.38)

6.1.2 Steps in solving the optimal energy allocation

From the derived equations above, to obtain the optimal energy allo-
cations, we need to:

1. Choose a minimum energy allocation Emin

2. Let Eas = Emin

3. Compute µs from equation (6.37)

4. Determine optimal allocation for each household using equation
(6.38)

6.1.3 Verification of the optimal solution

Recall from equation 6.33 that µs 6= 0. However, to satisfy the comple-
mentary slackness condition given in equations 6.18 and 6.20, µs must
be shown to be greater than zero, i.e., (µs > 0) according to equation
6.15. Note that the complementary slackness captures 2 things in the
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solving the optimal value of the optimisation process. One, it states
that when Emin is less than Eai , µ must be equal to zero. Two, when
Emin is equal to Eai , µ must be greater than zero. So, from equation
(6.37), it follows that:

2

n− 1
(nEmin − EG +

n∑
j−1,j6=s

Ej − (n− 1)Es) > 0

nEmin − EG +

n∑
j=1,j6=s

Ej − (n− 1)Es > 0

(6.39)

Solving for Emin yields:

nEmin > EG + (n− 1)Es −

n∑
j=1,j6=s

Ej

Emin >
1

n

(
EG + (n− 1)Es −

n∑
j=1,j6=s

Ej

)
(6.40)

Moreover, from equation (6.12), Emin 6 Eai , ∀i ∈ {1, 2, . . . ,n}.
For i = s, Eas = Emin,

Emin < E
a
i , ∀i ∈ {1, ...,n}, i 6= s (6.41)

Therefore, by substituting equation 6.38 into 6.41, the following is
obtained:

Ej + (Eas − Es) −
µs

2
> Emin

Ej − Es −
µs

2
+ Eas > Emin (6.42)

but Eas = Emin, therefore,

Ej − Es −
µs

2
+ Emin > Emin

Ej − Es −
µs

2
> 0 (6.43)

Thus,

µs < 2(Ej − Es),∀j ∈ {1, 2, . . . ,n}, j 6= s (6.44)
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Substituting equation (6.37) into equation (6.44), to obtain an upper
bound for Emin, we have(

nEmin − EG +

n∑
j=1,j6=s

Ej − (n− 1)Es

)
2

n− 1
< 2(Ei − Es),

∀i ∈ {1, 2, . . . ,n}

nEmin − EG +

n∑
j=1,j6=s

Ej − (n− 1)Es < (n− 1)(Ei − Es)

nEmin − EG +

n∑
j=1,j6=s

Ej < (n− 1)Ei (6.45)

thus, for any j

Emin <
(n− 1)Ei + EG −

∑n
j=1,j6=s Ej

n
,∀i ∈ {1, 2, . . . ,n}, i 6= s (6.46)

Let

l = arg min
i∈{1,2,...,n},i 6=s

Ei,

(Note: l is defined as the index of the household with the second
smallest ideal energy demand Ei, after household s.)

then, it suffices to write the set of (n− 1) equation in 6.46 as:

Emin <
1

n

(
(n− 1)El + EG −

n∑
j=1,j6=s

Ej

)

Also, recall from equation 6.40 that

Emin >
1

n

(
EG + (n− 1)Es −

n∑
i=1,i 6=s

Ei

)

Therefore, the minimum energy allocation to the household should
be within the range as expressed by the inequality in 6.47 below:

EG+ (n− 1)Es−

n∑
j=1,j6=s

Ej < nEmin < (n− 1)El+EG−

n∑
j=1,j6=s

Ej

(6.47)

6.1.4 Validating the optimisation results using the forecasted results

In the previous section, the mathematical framework of the optimisa-
tion of energy allocation for each household is presented. Now, the
equations derived from the objective function of the optimisation will
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be used to determine the optimal energy allocation of each household
in the generation-constrained microgrids. Firstly, an example of how
the equation works is presented.

Consider the following energy consumption values predicted by the
MLP-based forecast model for the four selected households connected
to the microgrid. These values represent the ideal utilisation of the
four houses.

E1 = 0.7845 kWh

E2 = 0.5075 kWh

E3 = 0.6394 kWh

E4 = 0.2914 kWh

For these 4 houses, the total energy allocation is 3.2 kWh and the
smallest forecasted energy usage is E4 = 0.2914 kWh, i.e., s = 4, with
the second lowest forecasted energy usage being E2 = 0.5075 kWh i.e.,
l = 2, and the summation of the forecasted energy usage excluding
E4 is

n∑
j=1,j6=s

Ej = 1.9314 kWh.

From the steps presented in section 6.1.1, in which the first step
is to choose the minimum energy allocation Emin. However from
equation 6.47, the value of Es, which is the smallest amount of the
predicted ideal demand, must be known before the range for the Emin
is determined. So, from equation 6.47, the range of Emin is determined
as follows:

EG + (n− 1)Es −

n∑
j=1,j6=s

Ej < nEmin < (n− 1)El + EG −

n∑
j=1,j6=s

Ej(
3.2+ 3(0.2914) − 1.9314

)
1

4
< Emin <

1

4

(
3(0.5075) + 3.2− 1.9314

)
0.5402 < Emin < 0.7023 kWh (6.48)

The value for Emin is chosen within the calculated range as shown
above. This means that within this calculated range using equation
6.47, the Emin can be chosen arbitrarily and it will lead to the optimal
solution. For example, Emin is arbitrarily chosen as 0.55 kWh, which
is closed to the lower limit as calculated above (equation 6.48). By
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virtue of the steps described in Section 6.1.2, Emin is set equal to Eas
which means,

Ea4 = 0.55 kWh.

Then, the term µs is calculated using equation 6.37:

µs =
2

n− 1

(
nEmin − EG +

n∑
j=1,j6=s

Ej − (n− 1)Es

)

µ4 =
2

4− 1

(
4(0.55) − 3.2+ 1.9314− 3(0.2914)

)
µ4 = 0.0381 (6.49)

which satisfy the condition stated in equation 6.44 that µs must be
less than twice the difference between Ej and Es as also shown below:

µs < 2(Ej − Es),∀j ∈ {1, 2, . . . ,n}, j 6= s

For E1,

µs < 2(E1 − Es)

µs < 2(0.7845− 0.2914)

0.0381 < 0.9862, check

For E2,

µs < 2(E2 − Es)

µs < 2(0.5075− 0.2914)

0.0381 < 0.4322, check

For E3,

µs < 2(E3 − Es)

µs < 2(0.6394− 0.2914)

0.0381 < 0.6960, check

Then the optimal energy allocation for the remaining households is
calculated using equation 6.38

Eaj =
−µs
2

+ (Eas − Es) + Ej

Ea1 =
−0.0381
2

+ (0.55− 0.2914) + 0.7845

Ea1 = 1.0240 kWh (6.50)
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Ea2 =
−0.0381
2

+ (0.55− 0.2914) + 0.5075

Ea2 = 0.7470 kWh (6.51)

Ea3 =
−0.0381
2

+ (0.55− 0.2914) + 0.6394

Ea3 = 0.8790 kWh (6.52)

To check if the results satisfy the constraints of the optimisation
problem stated in section 6.1 given by the equations 6.9 and 6.10, the
summation of optimal energy allocations is calculated and each alloca-
tion is compared to the minimum energy threshold for the households.
The summation (

∑n
i=1 E

a
i = EG) of all the optimal energy allocation

is 3.2 kWh which satisfies the first constraint. The optimal energy
allocation for each household Eai is higher than the minimum energy
threshold of Emin, which satisfies the second constraint. For this first
example of the optimal energy allocation, the objective function J

evaluates 0.2390 kWh using the optimal energy allocation compared
to 0.3703 kWh for the equal energy allocation which corresponds to a
reduction of 54.9% in terms of wastage of energy.

6.1.5 Energy threshold and its effect on the optimal energy allocation

Suppose now, the value of Emin is chosen arbitrarily as o.69, which
closer to the upper limit. From equation 6.37, µs is

µs =
2

n− 1

(
nEmin − EG +

n∑
j=1,j6=s

Ej − (n− 1)Es

)

µ4 =
2

4− 1

(
4(0.69) − 3.2+ 1.9314− 3(0.2914)

)
µ4 = 0.4115 (6.53)

So, the optimal energy allocation for the remaining households is
calculated using equation 6.38

Eaj =
−µs
2

+ (Eas − Es) + Ej

Ea1 =
−0.4115
2

+ (0.69− 0.2914) + 0.7845

Ea1 = 0.9773 kWh (6.54)

Ea2 =
−0.4115
2

+ (0.69− 0.2914) + 0.5075

Ea2 = 0.7003 kWh (6.55)
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Ea3 =
−0.4115
2

+ (0.69− 0.2914) + 0.6394

Ea3 = 0.8322 kWh (6.56)

For this example, the summation of the optimal energy allocation is
3.1998 kWh which is approximately 3.2 kWh which satisfies the first
constraint like the example 1. Each allocation for each household is
greater than the minimum threshold (Emin) that is chosen from the
calculated range given by the equation 6.47. The objective function J
is equal to 0.2704 and when compared with equal allocation, a 36.9%
reduction of energy waste is achieved with the proposed optimal
energy allocation.

For the next example, Emin is chosen from the middle of the range.
This time, Emin is 0.62 kWh. The examples shown above reflects how
the minimum threshold for the energy consumption of households
affects the total energy wastage. When the chosen value for energy
threshold Emin is closer to the lower limit of equation 6.47, the reduc-
tion of the energy waste in terms of unused energy or deficit is higher
compared when Emin is closer to the upper limit. For this reason,
the value for the energy threshold Emin closer to the lower limit is
preferred when choosing the energy threshold in order to maximise
the energy usage of the available energy.

Intuitively, one may use ratio and proportion to allocate the available
energy. The households can be given energy proportional to their
ideal utilisation as predicted by MLP-based load forecast model. For
example, given the predicted values in Section 6.1.4 and re-stated here,
then according to ratio and proportion, the energy allocation for each
household can be calculated as follows:

Eai =
Ei
ET
× EG (6.57)

where,
ET is the summation of the ideal energy usage of the households.
EG is the generated energy by the off-grid microgrid.

Ideal values:

E1 = 0.7845 kWh

E2 = 0.5075 kWh

E3 = 0.6394 kWh

E4 = 0.2914 kWh
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Then, the energy allocation for each household can be calculated
using equation 6.57 as follows:

ET =E1 + E2 + E3 + E4 = 2.2228 kWh (6.58)

EG =3.2kWh (6.59)

Ea1 =
E1
ET
× EG

=
0.7845
2.2228

× 3.2

Ea1 =1.1294 kWh (6.60)

Ea2 =
E2
ET
× EG

=
0.5075
2.2228

× 3.2

Ea2 =0.7306 kWh (6.61)

Ea3 =
E3
ET
× EG

=
0.6394
2.2228

× 3.2

Ea3 =0.9205 kWh (6.62)

Ea4 =
E4
ET
× EG

=
0.2914
2.2228

× 3.2

Ea4 =0.4195 kWh (6.63)

For this example, J is 0.26 using ratio and proportion. Using the
proportionality method can be straight forward. However, this method
does not consider the constraints that are important when dealing
with an optimisation problem. Thus, this method is not used in solving
the optimisation problem defined in this chapter (Section 6.1).

6.2 discussion of results

In this section, the answers to the research questions are presented. Us-
ing the formulated equations from the previous sections, the optimal
energy allocation for each household is calculated. The performance
of the proposed optimal energy allocation is evaluated using perfor-
mance evaluation indices such as root-mean-squared error (RMSE),
mean absolute percentage error (MAPE), and mean squared error
(MSE). Also, to determine whether the differences in the proposed op-
timal energy allocation between households are statistically significant,
one-way analysis of variance (ANOVA) was performed.
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Table 6.1: Descriptive summary of the proposed optimal daily energy alloca-
tion (kWh) for each household in Village 2

Household N Mean Standard Standard Min Max
(kWh) Deviation Error

H5 288 0.951 0.130 0.008 0.326 1.153
H6 288 0.770 0.165 0.010 0.454 1.104
H7 288 0.936 0.073 0.004 0.506 1.123
H8 288 0.536 0.091 0.005 0.390 0.820

Total 1152 0.798 0.115 0.007 0.419 1.050

6.2.1 Optimal and adaptive energy allocation: consumer profiles

RQ2: Can knowledge of consumer profiles aid in optimal and adaptive energy
allocation?

In order to show that the consumer profile aids the optimal energy
allocation, it needs to be established that the different households are
allocated with different daily energy over several days (>180 days).
Figure 6.1 shows the daily energy allocation of each household for
288 days. The mean values are 0.9513 kWh, 0.7698 kWh, 0.9362 kWh,
and 0.5360 kWh for H5, H6, H7 and H8, respectively. Table 6.1 show
the descriptive summary of the proposed optimal energy allocation.
H5 has the highest mean, followed by H7 and H6 with H8 having the
lowest mean. This confirms the summary of data presented in Section
4.5, wherein Village 2, H5 has the highest peak from the daily energy
usage, and H8 has the lowest. According to the ANOVA test results,
the significance value (p–value) is 2.98× 10−268 which is below 0.05

and therefore, there is a statistically significant difference in the means
of the optimal energy allocations for each household. This rejects the
null hypothesis that the means for each household are the same. The
difference in means, as shown in Figure 6.1 is because the household
information was used in forecast model to obtain the ideal energy
utilisation of the households which are then used for the allocation.

To know specifically which households optimal energy allocations
are different from which households, a t-test was performed. Table
6.2 shows the results of the t-test for each pair. Results show that the
difference in means is statistically significant for all household except
for H5 and H7 where the p–value is 0.1134.

The p–value also suggests that the proposed energy allocation used
well the information given and that using the households profiles as
inputs aid in deriving an optimal and adaptive energy allocation.
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Figure 6.1: Daily energy allocation for each household using the proposed
optimal energy allocation scheme for 288 days with mean values
of 0.9513 kWh, 0.7698 kWh, 0.9362 kWh, and 0.5360 kWh for H5,
H6, H7 and H8, respectively

Table 6.2: Multiple comparisons of the mean of the proposed optimal energy
allocations for each household

Group Group Mean Difference Standard p− value

(A) (B) (A-B), (kWh) Error

H5 H6 0.181 0.016 1.470× 10−24**
H7 0.015 0.010 0.113
H8 0.415 0.009 9.170× 10−132**

H6 H7 −0.166 0.012 3.050× 10−35**
H8 0.234 0.014 4.240× 10−46**

H8 H7 0.400 0.007 3.130× 10−161**

** The mean difference is significant at the 0.01 level.
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6.2.2 Energy efficiency under the limited generation capacity

RQ3: Can the energy allocation be optimised to improve the energy efficiency
under the limited generation capacity?

This section provides the answers to the RQ3. In order to show that
the energy allocation can be optimised, it needs to be established that
the proposed optimal allocation achieves a statistically significant error
(in terms of of the objective function) than the equal allocation or with
the proportional allocation method. This error corresponds to the en-
ergy wastage. Analysis of Variance (ANOVA) is used to determine the
difference between the three methods. ANOVA compares the means of
the groups and determines whether the means are statistically differ-
ent from each other, as discussed in Section 3.3.1. ANOVA test the null
hypothesis, that is H0 = φ1 = φ2 = φ3 = φn where φ is the group
means, and n is the number of groups to be compared. If the ANOVA
test results show statistically significant, the alternate hypothesis HA
is accepted that the group means are statistically different from each
other.

The objective function, J =
∑n
i=1(E

a
i − Ei)

2 (as described in Section
6.1), is determined by calculating the aggregated difference of the
squared error between the calculated optimal allocations and the ideal
allocations which are obtained from the predicted values from Chap-
ter 5. From the calculated values of the optimal energy allocations
using the proposed mathematical framework presented in Sections
6.1 and 6.1.1, the energy allocation is calculated optimally for each
household. Since the forecast model used the consumer profiles as
inputs along with the historical energy usage data, the forecast model
becomes adaptive. The consumer profiles enable the forecast model
to process the data corresponding to each household. The given con-
sumer profile serves as an identifier when the result for the individual
households is needed. With this approach, predicting the next day en-
ergy consumption of each household is possible with a single forecast
model.

The results show (e.g. Table 6.3 for a given day) that with the
proposed optimal energy allocation, the energy wastage/deficit can be
reduced from 0.24 kWh to 0.11 kWh which is a 54% decrease from the
current equal energy allocation for each household. These results show
that the objective function of the optimisation problem is minimised.
Using the proportionality approach, the aggregated difference is 0.26

kWh which is higher than the total difference between the ideal and
the equal allocations, which is equal to 0.24 kWh. This means that
when the proportionality method is used in allocating the energy of
the households, higher energy wastage can occur.
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Table 6.3: Comparison of ideal energy usage and the energy allocations
(equal, proportion, and optimal) of the households

House Ideal Equal Proportion Optimum Error1 Error2 Error3

No. (I) (Eq) (Pri) (Eai ) (I− Eq)2 (I− Prai )
2 (I− Eai )

2

H5 0.78 0.80 1.13 1.02 0.00 0.12 0.05
H6 0.51 0.80 0.73 0.75 0.01 0.05 0.00
H7 0.64 0.80 0.92 0.88 0.00 0.08 0.01
H8 0.29 0.80 0.42 0.55 0.23 0.02 0.05

Error1

(∑n
i=1(I− Eq)

2

)
0.24

Error2

(∑n
i=1(I− Pri)

2

)
0.26

Error3

(∑n
i=1(I− E

a
i )
2

)
0.11

Figure 6.2, shows the ANOVA results for the three methods of
allocations. The different performance of the three allocation methods
is described by the difference in their means which is statistically
significant with p–value of 2.24× 10−38. For 288 days, the aggregated
squared error difference between ideal energy usage and the equal
allocation is 112.10 kWh2 or ± 10.59 kWh, with proportionality the
total difference is 73.02 kWh2 or ± 8.55 kWh and with the proposed
optimal allocation, it is 62.35 kWh2 or ± 7.90 kWh (shown in Table 6.4).
Thus, using the proposed optimal allocations, the difference between
the ideal energy usage is minimised further compared with the other
allocation using the method of proportions.

Figure 6.3, shows the difference between the ideal usage of the
households and the equal allocation as well as the proposed optimal
allocation. The squared error of the ideal and the proposed allocation
is preferred to be smaller than the current set up with the equal
allocation. From the results shown in Figure 6.3 with 288 days of
data for all households, the aggregated squared error between the
ideal usage and the proposed optimal energy allocation is 62.35 kWh2

or ± 7.90 kWh compared with the existing equal energy allocation
which is 112.10 kWh2 or ± 10.59 kWh. This difference is equivalent to
44.4% reduction of energy wastage/deficit and 14.6% reduction when
compared with the results using the proportion method.

To determine whether there is a statistically significant difference
between the two allocations (equal and the proposed optimal allo-
cations), the ANOVA statistical test was performed. The difference
in means of the two groups are statistically different with a mean
squared error (MSE) of 1.074 and p–value of 6.61× 10−31 and F–value
of 137.3. The p–value suggests that the means of the two groups (equal
allocations and the proposed optimal allocations) are different and
rejects the null hypothesis that assumes that the means of the groups

[ October 13, 2020 at 14:07 – version 2.0 ]



122 optimal daily energy allocation

Equal Proportion Optimal

Allocations

0

0.1

0.2

0.3

0.4

0.5

0.6

S
q
u
a
re

d
 E

rr
o
r,

 (
k
W

h
)

Figure 6.2: ANOVA results for the 3 allocations (Equal, proportion, and
optimal), with 288 days data. The difference between the means
of the 3 groups are statistically significant with a p–value of
2.24× 10−38 and F–value is 88.9.

Table 6.4: Results for the objective function J for 288 days

Allocations Results J

Equal 112.10

Proportion 73.02

Optimal 62.35

are the same. This implies that with equal daily energy allocation,
energy wastage/deficit is higher compare with the proposed optimal
daily energy allocation.

Another test is also conducted to observe the performance of the
proposed optimal energy allocation scheme in terms of mean absolute
percentage error (MAPE) for each household. The calculated MAPE
for each household are 6.2, 8.0, 5.8 and 10.4 for H1, H2, H3 and H4,
respectively.

In summary, for 288 days, the results of the objective function J is
shown in Table 6.4. The proposed optimal energy allocation minimised
the energy wastage by 44.4% when compared with equal energy
allocation.

The proposed energy allocation assumes that any changes in en-
ergy usage of the households are reflected in their past usage. If the
households deliberately change their energy usage, this is perceived
in the historical energy usage data and accounted in forecasting their
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Figure 6.3: Anova test results between the two allocations with N = 288. The
means of the two groups have statistically significant differences
with p–value of 6.61× 10−31.
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Figure 6.4: Absolute percent error (APE) for each household using the pro-
posed optimal energy allocation. The MAPE for each household
are 6.2, 8.0, 5.8 and 10.4 for H1, H2, H3 and H4, respectively.
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ideal usage. Thus, the proposed energy allocation remains optimal
according to their previous energy usage.

From the results of this research, the proposed optimal energy al-
location can be used for other households connected in microgrids.
The proposed energy allocation scheme would generate similar re-
sults when used for households that posed similar energy usage and
household profiles.

6.3 chapter summary

Given the two issues highlighted in Chapter 1 with the current set up
where daily energy allocation is equal for all households, there is a
need to re-allocate the available energy to ensure that the provision
of the energy to each household is based on their ideal energy needs.
Thus, the re-allocation is done to minimise the unused energy allocated
to the households that are not used and maximise the utilisation of
the available energy.

Optimal energy allocation is proposed by considering the limited
generation capacity of the power systems and the basic electricity
needs of each household. The basic electricity needs of each household
are taken from the households forecasted energy usage based on their
historical usage and the household demographic profile as presented
in Chapter 5. The consumer profiles used in the development of
the forecast model aid in deriving an optimal and adaptive energy
allocation.

The optimal allocation is calculated using the KKT conditions such
that the aggregate optimal energy allocation summed up to the avail-
able energy generated by the power system and each optimal energy
allocation to the households is higher or equal to the minimum en-
ergy required by the households. This ensures that the utilisation of
the available energy is maximised and the unused energy of some
household in the current set up is distributed accordingly to other
households that need more than their allocated energy without sacri-
ficing the energy needs of any household.

The optimisation problem is defined in which the cost function is to
minimise the squared difference between the optimal allocation and
the predicted ideal energy utilisation of the households. The cost func-
tion is then subject to the constraints involving the available energy of
the power system and the basic energy needs of the households.

The mathematical framework for calculating the optimal energy
allocation is unique and new in this field. All the derived equations are
confirmed and validated by checking the results using the predicted
values from Chapter 5 and assessing if the results have met the stated
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constraints. The method can be applied to households connected to
generation-constrained microgrids.

The optimisation problem is successfully solved, and the allocation
can be done adaptively and optimally. The demographics may vary,
but the model can dynamically recognise this change and interpret
accordingly based on the data given to the model. Thus, the method
is considered robust and adaptive.

As presented in this chapter, the means of the optimal energy allo-
cations for each household are significantly different from each group.
This signifies that the consumer profiles help the proposed allocation
scheme to allocate the energy optimally and adaptively. The energy
usage under a microgrid with limited generation capacity was im-
proved by reducing the energy wastage/deficit. Using the proposed
optimal energy allocation, the energy wastage/deficit is reduced to
62.3 kWh from 112.1 kWh when using an equal daily energy allo-
cation for each household. That is equivalent to 44.4% reduction of
energy wastage/deficit achieved in 288 days. With the proportion
method, the energy wastage/deficit is reduced to 73.02 kWh. So when
the results with the proposed optimal energy allocation are compared
with the results using the proportion method, a 14.6% reduction in
energy wastage/deficit is achieved.

The proposed optimal energy allocation is expected to generate
similar results when used for other households with similar charac-
teristics, such as their energy usage and household profile. This is
regardless of the connectivity of the households to the power system.
Whether households are connected to the traditional grid or micro-
grid (online or offline), the proposed energy allocation is expected to
provide optimal energy allocation when all the conditions stated in
this chapter are met.
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C O N C L U S I O N

This research proposed a solution to the In this thesis, the need for op-
timising the energy allocation of the households connected in off-grid
microgrids with limited generation capacity is investigated. The prob-
lem defined in Chapter 1 as re-stated here with an equal amount of
energy allocated daily and considering the limited generation capacity
of the off-grid power system, two main issues are highlighted:

1.) Some households use up the allocated daily quota and expe-
rience power outage but may require more energy than what is
currently provided to them.

2.) Some households do not use all the allocated energy daily
and pay the same fixed monthly tariffs as the households that
use all their allocated energy.

To address the above issues, an optimal daily energy allocation for
each household in off-grid villages such as the Red Cross village in
Daanbantayan, Cebu is proposed. Below are the main considerations
of the proposed optimal energy allocation for households connected
in off-grid microgrids with limited generation capacity, re-stated from
Chapter 1:

1.) Case 1: If the energy allocation is more than the basic needs
for a given household, they pay for something they do not use.
Therefore, they want an allocation commensurate with their
usage.

2.) Case 2: If the allocation is less than the desired utilisation for a
given household, they would be dissatisfied with the amount of
energy they have, as they would experience shortage every day.
Therefore, they want to have an energy allocation that is within
their usage.

3.) The allocations in cases 1 and 2 are not guaranteed to be same.

4.) Energy allocation is constrained within the limited generation
capacity of the off-grid power system.

Chapter 2 presents the research background on microgrids, energy
management system (EMS) and artificial neural networks, and the
review on existing literatures related to this study. The literature

127

[ October 13, 2020 at 14:07 – version 2.0 ]



128 conclusion

review covers topics on energy management scheme of microgrids,
such as load shedding, time-based operation or scheduling and daily
energy allowance or allocation, EMS optimisation, load forecasting,
factors affecting load consumption, and the importance of the research
data as the baseline data for the development of load forecast model
as well as the proposed optimal energy allocation.

Chapter 4 presents collection and processing of data needed for
this research. This includes the development and deployment of the
Philippines Micro-Off-Grid monitoring system used to gather the
energy data and the field survey used to collect demographic profiles
of the households. All these data are used in the development of the
load forecast model. The PMOG data from Village 1 was dropped as
the data available is only for 6 hours a day and the operation of the
off-grid power system in this village can not be available for 24 hours
due to its technical limitations. In developing the forecast model, the
data needs to be representing whole day energy usage that is 24 hours
and not part of it. Hence, only data from Village 2 were utilised in the
development and training of the forecast model.

From the data gathered, it was found out that some households
do not used all the given energy daily quota and some households
experienced power outage. Survey data shows that 46 % of the total
households from Village 2 experienced power outage daily and 54

% of the total households do not use all up their given energy quota
daily. There are 59 households out of 128 total households experienced
power outage daily. They want to have more energy quota if possible
as they expressed their willingness to pay according to their daily
usage. In order to maximise the available energy, the excess or unused
energy quota of the remaining 69 households can is re-distributed to
the 59 households that needs more energy. Hence the needs of the
optimisation of daily energy allocation to each household.

Since the aim of the research is to provide an optimal energy allo-
cation based on the ideal usage of the households, there are 2 things
that need to be done. First is to predict the next day energy consump-
tion of the households and second is to calculate the optimal energy
allocation using KKT approach.

The first step is done by the Multilayer Perceptron (MLP) -based
forecast model. During the development of the model, it was found
out that the number of hidden layers and neurons as well as the
delay window of inputs affects greatly the performance of the neural
network in terms of RMSE. Several cases were considered in selecting
the combination of the hidden layersHL, neuronsN and delay window
D that generate the least value of RMSE. For MLP-based forecast
model, RMSE values continue to change as the input varies. The
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variation is random especially with the average RMSE during the
K-fold validation, however, the least RMSE values were achieved
when household profiles were added as inputs as presented in section
5.2. Different load forecast models such as RBFN, GPR and ARIMA
have been investigated to determine the best performing models in
predicting households energy consumption in the context of off-grid
villages connected to off-grid power systems with limited generation
capacity (as detailed in Chapter 5). Incorporating household profiles as
inputs made it possible for the MLP-based forecast model to met the
threshold of 15 % or less of the actual energy usage. The household
profiles that also serve as indexed of the different profile in input
matrix of neural network made it possible to use single model to
forecast the next-day energy consumption of each household.

The second step is done by formulating the optimisation problem.
A mathematical approach for optimal energy allocation is presented
in Chapter 6 that is based on MLP-based forecast model that uses
both historical energy data and households profiles to achieve a rea-
sonable accuracy in forecasting. The cost function J is to minimise the
difference between the forecasted values Ei using MLP-based forecast
model and the calculated optimal energy allocation Eai with 2 con-
straints derived from the limited capacity of the off-grid power system
and the minimum threshold of the households (refer to equation 6.8).
Given the limited generation capacity of the off-grid power system,
the first constraint is that aggregated optimal energy allocation must
be equal to the available energy. In this case, the data is from Village
2, and the off-grid power system is using batteries, the total available
energy is treated as equal to the summation of the existing allocation
(equation 6.9). The second constraint is that the optimal energy allo-
cation Eai must be equal or higher than the daily energy threshold
of each household Emin (equation 6.10). These 2 equations, 6.9 and
6.10 are the equality and inequality constraints of the objective func-
tion J (equation6.8). The inequality constraint allows the optimisation
problem to be solved using KKT conditions as detailed in Chapter 6.

The work presented in this thesis has therefore focused on the
development of the MLP-based load forecast model and the adaptive
and optimal energy allocation for households connected in generation-
constrained microgrids.

7.1 answers to research questions

This thesis sets out to answer the following research questions:

RQ1: Can the household’s daily energy consumption be forecast
with reasonable accuracy?
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Answer: Yes.

The accuracy of the proposed adaptive MLP-based load forecast
model is important in predicting the different households daily energy
consumption given the limited generation capacity of the off-grid
power system. Section 5.13 shows the performance of the MLP-based
load forecast model compared to other load forecasting techniques.
The model’s performance is measured by RMSE and the time needed
to train the model. The best performance of the model is with a
network with 3 hidden layers and 20 neurons and 7 input delays for
historical energy data. This was identified via a grid search over the
neural network parameters by optimising the predictive accuracy and
training time. The experimental process is presented in Section 5.2.4.

The performance of the model is further improved by integrating
the household profiles as inputs. The proposed MLP-based forecast
model can forecast the next-day energy consumption of each house-
hold without the need of different model for each profile. This is
possible as the model is developed and trained using different house-
hold profile as inputs. The model is able to recognise the different
profiles accordingly. Although the performance of the proposed MLP-
based forecast model maybe further improved by incorporating more
than 4 households profiles and more than 2 years of historical data.
Incorporating historical energy data at appliance level as input may
also improve the performance of the model in forecasting. In this
study, it was planned to have more PMOG system to be deployed and
gather more energy data however, due to financial constraints, this
plan was never materialised.

RQ2: Can knowledge of consumer profiles aid in optimal and
adaptive energy allocation?

Answer: Yes.

Integrating the consumer profiles as inputs for the forecast model,
enables the forecast model to predict the energy consumption of
the households uniquely. As discussed in Chapter 6, the optimal
energy allocation is based on the forecasted values by the MLP-based
forecast model presented in Chapter 5. The optimal energy allocation
is adaptive because the household profiles are incorporated in the
load forecast model as inputs. Households profiles are included to the
typical input variables such as historical energy data, temperature and
calendar days, in developing a load forecast model.

Households profiles were created based on survey data. There are
four consumer profiles identified based on the households’ number of
occupants, monthly income, number of appliance, frequency of use (in
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terms of hours for all appliances), number of children in school and
with age less than 5 (who are expected to stay home during the day),
and number of working family members. The identified consumer
profiles are detailed in Section 4.8. Consumer profiles as inputs im-
proves the accuracy of the forecast model. From 20.11 % error down
to 13.58 % error without and with consumer profile as input, respec-
tively. Results presented in Section 6.2.1 show that each household
has unique energy allocations, based on the optimal algorithm after
incorporating the households profiles in the forecast model. According
to the ANOVA results, the difference between the means of the energy
allocations for each household is statistically significant with p–value
of 2.98× 10−268.

Given the results of the experiments and analysis of results, it can
be concluded that the consumer profiles indeed aid in determining
the optimal and adaptive energy allocation of the households. This
approach is expected to work when applied to households with similar
profile of households in Village 2 as presented in this study.

RQ3: Can the energy allocation be optimised to improve the
energy efficiency under the limited generation capacity?

Answer: Yes.

MLP-based forecast model is proposed that uses both historical data
and household demographic information to predict the household’s
day-ahead energy consumption. Using the forecasted values, the opti-
mal energy allocation is then calculated using Karush-Kuhn-Tucker
conditions from solving the optimisation problem (stated in Section
6.1) subject to two equality and inequality constraints related to the
limited generation capacity of the microgrids and a certain guaranteed
energy quota for each household. By providing an optimal energy
allocation to each household, the energy wastage in terms of unused
energy as well as energy deficit to some households is minimised.

The optimisation problem is defined with a main goal of reduc-
ing the difference between the allocated energy and the actual en-
ergy consumption in order to maximise the energy consumption in
a generation-constrained microgrids. Using the proposed optimal
energy allocation, the energy efficiency of off-grid microgrids with
limited generation capacity is improved. In this study, the off-grid
microgrid with limited generation capacity is said to be efficient when
the energy wastage is minimum. The energy wastage is the unused
daily energy allocation of the households. According to the simu-
lated results, the energy wastage/deficit is reduced by 44.4% with the
proposed optimal and adaptive energy allocation compared to the
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existing scheme that provides an equal energy allocation in 288 days,
and 14.6% compared with a proportional allocation.

As detailed in Chapters 5 and 6, the proposed methodology of allo-
cating energy to the households in generation-constrained microgrids
that is adaptive and optimal is successfully investigated and validated
in this thesis. The proposed methodology is a combination of load
forecasting using MLP and optimisation using KKT approach. The
set threshold of RMSE is achieved by employing MLP-based forecast
model and incorporating the household profiles as input together with
the historical data. The % error is improved by 32.5 % when household
profile is included as input. Although this performance can be further
improved with more household profiles and historical energy data.
When the performance of the forecast model to predict the next-day
energy consumption is improved, this also have a positive effect in
calculating the optimal energy allocation of the households. The ob-
jective function of the optimisation problem defined in this study is
to minimised the error difference between the forecasted value of the
next-day energy consumption of the households and the calculated
optimal energy allocation. When the forecasted values can be made
more accurate by improving the performance of the MLP-based fore-
cast model, the optimal energy allocation will also be more accurate
as expressed in equation 6.38. Thus, minimising the objective function
J. This proposed optimisation using KKT approach is applicable to
any optimisation problem that satisfies the KKT conditions. The pro-
posed methodology of determining the optimum energy allocation is
applicable to other households in off-grid communities with similar
household profile and off-grid power systems.

7.2 contributions to knowledge

From the answers to the research questions, the following are the
contributions of this work:

• A generalised MLP-based load forecasting model that uses his-
torical data and considers household demographic information
to predict the household’s day-ahead energy demand.

• A methodology for optimal energy allocation that is adaptive
to individual households – optimal because it minimises the en-
ergy waste/deficit, and adaptive because it uses the households
historical data and demographic information.

The allocation of energy quotas is considered as an optimisation
problem [Tan+15; Tia+14], in which the objective is to minimise the
collective energy waste as well as minimised energy deficit, in terms
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of unused allocated energy, while ensuring the generation capacity is
not exceeded. The historical usage are modelled and combined with
other extracted features for demand prediction to derive an optimal
energy allocation based on the forecasted ideal demand.

7.3 significance of the study

Apart from the direct benefits to the selected villages where the re-
search will be deployed, the work described in this thesis will be
beneficial to other researchers interested in micro-grids and energy
management systems for off-grid systems, as well as to the energy
providers in the Philippines. The integration of the social aspect (house-
hold individual profile) into the load forecasting model along with
the energy historical usage of each household increases the model’s
capacity for accuracy and thus generates real-world results.

The community is empowered by giving them an opportunity to
use their limited energy supply more efficiently with less energy
waste, and incorporate their individual requirements by considering
households profile in developing the load forecasting model.

This work can be a good reference in planning and design consider-
ations for energy management systems for off-grid implementations
in remote areas.

7.4 future work

In this thesis, a methodology for optimal energy allocation that is
adaptive to individual household is proposed. The following are the
possible avenue to expand on the work in this thesis:

1. The work can be further improved by including all the inherent
losses on generation and distribution lines of the microgrid into
the calculation of the energy allocation.

2. The work can be applied in smart grids that want to predict the
next day load based on the historical data and the consumer
profiles as laid out in this thesis and with possible inclusion of
appliance level historical data.

3. Real-time updating of data for dynamic forecasting and energy
allocation. Forecasting can be more efficient when the data is
updated in real-time and the energy allocation is dynamically
changing corresponding to the historical energy data.

4. The work can be used as the basis for energy management
financial scheme that would ensure the sustainability of the off-
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grid microgrid operation while maintaining the ideal energy
usage of the households.

5. This work can be further improved by using Deep Neural Net-
work architecture and/or any other hybrid models for load
forecasting.

6. The performance of MLP-based forecast model can be further
improved by using more than 4 household profiles and deploy
PMOG systems to gather data for each profile.

7. Optimisation approach may be improved further by utilising
other optimisation techniques such as sequential quadratic pro-
gramming (SQP) and genetic algorithm (GA) that essentially
minimise the objective function J.

This work is limited by the available data and the implementation of
the proposed energy allocation scheme is possible with sufficient finan-
cial support and collaboration with the maker of energy management
systems (EMS) of off-grid microgrids.
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D E P L O Y M E N T D O C U M E N T S

For data gathering, PMOG systems are installed to the selected house-
holds and a field survey were done. Attached here are the documents
on the installation of PMOG system and the survey questionnaire.

a.1 pmog system raspberry pi set up guide
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PMOG	Raspberry	PI	EMS	setup	
	

This	details	the	process	of	installing	the	PMOG	software	onto	a	Raspbian	Install		

	

Contents:	
• Preparing	the	SD	Card	

• Initial	configuration	and	package	installation	

• RTC	setup	

• Setup	SSH	

• Install	PMOG	code	

• Setup	AutoSSH	

	

Preparing	the	SD	Card	
1. Download	the	latest	copy	of	the	Raspbian	Lite	from	

https://www.raspberrypi.org/downloads/raspbian/	

2. Copy	onto	the	SD	Card	(either	use	dd,	or	PiBaker)	

3. Plug	the	SD	card	into	the	Pi	(with	keyboard/monitor	attached),	Apply	Power	

4. We	should	now	be	able	to	login	to	the	PI	(using	standard	pi/raspberry)	

Initial	Configuration	and	package	installation	
1. Update	the	source	list	and	upgrade	any	packages	

sudo	apt-get	update	&&	sudo	apt-get	upgrade	

2. Configure	the	raspberry	pi	

sudo	raspi-config	

3. Select	the	following	choices	

Expand	filesystem	

Change	user	password	

Advance	options	

	 A3	set	gpu	to	0	

	 A4	SSH	set	to	yes	

reboot	

4. Install	all	the	required	packages	

sudo	apt-get	install	git	mercurial	subversion	emacs	python-smbus	autossh	oracle	

sudo	apt-get	install	python-setuptools	python-dev	python-docutils	

sudo	easy_install	pyserial	

sudo	easy_install	requests	

	

5. Configure	Hostnames	

sudo	emacs	/etc/hostname	

(Check	that	it	is	PMOG	No.?)	
sudo	emacs/etc/hosts	

(Is	127.0.1.1	PMOG	No.?)	
	

RTC	setup	
	 For	the	software	and	hardware	installation	of	RTC	to	pi,	refer	to	PiFace	Real	Time	

Clock	user	guide	available	at:	

http://www.piface.org.uk/assets/piface_clock/PiFaceClockguide.pdf	

[ October 13, 2020 at 14:07 – version 2.0 ]



GenePhD_documents	 Cogent	Lab,	Coventry	University,	UK	 	 2	

	

Setup	SSH	

1. Generate	SSH	key	

shh-keygen	–t	rsa	

2. Copy	key	and	ask	someone	with	sudo	access	to	add	to	pi	user	on	cogentee	

(James/Ross)	

cat	.ssh/id_rsa.pub	

3. Test	the	ssh	connection	by	

ssh	cogentee.coventry.ac.uk	

Reply	if	necessary	to	prompt	

	

Install	PMOG	Code	

1. Get	PMOG	code	from	subversion	

mkdir	-/svn	

cd	~/svn	

svn	co	svn+ssh://cogentee.coventry.ac.uk/svn/PMOG	

2. Move	folder	to	opt	

sudo	mv	PMOG	/opt/PMOG	

3. Make	data	directories	

sudo	mkdir	/var/log/ch	

4. Install	python	code	

cd	opt/PMOG	

sudo	python	setup.py	develop	

5. Install	start-up	scripts	

cd	/opt/PMOG/etc	

sudo	cp	ch-CurrentCost	/etc/init.d/	

sudo	upgrade-rc.d	ch-currentcost	defaults	
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sudo	update-rc.d	ch-currentcost	enable	

	

Setup	AutoSSH	

1. Copy	auto-ssh	to	initi.d	

cd	/opt/PMOG/etc	

sudo	cp	auto-ssh	/etc/init.d/	

sudo	chmod	755	/etc/init.d/auto-ssh	

2. Run	the	following	in	a	shell,	replacing	the	XXX	with	an	unused	number	

Echo	REMOTE_PORT=16xxx	|	sudo	tee	/etc/default/auto-ssh	

	

3. Set	to	start	at	boot	

sudo	update-rc.d	auto-ssh	defaults	

sudo	update-rc.d	auto-ssh	enable	

sudo	reboot	

4. Check	if	you	can	connect	through	cogentee	
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PMOG-CurrentCost Deployment Guide 
 
A. Equipment 

1 Server Used to collect and store data from the Wireless Sensor Network 
(WSN), and push data via 3g to the Cogent Computing Server. Composed of 
raspberry pi and the 3G/4G dongle with aerial. (Labelled as PMOG1 ~ 
PMOGN) 

  
1 Current Cost Node Senses the electricity consumption of the household 
includes Current Cost set and Current Cost Individual Appliance Monitor 
(IAM) 
 
1 Router Used to access the server during installation  
 
2 Ethernet Cables Used during installation 
 

B. Installation 
1. Map the house to take note where the raspberry pi with the dongle to be 

installed. 
2. Locate the electric main panel/meter and note the desired point of installation 

for the raspberry pi and Current Cost display monitor. 
3. Set up the Current Cost devices and the IAM following the instructions in the 

manual attached (make sure you get a reading on the display).  
 
Note: Log the name of the appliances, (if possible with serial no.) plugged in 
with each individual appliance monitors for each household to the system 
monitoring log sheet. 
 

4. Connect the Current Cost display monitor to the raspberry pi by plugging in 
the interface cable between the two. 

5. Plug in the Router. 
6. Using the Ethernet cables, connect both the pi and your laptop to the router 
7. Plug in the dongle to the raspberry pi. (Note the flashing light: Green – 

connected to 4G network, blue – 3G network, RED light means not connected  
or no signal) 

8. Plug in raspberry pi, check all lights come on. 
9. To check if system is logging data, navigate to 

http://<servername>.local/PMOG/  or 
open a terminal window and run the following: 
 ssh cogentee 
 ssh pi@servername.coventry.ac.uk 

(reply if necessary to prompt, when             
successfully logged in, do the following) 

cd /tmp/ 
 ls                                        (files containing data should appear) 

cat <filename>                   (to show the contents of the file, choose any 
                     file from the directory shown)  

10. Make sure the node and devices are listed under sender and device column at 
the web page. 
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Survey Questionnaire

Are	you	interested	in	participating	in	a	“user-driven”	energy	project?	

I Demographic	Profiling Date:
1) Location: Control	No.
2) Name:
3) Role	in	the	family: 6) Educational	Attainment:

Father Elementary
Mother High	School
Head	of	the	family College	Level
Others: Vocational/technology	

4) Age: College	graduate
5) Gender: Others

7) House	Occupancy: 8) Occupation:	(Please	tick	one.	If	not
Single on	the	list,	please	specify)
Couple Farmer

working Fisherman
retired Entreprenuer

Family	with	children Teacher
<	5	yrs.	old Brgy.	Official/Worker
5	-18	yrs.	old Others:	(specify)
> 18	yrs.	old

Extended	Family	(with	grandparents)
Others:

9) Total	number	of	people	living	in	the	house:
10) Number	of	children	studying(or	in	school):
11) No.	of	family	members	who	are	working:
12) Monthly	Salary/Income	(₱)

Range Range
less	than	2000 10001	-	15000
2000	-	5000 15001	above
5001	-	8000 Others,	please	specify:
8001	-	10000

13) Other	source	of	income:
14) Total	Monthly/Daily	income:

Yes

No
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II Energy	Consumption	Profiling
1) Who	is	in	the	house?

Name
example:

Josephine	dela	Cruz 30 6	PM-7	AM

Juan	dela	Cruz 32 No

1

2

3

4

5

6

7

8

9

10

2) Do	you	have	appliances?	(Please	tick	below	and	indicate	how	often	do	you	use	it)

Everyday
(Ave.	hours	of	

use)

Twice	a	week
(Ave.	hours	of	

use)

Others,	please	
specify

Light	bulbs	and/or	flourescent
TV
Refrigerator
Electric/ceiling	fan
Electric	kettle
Rice	Cooker
Electric	Stove
Others	(List	the	other	appliances	you	used	at	least	once	a	week)
1

2

3

4

5

3) Monthly	electric	bill	(₱)
4) Do	you	use	smart	phones?

5) Do	you	have	access	to	24-hour	energy?

6) If	you	will	have	24-hour	access	to	energy,	what	would	change	in	your
energy	consumption?

During	the	
day	

During	the	
night	Age

No

8	AM	-	5	PM

once	a	week
(Ave.	hours	of	

use)

Yes No

Yes	(Proceed	to	Section	III

Yes	(Proceed	to	question	6
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III User-empowerment	profiling
1.)	 Please	rank	the	following	according	to	your	priorities,	

with	10	as	the	highest	and	1	as	the	lowest.

(Please	place	the	numbered	smileys	on	the	space	provided)

Water employment/job

Sanitation Community	Livelihood	program

Road Health	Facilities	(i.e.	clinic/hospital)

electricity education/school

Housing flood/typhoon	protection

10 8 6 4 2

9 7 5 3 1
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2.) How	aware	are	you	of	the	environmental	impact	of	energy	use?	
(Please	encircle	below	:	5	-	highest,	1	-	lowest)

3.) How	motivated	are	you	to	save	energy?
(Please	encircle	below	:	5	-	highest,	1	-	lowest)

4.) How	engaged	are	you	in	your	local	community?
(Please	encircle	below:	5	-	Always,	4	-	Often	3-	Sometimes,	2	-Occationally	,	1	-	Never)

4a.	I	participate	in	every	activity	in	the	local	community

4b.	I	take	part	on	the	decision	making	for	my	local	community	welfare,	
development	and	etc.

5.) How	influential	are	you	at	changing	how	your	community	uses	energy?	
(Please	encircle	below	:	5	-	highest,	1	-	lowest)
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a.4 deployment technical report

This document is available upon request.
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B
F I E L D W O R K : P M O G S Y S T E M S I N S TA L L AT I O N

There were 10 PMOG systems installed in the selected households
and microgrid at the two villages; Village 1 and Village 2. These two
villages are both powered by an off-grid power system with limited
generation capacity. Each village has 5 PMOG systems, 1 for moni-
toring the generation side and 4 for the households representing the
majority of the households’ profile. Households were selected after
the survey was done where the demographic information was already
gathered. The number of households with the same profile was consid-
ered in the selection process. Parameters such as number of appliances,
number of occupancies and total household’s monthly income were
considered in the selection process. The number of households with
the same number of those three parameters was tallied. Then one
household was selected from the four most numbers of households
with the same profile to represent them. Figure B.1 shows the actual
PMOG system installed in the households.

The CT jaw sensor of the PMOG was clamped to the main electric
panel of the household, and the wireless transmitter was fixed on
the wall (as shown in Figure B.1). The sensor is now ready to gather
data as the aggregate energy consumption of the household. To gather
the data at the appliance level, the individual appliance monitor was
deployed. Each appliance was attached with an IAM to determine the
amount of energy used. IAM was plugged into the wall socket, and
the selected load (appliance) was plugged into the IAM.

CT jaw sensor and each IAM were paired with the Envi display
monitor. The wireless communication between the sensors and the
Envi display monitor was confirmed by checking the display monitor
whether it was showing energy usage of the households from CT jaw
sensor and appliances from IAMs before fixing all the wires on the
wall. Internet connection was then checked and confirmed during the
installation process by checking the webpage in real-time to make sure
that the system was working properly before fixing the devices in the
household. The webpage, which is running from the remote server, is
expected to update the displayed data every 20 minutes after every
hour. When the webpage is not updated, PMOG system may need to
be checked to confirm its status. The PMOG system is designed to
store data in its local server. The CT jaw sensors and the appliance
monitors sensed the data every 6 seconds and transmitted it to the
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Main panel CT jaw sensor 
and transmitter

Display monitor RPi and 
Local server

PMOG system installed at the power plant (generation side)

Internet dongle

Main panel

CT jaw sensor 
and transmitter

Display monitor

RPi and local server

Internet dongle

IAM
PMOG system installed 
in the household

Figure B.1: PMOG systems deployed in the villages collecting energy data
on both the off-grid power systems (generation side) and the
households with individual appliance monitors (IAMs).
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CC monitor and logged in to the Rpi storage. The PMOG system,
through its internet dongle, transmits the sensed data from its local
server (household) to the remote server (Cogent laboratory) every 20

minutes past hour.
Data logging at the webpage created for the PMOG system was

checked every day to monitor the performance of all sensors. The
PMOG systems were expected to send data every hour if they were
working properly. The last transmission can be checked at the web-
page. When the last the transmission was successful, the webpage
automatically updates and displays the most current data received. If
not, and the last transmission is already one day past, the person-in-
charge in the Philippines was contacted to check with the household
what causes the missing transmissions and resolve the issues remotely
when necessary. Common causes of missing transmission include net-
work problems such as no internet connection, and PMOG systems
were not working and turned off.

Figure B.2 is the actual webpage of the PMOG monitoring system.
The webpages display sender, device number, server time for both
local and remotes servers, and the readings from IAMs, CT jaw sensor
and built-in temperature sensor. Appliances monitored by the IAMS
were assigned to a specific channel display in the Envi display monitor
in which the devices number is displayed on the webpage. Envi
display monitor can display individual energy consumption of the
appliances through IAMs with channel number from 1 to 9 with
channel 0 reserved for CT jaw sensor. The transmitted data is retrieved
from the remote server designated to the PMOG system by accessing
the server from any computer connected to the internet. The data is in
the form of .csv file that can be viewed by a Microsoft excel. The data
includes the date and time, electricity usage (power (W)), temperature
(degree C), device number, and the server number of the nodes.

[ October 13, 2020 at 14:07 – version 2.0 ]



150 field work : pmog systems installation

Figure B.2: PMOG system node report interface. The webpage displays the
newest transmitted data to the remote server. The data include
the date and time, device number, and PMOG number aside from
the main data which are the temperature and power usage of the
household
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R E S E A R C H D ATA

For this research, data refers to the PMOG data and survey data as
described in Chapter 4. These data are stored and can be accessed at
Cogentee repository [Pal19]. Both raw data and pre-processed data are
available at this webpage: http://cogentee.coventry.ac.uk/ gene/re-
searchdata/)
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This research has undergone the ethical approval process of Coven-
try University. Attached here are the certificates, and application
documents such as the participants information sheet and consent
form.
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