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ABSTRACT 

 Accurate tracks and targeting are key to providing decision-makers with the 

confidence to execute their missions. Increasingly, multiple intelligence, surveillance, 

and reconnaissance (ISR) assets across different intelligence sources are being used to 

increase the accuracy of track location, resulting in the need to develop methods to 

exploit heterogeneous sensor data streams for better target state estimation. One of the 

algorithms commonly used for target state estimation is the Kalman Filter (KF) 

algorithm. This algorithm performs well if its covariance matrices are accurate 

approximations of the uncertainty in sensor measurements. Our research complements 

the artificial intelligence/machine learning (AI/ML) efforts the U.S. Navy is conducting 

by quantitatively assessing the potential of using an ML model to predict sensor 

measurement noise for KF state estimation. We used a computer simulation to generate 

sensor tracks of a single target and trained a neural network to predict sensor error. The 

hybrid model (ML-KF) was able to outperform our baseline KF model that uses 

normalized sensor errors by approximately 20% in target position estimation. Further 

research in enhancing the ML model with external environment variables as inputs could 

potentially create an adaptive state estimation system that is capable of operating in 

varied environment settings. 
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EXECUTIVE SUMMARY 

The ability to process and exploit multiple intelligence data streams is essential to 

achieving superior battlespace awareness. The U.S. Navy, and specifically Naval 

Information Forces (NAVIFOR), is exploring the effectiveness of Artificial Intelligence 

(AI)/Machine Learning (ML) technology to assist with data fusion and provide quick and 

timely analysis of the Common Operating Picture (COP)/Common Tactical Picture 

(CTP). One area of focus is the filtering of data from different sensor systems to provide 

improved state estimation of targets in the battlespace. This is a critical task as accurate 

tracks and targeting are key to providing decision makers with the confidence to execute 

their mission. 

This thesis aims to assess the feasibility of integrating AI/ ML algorithms and 

techniques to filter heterogenous datasets to increase the accuracy of track estimation in 

developing COP/CTP. The Kalman Filter (KF) and its variants are often used to estimate 

the position of targets in the battlespace. Estimation accuracy, however, is greatly 

affected by changes in external conditions and by violations to the assumptions made 

about the target.  

Research conducted by Gao et al. (2020), Jouaber et al. (2021), and Ullah et al. 

(2019 and 2020) has shown the potential to integrate a learning module within a standard 

KF to improve the accuracy of state estimation. This research used a neural network 

(NN) to learn the variability in measurement uncertainties associated with sensor 

measurements. These variabilities exist because of changes in external factors such as 

weather conditions that are not directly modeled as the state of the KF algorithm. This 

has the potential to enhance our COP/CTP, especially when external factors affect our 

sensor fusion systems dynamically.  

We use a quantitative approach to assess the accuracy of selected AI/ML 

algorithms in filtering datasets of target positions. We hypothesize that inclusion of a 

learning module within a KF model will outperform a standard KF model and provide a 



xx 

better estimate of the target position. To that end, we designed a three-phase data pipeline 

(Figure 1). 

 

Figure 1.  Methodology for Assessing Track Filtering Algorithms. 

 
First, sensor data is generated using simulation software—Command: Modern 

Operations (CMO) developed by Matrix Games (Matrix Games, 2022b). A scenario 

consisting of multiple stand-off sensors from different intelligence domains and a single 

target was used. Second, two sets of models were developed—a standard baseline model 

using the KF algorithm and another using a neural network embedded in the KF 

algorithm (we call this the ML-KF model). This neural network is a learning module that 

was trained on the training dataset and was used to estimate the sensor measurement 

noise of the KF. We conduct a hyper parameter search across the different 

hyperparameters possible to improve the performance of each sensor’s ML model. In the 

final phase, the performance of the two models was assessed for accuracy in estimating 

target state position.  

Our findings showed that the integration of ML models to estimate the sensor 

measurement error matrix for the standard KF algorithm can significantly improve the 

accuracy of target state estimation by approximately 20% at a 5% confidence level. In 

summary, our contributions are the following:  

1. We have developed an ML operations pipeline that ingests data from a 

simulation to train, validate, and test machine learning modules for 
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subsequent deployment in a KF system. The method, dataset, and models 

generated is reproducible and replicable, as the code base and frameworks 

used for this development are fully open source. 

2. We have shown that a learning module embedded in a standard KF 

algorithm can improve state estimation over a standard KF model. The 

ML-KF model was able to generate a sensor measurement error matrix to 

update the KF algorithm’s probabilistic belief of the sensor measurements, 

thereby improving the KF’s estimation. 

3. We were able to train the learning module used in the KF model only 

because our simulation system provides a ground truth target state which 

live ranges may not be able to provide. This proves the potential for using 

simulation to develop ML models and of subsequently deploy them in the 

field.  

Our research used ML models to predict sensor measurement errors for a standard 

KF algorithm. Our ML-KF model was able to significantly outperform our baseline 

model at 5% confidence level, showing that using an ML-KF model would improve the 

performance of target position state estimations, alleviating the performance issue when 

uncertainty of sensor measurement is absent from heterogenous sensor data streams. In 

other words, in the absence of uncertainty measurements of sensor data, the ML 

embedded in the KF was able to predict the uncertainty and dynamically updating the 

parameters of the KF algorithm.  

This proof-of-concept has the potential to be further extended using more 

sophisticated methods. We have proposed three key areas for future research: 1) To 

improve the generalizability of the ML-KF model by including other parameters (such as 

weather conditions in the battlespace) that are not directly modeled or used in KF. 2) 

Using time-series methods to model temporal movement of a target, thereby increasing 

the predictive power of the learning module embedded in the KF. 3) Using ML models to 

conduct multiple target data filtering (JDL Level 2), by including a classification task to 

categorize the track data. 
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As the DoD increasingly shifts its focus to the application of ML, we believe that 

such an application in data filtering would be able to augment existing data filtering 

methods and eliminate the expense of replacing them. For instance, by enhancing existing 

COP/CTP data filtering algorithms, we would be able to have better accurate state 

estimation of the target, thereby providing a higher confidence of the target’s position in 

the COP/CTP. The ability for such an ML-KF model to ingest heterogenous data stream 

is also a powerful tool to automate the work of intelligence analysts who would 

frequently need to cross-reference their sources across different intelligence domains. By 

improving the suite of tools available to our warfighters, they will be more lethal in their 

response to any adversary. 
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I. INTRODUCTION 

A. OVERVIEW 

This thesis aims to assess the feasibility of integrating Artificial Intelligence (AI)/ 

Machine Learning (ML) algorithms and techniques to filter heterogenous datasets to 

increase the speed and accuracy of tracks in developing a Common Operating Picture 

(COP)/Common Tactical Picture (CTP) for battlefield awareness. The Kalman Filter 

(KF) and its variants are often used to estimate the position of targets in the battlespace. 

Yet, estimation accuracy is greatly affected by changes in external conditions and by 

violations to the assumptions made about the target.  

To improve state estimation from a KF, this research adopts a quantitative 

approach to assess traditional KF models against a hybrid ML-KF model, whereby a 

learning module is embedded as part of the KF to improve its adaptability. Using 

simulation software to generate sensors and track datasets, we assess the improvement in 

accuracy of estimating the state of a target by these models. 

B. MOTIVATION 

The ability to process and exploit multiple intelligence data streams is essential to 

achieving superior battlespace awareness. The U.S. Navy, and specifically Naval 

Information Forces (NAVIFOR), is exploring the effectiveness of AI/ML technology to 

assist with data fusion and provide quick and timely analysis of the COP/CTP. The 

current situation is exacerbated by the proposed increase in the number of Intelligence, 

Surveillance, and Reconnaissance (ISR) assets within the battlefield, which may 

potentially overwhelm human operators and intelligence analysts with high volume and 

velocity of data, leading to human errors and replicative efforts in going through similar 

effects. In addition, potential counter-intelligence tactics by the adversary may also affect 

the veracity of data received, disrupting our battlespace situation awareness.  

While the Department of Defense (DoD) has been investing heavily in data 

filtering systems, often embedded as part of the data fusion systems of systems, advances 

in sensor technology and AI/ML–aided by the availability of big data–provide an avenue 
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for NAVIFOR to adopt AI/ML technologies from industries such as robotics, 

autonomous vehicles, and recommender systems. By studying the AI/ML technologies 

and techniques used to automate the filtering of multiple data streams, we can draw 

parallels and quantitatively assess the effectiveness of such technologies in data filtering 

for target state estimation in the development of COP/CTP. 

C. OBJECTIVES 

Our research objective is to determine the effectiveness of AI/ML algorithms in 

multi-source data filtering to provide the warfighter with accurate target position 

estimation. 

D. ASSUMPTIONS 

In this research, we assume that the sensor data generated from the simulation 

software is sufficiently representative of the capability of sensors in the fleet. In addition, 

we assume that all data generated are agnostic to the idiosyncratic data formats required 

by Command and Control (C2) systems. 

E. APPROACH 

We use a quantitative approach to assess the accuracy of a selected AI/ML 

algorithm in filtering datasets of target positions. We hypothesize that the inclusion of a 

learning module within a KF model will out-perform a standard KF model and provide an 

improved estimate of the target position. Figure 1 illustrates the three phases of our 

approach. 
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Figure 1. Methodology for Assessing Track Filtering Algorithms. 

First, a simulation software—Command: Modern Operations (CMO) developed 

by Matrix Games (Matrix Games, 2022b) will be used to generate sensor dataset. A 

suitable scenario that consists of multiple stand-off sensors from different intelligence 

domains and a single target could be used to model the detection of a single target that is 

conducting a patrol in a defined area. Two scenarios will be generated to simulate ideal 

weather conditions and moderately adverse weather conditions, to assess the 

effectiveness of the algorithm in different weather conditions. In total, 100 iterations of 

each scenario should be ran with random perturbations to the initial position of the target 

so that randomness is introduced to the dataset. Each iteration provides us with a set of 

sensor readings of the target moving within the scenario and the ground truth of the 

target’s position. 

Second, two sets of models will be developed—a standard baseline model using 

the standard KF algorithm and another using a selected ML model embedded in the KF 

algorithm (which we call this the ML-KF model). The ML model is generated from a 

learning phase whereby its parameters are updated after each batch of the dataset is 

presented to it. After learning is completed, the model is evaluated against a dataset that 

was not seen during this phase to assess the performance of the ML model. The best ML-

KF model would be used for evaluation to pit against the KF baseline model. 

Third, we assess the performance of the ML-KF model against the baseline KF 

model. We assess the algorithms on the accuracy of the target’s estimated position across 

each weather datasets. 
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F. BENEFITS OF RESEARCH 

Two potential benefits from this study include the following:  

1. It provides a survey on existing AI/ML techniques for automated data 

filtering to improve the accuracy of track prediction that can inform the 

wider Information Warfare Community (IWC) and coalition partners on 

the effectiveness, limitations, and constraints of the technology.  

2. It demonstrates a prototype that provides a study on an AI/ML technique 

used to enhance the KF algorithm. This study informs the design of future 

AI/ML systems. 

G. STRUCTURE OF PAPER 

Chapter II sets the foundation of our research, providing the history of data fusion 

and its relevance to the DoD, AI/ML techniques used in data fusion and track 

management, and the evaluation of data fusion systems. Chapter III introduces a data 

pipeline used to generate datasets for the evaluation of algorithms and building machine 

learning for model evaluation. The scenario design principles and an exploratory data 

analysis on the datasets generated using CMO are presented. Chapter IV introduces the 

KF algorithm, formulating data filtering as a predictive task for the KF’s parameter and 

approach to generating ML models. Chapter V informs the performance of each model. 

Finally, Chapter VI concludes with the limitations of the research, lessons learned, 

recommendations, and future areas of study.  
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II. LITERATURE REVIEW 

This chapter outlines a summary of the literature and sources used to improve our 

understanding of AI/ML techniques applied as a data fusion technique. The review aims 

to provide 1) an overview of data fusion systems and their relevance to the DoD, 2) 

background on existing AI/ML technologies applied in data fusion and track 

management, and 3) methods for evaluating data fusion systems. 

A. BACKGROUND OF DATA FUSION 

Catalyzed by the need to enhance multi-domain battlespace awareness and reduce 

decision time to respond to threats, and thereby gain a superior advantage against near-

peer threats, data fusion technology remains one of the key areas of investment for the 

DoD (Hoehn, 2022). The conduct of data fusion aims to aid decision making, answer 

commanders’ questions, and reduce the uncertainty of the battlespace. The Data Fusion 

Group formed by the Joint Directors of Laboratories (JDL), proposed the following 

definition of Data Fusion: “Data fusion is the process of combining data to refine state 

estimates and prediction” (Steinberg et al., 2017). The DoD has made significant 

investments in data fusion technology, cutting across a wide range of mission sets and 

fusion capabilities (Nicholas, 2008). 

1. Data Fusion Architectures and Models 

The JDL Data Fusion Model identifies key functions related to data fusion by 

providing common systems engineering standards and vocabulary for developers. To 

date, it is the most widely used framework for the development of data fusion functions 

in military applications (Steinberg et al., 2017). While there are contending fusion models 

and architectures available, the JDL Data Fusion Model serves as a useful reference for 

this thesis due to our use case on track management and data filtering. 

The model consists of five levels of processing where data fusion would occur 

(Figure 2). Depending on the application, a data fusion system may hierarchically 

implement these levels of fusion. We expand on the levels in the following paragraphs: 
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• Source Pre-processing. This pre-processing step is often conducted at the 

sensor node. For example, a radar may utilize the moving target indicator 

technique to confirm the presence of an object at a given time and space. It 

can change its pulse width and increase its range resolution to improve the 

signal-to-noise ratio in the presence of a potential target and thus reduce 

environmental clutter noise. This process results in the detection of an 

object when the raw signature (signal or pixel) received by the sensor is 

above the signal-to-noise ratio threshold. This initial “contact” with the 

target results in a track initialization with the sensor continuously 

measuring and estimating the state of the object (Dietrich, 2001). 

• Level 1 Processing—Object Refinement. The object refinement process 

provides estimates and predictions of an entity’s physical states (position, 

velocity, attributes such as size and signatures, and identity) in the 

battlespace. For example, a radar tracking a threat in the battlespace may 

cross-cue an imaging sensor to zoom in on the area where a target is 

estimated to be. If the imaging sensor was able to detect a target within its 

field of view, positive contact and track would be formed. The fusion of 

both sensors’ tracks would result in a fused track. The output from level 1 

processing is predictive, as the fused track not only provides the estimated 

current position, but also the projected location of the object based on 

existing sensor measurements. This thesis focuses on the refinement of 

fused track data from multiple sensors. 

• Level 2 Processing—Situation Refinement. This level allows the user to 

draw inferences about the relationship between objects. The fused product 

allows the user to infer the force structure and command relationship 

between entities, providing context to their estimated state. For example, 

in a hierarchical data fusion system, the analysis of velocity histories of 

level 1 tracks affords further classification of the movement formation 
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from commonly used doctrines (e.g., the advancement of a carrier strike 

group is distinctly different from the movement of a littoral combat team). 

• Level 3 Processing—Threat Refinement. This process aims to estimate 

and predict the outcome of a course of action, or the potential impact of 

the entities’ actions. Continuing the example from level 2, having 

classified the tracks based on their velocity profile and inferring the size 

and disposition of the threat, the fusion system would further increase the 

threat level of the targets. This refinement and change in threat 

classification would result in a strong warning and alert to the user. 

• Level 4 Processing—Process Refinement. While source preprocessing to 

level 3 preprocessing manipulates the sensor data or its derivative directly, 

level 4 processing is concern with answering the question of “does the 

products from source pre-processing to level 3 processing fulfills the 

mission?”. To that end, level 4 processing observes the performance of the 

fusion process occurring at levels 1 to 3 and aims to optimize resource 

allocation (e.g., sensors and deployment time) to meet the goals of the 

mission.  

 

Figure 2. JDL Fusion Processing Model. Source: Steinberg et al. (2017). 



8 

2. Processes and Methods Used in Object Refinement (Level 1) 

This section details the processes that occur within JDL level 1 object refinement 

fusion processing. It aims to provide common algorithms and methods used for fusing 

multiple state estimations from various sensors. Smith and Singh (2006) outlined four 

key processes in JDL level 1 fusion processing of process refinement as data registration, 

data association, state estimation, and identification. 

a. Data Registration 

Data registration is the process of aligning data from various sources into the 

same frame of reference. This process is often required when the sensors are spatially 

distributed and have different fields of view. Converting all sensor readings to a common 

reference frame prevents confusion by the algorithm in subsequent stages. Common 

methods include the conversion of an estimated target position to latitude or longitude by 

referencing the target range to the sensor and standardizing the estimated target 

temperature to the same reference units such as Fahrenheit or Kelvin. 

b. Data Association 

The data association process can be sub-categorized into measurement-to-track 

and track-to-track, depending on the data type that is being provided to the association 

algorithm, and it aims to correlate measurement or tracks from each sensor to the 

identical real-world object the sensor is measuring. The algorithm, also known as a 

correlator, can be complex as it manages the entire track cycle. A track cycle comprises 

three sequential stages: 1) track initialization, 2) track maintenance, and 3) track deletion. 

The MATLAB & Simulink Sensor Fusion and Tracking Toolbox (MathWorks, 2022) 

describes the tracker’s operating logic when a new detection has been made: 

(1) The tracker tries to assign a detection to an existing track.  

(2) The tracker creates a track for each detection it cannot assign. When 

starting the tracker, all detections are used to create tracks. 

(3) The tracker evaluates the status of each track. For new tracks, the status is 

tentative until enough detections are made to confirm the track. For 
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existing tracks, newly assigned detections are used by the filter to update 

the track state. When a track has no new added detections, the track is 

predicted until new detections are assigned to it. If no new detections are 

added after a specified number of updates, the track is deleted. 

Common methods include joint probabilistic data association, nearest neighbor 

clustering, and fuzzy logic systems. Ideally, the output from this step provides a fused 

track for each real-world object. Sub-optimally, the algorithm may result in a track 

breaking or a redundant track. 

c. State Estimation 

Once the tracks are clustered, attributes related to the specific fused track can be 

estimated, such as location, velocity, heading, and altitude. The most common method 

used is the KF, a recursive Bayesian estimator for attributes of interests based on sensor 

measurements in the presence of uncertainties. To utilize a KF, the sensor noise and 

model of the object to be detected must be known and hence most state estimators are 

often hand-crafted by subject matter experts for the data fusion system based on the set of 

targets the system intends to track. Many variants of KF have since been developed 

(Akca & Efe, 2019). For example, Extended KF, Unscented KF, Particle Filter, or 

Multiple Models Filters (an ensemble of filters modeling different possible system 

dynamics) are used to estimate the state of a non-linear dynamic system. 

d. Identification 

Finally, the object is given a combat identification based on its state and 

attributes. Common methods include Bayesian inference, expert system with hand-

crafted rulesets developed by subject matter experts, and ensemble models that weigh the 

confidence level for each independent classifier to determine the final classification of the 

target. Like state estimation, identification often requires expert knowledge on the type of 

target the fusion system will be tracking for the target to be identified successfully.  
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3. Challenges and Limitations in Data Fusion Models 

Esteban et al. (2005) surveyed widely used data fusion architectures and models 

from a systems engineering perspective. They found that different use cases and 

applications have resulted in a wide range of architectures and models and having a 

common unified architecture for data fusion is challenging. For instance, a fusion process 

model of a multi-sensor data fusion system may differ from another one due to the 

sensors’ configurations (sensors may be set up in parallel or serial configuration), the 

level(s) of information desired from the fusion system, and location of fusion algorithm 

(on level 1 fusion conducted at each sensor in a decentralized model, or a 

computationally intensive centralized fusion based on all sensors’ raw data). Due to the 

different mission sets and profiles, nuances within each data fusion system exist and there 

is no all-encompassing data fusion model to holistically describe all existing and potential 

systems. 

In addition, there is no commonly agreed-upon data governance framework to 

control data input into a fusion system. Research by Watson (2021), building on the 

dissertation work by Rothenhaus (2008), proposed and showed that a data governance 

framework for a multi-source data fusion system to remove poor quality sources would 

significantly improve the performance of track correlators while reducing analysts’ time 

to rectify incorrect position reports. As the adage “garbage in garbage out” goes, the data 

fusion process is not a panacea when sensor readings are biased or flawed. 

4. Data Fusion Applications 

a. Intelligence Operations 

The joint targeting cycle presents a useful case study for fusion in JDL level 3 

threat refinement, often involving intelligence analysts in the loop due to the high cost of 

erroneous analysis. The DoD Joint Publication on Joint Targeting (JP-3-60) (Joint Chief 

of Staff, 2018) and Joint Publication on Joint Tactics, Techniques, and Procedures for 

Intelligence Support to Targeting (JP-2-01.1) (Joint Chief of Staff, 2013) outline the 

importance of all-source intelligence fusion in the success of a targeting mission. It is 

time-critical to inform commanders on the effectiveness of munitions in the conduct of 
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combat assessment and whether the objective of the mission has been achieved. The 

ability to achieve quality damage assessment requires intelligence analysts to exploit all-

source data through the fusion process. The fused report would provide reattack 

recommendations for the decision maker, signifying the importance of the report and the 

iterative nature of intelligence operations. 

b. Surveillance 

Other military-related data fusion applications include target tracking (Koch, 

2014); multi-sensors automated target recognition (ATR) (Schachter, 2020); aerial 

surveillance (Maltese & Lucas, 1998); maritime surveillance (Guerriero et al., 2008); 

space-based ISR over an area of interest and threat monitoring of Earth (Crothers et al., 

2009); and deep-space surveillance of military and commercial satellites orbiting Earth 

(Sharma & Stokes, 2002). 

Building on the physical space, military data fusion applications increasingly 

augment data sources from the physical space with sources from cyberspace, such as 

wireless and computer networks, and social space in online social media (Wang et al., 

2019). The counterinsurgency campaigns in Iraq provide a case study where data from 

social networks, communications networks, and geospatial data were combined to 

conduct a cultural analysis of the adversary (Merten, 2014). The shift to increasing the 

volume and variety of data sources for data fusion is a testament to the increasingly 

digitalized world that we live in, one where data will be exploited for data-driven 

decision making. 

c. Other Applications 

Outside of the military, data fusion is widely used in criminal investigations, 

medical diagnosis, system fault diagnosis, weather forecasting, and economic analysis 

(Blasch et al., 2014; Li et al., 2018; Murashov, 2021). In recent years, advancements in 

machine learning, artificial intelligence, and the Internet of Things have resulted in 

applications in 1) autonomous vehicle navigation and control (Yeong et al., 2021); 2) 

urban planning decisions, infrastructure management, environment, and waste 

monitoring, and mobility management (Lau et al., 2019); 3) precision manufacturing 
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(Kong et al., 2020); and 4) management of pandemics, such as the recent COVID-19 

pandemic (Singapore Armed Forces, 2022). 

B. EVALUATING THE PERFORMANCE OF DATA FUSION SYSTEMS 

Evaluation of a data fusion system is critical to understanding its effectiveness 

and performance.  

1. Challenges in Evaluating Fusion System 

In a NATO Science and Technology Organization lecture series on data fusion, 

Koch noted that a comprehensive evaluation of sensor fusion performance is only 

possible in highly controlled real-life laboratory testing (Koch, 2015). This is because, for 

level 1 fusion, it is often impossible to measure the ground truth of an actual target to a 

high degree of accuracy in real-life scenarios due to the presence of systemic and random 

errors, making a performance evaluation of a live system futile. One possible way of 

evaluating sensor fusion algorithms is through simulation-based experiments, where 

fusion algorithms ingest data from simulated sensors and randomness is introduced to 

probabilistically simulate the detection of a target based on each sensor’s expected 

performance (Miller et al., 2020). 

2. Evaluation of Object Refinement Fusion Process 

Given that the end goal of the level 1 object refinement fusion process is to 

improve the measured state of a target, the following measures of performance (MOP) 

were proposed: number of valid tracks or number of false tracks to measure the 

performance of data association and identification (Koch, 2015), accuracy of a track to 

measure the state estimation performance (Llinas, 2008), and time to track to measure 

timelines of information (Dietrich, 2001). 

a. Number of Valid Tracks, Number of False Tracks 

Ideally, the fusion system should assign one track ID per target. Additional tracks 

of the same target are potentially confusing to the warfighter, and misleading to the 



13 

analysts. False tracks may occur due to objects that are irrelevant but detected by the 

sensors, such as clutter, countermeasures, and environmental noise (Koch, 2015). 

b. Track Accuracy (State Estimation Metric) 

Naturally, the fused track should improve the estimation of the object’s state, and 

hence an effective fusion system should have a small difference between the ground truth 

of the target state and the estimated state (Llinas, 2008). 

c. Time to Track 

Due to communications and computation processes, the time taken to fuse tracks 

within a sensor and across multiple sensors may induce an “extraction delay” between the 

first detection by the sensor and the confirmation of a track. The timeliness of 

information is a measure of effectiveness (MOE) of the overall fusion system to 

determine whether the system was able to assist the warfighter in its operational mission 

(Dietrich, 2001). 

C. AI/ML FOR DATA FILTERING 

1. Motivation: AI/ML as a DOD Capability 

The 2019 DoD Digital Modernization Strategy and 2018 DoD Artificial 

Intelligence Strategy highlighted Artificial Intelligence and Big Data Analytics as key 

technology areas of interest for the DoD. Specifically, the DoD is committed to 

developing and using AI technologies and systems to augment duty personnel by 

reducing their cognitive workload for dull and repetitive tasks where machines excel. 

Supporting these strategies, the 2020 DoD Data Strategy aims to leverage data as a 

warfighting asset. The Data Strategy sets the direction for the development of data-driven 

operations wherein operators and decision makers exploit data for enhanced battlespace 

awareness to outsmart adversaries in multiple operating domains and across levels of 

operations. AI and ML are key enabling technologies to realize this goal. Our sponsor, 

NAVIFOR, is interested in exploiting readily available AI and ML technology and 

techniques to enhance both situational awareness and C2 of our force’s operations 

through the improvement of our COP/CTP. 
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2. Defining AI and ML 

This section aims to provide background on AI and ML techniques that are used 

for data fusion. In the authoritative and most-used artificial intelligence textbook 

Artificial Intelligence: A Modern Approach, Russell  et al. (2010) defines an artificial 

intelligence agent as a rational agent that “takes the best possible action in a situation.” 

An AI perceives and interacts with its task environment and its purpose is to maximize its 

performance as defined by the programmer. To improve its performance, an AI goes 

through a learning process to adapt to novel and unseen circumstances. ML is a subfield 

of AI in which an agent can use the techniques to learn from data to make an informed 

decision. Through learning, the agent develops models that maps the agent’s perceptual 

inputs from the environment to actions that interact with the environment. 

The ML field can be classified into three core paradigms—supervised learning, 

unsupervised learning, and reinforcement learning—often related to the task that the user 

aims to solve and the data that is available for learning (Goodfellow et al., 2016). Another 

buzzword “deep learning” (DL) would be used along with ML because DL is a subfield 

of ML and focuses on methods that utilize deep neural networks (DNN) as part of the 

learning algorithm, allowing simpler concepts to be combined into a more complex and 

nuanced one (Goodfellow et al., 2016). 

a. Supervised Learning 

Supervised learning requires a labeled dataset, and the objective of the learning 

algorithm is to build a statistical model of each input-output pair that optimizes a metric 

that measures the performance of the model (Goodfellow et al., 2016). The ML task is 

often a classification or regression task that predicts a class label or numerical value. 

Metrics used to assess the performance of a supervised learning method would include 

classification error, accuracy, or mean squared error.  

b. Unsupervised Learning 

Unsupervised learning does not require a labeled dataset and focuses on 

descriptive tasks such as understanding the structure of data, reducing the feature 
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dimension of data, and generative modeling (Goodfellow et al., 2016). We may use 

unsupervised learning in data fusion to answer the question of “Is a given fused track 

from a sensor associated with that of another?”  

c. Reinforcement Learning 

Reinforcement learning is fundamentally different from supervised and 

unsupervised learning methods because the data used for learning is obtained by the AI 

agent sampling an environment, such as a simulation engine (Goodfellow et al., 2016). 

The AI agent would perceive and act on the environment to understand the potential 

reward or penalty it will receive from the environment. If the agent is rational, then the 

learning algorithm will update the parameters of the agent such that it maximizes its long-

term reward (Russell et al., 2010). Recent advances in reinforcement learning include AI 

achieving grandmaster status in the game of Go without learning from a dataset of games 

from professional human players (AlphaGoZero), and predicting 3D protein structure 

from an amino acid sequence (AlphaFold) by DeepMind (Jumper et al., 2021; Silver et 

al., 2017). 

3. Machine Learning Operations and Frameworks 

In this section, we introduce Machine Learning Operations (MLOps) and its 

common ML frameworks. In their survey on MLOps, Kreuzberger et al., (2022) define 

MLOps as an engineering practice focused on developing ML products and bringing 

them into operations. It is concerned with the “end-to-end conceptualization, 

implementation, monitoring, deployment, and scalability of machine learning 

product(s),” supported by a multi-disciplinary team comprising the business owners, data 

scientists, data engineers, software engineers, and ML engineers.  

Based on their research, an end-to-end MLOps architecture and workflow 

(depicted in Figure 3) that comprises four key stages:  

a. MLOps project initialization aims to establish the ML problem from its 

business goal. 
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b. A feature engineering pipeline is set up by establishing rules for extracting 

features from the dataset. This feature engineering pipeline would be an 

iterative process with the subsequent experimentation stage until a model 

that performs well for the task has been developed.  

c. In the experimentation stage, the data scientists lead the team through an 

iterative model training process to test different algorithms and associated 

hyperparameters. The intended outcome of the experimentation stage is to 

inform the best-performing model for the task. 

d. Finally, the automated ML workflow pipeline is triggered. This workflow 

pipeline includes similar steps in the experimentation stages but is 

automated for continuous build, test, and deployment (Figure 3). This 

allows the model deployed to be periodically updated as new versions of 

data features are extracted and updated by the model. The automated ML 

workflow interfaces with the operations through a continuous deployment 

process. Feedback from the consumer would be monitored so that timely 

updates to the model can be integrated effectively. 

 

 

Figure 3. Automated ML Workflow Pipeline. Adapted from Kreuzberger et 
al. (2022b). 
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The review of MLOps inform us that integrating an ML model as part of existing 

operations requires a separate developmental workflow and automated processes to be 

constructed and integrated into the existing operations. From a systems engineering 

perspective, some of the key factors influencing the decision on a framework include: 1) 

ease of exporting trained models for deployment, 2) interoperability with existing 

systems and between frameworks, 3) licensing cost, and 4) ease of development and 

maintenance (usability, speed, and programming language). Figure 4 illustrates the 

multitude of software and hardware options available for each part of the workflow 

pipeline, as well as platforms that provide a full suite of services, such as Amazon’s 

SageMaker, Microsoft’s Azure ML, and Google’s Vertex AI platform. 

 

 

Figure 4. Commonly Used Software in the Various Workflows of MLOps. 
Source: Karayev et al. (2022). 

ML software frameworks provide the necessary abstraction from the low-level 

implementation, freeing up software developers and programmers to focus on designing, 

training, and validating models. These ML frameworks are an integral part of MLOps, 

and hence, careful consideration of the framework is necessary before the 

commencement of the MLOps workflow. Multiple reviews and surveys have been 
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conducted to provide a broad overview of existing frameworks, comparative analysis, 

and benchmarking frameworks for specific ML tasks, such as computer vision and 

language modeling (Cardoso Silva et al., 2020; Liermann, 2021; Nguyen et al., 2019; 

Winder, 2019). The most used frameworks for machine learning include PyTorch 

developed and maintained by Facebook’s AI Research Lab (Paszke et al., 2019); 

TensorFlow and Keras developed by Google’s Brain Team (Abadi et al., 2015; Chollet, 

2015); MXNet developed by Apache Foundation (Chen et al., 2015); and beginner 

friendly framework Scikit-Learn (Pedregosa et al., 2011). No one framework provides all 

the required tools and algorithms; often ML engineers use a combination of tools for the 

entire MLOps workflow. 

4. Using AI/ML to Predict Measurement Noise for KF 

In a review on KF with AI techniques by Kim et al. (2022), there are four 

approaches to integrating AI/ML techniques with a KF: 

a. Techniques to tune the parameters of a KF, such as the process noise 

covariance matrix and measurement noise covariance matrix. This method 

is mostly used to improve the state estimation in a dynamic environment 

where external factors that may affect the state of the system are not 

directly measured by the system. Hence, by using ML techniques to 

predict the parameters of a KF, the KF can dynamically adapt and adjust 

its uncertainty matrices, thereby improving its accuracy when the external 

environment changes. 

b. AI/ML techniques predict the errors between the state are estimated by the 

KF and the ground truth data, and subsequently compensate for error in 

the KF estimation to provide the final state estimated. During state 

estimation, the AI predicts the error of the state estimated by the KF and 

compensates for this error by adding it to the output of the KF. 

c. Compared to the previous approach, instead of predicting the error in the 

KF’s estimation, the AI/ML technique predicts the error in the state 
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estimation first. This state estimation error is subsequently added to the 

sensor measurements before the new updated KF estimate is produced. 

d. Techniques also exist to provide additional measurements for KF, which 

improves the state estimation. This aims to overcome an imperfect prior 

mathematical model of state estimation. The AI learns the mathematical 

model of the state and is subsequently used to generate measurements to 

be used by a KF. Thus, instead of using the sensor measurements directly, 

the KF algorithm uses the measurements generated by the AI. This 

technique is relatively new compared to the previously described 

techniques. 

In this thesis, we explore the first technique—using the AI/ML technique to 

predict the parameters of the KF. Some notable research and related work done in this 

area include the following:  

The KF algorithm has been integrated with a neural network (NN) which enables 

it to adapt its parameters when the assumptions built into the KF model are invalid. 

Bekhtaoui et al. (2017) put forth a Q-learning KF1 for tracking maneuvering targets. In 

their research, a reinforcement learning regime is used to learn a policy for deciding 

which noise matrices are to be used by the KF depending on the sensor measurements of 

the target. Using Monte-Carlo simulation, the authors found that their proposed methods 

can provide faster filtering, compared to an Interacting Multiple Models KF algorithm, 

while preserving the tracking accuracy. Jouaber et al. (2021) solve a similar problem by 

training a recurrent neural network embedded in the KF to predict additive process noise, 

thereby modifying the process covariance matrix 𝑄𝑄 parameter in the KF. 

Another parameter of interest is sensor measurement noise represented as 

covariance matrix 𝑅𝑅, in the KF algorithm. Like the process covariance matrix, 

adjustments to matrix 𝑅𝑅 allow the KF to update its probabilistic belief of the 
 

1 Q-learning is a procedure used to generate a table of state-action pairs with the expected rewards 
achievable when an action is taken at a given state. This table is called the Q-table. The estimates are 
updated during the learning by maximizing a given reward function that characterize the cost and benefit of 
being in a particular state given the history of states visited by an agent. 
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measurements compared to the estimated state. In 2019, Ullah et al. embedded an NN in 

a KF to estimate the error in sensor readings. They demonstrated that such a learning 

module improves the estimation of temperatures by about 10% in varying humidity 

conditions by taking into account humidity readings during the training of the NN (2019). 

They furthered their work in 2020 using additional external atmospheric data (solar 

radiation, wind speed, external CO2) and internal operational conditions of various 

actuators in the NN model to filter temperature, CO2, and humidity readings of a 

greenhouse’s indoor environment.  
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III. SIMULATING SENSORS DATA FOR DATA FILTERING 

This chapter introduces the methodology for simulating sensor data using CMO 

simulation software and analyzes the dataset generated. Before we delve into the 

simulation process, we put forth the value of using simulations to generate sensor data 

and describe a three-phase process workflow adopted for this thesis. 

A. PROPERTIES OF SIMULATIONS 

The advantage of using computer simulation includes convenience, flexibility, 

and reproducibility. 

(1) Convenience 

A simulated dataset enables greater control of the data format output while 

reducing operational and technology security concerns when exporting operational data. 

In addition, ML training requires a voluminous dataset for learning; simulation software 

is best suited for replicating scenarios in quick succession in a fraction of the time 

required. 

(2) Flexibility 

Computer simulations afford the ease of changing scenario parameters when and 

where required. For instance, for our investigation of different weather conditions, using 

an operational dataset would have limited our investigation to the available weather 

conditions when the sensors were operating. 

(3) Reproducibility 

A reproducible experiment provides reassurance to researchers and users on the 

effectiveness of the methods used. By using a computer simulation, we can replicate the 

dataset generated and methods used for our experiments, thereby enabling further study 

into the topic or affirming the results generated from the study. Simulation software 

allows the ground truth of a target to be recorded, as opposed to a real-life target, whose 

real position can be difficult to measure accurately. 
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B. OVERVIEW OF PROCESS WORKFLOW 

As illustrated in Figure 1, a three-phase process workflow has been adopted for 

this research. The three phases are: 

1. Generation of sensor dataset using CMO 

2. Create data filtering models (KF model and ML-KF model) 

3. Assess accuracy of data filtering models 

In Phase 1, we use the simulation software CMO to generate a sensor dataset, 

whereby multiple sensors sense and track a target moving along a designated pathway 

defined by waypoints in the scenario. The sensor dataset is stored, and the scenario is 

repeated with slight random variations to the starting position of the target to introduce 

randomness between each iteration of the simulation run. We use the dataset to build 

models using AI/ML techniques (Phase 2) and assess the data filtering algorithms (Phase 

3). 

In Phase 2, an ML-KF model is generated from the training dataset. A train-

evaluate-test approach was adopted to determine the best hyperparameters of the machine 

learning model. This phase is unique as our baseline models using KF do not require any 

learning.  

In Phase 3, the baseline models and the ML-KF model from Phase 2 are evaluated 

against the desired MOPs, using the test dataset.  

The subsequent sections in this chapter elaborate on Phase 1 in detail. 

C. SCENARIO DESIGN 

This section provides an overview of the simulation software, the parameters and 

considerations adopted for creating the scenarios for generating the dataset. 

1. Overview of CMO 

CMO was used to simulate and generate sensor data and the target position in the 

simulated scenario. The data is generated and stored as comma-separated value (CSV) 

files. CMO is “Matrix Games’ flagship commercial wargame of modern cross-domain 
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military operations” (Matrix Games, 2022b). While there are various modes of play in 

CMO2, we use CMO as a computer simulation application through the Scenario Design 

mode because it provides the flexibility for designers to create scenarios for 

experimentation or analysis and simulate the interactions of agents using physics-based 

models. In addition, CMO’s built-in database of capabilities ranges from post-World War 

II 1940s to modern-day 2020s to a hypothetical next generation. Thus, using CMO as 

simulation software reduces the complexity required to design sensors for our data fusion 

experiments. Figure 5 illustrates a slice of the extensive parameters required to define a 

sensor in CMO, showing the depth of modeling capabilities in CMO. For this thesis, we 

utilized Command Professional Edition v2.0—a professional-oriented superset of CMO 

for data generation. To prevent confusion, we continue to use CMO throughout this paper 

to refer to the simulation software. 

 
Figure 5. Screenshot of the CMO Database Editor of a Built-in Radar sensor 

2. Physics and Stochastic Modeling in CMO 

Under the hood, a user designs the following: 1) parameters of the mission and 

environment; 2) purpose, attributes, and disposition of agents within the environment; 

 
2 Based on the user manual for CMO, there are four game modes available (Matrix Games, 2022b): 

Campaign allows users to play multi-mission campaigns; Quick Battle allows users to enter a pre-defined 
scenario and role play the game to execute the mission; Normal Play is like Quick Play but provides 
flexibility for players to select a side to execute the mission; Scenario Design allows user to define their 
own scenario. 
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and 3) the interaction behaviors of agents (e.g., to determine if an agent should engage a 

certain category of agents).  

During each simulation run, CMO uses its built-in, physics-based model and 

game mechanics to simulate the movement and interaction between agents and the 

environment (e.g., poor visibility due to a heavy rainstorm). While the algorithms and 

mathematical equations used are not made publicly available, Command Professional 

Edition User Manual Version 2.0 (Matrix Games, 2022c) provides insight into the factors 

taken into consideration for evaluating sensor detections. For instance, to determine if a 

surface ship can be detected by ground-based radar, the simulation engine is said to 

account for terrain and sea clutter, presence and geometry of jamming sources, weather 

effects, properties of the radar (such as pulse width, beamwidth, power output, and 

operating frequency), and location of the target relative to the sensor. 

3. Considerations and Constraints in the Design of the Scenario 

The following considerations and constraints were defined so that the 

effectiveness of the data filtering algorithm can be assessed and variations in the scenario 

do not influence the performance of the algorithm: 

a. At least two simulated sensors should be included, each from different 

sensor domains; for example, radar and Electro-Optical (EO) camera 

covering electronic and imagery intelligence, respectively.  

b. All sensors should be able to track the target simultaneously. 

c. Targets should move between pre-defined waypoints. 

d. Variations to the target’s start point should be made to provide slight 

differences between each sample in the dataset. 

4. Scenario Design—Sensors 

Figure 6 illustrates the global view of the scenario created, and Table 1 defines 

the sensors used and their technology domain. The scenario consists of the target (yellow 

icon) and four sensor platforms (green icons). To mimic the data fusion among 
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heterogeneous data sources and entities dispersed across the battlespace, we placed four 

sensors at different locations on the map while allowing the sensor detection ranges to be 

sufficiently overlapped to maintain track of the target. This design decision allows the 

target to be detected by all the sensors as it carries out its planned mission. In essence, 

this creates a synthetic test range for conducting measurement and analysis. 

 

 
Figure 6. Scenario with Target and Four Sensor Platforms. 

  

Radar 

ESM 

Target 

 

RP-41 

IR 
RP-43 

RP-43 
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Table 1. Description of Simulated Sensors in Scenario 

Sensor Name Sensor 

Domain 

Technology 

AN/KAX-2 
SeaFLIR II [EO] 

IMINT The SeaFLIR II is developed by FLIR Systems and is 
equipped with a color Charge-Coupled Device-
Television (CCD-TV) camera. 

AN/ KAX-2 
SeaFLIR II [IR] 

IMINT Like the SeaFLIR II [EO] above, the IR version 
consists of a mid-wave IR thermal imager for 
imagery of targets.  

Bridgemaster E 
ATA 

ELINT The Bridgemaster E series radar developed by 
Northrop Grumman Sperry Marine B.V. (2005) 
operates in the S and X bands and is equipped with 
automatic tracking aid to track up to 60 surface 
objects moving up to 150 knots. 

AN/ SLQ-
32(V2) [ESM] 

Passive 
ELINT 

Developed by Raytheon Technologies, the AN/SLQ-
32 (Variant 2) electronic support measures (ESM) 
systems are passive shipboard electronic warfare 
(EW) systems for early warning against, 
identification of, and direction finding of targets. 

 

Initially, we attempted to group all the sensor platforms into a single player. 

However, after observing the initial data throughput, we observed that CMO definitively 

shares detection information between sensor platforms. This is a natural design for a 

typical mission, as the sharing of intelligence between sensors is expected for making 

decisions and taking actions. For our purpose, however, this results in each sensor having 

the same estimated target location instead of the sensor’s independent estimate. To 

mitigate this effect, we define each sensor platform as an independent player in the 

simulation. 

5. Scenario Design—Target 

A single target is given a Sea Control Mission to patrol between the three 

reference points (RP-41, RP-42, and RP-43 in Figure 6) in a repeatable loop within the 

timeframe of the simulation. The reference points were defined to satisfy the constraint of 

maintaining the target’s detectability by the sensors. The expected movement of the 

target is as follows: 
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a. When the scenario is initialized, a target is randomly generated within the 

boundaries of a navigation area—a triangle defined by the reference 

points. To accomplish this, a Lua programming language script was used 

to set the start point of the target. Refer to Appendix A for the script used. 

b. The target is expected to move from the start point to RP-41, RP-42, and 

then RP-43.  

c. Upon reaching RP-43, the target moves towards RP-41, RP-42, and then 

RP-43 again.  

6. Scenario Design—Weather Conditions 

Sensor performance in CMO is affected by both terrain and weather—average 

temperature, rainfall rate, visibility, and wind/sea state. Based on CMO’s user manual 

(Matrix Games, 2022c), we learn that high temperature decreases IR sensor range more 

than it does for EO; rainfall rate degrades the performance of visual, IR, and laser 

sensors; visibility—due to cloud cover—affects line-of-sight sensors such as visual and 

IR sensors; and sea states affect the performance of radar.  

Hence, by changing the weather conditions in CMO, we would expect the EO and 

IR FLIR sensors to be most affected and thus least effective in detecting the target’s 

position when the temperature is warm, rainfall is high, and sky is overcast. To that end, 

we designed two sets of weather condition settings. Figures 7 and 8 illustrate the nominal 

and sub-optimal weather conditions for sensors, respectively.  
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Figure 7. Weather Settings for Ideal Weather Conditions. 

 
Figure 8. Weather Settings for Sub-optimal Weather Conditions for EO/ IR 

sensor. 

7. Simulation Runs 

For each scenario setting, 100 iterations were run using PowerShell script (see 

Appendix A for PowerShell script used), and the entities’ positions and sensor detections 

were logged into CSV files. Each iteration of the simulation ends when the simulation 

time exceeds two hours. Figure 9 illustrates the scenario time settings used in CMO. As 

the scenario contains only four agents and a limited number of mathematical calculations, 

each iteration of simulation runs took an average of five to seven minutes to complete on 

a laptop with Graphics Processing Unit (GPU). 
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Figure 9. Simulation Runtime Setting 

D. DATASET 

In this section, we describe the dataset obtained from a simulation execution. 

Each iteration generates two sets of files—the unit position of the target and each 

sensor’s detection attempt (i.e., the sensor’s success in detecting other objects in the 

scenario). A data dictionary of the fields, description, data type, and sample value of each 

field is expanded in Appendix B. 

1. Overview of Dataset 

A dataset is generated for each weather condition settings; for each set, five CSV 

files were generated per iteration of the simulation run, giving a total of 100 CSVs for the 

target unit positions and 400 for sensor detection. The TimelineID associates the 

simulation runs with files so that sensor readings and target positions are aligned to the 

same run. Following, we describe the pre-processing required for each type of file, which 
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is achieved using the Pandas Data Analysis Library written in the Python programming 

language (2020). 

a. Pre-processing Carried Out for All Files 

For all data files generated, the following data pre-processing steps were taken: 

(1) Data headers and their values that are deemed unnecessary for the 

subsequent phases of the experiment were removed. 

(2) All Time data are represented in the number of seconds elapsed in the 

scenario instead of the default time format (HH:MM:SS). 

(3) A single copy of the duplicated data entries is kept, thereby reducing the 

size of the overall dataset. 

(4) All geodesic longitude and latitude were converted from degrees to East, 

North, Up (ENU) representation using Python 3-D Coordinate 

Conversions [Computer Software] (2022). An ENU representation takes 

reference from a longitude and latitude (longitude = -118.992 degrees  and 

latitude = 33.660 degrees) and each geodesic point is calculated for this 

reference point. The projection of geodesic points into Cartesian 

coordinates allow us to calculate distance between points. 

b. Pre-processing Specific for Sensor Detection Files 

In addition to the pre-processing steps just listed, the following steps were carried 

out for sensor detection files. Sensor data contains attempted detection of all players 

(simulated sensors), except itself, in the simulation. This means that there are additional 

detection attempts that are not related to the target. Hence, we removed all sensor data 

where the object detected did not correspond to the target of interest. In addition, we 

conducted checks on the dataset to make sure that any duplicate entries corresponding to 

the same time are also removed and that the frequency between each sensor detection 

attempt is constant.  
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2.  Data Analysis—Target Position 

The simulation logged the target’s position per simulated second, giving a total of 

7,202 entries.3 The data fields stored are TimelineID, Time, UnitID, UnitName, 

UnitClass, UnitLongitude, UnitLatitude, and UnitCourse. Figure 10 uses the Time, 

UnitLongitude, UnitLatitude, and UnitCourse fields to visualize the movement of the 

target. The green dot represents the randomly generated initial position of the target while 

the black dot represents the final position of the target. Graphing the trajectory of the 

target is useful for visualizing the position prediction by a data filtering algorithm. This is 

integrated with the corresponding prediction errors against the ground truth position in 

the Chapter V. 

 
Figure 10. Visualization of Target’s Movement during the Simulation. 

 
3 Although the maximum simulation run-time is two hours (7,200 seconds), two additional seconds 

were logged, one prior to the start of the simulation (zeroth second) and another after the simulation has 
ended. These additional position and sensor detection data are logged by CMO directly. 
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3. Data Analysis—Sensor Detection 

The data field in the sensor detection dataset consists of four parts:  

• General simulation parameters: TimelineID, Time 

• Information about the sensor: SensorID, SensorName, 

SensorParentLongitude, SensorParentLatitude, 

SensorParentAltitude_AGL 

• Information about the target the sensor is attempting to detect: TargetID, 

'TargetName, TargetLongitude, TargetLatitude, TargetAltitude_AGL_m, 

TargetRangeSlant_nm. 

• Outcome of detection: DetectionResult, DetectionAOU. 

a. Sensor Detection Period 

The sensor detection period is the time between each sensor detection attempt. It 

is a characteristic of each sensor and is independent of the weather setting. Table 2 

presents the sensor detection period (Detection Period) for each sensor used in the 

simulation. The ESM passive sensor has the least number of detections, as it takes a 

longer time for the passive sensor to complete a detection cycle, while the radar—a high-

frequency active sensor—has the most detection attempts. We also note that the arrival of 

the first sensor detections differs between sensors (First Detection Time). The different 

arrival times and detection periods mean that the algorithms need to handle the different 

arrival periods of the data stream. 

Table 2. Sensor Detection Period and Start Time 

Sensor Detection 
Period 

(seconds) 

First 
Detection 

Time 

Number of Detections 
per Simulation Run 

Radar 2 0 3601 
EO 10 2 720 
IR 10 2 720 

ESM 20 13 360 
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b. Detection Success  

The DetectionResult allows us to understand if the detection attempt by the sensor 

is a success or a failure. A failed detection attempt means that the sensor did not 

successfully detect the target, and the target’s position is estimated based on its last 

successful detection attempt. Table 3 presents the average proportion of successful 

detection across all runs in the different weather conditions for each sensor (as defined in 

Figures 7 and 8). In normal weather conditions (15 deg C, no rain, sky is clear, calm 

seas), all the sensors have a 100% detection success rate, which is expected since our 

scenario is designed to have the target maneuver within the sensor detection ranges. In 

contrast, with extreme weather conditions (33 deg C, heavy storms, sky is full with thick 

clouds, seas 4/10 on Beaufort scale), the IR sensor proportion of successful detection is 

almost halved, indicating that the impact on the IR sensor is the most significant. While 

we would have expected the impact on sensor detection to be broad-based and affect the 

radar and ESM sensors due to the impact of weather on electromagnetic wave 

propagation and the impact of low visibility on the performance of EO and IR visual 

sensors, it is not evident in the proportion of detection success in the extreme weather 

scenario. This may be due to the relatively close distances between the target and the 

sensors which make the extreme weather effects negligible, or the sensors are well-

equipped to adapt their characteristics and parameters (such as power and pulse width of 

the radar to improve range resolution) based on the weather. 

Table 3. Sensor Detection Success  

Sensor Detection Success (%) 
Normal Weather Extreme Weather 

Radar 100 +/- 0.0 99 +/- 0.0001 
EO 100 +/- 0.0 100 +/- 0.0 
IR 100 +/- 0.0 53.62 +/- 3.86 

ESM 100 +/- 0.0 100 +/- 0.0 
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c. Average Residual from Target’s Position 

The accuracy of a sensor is an MOP and can be calculated using the root mean 

squared error (RMSE). A higher RMSE corresponds to poorer performance while a lower 

RMSE suggests that the sensor’s estimation of the target’s state is closer to the ground 

truth. Before we use the dataset for data fusion, it is necessary to analyze the performance 

of each sensor so that subsequent analysis allows us to ascertain the improvement in state 

estimation accuracy by each data fusion algorithm. 

To calculate the RMSE, we compare the longitude and latitude of the target 

detected by the sensor and the target’s actual location at the corresponding timestep. The 

following equations were used to calculate the RMSE. 

 

 

Subsequently, the performance of the sensor across all simulation scenarios is 

averaged to provide the mean error and standard deviation. Table 4 presents the average 

performance of each sensor in different weather conditions. 
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Table 4. Average Sensor Detection Error in Different Weather Settings 

Sensor Average RMSE (meters) 
Normal Weather Extreme Weather 

Radar 6.1725 +/- 0.001865 6.1710 +/- 0.0019342 
EO 6.1635 +/- 0.001850 6.1640 +/- 0.0018425 
IR 6.1656 +/- 0.001895 6.1637 +/- 0.001844 
ESM 0.4215 +/- 0.001416 0.4220+/- 0.001413 

 

It is interesting to note that the average performance of the sensor did not worsen 

as much as expected, and the sensors have a relatively low sensor detection error (a 

maximum of 6.17 meters or 0.0033 nm). Comparing the sensors, Radar, EO, and IR have 

similar performance in both weather conditions, while ESM has the best performance 

(lowest error) among the sensors (0.42 meters or 0.00023 nm). This is a deviation from 

real-world performance as ESM sensors often provide an area of uncertainty about the 

target’s position, translating to higher error. As CMO’s sensors models are proprietary 

knowledge, we are limited by the sensor dataset provided from the simulation. 

It is also interesting to study the IR performance in detail since it has a high 

detection failure rate in extreme weather conditions, with marginal changes in sensor 

detection performance. In CMO, a detection is considered a failure when the sensor made 

a contact with the target but was not successful in classifying it. Further analysis of the 

average detection error based on the sensor attempt shows that the target’s error when the 

detection is a failure is statistically significantly higher at a 95% confidence level than 

that when the detection is successful. Thus, the extreme weather effect does have a 

significant impact on the sensor detection error for IR sensor. 

E. LIMITATIONS OF DATASET 

1. Insignificant Improvement between Simulation Settings 

The exploratory data analysis in Section C illustrates that the dataset has a fairly 

accurate independent sensor estimation of the target’s position, even in the case of 

extreme weather scenario settings. In addition, the effects of extreme weather affected 
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only the IR sensor, when the performance of EO, IR, and radar sensors was expected to 

be affected as well. Thus, to reduce the complexity and further focus our efforts on this 

research, in subsequent chapters, we only consider the dataset in the normal environment 

to illustrate the improvement in target position estimation. This means that the AI/ML 

algorithms utilize only the normal weather dataset for training and evaluating the 

accuracy of the model. 

2. Absence of Measurement Errors 

The family of KF algorithms requires covariance of the sensor measurement to 

represent measurement uncertainty. In our dataset, only the ESM sensor provided an Area 

of Uncertainty (AOU), while the rest of the sensors did not. Despite our effort to utilize 

AOU information, we decided that all sensor datasets should provide the same type of 

information to reduce the complexity and confounding factors in our experiments. 

Specifically, when using the dataset with the KF algorithm, we would be required to 

estimate the sensor noise present in the measurements. The methodology to estimate 

sensor noise is elaborated upon in Chapter IV. 
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IV. MODEL GENERATION METHODOLOGY 

In this chapter, we describe the methodology to create models that take in sensor 

estimates of the target position in the battlespace and output a refined estimate of the 

target position. First, we describe our baseline model using the KF algorithm. Second, we 

describe an ML model that is used to estimate the error from the KF algorithm to improve 

the performance of the KF algorithm. Appendix C list all Python packages used in the 

development of our source code, and Appendices D, E, and F are the scripts and output 

from running the scripts using a Jupyter Python Notebook. 

A. KALMAN FILTERS 

The KF algorithm is a recursive estimator that predicts the future state of a system 

based on its previous state (Faragher, 2012). It operates on the current sensor 

measurements and previously filtered measurement data; thus, requiring a reduced 

amount of memory and is a fast and efficient real-time estimator. Generally, KF 

algorithms operate in a two-step procedure—the predict step and the update step (Labbe, 

2022). This two steps are executed sequentially in a single iteration of the algorithm. In 

our case, we execute the algorithm at every time step of the simulation to estimate the 

target’s state in the subsequent time step.  

The predict step uses the system process model to predict the state at the next time 

step and to adjust its probabilistic belief to account for uncertainty and prediction errors. 

The update step uses the sensor measurement to update its estimation of the system state. 

While a sensor model is used in the update step to account for uncertainty and errors in 

the measurements. Following, we elaborate on the mathematical symbols and equations 

used for each step, and the parameters used for our model. 
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1. Predict Step 

Table 5 presents the mathematical symbols used in the predict step. 

Table 5. Symbols Used in the Predict Step 

Symbol Variable Definition 
𝑋𝑋 State of system A vector of state parameters representing the 

position (latitude/longitude), velocity, and 
acceleration of the target. 

𝑃𝑃 State covariance 
matrix 

The state covariance matrix represents the 
uncertainty of the corresponding state 
parameters. The diagonal terms of 𝑃𝑃 are the 
variances associated with the state parameters, 
while the off-diagonal terms are the covariances 
between terms in the state vector, which informs 
us of how much the state vector terms vary from 
each other. 

𝐹𝐹 State transition 
matrix 

The state transition matrix applies the effect of 
each state parameter at time 𝑘𝑘 − 1 on parameters 
at time 𝑘𝑘. 

𝑤𝑤 Process noise The process noise are random errors associated 
with noisy control inputs to the system. It is a 
vector of random errors assumed to be drawn 
from a zero mean multivariate normal 
distribution with covariance 𝑄𝑄. 

𝑄𝑄 Process  noise 
covariance 

The process covariance represents the 
uncertainty (process noise) in the transition from 
the current state to the subsequent state. 

 

We are interested in predicting the position and velocity of the target, and hence, 

𝑋𝑋𝑘𝑘 is the state vector representing the latitude 𝑥𝑥𝑘𝑘, longitude 𝑦𝑦𝑘𝑘, and the respective 

velocities 𝑥̇𝑥𝑘𝑘 and 𝑦𝑦𝑘̇𝑘 in 𝑚𝑚 𝑠𝑠⁄  and acceleration 𝑥𝑥𝑘̈𝑘 and 𝑦𝑦𝑘̈𝑘 in 𝑚𝑚 𝑠𝑠2⁄  of the target at time 𝑘𝑘 =

0,1,2,3, …. (seconds). The system dynamics model from time 𝑘𝑘 − 1 to time 𝑘𝑘 in a finite 

timestep ∆𝑡𝑡 uses a combination of linear equations with Gaussian noise with mean zero 

and covariances defined by matrix 𝑃𝑃: 

𝑋𝑋𝑘𝑘 = [𝑥𝑥 𝑦𝑦 𝑥̇𝑥 𝑦̇𝑦 𝑥̈𝑥 𝑦̈𝑦 ]𝑇𝑇 

𝑋𝑋𝑘𝑘 = 𝐹𝐹𝑘𝑘−1𝑋𝑋𝑘𝑘−1 + 𝑤𝑤𝑘𝑘−1 
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where [. ]𝑇𝑇 is the transpose operation. 

The state covariance matrix 𝑃𝑃, represents the uncertainty of our state variables, 

and will be updated in the update step when measurement inputs are considered. Since 

the target has a cruising speed of approximately 7𝑚𝑚 𝑠𝑠⁄  (15 kts), the uncertainty in the 

measurement of position data in one second would be approximately 65 m (0.035 nm). 

We further assume that the uncertainty in velocity measurement would be 0.5 𝑚𝑚 𝑠𝑠⁄  (1 kt) 

and the uncertainty in acceleration 0.52 𝑚𝑚 𝑠𝑠2⁄ . The resulting initial covariance matrix, 𝑃𝑃0 

is 

𝑃𝑃0 =

⎣
⎢
⎢
⎢
⎢
⎡

 

652 0 0 0 0 0
0 652 0 0 0 0
0 0 0.52 0 0 0
0 0 0 0.52 0 0
0 0 0 0 0.54 0
0 0 0 0 0 0.54⎦

⎥
⎥
⎥
⎥
⎤

 

 
Newton’s Equations of Motion provide us with the state transition equations. 

While the target in the scenario moves at a constant speed for most of the scenario, the 

change in direction implies that the target is moving at varying velocity during the 

simulation, but the rate of change of velocity is constant. Hence, a constant acceleration 

model is used to model the system dynamics. 

With constant acceleration, the kinematic equations describing the change in 

position and velocity of the target at time 𝑘𝑘 in a timestep ∆𝑡𝑡 are given by 

𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘−1 + 𝑥𝑥𝑘𝑘−1̇ ∆𝑡𝑡 +
1
2
𝑥̈𝑥∆𝑡𝑡2 

𝑦𝑦𝑘𝑘 = 𝑦𝑦𝑘𝑘−1 + 𝑦𝑦𝑘𝑘−1̇ ∆𝑡𝑡 +
1
2
𝑦̈𝑦∆𝑡𝑡2 

𝑥𝑥𝑘̇𝑘 = 𝑥𝑥𝑘𝑘−1 +̇ 𝑥̈𝑥∆𝑡𝑡 

𝑦𝑦𝑘̇𝑘 = 𝑦𝑦𝑘𝑘−1 +̇ 𝑦̈𝑦∆𝑡𝑡 

𝑥𝑥𝑘̈𝑘 = 𝑥𝑥𝑘𝑘−1̈  

𝑦𝑦𝑘̈𝑘 = 𝑦𝑦𝑘𝑘−1̈  

The resulting state transition matrix 𝐹𝐹 is 
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𝐹𝐹 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

 

1 0 ∆𝑡𝑡 0
∆𝑡𝑡2

2
0

0 1 0 ∆𝑡𝑡 0
∆𝑡𝑡2

2
0 0 1 0 ∆𝑡𝑡 0
0 0 0 0 0 ∆𝑡𝑡
0 0 0 0 1 0
0 0 0 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The prediction of state parameters at time 𝑘𝑘 is given by 

𝑋𝑋�𝑘𝑘 = 𝐹𝐹𝑘𝑘−1 𝑋𝑋�𝑘𝑘−1 

Considering the Gaussian process noise 𝑤𝑤𝑘𝑘−1~𝑁𝑁(0,𝑄𝑄𝑘𝑘−1), the updated state 

covariance matrix 𝑃𝑃𝑘𝑘 is 

𝑃𝑃𝑘𝑘 = 𝐹𝐹𝑘𝑘−1𝑃𝑃𝑘𝑘−1𝐹𝐹𝑘𝑘−1𝑇𝑇 + 𝑄𝑄𝑘𝑘−1 

2. Update Step 

Using the defined system dynamic model, the KF algorithm uses the previous 

measurements to predict the system state at the next time step 𝑘𝑘. This state estimation 𝑋𝑋�𝑘𝑘 

is then further refined in the subsequent update step by considering the measurements. 

The update step refines two key components of the prediction equation: 1) the prior state 

estimation is refined using the Kalman gain and the residual between state estimates and 

measurements; 2) the uncertainty associated with the refined system state estimate. Table 

6 presents the mathematical symbols used in the update step. 

Table 6. Symbols Used in the Update Step 

Symbol Variable Definition 
𝑧𝑧 Measurement  Sensor’s estimation of target’s longitude and 

latitude in ENU representation 
𝑦𝑦 Residual  The difference between measurement 𝑧𝑧 and the 

predicted state from the prediction step 𝑋𝑋�𝑘𝑘 
𝐾𝐾 Kalman Gain The amount of correction applied by the KF 

algorithm to measurements to make the 
measurements less noisy 

𝑅𝑅 Measurement 
noise covariance 

The uncertainty associated with the 
measurements for each state parameters 
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Symbol Variable Definition 
measured. The diagonal of 𝑅𝑅 represents the 
variance in the respective sensor measurements, 
while the off-diagonal elements represent the 
variances in measurements between different 
sensors 

𝐻𝐻 Measurement 
function 

Projects the state parameters 𝑋𝑋 into the 
measurement space. Since the sensors are not 
measuring accelerations or velocities directly, we 
convert the state space to measurement space by 
removing those terms that are not measured 

 

a. Sensor Measurements and Noise 

Since the sensor measurement arrives at different periods and starts at different 

time interval, we update the KF when a sensor measurement has arrived at the filter. This 

is possible since we assume that all sensor measurements are independent measurements 

of the target. The measurements from our sensors are the longitude and latitude of the 

target, and 𝑧𝑧𝑘𝑘 is a column vector representing the measurements from the sensor 𝑖𝑖 ∈

[𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐸𝐸𝐸𝐸, 𝐼𝐼𝐼𝐼,𝐸𝐸𝐸𝐸𝐸𝐸] at a specific timestep 𝑘𝑘 = 0,1,2,…  

𝑧𝑧𝑖𝑖 = [𝑥𝑥𝑖𝑖 ,  𝑦𝑦𝑖𝑖]𝑇𝑇 

The associated uncertainty in the sensor measurements is defined in the 

covariance matrix 𝑅𝑅𝑖𝑖. However, as noted in Chapter III, the uncertainty in the sensor 

measurement is not an output in the sensor data in CMO. Thus, to estimate the 

uncertainty in the sensor measurements, we derive the variance in the sensor 

measurements of the longitude and latitude from the dataset. We further assume 

independence between the sensors’ detections and between the longitude and latitude 

variables. Hence, 𝑅𝑅𝑖𝑖 is a 2 × 2 matrix for sensor 𝑖𝑖 with the diagonals representing the 

variances in the uncertainty measurement of longitude and latitude, and the off diagonals 

are zeros. Mathematically, standard deviation, 𝜎𝜎, is given by 𝜎𝜎 = �1
𝑁𝑁
∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2𝑁𝑁
𝑖𝑖=1 . 

The standard deviation in sensor measurement error across all detection is 

presented in Table 7. 
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Table 7. Sensor Measurement Noise Derived from Dataset 

Sensor 
 

Sensor Noise (Standard Deviation in Error, 
meters) 

Longitude Latitude 

Radar 1.7091 1.9157 

EO 1.7113 1.9194 

IR 1.7113 1.9193 
ESM 0.2095 0.2104 

 

b. Measurement Function 

To convert the state space 𝑋𝑋 to measurement space 𝑧𝑧, we define measurement 

function 𝐻𝐻 as: 

𝐻𝐻 = �1 0 0 0 0 0
0 1 0 0 0 0� 

c. Kalman Gain 

In KF, the sensor measurements are used to inform the algorithm of the difference 

in the estimated prediction and the measured position of the target, informing it of the 

amount required to correct its prediction in the subsequent timestep 𝑘𝑘. The Kalman Gain 

𝐾𝐾𝑘𝑘  is calculated as 

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘𝐻𝐻𝐾𝐾𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1 

d. Update State Estimation 

The residual 𝑦𝑦𝑘𝑘 tells us of how far the estimated state in the predict state is from 

the measurement. The updated state estimation is given by  

𝑦𝑦𝑘𝑘 = 𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑋𝑋�𝑘𝑘 

𝑋𝑋�𝑘𝑘 = 𝑋𝑋�𝑘𝑘 + 𝐾𝐾𝑘𝑘𝑦𝑦𝑘𝑘 
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e. Update State Covariance Matrix 

The state covariance matrix 𝑃𝑃 is updated to reflect the changes in uncertainty with 

the Kalman Gain, 𝐾𝐾 

𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘 

B. CREATING KF BASELINE MODEL USING FILTERPY 

We use the FilterPy python package to implement the KF. The standard KF 

function was used to generate the KF’s estimate of the longitude and latitude at every 

timestep of simulation. The KF is updated when a sensor reading(s) has arrived at the 

timestep before a state estimation is made (prediction step). We use the same formula 

defined in Chapter III to calculate the squared error between the target and KF’s estimate, 

and subsequently calculate the RMSE and standard deviation of the error of each 

simulation run. The average error across the 100 simulation runs is used to compare the 

performance of the model. 

The algorithm used in the experimentation set up is as follows: 

1. Define a simulation iteration and retrieve the corresponding dataset for 

sensor detection and unit position. 

2. Initialize the KF with measurement function, state transition matrix, and 

process covariance matrix. 

3. Initialize KF’s target initial position with the first sensor reading. 

4. For each timestep 𝑘𝑘 subsequently: 

• Get a prediction of the target’s state estimate from KF and save the 

estimate. 

• Retrieve sensor detection at that timestep 𝑘𝑘, and extract the 

longitude and latitude of the sensor detection: 𝑧𝑧𝑖𝑖,𝑘𝑘 = {𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖}𝑘𝑘. 

• Update KF measurement error matrix of sensor 𝑟𝑟𝑖𝑖. 

• Update KF with a measurement 𝑧𝑧𝑖𝑖,𝑘𝑘 from sensor 𝑖𝑖. 
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• Repeat until there is no additional sensor detection at timestep 𝑘𝑘. 

• Advance to the next timestep. 

Chapter V presents the results of the KF model. 

C. MACHINE LEARNING MODELS 

In this section, we describe the methods used to create an ML model that is used 

to estimate the parameters of a KF. Specifically, we take inspiration from the work done 

by Ullah et al. in 2019 and 2020, whereby a neural network was used to estimate the error 

matrix to be used in the update step of the KF and thus improve the estimated state of the 

object. In the subsequent section, we formulate our desire to create an NN using the ML 

approach and expand in detail the procedures used in the creation and tuning of an ML 

model. 

1. Formulation of ML Problem—Modeling Uncertainty 

We desire to use a NN to estimate each sensor error matrix 𝑅𝑅𝑖𝑖 instead of using the 

average error estimated from the dataset. This is beneficial for the KF algorithm as the 

error matrix informs the KF of the uncertainty in the sensor’s measurement, and hence, a 

representative error matrix would shift the KF’s probabilistic belief of the sensor’s 

measurement accordingly. Therefore, the goal of the NN is to approximate a function to 

predict the sensor’s measurement uncertainty when given the sensor’s measurement of 

the target’s longitude and latitude. 

A model’s uncertainty can broadly be classified with both epistemic uncertainty 

and aleatoric uncertainty (Bishop, 2006; Kendall & Gal, 2017; Seitzer et al., 2022). 

Epistemic uncertainty can be reduced with increasing data points, thus improving the 

probabilistic belief of the model. In comparison, aleatoric uncertainty is embedded as part 

of the information which our data is unable to explain. Aleatoric uncertainty can be 

independent of the input space and can be constant (homoscedastic) or vary with the 

input (heteroscedastic). In our ML task, we are predicting the sensor’s variance, which is 

a natural physical characteristic of the sensor. 
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Next, we wish to derive the loss function for optimization of the NN. Goodfellow 

et al. (2016) illustrated that the cost function of a neural network is to minimize the cross-

entropy loss between the probability distribution inferred from the training data and the 

model’s distribution. The negative log-likelihood of a model 𝑝𝑝(𝑦𝑦|𝑥𝑥;  𝜃𝜃) determines the 

model’s cost function i.e., 𝐽𝐽(𝜃𝜃) = −log  𝑝𝑝(𝑦𝑦 |𝑥𝑥;𝜃𝜃). 

a. Heteroscedastic Interpretation 

Adapting from Nix & Weigend (1994), the sensor 𝑖𝑖’s measurement function 𝑓𝑓 is 

 𝑓𝑓(𝑥𝑥) =  𝑥𝑥 +  𝜖𝜖(𝑥𝑥)  

where 𝜖𝜖 ~ 𝑁𝑁�0,𝜎𝜎2(𝑥𝑥)� is the additive Gaussian noise with zero-mean and variance, and 

𝑥𝑥 is the ground truth location of the target. The input-dependent variance suggests sensor 

noise is dependent on the actual location of the target. This is a suitable assumption since 

a sensor measurement may vary as the distance between the target and the sensor varies. 

Given training data of sensor 𝑖𝑖, ��𝑥𝑥(1),𝑦𝑦(1)�, �𝑥𝑥(2),𝑦𝑦(2)�, … , �𝑥𝑥(𝑛𝑛),𝑦𝑦(𝑛𝑛)��, 

consisting of: 𝑥𝑥, location of the target, and 𝑦𝑦, the sensor measurements at some time 𝑡𝑡 ∈

{1, . . ,𝑛𝑛} the maximum likelihood estimate (MLE) of the variance of a dataset can be 

derived as follows: 

• The probability distribution of sensor measurement 𝑦𝑦 given 𝑥𝑥 is normally 

distributed  

𝑝𝑝(𝑦𝑦|𝑥𝑥) = 𝑁𝑁�𝑥𝑥,𝜎𝜎2(𝑥𝑥)� =
1

�2𝜋𝜋𝜎𝜎2(𝑥𝑥)
𝑒𝑒𝑒𝑒𝑒𝑒 �−

(𝑦𝑦 − 𝑥𝑥)2 
2𝜎𝜎2(𝑥𝑥) �  

In other words, the uncertainty of locating a target is a Gaussian 

distribution around its actual location and it is assumed that the 

uncertainty varies with 𝑥𝑥. 

• Assuming that each example in the training dataset is independent and 

identically distributed, then the negative log-likelihood of 𝑝𝑝(𝑦𝑦|𝑥𝑥) is 



46 

− 𝑙𝑙𝑙𝑙𝑙𝑙  𝑝𝑝(𝑦𝑦 |𝑥𝑥;𝜃𝜃) 

= −�𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝�𝑦𝑦(𝑖𝑖)�𝑥𝑥(𝑖𝑖);𝜃𝜃�
𝑛𝑛

𝑖𝑖=1

 

= −
𝑛𝑛
2
𝑙𝑙𝑙𝑙𝑙𝑙 𝜎𝜎𝜃𝜃2(𝑥𝑥) −

𝑛𝑛
2
𝑙𝑙𝑙𝑙𝑙𝑙(2𝜋𝜋) + �

�𝑦𝑦(𝑖𝑖) − 𝑥𝑥(𝑖𝑖)�
2

2𝜎𝜎𝜃𝜃2(𝑥𝑥)

𝑛𝑛

𝑖𝑖=1

 

= −
𝑛𝑛
2
𝑙𝑙𝑙𝑙𝑙𝑙 𝜎𝜎𝜃𝜃2(𝑥𝑥) + �

�𝑦𝑦(𝑖𝑖) − 𝑥𝑥(𝑖𝑖)�
2

2𝜎𝜎𝜃𝜃2(𝑥𝑥) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
𝑛𝑛

𝑖𝑖=1

 

• Ignoring the constant terms, the cost function 𝐽𝐽 to optimize the model 

parameters 𝜃𝜃 is 

𝐽𝐽(𝜃𝜃) =  
1
2
��

�𝑦𝑦(𝑖𝑖) − 𝑥𝑥(𝑖𝑖)�
2

2𝜎𝜎𝜃𝜃2(𝑥𝑥) + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜎𝜎𝜃𝜃2(𝑥𝑥)�
𝑛𝑛

𝑖𝑖=1

 

where (𝑦𝑦(𝑖𝑖) − 𝑥𝑥(𝑖𝑖))2 is the squared error between the sensor’s 

measurement, 𝑦𝑦(𝑖𝑖) and the target’s actual location, 𝑥𝑥(𝑖𝑖), and 𝜎𝜎𝜃𝜃2(𝑥𝑥) is the 

predicted variance from our NN with parameters 𝜃𝜃.4 

b. Homoscedastic Interpretation 

If we relax the assumption that sensor measurement noise is parameterized based 

on the actual location of the target 𝑥𝑥, then 𝜎𝜎𝜃𝜃2 is a constant, and the MLE of the variance 

is 𝜎𝜎2 = 1
𝑛𝑛
∑ �𝑦𝑦(𝑡𝑡) − 𝑥𝑥(𝑡𝑡)�

2𝑚𝑚
𝑡𝑡=1 .  

Hence, we use the following cost function–the difference between the underlying 

variance 𝜎𝜎2, and the model’s prediction 𝜎𝜎𝜃𝜃2–for the training of the model 𝜃𝜃: 

𝐽𝐽(𝜃𝜃) =
1
𝑛𝑛
�‖𝜎𝜎2
𝑛𝑛

𝑖𝑖=1

−𝜎𝜎𝜃𝜃2� 

 
4 The derivation of our negative log-likelihood cost function is different from that in Kendall & Gal 

(2017) and Seitzer et al. (2022), as we do not use the NN model to predict the ground truth location of the 
target.  
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=
1
𝑛𝑛
���𝑦𝑦(𝑖𝑖) − 𝑥𝑥(𝑖𝑖)�

2
−𝜎𝜎𝜃𝜃2�

𝑛𝑛

𝑖𝑖=1

 

where ‖.‖ is the L1 norm. 

We use the cost function resulting from homoscedastic interpretation in the 

subsequent experiment set up and posit the heteroscedastic cost function for future work. 

2. ML Experiment Framework 

An ML Experiment Framework describes the operation phases involved in 

creation of an ML model. Figure 11 illustrates the three-phase framework. It closely 

mimics an MLOps workflow pipeline described in Kreuzberger et al. (2022b).  

 
Figure 11. ML Experiment Framework 

The following subsections describe each phase in detail. 

3. Phase 1: Generation of Dataset 

A sensor dataset, one for each sensor, was generated using CMO simulation 

software as described in Chapter III. The dataset was subsequently split into input 

variables (𝒙𝒙) and the output variable (𝑦𝑦).  Only the normal weather dataset was used. 

We used the longitude, 𝑥𝑥1, and latitude, 𝑥𝑥2, as the input variables to the NN 

model; hence, at time 𝑡𝑡, the measurement by sensor 𝑖𝑖 is  𝒙𝒙𝒊𝒊,𝒕𝒕 = �𝑥𝑥1
(𝑡𝑡) , 𝑥𝑥2

(𝑡𝑡)�. 

The variable to be predicted is the sensor measurement variance for each physical 

dimension (longitude and latitude). This is given by the squared error between the sensor 
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measurement and the ground truth target location (𝒙𝒙𝑡𝑡∗) along each of the physical 

dimensions at time 𝑡𝑡: 𝑦𝑦1,𝑖𝑖,𝑡𝑡 = �𝑥𝑥1,𝑡𝑡 − 𝑥𝑥1,𝑡𝑡
∗ �

2
and 𝑦𝑦2,𝑖𝑖,𝑡𝑡 = �𝑥𝑥2,𝑡𝑡 − 𝑥𝑥2,𝑡𝑡

∗ �
2
. 

4. Phase 2: Build ML Model—Creating a Neural Network 

At the heart of the framework is the development of ML models to meet the 

objectives of the task. The key activity in this phase includes the following steps. 

a. Data Preparation for ML Experimentation 

In this phase, the data is further split into three subsets for training, validation, and 

testing of the model. Subsequently, we normalize the training set, so that each input 

variable to the model is within the range of zero and one. We use the pre-processing 

package in Scikit-Learn (Pedregosa et al., 2011) to accomplish the data preparation. 

The training set allows the model to update the values of its parameters while the 

validation set is used to score the model so that the learning algorithm can determine if 

the model is overfitted to the training set. In other words, we aim to determine if the 

model has learned (or memorized) the training set to the extent that it was unable to 

perform when given a dataset that it has not seen during training. In addition, the 

validation set is used to compare models trained with different hyperparameters, thereby 

determining the best hyperparameter for each model. Since the model is trained on the 

training set and tuned using the validation set, the test set provides an unbiased evaluation 

of the model. To that end, the training set is 70% of the entire dataset while the validation 

and test sets are 15% each. A random number generating seed is set so that each model is 

trained on the same subset of the dataset. 

We scale the raw dataset so that each input variable is within the range of 0 to 1 

according to the following formula 

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑥𝑥 − 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) −𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) 

The minimum and maximum range of the variable is sampled from the training 

set, instead of the entire dataset, to prevent data leakage during the training process. By 
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scaling the dataset, each variable is in the same range and each variable receives equal 

weighting by the neural network. 

b. NN Architecture and Parameters 

A dual-head neural network (DHNN) is designed to estimate the sensor error for 

longitude and latitude (Figure 12). The NN is a fully connected NN with two hidden 

layers, consisting of an input layer with two neurons for the longitude and latitude of the 

sensor measurement, and an output layer with two neurons for the estimated error in 

sensor readings for longitude and latitude, respectively. The ℎ1 hidden layer is a shared 

layer between all neurons, while the ℎ2 hidden layer is disconnected from the other 

output nodes. This architecture design decision was adopted so that the output nodes can 

learn the nuances in the data specific to longitude and latitude independently, while not 

completely foregoing the interdependence that may exist between the dimensions. All 

neurons in the NN use rectified linear units (ReLU) as their activation function. The 

number of neurons in each hidden layer is a hyperparameter to be tuned independently, as 

elaborated in Step 4 below.  

 

 
Figure 12. Architecture of Dual-Head Neural Network 
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c. Training the Neural Network 

Training an NN is an iterative process and the NN aims to minimize the loss 

function by updating its parameters (weights and biases). Each iteration of the training 

procedure consists of a full pass through the training set whereby the training set is 

randomly sampled to produce batches of training data and the derivative of the loss 

function is backpropagated through the network to update the parameters accordingly. 

After each complete pass of the training set, the validation set is used to assess the 

performance of the DHNN. When the DHNN validation error stops improving, training is 

terminated.  

We use the adaptive moment estimation (Adam) optimizer algorithm—“an 

algorithm for first-order gradient-based optimization of stochastic objective functions” 

(Kingma & Ba, 2017)—to optimize the weights and biases of the neural network. In 

addition, we bound the error derivate that is being backpropagated to update the 

parameters of the network (commonly known as gradient clipping), stabilize the weight 

updates across iteration using weight decay factor (L2 Regularization), and conduct 

learning rate annealing to prevent the optimization procedure from being stuck in local 

minima and saddle points and converging towards the global optima point. Table 8 

summarizes the parameter values. 

Table 8. Optimization Algorithm Parameters 

Parameter Values Remarks 
Optimization Algorithm 

Optimization algorithm Adaptive Moment 
Estimation (Adam) 

 

Gradient clipping 1.0 Maximum value for the norm of 
gradients 

Weight decay 0.0001  
Decay rate of gradient 
moving average (𝛽𝛽1) 

0.9 Default value in PyTorch 

Decay rate of squared 
gradient moving average 
(𝛽𝛽2) 

0.999  
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Parameter Values Remarks 
Initial learning rate (Refer to Table 9)  
Learning Rate Scheduler 
Scheduler type Stepwise decay  
Step size (Refer to Table 9) Period of learning rate decay 

Gamma (Refer to Table 9) Multiplicative factor of learning 
rate decay 

Training Procedure 
Maximum Number of 
Iterations (Epoch) 

500  

Batch size  (Refer to Table 9) The size of the subset of the 
training dataset used to evaluate 
gradient of the loss function and 
update NN weights 

Validation patience 20 The number of times the 
validation loss can be larger 
than or equal to the previously 
smallest loss before terminating 
training 

 

The training of the DHNN is accomplished using PyTorch: An Imperative Style, 

High-Performance Deep Learning Library written in the Python Programming Language. 

The pre-processing of data, training, and tuning of the DHNN was carried out on an HP 

Workstation running 24 x64-based Intel Core i9-7920X CPUs and an NVIDIA GeForce 

GTX 1080 Ti GPU. 

d. Model Tuning 

The goal of model tuning is to discover the set of hyperparameters that yield the 

best performance by the DHNN on the validation set. Table 9 presents the 

hyperparameters search space.  
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Table 9. Hyperparameter Search Space 

Hyperparameter 
Category 

Hyperparameter Possible Values 

NN architecture Number of neurons in ℎ1 8, 16 

Number of neurons in ℎ2 2, 4 

Optimization 
algorithm 

Initial learning rate 0.1, 0.2, 0.3, 0.5 
Learning rate step size 10, 15, 20 

Learning rate gamma 0.1, 0.5, 0.8, 0.9 

Batch size 16, 32, 64 

 

In total, there are 576 potential combinations of hyperparameters. To create 

models and sample the hyperparameter search space, we use Python library Tune (Liaw 

et al., 2018). Tune integrates with PyTorch by providing a wrapper function around the 

training and validation procedures and executes the hyperparameter tuning in parallel. In 

total, we sampled approximately 69% of the hyperparameter search space using a 

maximum sample of 500 to derive the best performing hyperparameters for DHNN 

model for each sensor. The test set is then used to approximate the generalization error of 

the best model.  

The selected hyperparameters and performance of each sensor’s DHNN ML 

model are presented in Table 10 and Table 11 respectively. 

Table 10. Selected Hyperparameters of DHNN Models 

Parameter Radar EO IR ESM 

Number of neurons in ℎ1 16 16 16 16 

Number of neurons in ℎ2 4 4 4 2 

Initial Learning rate 0.1 0.1 0.2 0.1 

Learning rate step size 10 10 15 20 

Learning rate gamma 0.5 0.1 0.1 0.5 

Batch size 64 64 32 32 
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Table 11. Model Performance and Description 

 Radar EO IR ESM 

Total number of weights 152 424 424 356 

Total number of biases 26 42 42 38 

Score on validation set 0.1046 0.0798 0.0897 0.0099 

Score on test set 0.1061 0.0837 0.0937 0.0071 

 

5. Phase 3: Publish the ML Model 

In the final phase of the ML Experiment Framework, the best model derived from 

Phase 2 is stored in a compatible format for subsequent deployment in the operating 

system. For our purpose, the Tune library used in Phase 2d (Model Tuning), 

automatically save a copy of the state of the model after each iteration of the training step 

and the validation score that the model achieves. Hence, the best DHNN model for each 

sensor can be retrieved using PyTorch. 

D. STATE ESTIMATION BY THE ML-KF MODEL 

An ML-KF model consists of the trained sensor’s DHNN and a KF. The input and 

output of the ML-KF algorithm are like the algorithm described in Section A2 of this 

chapter, with the following modifications: 

1. The scalers derived from the training dataset are used to scale the sensor 

measurement inputs to the ML-KF model. 

2. The scaled measurements are fed into the DHNN, which would provide 

the variance of the longitude and latitude. 

3. The variances form the sensor measurement error matrix 𝑅𝑅 of the ML-KF. 

Figure 13 is a graphical representation of the variables and process flow used by 

the ML-KF to estimate the target state. The prediction algorithm, with bold-face fonts 

emphasis on the modifications made to the KF model, is described in the following and 

highlighted in yellow boxes in Figure 13. 
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1. Define a simulation iteration and retrieve the corresponding dataset for 

sensor detection and unit position. 

2. Load the DHNN models for each sensor and the respective sensor 

scalers. 

3. Initialize the KF with measurement function, state transition matrix, and 

process covariance matrix. 

4. Initialize KF’s target initial position with the first sensor reading. 

5. For each timestep 𝑘𝑘 subsequently: 

• Get a prediction of the target’s state estimate from KF and save the 

estimate. 

• Retrieve sensor detection at that timestep 𝑘𝑘, and extract the 

longitude and latitude of the sensor detection: 𝑧𝑧𝑖𝑖,𝑘𝑘 = {𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖}𝑘𝑘. 

• Update the KF measurement error matrix to that of sensor 𝒓𝒓𝒊𝒊 

by using the DHNN to predict the longitude and latitude 

variance. 

• Update KF with a measurement𝑧𝑧𝑖𝑖,𝑘𝑘 from sensor 𝑖𝑖. 

• Repeat until there is no additional sensor detection at timestep 𝑘𝑘. 

• Advance to the next time step. 
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Figure 13. Process Flow for Predicting Target State by ML-KF Model 
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V. ANALYSIS OF RESULTS 

In this chapter, we present and analyze the results obtained from each model 

generated. We shed light on the performance of each model in predicting the state of a 

target using sensor measurements from a wide range of sensors. 

We evaluate each model in two ways: 1) using the average RMSE in estimating 

the target’s state across all simulation runs, and 2) evaluating the model’s residual error 

during the prediction of a single run. The average RMSE in estimating the target’s state 

across all simulation runs is useful as a broad and holistic performance metric because 

each simulation run has subtle differences. However, taking the RMSE of the entire 

simulation run does not provide us with a means to quantify the performance of each 

model during specific instances in each scenario, such as when the target is changing its 

course rapidly as opposed to while traveling on a constant course. This motivates the 

investigation of the models’ performance at different phases of the scenario.  

A. OVERALL PERFORMANCE 

Table 12 presents the average estimation error for both models across the 100 

simulation runs from each environment settings. Recall that the Normal weather 

environment settings represents an ideal condition in the simulated battlespace while the 

Extreme weather environment settings simulates a battlespace with poor weather 

conditions that cause the sensors to perform poorer than the ideal condition. The 

motivation to compare the two different weather settings is to highlight the improvement 

in performance even in degraded weather condition. 

Overall, the ML-KF model outperforms the KF model and achieves a lower 

estimation error across the 100 simulation runs for both environment settings (results are 

highlighted in green in Table 12). Under normal weather conditions, the KF model has an 

average RMSE of 9.324 ± 0.073  meters (30.59 ± 0.24 feet). In comparison, the ML-

KF model has an average RMSE of 7.462 ± 0.043 meters (24.48 ± 0.014 feet), 
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significantly outperforming the KF model in estimating the target’s state by 

approximately 20% using a 5% significance level5.  

Table 12. Performance of Models across 100 Simulation Runs 

Environment Model  RMSE 

Longitude Latitude Overall 

Normal KF mean 7.541179 5.478568 9.323550 

std 0.181759 0.131409 0.073194 

ML-KF mean 5.725176 4.783331 7.462227 

std 0.129570 0.111124 0.043657 

Extreme KF mean 7.559086 5.467258 9.331756 
std 0.195241 0.140200 0.079345 

ML-KF mean 5.733017 4.773831 7.462399 

std 0.135887 0.118889 0.043015 

 

1. Comparison of Performance between Weather Datasets 

The performance of the KF model is poorer in extreme weather conditions with a 

result of 9.332 ± 0.079 meters. Once again, the ML-KF model outperforms the KF 

model with a result of 7.4623 ± 0.043 meters (green background in Table 12). When 

comparing the performance of the model in the extreme weather dataset against the 

normal weather dataset, we observe that both models did not perform significantly better 

or worse at a 5% confidence level. 

 
5 We conducted a hypothesis testing to determine if the ML-KF model outperforms the KF model. The 

null hypothesis is that there is no difference in the average RMSE across 100 simulation runs, while the 
alternate hypothesis is that the ML-KF model have a lower average RMSE. We used a significance level at 
5%. The paired t-test across the simulation runs yield a p-value of 3.16 × 10−23, which is less than the 
significance level of 0.05. Thus, we strongly reject the null hypothesis that the performance of ML-KF and 
KF model is similar. 
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We would have expected the performance of the ML-KF model to perform worse 

than in the normal weather settings because the ML-KF DHNN models were not trained 

on the extreme weather dataset and the weather dataset was expected to contain noise that 

is not like that observed in the normal weather dataset. However, despite the strong 

performance of the model in extreme weather settings, this comparison is not a strong 

testament to the performance of the ML-KF model. This is because, as noted in the 

limitations of the dataset in Chapter III, the extreme dataset only has slight variability in 

sensor errors when compared to the normal weather dataset. Thus, we are unable to 

conclude that the ML-KF model outperforms the KF model when sensor measurements 

are corrupted due to external factors (such as weather) and if the DHNN embedded in the 

ML-KF model was effective in adapting the measurement noise matrix when sensor 

measurements are noisy. 

2. Performance in Prediction of Longitude and latitude 

The distribution of errors across the 100 simulation runs of each environment set 

is presented in Figure 14 and Figure 15 for the KF and ML-KF models respectively.  

Evaluating the performance for each physical dimension (longitude and latitude) 

independently, we observe the following: 

a. The error in longitude was much greater than that in the latitude, 

contributing the most to the overall RMSE. A potential reason is that the 

range of possible values for longitude is larger than that of latitude 

(𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 2876.88 > 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 2680.81 ), resulting in a larger 

margin for error in state estimation.  

b. The distribution of error in latitude is a heavy-right tail, while the 

distribution of longitude is a heavy-left tail, like the distribution of the 

overall RMSE. This suggests that the overall RMSE is strongly influenced 

by the errors in the longitude since the range of RMSE(longitude) is larger 

than that of RMSE(latitude), so the overall RMSE would be skewed by 

RMSE(longitude). 



60 

c. Comparing the distribution of RMSEs between the KF and ML-KF 

models, no significant differences were observed; both models have 

RMSEs that are heavy-tailed as described previously. A notable difference 

is the range of RMSE values, suggesting that the RMSE for the ML-KF 

model is smaller (lower mean than the KF model) and the spread of the 

RMSE values is smaller (lower standard deviation than KF Model) (Table 

12). 

 
Figure 14. KF Model RMSE Distribution  
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Figure 15. ML-KF Model RMSE Distribution  

B. PREDICTION ERROR DURING KEY PHASES OF TARGET 
MOVEMENT 

Investigating the performance of our models during the simulation run offers 

additional insights, we randomly selected a simulation run–simulation run number 5–

from the normal dataset and visualized the RMSE for the prediction of the target’s 

longitude and latitude. Figure 16 illustrates the model’s RMSE for longitude and latitude 

respectively. We use a simple moving average (SMA) function to smooth the RMSE 

calculated.6 The SMA(100) plot for each model suggests that the RMSE changes 

drastically whenever the target changes its heading. The target is said to be changing its 
 

6The SMA function averages the RMSE from the previous 100 timesteps in the simulation. 
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heading when the gradient of the longitude and latitude plots changes, highlighted by the 

green vertical bands in Figure 16. The target’s heading changes whenever the target has 

arrived at an RP (reference point) in the simulation and is heading towards another RP.  

 
Figure 16. Model’s State Estimation Error during a Single Simulation Run 

Now, we investigate the model’s error when moving between reference points 

(target has a constant heading) and at a reference point (target is changing its course).  

1. Constant Heading 

Figure 17 illustrates the RMSEs when the target is moving between RP-43 and 

RP-41 for simulation run 5 in normal weather conditions. During this movement, the 

target is expected to traverse at a constant speed (hence constant heading). The following 

observation and analysis can be made regarding the RMSE values: 

 



63 

 
Figure 17. Target Moving between RP-43 to RP-41 (Constant Heading) 

The sensor measurements arrive at the KF whenever a detection was made; the 

pattern in RMSE correlates with the measurement arrival period of each sensor, thereby 

suggesting that the sensor measurements may disrupt the KF estimation when the sensor 

measurement matrix does not accurately reflect the uncertainty in sensor measurement. 

For example, we note that the KF model RMSE increases drastically every 20 timesteps 

of the simulation, corresponding to the arrival of ESM sensor detection. The purple boxes 

in Figure 17 highlights this insight. 
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One reason for the sharp changes in prediction may be due to the low uncertainty 

in ESM sensor measurements,7 causing the KF to “increase” its probabilistic belief in the 

ESM sensor measurements. Then, in subsequent timesteps when the other sensor 

measurements are different from the KF’s prediction, the KF over (or under) 

compensates for the difference in its prediction and the sensor’s measurement, thereby 

resulting in a sudden jerk in the state estimated by the KF.  

Since the ML-KF model uses the KF algorithm for prediction, similar jerks in 

prediction error are observed as well. In this vein of analysis, the ML-KF model was able 

to reduce the error (the ML-KF model reports a lower RMSE when the jerks occur) by 

improving the sensor measurement error to be used by the KF, but not reducing the poor 

estimation by the KF algorithm.  

2. Changing Heading 

Figures 18 and 19 illustrate the models’ estimates against the ground truth and 

RMSE error in measurement of longitude and latitude when the target is approaching an 

RP and subsequently moving away from it towards another RP. In general, both figures 

show us that 1) the models’ estimates at the turning point fluctuate, and 2) the KF 

estimate is often further away from that of the ML-KF estimate compared to the ground 

truth. These observations are expected because the KF algorithm assumes a constant 

acceleration state process model, which would not perform well when a target changes its 

acceleration, such as a change in the target’s heading. In other words, the prediction by 

the models that uses a constant acceleration KF model is unable to generalize to the case 

with a target varying its acceleration. 

Ideally, the ML-KF model should be able to reduce estimation errors when the 

target’s heading changes, by dynamically adjusting the probabilistic belief of the sensor 

measurement. A well-performing ML-KF model would result in a consistently low 

RMSE before and after the target has changed its heading. However, observing that the 

 
7 The ESM sensor had the lowest sensor detection error compared to the EO, IR and Radar sensors 

(Table 4, Chapter III). 
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trend in RMSE by the ML-KF model is strongly correlated to that of the KF model, it 

was inconclusive that the ML-KF model was adjusting the prediction dynamically when 

the target is changing its course.  

 

 
Figure 18. Target Changing its Course around RP-43 
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Figure 19. Target Changing its Course around RP-42  

From our simulation runs and performance evaluation, we observe that the KF 

algorithm performance is dependent on the sensor’s measurement and can be abruptly 

changed by the measurements. This is exacerbated by the fact that the sensor’s 

measurement noise has a smaller confidence interval, resulting in varying changes in 

state estimation, instead of a consistent improvement in state estimation across all time 

steps. The ML-KF model improves the estimation errors by providing the KF algorithm 

with improved estimation of the uncertainty of the sensor measurements. However, both 

the KF and ML-KF models were unable to dynamically adjust when the target changed 

its heading as the prediction is still strongly predicated on the assumptions embedded in 

the KF itself. 
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VI. CONCLUSIONS 

A. SUMMARY OF RESEARCH 

We set out to investigate whether ML models are able to improve the accuracy of 

state estimation in a COP/CTP. We adopted a quantitative approach and our findings 

have shown that integration of ML models to estimate the sensor measurement error 

matrix for the standard KF algorithm can significantly improve the accuracy of target 

state estimation by approximately 20%.  In summary, our contributions are:  

1. We have developed an ML operations pipeline that ingests data from a 

simulation to train, validate, and test machine learning modules for 

subsequent deployment in a KF system. The methodology, dataset, and 

models generated are reproducible and replicable, as the code base and 

frameworks used for this development are fully open source. 

2. We have demonstrated that a learning module embedded in a standard KF 

algorithm can improve state estimation over a standard KF model. The 

ML-KF model was able to generate a sensor measurement error matrix to 

update the KF algorithm’s probabilistic belief of the sensor measurements, 

thereby improving the KF’s estimation. 

3. We were only able to train the learning module used in the KF model only 

because our simulation system provides a ground truth target state that live 

ranges may not be able to provide. This demonstrates the potential of 

using simulation to develop ML models and of subsequently deploying 

them in the field.  

The following sections present the limitations of our research, challenges faced 

when developing and executing the ML operations pipeline, and areas for future work. 
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B. LIMITATIONS AND FUTURE WORK 

1. Simulated Dataset 

a. Sensor Measurement Uncertainty 

As highlighted in Chapter III, we are limited by the dataset generated using the 

CMO simulation software to generate sensor measurements. As a commercial product, it 

did not allow the researcher to obtain detailed information about the models used in the 

simulation and the software could not be modified directly to pursue particular research 

goals. Critically, the absence of sensor measurement uncertainty output for each of the 

simulated sensors resulted in the use average error in sensor measurement, against the 

ground truth target position, as the sensor measurement error matrix in our baseline 

model. In addition, we found that some of the sensors have measurements that do not 

meet our realistic expectations for the sensor. Specifically, the ESM sensor measurements 

had very high accuracy (small error). This may not be the case, since the ESM sensor 

provides an area of uncertainty where the target may be located, instead of a spot 

measurement.  

For future research, it may be better to employ a more open simulation 

environment, such as the Advanced Framework for Simulation, Integration, and 

Modeling (AFSIM) (West & Birkmire, 2019). Modeling processes of interest in AFSIM 

may require more detailed design and implementation effort, accompanied by necessary 

verification and validation procedures, which can be more demanding than directly 

employing a simulation "as-is." However, there are numerous organizations using 

AFSIM, so there is greater opportunity for scenario and software reuse than in other 

environments. Of note, there are distribution restrictions on AFSIM that prevent its use in 

an academic environment by foreign students and make studies using AFSIM less 

available to the research community at-large. Even so, in an environment such as the 

Naval Postgraduate School and recognizing the inherent military sensitivity of such 

topics as data fusion, investigation into the use of AFSIM to support future research is 

warranted. 
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b. Inclusion of External Factors in ML models 

We started the work intending to discover if variance in external factors affecting 

sensor measurements would be mitigated by ML models, as described in Ullah et al., 

(2019 and 2020). Our desire, however, was not satisfied, as the output from the 

simulation does not provide a dataset suggestive of large variation when the weather 

conditions have changed. We propose for future researchers to include noise in the sensor 

dataset to investigate ML-KF models. The additive noise can be modeled as a parameter 

of water conditions, such as higher noise in sensor measurement corresponding to the 

degradation of sensor measurements in the presence of heavy rainfall. 

2. Model Limitations 

We now present some of the limitations of our models. While the ML-KF model 

has improved performance over the standard KF model, we think that the following areas 

must be studied further to provide a more conclusive evaluation of the embedding the ML 

model in a KF to predict parameters for the KF:  

a. How Well Does the AI/ML Model Generalize? 

This thesis has provided a proof-of-concept on using ML as part of the data 

filtering process in state estimation but is limited in showing that the ML models can 

generalize well to different use cases or scenarios. Since the ML models are trained on a 

fixed set of datasets, the models are not expected to perform well when the simulation 

settings changes. For example, if the simulation longitude and latitude coordinates were 

to be set in a different geographic area, and the sensors were set up differently, the AI/

ML models trained in one setting may not be useful in another. Another case where the 

models may not adapt well is when there are external factors influencing the sensor 

measurements, such as weather conditions.  

While we have attempted to generate a set of datasets based on the different 

weather conditions, there was not much notable difference in the estimation error across 

all sensors, and hence, we decided to limit our training dataset to the normal weather 
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dataset and restrict the number of inputs to the DHNN to only the sensor measurements. 

Following, we propose different ways to improve the generalizability of the model. 

(1) Randomized Reference Points in Simulation 

In our dataset, the target moves in a fixed set of pre-defined reference points. 

While we have randomized the initial target position for each of the simulation run, there 

exists significant correlations exist between each run, such as the position where a target 

would be turning. A simulation set up and sensor dataset to train the ML models would 

enhance the models’ adaptiveness for different types of maneuvers.  

(2) Inclusion of External Factors for the ML Model Input 

Should we have a dataset that is significantly different from nominal conditions, 

we could include these inputs to the ML model so that the KF parameter to be predicted 

would dynamically adapt, thereby increasing the accuracy in managing a wide range of 

potential scenarios.  

Another line of effort would be to embed trained ML model(s) within other 

variants of KF models, such as Interacting Multiple Models KF and Extended KF. In our 

KF algorithm, we made a bold assumption that the target will be moving in constant 

acceleration. This assumption was useful for us to assess if the ML-KF model were to be 

able to improve the performance during a change in acceleration, since a standard KF 

would perform poorly on it. Since we do not see an improvement in state prediction when 

the target is accelerating or decelerating, we think that it would be useful to conduct an 

ablation study, to assess the key contributing factors or changes that brought to bear the 

improvement in state estimation by the KF (and its variants) or the learning module 

embed in an ML-KF model.  

b. Formulating a Time-series Problem 

In our approach, we have assumed that the samples in the dataset are independent 

and identically distributed. This means each sensor detection provides nothing new about 

the history of detections or subsequent detections made by the sensor. We assumed time 

to be an independent random variable in our dataset, as it simplifies the ML problem 
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formulation. We thus encourage future research to consider the case where the sensor 

measurements are temporally dependent. To that end, we put forth two suggestions that 

are potentially mutually reinforcing: 

(1) Using LSTM modules in NN 

Jung et al. (2020) proposed a Long Short-Term Memory (LSTM) KF that 

integrates LSTM modules to output a target state estimation. A recurrent NN with an 

LSTM module differs from the standard feedforward NN in that LSTM has feedback 

connections designed to process sequences of data and only important information from 

the sequence is kept to aid the processing of subsequent data points (Graves, 2012). 

Hence, using a recurrent NN with LSTM modules in a KF could improve the confidence 

of the model in predicting target state estimates and alleviate the Markov property of the 

KF. 

(2) Reinforcement Learning (RL) 

Gao et al. (2020) showed that ML models learned using reinforcement learning 

were effective in predicting process noise covariance matrix for the KF. The ML model 

was trained using the deep deterministic policy gradient algorithm with the target location 

error as the penalty to the AI agent. Hence, a potential area for exploring the use of AI/

ML in improving data filtering would be to use reinforcement learning agents as the ML 

model. This is useful because the reinforcement learning agent will be able to search the 

action space (the possible outputs of the noise covariance matrices) by interacting with 

the simulation engine directly. This would be especially beneficial for an ML model 

where the AI-controlled targets in the simulation moves randomly based on different 

mission sets. Hence, by learning the target’s movement online, there is no need to 

generate and store datasets for the ML phase, and the agent would be generalized.   

These two suggestions are potentially mutually reinforcing. This is evidenced by 

the successes by Google’s DeepMind in creating an AI to achieve Grandmaster status in 

StarCraft (Vinyals et al., 2019), which uses deep LSTM NN and an RL training regime to 

create the AI. The AI was able to improve its score through multiple hours of game plays 

in the simulated environment to improve its decision-making abilities. 
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c. Multiple Target Data Filtering 

In our scenario, only one target is used for this proof-of-concept. It would be of 

interest to our sponsor and the larger IW community to be able to filter multiple targets. 

In this requirement, the ML problem would therefore consist of two tasks: classification 

and regression. While the regression task–to predict sensor measurement errors–remains 

unchanged, the additional classification task is to classify the target’s importance to the 

analysts–such as if the target is a friend or foe. A more sophisticated multi-class 

classification problem would be to classify the different types of targets (e.g., different 

classes of naval ships). In addition, we have not field tested the improved system, and 

would encourage future researchers to implement similar methods to assess the efficacy, 

latency, and system overhead incurred to provide performance measures of such a 

system. 

C. CONCLUSION 

Our research used ML models to predict sensor measurement errors for a standard 

KF algorithm. Our ML-KF model was able to significantly outperform our baseline 

model at 5% confidence level, showing that using an ML-KF model would improve the 

performance of target position state estimations, alleviating the performance issue when 

uncertainty of sensor measurement is absent from heterogenous sensor data streams. In 

other words, in the absence of uncertainty measurements of sensor data, the ML 

embedded in the KF was able to predict the uncertainty and dynamically updating the 

parameters of the KF algorithm.  

This proof-of-concept has the potential to be further extended using more 

sophisticated methods. We have proposed three key areas for future research:  

1. To improve the generalizability of the ML-KF model by including other 

parameters (such as weather conditions in the battlespace) that are not 

directly modeled or used in KF.  

2. Using time-series methods to model temporal movement of a target, 

thereby increasing the predictive power of the learning module embedded 

in the KF.  
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3. Using ML models to conduct multiple target data filtering (JDL Level 2), 

by including a classification task to categorize the track data. 

As the DoD increasingly shifts its focus to the application of ML, we believe that 

such an application in data filtering would be able to augment existing data filtering 

methods and eliminate the expense of replacing them. For instance, by enhancing existing 

COP/CTP data filtering algorithms, we would be able to have a more accurate state 

estimation of the target, thereby providing a higher confidence of the target’s position in 

the COP/CTP. The ability for such an ML-KF model to ingest heterogenous data stream 

is also a powerful tool to automate the work of intelligence analysts who would 

frequently need to cross-reference their sources across different intelligence domains. By 

improving the suite of tools available to our warfighters, they will be more lethal in their 

response to any adversary. 
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APPENDIX A. SCRIPTS FOR CMO SIMULATION 

A. LUA SCRIPTING FOR RANDOMLY GENERATING A TARGET’S 
POSITION 

Lua is a programming language used by CMO to provide advanced users with the 

ability to “implement virtually any desired behavior” (Matrix Games, 2022a). For 

instance, players can use the Lua command to extend existing AI behaviors and spawn 

units within the game based on the status of the scenario. For this thesis, we endeavor to 

have our target to be randomly generated at a random location within the designated 

patrol area defined by the reference points RP-41, RP-42, and RP-43. Since the three 

points describe a triangle, vector arithmetic is used to randomly generate a point within 

the triangle to initialize the target’s position. The Lua script used is reproduced below: 
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B. POWERSHELL SCRIPT TO RUN CMO FROM COMMAND LINE 
INTERFACE 

Only available in the premium edition of CMO, a command-line interface (CLI) 

is available for analysts to run their simulation without the graphical user interface (GUI) 

hence reducing the graphics processing overhead and allowing the simulation to run 

faster and more efficiently. Since we must run each scenario 100 times, we leverage the 

CLI CMO provides to automate the process. The PowerShell script used to run CMO 

from the CLI is reproduced below. 

 

 
Upon completion of the PowerShell command, there is a folder with 100 sub-

folders, each consisting of the dataset generated for its respective scenario. 
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APPENDIX B. DATA DICTIONARY 

A. UNIT POSITION TABLE 

Field Description Data 
Type 

Sample Value/ 
Remarks 

TimelineID The unique ID of the simulation 
run under which the event 
occurred 

String 5c945cd6-18ba-
4bf4-9622-
bc26d6c33932 

Time The scenario time at which the 
event occurred  

String The string is 
formatted as 
hh:mm:ss 

UnitID The unique ID of the unit  String KGQ0E2-
0HMIBR4PMU7G
2 

UnitDBID The database ID of the unit  Integer 2868 
UnitName The actual name of the unit  String DDG 72 Mahan 

[Arleigh Burke 
Flight II] 

UnitType The type of unit String Ship 
UnitClass The class of unit String DDG 72 Mahan 

[Arleigh Burke 
Flight II] 

UnitSide The name of the side to which 
the unit belongs 

String Target or Sensors 

UnitLongitude The longitude of the unit Float -119.0180886 
UnitLatitude The latitude of the unit Float 33.69657902 
UnitCourse The heading of the unit in 

degrees 
Float 60.61721 

UnitSpeed_kts The speed of the unit in knots Float 12 
UnitAltitude_m The altitude of the unit in 

meters 
Float Not applicable for 

this project 
UnitAttitude_Pitch The pitch of the unit Float Not applicable for 

this project 
UnitAttitude_Roll The roll of the unit Float Not applicable for 

this project 
Status The status of the unit String Not applicable for 

this project 
Condition_AirOps The condition of air operations String Not applicable for 

this project 
Condition_Dockin
gOps 

The condition of docking 
operations 

String Not applicable for 
this project 

AssignedMission The name of the mission String Mission: Patrol 
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assigned to the unit 
DamagePercent The percentage of the unit that 

is damaged 
Integer Not applicable for 

this project 
Fire The unit is on fire Boolean Not applicable for 

this project 
Flood The unit is flooded Boolean Not applicable for 

this project 
ComponentStatus The status of the component on 

the unit 
String Not applicable for 

this project 

B. SENSOR DETECTION ATTEMPT TABLE 

Field Description Data 
Type 

Sample Value/ 
Remarks 

TimelineID The unique ID of the simulation 
run under which the event 
occurred 

String 5c945cd6-18ba-4bf4-
9622-bc26d6c33932 

Time The scenario time at which the 
event occurred  

String 00:00:10 

SensorID The unique ID of the sensor Integer KGQ0E2-
0HMJ3OD15T23H 

SensorName The name of the sensor's parent String AN/ SLQ-32(V)2 
[ESM] 

SensorParentID The unique ID of the sensor's 
parent 

Integer KGQ0E2-
0HMJ3OD15T230 

SensorParentNam
e 

The name of the sensor's parent String esm 

SensorParentLon
gitude 

The sensor's parent longitude Float -119.06086 

SensorParentLatit
ude 

The sensor's parent latitude Float 33.7624658 

SensorParentAltit
ude_ASL 

The sensor's parent altitude 
above sea level in m 

Float Not applicable for this 
project 

SensorParentAltit
ude_AGL 

The sensor's parent altitude 
above ground level in m 

Float Not applicable for this 
project 

SensorParentSide The side of the sensor's parent String Sensor(ESM) 
DetectionMode The mode of detection String Search 
TargetID The target's unique ID String KGQ0E2-

0HMIBR4PMU7G2 
TargetName The actual name of the target String DDG 72 Mahan 

[Arleigh Burke Flight 
II] 

TargetSide The side of the target String Target 
TargetLongitude The estimated longitude of the Float -119.01751 
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target 
TargetLatitude The estimated latitude of the 

target 
Float 33.6967081 

TargetAltitude_A
SL_m 

The estimated target altitude 
above sea level in m 

Float Not applicable for this 
project 

TargetAltitude_A
GL_m 

The estimated target altitude 
above ground level in m 

Float Not applicable for this 
project 

TargetRangeHori
z_nm 

The horizon range from the 
sensor to the target in nm 

Float 4.49954 

TargetRangeSlant
_nm 

The slant range from the sensor 
to the target in nm 

Float 4.49954 

DetectionResult The outcome of the detection String SUCCESS 
DetectionAOU The area of the uncertainty of 

the detection is defined by six 
sets of longitude and latitude 
coordinates 

Array 
of floats 

{Lon:-
119.06086272032 - 
Lat:33.762465802667
7}{Lon:-
119.06086272032 - 
Lat:33.762465802667
7}{Lon:-
119.06086272032 - 
Lat:33.762465802667
7}{Lon:-
118.978922492301 - 
Lat:33.590429378211
4}{Lon:-
118.960190968491 - 
Lat:33.597455955306
2}{Lon:-
118.942315320068 - 
Lat:33.605891109887
5} 
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APPENDIX C. SOFTWARE PACKAGES USED 

This appendix lists the software packages used in this thesis. 
 
 
Name of Software Version Purpose 

Simulation Software 
Command: Modern 
Operations 

Professional 
Edition V2.0 

Simulation software that creates a scenario 
to generate the sensor detection dataset for 
our subsequent use 

Data Analysis 
Pandas Python Library 1.4.2 Software that enables the manipulation of 

data, such as converting the longitude and 
latitude into ENU format 

Matplotlib 3.5.1 Data visualization 
Seaborn 0.11.2 Data visualization 
PyMap3D 2.9.1 Package to convert geodesic coordinates to 

ENU format. 

Kalman Filter 
FilterPy 1.4.5 Python library that implements Kalman 

filters 

Machine Learning 
PyTorch 1.11.0 For training neural network 
Scikit-Learn 1.0.2 For the creation of and datasets partitioning  
Tune (by Ray) 1.13.0 For the efficiently conduct of 

hyperparameter search  
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APPENDIX D. PYTHON NOTEBOOK–EXPLORATORY DATA 
ANALYSIS 

import os 
import pandas as pd 
import numpy as np 
import seaborn as sns 
import matplotlib.pyplot as plt 
import matplotlib.dates as mdates 
import time 
import itertools 
from helper import * 

# defines the path for the datasetss 
path_normalweather = '../data/normal_weather' 
path_xtremeweather = '../data/extreme_weather' 

SAVE_DF = False 
# Load the DF: 
if not SAVE_DF: 
  dataset = load_all_dfs()  # dataset[weather][sensor] = get_sensor_df(sensor, weather) 

A. INSPECTING HEADERS OF DATASET 

sensor_detect_filename = '../data/extreme_weather/0/Sensor(Radar)_SensorDetectionAttempt.csv' 
target_pos_filename = '../data/extreme_weather/0/Target_UnitPositions.csv' 
df_pos = pd.read_csv(target_pos_filename, nrows=3) 
print(list(df_pos.columns)) 

['TimelineID', 'Time', 'UnitID', 'UnitDBID', 'UnitName', 'UnitType', 'UnitClass', 'UnitSide', 
'UnitLongitude', 'UnitLatitude', 'UnitCourse', 'UnitSpeed_kts', 'UnitAltitude_m', 
'UnitAttitude_Pitch', 'UnitAttitude_Roll', 'Status', 'Condition_AirOps', 'Condition_DockingOps', 
'AssignedMission', 'DamagePercent', 'Fire', 'Flood', 'ComponentStatus'] 

df_sense = pd.read_csv(sensor_detect_filename, nrows=3) 
print(list(df_sense.columns)) 

['TimelineID', 'Time', 'SensorID', 'SensorName', 'SensorParentID', 'SensorParentName', 
'SensorParentLongitude', 'SensorParentLatitude', 'SensorParentAltitude_ASL', 
'SensorParentAltitude_AGL', 'SensorParentSide', 'DetectionMode', 'TargetID', 'TargetName', 
'TargetSide', 'TargetLongitude', 'TargetLatitude', 'TargetAltitude_ASL_m', 'TargetAltitude_AGL_m', 
'TargetRangeHoriz_nm', 'TargetRangeSlant_nm', 'DetectionResult', 'DetectionAOU'] 

B. COMPARISON OF COORDINATE SYSTEMS (GEODESIC AND ENU 
REPRESENTATION) 

1. We are given the following geodesic coordinates: 

• actual target location (ground truth), 

• sensor location (sensor parent lat lon alt), and 

• estimated target location (target lat lon...) 
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2. We want to calculate the error between estimated target location and the 

actual target location. 

1. Sample Dataset 

# Sample a dataset 
dataset = load_all_dfs() 
df_pos = dataset['normal']['pos'] 
df_radar = dataset['normal']['Radar'] 

timeline_sample = df_pos.TimelineID.iloc[0] 
df_pos = df_pos[df_pos.TimelineID == timeline_sample] 
df_radar = df_radar[df_radar.TimelineID == timeline_sample] 
df_merged = pd.merge(df_pos, df_radar, left_on=['TimelineID', 'Time'], right_on=['TimelineID', 
'Time'], how='left') 
df_merged.dropna(axis=0, inplace=True) 

a. Conversion to ENU representation 

(1) Converts the Lon Lat from database into East-North-Up representation. 

This requires a reference point to be defined and is abstracted in the 

get_ENU() helper function. We use a common point (middle of all 3 

reference points in the simulation as the reference point for projection). 

ENU is less accurate due to the projection from the reference point. 

(2) Subsequently calculate the cartesian distance between a set of ENU points 

(i.e., the L2-Norm) 

(3) In ENU (xyz), we can consider the height dimension easily, it performs 

better than geodesic distance in this aspect. The latter only considers 

surface distance (i.e., a walk along earth's surface) 
import pymap3d as pm 
# from geopy.units import nautical 

# Using the get_ENU function. 
lon = df_pos.iloc[0]['UnitLongitude'] 
lat = df_pos.iloc[0]['UnitLatitude'] 
alt = df_pos.iloc[0]['UnitAltitude_m'] 
get_ENU(lon, lat, alt) 

(-554.4601823446596, 2023.0458401609612, -100.34608059636821) 

# Unit 
df_merged_pm = pd.concat( 
    [df_merged, df_merged.apply(lambda r: get_ENU(r.UnitLongitude, r.UnitLatitude, 
r.UnitAltitude_m), axis=1, result_type='expand')], axis=1) 
df_merged_pm.rename({0: 'Unit_E', 1: 'Unit_N', 2: 'Unit_U'}, axis=1, inplace=True) 
# Target 
df_merged_pm = pd.concat( 
    [df_merged_pm, 
     df_merged_pm.apply(lambda r: get_ENU(r.TargetLongitude, r.TargetLatitude, 
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r.TargetAltitude_AGL_m), axis=1, result_type='expand')], 
    axis=1) 
df_merged_pm.rename({0: 'Target_E', 1: 'Target_N', 2: 'Target_U'}, axis=1, inplace=True) 
# Sensor 
df_merged_pm = pd.concat([ 
    df_merged_pm, 
    df_merged_pm.apply(lambda r: get_ENU(r.SensorParentLongitude, r.SensorParentLatitude, 
r.SensorParentAltitude_AGL), axis=1, result_type='expand') 
], 
                         axis=1) 
df_merged_pm.rename({0: 'Sensor_E', 1: 'Sensor_N', 2: 'Sensor_U'}, axis=1, inplace=True) 

df_merged['Err_ENU'] = df_merged.apply(lambda r: l2_norm_3d(r.Target_E, r.Target_N, r.Target_U, 
r.Unit_E, r.Unit_N, r.Unit_U), axis=1) 
df_merged['SlantRange_ENU'] = df_merged.apply( 
    lambda r: l2_norm_2d(r.Target_E, r.Target_N, r.Target_U, r.Sensor_E, r.Sensor_N, r.Sensor_U), 
axis=1) 
df_merged['Err_ENU_x'] = df_merged.apply(lambda r: sq_err_1d(r.Target_E, r.Unit_E), axis=1) 
df_merged['Err_ENU_y'] = df_merged.apply(lambda r: sq_err_1d(r.Target_N, r.Unit_N), axis=1) 
df_merged['Err_ENU_z'] = df_merged.apply(lambda r: sq_err_1d(r.Target_U, r.Unit_U), axis=1) 
df_merged['Err_ENU_2d'] = df_merged.apply(lambda r: l2_norm_2d(r.Target_E, r.Target_N, r.Unit_E, 
r.Unit_N), axis=1) 

# Check how far off we are with respect to the target slant range calculated in CMO. 
df_merged.loc[:,['TargetRangeSlant_nm','SlantRange_ENU']].describe() 

       TargetRangeSlant_nm  SlantRange_ENU 
count          3601.000000     3601.000000 
mean              8.542361        8.545815 
std               1.403697        1.403840 
min               7.059873        7.065747 
25%               7.282954        7.288187 
50%               8.114071        8.114512 
75%               9.505038        9.508726 
max              11.821140       11.826809 

# the error distribution of sensor radar in this scenario. 
df_merged.loc[:,['Err_ENU','Err_ENU_2d','Err_ENU_x','Err_ENU_y','Err_ENU_z']].describe() 

           Err_ENU   Err_ENU_2d    Err_ENU_x    Err_ENU_y    Err_ENU_z 
count  3601.000000  3601.000000  3601.000000  3601.000000  3601.000000 
mean      0.376391     0.003337     0.002088     0.002221     0.376376 
std       0.086746     0.000163     0.000891     0.001038     0.086750 
min       0.207910     0.002956     0.000005     0.000002     0.207885 
25%       0.313193     0.003219     0.001129     0.002164     0.313175 
50%       0.374205     0.003334     0.002321     0.002376     0.374192 
75%       0.477333     0.003461     0.002548     0.003101     0.477321 
max       0.490292     0.003760     0.003533     0.003684     0.490281 

f, axes = plt.subplots(1, 4, figsize=(16, 5)) 
sns.histplot(data=df_merged, x='Err_ENU', kde=True, ax=axes[0]) 
for i, t in enumerate(['x', 'y', 'z']): 
  sns.histplot(data=df_merged, x=f'Err_ENU_{t}', kde=True, ax=axes[i + 1]) 
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# Visualization of distribution plot in the two different coordinate systems 
sns.displot(data=df_merged, x='Err_Geodesic', y='Err_ENU', kind='kde') 

 
# Visualization of the ENU correlation error between longitude and latitude 
sns.displot(data=df_merged,x='Err_ENU_x',y='Err_ENU_y', kind='kde') 
# >> Seems to suggest some negative correlation in the error. 
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np.corrcoef(df_merged.Err_ENU_x, df_merged.Err_ENU_y) 

array([[ 1.        , -0.91733101], 
       [-0.91733101,  1.        ]]) 

# Visualization of the ENU correlation error between longitude and altitude 
sns.displot(data=df_merged, x='Err_ENU_x', y='Err_ENU_z', kind='kde') 
# >> fairly random 

 
np.corrcoef(df_merged.Err_ENU_x, df_merged.Err_ENU_z) 

array([[1.       , 0.1382019], 
       [0.1382019, 1.       ]]) 

# Visualization of the ENU correlation error between latitude and altitude 
sns.displot(data=df_merged, x='Err_ENU_y', y='Err_ENU_z', kind='kde') 
# >> fairly random 
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np.corrcoef(df_merged.Err_ENU_y, df_merged.Err_ENU_z) 

array([[ 1.        , -0.26009732], 
       [-0.26009732,  1.        ]]) 

C. EXPLORATORY DATA ANALYSIS OF TARGET UNIT POSITION 
DATASET 

1. General Statistics of Dataset 

The following tasks were carried out: 

(1) Count number of entries per simulation run (each unique TimelineID) in 

each dataset 

(2) Confirm that each simulation run yield the same number of data fields per 

run 

(3) Check the frequency of data yield by CMO in the dataset. 
df_pos_normal = make_targetPosition_dataset(path_normalweather) 
df_pos_normal.describe() 

completed 

                Time  UnitLongitude   UnitLatitude     UnitCourse  \ 
count  720200.000000  720200.000000  720200.000000  720200.000000    
mean     3601.500000    -118.992098      33.660832     209.886546    
std      2079.039743       0.030194       0.025971      94.379690    
min         1.000000    -119.054763      33.617448       0.276733    
25%      1801.000000    -119.015539      33.637804     151.529900    
50%      3601.500000    -118.987425      33.659155     193.527200    
75%      5402.000000    -118.967407      33.685672     311.924800    
max      7202.000000    -118.944904      33.703720     359.889900    
 
       UnitSpeed_kts  UnitAltitude_m         Unit_E         Unit_N  \ 
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count       720200.0        720200.0  720200.000000  720200.000000    
mean            12.0             0.0      -9.027049      92.659519    
std              0.0             0.0    2800.117175    2880.817604    
min             12.0             0.0   -5819.901243   -4719.496264    
25%             12.0             0.0   -2183.034084   -2461.850713    
50%             12.0             0.0     424.335504     -93.413210    
75%             12.0             0.0    2281.806939    2848.451202    
max             12.0             0.0    4366.065613    4850.241856    
 
              Unit_U  TimeDelta   
count  720200.000000   720200.0   
mean     -101.267654        1.0   
std         0.761930        0.0   
min      -103.294023        1.0   
25%      -101.732566        1.0   
50%      -101.153923        1.0   
75%      -100.671927        1.0   
max      -100.000002        1.0   

# Confirm that all the value counts are equal: 
all(df_pos_normal.TimelineID.value_counts().values == 
np.mean(df_pos_normal.TimelineID.value_counts().values)) 

True 

df_pos_extreme = make_targetPosition_dataset(path_xtremeweather) 
df_pos_extreme.describe() 

completed 

                Time  UnitLongitude   UnitLatitude     UnitCourse  \ 
count  720200.000000  720200.000000  720200.000000  720200.000000    
mean     3601.500000    -118.992354      33.660935     210.573347    
std      2079.039743       0.030425       0.025963      94.640156    
min         1.000000    -119.054762      33.617485       0.279358    
25%      1801.000000    -119.016254      33.637868     151.905600    
50%      3601.500000    -118.987607      33.659434     193.526100    
75%      5402.000000    -118.967409      33.685694     311.925800    
max      7202.000000    -118.944905      33.703720     359.889400    
 
       UnitSpeed_kts  UnitAltitude_m         Unit_E         Unit_N  \ 
count       720200.0        720200.0  720200.000000  720200.000000    
mean            12.0             0.0     -32.693080     104.092812    
std              0.0             0.0    2821.531144    2879.873852    
min             12.0             0.0   -5819.821307   -4715.385638    
25%             12.0             0.0   -2249.440267   -2454.791947    
50%             12.0             0.0     407.492540     -62.372272    
75%             12.0             0.0    2281.350168    2850.786373    
max             12.0             0.0    4365.971307    4850.248208    
 
              Unit_U  TimeDelta   
count  720200.000000   720200.0   
mean     -101.276908        1.0   
std         0.761801        0.0   
min      -103.294010        1.0   
25%      -101.742425        1.0   
50%      -101.159624        1.0   
75%      -100.686284        1.0   
max      -100.000089        1.0   

# Confirm that all the value counts are equal: 
all(df_pos_extreme.TimelineID.value_counts().values == 
np.mean(df_pos_extreme.TimelineID.value_counts().values)) 

True 



90 

if SAVE_DF: 
  # save target DF! 
  df_pos_normal.reset_index(drop=True, inplace=True) 
  df_pos_normal.to_feather('../data/df_pos_normal.ftr') 
  df_pos_extreme.reset_index(drop=True, inplace=True) 
  df_pos_extreme.to_feather('../data/df_pos_extreme.ftr') 

Conclusion from Exploratory Data Analysis: 

• Both normal and extreme weather datasets have the same number of target 

unit position data (up to 7202 timesteps, equivalent to 2 hours and 2 

seconds of simulation time) 

• TimelineID is unique, total 100 unique TimelineID in each dataset 

• Each “simulation pulse” is equivalent to 1 second in real time. each entry 

represents the state of the target for that second. 

2. Visualization of Target Movement in Simulation 

df_pos_sampled = extract_target_unitpos(os.path.join(path_xtremeweather, '11', 
'Target_UnitPositions.csv')) 
plot_tgt_latlon_time_grid(df_pos_sampled) 
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plot_tgt_latlon_time(df_pos_sampled) 
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ax = df_pos_sampled.UnitCourse.plot() 
ax.grid() 

 
# Constant Speed (magnitude, does not consider the direction i.e., the course) 
ax = df_pos_sampled.UnitSpeed_kts.plot() 
ax.grid() 
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D. EXPLORATORY DATA ANALYSIS OF SENSOR DATASET 

We aim to answer the following questions: 

• What is the difference in sensor measurements in different weather 

conditions? Are there notable differences for each sensors? 

• What is the time between detection for each of the sensor? Are they all 

equal? 

• What is the average number of detections for each sensor in a given 

simulation run? What is the periodicity per sensor? 

• For each of the sensors, what is its performance with respect to the actual 

target position? 

1. Periodicity of Data, Number of Detection, Failure Rate in 
Dataset 

• ESM Sensor 

# create ESM dataset 
df_esm_normal = make_sensoDetection_dataset(path_normalweather, sensor_name='ESM') 
df_esm_normal.describe() 

completed 

               Time  SensorParentLongitude  SensorParentLatitude  \ 
count  36000.000000           3.600000e+04          36000.000000    
mean    3604.000000          -1.190609e+02             33.762466    
std     2078.481818           2.842210e-14              0.000000    
min       14.000000          -1.190609e+02             33.762466    
25%     1809.000000          -1.190609e+02             33.762466    
50%     3604.000000          -1.190609e+02             33.762466    
75%     5399.000000          -1.190609e+02             33.762466    
max     7194.000000          -1.190609e+02             33.762466    
 
       SensorParentAltitude_AGL  TargetLongitude  TargetLatitude  \ 
count                   36000.0     36000.000000    36000.000000    
mean                      888.0      -118.992107       33.660829    
std                         0.0         0.030203        0.025972    
min                       888.0      -119.054747       33.617455    
25%                       888.0      -119.015619       33.637815    
50%                       888.0      -118.987425       33.659152    
75%                       888.0      -118.967405       33.685674    
max                       888.0      -118.944905       33.703719    
 
       TargetAltitude_AGL_m  TargetRangeSlant_nm      Target_E      Target_N  \ 
count          36000.000000         36000.000000  36000.000000  36000.000000    
mean             693.702000             7.164574     -9.822697     92.384244    
std              159.271411             1.527780   2801.229704   2881.228633    
min              385.000000             4.155985  -5818.960479  -4719.046097    
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25%              580.000000             5.813999  -2191.126705  -2460.934385    
50%              687.000000             7.228280    424.538082    -93.738987    
75%              884.000000             8.467664   2282.264226   2848.953632    
max              919.000000             9.754641   4366.579380   4850.744997    
 
           Target_U      Sensor_E      Sensor_N      Sensor_U     TimeDelta   
count  36000.000000  3.600000e+04  3.600000e+04  3.600000e+04  36000.000000   
mean     592.433848 -6.380407e+03  1.136893e+04  7.746446e+02     19.983333   
std      159.204976  1.819015e-12  1.819015e-12  2.273768e-13      0.315793   
min      283.533681 -6.380407e+03  1.136893e+04  7.746446e+02     14.000000   
25%      477.006498 -6.380407e+03  1.136893e+04  7.746446e+02     20.000000   
50%      586.643116 -6.380407e+03  1.136893e+04  7.746446e+02     20.000000   
75%      782.790066 -6.380407e+03  1.136893e+04  7.746446e+02     20.000000   
max      818.391497 -6.380407e+03  1.136893e+04  7.746446e+02     20.000000   

# Check the TimeDelta, if there are any deviations in the periodicity of the sensor data. 
df_esm_normal.TimeDelta.value_counts() 
# >> There are 14s, 100 in total, because 100 simulation, TimeDelta at start is 14-0=14 

20.0    35900 
14.0      100 
Name: TimeDelta, dtype: int64 

# Check the DetectionResult: 
df_esm_normal.DetectionResult.value_counts() 

SUCCESS    36000 
Name: DetectionResult, dtype: int64 

# create ESM dataset for extreme_weather 
df_esm_extreme = make_sensoDetection_dataset(path_xtremeweather, sensor_name='ESM') 
df_esm_normal.describe() 

completed 

               Time  SensorParentLongitude  SensorParentLatitude  \ 
count  36000.000000           3.600000e+04          36000.000000    
mean    3604.000000          -1.190609e+02             33.762466    
std     2078.481818           2.842210e-14              0.000000    
min       14.000000          -1.190609e+02             33.762466    
25%     1809.000000          -1.190609e+02             33.762466    
50%     3604.000000          -1.190609e+02             33.762466    
75%     5399.000000          -1.190609e+02             33.762466    
max     7194.000000          -1.190609e+02             33.762466    
 
       SensorParentAltitude_AGL  TargetLongitude  TargetLatitude  \ 
count                   36000.0     36000.000000    36000.000000    
mean                      888.0      -118.992107       33.660829    
std                         0.0         0.030203        0.025972    
min                       888.0      -119.054747       33.617455    
25%                       888.0      -119.015619       33.637815    
50%                       888.0      -118.987425       33.659152    
75%                       888.0      -118.967405       33.685674    
max                       888.0      -118.944905       33.703719    
 
       TargetAltitude_AGL_m  TargetRangeSlant_nm      Target_E      Target_N  \ 
count          36000.000000         36000.000000  36000.000000  36000.000000    
mean             693.702000             7.164574     -9.822697     92.384244    
std              159.271411             1.527780   2801.229704   2881.228633    
min              385.000000             4.155985  -5818.960479  -4719.046097    
25%              580.000000             5.813999  -2191.126705  -2460.934385    
50%              687.000000             7.228280    424.538082    -93.738987    
75%              884.000000             8.467664   2282.264226   2848.953632    
max              919.000000             9.754641   4366.579380   4850.744997    
 
           Target_U      Sensor_E      Sensor_N      Sensor_U     TimeDelta   
count  36000.000000  3.600000e+04  3.600000e+04  3.600000e+04  36000.000000   
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mean     592.433848 -6.380407e+03  1.136893e+04  7.746446e+02     19.983333   
std      159.204976  1.819015e-12  1.819015e-12  2.273768e-13      0.315793   
min      283.533681 -6.380407e+03  1.136893e+04  7.746446e+02     14.000000   
25%      477.006498 -6.380407e+03  1.136893e+04  7.746446e+02     20.000000   
50%      586.643116 -6.380407e+03  1.136893e+04  7.746446e+02     20.000000   
75%      782.790066 -6.380407e+03  1.136893e+04  7.746446e+02     20.000000   
max      818.391497 -6.380407e+03  1.136893e+04  7.746446e+02     20.000000   

df_esm_extreme.TimeDelta.value_counts() 

20.0    35900 
14.0      100 
Name: TimeDelta, dtype: int64 

df_esm_extreme.DetectionResult.value_counts() 

SUCCESS    36000 
Name: DetectionResult, dtype: int64 

Frequency of ESM sensor is every 20 seconds 

• EO Sensor 

# create EO dataset 
df_eo_normal = make_sensoDetection_dataset(path_normalweather, sensor_name='EO') 
df_eo_normal.describe() 

completed 

               Time  SensorParentLongitude  SensorParentLatitude  \ 
count  72006.000000           7.200600e+04          72006.000000    
mean    3597.909035          -1.188638e+02             33.754513    
std     2078.510558           7.105477e-14              0.000000    
min        3.000000          -1.188638e+02             33.754513    
25%     1793.000000          -1.188638e+02             33.754513    
50%     3598.000000          -1.188638e+02             33.754513    
75%     5393.000000          -1.188638e+02             33.754513    
max     7193.000000          -1.188638e+02             33.754513    
 
       SensorParentAltitude_AGL  TargetLongitude  TargetLatitude  \ 
count                   72006.0     72006.000000    72006.000000    
mean                      903.0      -118.992067       33.660833    
std                         0.0         0.030179        0.025976    
min                       903.0      -119.054756       33.617448    
25%                       903.0      -119.015471       33.637794    
50%                       903.0      -118.987380       33.659148    
75%                       903.0      -118.967404       33.685679    
max                       903.0      -118.944905       33.703719    
 
       TargetAltitude_AGL_m  TargetRangeSlant_nm      Target_E      Target_N  \ 
count          72006.000000         72006.000000  72006.000000  72006.000000    
mean             693.810432             8.664566     -6.101467     92.842988    
std              159.377596             1.485807   2799.021389   2881.652354    
min              385.000000             5.092077  -5819.775043  -4719.805203    
25%              580.000000             7.707906  -2177.360386  -2463.121653    
50%              687.000000             9.384436    428.445750    -94.139975    
75%              884.000000             9.744898   2282.353082   2849.409924    
max              919.000000            10.487470   4366.533488   4850.804139    
 
           Target_U      Sensor_E      Sensor_N      Sensor_U     TimeDelta   
count  72006.000000  7.200600e+04  7.200600e+04  72006.000000  72006.000000   
mean     592.543037  1.187992e+04  1.049199e+04    783.289474      9.989445   
std      159.311443  1.819002e-12  5.457006e-12      0.000000      0.276174   
min      283.533591  1.187992e+04  1.049199e+04    783.289474      0.000000   
25%      477.002299  1.187992e+04  1.049199e+04    783.289474     10.000000   
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50%      586.644457  1.187992e+04  1.049199e+04    783.289474     10.000000   
75%      782.792665  1.187992e+04  1.049199e+04    783.289474     10.000000   
max      818.407433  1.187992e+04  1.049199e+04    783.289474     10.000000   

df_eo_normal.TimeDelta.value_counts() 
# Starts at time 

10.0    71900 
3.0       100 
0.0         6 
Name: TimeDelta, dtype: int64 

# Remove those rows that have timedelta = 0.0 
df_eo_normal = df_eo_normal[df_eo_normal.TimeDelta != 0.0] 
# Confirm that timedelta = 0. are removed. See the last column, std = 0. 
df_eo_normal.describe() 

               Time  SensorParentLongitude  SensorParentLatitude  \ 
count  72000.000000           7.200000e+04          72000.000000    
mean    3598.000000          -1.188638e+02             33.754513    
std     2078.473398           8.526572e-14              0.000000    
min        3.000000          -1.188638e+02             33.754513    
25%     1800.500000          -1.188638e+02             33.754513    
50%     3598.000000          -1.188638e+02             33.754513    
75%     5395.500000          -1.188638e+02             33.754513    
max     7193.000000          -1.188638e+02             33.754513    
 
       SensorParentAltitude_AGL  TargetLongitude  TargetLatitude  \ 
count                   72000.0     72000.000000    72000.000000    
mean                      903.0      -118.992069       33.660833    
std                         0.0         0.030179        0.025976    
min                       903.0      -119.054756       33.617448    
25%                       903.0      -119.015474       33.637794    
50%                       903.0      -118.987390       33.659149    
75%                       903.0      -118.967404       33.685679    
max                       903.0      -118.944905       33.703719    
 
       TargetAltitude_AGL_m  TargetRangeSlant_nm      Target_E      Target_N  \ 
count          72000.000000         72000.000000  72000.000000  72000.000000    
mean             693.808403             8.664635     -6.258486     92.838562    
std              159.378240             1.485811   2799.059415   2881.679140    
min              385.000000             5.092077  -5819.775043  -4719.805203    
25%              580.000000             7.707944  -2177.436968  -2463.144540    
50%              687.000000             9.384846    427.795137    -93.971853    
75%              884.000000             9.744924   2282.351654   2849.314603    
max              919.000000            10.487470   4366.533488   4850.804139    
 
           Target_U      Sensor_E      Sensor_N      Sensor_U     TimeDelta   
count  72000.000000  72000.000000  7.200000e+04  72000.000000  72000.000000   
mean     592.540978  11879.917919  1.049199e+04    783.289474      9.990278   
std      159.312117      0.000000  5.457006e-12      0.000000      0.260695   
min      283.533591  11879.917919  1.049199e+04    783.289474      3.000000   
25%      477.002268  11879.917919  1.049199e+04    783.289474     10.000000   
50%      586.644457  11879.917919  1.049199e+04    783.289474     10.000000   
75%      782.792572  11879.917919  1.049199e+04    783.289474     10.000000   
max      818.407433  11879.917919  1.049199e+04    783.289474     10.000000   

df_eo_normal.DetectionResult.value_counts() 

SUCCESS    72000 
Name: DetectionResult, dtype: int64 

# create EO dataset (for extreme weather condition) 
df_eo_extreme = make_sensoDetection_dataset(path_xtremeweather, sensor_name='EO') 
df_eo_extreme.describe() 

completed 
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               Time  SensorParentLongitude  SensorParentLatitude  \ 
count  72004.000000           7.200400e+04          72004.000000    
mean    3597.979168          -1.188638e+02             33.754513    
std     2078.458621           7.105477e-14              0.000000    
min        3.000000          -1.188638e+02             33.754513    
25%     1800.500000          -1.188638e+02             33.754513    
50%     3598.000000          -1.188638e+02             33.754513    
75%     5393.000000          -1.188638e+02             33.754513    
max     7193.000000          -1.188638e+02             33.754513    
 
       SensorParentAltitude_AGL  TargetLongitude  TargetLatitude  \ 
count                   72004.0     72004.000000    72004.000000    
mean                      903.0      -118.992321       33.660935    
std                         0.0         0.030410        0.025967    
min                       903.0      -119.054761       33.617493    
25%                       903.0      -119.016182       33.637856    
50%                       903.0      -118.987563       33.659429    
75%                       903.0      -118.967400       33.685701    
max                       903.0      -118.944907       33.703719    
 
       TargetAltitude_AGL_m  TargetRangeSlant_nm      Target_E      Target_N  \ 
count          72004.000000         72004.000000  72004.000000  72004.000000    
mean             693.394784             8.671238    -29.627579    104.185974    
std              159.363265             1.489474   2820.421546   2880.725599    
min              385.000000             5.092161  -5820.208383  -4714.832246    
25%              580.000000             7.703418  -2243.371949  -2456.290195    
50%              687.000000             9.415813    411.456345    -62.767558    
75%              884.000000             9.747221   2282.375877   2851.928632    
max              919.000000            10.487660   4366.390027   4850.753869    
 
           Target_U      Sensor_E      Sensor_N      Sensor_U     TimeDelta   
count  72004.000000  72004.000000  7.200400e+04  72004.000000  72004.000000   
mean     592.118150  11879.917919  1.049199e+04    783.289474      9.989723   
std      159.298687      0.000000  5.457006e-12      0.000000      0.271113   
min      283.533859  11879.917919  1.049199e+04    783.289474      0.000000   
25%      477.007620  11879.917919  1.049199e+04    783.289474     10.000000   
50%      586.641710  11879.917919  1.049199e+04    783.289474     10.000000   
75%      782.796552  11879.917919  1.049199e+04    783.289474     10.000000   
max      818.410904  11879.917919  1.049199e+04    783.289474     10.000000   

df_eo_extreme.TimeDelta.value_counts() 

10.0    71900 
3.0       100 
0.0         4 
Name: TimeDelta, dtype: int64 

df_eo_extreme = df_eo_extreme[df_eo_extreme.TimeDelta != 0.] 
df_eo_extreme.describe() 

               Time  SensorParentLongitude  SensorParentLatitude  \ 
count  72000.000000           7.200000e+04          72000.000000    
mean    3598.000000          -1.188638e+02             33.754513    
std     2078.473398           8.526572e-14              0.000000    
min        3.000000          -1.188638e+02             33.754513    
25%     1800.500000          -1.188638e+02             33.754513    
50%     3598.000000          -1.188638e+02             33.754513    
75%     5395.500000          -1.188638e+02             33.754513    
max     7193.000000          -1.188638e+02             33.754513    
 
       SensorParentAltitude_AGL  TargetLongitude  TargetLatitude  \ 
count                   72000.0     72000.000000    72000.000000    
mean                      903.0      -118.992322       33.660934    
std                         0.0         0.030410        0.025967    
min                       903.0      -119.054761       33.617493    
25%                       903.0      -119.016187       33.637855    
50%                       903.0      -118.987568       33.659428    
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75%                       903.0      -118.967403       33.685701    
max                       903.0      -118.944907       33.703719    
 
       TargetAltitude_AGL_m  TargetRangeSlant_nm      Target_E      Target_N  \ 
count          72000.000000         72000.000000  72000.000000  72000.000000    
mean             693.384306             8.671354    -29.777571    104.046248    
std              159.361327             1.489421   2820.420844   2880.709446    
min              385.000000             5.092161  -5820.208383  -4714.832246    
25%              580.000000             7.704518  -2243.737269  -2456.344871    
50%              687.000000             9.416157    411.164526    -63.099273    
75%              884.000000             9.747223   2282.345251   2851.889394    
max              919.000000            10.487660   4366.390027   4850.753869    
 
           Target_U      Sensor_E      Sensor_N      Sensor_U     TimeDelta   
count  72000.000000  72000.000000  7.200000e+04  72000.000000  72000.000000   
mean     592.107681  11879.917919  1.049199e+04    783.289474      9.990278   
std      159.296763      0.000000  5.457006e-12      0.000000      0.260695   
min      283.533859  11879.917919  1.049199e+04    783.289474      3.000000   
25%      477.007476  11879.917919  1.049199e+04    783.289474     10.000000   
50%      586.641540  11879.917919  1.049199e+04    783.289474     10.000000   
75%      782.796391  11879.917919  1.049199e+04    783.289474     10.000000   
max      818.410904  11879.917919  1.049199e+04    783.289474     10.000000   

df_eo_extreme.DetectionResult.value_counts() 

SUCCESS    72000 
Name: DetectionResult, dtype: int64 

Frequency of EO sensor is every 10 seconds 

• IR Sensor 

# create IR dataset 
df_ir_normal = make_sensoDetection_dataset(path_normalweather, sensor_name='IR') 
df_ir_normal.describe() 

completed 

               Time  SensorParentLongitude  SensorParentLatitude  \ 
count  72005.000000           7.200500e+04          7.200500e+04    
mean    3597.844941          -1.188296e+02          3.358266e+01    
std     2078.504077           4.263286e-14          7.105477e-15    
min        3.000000          -1.188296e+02          3.358266e+01    
25%     1793.000000          -1.188296e+02          3.358266e+01    
50%     3593.000000          -1.188296e+02          3.358266e+01    
75%     5393.000000          -1.188296e+02          3.358266e+01    
max     7193.000000          -1.188296e+02          3.358266e+01    
 
       SensorParentAltitude_AGL  TargetLongitude  TargetLatitude  \ 
count                   72005.0     72005.000000    72005.000000    
mean                      607.0      -118.992069       33.660832    
std                         0.0         0.030180        0.025976    
min                       607.0      -119.054756       33.617448    
25%                       607.0      -119.015475       33.637794    
50%                       607.0      -118.987391       33.659149    
75%                       607.0      -118.967405       33.685677    
max                       607.0      -118.944905       33.703719    
 
       TargetAltitude_AGL_m  TargetRangeSlant_nm      Target_E      Target_N  \ 
count          72005.000000         72005.000000  72005.000000  72005.000000    
mean             693.803861             9.494121     -6.337075     92.806810    
std              159.378527             1.557213   2799.094753   2881.659295    
min              385.000000             7.302612  -5819.775043  -4719.805203    
25%              580.000000             8.112456  -2177.637142  -2463.128034    
50%              687.000000             9.296807    427.709268    -93.936991    
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75%              884.000000            10.705660   2282.322727   2849.119877    
max              919.000000            12.730020   4366.533488   4850.804139    
 
           Target_U      Sensor_E      Sensor_N      Sensor_U     TimeDelta   
count  72005.000000  72005.000000  7.200500e+04  7.200500e+04  72005.000000   
mean     592.536430  15074.295905 -8.567119e+03  4.834323e+02      9.989584   
std      159.312455      0.000000  5.457006e-12  3.410629e-13      0.273656   
min      283.533591  15074.295905 -8.567119e+03  4.834323e+02      0.000000   
25%      477.002269  15074.295905 -8.567119e+03  4.834323e+02     10.000000   
50%      586.644438  15074.295905 -8.567119e+03  4.834323e+02     10.000000   
75%      782.792466  15074.295905 -8.567119e+03  4.834323e+02     10.000000   
max      818.407433  15074.295905 -8.567119e+03  4.834323e+02     10.000000   

df_ir_normal.TimeDelta.value_counts() 

10.0    71900 
3.0       100 
0.0         5 
Name: TimeDelta, dtype: int64 

df_ir_normal = df_ir_normal[df_ir_normal.TimeDelta != 0] 
df_ir_normal.describe() 

               Time  SensorParentLongitude  SensorParentLatitude  \ 
count  72000.000000           7.200000e+04          7.200000e+04    
mean    3598.000000          -1.188296e+02          3.358266e+01    
std     2078.473398           2.842191e-14          7.105477e-15    
min        3.000000          -1.188296e+02          3.358266e+01    
25%     1800.500000          -1.188296e+02          3.358266e+01    
50%     3598.000000          -1.188296e+02          3.358266e+01    
75%     5395.500000          -1.188296e+02          3.358266e+01    
max     7193.000000          -1.188296e+02          3.358266e+01    
 
       SensorParentAltitude_AGL  TargetLongitude  TargetLatitude  \ 
count                   72000.0     72000.000000    72000.000000    
mean                      607.0      -118.992069       33.660833    
std                         0.0         0.030179        0.025976    
min                       607.0      -119.054756       33.617448    
25%                       607.0      -119.015474       33.637794    
50%                       607.0      -118.987390       33.659149    
75%                       607.0      -118.967404       33.685679    
max                       607.0      -118.944905       33.703719    
 
       TargetAltitude_AGL_m  TargetRangeSlant_nm      Target_E      Target_N  \ 
count          72000.000000         72000.000000  72000.000000  72000.000000    
mean             693.808403             9.494098     -6.258405     92.839063    
std              159.378240             1.557179   2799.059538   2881.679526    
min              385.000000             7.302612  -5819.775043  -4719.805203    
25%              580.000000             8.112457  -2177.436968  -2463.144540    
50%              687.000000             9.296772    427.795137    -93.971853    
75%              884.000000            10.705652   2282.351654   2849.314603    
max              919.000000            12.730020   4366.533488   4850.804139    
 
           Target_U      Sensor_E      Sensor_N      Sensor_U     TimeDelta   
count  72000.000000  7.200000e+04  7.200000e+04  7.200000e+04  72000.000000   
mean     592.540978  1.507430e+04 -8.567119e+03  4.834323e+02      9.990278   
std      159.312117  1.819002e-12  5.457006e-12  3.410629e-13      0.260695   
min      283.533591  1.507430e+04 -8.567119e+03  4.834323e+02      3.000000   
25%      477.002268  1.507430e+04 -8.567119e+03  4.834323e+02     10.000000   
50%      586.644457  1.507430e+04 -8.567119e+03  4.834323e+02     10.000000   
75%      782.792572  1.507430e+04 -8.567119e+03  4.834323e+02     10.000000   
max      818.407433  1.507430e+04 -8.567119e+03  4.834323e+02     10.000000   

df_ir_normal.DetectionResult.value_counts() 

SUCCESS    72000 
Name: DetectionResult, dtype: int64 
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# create IR dataset 
df_ir_extreme = make_sensoDetection_dataset(path_xtremeweather, sensor_name='IR') 
df_ir_extreme.describe() 

completed 

               Time  SensorParentLongitude  SensorParentLatitude  \ 
count  72001.000000           7.200100e+04          7.200100e+04    
mean    3597.960487          -1.188296e+02          3.358266e+01    
std     2078.486007           4.263286e-14          7.105477e-15    
min        3.000000          -1.188296e+02          3.358266e+01    
25%     1793.000000          -1.188296e+02          3.358266e+01    
50%     3593.000000          -1.188296e+02          3.358266e+01    
75%     5393.000000          -1.188296e+02          3.358266e+01    
max     7193.000000          -1.188296e+02          3.358266e+01    
 
       SensorParentAltitude_AGL  TargetLongitude  TargetLatitude  \ 
count                   72001.0     72001.000000    72001.000000    
mean                      607.0      -118.992322       33.660933    
std                         0.0         0.030410        0.025967    
min                       607.0      -119.054761       33.617493    
25%                       607.0      -119.016187       33.637853    
50%                       607.0      -118.987567       33.659427    
75%                       607.0      -118.967404       33.685701    
max                       607.0      -118.944907       33.703719    
 
       TargetAltitude_AGL_m  TargetRangeSlant_nm      Target_E      Target_N  \ 
count          72001.000000         72001.000000  72001.000000  72001.000000    
mean             693.381161             9.507952    -29.759436    104.002125    
std              159.362454             1.567453   2820.405710   2880.713922    
min              385.000000             7.302612  -5820.208383  -4714.832246    
25%              580.000000             8.111111  -2243.712115  -2456.355915    
50%              687.000000             9.312607    411.219979    -63.113737    
75%              884.000000            10.740300   2282.336923   2851.885242    
max              919.000000            12.729870   4366.390027   4850.753869    
 
           Target_U      Sensor_E      Sensor_N      Sensor_U     TimeDelta   
count  72001.000000  7.200100e+04  7.200100e+04  7.200100e+04  72001.000000   
mean     592.104542  1.507430e+04 -8.567119e+03  4.834323e+02      9.990139   
std      159.297883  1.819002e-12  5.457006e-12  2.842191e-13      0.263339   
min      283.533859  1.507430e+04 -8.567119e+03  4.834323e+02      0.000000   
25%      477.007354  1.507430e+04 -8.567119e+03  4.834323e+02     10.000000   
50%      586.641513  1.507430e+04 -8.567119e+03  4.834323e+02     10.000000   
75%      782.796353  1.507430e+04 -8.567119e+03  4.834323e+02     10.000000   
max      818.410904  1.507430e+04 -8.567119e+03  4.834323e+02     10.000000   

df_ir_extreme.TimeDelta.value_counts() 

10.0    71900 
3.0       100 
0.0         1 
Name: TimeDelta, dtype: int64 

df_ir_extreme = df_ir_extreme[df_ir_extreme.TimeDelta != 0] 
df_ir_extreme.describe() 

               Time  SensorParentLongitude  SensorParentLatitude  \ 
count  72000.000000           7.200000e+04          7.200000e+04    
mean    3598.000000          -1.188296e+02          3.358266e+01    
std     2078.473398           2.842191e-14          7.105477e-15    
min        3.000000          -1.188296e+02          3.358266e+01    
25%     1800.500000          -1.188296e+02          3.358266e+01    
50%     3598.000000          -1.188296e+02          3.358266e+01    
75%     5395.500000          -1.188296e+02          3.358266e+01    
max     7193.000000          -1.188296e+02          3.358266e+01    
 
       SensorParentAltitude_AGL  TargetLongitude  TargetLatitude  \ 
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count                   72000.0     72000.000000    72000.000000    
mean                      607.0      -118.992322       33.660934    
std                         0.0         0.030410        0.025967    
min                       607.0      -119.054761       33.617493    
25%                       607.0      -119.016187       33.637855    
50%                       607.0      -118.987568       33.659428    
75%                       607.0      -118.967403       33.685701    
max                       607.0      -118.944907       33.703719    
 
       TargetAltitude_AGL_m  TargetRangeSlant_nm      Target_E      Target_N  \ 
count          72000.000000         72000.000000  72000.000000  72000.000000    
mean             693.384306             9.507973    -29.777824    104.046549    
std              159.361327             1.567454   2820.420980   2880.709263    
min              385.000000             7.302612  -5820.208383  -4714.832246    
25%              580.000000             8.111196  -2243.737269  -2456.344871    
50%              687.000000             9.312612    411.164526    -63.099273    
75%              884.000000            10.740325   2282.345251   2851.889394    
max              919.000000            12.729870   4366.390027   4850.753869    
 
           Target_U      Sensor_E      Sensor_N      Sensor_U     TimeDelta   
count  72000.000000  7.200000e+04  7.200000e+04  7.200000e+04  72000.000000   
mean     592.107681  1.507430e+04 -8.567119e+03  4.834323e+02      9.990278   
std      159.296763  1.819002e-12  5.457006e-12  3.410629e-13      0.260695   
min      283.533859  1.507430e+04 -8.567119e+03  4.834323e+02      3.000000   
25%      477.007476  1.507430e+04 -8.567119e+03  4.834323e+02     10.000000   
50%      586.641540  1.507430e+04 -8.567119e+03  4.834323e+02     10.000000   
75%      782.796391  1.507430e+04 -8.567119e+03  4.834323e+02     10.000000   
max      818.410904  1.507430e+04 -8.567119e+03  4.834323e+02     10.000000   

df_ir_extreme.DetectionResult.value_counts()  # NOTE THE LARGE NUMBER OF FAILURE! 

SUCCESS    38604 
FAILURE    33396 
Name: DetectionResult, dtype: int64 

Frequency of IR sensor is every 10 seconds 

• Radar Sensor 

# create Radar dataset 
df_radar_normal = make_sensoDetection_dataset(path_normalweather, sensor_name='Radar') 
df_radar_normal.describe() 

completed 

                Time  SensorParentLongitude  SensorParentLatitude  \ 
count  360147.000000           3.601470e+05          3.601470e+05    
mean     3600.866843          -1.190876e+02          3.354606e+01    
std      2079.116050           5.684350e-14          2.842175e-14    
min         1.000000          -1.190876e+02          3.354606e+01    
25%      1801.000000          -1.190876e+02          3.354606e+01    
50%      3601.000000          -1.190876e+02          3.354606e+01    
75%      5401.000000          -1.190876e+02          3.354606e+01    
max      7201.000000          -1.190876e+02          3.354606e+01    
 
       SensorParentAltitude_AGL  TargetLongitude  TargetLatitude  \ 
count                  360147.0    360147.000000   360147.000000    
mean                      177.0      -118.992089       33.660832    
std                         0.0         0.030189        0.025972    
min                       177.0      -119.054763       33.617448    
25%                       177.0      -119.015520       33.637800    
50%                       177.0      -118.987410       33.659155    
75%                       177.0      -118.967407       33.685674    
max                       177.0      -118.944905       33.703720    
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       TargetAltitude_AGL_m  TargetRangeSlant_nm       Target_E  \ 
count         360147.000000        360147.000000  360147.000000    
mean             693.756125             8.541511      -8.177971    
std              159.339332             1.405408    2799.914827    
min              385.000000             7.030613   -5820.429935    
25%              580.000000             7.287161   -2181.938157    
50%              687.000000             8.066295     425.734235    
75%              884.000000             9.528920    2282.070128    
max              919.000000            11.821320    4366.579380    
 
            Target_N       Target_U      Sensor_E      Sensor_N  \ 
count  360147.000000  360147.000000  3.601470e+05  3.601470e+05    
mean       92.756207     592.488525 -8.883363e+03 -1.263428e+04    
std      2881.204708     159.273136  5.456976e-12  3.637984e-12    
min     -4719.805203     283.533361 -8.883363e+03 -1.263428e+04    
25%     -2462.362747     477.004657 -8.883363e+03 -1.263428e+04    
50%       -93.434946     586.644092 -8.883363e+03 -1.263428e+04    
75%      2848.831384     782.791056 -8.883363e+03 -1.263428e+04    
max      4850.929508     818.407433 -8.883363e+03 -1.263428e+04    
 
            Sensor_U      TimeDelta   
count  360147.000000  360147.000000   
mean       58.261496       1.999461   
std         0.000000       0.028273   
min        58.261496       0.000000   
25%        58.261496       2.000000   
50%        58.261496       2.000000   
75%        58.261496       2.000000   
max        58.261496       2.000000   

df_radar_normal.TimeDelta.value_counts() 

2.0    360000 
1.0       100 
0.0        47 
Name: TimeDelta, dtype: int64 

df_radar_normal = df_radar_normal[df_radar_normal.TimeDelta != 0] 
df_radar_normal.describe() 

                Time  SensorParentLongitude  SensorParentLatitude  \ 
count  360100.000000           3.601000e+05          3.601000e+05    
mean     3601.000000          -1.190876e+02          3.354606e+01    
std      2079.041126           5.684350e-14          2.842175e-14    
min         1.000000          -1.190876e+02          3.354606e+01    
25%      1801.000000          -1.190876e+02          3.354606e+01    
50%      3601.000000          -1.190876e+02          3.354606e+01    
75%      5401.000000          -1.190876e+02          3.354606e+01    
max      7201.000000          -1.190876e+02          3.354606e+01    
 
       SensorParentAltitude_AGL  TargetLongitude  TargetLatitude  \ 
count                  360100.0    360100.000000   360100.000000    
mean                      177.0      -118.992090       33.660833    
std                         0.0         0.030189        0.025972    
min                       177.0      -119.054763       33.617448    
25%                       177.0      -119.015520       33.637800    
50%                       177.0      -118.987412       33.659156    
75%                       177.0      -118.967407       33.685674    
max                       177.0      -118.944905       33.703720    
 
       TargetAltitude_AGL_m  TargetRangeSlant_nm       Target_E  \ 
count         360100.000000        360100.000000  360100.000000    
mean             693.756934             8.541522      -8.249560    
std              159.337394             1.405437    2799.969614    
min              385.000000             7.030613   -5820.429935    
25%              580.000000             7.287151   -2181.951401    
50%              687.000000             8.066305     425.637259    
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75%              884.000000             9.529140    2282.069816    
max              919.000000            11.821320    4366.579380    
 
            Target_N       Target_U      Sensor_E      Sensor_N  \ 
count  360100.000000  360100.000000  3.601000e+05  3.601000e+05    
mean       92.824525     592.489297 -8.883363e+03 -1.263428e+04    
std      2881.231633     159.271177  5.456976e-12  1.818992e-12    
min     -4719.805203     283.533361 -8.883363e+03 -1.263428e+04    
25%     -2462.360313     477.004735 -8.883363e+03 -1.263428e+04    
50%       -93.236604     586.644093 -8.883363e+03 -1.263428e+04    
75%      2848.948128     782.791065 -8.883363e+03 -1.263428e+04    
max      4850.929508     818.407433 -8.883363e+03 -1.263428e+04    
 
            Sensor_U      TimeDelta   
count  360100.000000  360100.000000   
mean       58.261496       1.999722   
std         0.000000       0.016662   
min        58.261496       1.000000   
25%        58.261496       2.000000   
50%        58.261496       2.000000   
75%        58.261496       2.000000   
max        58.261496       2.000000   

df_radar_normal.DetectionResult.value_counts() 

SUCCESS    360100 
Name: DetectionResult, dtype: int64 

# create Radar dataset 
df_radar_extreme = make_sensoDetection_dataset(path_xtremeweather, sensor_name='Radar') 
df_radar_extreme.describe() 

completed 

                Time  SensorParentLongitude  SensorParentLatitude  \ 
count  360206.000000           3.602060e+05          3.602060e+05    
mean     3600.742825          -1.190876e+02          3.354606e+01    
std      2079.086320           5.684350e-14          2.842175e-14    
min         1.000000          -1.190876e+02          3.354606e+01    
25%      1801.000000          -1.190876e+02          3.354606e+01    
50%      3601.000000          -1.190876e+02          3.354606e+01    
75%      5401.000000          -1.190876e+02          3.354606e+01    
max      7201.000000          -1.190876e+02          3.354606e+01    
 
       SensorParentAltitude_AGL  TargetLongitude  TargetLatitude  \ 
count                  360206.0    360206.000000   360206.000000    
mean                      177.0      -118.992345       33.660934    
std                         0.0         0.030419        0.025963    
min                       177.0      -119.054761       33.617485    
25%                       177.0      -119.016219       33.637867    
50%                       177.0      -118.987596       33.659432    
75%                       177.0      -118.967409       33.685694    
max                       177.0      -118.944905       33.703720    
 
       TargetAltitude_AGL_m  TargetRangeSlant_nm       Target_E  \ 
count         360206.000000        360206.000000  360206.000000    
mean             693.323726             8.541366     -31.895451    
std              159.322074             1.404933    2821.314200    
min                0.000000             7.034362   -5820.208383    
25%              580.000000             7.288851   -2246.500214    
50%              687.000000             8.062613     408.664318    
75%              884.000000             9.528897    2281.445486    
max              919.000000            11.821310    4366.557253    
 
            Target_N       Target_U      Sensor_E      Sensor_N      Sensor_U  \ 
count  360206.000000  360206.000000  3.602060e+05  3.602060e+05  3.602060e+05    
mean      104.135351     592.046883 -8.883363e+03 -1.263428e+04  5.826150e+01    
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std      2880.262490     159.257441  5.456976e-12  1.818992e-12  7.105437e-15    
min     -4715.694308    -100.834577 -8.883363e+03 -1.263428e+04  5.826150e+01    
25%     -2455.097115     477.008369 -8.883363e+03 -1.263428e+04  5.826150e+01    
50%       -62.485051     586.641057 -8.883363e+03 -1.263428e+04  5.826150e+01    
75%      2851.109719     782.795140 -8.883363e+03 -1.263428e+04  5.826150e+01    
max      4850.924599     818.426246 -8.883363e+03 -1.263428e+04  5.826150e+01    
 
           TimeDelta   
count  360206.000000   
mean        1.999134   
std         0.038131   
min         0.000000   
25%         2.000000   
50%         2.000000   
75%         2.000000   
max         2.000000   

df_radar_extreme.TimeDelta.value_counts() 

2.0    360000 
0.0       106 
1.0       100 
Name: TimeDelta, dtype: int64 

df_radar_extreme = df_radar_extreme[df_radar_extreme.TimeDelta != 0.] 
df_radar_extreme.describe() 

                Time  SensorParentLongitude  SensorParentLatitude  \ 
count  360100.000000           3.601000e+05          3.601000e+05    
mean     3601.000000          -1.190876e+02          3.354606e+01    
std      2079.041126           5.684350e-14          2.842175e-14    
min         1.000000          -1.190876e+02          3.354606e+01    
25%      1801.000000          -1.190876e+02          3.354606e+01    
50%      3601.000000          -1.190876e+02          3.354606e+01    
75%      5401.000000          -1.190876e+02          3.354606e+01    
max      7201.000000          -1.190876e+02          3.354606e+01    
 
       SensorParentAltitude_AGL  TargetLongitude  TargetLatitude  \ 
count                  360100.0    360100.000000   360100.000000    
mean                      177.0      -118.992345       33.660935    
std                         0.0         0.030420        0.025963    
min                       177.0      -119.054761       33.617485    
25%                       177.0      -119.016219       33.637867    
50%                       177.0      -118.987596       33.659433    
75%                       177.0      -118.967408       33.685694    
max                       177.0      -118.944905       33.703720    
 
       TargetAltitude_AGL_m  TargetRangeSlant_nm       Target_E  \ 
count         360100.000000        360100.000000  360100.000000    
mean             693.322646             8.541402     -31.863930    
std              159.325000             1.404936    2821.370839    
min                0.000000             7.034362   -5820.208383    
25%              580.000000             7.288854   -2246.531834    
50%              687.000000             8.062624     408.680739    
75%              884.000000             9.529084    2281.542512    
max              919.000000            11.821310    4366.557253    
 
            Target_N       Target_U      Sensor_E      Sensor_N  \ 
count  360100.000000  360100.000000  3.601000e+05  3.601000e+05    
mean      104.179312     592.045769 -8.883363e+03 -1.263428e+04    
std      2880.282450     159.260372  5.456976e-12  1.818992e-12    
min     -4715.694308    -100.834577 -8.883363e+03 -1.263428e+04    
25%     -2455.104375     477.008353 -8.883363e+03 -1.263428e+04    
50%       -62.471799     586.641054 -8.883363e+03 -1.263428e+04    
75%      2851.147074     782.795196 -8.883363e+03 -1.263428e+04    
max      4850.924599     818.426246 -8.883363e+03 -1.263428e+04    
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            Sensor_U      TimeDelta   
count  360100.000000  360100.000000   
mean       58.261496       1.999722   
std         0.000000       0.016662   
min        58.261496       1.000000   
25%        58.261496       2.000000   
50%        58.261496       2.000000   
75%        58.261496       2.000000   
max        58.261496       2.000000   

df_radar_extreme.DetectionResult.value_counts() 

SUCCESS    360098 
FAILURE         2 
Name: DetectionResult, dtype: int64 

Frequency of Radar is every 2 seconds 

(1) Observation: 

Number of entries per scenario run for normal and extreme weather remains 

unchanged for target position and sensors. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
Number of target positions

Number of sensor detections
 

Dataset Normal Weather Extreme Weather Expected Sensor Period 

Target Position 7202 7202 - 
Radar 3601 3601 2 

ESM 360 360 20 

EO 360 360 10 

IR 720 720 10 

Presence of data with TimeDelta being 0 days 00:00:00 This suggests that these 

data are replicated within the dataset,m hence the TimeDelta is different. Modification 

made to import script is to remove rows with TimeDelta = 0. 

2. Detection Success / Failure Rate across Each Scenario 

def scn_detect_proportion(df): 
  avg = [] 
  for _, _df in df.groupby('TimelineID'): 
    val = _df.DetectionResult.value_counts() 
    success = val['SUCCESS'] 
    total = len(df) 
    success_rate = success / total * 100 
    avg.append(success_rate) 
  return avg, np.mean(avg), np.std(avg) 
 
 
for sensor in SENSORS: 
  _, mu, std = scn_detect_proportion(dataset['normal'][sensor]) 
  print(f'{sensor}: {mu:.4e} +/- {std:.4e}') 
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IR: 1.0000e+00 +/- 0.0000e+00 
EO: 1.0000e+00 +/- 0.0000e+00 
Radar: 1.0000e+00 +/- 0.0000e+00 
ESM: 1.0000e+00 +/- 0.0000e+00 

for sensor in SENSORS: 
  _, mu, std = scn_detect_proportion(dataset['extreme'][sensor]) 
  print(f'{sensor}: {mu:.4f} +/- {std:.4f}') 

IR: 0.5362 +/- 0.0386 
EO: 1.0000 +/- 0.0000 
Radar: 1.0000 +/- 0.0001 
ESM: 1.0000 +/- 0.0000 

Conclusion: 

• Detection Rate for NORMAL weather is 100%, 

• while that for EXTREME weather is about 50% for IR, while close to 

perfect for Radar. EO and ESM is unaffected by extreme weather 

simulated 

• Individual Sensor Error with respect to Ground Truth 

weather = 'normal' 
df_pos = dataset[weather]['pos'] 
for sensor in SENSORS: 
  _df_sensor = dataset[weather][sensor].copy(deep=True) 
  _df_pos = df_pos.copy(deep=True) 
  df_merged = pd.merge(_df_sensor, _df_pos, left_on=['TimelineID', 'Time'], 
right_on=['TimelineID', 'Time'], how='left') 
  df_merged['Err_ENU_x'] = df_merged.apply(lambda r: sq_err_1d(r.Target_E, r.Unit_E), axis=1) 
  df_merged['Err_ENU_y'] = df_merged.apply(lambda r: sq_err_1d(r.Target_N, r.Unit_N), axis=1) 
  df_merged['Err_ENU_z'] = df_merged.apply(lambda r: sq_err_1d(r.Target_U, r.Unit_U), axis=1) 
  df_merged['Err_ENU_2d'] = df_merged.apply(lambda r: l2_norm_2d(r.Target_E, r.Target_N, r.Unit_E, 
r.Unit_N), axis=1) 
 
  del _df_pos, _df_sensor  # memory management 
  errs = [] 
  for _, _df in df_merged.groupby('TimelineID'): 
    errs.append(_df.Err_ENU_2d.mean()) 
   
  # save file for future reference: 
  if SAVE_DF: 
    df_merged.to_feather(f'../data/df_merged_normal_pos_{sensor}.ftr') 
 
  # sensor-aggregated performance 
  mu = np.mean(errs) 
  std = np.std(errs) 
  print(f'{sensor}: {mu:.4e} +/- {std:.4e}') 

IR: 6.1656e+00 +/- 1.8957e-02 
EO: 6.1653e+00 +/- 1.8502e-02 
Radar: 6.1725e+00 +/- 1.8650e-02 
ESM: 4.2150e-01 +/- 1.4163e-02 

dataset['extreme']['IR'].DetectionResult.value_counts() 
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SUCCESS    38604 
FAILURE    33396 
Name: DetectionResult, dtype: int64 

weather = 'extreme' 
df_pos = dataset[weather]['pos'] 
for sensor in SENSORS: 
  _df_sensor = dataset[weather][sensor].copy(deep=True) 
  _df_pos = df_pos.copy(deep=True) 
  df_merged = pd.merge(_df_sensor, _df_pos, left_on=['TimelineID', 'Time'], 
right_on=['TimelineID', 'Time'], how='left') 
  df_merged['Err_ENU_x'] = df_merged.apply(lambda r: sq_err_1d(r.Target_E, r.Unit_E), axis=1) 
  df_merged['Err_ENU_y'] = df_merged.apply(lambda r: sq_err_1d(r.Target_N, r.Unit_N), axis=1) 
  df_merged['Err_ENU_z'] = df_merged.apply(lambda r: sq_err_1d(r.Target_U, r.Unit_U), axis=1) 
  df_merged['Err_ENU_2d'] = df_merged.apply(lambda r: l2_norm_2d(r.Target_E, r.Target_N, r.Unit_E, 
r.Unit_N), axis=1) 
  df_merged.to_feather(f'../data/df_merged_{weather}_pos_{sensor}.ftr') 
 
  del _df_pos, _df_sensor  # memory management 
  errs = [] 
  for _, _df in df_merged.groupby('TimelineID'): 
    errs.append(_df.Err_ENU_2d.mean()) 
 
  # save file for future reference: 
  if SAVE_DF: 
    df_merged.to_feather(f'../data/df_merged_extreme_pos_{sensor}.ftr') 
 
  # sensor-aggregated performance 
  mu = np.mean(errs) 
  std = np.std(errs) 
  print(f'{sensor}: {mu:.4e} +/- {std:.4e}') 

IR: 6.1637e+00 +/- 1.8438e-02 
EO: 6.1640e+00 +/- 1.8425e-02 
Radar: 6.1710e+00 +/- 1.9342e-02 
ESM: 4.2200e-01 +/- 1.4134e-02 

(1) Are there significant differences in DetectionResult = FAILURE vs 
SUCCESSS for IR in adverse weather? 

df_merged = pd.read_feather('../data/df_merged_extreme_pos_IR.ftr') 

# global statistics 
sns.displot(df_merged, x='Err_ENU_2d',col='DetectionResult') 
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sns.displot(df_merged, x='Err_ENU_x',col='DetectionResult') 
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sns.displot(df_merged, x='Err_ENU_y',col='DetectionResult') 

 
# Average across all the scenarios, instead of global statistics. 
success_errs = [] 
failure_errs = [] 
for _, _df_merged in df_merged.groupby('TimelineID'): 
  success = _df_merged[_df_merged.DetectionResult == 'SUCCESS'] 
  failure = _df_merged[_df_merged.DetectionResult == 'FAILURE'] 
  success_errs.append(success.Err_ENU_2d.mean()) 
  failure_errs.append(failure.Err_ENU_2d.mean()) 
print(f'{sensor}, DetectionResult=Success: {np.mean(success_errs):.4e} +/- 
{np.std(success_errs):.4e}') 
print(f'{sensor}, DetectionResult=Failure: {np.mean(failure_errs):.4e} +/- 
{np.std(failure_errs):.4e}') 

ESM, DetectionResult=Success: 6.1788e+00 +/- 1.0368e-02 
ESM, DetectionResult=Failure: 6.1471e+00 +/- 3.7479e-02 

sx = pd.DataFrame({'Err':success_errs,'Detection Result':'Success'}) 
fx = pd.DataFrame({'Err':failure_errs, 'Detection Result':'Failure'}) 
out = pd.concat([sx,fx],ignore_index=True) 

f, ax = plt.subplots(1,1,figsize=(7,7)) 
sns.histplot(out, x='Err',hue='Detection Result', ax=ax,kde=True, fill=False, multiple='stack') 
ax.set_xlabel('Error') 
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E. CALCULATE THE SENSOR ERRORS 

The purpose of calculating each sensor’s error is to provide KF with uncertainty 

of measurement, so that KF will be able to update its probabilistic belief of  the target’s 

state. There is an error for each dimension of the state measured - i.e., lon (x), lat (y). 

Thus, we represent the sensor's uncertainty as an average across all measurements by the 

sensor vis-a-vis the ground truth dataset.  
 

weather = 'normal' 
stats = {} 
for sensor in SENSORS: 
    df_merged = pd.read_feather(f'../data/df_merged_{weather}_pos_{sensor}.ftr') 
    f, axes = plt.subplots(1, 2, figsize=(16, 5)) 
    plt.suptitle(f'{sensor}') 
    mu_x = df_merged.Err_ENU_x.mean() 
    std_x = df_merged.Err_ENU_x.std() 
    mu_y = df_merged.Err_ENU_y.mean() 
    std_y = df_merged.Err_ENU_y.std() 
 
    for i, t in enumerate(['x', 'y']): 
        ax =axes[i] 
        sns.histplot(data=df_merged, x=f'Err_ENU_{t}', kde=True, ax=ax) 
        if t=='x': 
            ax.set_xlabel(f'Estimation Error along Dim {t} ({mu_x:.3e}+/-{std_x:.3e})') 
        else: 
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            ax.set_xlabel(f'Estimation Error along Dim {t} ({mu_y:.3e}+/-{std_y:.3e})') 
    stats.update({sensor:{'mu_x':mu_x, 'std_x':std_x,'mu_y':mu_y, 'std_y':std_y}}) 
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dat = pd.DataFrame(stats) 
dat.to_pickle('../data/sensor_err_stats.pkl') 

dat 

             IR        EO     Radar       ESM 
mu_x   3.889024  3.889116  3.890564  0.266667 
std_x  1.711266  1.711265  1.709136  0.209541 
mu_y   4.052315  4.051945  4.058989  0.276587 
std_y  1.919304  1.919407  1.915697  0.210433 
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APPENDIX E. PYTHON NOTEBOOK — BASELINE MODEL 
WITH KF 

The objective of this notebook is to implement Kalman filter as a predictor-

corrector estimator for position prediction. 

A. PARAMETERS IN THE KALMAN FILTER ALGORITHM 

Outline of the KF algorithm: 

1. Initialization 

• Initialize the state of the filter 

• Initialize our probabilistic belief in the state 

2. Predict Step 

• Use process model to predict state at the next time step 

• Adjust probabilistic belief to account for the uncertainty in prediction 

3. Update Step 

• Get a measurement and associated probabilistic belief about its accuracy 

• Compute residual between estimated state and measurement 

• Compute scaling factor based on whether the measurement or prediction is 

more accurate 

• Set state between the prediction and measurement based on scaling factor 

• Update model’s probabilistic belief of the estimated state, using the 

measurement noise covariance matrix 

 
import os 
import pandas as pd 
import numpy as np 



114 

# import matplotlib.pyplot as plt 
import seaborn as sns 
sns.set_style('whitegrid') 
sns.set_context('notebook', font_scale = 1) 
from pprint import pprint 
from helper import * 
# Kalman Filter Package 
from filterpy.Kalman import KalmanFilter 
from filterpy.common import Saver 
from filterpy.common import Q_discrete_white_noise 

### 1. Import dataset 
data = load_all_dfs() 
data_merged=load_merged_dfs(weather='normal') 

data_merged['EO'].columns 

Index(['TimelineID', 'Time', 'SensorID', 'SensorName', 'SensorParentLongitude', 
       'SensorParentLatitude', 'SensorParentAltitude_AGL', 'TargetID', 
       'TargetName', 'TargetLongitude', 'TargetLatitude', 
       'TargetAltitude_AGL_m', 'TargetRangeSlant_nm', 'DetectionResult', 
       'DetectionAOU', 'Target_E', 'Target_N', 'Target_U', 'Sensor_E', 
       'Sensor_N', 'Sensor_U', 'TimeDelta_x', 'UnitID', 'UnitName', 'UnitType', 
       'UnitClass', 'UnitLongitude', 'UnitLatitude', 'UnitCourse', 
       'UnitSpeed_kts', 'UnitAltitude_m', 'Unit_E', 'Unit_N', 'Unit_U', 
       'TimeDelta_y', 'Err_ENU_x', 'Err_ENU_y', 'Err_ENU_z', 'Err_ENU_2d'], 
      dtype='object') 

 

B. SET UP KALMAN FILTER FUNCTIONS 

This section illustrates how a KF is set up and the internal workings. 

The state variable would be [𝑥𝑥, 𝑦𝑦,𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑, 𝑑𝑑2𝑥𝑥,𝑑𝑑2𝑦𝑦] where: 

• Velocity: 𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑 are the rate of change for 𝑥𝑥, 𝑦𝑦 and 

• Acceleration: 𝑑𝑑2𝑥𝑥, 𝑑𝑑2𝑦𝑦 are the rate of change for 𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑 

• 𝑥𝑥 = longitude, 

• 𝑦𝑦 = latitude 

# Number of state parameters 
dim_x = 6  
# size of measurement vector = each sensor provides x and y == 2 
dim_z = 2  

tracker = KalmanFilter(dim_x = dim_x, dim_z=dim_z) 
dt = 1. # we set the timestep = 1 because that is the target position update periodicity. 
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a. Define the State Transition Matrix  

(1) Constant Acceleration Model 

F_accl = np.array([[1, 0, dt, 0, (dt**2) / 2, 0], [0, 1, 0, dt, 0, (dt**2) / 2], [0, 0, 1, 0, dt, 
0], [0, 0, 0, 0, 0, dt], [0, 0, 0, 0, 1, 0], 
                   [0, 0, 0, 0, 0, 1]]) 

(2) Constant Velocity Model 

F_vel = np.array([[1, 0, dt, 0, 0, 0], [0, 1, 0, dt, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 
0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]) 

b. Define the Process Noise Matrix 

• Assume that the process is a discrete Wiener Process 

• This assumes independence between lat, lon (N and E respectively) (the 

dimensions of each state variables) 

X=[x y dx dy d2x d2y] 
Q = Cov(X) 

Hence, 𝑄𝑄11 = 𝜎𝜎x and etc 
q = Q_discrete_white_noise(dim=3, dt=dt, var=1, block_size=2, order_by_dim=False) 
tracker.Q = q 
print(tracker.Q) 

[[0.25 0.   0.5  0.   0.5  0.  ] 
 [0.   0.25 0.   0.5  0.   0.5 ] 
 [0.5  0.   1.   0.   1.   0.  ] 
 [0.   0.5  0.   1.   0.   1.  ] 
 [0.5  0.   1.   0.   1.   0.  ] 
 [0.   0.5  0.   1.   0.   1.  ]] 

c. Define the Measurement Function 

tracker.H = np.array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0]]) 
print(tracker.H) 

[[1 0 0 0 0 0] 
 [0 1 0 0 0 0]] 

print(tracker.H.shape) 

(2, 6) 

d. Define the Measurement Noise Matrix 

• Assume that lat, lon, lat are independent White Gaussian Process ~ 𝑁𝑁(0,5) 

- i.e., a measurement gaussian noise of 5𝑚𝑚2 
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• Measurement noise per sensor per dimension of measurement. 

# or assume that the noise is uniform and constant for all sensors. 
q = np.eye(tracker.dim_z, tracker.dim_z) 
# assume that the sensor noise is 1e-6... 
sensor_noise = 1e-6 
tracker.R = q  * sensor_noise # replicate onces for each of the sensors. 

e. Define Initial Conditions 

# Define the initial condition 
# std for location E, N: 2800.117175 2880.817604  
P0 = [2800**2, 2800**2, 1, 1, .5, .5] 
P0 = np.eye(6, 6) @ P0 

print(P0) 

[7.84e+06 7.84e+06 1.00e+00 1.00e+00 5.00e-01 5.00e-01] 

# assume that we do not know the initial  
x0 = np.zeros([6,1]) 

# Initialise tracker with our belief and initial uncertainity 
tracker.P = P0 
tracker.x = x0 

 

C. CREATING AN INTERFACE WITH DATASET 

The dataset has the following properties that require our attention  

1. The sensor data does not arrive at regular timestep; each sensor has its 

own periodicity  

2. Lack of covariances in the measurement function. 
class SensorDataWrapper: 
  """ 
  Define each sensor as a sensor class itself, and provides the dataset when  
  called by the other function. 
  """ 
 
  def __init__(self, dataset_dict, sensor, weather='normal'): 
    self.data = dataset_dict[weather][sensor] 
    self.timelineID = None 
    self.time = 0.  # maintains a clock within itself to provide error-checking. 
    self._data = None 
    self.num_entries = None 
    self.start_time = self.data.Time.min() 
    self.end_time = self.data.Time.max() 
    self.sensor = sensor  # name of sensor 
 
  def update_periodicity(self, period): 
    self.periodicity = period 
 
  def set_timelineID(self, timelineID): 
    self.timelineID = timelineID 
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    self.set_time(0)  # reset the clock, since we are interested in the new timeline now 
    self._data = self.data[self.data.TimelineID == timelineID] 
    self._data.set_index('Time', inplace=True) 
    self.num_entries = len(self._data) 
 
  def set_time(self, time): 
    self.time = time 
 
  def get_next_detection(self): 
    """ 
    this is the main interface with various functions. 
    After calling the set_timelineID, get_next_detection would return parameters of interests 
    returns (t,x,y) where t= time of detection, x=latitude, y=longitude 
    """ 
    try: 
      x = self._data.loc[self.time]['Target_E'] 
      y = self._data.loc[self.time]['Target_N'] 
      return (self.time, x, y) 
    except KeyError: 
      print(f'{self.time} is not in the index from data') 
 
  def tick(self): 
    # Advance the clock 
    # if there are no more sensor data, return False 
    self.time += 1. 
    return self.time <= self.end_time and self.check_alert() 
 
  def check_alert(self): 
    ### alert when there is a detection. 
    return self.time in self._data.index 

 
 
def get_sensor_stats(): 
  sensor_err_stats = pd.read_pickle('../data/sensor_err_stats.pkl') 
  mat_R = {} 
  for sensor in SENSORS: 
    mat_R[sensor] = np.array([[sensor_err_stats.loc['std_x', sensor]**2, 0.], [0., 
sensor_err_stats.loc['std_y', sensor]**2]]) 
  return mat_R 

 
 

class KFWrapper: 
  """ 
  Creates a Kalman Filter Wrapper around KalmanFilter from FilterPy to interface with the dataset 
  """ 
 
  def __init__(self, F_type='acc', dim_x=6, dim_z=2, var_Q=10., sensor_err_stats=None): 
    """ 
    F_type  :   The type of systems dynamic model. Either 'acc' or 'vel' for constant acceleration 
or constant velocity model 
    dim_x   :   sizer of state parameters 
    dim_z   :   size of measurement space per sensor 
    """ 
    dim_x = dim_x 
    dim_z = dim_z 
    # Set up the KF: 
    self.kf = KalmanFilter(dim_x=dim_x, dim_z=dim_z) 
    self.dt = 1. 
    self.init = False 
    self.saver = Saver(self.kf) 
 
    # Process model 
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    assert F_type in ['acc', 'vel'] 
    if F_type == 'acc': 
      self.kf.F = np.array([[1, 0, self.dt, 0, (self.dt**2) / 2, 0], [0, 1, 0, self.dt, 0, 
(self.dt**2) / 2], [0, 0, 1, 0, self.dt, 0], 
                            [0, 0, 0, 0, 0, self.dt], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]) 
    elif F_type == 'vel': 
      self.kf.F = np.array([[1, 0, self.dt, 0, 0, 0], [0, 1, 0, self.dt, 0, 0], [0, 0, 1, 0, 0, 
0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], 
                            [0, 0, 0, 0, 0, 0]]) 
 
    # process noise 
    # High variance in process ==> KF relies on measurement more. 
    self.kf.Q = Q_discrete_white_noise(dim=3, dt=self.dt, var=var_Q, block_size=2, 
order_by_dim=False) 
    # print(self.kf.Q) 
 
    # measurement function 
    # we only have 1 set of x, y measurement from the sensor 
    self.kf.H = np.array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0]]) 
 
    # measurement noise 
    # the measurements is a 2x1 matrix z 
    # hence the measurement noise would be 2x2 
    # assume each measurement of x and y are independent and constant noise 
    # sensor_noise = 1e-3 
    # self.kf.R = np.eye(dim_z, dim_z) * sensor_noise 
 
  def set_init_process_noise(self, P0): 
    self.kf.P = P0 
 
  def update_observation(self, sensor, z): 
    if not self.init: 
      self.kf.x[0] = z[0] 
      self.kf.x[1] = z[1] 
      self.init = True 
      print(f'init kf with position {z}') 
    else: 
      self.kf.R = sensor_err_stats[sensor] 
      # print(self.kf.R) 
      self.kf.update(z) 
    # self.saver.save() # save the state of x after updating with observation. 
 
  def get_prediction(self): 
    self.kf.predict() 
    self.saver.save() 

 
# use the mu, std from population statistics... 
sensor_err_stats = pd.read_pickle('../data/sensor_err_stats.pkl') 
print(sensor_err_stats) 
# R is an 2x2 matrix, there will be one matrix for each sensor, based on the std in 
sensor_err_stats 
# power 2 because cov is sigma^2 
def get_sensor_stats(): 
  sensor_err_stats = pd.read_pickle('../data/sensor_err_stats.pkl') 
  mat_R = {} 
  for sensor in SENSORS: 
    mat_R[sensor] = np.array([[sensor_err_stats.loc['std_x', sensor]**2, 0.], [0., 
sensor_err_stats.loc['std_y', sensor]**2]]) 
  return mat_R 
get_sensor_stats() 

             IR        EO     Radar       ESM 
mu_x   3.889024  3.889116  3.890564  0.266667 
std_x  1.711266  1.711265  1.709136  0.209541 
mu_y   4.052315  4.051945  4.058989  0.276587 
std_y  1.919304  1.919407  1.915697  0.210433 
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{'IR': array([[2.92843122, 0.        ], 
        [0.        , 3.68372751]]), 
 'EO': array([[2.92842714, 0.        ], 
        [0.        , 3.68412198]]), 
 'Radar': array([[2.92114647, 0.        ], 
        [0.        , 3.66989405]]), 
 'ESM': array([[0.04390724, 0.        ], 
        [0.        , 0.04428191]])} 

def setup_run(timelineID, data, weather): 
  sensor_dat = {} 
  for sensor in SENSORS: 
    sensor_dat[sensor] = SensorDataWrapper(data, sensor, weather=weather) 
    sensor_dat[sensor].set_timelineID(timelineID) 
    print( 
        f'sensor: {sensor}\tstart: {sensor_dat[sensor].start_time}\t#entries: 
{sensor_dat[sensor].num_entries}' 
    ) 
  endtime = data['normal']['pos'].Time.max() 
  return sensor_dat, endtime 

D. RUNNING A SIMULATION WITH KF 

def run(timelineID, kf, data, weather='normal'): 
  """ 
  Run the Kalman filter on the sensor dataset 
  """ 
  print(f"filtering timelineID: {timelineID}") 
  time = 0. 
  sensor_dat, endtime = setup_run(timelineID, data, weather=weather) 
 
  while time < endtime: 
    time += 1 
    # Predict Step: 
    # estimate the location of the target, only update the prediction  
    # iff there are measurements from the sensors. 
    if time > 1: 
      kf.get_prediction() 
    # update clock of sensors_dat 
    # get the detection if the sensor has a detection at this timestep 
    # accumulate all the measurements from the sensors 
    for sensor in SENSORS: 
      if sensor_dat[sensor].tick(): 
        (t, x, y) = sensor_dat[sensor].get_next_detection() 
        assert t == time, f"alert is out of sync (got t={t}, but time is {time})" 
        # print(f'{sensor}:{t}') 
        kf.update_observation(sensor, np.array([[x, y]]).T) 
 
  return kf 

sensor_err_stats = get_sensor_stats() 
kf = KFWrapper(sensor_err_stats=sensor_err_stats) 
# Define the initial condition 
P0 = [65**2, 65**2, .5**2, .5**2, .5**4, .5**4] 
P0 = np.eye(6, 6) * P0 
kf.set_init_process_noise(P0) 
# sample for a timeline ID. 
timelineIDs = data['normal']['ESM'].TimelineID.unique() 
timelineID = timelineIDs[5] # running on normal weather sample 5 
kf = run(timelineID, kf=kf, data=data, weather='normal') 

filtering timelineID: 67362da0-b4b9-458e-b14d-e76d72dbbc9d 
sensor: IR start: 3 #entries: 720 
sensor: EO start: 3 #entries: 720 
sensor: Radar start: 1 #entries: 3601 
sensor: ESM start: 14 #entries: 360 



120 

init kf with position [[1774.92667137] 
 [-720.46927762]] 

 

(1) Calculate Estimation Error by KF Algorithm 

def get_metrics(kf, df_pos, timelineID): 
  pos_extract = np.array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0]]).T 
  df_pos = df_pos[df_pos.TimelineID == timelineID] 
  df_pos = df_pos.loc[:, ['Time', 'Unit_E', 'Unit_N']] 
  df_pos.drop(df_pos.index[0], axis=0, inplace=True) 
  df_pos.reset_index(inplace=True, drop=True) 
  kf_latlon = np.array(kf.saver.x).squeeze() @ pos_extract 
  df_kf = pd.DataFrame(kf_latlon, columns=[ 
      'KF_E', 
      'KF_N', 
  ]) 
  df_merged = pd.concat([df_pos, df_kf], axis=1) 
  df_merged['residual_E'] = df_merged.apply(lambda r: sq_err_1d(r.KF_E, r.Unit_E), axis=1) 
  df_merged['residual_N'] = df_merged.apply(lambda r: sq_err_1d(r.KF_N, r.Unit_N), axis=1) 
  df_merged['residual_2d'] = df_merged.apply(lambda r: sq_err_2d(r.KF_N, r.Unit_N, r.KF_E, 
r.Unit_E), axis=1) 
  return kf_latlon, df_pos, df_merged 

df_pos = data['normal']['pos'] 
df_latlon, df_pos, df_merged = get_metrics(kf, df_pos, timelineID) 

 

(2) Visualization 

df_merged.describe() 

              Time       Unit_E       Unit_N         KF_E         KF_N  \ 
count  7201.000000  7201.000000  7201.000000  7201.000000  7201.000000    
mean   3602.000000  -121.291135    78.954700  -120.139041    78.649491    
std    2078.893977  2924.502682  2859.777332  2924.188147  2860.033013    
min       2.000000 -5813.182289 -4619.082017 -5816.758788 -4620.465758    
25%    1802.000000 -2656.802653 -2435.575792 -2658.526479 -2435.807653    
50%    3602.000000   329.895356   -98.149750   329.942908   -99.538963    
75%    5402.000000  2280.884665  2820.640969  2279.818083  2820.919260    
max    7202.000000  4361.794368  4849.184519  4362.413869  4850.974606    
 
         residual_E   residual_N  residual_2d   
count  7.201000e+03  7201.000000  7201.000000   
mean   5.807884e+01    29.268166    87.347004   
std    1.612977e+02    41.794770   174.577502   
min    4.967165e-08     0.001089     0.987838   
25%    4.107866e+00    14.620390    35.281986   
50%    1.954108e+01    19.202310    39.954806   
75%    3.984480e+01    35.008957    50.015390   
max    1.221567e+03   326.047007  1235.578773   
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sns.scatterplot(df_merged.loc[:, 'residual_E'], df_merged.loc[:, 'residual_N']) 
ax = plt.gca() 

 
sns.scatterplot(df_merged.loc[0:1000, 'Time'], df_merged.loc[0:1000, 'residual_N']) 

 

 
  



122 

f, (ax1, ax2) = plt.subplots(2, 1, figsize=(9, 8), sharex=True) 
 
_df_merged = df_merged.iloc[1:] 
# Longitude 
ax1.scatter(_df_merged.Time, _df_merged.KF_E, label='KF estimated position', facecolor='none', 
edgecolors='r', marker='o', linewidths=1) 
ax1.plot(_df_merged.Time, _df_merged.Unit_E, linewidth=2, label='Ground Truth') 
ax1.set_ylabel('Longitude') 
ax1.legend() 
# Latitude 
ax2.scatter(_df_merged.Time, _df_merged.residual_E, marker='.', linewidths=.5, alpha=0.2) 
ax2.set_xlabel('Simulation Time') 
ax2.set_ylabel('Residual') 

Text(0, 0.5, 'Residual') 

 

 
  



123 

f, (ax1, ax2) = plt.subplots(2, 1, figsize=(9, 8), sharex=True) 
 
_df_merged = df_merged.iloc[1:] 
# Longitude 
ax1.scatter(_df_merged.Time, _df_merged.KF_N, label='KF estimated position', facecolor='none', 
edgecolors='r', marker='o', linewidths=1) 
ax1.plot(_df_merged.Time, _df_merged.Unit_N, linewidth=2, label='Ground Truth') 
ax1.set_ylabel('Longitude') 
ax1.legend() 
# Latitude 
ax2.scatter(_df_merged.Time, _df_merged.residual_E, marker='.', linewidths=.5, alpha=0.2) 
ax2.set_xlabel('Simulation Time') 
ax2.set_ylabel('Residual') 

Text(0, 0.5, 'Residual') 

 
 

 
f, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8), sharex=True) 
 
_df_merged = df_merged.iloc[1:] 
# Longitude 
ax1.scatter(_df_merged.Time, _df_merged.KF_E, label='KF estimated position', facecolor='none', 
edgecolors='r', marker='o', linewidths=1, alpha=.5) 
ax1.plot(_df_merged.Time, _df_merged.Unit_E, linewidth=1.5, label='Ground Truth') 
ax1.set_ylabel('Longitude') 
ax1.legend() 
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ax1.set_xlim(2300, 2500) 
ax1.set_ylim(-6000, -5000) 
# Latitude 
ax2.scatter(_df_merged.Time, _df_merged.residual_E, marker='.', alpha=.5, linewidths=2) 
ax2.set_xlim(2300, 2500) 
ax2.set_xlabel('Simulation Time') 
ax2.set_ylabel('RMSE(Longitude)') 
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f, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8), sharex=True) 
 
_df_merged = df_merged.iloc[1:] 
# Longitude 
ax1.scatter(_df_merged.Time, _df_merged.KF_E, label='KF estimated position', facecolor='none', 
edgecolors='r', marker='o', linewidths=1, alpha=.5) 
ax1.plot(_df_merged.Time, _df_merged.Unit_E, linewidth=1.5, label='Ground Truth') 
ax1.set_ylabel('Longitude') 
ax1.legend() 
ax1.set_xlim(0, 200) 
ax1.set_ylim(1750, 1900) 
# Latitude 
ax2.scatter(_df_merged.Time, _df_merged.residual_E, marker='.', alpha=.5, linewidths=2) 
ax2.set_xlim(0, 200) 
ax2.set_ylim(-1, 10) 
ax2.set_xlabel('Simulation Time') 
ax2.set_ylabel('RMSE(Longitude)') 

 

 

 
f, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8), sharex=True) 
 
_df_merged = df_merged.iloc[1:] 
# Longitude 
ax1.scatter(_df_merged.Time, _df_merged.KF_E, label='KF estimated position', facecolor='none', 
edgecolors='r', marker='o', linewidths=1, alpha=.5) 
ax1.plot(_df_merged.Time, _df_merged.Unit_E, linewidth=1.5, label='Ground Truth') 
ax1.set_ylabel('Longitude') 
ax1.legend() 
ax1.set_xlim(1500, 1700) 
ax1.set_ylim(-3000, -1900) 
# Latitude 
ax2.scatter(_df_merged.Time, _df_merged.residual_E, marker='.',alpha=.5, linewidths=2) 
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ax2.set_xlim(1500, 1700) 
ax2.set_xlabel('Simulation Time') 
ax2.set_ylabel('RMSE(Longitude)') 
 

 

 
f, (ax1, ax2) = plt.subplots(2,1,figsize=(8,8), sharex=True) 
 
_df_merged = df_merged.iloc[1:] 
# Longitude 
ax1.scatter(_df_merged.Time, _df_merged.KF_N, label='KF estimated Latitude', facecolor='none', 
edgecolors='r', marker='o', alpha=.5, linewidths=2) 
ax1.plot(_df_merged.Time, _df_merged.Unit_N, linewidth=1.5, label='Unit Position (Latitude)') 
ax1.scatter(_df_merged.Time, _df_merged.KF_E, label='KF estimated Longitude', facecolor='none', 
edgecolors='b', marker='o', alpha=.5, linewidths=2) 
ax1.plot(_df_merged.Time, _df_merged.Unit_E, linewidth=1.5, label='Unit Position (Longitude)') 
ax1.set_ylabel('Longitude and latitude') 
ax1.legend(loc=1,bbox_to_anchor=(1.4,1)) 
ax2.scatter(_df_merged.Time, _df_merged.residual_E, linewidth=.1, label='Squared Error 
(Longitude)',alpha=.2) 
ax2.scatter(_df_merged.Time, _df_merged.residual_N, linewidth=.1, label='Squared Error 
(Latitude)',alpha=.2) 
ax2.legend(loc=1,bbox_to_anchor=(1.4,1)) 
ax2.set_yscale('log') 
ax2.set_xlabel('Simulation Time') 
ax2.set_ylabel('Log(Squared Error)') 
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f, (ax1, ax2) = plt.subplots(2,1,figsize=(8,8), sharex=True) 
 
_df_merged = df_merged.iloc[1:] 
# Longitude 
ax1.scatter(_df_merged.Time, _df_merged.KF_N, label='KF estimated Latitude', facecolor='none', 
edgecolors='r', marker='o', alpha=.5, linewidths=2) 
ax1.plot(_df_merged.Time, _df_merged.Unit_N, linewidth=1.5, label='Unit Position (Latitude)') 
ax1.scatter(_df_merged.Time, _df_merged.KF_E, label='KF estimated Longitude', facecolor='none', 
edgecolors='b', marker='o', alpha=.5, linewidths=2) 
ax1.plot(_df_merged.Time, _df_merged.Unit_E, linewidth=1.5, label='Unit Position (Longitude)') 
ax1.set_ylabel('Longitude and latitude') 
ax1.legend(loc=1,bbox_to_anchor=(1.4,1)) 
# Latitude 
ax2.scatter(_df_merged.Time, _df_merged.residual_E, linewidth=.1, label='Squared Error 
(Longitude)',alpha=.2) 
ax2.scatter(_df_merged.Time, _df_merged.residual_N, linewidth=.1, label='Squared Error 
(Latitude)',alpha=.2) 
ax2.legend(loc=1,bbox_to_anchor=(1.4,1)) 
ax2.set_xlabel('Simulation Time') 
ax2.set_ylabel('Log(Squared Error)') 
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E. EVALUATION OF RESULTS 

# NORMAL DATASET 
kf_runs = {} 
sensor_err_stats = get_sensor_stats() 
for timelineID, df_pos in data['normal']['pos'].groupby('TimelineID'): 
  kf = KFWrapper(sensor_err_stats=sensor_err_stats) 
  # Define the initial condition 
  P0 = [65**2, 65**2, .5**2, .5**2, .5**4, .5**4] 
  P0 = np.eye(6, 6) * P0 
  kf.set_init_process_noise(P0) 
  kf = run(timelineID, kf=kf, data=data, weather='normal') 
  _, _, df_merged = get_metrics(kf, df_pos, timelineID) 
  # save for subsequent processing 
  df_merged.to_feather(f'./kf_eval_normal/{timelineID}.ftr') 

# EXTREME DATASET 
kf_runs = {} 
sensor_err_stats = get_sensor_stats() 
for timelineID, df_pos in data['extreme']['pos'].groupby('TimelineID'): 
  kf = KFWrapper(sensor_err_stats=sensor_err_stats) 
  # Define the initial condition 
  P0 = [65**2, 65**2, .5**2, .5**2, .5**4, .5**4] 
  P0 = np.eye(6, 6) * P0 
  kf.set_init_process_noise(P0) 
  kf = run(timelineID, kf=kf, data=data, weather='extreme') 
  _, _, df_merged = get_metrics(kf, df_pos, timelineID) 
  # save for subsequent processing 
  df_merged.to_feather(f'./kf_eval_extreme/{timelineID}.ftr') 
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The following analysis is conducted for each scenario. 

1. Calculate the average detection error (RMSE) for each simulation run, 

2. Calculate the mean and standard deviation of detection error for KF 

estimation for each type of settings. 
# Normal environment 
dir = './kf_eval_normal/' 
res_mu_normal_x = [] 
res_mu_normal_y = [] 
res_mu_normal = [] 
for outfile in os.listdir(dir): 
  df = pd.read_feather(os.path.join(dir, outfile)) 
  res_mu_normal_x.append(np.sqrt(df.residual_E.mean())) # calculates the RMSE of the error  
  res_mu_normal_y.append(np.sqrt(df.residual_N.mean())) 
  res_mu_normal.append(np.sqrt(df.residual_2d.mean())) 

df.describe() 

              Time       Unit_E       Unit_N         KF_E         KF_N  \ 
count  7201.000000  7201.000000  7201.000000  7201.000000  7201.000000    
mean   3602.000000   239.824163   141.206389   240.200543   141.893502    
std    2078.893977  2658.804546  2899.506122  2658.940273  2900.052696    
min       2.000000 -5816.487395 -4650.551169 -5817.020354 -4652.149989    
25%    1802.000000 -1519.905938 -2458.942698 -1522.850643 -2459.945697    
50%    3602.000000   686.380796    44.131313   686.463870    44.890885    
75%    5402.000000  2282.164401  2893.976985  2282.316028  2895.304009    
max    7202.000000  4365.368905  4850.039709  4367.081153  4851.811333    
 
        residual_E   residual_N  residual_2d   
count  7201.000000  7201.000000  7201.000000   
mean     53.163313    32.026724    85.190037   
std     155.677964    44.883423   168.368409   
min       0.000002     0.001087     1.475548   
25%       3.618628    15.637721    35.834311   
50%      18.204557    20.282036    40.453811   
75%      38.292947    36.485428    49.754200   
max    1245.670857   346.307507  1252.985527   

res_normal = pd.DataFrame({ 
    'RMSE(longitude)': res_mu_normal_x, 
    'RMSE(latitude)': res_mu_normal_y, 
    'RMSE(overall)': res_mu_normal, 
    'Environment': 'Normal' 
}) 

g = sns.pairplot(res_normal, corner=True, aspect=.9, 
hue='Environment',palette=dict(Normal=sns.color_palette()[0], Extreme=sns.color_palette()[1]), 
plot_kws=dict(), diag_kws=dict(fill=False), diag_kind="hist") 
f = plt.gcf() 
f.suptitle('Distribution of errors between KF prediction and actual unit position\n(Normal Weather 
Dataset)') 

Text(0.5, 0.98, 'Distribution of errors between KF prediction and actual unit position\n(Normal 
Weather Dataset)') 



130 

 
res_normal.describe() 

       RMSE(longitude)  RMSE(latitude)  RMSE(overall) 
count       100.000000      100.000000     100.000000 
mean          7.541179        5.478568       9.323550 
std           0.181759        0.131409       0.073194 
min           7.279208        5.038347       9.223251 
25%           7.404439        5.398342       9.273100 
50%           7.505960        5.507928       9.308336 
75%           7.633440        5.579259       9.351967 
max           8.172307        5.664053       9.600601 
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# Extreme environment 
dir = './kf_eval_extreme/' 
res_mu_extreme_x = [] 
res_mu_extreme_y = [] 
res_mu_extreme = [] 
for outfile in os.listdir(dir): 
  df = pd.read_feather(os.path.join(dir, outfile)) 
  res_mu_extreme_x.append(np.sqrt(df.residual_E.mean())) 
  res_mu_extreme_y.append(np.sqrt(df.residual_N.mean())) 
  res_mu_extreme.append(np.sqrt(df.residual_2d.mean())) 
res_extreme = pd.DataFrame({ 
    'RMSE(longitude)': res_mu_extreme_x, 
    'RMSE(latitude)': res_mu_extreme_y, 
    'RMSE(overall)': res_mu_extreme, 
  'Environment': 'Extreme' 
}) 

g = sns.pairplot(res_extreme, corner=True, 
hue='Environment',palette=dict(NormaL=sns.color_palette()[0], Extreme=sns.color_palette()[1]), 
plot_kws=dict(), diag_kws=dict(fill=False), diag_kind="hist") 
f = plt.gcf() 
f.suptitle('Distribution of errors between KF prediction and actual unit position\n(Extreme 
Weather Dataset)') 

Text(0.5, 0.98, 'Distribution of errors between KF prediction and actual unit position\n(Extreme 
Weather Dataset)') 
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res_extreme.describe() 

       RMSE(longitude)  RMSE(latitude)  RMSE(overall) 
count       100.000000      100.000000     100.000000 
mean          7.559086        5.467258       9.331756 
std           0.195241        0.140200       0.079345 
min           7.290751        5.040938       9.229639 
25%           7.409365        5.381114       9.272755 
50%           7.522444        5.497256       9.320632 
75%           7.668317        5.577457       9.370688 
max           8.179266        5.659610       9.607884 

# Put EXTREME and NORMAL together 
res_combined = pd.concat([res_extreme, res_normal], axis=0, ignore_index=True) 
g = sns.pairplot(res_combined, corner=True, hue='Environment', diag_kind='kde') 
f = plt.gcf() 
f.suptitle('Distribution of RMSE by KF model') 

Text(0.5, 0.98, 'Distribution of RMSE by KF model') 
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APPENDIX F. PYTHON SCRIPTS–ML MODEL TUNING 

File: tune_nn.py 
1. import os 
2. import numpy as np 
3. import torch as th 
4. import torch.nn.functional as F 
5. import pandas as pd 
6. import random 
7.   
8. from ray import tune 
9. from ray.tune.schedulers import ASHAScheduler 
10. from functools import partial 
11. from helper import * 
12. from sensor import SensorDataWrapper, SensorDataset 
13. from collections import OrderedDict 
14. from sklearn.model_selection import train_test_split 
15. from sklearn.preprocessing import MinMaxScaler 
16.   
17. # Set the manual seed for reproducibility. 
18. seed = 3 
19. random.seed(seed) 
20. np.random.seed(seed) 
21. th.manual_seed(seed) 
22.   
23.   
24. # Create Data Lodaer 
25. class CustomDataset(th.utils.data.Dataset): 
26.   
27.   def __init__(self, x, y): 
28.     self.x = th.tensor(x) 
29.     self.y = th.tensor(y) 
30.     # debug 
31.     # print(self.x.shape) 
32.     # print(self.y.shape) 
33.     assert self.x.shape[0] == self.y.shape[0], "x, y do not agree in length" 
34.   
35.   def __len__(self): 
36.     return self.x.shape[0] 
37.   
38.   def __getitem__(self, i): 
39.     return self.x[i], self.y[i] 
40.   
41.   
42. class FC_NN(th.nn.Module): 
43.   ### Creates a simple fc regression neural net 
44.   
45.   def __init__(self, input_dim, layers_dim, act_fn): 
46.     super().__init__() 
47.   
48.     # input layer 
49.     layers = [('input', th.nn.Linear(input_dim, layers_dim[0])), ('act_fn_0', 

act_fn())] 
50.   
51.     # fc hidden layers 
52.     for i in range(1, len(layers_dim)): 
53.       layers.append((f'layer_{i}', th.nn.Linear(layers_dim[i - 1], 
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layers_dim[i]))) 
54.       layers.append((f'act_fn_{i}', act_fn())) 
55.   
56.     # output layer 
57.     layers.append(('output_layer', th.nn.Linear(layers_dim[-1], 2))) 
58.   
59.     self.model = th.nn.Sequential(OrderedDict(layers)) 
60.   
61.   def forward(self, obs): 
62.     o = self.model(obs) 
63.     return o 
64.   
65.   
66. class Double_Head_NN(th.nn.Module): 
67.   ### Creates a simple fc regression neural net 
68.   ### Takes as input the 
69.   
70.   def __init__(self, input_dim, act_fn=th.nn.ReLU, num_hidden_nodes_1=8, 

num_hidden_nodes_2=2): 
71.     super().__init__() 
72.   
73.     # input layer 
74.     layers = [('input', th.nn.Linear(input_dim, num_hidden_nodes_1)), 

('act_fn_0', act_fn())] 
75.     layers.append((f'layer_1', th.nn.Linear(num_hidden_nodes_1, 

num_hidden_nodes_1))) 
76.     layers.append((f'act_fn_1', act_fn())) 
77.   
78.     # fc mixed layers 
79.     layers_1 = layers.copy() 
80.     layers_1.append((f'layer_2_1', th.nn.Linear(num_hidden_nodes_1, 

num_hidden_nodes_2))) 
81.     layers_1.append((f'act_fn_2_1', act_fn())) 
82.     layers_1.append((f'output_1', th.nn.Linear(num_hidden_nodes_2, 1))) 
83.   
84.     layers_2 = layers.copy() 
85.     layers_2.append((f'flayer_2_2', th.nn.Linear(num_hidden_nodes_1, 

num_hidden_nodes_2))) 
86.     layers_2.append((f'act_fn_2_2', act_fn())) 
87.     layers_2.append((f'output_2', th.nn.Linear(num_hidden_nodes_2, 1))) 
88.   
89.     self.model_1 = th.nn.Sequential(OrderedDict(layers_1)) 
90.     self.model_2 = th.nn.Sequential(OrderedDict(layers_2)) 
91.   
92.   def forward(self, obs): 
93.     x = self.model_1(obs) 
94.     y = self.model_2(obs) 
95.     # print(o) 
96.     return th.cat([x, y], dim=1) 
97.   
98.   
99. def create_dataset(sensor, weather='normal'): 
100.   ds = {} 
101.   random_state = 29071993 
102.   data = 

pd.read_feather(f'C:\\Users\\moves\\Documents\\ml4cop\\data\\df_merged_{weather}
_pos_{sensor}.ftr') 

103.   ds = {} 
104.   # remove columns that are not required, save memory 
105.   data.drop([ 
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106.       'TimelineID', 'Time', 'SensorID', 'SensorName', 
'SensorParentLongitude', 'SensorParentLatitude', 'SensorParentAltitude_AGL', 
'TargetID', 

107.       'TargetName', 'TargetLongitude', 'TargetLatitude', 
'TargetAltitude_AGL_m', 'TargetRangeSlant_nm', 'DetectionResult', 
'DetectionAOU', 'Target_U', 

108.       'Sensor_U', 'TimeDelta_x', 'UnitID', 'UnitName', 'UnitType', 
'UnitClass', 'UnitLongitude', 'UnitLatitude', 'UnitCourse', 'UnitSpeed_kts', 

109.       'UnitAltitude_m', 'Unit_E', 'Unit_N', 'Unit_U', 'TimeDelta_y', 
'Err_ENU_z', 'Err_ENU_2d' 

110.   ], 
111.             axis=1, 
112.             inplace=True) 
113.   train_data, test_data = train_test_split(data, test_size=0.3, 

random_state=random_state, shuffle=True) 
114.   val_data, test_data = train_test_split(test_data, test_size=0.5, 

random_state=random_state, shuffle=True) 
115.   ds['train'] = { 
116.       'x': train_data[['Target_E', 

'Target_N']].to_numpy(dtype=np.float32), 
117.       'y': train_data[['Err_ENU_x', 

'Err_ENU_y']].to_numpy(dtype=np.float32) 
118.   } 
119.   ds['val'] = { 
120.       'x': val_data[['Target_E', 

'Target_N']].to_numpy(dtype=np.float32), 
121.       'y': val_data[['Err_ENU_x', 

'Err_ENU_y']].to_numpy(dtype=np.float32) 
122.   } 
123.   ds['test'] = { 
124.       'x': test_data[['Target_E', 

'Target_N']].to_numpy(dtype=np.float32), 
125.       'y': test_data[['Err_ENU_x', 

'Err_ENU_y']].to_numpy(dtype=np.float32) 
126.   } 
127.   
128.   print(f'sensor: {sensor}') 
129.   print(f"train: {ds['train']['x'].shape}, {ds['train']['y'].shape}") 
130.   print(f"val: {ds['val']['x'].shape}, {ds['val']['y'].shape}") 
131.   print(f"test: {ds['test']['x'].shape}, {ds['test']['y'].shape}\n") 
132.   
133.   # we only fit it to the training dataset, and use the fitted scaler to 

scale the rest of splits. 
134.   scalers = MinMaxScaler() 
135.   scalers.fit(ds['train']['x']) 
136.   # Transform input: 
137.   for _type in ['train', 'test', 'val']: 
138.     ds[_type]['x'] = scalers.transform(ds[_type]['x']) 
139.   
140.   return ds 
141.   
142.   
143. # Function to train moodel on training dataset. 
144. def train(model, dataLoader, criterion, optimizer, grad_clip_value, 

device='cpu'): 
145.   # store training statistics 
146.   batch_loss = [] 
147.   # Set model to training 
148.   model.train() 
149.   for x, y in dataLoader: 
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150.     x = x.to(device) 
151.     y = y.to(device) 
152.     optimizer.zero_grad() 
153.     y_pred = model(x) 
154.     loss = criterion(y, y_pred) 
155.     # calculate gradient 
156.     loss.backward() 
157.     # clip the gradients to norm(grad) = 1.0 
158.     th.nn.utils.clip_grad_norm_(model.parameters(), grad_clip_value) 
159.     optimizer.step() 
160.     # calculate training loss across batches. 
161.     batch_loss.append(loss.item()) 
162.   avg_loss = np.mean(batch_loss) 
163.   return avg_loss 
164.   
165.   
166. # Function for validating model on validation dataset. 
167. def val(model, dataLoader, criterion, device='cpu'): 
168.   val_loss = [] 
169.   # set model to evaluation model 
170.   model.eval() 
171.   for x, y in dataLoader: 
172.     x = x.to(device) 
173.     y = y.to(device) 
174.     y_pred = model(x) 
175.     loss = criterion(y, y_pred) 
176.     val_loss.append(loss.item()) 
177.   avg_loss = np.mean(val_loss) 
178.   return avg_loss 
179.   
180.   
181. def train_doublehead_tune(config, checkpoint_dir=None, sensor=None): 
182.   
183.   # Create model 
184.   model = Double_Head_NN(input_dim=config['input_dim'], 
185.                          num_hidden_nodes_1=config['num_hidden_nodes_1']

, 
186.                          num_hidden_nodes_2=config['num_hidden_nodes_2']

) 
187.   optimizer = th.optim.Adam(model.parameters(), lr=config['lr_init'], 

weight_decay=1e-4) 
188.   scheduler = th.optim.lr_scheduler.StepLR(optimizer, 

step_size=config['lr_drop_step'], gamma=config['lr_drop_fraction'])  #, 
verbose=True) 

189.   criterion = th.nn.L1Loss() 
190.   
191.   # Check for GPU 
192.   device = 'cpu' 
193.   # if th.cuda.is_available(): 
194.   #   device = 'cuda:0' 
195.   # print(device) 
196.   model = model.to(device) 
197.   
198.   # Create dataset 
199.   data = create_dataset(sensor) 
200.   train_dataset = CustomDataset(data['train']['x'], data['train']['y']) 
201.   train_dataLoader = th.utils.data.DataLoader(train_dataset, 

batch_size=config['batch_size']) 
202.   val_dataset = CustomDataset(data['val']['x'], data['val']['y']) 
203.   val_dataLoader = th.utils.data.DataLoader(val_dataset) 
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204.   # store variables. 
205.   best_epoch = None 
206.   best_loss = np.inf 
207.   # epoch_loss = {'train': [], 'val': []} 
208.   patience_count = 0 
209.   
210.   # begins training neural network 
211.   for epoch in range(config['max_epochs']): 
212.   
213.     # training step 
214.     train_loss = train(model, train_dataLoader, criterion, optimizer, 

config['grad_clip'], device=device) 
215.     scheduler.step()  # update the scheduler and change lr when 

required. 
216.   
217.     # validation step 
218.     val_loss = val(model, val_dataLoader, criterion, device=device) 
219.   
220.     # store loss metrics for graphing: 
221.     # epoch_loss['train'].append(train_loss) 
222.     # epoch_loss['val'].append(val_loss) 
223.     tune.report(train_loss=train_loss, val_loss=val_loss) 
224.   
225.     if val_loss < best_loss: 
226.       best_loss = val_loss 
227.       best_epoch = epoch 
228.       # print(f'epoch {best_epoch}: best model loss = {best_loss:.4f}') 
229.       # reset patience_count: 
230.       patience_count = 0 
231.     # Early stop training if the validation loss does not improve after 

val_patience epoch. 
232.     if patience_count == config['patience']: 
233.       break 
234.     else: 
235.       patience_count += 1 
236.   
237.     with tune.checkpoint_dir(epoch) as checkpoint_dir: 
238.       path = os.path.join(checkpoint_dir, "checkpoint") 
239.       th.save((model.state_dict(), optimizer.state_dict()), path) 
240.     # print(path) 
241.   
242.   
243. if __name__ == "__main__": 
244.   
245.   def main(sensor=None, weather='normal'): 
246.     # load dataset 
247.     # the dataset consists of target_E,N,U and sensor_E,N,U and the 

measurement error (using RMSE) 
248.     max_num_epochs = 500 
249.     num_samples = 400 
250.   
251.     config = { 
252.         "patience": 20, 
253.         "input_dim": 2, 
254.         "max_epochs": 500, 
255.         "num_hidden_nodes_1": tune.choice([8, 16]), 
256.         "num_hidden_nodes_2": tune.choice([2, 4]), 
257.         "lr_init": tune.choice([0.5, 0.3, 0.2, 0.1]), 
258.         "lr_drop_step": tune.choice([10, 15, 20]), 
259.         "lr_drop_fraction": tune.choice([0.9, 0.8, 0.5, 0.1]), 
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260.         "batch_size": tune.choice([16, 32, 64]), 
261.         "grad_clip": 1, 
262.     } 
263.   
264.     Scheduler = ASHAScheduler(metric="val_loss", mode="min", 

max_t=max_num_epochs, grace_period=10, reduction_factor=2) 
265.   
266.     reporter = tune.CLIReporter(metric_columns=["train_loss", 

"val_loss", "training_iteration"], print_intermediate_tables=True) 
267.     result = tune.run( 
268.         partial(train_doublehead_tune, checkpoint_dir=f'./tune/', 

sensor=sensor), 
269.         config=config, 
270.         num_samples=num_samples, 
271.         scheduler=scheduler, 
272.         local_dir=f'./tune/', 
273.         name=f'{sensor}', 
274.         resources_per_trial={"cpu": 2}, 
275.         max_concurrent_trials=10,  # 24 CPU in total, using up to 20 

CPU. 
276.         resume=True, 
277.         progress_reporter=reporter) 
278.   
279.     best_trial = result.get_best_trial("val_loss", "min", "last") 
280.     print("Best trial config: {}".format(best_trial.config)) 
281.   
282.   main(sensor='ESM') 
283.   main(sensor='EO') 
284.   main(sensor='IR') 
285.   main(sensor='Radar') 

 
File: Sensor.py 

1. """" 
2. Everything related to sensors here. 
3. """ 
4.   
5. from helper import SENSORS 
6. import pandas as pd 
7. import numpy as np 
8.   
9. DEBUG_PRINT = True 
10.   
11.   
12. class SensorDataWrapper: 
13.   """ 
14.   Define each sensor as a sensor class itself, and provides the dataset when  
15.   called by the other function. 
16.   """ 
17.   
18.   def __init__(self, dataset_dict, sensor, weather='normal'): 
19.     self.data = dataset_dict[weather][sensor] 
20.     self.timelineID = None 
21.     self.time = 0.  # maintains a clock within itself to provide error-checking. 
22.     self._data = None 
23.     self.num_entries = None 
24.     self.start_time = self.data.Time.min() 
25.     self.end_time = self.data.Time.max() 
26.     self.sensor = sensor  # name of sensor 
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27.   
28.   def update_periodicity(self, period): 
29.     self.periodicity = period 
30.   
31.   def set_timelineID(self, timelineID): 
32.     self.timelineID = timelineID 
33.     self.set_time(0)  # reset the clock, since we are interested in the new 

timeline now 
34.     self._data = self.data[self.data.TimelineID == timelineID] 
35.     self._data.set_index('Time', inplace=True) 
36.     self.num_entries = len(self._data) 
37.   
38.   def set_time(self, time): 
39.     self.time = time 
40.   
41.   def get_next_detection(self): 
42.     """ 
43.     this is the main interface with various functions. 
44.     After calling the set_timelineID, get_next_detection would return parameters 

of interests 
45.     returns (t,x,y) where t= time of detection, x=latitude, y=longitude 
46.     """ 
47.     try: 
48.       x = self._data.loc[self.time]['Target_E'] 
49.       y = self._data.loc[self.time]['Target_N'] 
50.       return (self.time, x, y) 
51.     except KeyError: 
52.       print(f'{self.time} is not in the index from data') 
53.   
54.   def tick(self): 
55.     # Advance the clock 
56.     # if there are no more sensor data, return False 
57.     self.time += 1. 
58.     return self.time <= self.end_time and self.check_alert() 
59.   
60.   def check_alert(self): 
61.     ### alert when there is a detection. 
62.     return self.time in self._data.index 
63.   
64.   
65. class SensorDataset: 
66.   """ 
67.   SensorDataset is a class comprising of all the sensor dataset for a specific 

run. 
68.   """ 
69.   
70.   def __init__(self, data, weather='normal') -> None: 
71.     self.sensor_dat = {} 
72.     for sensor in SENSORS: 
73.       self.sensor_dat[sensor] = SensorDataWrapper(data, sensor, weather=weather) 
74.     if DEBUG_PRINT: 
75.       print(f'sensor: {sensor}\tstart: 

{self.sensor_dat[sensor].start_time}\t#entries: 
{self.sensor_dat[sensor].num_entries}') 

76.     self.timelineIDs = self.sensor_dat[SENSORS[0]].TimleineID.unique() 
77.     self.detections = [] 
78.   
79.   def get_timelineIDs(self): 
80.     return self.timelineIDs 
81.   
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82.   def set_timelineID(self, timelineID): 
83.     """ 
84.     The simulation run defined by the timelineID that the dataset should be 

focused on 
85.     """ 
86.     self.time = 0  # reset the clock when setter is called. 
87.     self.detections = {} 
88.     for sensor in SENSORS: 
89.       self.sensor_dat[sensor].set_timelineID(timelineID) 
90.     if DEBUG_PRINT: 
91.       print(f'sensor dataset: set timeline @ {timelineID}') 
92.   
93.   def tick(self): 
94.     """ 
95.     provide the next available sensor detection from the dataset.  
96.     Some seconds may have more than 1 detection, hence we prepare an array of 

detection from all sensors  
97.     and provide the detection to the environment accordingly. 
98.     The order in which the detections are presented are in an unspecified order. 
99.     """ 
100.     self.time += 1 
101.     self.detections = [] 
102.     for sensor in SENSORS: 
103.       if self.sensor_dat[sensor].tick(): 
104.         (t, x, y) = self.sensor_dat[sensor].get_next_detection() 
105.         assert t == self.time, f"alert is out of sync (got t={t}, but 

time is {self.time})" 
106.         if DEBUG_PRINT: 
107.           print(f'{sensor}:{t}') 
108.         self.detections.append((sensor, t, x, y)) 
109.   
110.   
111. def get_sensor_stats(): 
112.   sensor_err_stats = pd.read_pickle('../data/sensor_err_stats.pkl') 
113.   mat_R = {} 
114.   for sensor in SENSORS: 
115.     mat_R[sensor] = np.array([[sensor_err_stats.loc['std_x', sensor]**2, 

0.], [0., sensor_err_stats.loc['std_y', sensor]**2]]) 
116.   return mat_R 
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