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ABSTRACT 

 Textural analysis and statistical investigation of patterns in synthetic aperture 

sonar (SAS) images is useful for oceanographic purposes such as biological habitat 

mapping or bottom type identification for offshore construction. Seafloor classification 

also has many tactical benefits for the U.S. Navy in terms of mine identification and 

undersea warfare. Common methods of texture analysis rely on statistical moments of 

image intensity, or more generally, the probability density function of the scene. One of 

the most common techniques uses Haralick’s Grey Level Co-occurrence Matrix (GLCM) 

to calculate image features used in the applications listed above. Although widely used, 

seafloor classification and segmentation are difficult using Haralick features. Typically, 

these features are calculated at a single scale. Improvements based on the understanding 

that patterns are multiscale was compared with this baseline, with a goal of improving 

seafloor classification. Synthetic aperture sonar (SAS) data was provided by the 

Norwegian Research Defense Establishment for this work, and was labeled into six 

distinct seafloor classes, with 757 total examples. We analyze the feature importance 

determined by neighborhood component analysis as a function of scale and direction to 

determine which spatial scale and azimuthal direction is most informative for good 

classification performance. 
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I. INTRODUCTION 

Sonar data is the main means of information gathering in underwater applications, 

more so than optical data. Entire platforms are dependent on sonar data collection, such as 

submarines and minesweepers. Most of the antisubmarine warfare and mine 

countermeasure disciplines rely almost exclusively on the ability to collect and analyze 

sonar information. The primary method of detection of submerged objects has been and 

continues to be through active sonar. The significance of this underwater acoustic 

technology was used to find the HMS Titanic, detection of U-boats during WWII, and 

continues to prove useful in modern applications from environmental mapping to mine 

detection, as shown by D’Amico and Richard [1]. The core concept of active sonar remains 

the same – a transmitter sends a short pulse of sound in the environment. The sound scatters 

across the environment and is received by a hydrophone.  

Traditional side scan sonar typically works by capturing high resolution images that 

decrease in resolution the greater the distance from the transducer array [2]. The issue with 

side-scan sonar is that the resolution of the image tends to degrade the further from the 

track of the vehicle housing the sonar. In contrast, synthetic aperture sonar or SAS 

combines several acoustic pings to form a higher resolution image when compared to 

traditional methods of sonar gathering. Synthetic aperture sonar or SAS is an improvement 

on traditional methods of standard, narrow beamwidth side-scan sonar. Traditional side-

scan sonar images are processed with each ping echo being independently built into a 

coherent image. SAS instead compiles multiple pings over an area and builds a single, 

coherent picture with less distortion than an image that is built using only traditional side-

scan sonar methods [3]. While the SAS method is more costly and time-consuming, the 

enhanced image that it provides is more useful for analyzing important features such as 

texture and object recognition.  

Traditionally, target detection performance has been based on relative strength of 

the signal scattered by a target, and the received energy scattered by the environment [4], 

[5]. More generally, the probability density functions (PDF) of each intensity can be 



2 

compared to obtain an estimate of the false alarm rate and missed detection rate [5]. For 

areas with statistically homogeneous roughness features, like uniform sand, the energy 

metric, or PDF-based metrics are sufficient [5],[6], although the PDF of the scattered field 

may vary as a function of range from the sonar [6], [7], and [8]. 

High resolution SAS can resolve small features on the seafloor (on the order of 

centimeters) can resolve fine textures that can also be mistaken for targets [9], [10], [11], 

[12]. Modern detection algorithms [13], [14] look for patterns in images, and can be fooled 

when seafloor texture resembles the patterns sought. As compared with the traditional 

methods of determining system performance, high resolution systems require some 

knowledge of how these patterns translate into false alarm. These patterns are broadly 

termed “texture” and represent the patchiness of large-scale intensity changes. 

Quantification of texture is useful both as a means of predicting false alarms in sonar data 

(e.g., using humans or machines) [14], and as a way of characterizing seafloors, and 

classifying them into different types [2].  

Texture is a paradoxical feature, being intuitive for understanding but hard to 

quantify. Objective methods used to calculate texture vary widely since there are no widely 

accepted quantitative metrics for measuring texture [15], [16], [17]. Humans are generally 

good at recognizing features such as smooth, rough, or even fuzzy, even without a tactile 

response to verify it. However, there is a lack of a standardized metric when it comes to 

having a machine automatically quantify image textures. Different disciplines have 

different methods of analyzing textural data. For this study, we will focus on gray level co-

occurrence matrices or GLCMs. GLCMs have had relative success in the past in the realm 

of seafloor classification [15]. Previous scientific work has only used few features at 

specific spatial scales. Seafloor texture is multiscale, and is anisotropic, which may not be 

captured adequately by a few scales. The focus of this paper is to study how different 

GLCM features and scales can be used to evaluate sonar images. Further study is needed 

to understand the precise nature of geographical patterns, spatial clustering, and the spatial 

scales of intensity. GLCMs can potentially offer an increased level of understanding 

regarding these lesser studied features. What precisely makes a feature useful for 

classification is one of the primary objectives of this paper.  
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Underwater target detection is a field of study that would benefit greatly with an 

improved method of detection and textural analysis. A particular interest is the practice of 

detecting targets and the methods used to reduce the frequency of false identifications or 

false positives. False identifications or false positives are instances in which a system, 

machine, or operator incorrectly identifies an object that is not a mine as a mine. Prior 

studies by Williams [13] and Galusha [14] have focused on analyzing sonar images by 

clustering areas of high intensity and low intensity to separate seafloor features from 

objects. 

Contemporary target detection methods generally focus on the positive 

identification of either a mine-like object or the “shadow” of a mine-like object within a 

sonar image [16]. This positive identification is contingent on that the mine-like object 

being proud of the surrounding seafloor environment on which it sits. As sonar, or 

primarily side scan sonar, collects data, any feature or object that is proud of the seafloor 

tends to return a stronger or brighter image return. Subsequently, the object prevents the 

area behind it from returning a signal, creating what is known as a “shadow” [16]. 

 
Figure 1. Side scan sonar imagery of a mine-like object and its shadow. 

Source: [16]. 

Some researchers like Galusha [14] have developed algorithms that aim to 

maximize the amount of accurate positive identifications are returned from SAS images. 

In these algorithms, pixels with high intensity returns are classified as mine-like objects, 
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while the dark pixels immediately adjacent to the mine-like objects are classified as 

shadows. Using multiple algorithms, they can test fast and accurate detection methods for 

basic target isolation. The downside of these types of algorithms is the prerequisite the 

mine-like object is proud of the seafloor environment in which it is located. The less 

homogeneous the seafloor environment, the harder it is to accurately identify mine-like 

objects, and the increase of false positives occurs.  

Being able to quantify spatial patterns, particularly among sonar images, would 

vastly increase the accuracy of classification of bottom types and even bottom objects. 

Particularly, if the patterns or textures could be incorporated into classification software or 

machine learning algorithms then it would greatly increase the precision of positive 

identification and remove potential guesswork that is usually associated with an operator 

determining environments in a manual fashion. This could potentially be used by a sonar 

operator tasked with evaluating sonar images. Whether it is for classification of bottom 

types or identification of mine-like objects, any ability to quantify a feature that does not 

require a human operator can be used either as an additional measurement or even as the 

primary means of identification by itself. Being able to incorporate these measurements in 

tandem with machine learning algorithms would greatly increase the volume of images 

able to be processed, as well as, potentially increasing the accuracy of the classification or 

identification themselves. 

In this paper, GLCMs will be used to access various features and parameters 

surrounding the textural properties in multiple SAS images. Upon analysis of GLCM 

calculations, the most descriptive features and parameters will be selected to test whether 

they can prove to be more helpful than traditional metrics of textural analysis. The 

remainder of this paper is organized as follows: Chapter II will provide an overview of 

previous studies and a review of the state of modern methods of textural analysis. Chapter 

III will describe the origin of the dataset being used in this thesis. Chapter IV will explain 

the methodology used in this experiment and how the data was processed. Chapter V will 

be an analysis of the results gathered and what information can be generated from it. 

Chapter VI will cover the mistakes made in this process and what further questions and 
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studies can be conducted in the future to broaden the understanding of textural and 

statistical analysis of seafloor features.  
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II. PREVIOUS LITERATURE 

The overall aim of this thesis is to use GLCMs to find features and parameters that 

work best for textural and statistical quantification of seafloor textures, and use these 

parameters to determine which scales are the most informative for classifying different 

types of features. While others have sought to find the best performance for classification 

tasks, we further seek to uses these highly informative features to determine what 

perceptually, about the images is driving this performance. Few have conducted research 

on what exactly the best method of quantification is. The three main methods that will be 

discussed, as well as, improved upon were methods developed by Haralick [15], Blondel 

[16], and Zare [17].  

One of the earliest works in texture quantification was in 1973 by Haralick [15]. In 

this work, he proposed a method for computing textural features using gray-tone spatial 

relationships [15], [18]. Haralick stated that texture was an innate property of all surfaces 

and that the structural arrangement of surfaces and their relationship to surrounding 

surfaces provided meaningful information in terms of classification. Prior studies focused 

on power spectra, Markov meshes, and Rayleigh probability density functions [15], [19]. 

While not entirely unfeasible, he found that these various methods left much to be desired 

in terms of classification and largely ignored the wide range of complexities found in the 

real world. By using gray-tone spatial dependence matrices, Haralick was able to 

extrapolate spatial features such as angular second moment (ASM), contrast, and 

correlation. Using the features generated from the matrices, he was able to classify features 

found in a variety of aerial photographs – from woodlands to urban areas [15]. 
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Figure 2. Haralick’s GLCM calculations of Grassland and Water Body 

photographs using the parameters: Angle, Angular Second Moment, 
Contrast, and Correlation. Source: [15]. 

In 2000, Blondel stated that side scan sonar imagery of seafloor surveys still tends 

to be evaluated visually rather than qualitatively [16]. The geophysical and environmental 

features that make up the seafloor are interpreted easily using visual patterns discernable 

to someone evaluating an image, but a quantitative approach would be helpful for further 

understanding and assessment of side scan sonar data. This would be particularly useful 

for evaluating images in bulk or for the purposes of machine learning data acquisition. 

Blondel used GLCMs to extract textural features using two factors: homogeneity and 

entropy. His research proved to have limited success as seen in Figure 4. While not entirely 
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useful, Blondel was able to develop segmentation for one type of rock from all other types 

of environmental features. 

 
Figure 3. 3D representation of how an image’s GLCM calculations are 

represented and segmented using the features Local Homogeneity and 
Entropy. Bottom graph shows an optimal graph using homogeneity and 
entropy for good feature segmentation. The actual graph of the data is 

shown in Figure 4. Source: [20]. 
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Figure 4. Philip Blondel took the photographs of the different features and 

separated them using GLCMs and the features Homogeneity and Entropy. 
Source: [20]. 

In 2017, Zare [17] developed a method of analyzing side-look synthetic aperture 

sonar images using a method coined Possibilistic Fuzzy Local Information C-Means 

(PFLICM). PFLICM combines existing techniques of data clustering to incorporate fuzzy 

and possibilistic clustering with spatial information to perform soft segmentation on an 

SAS image. Soft segmentation differs from hard segmentation in which hard segmentation 

draws a concrete line between areas that are different. Soft segmentation calculates the 

probability of a spatial location to be certain features or textures. PFLICM combines the 

two methods: Fuzzy Local Information C-Means (FLICM) and Possibilistic Fuzzy 

Clustering algorithm (PFCM) [17]. Using PFLICM, Zare attempted to improve the 

contemporary approaches to segmenting SAS images and accurately classify spatial areas 
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of SAS images as different textures. Zare also had an overall goal to create an algorithm 

with similar rate of successes in identifying various sea floor textures comparable to the 

ability of a human observer. 

Previous studies have hinted at the implications of using textural analysis 

techniques for seafloor segmentation. However, much more research is needed to explain 

the parameters and features that are most useful in this endeavor. In this paper, the question 

that will be answered is precisely which features and under what parameters are most 

informative when it comes to processing the tonal and spatial relationship between distinct 

patterns found in varying seafloor textures.  

  



12 

THIS PAGE INTENTIONALLY LEFT BLANK 



13 

III. DATA 

The high-resolution SAS images used in this paper were collected by the 

Norwegian Defense Research Establishment (FFI) in 2017. The unmanned underwater 

vehicle used to collect the data was the HUGIN HUS AUV carrying the HISAS 1032 [19]. 

The location where the data was collected was in the vicinity of the North Sea, west of the 

city of Bergen.  

 
Figure 5. A photo of the HUGIN 1000 UUV. Photo Credit: Norwegian 

Defence Research Establishment (FFI) 
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At a vehicle altitude of 30m, the HUGIN 1032 collected sonar imagery at a 

frequency of 100 kHz and a bandwidth of 30 kHz [19]. A total of seventeen SAS images 

were used, each image with varying bottom types and textures. A total of 757 snippets were 

extracted from the seventeen images as part of this thesis. Similar labeling was performed 

in [21] using the same dataset, but this labeling was performed independently of that work. 

The snippets were labeled with mud, rock – gradient, rock - plateau, sand – homogeneous, 

sand – rocks, and sand – ripples. 

To preprocess the images, the first step was to normalize the images using a CFAR 

split window normalizer. The window sizes were 500 pixels in range and 3000 pixels 

across the range. This would remove large-scale intensity changes created by the sonar 

equation (e.g., spherical spreading, vertical directivity patterns). The snippets were log-

transformed by converting the magnitude square of the normalized pixel level to decibels 

using an arbitrary reference. For each snippet, overall mean level (i.e., tone in the 

terminology of Haralick [15]) was removed by subtracting the decibel version of mean 

intensity. This would assist in normalizing the tone inconsistencies found in varying areas 

of the pictures. Retaining this mean for use in classification may provide valuable 

information and could be explored in future work. These images were uncalibrated, 

meaning that the overall conversion between image units and complex pressure is 

unknown. Use of calibrated images may provide significant information for use in 

classification, although the focus of this work is on spatial texture patterns, rather than 

mean intensity. Equal probability quantization was performed to obtain the binned intensity 

levels as uniform quantization has produced historically poor results, as referenced in 

Haralick’s 1973 study [15]. Once the data is processed in this format, the GLCMs were 

calculated using Matlab’s graycomatrix function.  
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Figure 6. High resolution SAS image of North Sea bottom environment. 

Axes in meters.  
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Figure 7. High resolution SAS image of North Sea bottom environment. 

Axes in meters. 



17 

IV. METHODS 

Haralick stated that texture is an important characteristic of evaluating an image, 

particularly regarding geophysical and environmental features [8]. He explored different 

computational techniques to discern an image’s features using its gray-tone spatial 

dependencies. By using statistics to explain textures, he was able to describe how one gray 

tone compared to another gray tone in a specified spatial relationship. Using these 

comparisons, categorization, and identifications can be made. However, image 

classification is not always a clear-cut prospect. Image classification is composed of several 

steps to include data processing, feature extraction, feature selection, and classification 

method selection [22]. Objective accuracy assessment for image classification can be 

difficult, since methods will vary depending on the type of data being analyzed and what 

purpose is classification being done. Plainly, the image classification process to categorize 

different species of tropical birds in photographs will differ greatly from the process needed 

to perform segmentation for seafloor features inside SAS images. Since trying to determine 

which features will prove most descriptive in seafloor texture classification is the goal of 

this thesis, GLCMs will be used as a tool to objectively measure the relationship between 

multiple features and the parameters in which they are measured.  

However, first one must define texture. Texture can sometimes be defined as the 

relationship between high and low points on a topographical surface [15]. For instance, a 

texture can be described as rough if it has a large difference between high and low points 

with a relatively small difference in the space between those high and low points. 

Conversely, a smooth surface would have a small difference between high and low points 

in a similar spatial scale. When pictures are represented in a grayscale, certain textures can 

be quantified using the gray level differences between pixels (contrast), the size or area 

where the contrast occurs, and the directionality of the change relative to a selected pixel. 

Using these relationships, Haralick was able to propose 14 different measurements that 

could be taken such as the variance of the difference between adjacent pixels and the 

maximum correlation coefficient [15].  
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Grey level co-occurrence matrices (GLCMs) are tools that can be used to 

objectively quantify textures. According to Singh and Srivastava [23], “a GLCM is a matrix 

that represents the relative frequencies of a pair of grey levels present at a certain distance 

d apart and at a particular angle Θ. As shown in Figure 8 (adapted from [23), GLCM’s 

values are calculated for a selected pair of distance and angle. The final matrix is then 

populated based on the sum of all the frequencies in order. Multiple GLCMs can be 

calculated based on the number offsets used in the calculations as shown in Figure 10. In 

this paper, 4 Θ values will be used: 0, 45, 90, and 135.   

 
Figure 8. An example of how a GLCM is calculated. The image (left) is 

assigned values based on the brightness of the pixel. The GLCM (right) is 
then compiled using the spatial relationship of each pixel in relation to 

another adjacent pixel. Source: [23]. 
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Figure 9. GLCM values can be expanded not only by calculating the 
relationship of the pixel directly to its right. Multiple angles of offset can 

be measured such as: 45, 90, and 135 degree offsets. Source: [24]. 

Texture features are single values that represent characteristics such as contrast, 

homogeneity, or entropy. The GLCMs that were calculated are converted to these features 

for each snippet using the 21 equations below.  

 

1) Angular Second Moment (Energy) (Source: [15]):   

2
1 { ( , )}

i j
f p i j=∑ ∑

 

 
(1) 

 
2) Contrast (Source: [15]):  

1
2

2
0 1 1

| |

( , )
g g gN N N

n i j
i j n

f n p i j
−

= = =
− =

  =  
  

∑ ∑ ∑  

 
(2) 

 

3) Correlation (Source: [15]): 
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where xµ , yµ , xσ , and yσ are the means of standard deviation of xp and yp  

 

4) Sum of Squares: Variance (Source: [15]): 
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5) Inverse Difference Moment (Source: [15]): 
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6) Sum Average (Source: [15]): 
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7) Sum Variance (Source: [15]): 
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8) Sum Entropy (Source: [15]): 
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9) Entropy (Source: [15]): 
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10) Difference Variance (Source: [15]): 

10f variance of x yp −  
 

(10) 

 

11) Difference Entropy (Source: [15]): 
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12) Information Measures of Correlation (Source: [15]): 
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13) Information Measures of Correlation (Continued) (Source: [15]): 
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Where HX and HY are entropies of xp and yp , and  
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2 ( ) ( ) log{ ( ) ( )}x y x y
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14) Maximal Correlation Coefficient (Source: [15]):  

14f = (Second largest eigenvalue of Q) 1/2  
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15) Autocorrelation (Source: [25]): 
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16) Dissimilarity (Source: [25]): 
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17) Cluster Shade (Source: [25]): 
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18) Cluster Prominence (Source: [25]): 

4
18 ( ) ( , )x y

i j
f i j p i jµ µ= + − −∑ ∑  

 
(22) 

 

19) Maximum Probability (Source: [25]): 
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20) Homogeneity (Source: [26]): 
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21) Inverse Difference (Source: [26]): 
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It is worth noting that the equations and definitions for these features will 

sometimes vary depending on the study. For instance, Equation 20 for Homogeneity is 

called Inverse Difference Moment by Clausi [26] but Homogeneity by Singh [23]. All 

texture features were calculated from input GLCMs using Matlab function 

GLCM_Features1 written by Avinash Uppuluri [27]. These equations were taken from 

Haralick’s 1973 study [15], Soh’s 1999 study [25], and Clausi’s 2002 study [26]. 

As previously discussed, the labels for each snippet were labeled mud, rock – 

gradient, rock - plateau, sand – homogeneous, sand – rocks, and sand – ripples. This 

labeling procedure is shown in Figures 10 and 11. There was a distinction made between 

snippets that appeared to be smooth and largely flat rock surfaces, and snippets that 

appeared to have mostly rocky but jagged features. The former was labeled as Rock – 

Plateau, while the latter was labeled as Rock – Gradient. There was greater variation in the 

patterns found in sandy textures, so three distinct classification labels for sand. If the sand 

was mostly homogeneous and smooth, it was labeled as Sand – Homogeneous. If ripples 

were the dominant features, it was labeled as Sand – Ripple. If the snippet consisted of 

gravel or larger rock, but sand was still the dominant feature, the snippet was labeled as 

Sand – Rock. Mud snippets were dominated by relatively dark tonal features (i.e., low 
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scattering strength) with a mostly homogeneous tonal makeup (similar to Sand – 

Homogeneous). Since some of the snippets were comprised of two types of seafloors, 

multilabel classification techniques may need to be used in future research.  

 
Figure 10. A visual representation of how different textures in the 
environment were labeled. These are example images of how the snippets 
of different features were selected. Each individual snippet represents a 
single and distinct geological feature. The six labels that were defined 

were: Rock – Plateau, Rock – Gradient, Mud, Sand – Homogeneous, Sand 
– Rock, and Sand – Ripple. 
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Figure 11. Another visual representation of how different textures in the 

environment were labeled.  

Once this was done, the snippets had to be analyzed using gray level co-occurrence 

matrices or GLCMs. Each snippet was analyzed using four parameters: gray levels, offset 
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values, window sizes, and angle. In addition, a total of 21 features were calculated. The 

grey level selected was 16. The offset values chosen were 1 to 19 at an interval of 1. The 

window sizes selected were 20 through 40 at an interval of 1. The selected snippets are all 

various sizes in terms of pixel-by-pixel lengths, meaning that the dataset collected is not 

uniform in terms of picture size. Most snippets are approximately 200–300 pixels in each 

dimension. Having these selected window sizes helps to standardize the measurements. A 

percentile cutoff limit of the entire dataset was also used to control the signal to noise ratio 

of the data. The percentile cutoff on the lower limit was 5% and the percentile cutoff on 

the upper limit was 100%. This resulted in a signal to noise ratio of about 30 dB. 

 
Figure 12. Covariance plot illustrating the relationship between Feature Index 

by Feature Index. 
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Once GLCMs were computed using the 757 snippets and selected parameters, there 

were 31,864 total feature combinations for each snippet. To trim down this number, a 

covariance matrix was used to remove features with low correlation with the labels. The 

overall inter-feature covariance matrix is shown in Figure 12. Using a covariance technique 

and a correlation cutoff at 0.35, only the top 1,918 features remained. The goal was to retain 

only features that possessed high correlation with the labels (Mud, Rock, Sand – Ripple, 

etc.). The feature-label covariance and threshold used is shown in Figure 13. 

 
Figure 13. Reorganized covariance plot showing an optimal cutoff of features 

selection occurs around 0.35. Features above the threshold were 
considered to have high correlation with labels. 

To find the features with the most informative values, neighborhood component 

analysis (NCA) [28] was used on the reduced set of 1918 features (using the MATLAB 

function fscnca [29]). NCA is an algorithm that allows the analysis of a linear 
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transformation of a dataset by optimizing k-nearest neighbor performance and can result 

in an estimate of feature weights in addition to training a classifier. In this respect, it is very 

similar to principal component analysis (PCA) because it calculates a few important 

principal components while discarding the rest [30]. The advantage of using NCA over 

PCA is that NCA offers a more accurate representation of the dataset based on 

dimensionality while PCA takes a matrix and reduces it linearly. FSCNCA gives us feature 

importance weights that tell us the most descriptive features. Since NCA is searching for 

the values of a large matrix (about 2000x2000 in this case) and we only have 757 data 

samples, the problem is underdetermined. Therefore, we use a regularization penalty to 

ensure that fewer than the full number of features is used. The parameter lambda (λ) is used 

to set the degree of regularization. The λ value used was 0.0126 and we used a threshold 

of 0.01 to determine a final list of the most important features. This was chosen by varying 

λ and examining the training loss (a measure of classification accuracy). This plot is shown 

in Figures 15 and 16. The NCA model results in feature weights that allow us to assess 

which features and parameters are more important for classification, as well as a classifier. 
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Figure 14. A pruned version of the covariance plot, but only using the features 

that were above the 0.35 correlation threshold. 
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Figure 15. Graph of Lambda values compared to its calculated Loss value. 

Lambda values with low loss were preferable to values with higher loss 
values. 
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V. RESULTS AND DISCUSSION 

Once the GLCMs are processed and the results of which features and what 

parameters are the most descriptive is found, the main question is what is driving the 

successful features? What patterns are the features capturing? 

Using t-SNE, or t-distributed stochastic neighbor embedding, the data was able to 

be organized in both two and three-dimensional maps for visualization of classification 

clustering [18].  

 
Figure 16. A scatter plot showing the clustering of different classifications 

This classification can also be seen using t-SNE mapping to determine which 

features and labels have the highest levels of clustering and segmentation. Sand – Ripple 
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examples are well-defined and can be seen clearly separated from the other feature types. 

Using three-dimensional t-SNE mapping, different angles can be observed that show the 

distinction between three clusters of classifications.  

 
Figure 17. Three-dimensional t-SNE map showing three distinct clusters of 

identification. The color map for these observations is consistent with the 
previous two-dimensional t-SNE map in Figure 16.  
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Figure 18. The same three-dimensional t-SNE map showing three distinct 

clusters of identification but rotated to illustrate different orientation. 

It is worth noting that it still needs to be answered on what visual or perceptual 

characteristics are being picked up and why those characteristics are being captured by 

these good feature and parameters. In one cluster, just like in the two-dimensional t-SNE 

map, Sand – Ripple is clearly defined and separated from the other features. Another cluster 

is seen composing of predominantly Mud, Sand – Homogeneous, and Sand – Rock. The 

last cluster is composed predominantly of Sand – Rock, Rock – Plateau, and Rock – 

Gradient. Sand – Rock seemed to be the most inconsistent feature, being heavily 

represented by two distinct clusters. However, this is also intuitively logical since this 

classification is a hybrid classification. Sometimes the rocks in the Sand – Rock category 

caused the features to be grouped with the Rock – Gradient and Rock – Plateau 

observations. Other times, Sand – Rock was clustered with the Mud and Sand – 

Homogeneous observations since the sand in the snippet was the dominant feature. Mud 

and Sand – Homogenous snippets being clustered together also makes sense because of the 
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homogenous spatial patterns found in both, even if Mud was more tonally intense. The 

mean values taken out of these calculations meant that tonal intensity did not factor into 

classification. Features in the Rock – Plateau, Rock – Gradient, and Sand – Rock cluster 

often had sharply defined shapes and patterns of high and low intensity.  

To further understand what patterns are being captured with the calculated GLCM 

features, example snippets of typical and marginal observations were chosen for illustrative 

purposes. In the Figure 19 and Figure 20, example snippet types are shown in two classes. 

Typical observations were observations that were centered in the cluster of their respective 

class. Marginal observations were observations that were found on the fringes of their 

respective clusters or were outliers. Figure 21, Figure 22, Figure 23, and Figure 24 are 

example GLCMs calculated from their respective snippets.  
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Figure 19. Example snippets of typical observations in their respective 

classification. 
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Figure 20. Example snippets of marginal observations in their respective 

classification. 
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Figure 21. GLCM of typical observations with the feature/parameter 

combination with the highest weight. 
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Figure 22. GLCM of typical observations using the feature/parameter 

combination with the second highest weight.  
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Figure 23. GLCM of marginal observations using the feature/parameter 

combination with the highest weight.  
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Figure 24. GLCM of same marginal observations but using the feature/

parameter combination with the second highest weight. 
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Looking at the differences between the typical and marginal observations, the 

typical observations in Figure 19 were more spatially consistent throughout their snippets. 

This made it so the features were easily recognized and classified. Marginal observations 

in Figure 20 had more variation in the patterns found within the snippets. For example, 

marginal rock cases had mostly bright pixels with few dark ones. As opposed to the typical 

rock snippets which had consistently high levels of dark pixels and very little bright ones. 

In both typical and marginal observations, mud and homogeneous sand were very similar 

due to their consistency of pixels. In the GLCMs above, it can be observed that in the 

GLCMs for snippets labeled Sand – Ripples, the GLCMs tend to have bright and dark 

pixels that are clustered together. In contrast, Sand – Ripple snippets, snippets labeled Sand 

– Homogenous and Mud have a more distributed layout in both dark and bright pixels.  
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Figure 25. Top 50 features compared by Feature weight and three parameters. 
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Table 1. Top 20 most important features in descending order (top features at 
the top) 

Type of Feature Window Size Offset Grey Level Angle 

Cluster Shade 35 3 16 135 

Cluster Shade 21 1 16 0 

Cluster Shade 24 7 16 135 

Dissimilarity 23 11 16 90 

Cluster Shade 31 1 16 135 

Cluster Shade 26 8 16 135 

Cluster Shade 22 13 16 90 

Dissimilarity 20 5 16 135 

Cluster Shade 21 11 16 90 

Information 

Correlation 

25 25 16 45 

Contrast 25 16 16 135 

Cluster Shade 21 1 16 45 

Cluster Shade 34 3 16 135 

Cluster Shade 26 7 16 135 

Cluster Shade 20 15 16 90 

Cluster Shade 31 1 16 0 

Cluster Shade 22 14 16 90 

Cluster Shade 20 1 16 90 

Cluster Shade 20 12 16 90 

Cluster Shade 20 1 16 0 
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In the table above, the top twenty most useful features were ranked in descending 

order (most useful at the top). The two features that found that had the highest level of 

correlation with their labels were Cluster Shade and Dissimilarity. This list is provided 

with the spatial scales used in Table 1. The grey level scale is consistent because only one 

grey level was used. According to Soh [25], grey levels past 16 produced similar results 

and there was an exponential decrease in useful information. This was consistent with the 

findings in this study, so grey levels were limited at 16. Figure 25 shows the feature weight 

with the three variable parameters. The window sizes, offsets, and angles were all widely 

varied. This is useful because it means that the patterns of the pixels all have informative 

features across a varied spatial scale. The offset values with the highest feature weights 

tended to be on the lower scale of the values measured. This implies that smaller offset, 

and a finer resolution increases the amount of detail able to be gathered from an image.  

Using a confusion matrix (Figure 26) to test the accuracy of the classifications, it 

can be seen to have a high prediction rate, especially for snippets labeled for rock. The 

confusion matrix was created using 120 of the initial 757 snippets as test data (637 snippets 

used for training). Overall, the current parameters possess an accuracy rate of 74.17%. The 

precision for each class varied, but the lowest performer was the Mud and Sand – 

Homogeneous categories at 57.14% and 56.25% respectively. It was often the case that 

snippets from both categories were mislabeled as each other, as they appear similar on a 

GLCM. Another area of incorrectly classified snippets was those that were labeled Rock – 

Gradient but were mislabeled as Rock – Plateau. The current parameters are good at 

identifying rocks, but not between different types of rocks. This implies that the 

characteristics being picked up on GLCMs are similar on both types of classes of rock. 

Table 1 and Table 2 show the difference in precision rates when the rock categories are 

combined. Sacrificing the granularity in rock classifications, combining the rock categories 

also increases accuracy from 74.17% to an overall 82.50%.  
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Figure 26. A confusion matrix showing how accurate an algorithm is at 

determining the correct label for a snippet based on GLCM calculated 
values. The blue values are correct classifications while the red values are 

incorrect classifications. 

Table 2. Precision rates with all six category labels 

Label Class Precision Rate 

Mud 57.14% 

Rock – Gradient 81.82% 

Rock – Plateau 66.67% 

Sand – Homogeneous 56.25% 

Sand - Ripple 100% 

Sand – Rock 93.75% 
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Table 3. Precision rates with rock categories combined 

Label Class Precision Rate 

Mud 57.14% 

Rock – Gradient and Plateau Combined 88.52% 

Sand – Homogeneous 56.25% 

Sand - Ripple 100% 

Sand – Rock 93.75% 
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VI. CONCLUSION 

Textural analysis and statistical investigation of patterns in SAS images has 

potential in deepening the current understanding of the underwater environment. The 

tactical implications of applying textural analysis can further strengthen the U.S. Navy’s 

understanding in warfare areas such as mine identification and undersea warfare. GLCMs 

can be an effective tool for classification and segmentation of underwater data collected 

via sonar, but its application can be applied to any type of image that can be tonally or 

spatially evaluated.  

Future research should focus on using multiple locations and more variety in 

environmental features. All the SAS data used in this paper were collected in the North 

Sea, off the coast of Bergen, Norway. Other locations with image textures resulting from 

differing geomorphologies could offer a deeper understanding of how different 

environmental features affect GLCM calculations and subsequently, how that data can be 

used in classification. This data can further be expanded by integrating modern methods of 

target identification algorithms. 

Naval research can always benefit from an increased understanding of the 

oceanographic environment. Textural analysis is still poorly understood in terms of 

quantitative metrics. There are potential research opportunities to be found by integrating 

textural analysis techniques to the current understanding of oceanography.  
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