
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-09

MULTI-DIMENSIONAL PROFILING OF CYBER
THREATS FOR LARGE-SCALE NETWORKS

Calnan, Michael C.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/71108

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

MULTI-DIMENSIONAL PROFILING OF CYBER
THREATS FOR LARGE-SCALE NETWORKS

by

Michael C. Calnan

September 2022

Thesis Advisor: Armon C. Barton
Co-Advisor: Gurminder Singh

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2022 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
MULTI-DIMENSIONAL PROFILING OF CYBER THREATS
FOR LARGE-SCALE NETWORKS

 5. FUNDING NUMBERS

 6. AUTHOR(S) Michael C. Calnan

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Current multi-domain command and control computer networks require significant oversight to ensure
acceptable levels of security. Firewalls are the proactive security management tool at the network’s edge to
determine malicious and benign traffic classes. This work aims to develop machine learning algorithms through
deep learning and semi-supervised clustering, to enable the profiling of potential threats through network traffic
analysis within large-scale networks. This research accomplishes these objectives by analyzing enterprise network
data at the packet level using deep learning to classify traffic patterns. In addition, this work examines the efficacy
of several machine learning model types and multiple imbalanced data handling techniques. This work also
incorporates packet streams for identifying and classifying user behaviors. Tests of the packet classification
models demonstrated that deep learning is sensitive to malicious traffic but underperforms in identifying allowed
traffic compared to traditional algorithms. However, imbalanced data handling techniques provide performance
benefits to some deep learning models. Conversely, semi-supervised clustering accurately identified and classified
multiple user behaviors. These models provide an automated tool to learn and predict future traffic patterns.
Applying these techniques within large-scale networks detect abnormalities faster and gives network operators
greater awareness of user traffic.

 14. SUBJECT TERMS
deep learning, machine learning, classification, clustering 15. NUMBER OF

PAGES
 83
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

MULTI-DIMENSIONAL PROFILING OF CYBER THREATS
FOR LARGE-SCALE NETWORKS

Michael C. Calnan
Captain, United States Marine Corps

BS, United States Naval Academy, 2015

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2022

Approved by: Armon C. Barton
 Advisor

 Gurminder Singh
 Co-Advisor

 Gurminder Singh
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Current multi-domain command and control computer networks require

significant oversight to ensure acceptable levels of security. Firewalls are the proactive

security management tool at the network’s edge to determine malicious and benign traffic

classes. This work aims to develop machine learning algorithms through deep learning

and semi-supervised clustering, to enable the profiling of potential threats through

network traffic analysis within large-scale networks. This research accomplishes these

objectives by analyzing enterprise network data at the packet level using deep learning to

classify traffic patterns. In addition, this work examines the efficacy of several machine

learning model types and multiple imbalanced data handling techniques. This work also

incorporates packet streams for identifying and classifying user behaviors. Tests of the

packet classification models demonstrated that deep learning is sensitive to malicious

traffic but underperforms in identifying allowed traffic compared to traditional

algorithms. However, imbalanced data handling techniques provide performance benefits

to some deep learning models. Conversely, semi-supervised clustering accurately

identified and classified multiple user behaviors. These models provide an automated tool

to learn and predict future traffic patterns. Applying these techniques within large-scale

networks detect abnormalities faster and gives network operators greater awareness of

user traffic.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Objectives . 2
1.3 Scope . 3
1.4 Contributions . 3
1.5 Organization . 3

2 Background Research 5
2.1 Network Traffic Analysis . 5
2.2 Deep Learning . 7
2.3 Clustering . 11
2.4 Machine Learning Considerations for Network Traffic 12
2.5 Problem Space . 17

3 Methodology 19
3.1 Equipment and Software Tools 19
3.2 Design . 20
3.3 Implementation . 29
3.4 Chapter Summary . 33

4 Testing and Analysis 35
4.1 Packet Classification Testing . 35
4.2 Packet Classification Results Analysis 37
4.3 User Profiling Analysis . 52
4.4 Chapter Summary . 57

5 Conclusion and Future Work 59
5.1 Discussion . 59

vii

5.2 Limitations. 60
5.3 Future Work . 61

List of References 63

Initial Distribution List 67

viii

List of Figures

Figure 2.1
8

Figure 2.2

Diagram of Simple MLP With Two Input Neurons and a Bias Value
Being Fed into the Next Layer

A CNN Model Containing a Convolutional and Pooling Layer . . 10

Figure 3.1 Logical Architecture for ERN Data Collections 21

Figure 3.2 Feature Correlation in Relation to the Target Label. 27

Figure 3.3 Target Feature Class Distribution 28

Figure 4.1 MLP Precision-Recall Curve with All Features Included 40

Figure 4.2 MLP Precision-Recall Curve without Timestamp Feature 41

Figure 4.3 MLP Precision-Recall Curve without Timestamp or IP Protocol Fea-
tures . 42

Figure 4.4 CNN Precision-Recall Curve 43

Figure 4.5 CNN Precision-Recall Curve without Timestamp Feature 44

Figure 4.6 CNN Precision-Recall Curve without Timestamp and IP Protocol
Features . 44

Figure 4.7 MLP Precision-Recall Curve with RUS 45

Figure 4.8 CNN Precision-Recall Curve with RUS 45

Figure 4.9 MLP Precision-Recall Curve with Class Weights 46

Figure 4.10 CNN Precision-Recall Curve with Class Weights 46

Figure 4.11 MLP Precision-Recall Curve with Transfer Learning 47

Figure 4.12 CNN Precision-Recall Curve with Transfer Learning 47

Figure 4.13 Model Accuracy over Time . 51

ix

Figure 4.14 RFC F1-Scores over Time . 52

Figure 4.15 MLP F1-Scores over Time . 52

Figure 4.16 CNN F1-Scores over Time . 52

Figure 4.17 Histogram of the Number of Clusters per Labeled Samples. . . . 54

Figure 4.18 Cluster Label Accuracy by Decreasing Cluster Size 56

x

List of Tables

Table 3.1 ERN Packet Classes . 23

Table 3.2 ERN Packet Features . 24

Table 3.3 ERN PCAP Stream Fields . 25

Table 3.4 Class Distribution Table . 28

Table 3.5 Shared Deep Learning Hyperparameters 30

Table 3.6 MLP Model Architecture . 31

Table 3.7 1D-CNN Architecture . 32

Table 4.1 RFC Feature Importance Table 38

Table 4.2 RFC Metrics for July 15 Validation Dataset 39

Table 4.3 MLP Model Metric Comparisons 48

Table 4.4 CNN Model Metric Comparisons 49

Table 4.5 Overall Model Comparisons . 50

Table 4.6 Behavior Profiling of Clusters . 55

Table 4.7 K-Means Semi-Supervised Classification Metrics 57

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

1D-CNN one-dimensional CNN

AI artificial intelligence

ANN artificial neural network

API application programming interface

ASN autonomous system number

AWS Amazon Web Service

CDN content delivery network

CNN convolutional neural network

CUDA Compute Unified Device Architecture

DOD Department of Defense

DODIN Department of Defense information network

ERN Enterprise Research Network

FN false negative

FP false positive

FPR false positive rate

GPU graphics processing unit

HPC high performance computing

IoT internet of things

MAGTF Marine Air-Ground Task Force

xiii

MLP multi-layer perceptron

NIC network interface card

NPS Naval Postgraduate School

PCAP packet capture

ReLU rectified linear unit

RFC random forest classifier

ROS random over-sampling

RUS random under-sampling

SSH secure shell

TCP transmission control protocol

TFLOPS terra-floating point operations per second

TN true negative

TP true positive

TPR true positive rate

URL uniform resource locator

xiv

CHAPTER 1:
Introduction

1.1 Motivation
The United States Marine Corps has grappled with cyberspace adversaries for years. While
not a kinetic warfighting domain, cyber-warfare creates real threats by exploiting vulnera-
bilities as surely as maneuver warfare. Moreover, Fleet Marine Forces are cyber-physical
systems, with information systems performing critical roles within each Marine Air-Ground
Task Force (MAGTF) [1]. As a result, the Marine Corps must leverage rapid decision-making
throughout the technological kill chain to gain an advantage. It is therefore imperative that
developing technologies mature to this end.

The recent Marine Corps Force Design 2030 Annual Review states that cyber may compose
preliminary actions in a peer conflict. The force must “leverag[e] expertise across the total
force. . . by accelerating advanced technology development. . . in areas like artificial intelli-
gence, data science,. . . , cyber,. . . and other technology fields” [2]. In particular, harnessing
machine learning and artificial intelligence (AI) to harden Marine Corps networks is criti-
cal in the force’s defensive posture. Through AI, information system networks can actively
sense and respond to threats decisively [1]. As adversaries develop more sophisticated and
subtle methods of conducting network infiltration and exploitation, the Marine Corps must
continue to refine and improve its defensive countermeasures. Moreover, as AI begins to
coordinate cyber-attacks, AI should also integrate into the Marine Corps’ network security.

Comprehensive security measures are difficult to develop for large-scale networks such as
those employed by military forces. Innovations from smaller, experimental environments
rarely generalize to enterprise networks as large as the Department of Defense information
network (DODIN) [3].

A network’s edge is the area that defines the boundary of protected systems and the external
worldwide Internet. Security at the network edge requires constant adaptation to chang-
ing traffic patterns and threats. The heterogeneous nature of enterprise networks further

1

exacerbates security considerations. These types of networks service many diverse plat-
forms across a wide network edge. The resulting complexities make traditional firewalls
and intrusion detection systems too limited to adequately handle the complex operating
environment, as static rule-based systems cannot handle new attacks [4]. The interaction
between these intrusion detection systems and human operators requires constant attention,
time-consuming efforts, and continual skill upgrade to remain up-to-date. Machine learning
is uniquely suited to rapidly gaining situational awareness of network operations and proac-
tively reacting to threats in real-time. This research explores the gap in machine learning in
firewall emulation and automation of standard security features.

1.2 Research Objectives
The following research questions address the problem space of automated edge security.

Hypothesis: packet capture (PCAP) records can classify network traffic as benign or ma-
licious and profile abnormal user behaviors through machine learning within large-scale
networks.

1. What deep learning techniques can emulate firewalls to classify network traffic? This
question frames common problems with intrusion detection systems and seeks to
classify packet traffic effectively. By observing abstract patterns from known benign
and malicious packets, deep learning models can predict future traffic and demonstrate
the validity of machine learning in automating firewall functionality. Additionally,
exploring the efficacy of different deep learning model types can determine the
optimal machine learning solution for this problem space.

2. What machine learning techniques can profile user behaviors? User behavior is a
standard network traffic pattern shared amongst multiple users. These behaviors could
include typical applications, temporal patterns, and other distinguishing features. This
question involves exploratory learning, where classes of user behaviors are unknown
and may change between networks. It may also provide a profiling tool to analyze
different behaviors to determine abnormal traffic behaviors.

3. How can these techniques be implemented within large-scale networks? Due to the
enterprise nature of the Marine Corps and joint networks, this line of inquiry seeks
to determine whether solutions from the two previous problems apply to large-scale

2

network environments. In addition, the use of large-scale network traffic confirms the
feasibility of machine learning solutions.

1.3 Scope
This thesis focuses on understanding network behavior through PCAP analysis using ma-
chine learning to reveal observable patterns within large-scale networks. Although other
cyber threat analysis vectors exist, such as packet payloads and network log files, PCAP
records are the sole emphasis in this research. In addition, Naval Postgraduate School (NPS)
Enterprise Research Network (ERN) traffic feeds machine learning model training and eval-
uation. However, additional validation on real-time, live, tactical networks is outside the
scope of this research. Furthermore, transfer learning of models across multiple data sets is
limited due to the time constraints in collecting and constructing the data pipeline.

1.4 Contributions
This thesis makes the following contributions.

• We demonstrate the validity of deep learning in real-world network traffic.
• We demonstrate the validity of convolutional neural networks for packet classification.
• We demonstrate a novel method of profiling user behaviors and predicting future

traffic patterns.

1.5 Organization
This thesis is organized into the following chapters:

Chapter 2 defines key network security areas and explains the machine learning process.
The chapter also provides an overview of deep learning and describes the models used in
the research.

Chapter 3 describes the methodology for the experiments. Specifically, this chapter in-
cludes the design of model architecture, learning patterns, and other training and evaluation
processes—data collection, cleaning, transformation, visualization, and exploration.

3

Chapter 4 presents the results from experiments and evaluates models within the context of
network security.

Chapter 5 summarizes the research and identifies critical limitations and potential for future
work.

4

CHAPTER 2:
Background Research

This chapter provides a literature review of machine learning and related research area
topics. First, network traffic analysis techniques are described. Next, firewall automation
through several deep learning and clustering techniques are presented. Machine learning
considerations are then examined when working with network data. Finally, this chapter
seeks to address missing elements in current research and identify the problem area this
research addresses.

2.1 Network Traffic Analysis
As information technology continues to mature, network traffic becomes significantly larger
and more complex. Large-scale enterprise internet of things (IoT) networks service many
diverse applications across heterogeneous platforms. No longer does a single point of entry
suffice for more extensive networks. Multiple firewalls, demilitarized zones, tunneling over
virtual private networks, and other considerations have increased the domain size that the
network administrators must monitor. As such, network traffic analysis has become a key
consideration and a continuously growing field. While many different tasks exist under the
network traffic analysis hierarchy, the automation of network security and identification of
users is significant.

2.1.1 Network Traffic Classification
At its most basic, Network Traffic Classification is the process of identifying classes of
network traffic based on patterns in network data. There is no standardized list of classes,
as the requirements vary by application. Each problem may require a different number
of classes and may account for different types of traffic. For example, Rezaei and Liu
describe how there may be as few as two classes, such as benign or malicious, or one for
every application running across a network router [5], but there can be a larger number as
well. Additionally, the number of classes does not indicate the difficulty of a classification
problem, such as identifying the broad fields of normal and malicious network traffic.

5

Regardless, there are three classification techniques used more extensively than any other:
port-based, payload-based, and statistics-based.

Port-based classification is the simplest to implement but performs poorly with modern
network traffic. The port-based classification technique was among the first methods for
classifying network traffic. The source and destination ports are analyzed, and traffic is
classified based on which typical application uses the port. It is easy to create such models,
especially when only several applications are running. However, today with the diversity of
network traffic, applications may share ports or use multiple. Thus, port-based classification
is relatively obsolete in current network traffic analysis [6].

Payload-based classification is another commonly used classification technique. This clas-
sification process is the most complex but generally has the best accuracy. By inspecting
packet payload information, known as deep packet inspection, key network traffic patterns
can be deduced [7]. While this remains the most accurate method, encryption may skew
payload information, causing a significant issue for model performance. Additionally, Lopez
et al. show that deep packet inspections may violate confidentiality policies and common
network security standards [6]. Payload data scales poorly, requiring sizable storage and
computational capacity for analysis. Therefore, the lack of scalability makes this method
infeasible in large-scale networks.

Statistics-based classification is a more recent method and has found effective use in machine
learning by analyzing statistical information to determine network data patterns. Statistical
measurements can be created by generating packet stream information from aggregated
packet or router collections. These measurements feed into machine learning models, which
extract high-level patterns. Moreover, statistics-based classification can operate using packet
header information alone, reducing data capacity requirements and removing confidentiality
concerns. Chockwanich and Visoottiviseth and Lopez et al. show the validity of machine
learning models using this method of classification to achieve high levels of performance in
recent research [6], [8]. Because of the compatibility with machine learning, this research
will focus on statistics-based classification.

6

2.1.2 Cyber Profiling
User behavior profiling is the process of identifying and categorizing a person’s cyber be-
haviors. It is a branch of criminal profiling, in which the actions of criminals are grouped
to understand motives and tendencies. Moreover, profiling can match a person’s actions to
their behaviors and personality [9]. Since humans are the primary operators of computer
networks, behavioral profiling can be applied to a person’s network use. These behaviors
include user information such as locations and past actions [10]. As a subset of anomaly de-
tection, cyber profiling involves data exploration and visualization to allow operators to draw
conclusions from the data. Therefore, presenting the patterns in an easily understandable
format is essential.

Since large-scale networks generate high traffic volumes, machine learning is suitable
for handling profiling actions. By examining traffic, algorithms can dynamically define
commonalities among different behaviors [10]. The extraction of this information is fed to
security professionals to gain a greater situational awareness of the network. In addition,
machine learning lends itself to profiling, as Kipane explains that behaviors and patterns
constantly change [9]. Cyber profiling with machine learning can be accomplished using
unsupervised or semi-supervised algorithms, such as clustering models. The output of these
models can be visualized to understand normal and abnormal behaviors. Further analysis
and profiling actions after visualization are outside the scope of this research.

2.2 Deep Learning
Deep learning uses artificial neural networks (ANNs) to solve machine learning problems.
Based on organic neural connections in brains, neural networks seek to emulate effective
pattern recognition behavior. These neural networks have seen extensive use in fields such
as image processing, natural language processing, and audio recognition [11]. In addition,
deep learning models are used in network traffic analysis to automate network security,
often outperforming traditional alternatives [8]. Network traffic classification commonly
uses convolutional neural networks and multi-layer perceptrons for deep learning.

7

2.2.1 Multi-Layer Perceptrons
Multi-layer perceptrons (MLPs) are the foundational form of ANNs. The root component of
a MLP is the artificial neuron. Each neuron is self-contained and operates by accepting input
from neurons in a previous layer and producing a single output value, as seen in Equation
2.1. Unique values, known as weights, scale all neuron inputs. In addition, a distinct weight,
known as the bias, is independent of other input values and unique for each neuron. The
summation of these scaled weights is sent as input to the neuron’s activation function to
produce a single output value. A simple neuron can be representation mathematically as
shown in Equation 2.1. The vector 𝑥 contains all inputs from the previous layer, with 𝑤

acting as the vector of weight values. These two vectors are transposed, and fed as input
into the activation function, shown by 𝜑. Multiple neurons constitute MLP layers, in which
each neuron in a single layer feeds into every other neuron in the next, as shown in Figure
2.1.

ℎ𝑤 (𝑥) = 𝜑(𝑥𝑇𝑤) (2.1)

[12]

Figure 2.1. A Simple MLP Architecture. Source: [12].

8

Activation functions perform mathematical operations on the summation of scaled inputs to
a neuron. Two functions used in this research are rectified linear unit (ReLU) and softmax.
ReLU is simple and effective, returning the input value if greater than zero, else returning
zero. This function effectively solves propagation issues such as the vanishing gradient
problem and requires little computational power [12]. The other activation function is
softmax, which is used in the final layer of multi-class classification networks. The algorithm
takes the neurons in the layer and computes the probabilistic distribution. Each output
represents a class’s likelihood of membership.

Training a multi-class MLP classifier consists of processing batches of data, computing the
loss using categorical cross-entropy, and updating neuron weight values and bias through an
optimization function, continuing until the epoch is complete. The categorical cross-entropy
loss function takes the softmax results and computes a loss metric for each class, which can
be fed via backpropagation to update neuron weights. The optimization function seeks to
minimize the loss. This process continues through a data set for the designated number of
epochs. Upon completion, the model can classify future data.

A common issue with MLP is regularization or preventing overfitting. Overfitting occurs
when the model fits the training data too closely, resulting in a loss of performance on
new data. This loss of generalization often means new predictions are poor, but the model
performs well on training data. Dropout layers are introduced to solve this problem. Dropout
layers randomly select a specified percentage of neurons and removes their output to the
next layer of the network. Dropout adds randomness to the training process, reducing the
possibility of overfitting the training data. For example, Geron shows how a 10-50% dropout
can add regularization to the model while adding little computational complexity [12].

2.2.2 Convolutional Neural Networks
Convolutional neural networks (CNNs) use convolutional filters to extract key, high-level
features from data. The CNN draws behavior patterns by taking input and analyzing local
data. The critical difference separating CNN capabilities from traditional ANN is the use of
convolutional and pooling layers while removing fully connected layers in favor of localized
shared weights [7].

Convolutional layers are not connected to every neuron of the previous layer but instead use

9

receptive fields of local neurons as input. These receptive fields are created through filters,
which are matrices of weight values. This filter is applied across the entire input, illustrated
in Figure 2.2, to determine how far a distance to shift. The combined output of all neurons
using the same filter is known as a feature map and feeds into the next layer as input. For
additional complexity, multiple filters can be used at each layer resulting in multiple feature
maps [12]. This stacking of feature maps can be thought of as adding dimensions to the
input data, whereby each additional filter adds another layer of depth.

Figure 2.2. An Example of a CNN. Source: [13].

This functionality can be mathematically summarized at the neuron-level in Equation 2.2,
where 𝑍𝑖, 𝑗 ,𝑘 is the output of the neuron located in row 𝑖, column 𝑗 , of feature map 𝑘 . 𝑠ℎ and
𝑠𝑤 are the vertical and horizontal stride lengths. 𝑓ℎ, 𝑓𝑤, and 𝑓𝑛′ are feature maps from the
previous layer. 𝑥𝑖′, 𝑗′,𝑘′ is the output of the neuron at the previous layer, and 𝑤𝑢,𝑣,𝑘′,𝑘 is the
weight of all neurons in feature map 𝑘 [12].

𝑍𝑖, 𝑗 ,𝑘 = 𝑏𝑘 +
𝑓ℎ−1∑︁
𝑢=0

𝑓𝑤−1∑︁
𝑣=0

𝑓𝑛′−1∑︁
𝑘 ′=0

𝑥𝑖′, 𝑗 ′,𝑘 ′ × 𝑤𝑢,𝑣𝑘 ′,𝑘 𝑤𝑖𝑡ℎ


𝑖′ = 𝑖 × 𝑠ℎ + 𝑢

𝑗 ′ = 𝑗 × 𝑠𝑤 + 𝑣
(2.2)

10

[12]

Pooling layers reduce the input vector size by locally sampling to create new feature maps.
This sampling occurs using one of several functions. The most common is max pooling,
where a subset of input is searched for the maximum value, reducing a larger matrix to that
single value, shown in part b of Figure 2.2. This pooling removes many values from the
input feature map but adds invariance in the output [5]. While other functions exist, max
pooling remains the most used for its simplicity and minimal computational requirements.

The use of CNNs in network traffic analysis is widespread. Vinayakumar, Kwon, and
Shahraki et al. demonstrate how one-dimensional CNNs (1D-CNNs) are frequently used
to handle the sequential vector format of network traffic [11], [14]–[16]. Network traffic
may aggregate to form two-dimensional images to best use the two-dimensional pattern
recognition capabilities for which CNNs are known. Each packet composes a row of pixels,
and each feature composes a column. Lopez, Hwang, and Wei Wang et al. reshape network
data to allow for network traffic to be fed as images into CNN models [6], [15], [17]. Kwon
et al. and Haghighat et al. prove that CNNs can quickly extract network traffic behaviors
with five or fewer convolutional layers, allowing for shallow models to be effective [4], [14].

2.3 Clustering
Clustering is a powerful exploration tool to identify patterns with potentially unlabeled
data. This pattern identification is useful in anomaly detection, as clusters may indicate new
classes of traffic or highlight outliers that may warrant additional analysis. In user behavioral
profiling, clustering can assist security professionals in identifying normal and abnormal
traffic patterns. In essence, clustering identifies regions of data points that are closely
grouped, allowing for further extrapolation of anomalies or cluster classification [18]. This
research uses clustering to understand common, shared features among large quantities of
data, thereby assisting in cyber profiling.

2.3.1 K-Means
K-Means is an effective and direct method of clustering data by examining groups when
creating a set number of clusters. The algorithm creates 𝑘 clusters, a modifiable hyperpa-

11

rameter. First, the model creates randomly generated centroids and assigns each data point
to the closest cluster. Next, all points are analyzed to ensure accurate association with the
correct centroid. Suppose there are discrepancies; the model re-assigns centroid locations
and tests again. The process then repeats until centroids no longer require updating, at which
point the model can classify new data points. K-Means is especially effective because the
algorithm is guaranteed to converge. However, it may do so at a sub-optimal answer [12].

Nevertheless, due to the simplicity of operation and the minimal storage requirements, K-
Means is beneficial as a simple clustering tool. Combined with in-depth data exploration,
K-Means can overcome some deficiencies by tuning hyperparameters. Fan and Liu used
K-Means for network traffic analysis when unlabeled network data is handled [19].

Mini-batch K-Means is used to perform clustering for user behavioral profiling on ERN data.
Mini-batch K-Means differs from K-Means by analyzing only a small subset of data, instead
of the whole dataset, before making cluster center adjustments. This method significantly
reduces the training time while performing only marginally worse than standard K-Means, as
demonstrated by Scikit-Learn [20]. With larger-sized datasets, like those found in enterprise
networks, training time is a crucial consideration that mini-batch K-means solves.

2.4 Machine Learning Considerations for Network Traffic
Specific considerations must be assessed to ensure machine learning model performance.
Among these are PCAP, the data pipeline and critical features, imbalanced data handling,
and the performance measurements used to compare model effectiveness.

2.4.1 Packet Capture Records
PCAP files are a well-known application programming interface (API) used in network
traffic collection and analysis. These files contain all packets routed through a collection
point for a specified time. Generally, entire packets are captured and stored. While exam-
ining a whole packet is ideal for network security purposes, encryption of packet payloads
and network confidentiality policies may prevent complete analysis. Thus, packet header
information is considered the most accessible and least intrusive data collected from net-
work traffic. In addition, network traffic classification can easily convert individual packet

12

fields to machine learning input. Since supervised learning requires a significant amount of
data to learn the complex behaviors of the network, the sizeable PCAP files make excellent
training sources.

2.4.2 Data Pipeline and Key Features
Processing network traffic into formats suitable for deep learning models involves specific
data capture methods and pipelines. Generally, there are two methods in which network
data is analyzed: per packet and per stream.

Analyzing each packet is a more simplistic method, but may lack sufficient depth as input
for deep learning models. Data are primarily gathered from packet header fields, which are
easily accessible and can be fed directly to machine learning models. PCAP collections
are configured to capture required features, further simplifying the process. However, pre-
processing is still required before effective use in network traffic analysis. First, data cleaning
analyzes each field, removing outliers and filling missing values. Packets may be dropped
altogether if enough fields are missing. Next, PCAP packets are transformed into numeric
values. For categorical data, one-hot encoding or enumeration may be used to denote specific
fields [16]. Fields with many possible values, such as IP addresses, require more abstract
solutions. Normalization is the last pre-processing step, in which features are scaled with
the entire dataset to provide a normal distribution of values [16].

In contrast, analyzing multiple packets through statistical meta-data for each packet stream
provides robust network data. A stream is defined as a group of IP packets that share
characteristics such as protocols and source and destination IP addresses and ports. Stream
information is collected at routers, commonly placed at the network boundary, or processed
through the conversion of packet aggregates. However, the additional required process-
ing turns stream analysis into a time-consuming process. Mohammed et al. demonstrates
that stream-based information is generally more successful in determining network traffic
patterns [7].

2.4.3 Handling Imbalanced Data
Imbalanced data refers to the disparity in the number of samples between different classes.
It is a critical problem in supervised machine learning if models are trained with imbalanced

13

datasets. In these circumstances, the models will often over-classify the majority class, the
class with the highest sample count [21]. For example, in network traffic classification, an
overwhelming majority of data is benign, while malicious traffic composes only a small
percentage. In these cases, a model predicts the majority class every time, resulting in
few misclassifications. As expected, the under-represented class often is classified poorly.
Thus, techniques for mitigating imbalanced data are critical in classification problems.
Johnson and Khoshgoftaar define algorithmic and sampling methods as two effective means
for overcoming data imbalance [21]. This research will examine both as well as hybrid
combinations.

Sampling seeks to reduce the imbalance in the data before feeding it into the machine
learning model. The two most basic types are random under-sampling (RUS) and random
over-sampling (ROS) [21]. RUS removes data points from the majority classes, reducing
the imbalance among larger classes. However, RUS may cause the data to lose fidelity as
potentially significant data points are lost. In contrast, ROS adds synthetic data points to
the minority class, reducing the imbalance among the under-represented classes. However,
ROS increases training times and develops potential memory challenges as the data set
grows. For the scope of this research, large-scale network traffic renders RUS as the only
feasible sampling technique.

Algorithmic methods alter the machine learning model instead of the data. Specifically, the
learning or prediction functions are changed to increase the significance of the minority
class [21]. This research examines the use of class weights as the preferred algorithmic
technique. Class weights find the proportion of data points for each class in the training
dataset and scale the model output, as shown in Equation 2.3. Where the weight for each
class is the proportion of total samples to the samples of that class. Through this scaling,
minority class samples are given more importance in the loss function, incentivizing the
model to classify them correctly. Class weights are only used during training and add little
additional computational requirements. However, training with class weights assumes the
data retains the same imbalance characteristics to remain effective. Should the imbalance
change, the model may begin to perform poorly.

𝑊𝑒𝑖𝑔ℎ𝑡𝑥 =
𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑥
(2.3)

14

2.4.4 Metrics of Performance
Machine learning model performance requires specific metrics which vary in importance
depending on the network traffic analysis problem. Performance indicators are a combination
of expected and predicted results. These are further divided into true and false predictions.
For classification, there also exists classes of results of positive and negative, indicating a
prediction for the class and prediction of any other class.

Thus, a false positive (FP) renders an incorrect prediction of a class, while a true negative
(TN) indicates the prediction correctly deduced that the result was not the indicated class.
A true positive (TP) indicates a correct class prediction, while a false negative (FN) denotes
an incorrect prediction of another class. Key machine learning metrics are formed by
combining these classes of predictions and the ground truth of correctness.

Accuracy is the ratio of correct predictions compared to all predictions.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Precision is the ratio of correct predictions of one class across all positive predictions. It
measures the model’s probability of a positive prediction being true, similarly known as a
hit rate.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall measures the ratio of correct predictions of one class across all correct expected
predictions, also known as the true positive rate (TPR).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

false positive rate (FPR) measures the rate of false positive predictions across all expected
negative class samples. It is known as the likelihood of a false alarm.

15

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

F1-Score combines the recall and precision metrics in a harmonic mean, created as a
generalized performance metric for machine learning models.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

While these measurements can be applied to machine learning models, some are less
indicative of deep learning models for network traffic analysis. Since the data is imbalanced,
accuracy becomes less important as the model can predict the higher percentage class and
retain high accuracy. This is especially true for network traffic, where benign traffic makes
up most data, and malicious traffic may only be a fraction in comparison. Therefore, metrics
such as precision or recall are more practical than accuracy.

2.4.5 Transfer Learning
Transfer learning allows a model to be re-trained on a new dataset while maintaining the
learned weights across crucial layers. However, training a model can become consuming in
time and effort. Frequently, supervised learning requires substantial labeled data for training,
which may not be available. However, a fully trained model can transfer learned patterns to
new environments, a process known as transfer learning [5].

Transfer learning begins with a trained model, which has weighted layers pre-established.
Then, a new model is created to solve a similar problem within a different data domain. First,
essential layers are identified, and their parameters are saved. Usually, these layers are closer
to the input since the initial patterns remain the same, but the outcome or predictions may
differ. This new model then initializes additional layers and begins the standard training
process on the desired dataset. Once training is complete, the new model contains the
influence from the previous iteration, thereby improving model performance.

Transfer learning is beneficial when a new dataset is not large enough to train a model to
satisfaction. Since the saved layers are weighted to extract useful features from existing

16

data, there is a carryover to the model’s ability to detect patterns. This is especially true
where network traffic is handled. Rezaei and Liu show how a smaller dataset can overcome
a lack of labeled information using a larger, different dataset to pre-train specific layers of
supervised models [5].

2.5 Problem Space
While deep learning has seen extensive use in network traffic analysis, there is little research
regarding the emulation of current network edge security, such as firewalls. This is especially
true for modeling packet header data, which is the same format in which firewalls receive
data to make decisions, rather than packet payload data since payload information is often
unavailable and cannot be relied upon for generalized solutions functional across many
networks. Additionally, there is little work in classifying traffic in broader classes, such as
allowed or blocked. Most related research focuses on classifying a specific list of applications
but rarely seeks to discover more extensive patterns of benign and malicious traffic. Firewalls
use static rules created or influenced by humans to determine whether traffic should be
allowed or blocked. The ability to use machine learning to automate this behavior has yet
to be examined thoroughly.

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

CHAPTER 3:
Methodology

3.1 Equipment and Software Tools
The following software and hardware tools are utilized in this research. The hardware
consists of a high performance computing (HPC) environment at NPS, while the software
consists of Python programming language libraries.

3.1.1 Hamming High Performance Computer
Hamming is a HPC system designed to provide distributed computing capabilities through
clusters of nodes. Created in 2009 and named after a prominent NPS professor, Dr. Richard
Hamming, the system grants students and faculty superior research capabilities. The Ham-
ming environment consists of 4,282 computing cores with over 18 Terabytes of memory. In
addition, there are 81 graphics processing unit (GPU) computing cores, resulting in 79,744
Compute Unified Device Architecture (CUDA) cores. Hamming can achieve upwards of
36.0753 terra-floating point operations per second (TFLOPS) across the entire cluster [22].
Task management is handled through a Slurm workload manager, allowing Unix access
via secure shell (SSH). Compatible with GitLab and GitHub collaborative repositories, the
system is well suited for computing-intensive research. These capabilities create a good en-
vironment for machine learning, data exploration, and visualization across larger datasets.
Submitting batch jobs for simultaneous execution of multiple models reduces time spent
training and evaluating model performance.

3.1.2 TensorFlow
TensorFlow is a distributed deep learning framework created in 2015 as a successor to
DistBelief. Designed “for implementation and deployment of large-scale machine learning
models” [23], TensorFlow can conduct all steps in a machine learning project. It is hardware
agnostic, allowing deep learning models to run from mobile devices to HPC. By utilizing a
TensorFlow Profiler, optimization of program runtime can be fit over GPU hardware nodes.

19

It functions through stateful dataflow graphs, which create simulated model computations.
When run in parallel, these graphs can scale to larger projects. Each graph is composed of
nodes with zero or more inputs and outputs, representing an instantiation of an operation.
Values moved between nodes are called tensors, arrays of varying dimensions to support
deep learning values. Utilizing Keras, a deep learning API for the Python programming
language, complex models are easily tested and implemented on the TensorFlow platform. In
addition, it can conduct collections of model performance metrics and statistical analytics,
which can be analyzed in depth. This deep learning platform is also open-source, allowing
for easy adoption in research environments, and ideal for the parallel computing capabilities
of the HPC [23]. TensorFlow will be used in this research to create deep learning models
for Network Traffic Classification.

3.1.3 Scikit-Learn Library
Scikit-Learn is a powerful open-source library for the Python programming language for
machine learning and data analysis. Scikit-Learn can not only create machine learning
models of varying types but has built-in performance estimators to measure the effective-
ness of all potential models. Moreover, Internal libraries handle data transformations and
pre-processing. The ability to conduct initial data exploration, model selection, model con-
struction, and model training and validation makes it a powerful research tool. In addition,
it allows for a wide range of data types, including other commonly used data analytics
libraries such as NumPy and SciPy arrays, as well as Pandas DataFrames [20]. Scikit-Learn
will be used in this research to create clustering algorithms for User Behavior Profiling.

3.2 Design

3.2.1 Data Collection
The primary dataset for training and validation is labeled network traffic from the NPS ERN.
ERN is the primary NPS information system network that handles all campus traffic. The
ERN PCAPs were captured over seven days, July 14 through July 20 of 2022. During this
time, over 120 billion packets were captured. Collections were conducted through internal
and external network interface cards (NICs), positioned on either side of the ERN firewall,
as shown in Figure 3.1. These NICs collected all packet header information, along with

20

a timestamp. All packet payloads were dropped to maintain confidentiality and allow for
unobtrusive traffic analysis. Furthermore, all NPS internal IP addresses were obfuscated to
protect the privacy of users.

Figure 3.1. Logical Architecture for ERN Data Collections.

Labels were added to the PCAP data by comparing records collected at each NIC. All packets
were stored under a subdirectory for each NIC and were run through a preprocessing data

21

pipeline to extract selected header fields. These included timestamp, source and destination
IP addresses and ports, IP protocol, IP packet length, transmission control protocol (TCP)
sequence number, and TCP acknowledgment flag. At this point, a separate preprocessing step
compared packets captured from the internal NIC to those captured from the external NIC.
Packets with the same identifying features (i.e., shared protocols, ports, and IP addresses)
with timestamp deviation of 150 microseconds or less are assumed to be allowed through
the firewall. Packets, where the source and destination IP addresses are both internal or
external to the NPS domain, are considered not to have attempted to traverse the firewall
and are labeled interior only or exterior only. The remaining packets, only seen by a single
NIC, were considered blocked.

Following the initial packet labeling, a second pass through the data reclassifies erroneously
blocked traffic as dropped. For example, if burst traffic and TCP reset packets of allowed
streams were seen only by one NIC, they would be incorrectly classified as blocked. There-
fore, a second pass through the traffic compares the same identifying features of blocked
traffic and searches for corresponding allowed traffic. If there is a match, the label changes
from incoming blocked and outgoing blocked to either incoming dropped inside, incoming
dropped outside, outgoing dropped inside, or outgoing dropped outside depending on the
direction of the packet and the associated NIC location.

The output from the data pipeline results in a cleaned dataset with labeled network packets.
There are 10 potential labels for a packet, shown in Table 3.1. In addition, each packet
has eight features, shown in Table 3.2. The dataset comprises 13,853 parquet files, each
containing approximately 8.7 million packets. The breakdown makes access simple and
reduces the memory required to read traffic segments. This dataset is used in the following
sections and chapters for supervised machine learning classification.

22

Table 3.1. ERN Packet Classes.

Index Name Description
1 Incoming Allowed packet from outside NPS ERN to inside
2 Outgoing Allowed packet from inside NPS ERN to outside
3 Outgoing Blocked Outgoing packet blocked at NPS ERN firewall

4 Interior Only
Packets with both IP addresses internal to the
NPS ERN

5 Incoming Dropped Inside
Incoming packet only captured by inside NIC,
but shares packet features with other allowed packets

6 Outgoing Dropped Inside
Outgoing packet only captured by inside NIC,
but shares packet features with other allowed packets

7 Incoming Blocked Incoming packet blocked at NPS ERN firewall

8 Exterior Only
Packets with both IP addresses external to the
NPS ERN

9 Incoming Dropped Outside
Incoming packet only captured by outside NIC,
but shares packet features with other allowed packets

10 Outgoing Dropped Outside
Outgoing packet only seen on outside NIC,
but shares packet features with other allowed packets

23

Table 3.2. ERN Packet Features.

Field Description
ip_protocol The IP protocol, such as TCP or UDP
ip_src The source IPv4 address from the packet
ip_dst The destination IPv4 address from the packet
port_src Source port of the packet
port_dst Destination port of the packet
timestamp Linux epoch timestamp of packet as float64
ip_len The total length of the packet, specifically IP header plus payload
packet label The packet label

Next, the labeled packet information is aggregated into packet streams. A stream is composed
of traffic between two nodes, with one node being inside ERN and the other being outside. In
a stream connection, packets are sent and received across the firewall. Packet streams can be
captured over TCP connections or UDP connections. Packet streams are all unlabeled since
all packets cross the firewall in a stream connection. Therefore, semi-supervised learning
is applied to learn generalized labels over the stream dataset. This approach is discussed
in detail in Section 3.3.2.

Streams are capped at a maximum length of 1,000 packets with overflow packets overwriting
older packets circularly. For example, if 1,010 packets are captured, then the first 10 packets
are overwritten as new packets are captured. In this sense, the stream always consists of
the most recent packets captured within the connection. Each stream comprises shared
information such as packet directions, lengths, and time differences. The features for each
stream are shown in Table 3.3. The list features are aggregated statistics over each stream
such as bytes in, bytes out, packets per second, etc. The packet directions field is a list of
packet directions for all packets in the stream that, when aggregated, may be used by ML
models to learn traffic bu rst pa tterns be tween two nodes. The da taset is sp lit in to 4,000

24

NumPy array files, each with an average of 40,000 streams. The following sections and
chapters use the resulting dataset for semi-supervised user behavior profiling.

Table 3.3. ERN PCAP Stream Fields.

Fields Description
ip_protocol

ip_nps, ip_other
port_nps, port_other

Connection information

other_country
other_ASN

other_lat, other_long
Geolocation features of IP address external to NPS ERN

list_in_packets, list_in_bytes
list_in_mean_packet_length
list_in_packets_per_second
list_in_bytes_per_second

list_out_packets, list_out_bytes
list_out_mean_packet_length
list_out_packets_per_second
list_out_bytes_per_second

list_t_duration

Aggregated totals of the last 1,000 packets captured
for the given stream

packet directions
List of individual packet directions in a stream,
where outgoing = 2, incoming = 3

For machine learning, the packet classification dataset is split into training and validation
sets. The training set consists of network traffic collected on July 14, 2022. The validation
set consists of network traffic collected at 1400 over the next five consecutive days from
July 15 to July 20, 2022. By adjusting the validation set time window over several days, the
machine learning model’s ability to generalize over time may be examined. For the stream

25

dataset, the training data was captured on July 14, 2022. The validation set was captured on
the same day, a few hours after the training data with no overlapping streams.

3.2.2 Data Exploration and Visualization
Data exploration and visualization examines the data for trends, distributions, and correlating
factors that would impact its use for machine learning. The output of these processes
are visual representations such as tables and graphs that depict the relationships between
features in an easily interpretable manner. Specifically, in supervised learning, identifying
the correlations of features to the sample’s label is critical to understanding which features
are most important for accurate model predictions, and which are least important. Likewise,
exploring distributions over target features may reveal potential bias in the dataset, and
exploring class distributions may identify penitential imbalances in the data.

Packet-Level Exploration
Feature correlations, as shown in Figure 3.2, were calculated by sampling 16 million
packets across the entire dataset. Of note, autonomous system number (ASN), country
name, and latitudes and longitudes are engineered features created from resolving the
raw IP addresses and extracting geolocation information. Geolocation features are further
discussed in Subsection 3.2.3.

26

Figure 3.2. Feature correlation in relation to the target label.

It is clear from Figure 3.2 that timestamp, source port, and destination IP address have
minimal correlation with the target label. IP protocol, source IP address, and IP packet
length have somewhat more correlation, though still low with values under 0.2. However,
engineered geolocation features have the most significant correlation with the target label;
correlation values are greater than 0.6 for the country names, latitudes, and longitudes.
Destination port and ASN numbers also retain moderate correlation values between 0.2 and
0.6.

Next, class distribution over the dataset is visualized using a histogram plot to understand
class composition and membership, as shown in Figure 3.3. It is clear from the Figure that
interior only traffic is the majority and makes up approximately 40% of all traffic. The
next largest class is incoming blocked which contains 33% of total traffic volume. Allowed
traffic classes total around 20% of traffic, with slightly more incoming than outgoing. The
remaining classes compose 1.8% of total traffic. Since re-classified packets share packet
features with allowed traffic, these packets merged into their respective allowed classes.

27

Interior only and exterior only are removed from the dataset, as they do not attempt to cross
the firewall. These changes produce four classes of traffic, shown in Table 3.4. Of note, there
is a clear imbalance between the amount of allowed and blocked packets.

Figure 3.3. Target Feature Class Distribution.

Table 3.4. Simplified Class Distributions.

Allowed Blocked
Incoming 0.206 0.590
Outgoing 0.157 0.047

Total 0.363 0.637

28

3.2.3 Data Preparation
Data preparation involves the cleaning, feature selection, feature transformation, and feature
scaling of input before feeding it into machine learning models. Data cleaning is conducted
during the pre-processing pipeline, which involves removing any packets with missing data
and dropping unidentifiable packets. Furthermore, no outliers were removed in order to
more closely resemble real-world enterprise networks.

The feature transformation process was applied in the same way for both packet and stream
datasets. An IP address gives little tangible information, especially since NPS obfuscates
internal IP addresses. Therefore, IP addresses are transformed into helpful geolocation
features, utilizing MaxMind’s GeoIP2 API and MaxMind’s open-source ASN, City, and
Country geolocation databases [24]. The APIs resolve each IP address to the IP’s ASN,
country name, latitude, and longitude. ASNs indicate the IP address’s routing network in
reference to the world-wide-web. Country names are the country that the IP address resides
in. Placeholder values of zero are added for any IP addresses not found within the databases.
After this process, the source and destination IP addresses are dropped from the feature set,
and the engineered features are added.

Feature scaling involves scaling or encoding data to give the machine learning model
consumable input. Most data is not on the same numeric scale, and categorical features
are incompatible without encoding. All numerical features, like IP packet length, are scaled
between 0 and 1 by finding the mean and applying the deviation from that mean. Categorical
features require a different approach since similar values, like ASN numbers, may indicate
significantly different categories. For this problem, a binary encoder is used. Binary encoders
assign a number to each category, convert that number to its binary form, and create a feature
for each present digit. For example, a feature with 10 categories will be encoded to four
binary features. After scaling and encoding, the data is ready to be fed into machine learning
models.

3.3 Implementation
This section will explain the design and implementation of machine learning models.
Packet classification models will be discussed first, where several deep learning models are
designed. Next, user behavior analysis through clustering is examined, and semi-supervised

29

learning is applied.

3.3.1 Deep Learning Network Traffic Classification
Several deep learning models will be evaluated on their ability to conduct packet classifi-
cation. A CNN and a MLP will be tested against a random forest classifier to determine the
validity of deep learning for network traffic classification in this domain. Specific model hy-
perparameters will remain consistent across all deep learning models, reducing variability
between experiments. Table 3.5 shows the hyperparameter values used for each model.

Table 3.5. Shared Deep Learning Hyperparameters.

Hyperparameter Value
Maximum Epochs 100

Activation Function ReLU (Softmax on final layer)
Loss Function Categorical Cross-Entropy

Training Optimizer Adam
Learning Rate 0.01, 0.001, 0.0001

Batch Size 512

The maximum number of epochs is set high to ensure convergence [8], [11], with early
stopping if 10 epochs pass without improvement in loss [6]. The ReLU activation function
is used on all layers excluding the final output layer, due to its low computational cost and
high performance [5], [6], [11], [14]–[16]. As this is a multi-class classification problem,
the final layer will use softmax as an activation function with categorical cross-entropy as
the loss function [8], [14], [17]. Adam is the training optimizer and is generally regarded
as a standard in deep learning research, as it provides numerous benefits when working on
large datasets with complex models [5], [6], [8], [14]. A multi-step piece-wise learning rate
scheduler with an initial learning rate of 0.01 is applied to the training procedure. After
10 epochs, the learning rate is reduced by a magnitude of 10 to 0.001. After another 10

30

epochs, it is further reduced to 0.0001. This piece-wise learning rate allows the model to
quickly reach the global minimum value. Finally, a batch size of 512 ensures a balanced
trade-off between stochasticity and model convergence as used by the Adam optimizer
during training.

Multi-Layer Perceptron
A shallow MLP is used as the traditional ANN for classification. The architecture is de-
scribed in Table 3.6. There will be three fully connected layers of 512 neurons, followed by
an output layer of four, one for each major class. A low dropout is added between each fully
connected layer to prevent overfitting the model. The input vector array is intentionally left
blank to indicate that the size is variable depending on the training data. The pre-processing
encoders may produce different sized input depending on the diversity of the data. This
allows the model to better conform to the dataset. On ERN traffic, an average input array
size of 64 is generated during pre-processing and fed to the model.

Table 3.6. MLP Model Architecture.

Layer Info
Input [x, 1] Vector

Fully Connected 1 512 Neurons
Dropout 1 0.2 dropout rate

Fully Connected 2 512 Neurons
Dropout 2 0.2 dropout rate

Fully Connected 3 512 Neurons
Fully Connected 4 4 Neurons (Softmax Activation)

Convolutional Neural Network
The CNN will be one-dimensional and relatively shallow. Only several convolutional layers
and a single pooling layer are required for the model to extract useful data features [5],

31

[16]. Several fully connected layers follow this. Additionally, high dropout is added after
each convolutional layer to add regularization to the model [12], [16], [17]. Initial model
parameters are indicated in Table 3.7. For the same reasons as the MLP, the input vector
array size is intentionally blank.

Table 3.7. 1D-CNN Model Architecture.

Layer Info
Input [x, 1] Vector

Conv1D 1 64 Filters, 3 Filter Size
Dropout 1 0.3 Dropout Rate
Conv1D 2 128 Filters, 3 Filter Size
Dropout 2 0.3 Dropout Rate

MaxPooling1D 1 2 Filter Size, 2 Stride Length
Flattening

Fully Connected 1 512 Neurons
Dropout 3 0.2 Dropout Rate

Fully Connected 2 512 Neurons
Fully connected 3 4 Neurons (Softmax Activation)

Random Forest Classifier
A random forest classifier (RFC) will be used as a baseline model, against which all deep
learning models will be compared. This ensemble will contain 100 trees in the forest. Gini
will be the evaluation criteria at each split, with a required minimum of two samples to
split and a minimum of a single sample per leaf. As random forests generalize well across
complex datasets, they will serve as a comparative baseline. Additionally, extracting feature
importance from the ensemble allows for further feature examination.

32

3.3.2 Clustering for User Behavior Profiling

Clustering
The clustering model fits the list features of each stream. First, input is transformed within
the same scale in Euclidean distance, which is necessary to accurately compute clusters in
feature space. Next, the mini-batch K-means algorithm creates 25 clusters. These clusters
indicate up to 25 unique user behaviors for classification and were chosen as an arbitrarily
large value that could be trained in a reasonable time. After fitting the model to the data,
each cluster’s five closest points in Euclidean space are taken and assigned as representative
points. These points describe the behavior of the cluster. There is a possibility that points
may be representative points for multiple clusters, indicating a more prominent shared
behavior. These five points for each of the 25 clusters are placed within a table for further
data analysis.

Analyzing Centroids and Profiling Behaviors
The table of representative data points allows for profiling of behaviors and assignment to
clusters. First, each data point’s IP address, external to the NPS domain, is taken and resolved
into a URL. The stream information, geolocation features, and URL combines to create a
table of user behaviors. Each cluster’s five representative points are present in this table,
resulting in 125 total rows. At this point, manual exploration is required. Genres of websites
can be assigned to each IP address using the URLs. The cluster will be assigned a singular
genre if most representative IP addresses exist in the same genre. Geolocation information
will be used instead if the IP addresses cannot be resolved. Centroids sharing similar genres
can be grouped into a singular behavior. Conversely, centroids without common genres
or geolocations indicate a lack of behavior and are discarded. These behaviors are finally
applied to each cluster, allowing for future data points to be assigned a behavior.

3.4 Chapter Summary
This chapter covered the design of the machine learning process and the implementation
of machine learning models for automating network edge security. First, data collection
and pre-processing was used to create datasets compatible with machine learning models.
The features and labels were also examined, and data imbalance was discovered within the

33

network traffic. Next, random forest classifier and deep learning models were defined for
experimentation on packet-level classification. Finally, user behavior identification through
semi-supervised clustering methods was identified regarding stream-level traffic. These
processes and models will be compared against one another using meaningful metrics in
the following chapter.

34

CHAPTER 4:
Testing and Analysis

This chapter will cover the testing and results analysis of models outlined in the previous
chapters. Beginning with packet classification, each model will undergo initial tuning using
a validation dataset. Then, imbalanced data handling techniques will be applied to deep
learning models to determine their efficacy for network traffic analysis. Next, each model
will be compared against one another using meaningful metrics discussed in the preced-
ing chapters. The final p acket c lassification te st wi ll me asure ma chine le arning models’
performance over time.

The chapter will then transition to semi-supervised clustering and classification analysis.
First, clusters will be formed from the unlabeled stream dataset, then labels in the form of
user behaviors will be assigned. Next, cluster centers will be examined for accuracy when
propagating behaviors across streams in the dataset. Finally, the semi-supervised algorithm
will classify future streams.

4.1 Packet Classification Testing
Testing models on packet traffic in volved tr aining on th e Ju ly 14 ne twork tr affic, then
measuring performance from future time windows to evaluate the fit. For t he remainder
of the section, validation data refers specifically to packets sampled f rom July 15 unless
otherwise specified. This validation dataset contains five million sequential packets starting
at 2:00 P.M. on July 15; testing on packets from July 16 through July 20 involved sampling
a similar number of packets at the same time each day to reduce the potential variability in
the evaluation.

The RFC was initially trained and evaluated using 260,269 network traffic packets from July
14. The Hamming system’s memory limits constrained the training dataset size. During the
training process, the RFC automatically generates a list of features and their importance
for classification. This list of feature importance will enhance our understanding of feature
significance for classification.

35

The rest of the packet classification testing involves the two deep learning model types,
the MLP and CNN. These models will train on a dataset containing 31,152,220 sampled
packets from 10 A.M. to 5 P.M. on July 14. The validation dataset from July 15 is the same
as the RFC. Testing will begin by examining the insignificant features and removing the
least important ones until achieving the best validation metrics. This feature removal will be
conducted separately for both the MLP and the CNN. Once these features are determined,
the follow-on tests will continue with those features removed.

Next, for each deep learning model, multiple data imbalance handling techniques will be
tested. Using the same training and validation datasets, the MLP and CNN will integrate
one of the three imbalanced handling techniques; RUS, class weights, and transfer learning.
As described in Subsection 2.4.3, RUS is the process by which the majority class samples
are removed, reducing the importance of the majority class. For testing, the dataset removed
packets from the majority classes until all classes had the same membership numbers. Class
weights change the weight of output neurons when computing the loss during training. This
change allows different classes to hold different importance during the training evolution.
For imbalanced traffic, these weights allow minority classes to have greater significance
to the algorithm and do not change the dataset. By only affecting the loss function, there
is minimal increase in computational load or pre-processing actions. This research assigns
class weights through the previously mentioned Equation 2.3. Transfer learning involves
pre-training the model using one dataset, then re-training with another. For this research,
iterative training was used, with an initial training using the RUS dataset and re-training
with the entire dataset with class weights applied.

All models will then measure their performance against each other to determine which
model performed the best. The most critical responsibility for network traffic analysis is
accurately identifying blocked traffic since it is the only traffic class threatening network
security. Therefore, the recall score of blocked traffic classes is the most critical metric
for comparing different models. While correctly classifying allowed traffic is crucial, mis-
classifying allowed traffic as blocked causes fewer issues from a security viewpoint. Thus,
F1-score for allowed classes is also essential for evaluating the general fit and correctness
of the model.

The final tests involve a comparison of the model performance over time. Since packet

36

classification models are not continuously learning, performance degradation as time pro-
gresses after training exists. This research will evaluate each day with five million packet
datasets from the training day on July 14 through July 20. This evaluation will generate the
performance of the RFC, MLP, and CNN models over a week and understand how each
model performs after training. For this research, the F1-scores will be analyzed for each day
since training occurred.

4.2 Packet Classification Results Analysis

4.2.1 Random Forest Results
After fitting the RFC to the abridged training dataset, Table 4.1 displays the feature im-
portance values. These values are scaled differently than correlation values. However, the
order of features is comparable to the previous correlation data found in Figure 3.2. Upon
examination, there are key differences between the two lists. The timestamp feature ranked
low for both lists. Additionally, the ip_protocol feature was ranked the second least im-
portant feature between the two lists. Generally, the geolocation features maintained their
importance. Country names were far less critical to the RFC when classifying packet traffic.

37

Table 4.1. RFC Feature Importance.

Feature Gini Value
ip_len 0.30
dst_ASN 0.11
port_dst 0.11
src_ASN 0.10
dst_LONG 0.07
src_LONG 0.06
timestamp 0.03
dst_COUNTRY 0.03
src_COUNTRY 0.02
ip_protocol 0.01

Next, the RFC performance was tested on the validation dataset. As shown in Table 4.2,
the evaluation describes the key performance metrics for each class. Allowed traffic classes
had worse performance across all metrics when compared with blocked classes. While
the incoming blocked class had the largest membership, as shown by Table3.4, it did not
attain the greatest performance. The outgoing blocked class, the smallest of the four, had
the highest performance measurements in all metrics. The results suggest that this may be
caused by the presence of features in the data that strongly indicate traffic flow; experiments
show that models performed better on outgoing traffic classes compared to incoming classes
with respect to their allowed and blocked counterparts.

38

Table 4.2. RFC Validation Metrics.

Class Precision Recall F1-Score
Outgoing Blocked 0.991 0.984 0.988
Incoming Blocked 0.877 0.908 0.893
Outgoing Allowed 0.766 0.744 0.755
Incoming Allowed 0.654 0.547 0.596

4.2.2 MLP Results
Initial results for the MLP were attained with no adjustments to feature selection and utilized
the hyperparameters described in Chapter 3. Figure 4.2 shows the precision-recall curve for
each class of the evaluated validation dataset. This figure illustrates that the model with all
features included only produces coherent predictions for the incoming blocked class while
failing to produce predictions for all other classes. The incoming blocked class happens to
be the class with the highest membership in this case.

39

Figure 4.1. MLP Precision-Recall Curve With All Features Included

As mentioned in Subsection 4.2.1, some features are insignificant for classification. There-
fore, least important features such as timestamp and ip_protocol were removed in an attempt
to reduce the noise in the data. Figure 4.2 shows the resulting precision-recall curve for the
MLP model with timestamp features removed. The results indicate that the MLP performs
significantly worse on classifying allowed traffic compared to blocked traffic with at least
a 0.2 difference in precision, for allowed, while recall values were greater than 0.5. The
blocked traffic classes had a recall score greater than 0.93 with a precision greater than or
equal to 0.8, indicating high sensitivity to blocked traffic.

40

Figure 4.2. MLP Precision-Recall Curve Without Timestamp Feature.

The next feature with the least significance, ip_protocol, is removed for reevaluation of the
MLP model. The precision-recall curve for the new MLP model without the timestamp and
ip_protocol features is shown in Figure 4.3. Compared to the previous iteration, this feature
selection results in lower performance. the recall of the incoming blocked class decreased by
0.1 from 0.931 to 0.835, as did the incoming allowed class. The only increase in performance
is in the outgoing blocked class, which had an increase in precision to 0.999 from a previous
0.983. From these results, it is clear that removing one or both features increases model
performance. However, timestamp feature alone produced the greatest meaningful results in
reducing the noise of the dataset. Future tests with the MLP will keep the timestamp feature
removed during evaluation.

41

Figure 4.3. MLP Precision-Recall Without Timestamp or IP Protocol Fea-
tures.

4.2.3 CNN Results
Initial validation of the CNN occurred similarly to the MLP. The initial CNN model used
all input features and the same hyperparameters to evaluate the validation dataset. Figure
4.4 shows the class metrics. As with the MLP, the CNN only predicts the incoming blocked
class of traffic, the largest class. Therefore, the feature space requires reduction.

42

Figure 4.4. CNN Precision-Recall Curve.

Since the feature importance lists are the same for all classification models, the timestamp
and ip_protocol features require noise analysis. The validation precision-recall curves can be
found in Figure 4.5 for the CNN without the timestamp, and Figure 4.3 for the CNN without
the timestamp and ip_protocol features. Removing one or both features allowed the CNN to
make predictions across all traffic classes. While removing the ip_protocol in addition to the
timestamp increases the recall of blocked classes by 0.9 for outgoing blockedlocked and 0.2
for incoming blocked, it comes at the cost of poor performance in allowed classes. Without
the ip_protocol feature, the allowed traffic classes have less than 0.004 F1-scores. With only
the timestamp removed, allowed traffic has increased performance to 0.270 F1-score for
outgoing allowed and .391 for incoming allowed. It is clear that simply removing features
from the CNN input does not increase the performance across all classes as it did with the
MLP.

43

Figure 4.5. Timestamp Removed. Figure 4.6. Timestamp and IP Protocol Removed.

4.2.4 Imbalanced Data Handling Technique Analysis
While all deep learning models can classify traffic across all classes, there is still a disparity
between the performance of blocked classes versus that of the allowed ones. As the incoming
blocked class makes up the majority of the data, there is a need to either increase the
importance of minority classes or reduce that of the majority classes. Therefore, the MLP
and CNN models are tested across several common data handling techniques to determine
the potential for performance improvement. The testing will begin with RUS, followed by
class weights, and transfer learning to incorporate both into a final technique.

RUS Results
RUS is the first imbalance handling technique that the validation dataset evaluates. Figure
4.7 for the MLP and Figure 4.8 for the CNN display their respective model class metrics.
In the MLP, the recall scores of the outgoing blocked, incoming allowed, and outgoing
allowed all increased, with allowed classes of traffic improving by at least 0.4. However,
the performance of the incoming blocked class drops significantly, with a reduction in the
recall by 0.6. The performance loss indicates that while the smaller classes improved, the
largest class did not. This trend is in line with expectations, as RUS reduces the population

44

of the majority class samples to increase the importance of the minority classes.

The CNN had drastically different shifts in performance. The poor recall score of 0.065
for the outgoing blocked class increased drastically to 0.980. The outgoing allowed and
incoming allowed classes also improved in their F1-scores, which increased by 0.06 and
0.05, respectively. However, the incoming blocked class suffered a 0.57 drop in recall score
using RUS. Compared to the initial CNN metrics, RUS increases the performance of all
minority classes. However, the incoming blocked class performs significantly worse.

Figure 4.7. MLP with RUS. Figure 4.8. CNN with RUS.

Class Weight Results
The implementation of class weights for the MLP and CNN can be visualized in Figure 4.9
and Figure 4.10 respectively. Beginning with the MLP, the outgoing blocked class performs
nearly as well with class weights, with a drop in the F1-score of 0.003. The incoming blocked
class dropped noticeably, with the recall score dropping 0.39. The outgoing allowed class
experienced a significant increase in recall, from 0.389 to 0.857, while the incoming allowed
class also increased recall from 0.327 to 0.655. From these results, it is clear that class
weights increase the performance for allowed classes but experience a drop in performance
for blocked classes.

45

The CNN displayed the opposite results, with an increase in most classes but a decrease in
incoming allowed class performance. The outgoing blocked and incoming blocked classes
both had large increases in recall scores of 0.55 and 0.12, respectively. Outgoing_allowed
increased in overall F1-score by 0.23 as well. However, the incoming allowed class became
significantly worse, with a recall score of nearly zero. This performance shows that while
the CNN has increased recall scores across most classes, it no longer predicts incoming
allowed traffic.

Figure 4.9. MLP With Class Weights. Figure 4.10. CNN With Class Weights.

Transfer Learning Results
Transfer learning combines pre-training using RUS with re-training using class weights.
Figure 4.11 shows the precision-recall curve for the MLP performance using transfer learn-
ing. Comparing the transfer learning MLP to the initial MLP, there is improvement across
the allowed traffic classes, but the incoming blocked class suffered a decreased recall score.
The outgoing blocked class had little change, with a slight increase of 0.002 to the recall
score. The outgoing allowed and incoming allowed both had increased recall scores but
decreased precision scores. However, with recall scores of 0.77 for both allowed classes, the
overall performance is higher with transfer learning. The incoming blocked class suffered a
drop of 0.45 in the recall, with a new score of 0.484. While improving other classes in the

46

MLP, transfer learning still negatively impacts the majority class of traffic.

Transfer learning with the CNN generally improves performance across three of the four
classes, with incoming allowed decreasing in all metrics as shown by Figure 4.12. The
outgoing blocked, incoming blocked, and outgoing allowed classes all improved in their
F1-scores, to 0.909, 0.812, and 0.486 respectively. The largest increase was in the outgoing
blocked class, which increased from 0.06 recall to 0.98. However, the incoming allowed
decreased in recall score from 0.391 to 0.134. For the CNN, transfer learning seems to have
recall and F1-score metrics between RUS and class weight techniques.

Figure 4.11. MLP With Transfer Learning. Figure 4.12. CNN With Transfer Learning.

4.2.5 Model Comparison Analysis
Measuring MLP effectiveness in network traffic classification requires comparing all models
against relevant metrics. These model performance evaluations are pictured in Table 4.3.
The bold number in the table indicates the highest value for each traffic class across all
tested models. There appears to be a mutual exclusion between models with high recall
scores for blocked traffic and those with high F1-scores for allowed classes. Specifically,
without imbalanced techniques, the initial model had the best recall scores, over 0.9, for both
blocked classes. While the class weights and transfer learning models had better F1-scores

47

for allowed classes, these same models had recall scores below 0.6 for the incoming blocked
class. The highest performing class, therefore, is the initial MLP model without imbalanced
data techniques, with the highest recall for blocked classes and comparable F1-scores for
allowed traffic classes.

Table 4.3. MLP Model Metric Comparisons.

Recall Scores F1-Scores
Imbalance Technique Outgoing Blocked Incoming Blocked Outgoing Allowed Incoming Allowed
None 0.980 0.931 0.498 0.424
RUS 0.985 0.324 0.560 0.390
Class Weights 0.980 0.549 0.575 0.426
Transfer Learning 0.982 0.484 0.535 0.434

The comparisons between different CNN models with and without imbalanced handling
techniques are next. The relevant metrics are shown in Table 4.4. Unlike the MLP model
type, the initial CNN model did not perform nearly as well without imbalanced dataset
handling techniques, with less than 0.1 recall score for the outgoing blocked class. Only
the RUS and transfer learning techniques had recall and F1-scores above 0.2 for all classes.
However, transfer learning on the CNN provided both recall scores for blocked traffic above
0.85. Moreover, the outgoing allowed F1-score for transfer learning was only 0.004 less
than the highest model, with an average F1-score for incoming allowed. Therefore, the CNN
model with the transfer learning imbalanced handling technique was the best-performing
CNN model.

48

Table 4.4. CNN Model Metric Comparisons.

Recall Scores F1-Scores
Imbalance Technique Outgoing Blocked Incoming Blocked Outgoing Allowed Incoming Allowed
None 0.065 0.795 0.270 0.391
RUS 0.980 0.226 0.277 0.342
Class Weights 0.560 0.913 0.490 0.001
Transfer Learning 0.981 0.857 0.486 0.208

With best performing models identified for each model type, the final metrics can draw final
comparisons. Table 4.5 shows the final metric comparisons between the RFC, MLP, and
CNN models. The MLP has no imbalance techniques, while the CNN has transfer learning.
The CNN overall had the worst metrics compared to the other two model types. However, it
was only slightly less so in certain classes. For example, the CNN outgoing blocked recall
score was only 0.004 less than the maximum value. Additionally, it was 0.074 off from the
maximum incoming blocked recall value. The MLP, however, had the maximum recall score
for incoming blocked class by 0.23. Furthermore, incoming blocked had the most significant
class membership, an important consideration. However, the MLP was over 0.15 below the
F1-scores for allowed traffic classes compared to the RFC. The RFC performed better in
most classes of traffic. Overall, deep learning models performed similarly to the RFC in
identifying blocked, malicious traffic but lacked performance in misidentifying allowed
traffic. Thus, we conclude that the best performing model for packet classification was the
Random Forests model.

49

Table 4.5. Overall Model Comparisons.

Recall Scores F1-Scores
Model Type Outgoing Blocked Incoming Blocked Outgoing Allowed Incoming Allowed
RFC 0.984 0.908 0.755 0.596
MLP 0.981 0.931 0.498 0.424
CNN 0.981 0.857 0.486 0.208

4.2.6 Performance Degradation Analysis
When analyzing model performance, a critical consideration is performance over time.
Real-world enterprise networks are constantly operating with little downtime. This con-
tinuous operation requires network edge security to maintain performance over time since
training new models requires significant amounts of data. The last test to be analyzed is the
examination of the models in comparison with number of days after initial training time.
While accuracy, as mentioned previously, is not the optimal metric to measure network
traffic classification, it is helpful for understanding model performance comparisons. As
shown in Figure 4.13, the accuracy was measured each day since the training on July 14.
At the end of the week, on July 20, the models are all less accurate due to dynamic network
conditions. The only exception is a significant fluctuation in accuracy on July 18, where the
MLP and CNN dip below 0.55 accuracy. The RFC retains the best performance over time,
while the MLP is, on average, 7% less accurate. The CNN has the smallest deviation of all
models, but performance is generally worse each day.

50

Figure 4.13. Model Accuracy Over Time.

The performance for each class over time can be visualized for the RFC in Figure 4.14, the
MLP in Figure 4.15, and the CNN in 4.16. Across all models allowed, classes see significant
degradation over time. The outgoing blocked class also sees some degradation, but less so
than the allowed classes. The only class that rarely drops is the outgoing blocked class,
which is the smallest class of traffic. Of note, by the end of the week, the RFC blocked
classes of traffic both had less F1-score than the MLP and the CNN, indicating the deep
learning models began outperforming the RFC six days after training.

51

Figure 4.14. RFC F1-Scores Over Time. Figure 4.15. MLP F1-Scores Over Time.

Figure 4.16. CNN F1-Scores Over Time.

4.3 User Profiling Analysis
We now discuss user behavior profiling through clustering and semi-supervised learning.
As the stream dataset is unlabeled, the first task is to apply semi-supervised learning to
learn the labels over the dataset. First, the clustering algorithm will be applied on packet
streams. Then, the mini-batch K-means clustering algorithm will be used to fit 420,000
streams from July 14. Unfortunately, the Hamming system constrained the memory limits
of the datasets

52

and could not handle anything larger due to each stream containing over 1,000 features.
Each stream was examined through geolocation information, aggregated statistical features
of the stream, and an array of each packet’s direction within the stream. The clustering
algorithm was used to generate 25 clusters over the dataset.

Next, cluster centers assist in the identification of stream behaviors. Ideally, the cluster
center exhibits the representative stream for all other streams in that cluster. Therefore,
we may manually label the cluster centers, then extend those labels to all other streams
according to their respective cluster. To do this, we generate URLs from the cluster center
IP address. We also generate URLs for the five streams that are nearest to the cluster center
in Euclidean distance. Overall, the algorithm creates 250 respective URLs over the dataset.
Each cluster will be analyzed to determine the majority behavior for which labels will be
assigned respectively. Any clusters without common behaviors will be labeled as None and
dropped from future predictions, as they are considered non-behavioral forming.

The next step is to examine the accuracy of the cluster labels. Initial qualitative analysis will
ensure the accuracy of these labels, with any poorly performing clusters being reclassified
as None if the representative streams do not match the majority of the traffic.

The final testing of user behavior profiling is to determine whether future streams can
be classified using existing labeled traffic. This semi-supervised classification approach
uses the labels produced by the clustering algorithm to train a classifier to predict future
behaviors. The validation dataset comprises 33,000 streams, compiled from July 14, with no
repeated streams from the initial clustering dataset. Semi-supervised learning applicability
to stream classification will be evaluated and validated by the performance of both the
K-means algorithm and the classification model.

4.3.1 Clustering Model Analysis
Figure 4.17 shows a visual representation of the clusters, which maps the samples per
cluster in a histogram form. For clarification, while the largest three clusters contain 60.5%
of the total streams, the mean samples per cluster are 7,297. This population distribution
indicates that while the 22 clusters each contain less than 10% of total streams, there are
no outliers with less than 1,000 streams. This information shows us that each cluster has
enough samples to remain functional.

53

Figure 4.17. K-Means Cluster Sample Histogram.

4.3.2 Cluster Profiling Analysis
After the data is used to create and train the clusters, the clusters can then be assigned user
behaviors based on their representative cluster centers and nearby samples relative to those
cluster centers. A cluster holds a behavior if a simple majority for a single behavior exists
across the cluster’s representative samples. For our analysis, if three or more streams for a
cluster are from a specific website genre, then we label all samples in that cluster according to
the website genre. We say that these streams represent a specific user behavior. If no common
behaviors exist for a cluster, then the cluster is labeled as None. These clusters imply no
specific behaviors since there is a mix of behaviors within. Table 4.3.2 displays the identified
behaviors from clusters. The most common URLs included Microsoft online products such
as Outlook and Azure cloud computing resources. Thus, Microsoft Products encompasses
all Microsoft applications into a single behavior. Next, content delivery networks (CDNs)
were also present, such as Akamai, Facebook, and Comcast, which service multimedia and
social media applications. These CDNs streams were grouped under the Media behavior.
The Cloud Computing behavior designates Amazon Web Service (AWS), Fastly, and other
cloud computing streams. Lastly, Google URLs are composed of two clusters, thus creating
a Google Search behavior. While Google provides some media content, it composes all the

54

representative streams for clusters 1 and 20 and requires a unique behavior.

Table 4.6. Behavior Profiling of Clusters.

Behavior Associated Clusters Number of Clusters

Microsoft Products
0, 2, 7, 8, 9, 10, 11, 13, 15, 16, 18,
19, 21, 22, 23

15

Media 4, 5, 12, 24 4
Cloud Computing 3, 14 2
Google Search 1, 20 2
None 6, 17 2

4.3.3 Label Propagation Analysis
With clusters assigned to behaviors, the clusters can propagate their behaviors to all as-
sociated samples. Figure 4.18 depicts the accuracy of each cluster. An initial qualitative
inspection was conducted on the propagation of behavior labels across the samples used
for clustering to determine initial behavior accuracy. Each sample had its actual behaviors,
resolved from URLs, compared against their cluster behavior. This inspection revealed a
50% accuracy for non-representative streams. Clusters other than Microsoft Products had
100% accuracy on initial inspection. However, many Microsoft Products clusters had very
few correct labels. This poor accuracy indicates that while the representative streams were
closest to the cluster center in feature space, they were of minority behaviors in the clus-
ter. When examining the accuracy of each cluster, the largest six clusters, the leftmost in
Figure 4.18, had accuracy at or over 0.9. These six clusters also make up 78% of the total
number of streams, indicating that the overall accuracy for the entire dataset is higher than
an equal weighting for each cluster. Therefore, clusters with performance less than 90%
accuracy were re-classified to the None behavior. This issue of misrepresentation is a caveat
of semi-supervised learning, where imperfect labels are assigned.

55

Figure 4.18. Cluster Label Accuracy By Decreasing Cluster Size.

4.3.4 Semi-Supervised Classification Analysis
This semi-supervised learning utilizes the K-means algorithm to predict the user behavior
classes based on cluster labels. All labels with the None behavior are dropped prior to
training, as this research focuses on classifying the identified, known behaviors previously
deduced in Subsection 4.3.2. The evaluation metrics are displayed in Table 4.7. The K-means
model had an overall classification accuracy of 0.97. The largest two classes, Cloud Com-
puting and Microsoft Products had 0.97 and above F1-score, indicating high-performance
levels. The smallest class, Media, had the worst performance, with a lower recall score of
0.72. This disparity in recall scores indicates a potential imbalance issue within the data.
However, the K-means clustering model can accurately predict future traffic classes.

56

Table 4.7. K-Means Semi-Supervised Classification Metrics.

User Behavior Precision Recall F1-Score Samples
Cloud Computing 1.00 1.00 1.00 13,536
Google Search 0.93 1.00 0.96 4,485
Media 1.00 0.72 0.83 3,914
Microsoft Products 0.94 1.00 0.97 11,380

4.4 Chapter Summary
This chapter analyzed the test results for packet classification and user behavior identifica-
tion. Both packet classification and packet stream analysis emulated edge security systems
and better understood network traffic patterns. For packet classification, different model
types were evaluated for use in network traffic analysis and different techniques for handling
imbalanced traffic classes commonly seen in real-world networks. After training, these mod-
els were examined over time to understand model performance degradation better. Next,
the clustering algorithm performed user behavior classification, and clusters were examined
and assigned user behaviors. These behaviors propagated labels through the data, with new
traffic drawing user behaviors from associated clusters. In the following chapter, the results
are discussed, limitations are examined, and future work is posed.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

CHAPTER 5:
Conclusion and Future Work

In this chapter, the research hypothesis will be examined for confirmation. Then, each
research question will be revisited and answered. Next, limitations and encountered con-
straints during the research process are addressed, and the impact those limitations had on
the results. Lastly, potential advances in future work from this research are addressed.

5.1 Discussion
From the results in Chapter 4, this research demonstrates the ability of deep learning
techniques to emulate firewalls and classify packet traffic. The deep learning models and
RFC achieved over 0.85 recall scores when identifying malicious network traffic packets.
While the allowed traffic classes were misclassified more often, the RFC and MLP both
had over 0.4 F1-scores. Imbalanced data handling techniques are also demonstrated to
mirror the natural imbalance of traffic classes in real-world networks. While RUS and class
weights alone did not increase the overall performance of models, transfer learning did
with the CNN. The RFC and MLP had the best performance when comparing the different
models. The RFC had the highest average metrics across all classes, but the MLP had the
highest recall score for the largest blocked traffic class. Moreover, we have demonstrated
this prediction ability over seven days, from July 14 through July 20, 2022.

This research demonstrated that machine learning techniques could successfully profile
user behaviors. Common user behaviors were defined and associated with clusters using
clustering algorithms and representative samples. These clusters were then adjusted from an
initial qualitative inspection for accuracy by removing those clusters whose representative
samples did not indicate a majority behavior. Moreover, the clustering model successfully
predicted future packet stream behaviors through this semi-supervised classification. With
a minimum class F1-score of 0.83, the model achieved a high level of performance, with
better results for larger classes. Likely, the lower scores indicate data imbalance issues,
which further research could explore.

The models and techniques in this research were implemented on enterprise network traffic

59

and are generalizable to similar problems. All traffic was taken directly from the NPS ERN
without dropping any significant percentage of traffic. While likely adding additional noise
to the datasets, this real-world traffic provided a proof of concept for deep learning and
machine learning solutions in classifying packets and profiling streams. Additionally, the
data pre-processing is generalizable across different enterprise networks, as the model input
varies according to the network traffic diversity.

This research confirms that PCAP records can classify network traffic and profile user
behaviors through machine learning within large-scale networks. Moreover, the previous
paragraphs have answered each research question. Furthermore, packet classification is fea-
sible through machine learning and deep neural networks, and semi-supervised classification
can accurately predict stream behaviors. While there is certainly room for improvement in
model performance, this research serves as proof of concept for the feasibility of such
implementation. In this regard, the research succeeds in its proposed goals.

5.2 Limitations
A significant constraint to the research was the question of packet label accuracy. The dataset
collections were refined throughout the research to produce the best-guessed packet labels.
However, the two NICs encountered various problems that may reduce the accuracy of
the dataset. For example, some outgoing packets were captured on the outside NIC, which
meant that the interior NIC did not capture the packet. The solution was to add additional
truth labels such as incoming dropped outside or exterior only. Due to the sizeable dataset,
there was no feasible method of conducting deep packet inspection for highly accurate truth
values. The use of NICs remained the only viable method of identifying packets. As the
data is further refined and packet labels reclassified, the performance of machine learning
models could increase. The potential for noise and misclassified packets to exist within the
dataset is likely and will continue to be iteratively improved over time.

Another constraint to the research was the dataset size regarding training and validation
time and memory constraints. While performing at a significantly higher level than most
consumer deep learning hardware, the Hamming system still hindered the ability to conduct
ideal training on enterprise data. For packet classification, the ability to train a model across
every packet on July 14th could produce better results than training on a 31 million packet

60

cross-section. Additionally, larger validation datasets may decrease sharp dips and spikes
in performance when evaluating models. For specific models, such as random forests and
K-means, there are no built-in methods to accept chunks of files in sequence, such as a
Python generator. This memory requirement limits the training dataset to these models
by the hardware memory limits for the process. A reduction in training time for packet
classification and an increase in the size of the K-means and random forest training data
would likely increase performance in this research.

5.3 Future Work
There is clear potential for future work in improving machine learning model performance
in packet classification. All machine learning models had a worse performance for allowed
traffic classes over blocked, which could improve through several methods. Testing other
machine learning and deep learning models may illuminate a better model fit for network
traffic classification. Using Bayesian learning to adjust hyperparameters could also improve
deep learning model performance. For example, the piece-wise learning rate decay may
have been too aggressive in reducing the learning rate near the optimal loss value. Testing
a variety of learning rates or only reducing the learning rates after several epochs of no
improvement may increase deep learning model performance.

User behavioral profiling has several different potential approaches for continued research.
Utilizing majority voting of stream behaviors to classify a cluster is a novel approach that
may improve clustering performance. Further sub-classification of clusters is outside the
scope of this research but may allow for the classification of mixed behavior clusters. In
addition, the accuracy of clusters would likely improve future stream predictions. Using deep
learning to conduct semi-supervised classification is another approach to predicting future
traffic behaviors. Finally, if future datasets include stream information for blocked content,
the definition and identification of blocked content could extend this research further.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

List of References

[1] L. T. C. Linn, “Marines in the Age of Artificial Intelligence,” Marine Corps Gazette,
no. February 2020, Feb. 2020.

[2] D. H. Berger, “Force Design 2030: Annual Update,” May 2022.

[3] R. Sommer and V. Paxson. (2010). Outside the Closed World: On Using Machine
Learning for Network Intrusion Detection. Oakland, CA, USA. [Online]. pp. 305–
316. Available: http://ieeexplore.ieee.org/document/5504793/

[4] M. H. Haghighat, Z. A. Foroushani, and J. Li. (2019, Oct.). SAWANT: Smart Win-
dow Based Anomaly Detection Using Netflow Traffic. Xi’an, China. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/8947103/

[5] S. Rezaei and X. Liu. (2020, May). How to Achieve High Classification Accuracy
with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets.
arXiv:1812.09761 [cs]. [Online]. Available: http://arxiv.org/abs/1812.09761. ArXiv:
1812.09761.

[6] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret. (2017). Network
Traffic Classifier With Convolutional and Recurrent Neural Networks for Internet
of Things. IEEE Access. [Online]. Available: https://ieeexplore.ieee.org/document/
8026581/

[7] A. R. Mohammed, S. A. Mohammed, and S. Shirmohammadi. (2019, July). Ma-
chine Learning and Deep Learning Based Traffic Classification and Prediction in
Software Defined Networking. Catania, Italy. [Online]. Available: https://ieeexplore.
ieee.org/document/8805044/

[8] N. Chockwanich and V. Visoottiviseth. (2019, Feb.). Intrusion Detection by Deep
Learning with TensorFlow. PyeongChang Kwangwoon_Do, Korea (South). [Online].
Available: https://ieeexplore.ieee.org/document/8701969/

[9] A. Kipane. (2019). Meaning of profiling of cybercriminals in the security context.
SHS Web of Conferences. [Online]. Available: https://www.shs-conferences.org/10.
1051/shsconf/20196801009

[10] C. I. Eke, A. A. Norman, L. Shuib, and H. F. Nweke. (2019). A Survey of User Pro-
filing: State-of-the-Art, Challenges, and Solutions. IEEE Access. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/8851141/

63

http://ieeexplore.ieee.org/document/5504793/
https://ieeexplore.ieee.org/document/8947103/
http://arxiv.org/abs/1812.09761
https://ieeexplore.ieee.org/document/8026581/
https://ieeexplore.ieee.org/document/8026581/
https://ieeexplore.ieee.org/document/8805044/
https://ieeexplore.ieee.org/document/8805044/
https://ieeexplore.ieee.org/document/8701969/
https://www.shs-conferences.org/10.1051/shsconf/20196801009
https://www.shs-conferences.org/10.1051/shsconf/20196801009
https://ieeexplore.ieee.org/document/8851141/

[11] R. Vinayakumar, K. P. Soman, and P. Poornachandran. (2017, Sep.). Applying con-
volutional neural network for network intrusion detection. Udupi. [Online]. Avail-
able: http://ieeexplore.ieee.org/document/8126009/

[12] A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow. Se-
bastopol, CA: O’Reilly Media Inc., 2017.

[13] J.-A. Zhu, Y. Jia, J. Lei, and Z. Liu. (2021, Nov.). Deep Learning Approach to Me-
chanical Property Prediction of Single-Network Hydrogel. Mathematics. [Online].
9(21). Available: https://www.mdpi.com/2227-7390/9/21/2804

[14] D. Kwon, K. Natarajan, S. C. Suh, H. Kim, and J. Kim. (2018, July). An Empirical
Study on Network Anomaly Detection Using Convolutional Neural Networks. Vi-
enna. [Online]. Available: https://ieeexplore.ieee.org/document/8416441/

[15] R.-H. Hwang, M.-C. Peng, C.-W. Huang, P.-C. Lin, and V.-L. Nguyen. (2020). An
Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection.
IEEE Access. [Online]. Available: https://ieeexplore.ieee.org/document/8990084/

[16] A. Shahraki, M. Abbasi, A. Taherkordi, and M. Kaosar. (2021, Aug.). Internet Traf-
fic Classification Using an Ensemble of Deep Convolutional Neural Networks.
Virtual Event USA. [Online]. Available: https://dl.acm.org/doi/10.1145/3472735.
3473386

[17] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng. (2017).
Malware traffic classification using convolutional neural network for representa-
tion learning. Da Nang, Vietnam. [Online]. Available: http://ieeexplore.ieee.org/
document/7899588/

[18] J. An and S. Cho, “Variational Autoencoder based Anomaly Detection using Recon-
struction Probability,” SNU Data Mining Center, Dec. 2015.

[19] Z. Fan and R. Liu. (2017, Aug.). Investigation of machine learning based net-
work traffic classification. Bologna. [Online]. Available: http://ieeexplore.ieee.org/
document/8108090/

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[21] J. M. Johnson and T. M. Khoshgoftaar. (2019, Dec.). Survey on deep learn-
ing with class imbalance. Journal of Big Data. [Online]. 6(1). Available: https:
//journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0192-5

64

http://ieeexplore.ieee.org/document/8126009/
https://www.mdpi.com/2227-7390/9/21/2804
https://ieeexplore.ieee.org/document/8416441/
https://ieeexplore.ieee.org/document/8990084/
https://dl.acm.org/doi/10.1145/3472735.3473386
https://dl.acm.org/doi/10.1145/3472735.3473386
http://ieeexplore.ieee.org/document/7899588/
http://ieeexplore.ieee.org/document/7899588/
http://ieeexplore.ieee.org/document/8108090/
http://ieeexplore.ieee.org/document/8108090/
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0192-5
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0192-5

[22] High Performance Computing. [Online]. Available: https://wiki.nps.edu/display/
HPC/A+Gentle+Introduction+to+Hamming

[23] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. (2015). TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. [Online]. Available:
https://www.tensorflow.org/

[24] GeoIP2 and GeoLite2 Databases. [Online]. Available: https://dev.maxmind.com/
geoip?lang=en

65

https://wiki.nps.edu/display/HPC/A+Gentle+Introduction+to+Hamming
https://wiki.nps.edu/display/HPC/A+Gentle+Introduction+to+Hamming
https://www.tensorflow.org/
https://dev.maxmind.com/geoip?lang=en
https://dev.maxmind.com/geoip?lang=en

THIS PAGE INTENTIONALLY LEFT BLANK

66

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

67

	22Sep_Calnan_Michael_First8
	22Sep_Calnan_Michael
	Introduction
	Motivation
	Research Objectives
	Scope
	Contributions
	Organization

	Background Research
	Network Traffic Analysis
	Deep Learning
	Clustering
	Machine Learning Considerations for Network Traffic
	Problem Space

	Methodology
	Equipment and Software tools
	Design
	Implementation
	Chapter Summary

	Testing and Analysis
	Packet Classification Testing
	Packet Classification Results Analysis
	User Profiling Analysis
	Chapter Summary

	Conclusion and Future Work
	Discussion
	Limitations
	Future Work

	List of References
	Initial Distribution List

