
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-09

APPLYING MACHINE LEARNING FOR COP/CTP
DATA FILTERING

Goh, Wei Ting
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/71117

Copyright is reserved by the copyright owner.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

APPLYING MACHINE LEARNING FOR COP/CTP
DATA FILTERING

by

Wei Ting Goh

September 2022

Thesis Advisor: Victor R. Garza
Co-Advisor: Curtis L. Blais
Second Readers: Brian P. Wood
 Christian R. Fitzpatrick

Research for this thesis was performed at the MOVES Institute.
Approved for public release. Distribution is unlimited.

This project was funded in part by the NPS Naval Research Program.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2022 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
APPLYING MACHINE LEARNING FOR COP/CTP DATA FILTERING 5. FUNDING NUMBERS

 6. AUTHOR(S) Wei Ting Goh

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. This project was funded in part by the
NPS Naval Research Program.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Accurate tracks and targeting are key to providing decision-makers with the confidence to execute their
missions. Increasingly, multiple intelligence, surveillance, and reconnaissance (ISR) assets across different
intelligence sources are being used to increase the accuracy of track location, resulting in the need to
develop methods to exploit heterogeneous sensor data streams for better target state estimation. One of the
algorithms commonly used for target state estimation is the Kalman Filter (KF) algorithm. This algorithm
performs well if its covariance matrices are accurate approximations of the uncertainty in sensor
measurements. Our research complements the artificial intelligence/machine learning (AI/ML) efforts the
U.S. Navy is conducting by quantitatively assessing the potential of using an ML model to predict sensor
measurement noise for KF state estimation. We used a computer simulation to generate sensor tracks of a
single target and trained a neural network to predict sensor error. The hybrid model (ML-KF) was able to
outperform our baseline KF model that uses normalized sensor errors by approximately 20% in target
position estimation. Further research in enhancing the ML model with external environment variables as
inputs could potentially create an adaptive state estimation system that is capable of operating in varied
environment settings.

 14. SUBJECT TERMS
machine learning, Kalman filter, state estimation, data fusion 15. NUMBER OF

PAGES
 175
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

APPLYING MACHINE LEARNING FOR COP/CTP DATA FILTERING

Wei Ting Goh
Captain, Singapore Army

BSCS, University of Edinburgh, UK, 2018

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING, VIRTUAL ENVIRONMENTS, AND
SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
September 2022

Approved by: Victor R. Garza
 Advisor

 Curtis L. Blais
 Co-Advisor

 Brian P. Wood
 Second Reader

 Christian R. Fitzpatrick
 Second Reader

 Gurminder Singh
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Accurate tracks and targeting are key to providing decision-makers with the

confidence to execute their missions. Increasingly, multiple intelligence, surveillance,

and reconnaissance (ISR) assets across different intelligence sources are being used to

increase the accuracy of track location, resulting in the need to develop methods to

exploit heterogeneous sensor data streams for better target state estimation. One of the

algorithms commonly used for target state estimation is the Kalman Filter (KF)

algorithm. This algorithm performs well if its covariance matrices are accurate

approximations of the uncertainty in sensor measurements. Our research complements

the artificial intelligence/machine learning (AI/ML) efforts the U.S. Navy is conducting

by quantitatively assessing the potential of using an ML model to predict sensor

measurement noise for KF state estimation. We used a computer simulation to generate

sensor tracks of a single target and trained a neural network to predict sensor error. The

hybrid model (ML-KF) was able to outperform our baseline KF model that uses

normalized sensor errors by approximately 20% in target position estimation. Further

research in enhancing the ML model with external environment variables as inputs could

potentially create an adaptive state estimation system that is capable of operating in

varied environment settings.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW ...1
B. MOTIVATION ..1
C. OBJECTIVES ..2
D. ASSUMPTIONS ...2
E. APPROACH ...2
F. BENEFITS OF RESEARCH ..4
G. STRUCTURE OF PAPER ..4

II. LITERATURE REVIEW ...5
A. BACKGROUND OF DATA FUSION ...5

1. Data Fusion Architectures and Models..5
2. Processes and Methods Used in Object Refinement (Level

1) ..8
3. Challenges and Limitations in Data Fusion Models10
4. Data Fusion Applications ..10

B. EVALUATING THE PERFORMANCE OF DATA FUSION
SYSTEMS ...12
1. Challenges in Evaluating Fusion System12
2. Evaluation of Object Refinement Fusion Process12

C. AI/ML FOR DATA FILTERING ..13
1. Motivation: AI/ML as a DOD Capability13
2. Defining AI and ML...14
3. Machine Learning Operations and Frameworks15
4. Using AI/ML to Predict Measurement Noise for KF18

III. SIMULATING SENSORS DATA FOR DATA FILTERING21
A. PROPERTIES OF SIMULATIONS ..21
B. OVERVIEW OF PROCESS WORKFLOW ..22
C. SCENARIO DESIGN ..22

1. Overview of CMO ..22
2. Physics and Stochastic Modeling in CMO23
3. Considerations and Constraints in the Design of the

Scenario ...24
4. Scenario Design—Sensors ...24
5. Scenario Design—Target...26

viii

6. Scenario Design—Weather Conditions......................................27
7. Simulation Runs ...28

D. DATASET ...29
1. Overview of Dataset ...29
2. Data Analysis—Target Position ...31
3. Data Analysis—Sensor Detection ...32

E. LIMITATIONS OF DATASET..35
1. Insignificant Improvement between Simulation Settings35
2. Absence of Measurement Errors ..36

IV. MODEL GENERATION METHODOLOGY ..37
A. KALMAN FILTERS ...37

1. Predict Step...38
2. Update Step...40

B. CREATING KF BASELINE MODEL USING FILTERPY43
C. MACHINE LEARNING MODELS ...44

1. Formulation of ML Problem—Modeling Uncertainty44
2. ML Experiment Framework ...47
3. Phase 1: Generation of Dataset ...47
4. Phase 2: Build ML Model—Creating a Neural Network48
5. Phase 3: Publish the ML Model ..53

D. STATE ESTIMATION BY THE ML-KF MODEL53

V. ANALYSIS OF RESULTS..57
A. OVERALL PERFORMANCE ...57

1. Comparison of Performance between Weather Datasets58
2. Performance in Prediction of Longitude and latitude59

B. PREDICTION ERROR DURING KEY PHASES OF TARGET
MOVEMENT ...61
1. Constant Heading...62
2. Changing Heading ...64

VI. CONCLUSIONS ..67
A. SUMMARY OF RESEARCH ..67
B. LIMITATIONS AND FUTURE WORK ...68

1. Simulated Dataset ..68
2. Model Limitations ..69

C. CONCLUSION ..72

ix

APPENDIX A. SCRIPTS FOR CMO SIMULATION ...75
A. LUA SCRIPTING FOR RANDOMLY GENERATING A

TARGET’S POSITION...75
B. POWERSHELL SCRIPT TO RUN CMO FROM COMMAND

LINE INTERFACE ...76

APPENDIX B. DATA DICTIONARY ...77
A. UNIT POSITION TABLE ..77
B. SENSOR DETECTION ATTEMPT TABLE78

APPENDIX C. SOFTWARE PACKAGES USED ...81

APPENDIX D. PYTHON NOTEBOOK–EXPLORATORY DATA ANALYSIS83
A. INSPECTING HEADERS OF DATASET ..83
B. COMPARISON OF COORDINATE SYSTEMS (GEODESIC

AND ENU REPRESENTATION) ..83
1. Sample Dataset ...84

C. EXPLORATORY DATA ANALYSIS OF TARGET UNIT
POSITION DATASET ..88
1. General Statistics of Dataset ...88
2. Visualization of Target Movement in Simulation90

D. EXPLORATORY DATA ANALYSIS OF SENSOR DATASET93
1. Periodicity of Data, Number of Detection, Failure Rate in

Dataset ...93
2. Detection Success / Failure Rate across Each Scenario105

E. CALCULATE THE SENSOR ERRORS ..110

APPENDIX E. PYTHON NOTEBOOK — BASELINE MODEL WITH KF113
A. PARAMETERS IN THE KALMAN FILTER ALGORITHM113

1. Initialization..113
2. Predict Step...113
3. Update Step...113

B. SET UP KALMAN FILTER FUNCTIONS ..114
C. CREATING AN INTERFACE WITH DATASET116
D. RUNNING A SIMULATION WITH KF ..119
E. EVALUATION OF RESULTS ...128

APPENDIX F. PYTHON SCRIPTS–ML MODEL TUNING133

x

LIST OF REFERENCES ..141

INITIAL DISTRIBUTION LIST ...149

xi

LIST OF FIGURES

Figure 1. Methodology for Assessing Track Filtering Algorithms.3

Figure 2. JDL Fusion Processing Model. Source: Steinberg et al. (2017).7

Figure 3. Automated ML Workflow Pipeline. Adapted from Kreuzberger et al.
(2022b). ..16

Figure 4. Commonly Used Software in the Various Workflows of MLOps.
Source: Karayev et al. (2022). ...17

Figure 5. Screenshot of the CMO Database Editor of a Built-in Radar sensor23

Figure 6. Scenario with Target and Four Sensor Platforms.25

Figure 7. Weather Settings for Ideal Weather Conditions.28

Figure 8. Weather Settings for Sub-optimal Weather Conditions for EO/ IR
sensor. ..28

Figure 9. Simulation Runtime Setting ...29

Figure 10. Visualization of Target’s Movement during the Simulation.31

Figure 11. ML Experiment Framework ..47

Figure 12. Architecture of Dual-Head Neural Network ..49

Figure 13. Process Flow for Predicting Target State by ML-KF Model55

Figure 14. KF Model RMSE Distribution ...60

Figure 15. ML-KF Model RMSE Distribution ...61

Figure 16. Model’s State Estimation Error during a Single Simulation Run62

Figure 17. Target Moving between RP-43 to RP-41 (Constant Heading)63

Figure 18. Target Changing its Course around RP-43 ..65

Figure 19. Target Changing its Course around RP-42 ..66

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF TABLES

Table 1. Description of Simulated Sensors in Scenario ...26

Table 2. Sensor Detection Period and Start Time ..32

Table 3. Sensor Detection Success ..33

Table 4. Average Sensor Detection Error in Different Weather Settings35

Table 5. Symbols Used in the Predict Step ..38

Table 6. Symbols Used in the Update Step ..40

Table 7. Sensor Measurement Noise Derived from Dataset42

Table 8. Optimization Algorithm Parameters ..50

Table 9. Hyperparameter Search Space ...52

Table 10. Selected Hyperparameters of DHNN Models ..52

Table 11. Model Performance and Description ...53

Table 12. Performance of Models across 100 Simulation Runs58

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF ACRONYMS AND ABBREVIATIONS

3D Three Dimensional
AFSIM Advanced Framework for Simulation, Integration and Modeling
AGL Above Ground Level
AI Artificial Intelligence
Alt Altitude
AOU Area of Uncertainty
ASL Above Sea Level
ATA Automatic Tracking Aid
ATR Automatic Target Recognition
C2 Command and Control
CCD-TV Charge-Coupled Device Television
CLI Command-line Interface
CMO Command: Modern Operations
CO2 Carbon Dioxide

COP Common Operating Picture
COVID Coronavirus Disease
CPU Computer Processing Unit
CSV Comma-separated Value
CTP Common Tactical Picture
DBID Database Identification
DDG Guided Missile Destroyer
DHNN Dual-head Neural Network
DL Deep Learning
DNN Deep Neural Networks
DoD Department of Defense
E East
ENU East-North-Up
EO Electro-Optical
ELINT Electronic Intelligence
ESM Electronic Support Measures

xvi

EW Electronic Warfare

𝐹𝐹 State Transition Matrix (variable)
FLIR Forward-Looking Infrared
GUI Graphical User Interface
GPU Graphics Processing Units

𝐻𝐻 Measurement Function (variable)
HH Hours
HP Hewlett-Packard
ID Identification
IMINT Imagery Intelligence
IR Infrared Radiation
ISR Intelligence, Surveillance, Reconnaissance
IW Information Warfare
IWC Information Warfare Community
JDL Joint Directors of Laboratories
JP Joint Publication

𝐾𝐾 Kalman Gain (variable)

KF Kalman Filter
kt Knot
Lat Latitude
Lon Longitude
LSTM Long-Short Term Memory
m Meter
MATLAB MATrix LABoratory

𝑚𝑚𝑚𝑚𝑚𝑚 Maximum

𝑚𝑚𝑚𝑚𝑚𝑚 Minimum
ML Machine Learning
MLOps Machine Learning Operations
MM Minutes
MOE Measure of Effectiveness
MOP Measure of Performance
N North

xvii

NATO North Atlantic Treaty Organization
NAVIFOR Naval Information Forces
nm Nautical Mile
NN Neural Network

𝑃𝑃 State Covariance Matrix (variable)

𝑄𝑄 Process Noise Covariance (variable)

𝑅𝑅 Measurement Noise Covariance (variable)

RADAR Radio Detection and Ranging
ReLU Rectified Linear Unit
RL Reinforcement Learning
RMSE Root Mean Square Error
RP Reference Point
s Second
SAF Singapore Armed Forces
SIGINT Signals Intelligence
SMA Simple Moving Average
SS Seconds
std Standard Deviation

𝑤𝑤 Process Noise (variable)

𝑋𝑋 State of System (variable)

𝑦𝑦 Residual (variable)

𝑧𝑧 Measurement (variable)

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

xix

EXECUTIVE SUMMARY

The ability to process and exploit multiple intelligence data streams is essential to

achieving superior battlespace awareness. The U.S. Navy, and specifically Naval

Information Forces (NAVIFOR), is exploring the effectiveness of Artificial Intelligence

(AI)/Machine Learning (ML) technology to assist with data fusion and provide quick and

timely analysis of the Common Operating Picture (COP)/Common Tactical Picture

(CTP). One area of focus is the filtering of data from different sensor systems to provide

improved state estimation of targets in the battlespace. This is a critical task as accurate

tracks and targeting are key to providing decision makers with the confidence to execute

their mission.

This thesis aims to assess the feasibility of integrating AI/ ML algorithms and

techniques to filter heterogenous datasets to increase the accuracy of track estimation in

developing COP/CTP. The Kalman Filter (KF) and its variants are often used to estimate

the position of targets in the battlespace. Estimation accuracy, however, is greatly

affected by changes in external conditions and by violations to the assumptions made

about the target.

Research conducted by Gao et al. (2020), Jouaber et al. (2021), and Ullah et al.

(2019 and 2020) has shown the potential to integrate a learning module within a standard

KF to improve the accuracy of state estimation. This research used a neural network

(NN) to learn the variability in measurement uncertainties associated with sensor

measurements. These variabilities exist because of changes in external factors such as

weather conditions that are not directly modeled as the state of the KF algorithm. This

has the potential to enhance our COP/CTP, especially when external factors affect our

sensor fusion systems dynamically.

We use a quantitative approach to assess the accuracy of selected AI/ML

algorithms in filtering datasets of target positions. We hypothesize that inclusion of a

learning module within a KF model will outperform a standard KF model and provide a

xx

better estimate of the target position. To that end, we designed a three-phase data pipeline

(Figure 1).

Figure 1. Methodology for Assessing Track Filtering Algorithms.

First, sensor data is generated using simulation software—Command: Modern

Operations (CMO) developed by Matrix Games (Matrix Games, 2022b). A scenario

consisting of multiple stand-off sensors from different intelligence domains and a single

target was used. Second, two sets of models were developed—a standard baseline model

using the KF algorithm and another using a neural network embedded in the KF

algorithm (we call this the ML-KF model). This neural network is a learning module that

was trained on the training dataset and was used to estimate the sensor measurement

noise of the KF. We conduct a hyper parameter search across the different

hyperparameters possible to improve the performance of each sensor’s ML model. In the

final phase, the performance of the two models was assessed for accuracy in estimating

target state position.

Our findings showed that the integration of ML models to estimate the sensor

measurement error matrix for the standard KF algorithm can significantly improve the

accuracy of target state estimation by approximately 20% at a 5% confidence level. In

summary, our contributions are the following:

1. We have developed an ML operations pipeline that ingests data from a

simulation to train, validate, and test machine learning modules for

xxi

subsequent deployment in a KF system. The method, dataset, and models

generated is reproducible and replicable, as the code base and frameworks

used for this development are fully open source.

2. We have shown that a learning module embedded in a standard KF

algorithm can improve state estimation over a standard KF model. The

ML-KF model was able to generate a sensor measurement error matrix to

update the KF algorithm’s probabilistic belief of the sensor measurements,

thereby improving the KF’s estimation.

3. We were able to train the learning module used in the KF model only

because our simulation system provides a ground truth target state which

live ranges may not be able to provide. This proves the potential for using

simulation to develop ML models and of subsequently deploy them in the

field.

Our research used ML models to predict sensor measurement errors for a standard

KF algorithm. Our ML-KF model was able to significantly outperform our baseline

model at 5% confidence level, showing that using an ML-KF model would improve the

performance of target position state estimations, alleviating the performance issue when

uncertainty of sensor measurement is absent from heterogenous sensor data streams. In

other words, in the absence of uncertainty measurements of sensor data, the ML

embedded in the KF was able to predict the uncertainty and dynamically updating the

parameters of the KF algorithm.

This proof-of-concept has the potential to be further extended using more

sophisticated methods. We have proposed three key areas for future research: 1) To

improve the generalizability of the ML-KF model by including other parameters (such as

weather conditions in the battlespace) that are not directly modeled or used in KF. 2)

Using time-series methods to model temporal movement of a target, thereby increasing

the predictive power of the learning module embedded in the KF. 3) Using ML models to

conduct multiple target data filtering (JDL Level 2), by including a classification task to

categorize the track data.

xxii

As the DoD increasingly shifts its focus to the application of ML, we believe that

such an application in data filtering would be able to augment existing data filtering

methods and eliminate the expense of replacing them. For instance, by enhancing existing

COP/CTP data filtering algorithms, we would be able to have better accurate state

estimation of the target, thereby providing a higher confidence of the target’s position in

the COP/CTP. The ability for such an ML-KF model to ingest heterogenous data stream

is also a powerful tool to automate the work of intelligence analysts who would

frequently need to cross-reference their sources across different intelligence domains. By

improving the suite of tools available to our warfighters, they will be more lethal in their

response to any adversary.

References

Gao, X., Luo, H., Ning, B., Zhao, F., Bao, L., Gong, Y., Xiao, Y., & Jiang, J. (2020). RL-

AKF: An adaptive kalman filter navigation algorithm based on reinforcement
learning for ground vehicles. Remote Sensing, 12(11), 1704. https://doi.org/
10.3390/rs12111704

Jouaber, S., Bonnabel, S., Velasco-Forero, S., & Pilté, M. (2021). NNAKF: A neural
network adapted Kalman filter for target tracking. ICASSP 2021 – 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
4075–4079. https://doi.org/10.1109/ICASSP39728.2021.9414681

Matrix Games. “Command: Modern operations.” Windows. UK: Matrix Games, 2022.
https://www.matrixgames.com/game/command-modern-operations.

Ullah, I., Fayaz, M., & Kim, D. (2019). Improving accuracy of the Kalman filter
algorithm in dynamic conditions using ANN-based learning module. Symmetry,
11(1), 94. https://doi.org/10.3390/sym11010094

Ullah, I., Fayaz, M., Naveed, N., & Kim, D. (2020). ANN based learning to Kalman filter
algorithm for indoor environment prediction in smart greenhouse. IEEE Access, 8,
159371–159388. https://doi.org/10.1109/ACCESS.2020.3016277

https://doi.org/10.3390/rs12111704
https://doi.org/10.3390/rs12111704
https://doi.org/10.3390/rs12111704
https://doi.org/10.1109/ICASSP39728.2021.9414681
https://doi.org/10.1109/ICASSP39728.2021.9414681
https://www.matrixgames.com/game/command-modern-operations
https://www.matrixgames.com/game/command-modern-operations
https://doi.org/10.3390/sym11010094
https://doi.org/10.3390/sym11010094
https://doi.org/10.1109/ACCESS.2020.3016277
https://doi.org/10.1109/ACCESS.2020.3016277

xxiii

ACKNOWLEDGMENTS

This journey was not possible without the unwavering commitment and

dedication of the team: Mr. Fitzpatrick who jumped through the hurdles for simulation

software, Mr. Wood who kept me on track and framing the thesis report, Dr. Blais for the

technical guidance and scoping of the problem, and Mr. Garza for coordinating with our

sponsors and steering the direction of the thesis.

xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. OVERVIEW

This thesis aims to assess the feasibility of integrating Artificial Intelligence (AI)/

Machine Learning (ML) algorithms and techniques to filter heterogenous datasets to

increase the speed and accuracy of tracks in developing a Common Operating Picture

(COP)/Common Tactical Picture (CTP) for battlefield awareness. The Kalman Filter

(KF) and its variants are often used to estimate the position of targets in the battlespace.

Yet, estimation accuracy is greatly affected by changes in external conditions and by

violations to the assumptions made about the target.

To improve state estimation from a KF, this research adopts a quantitative

approach to assess traditional KF models against a hybrid ML-KF model, whereby a

learning module is embedded as part of the KF to improve its adaptability. Using

simulation software to generate sensors and track datasets, we assess the improvement in

accuracy of estimating the state of a target by these models.

B. MOTIVATION

The ability to process and exploit multiple intelligence data streams is essential to

achieving superior battlespace awareness. The U.S. Navy, and specifically Naval

Information Forces (NAVIFOR), is exploring the effectiveness of AI/ML technology to

assist with data fusion and provide quick and timely analysis of the COP/CTP. The

current situation is exacerbated by the proposed increase in the number of Intelligence,

Surveillance, and Reconnaissance (ISR) assets within the battlefield, which may

potentially overwhelm human operators and intelligence analysts with high volume and

velocity of data, leading to human errors and replicative efforts in going through similar

effects. In addition, potential counter-intelligence tactics by the adversary may also affect

the veracity of data received, disrupting our battlespace situation awareness.

While the Department of Defense (DoD) has been investing heavily in data

filtering systems, often embedded as part of the data fusion systems of systems, advances

in sensor technology and AI/ML–aided by the availability of big data–provide an avenue

2

for NAVIFOR to adopt AI/ML technologies from industries such as robotics,

autonomous vehicles, and recommender systems. By studying the AI/ML technologies

and techniques used to automate the filtering of multiple data streams, we can draw

parallels and quantitatively assess the effectiveness of such technologies in data filtering

for target state estimation in the development of COP/CTP.

C. OBJECTIVES

Our research objective is to determine the effectiveness of AI/ML algorithms in

multi-source data filtering to provide the warfighter with accurate target position

estimation.

D. ASSUMPTIONS

In this research, we assume that the sensor data generated from the simulation

software is sufficiently representative of the capability of sensors in the fleet. In addition,

we assume that all data generated are agnostic to the idiosyncratic data formats required

by Command and Control (C2) systems.

E. APPROACH

We use a quantitative approach to assess the accuracy of a selected AI/ML

algorithm in filtering datasets of target positions. We hypothesize that the inclusion of a

learning module within a KF model will out-perform a standard KF model and provide an

improved estimate of the target position. Figure 1 illustrates the three phases of our

approach.

3

Figure 1. Methodology for Assessing Track Filtering Algorithms.

First, a simulation software—Command: Modern Operations (CMO) developed

by Matrix Games (Matrix Games, 2022b) will be used to generate sensor dataset. A

suitable scenario that consists of multiple stand-off sensors from different intelligence

domains and a single target could be used to model the detection of a single target that is

conducting a patrol in a defined area. Two scenarios will be generated to simulate ideal

weather conditions and moderately adverse weather conditions, to assess the

effectiveness of the algorithm in different weather conditions. In total, 100 iterations of

each scenario should be ran with random perturbations to the initial position of the target

so that randomness is introduced to the dataset. Each iteration provides us with a set of

sensor readings of the target moving within the scenario and the ground truth of the

target’s position.

Second, two sets of models will be developed—a standard baseline model using

the standard KF algorithm and another using a selected ML model embedded in the KF

algorithm (which we call this the ML-KF model). The ML model is generated from a

learning phase whereby its parameters are updated after each batch of the dataset is

presented to it. After learning is completed, the model is evaluated against a dataset that

was not seen during this phase to assess the performance of the ML model. The best ML-

KF model would be used for evaluation to pit against the KF baseline model.

Third, we assess the performance of the ML-KF model against the baseline KF

model. We assess the algorithms on the accuracy of the target’s estimated position across

each weather datasets.

4

F. BENEFITS OF RESEARCH

Two potential benefits from this study include the following:

1. It provides a survey on existing AI/ML techniques for automated data

filtering to improve the accuracy of track prediction that can inform the

wider Information Warfare Community (IWC) and coalition partners on

the effectiveness, limitations, and constraints of the technology.

2. It demonstrates a prototype that provides a study on an AI/ML technique

used to enhance the KF algorithm. This study informs the design of future

AI/ML systems.

G. STRUCTURE OF PAPER

Chapter II sets the foundation of our research, providing the history of data fusion

and its relevance to the DoD, AI/ML techniques used in data fusion and track

management, and the evaluation of data fusion systems. Chapter III introduces a data

pipeline used to generate datasets for the evaluation of algorithms and building machine

learning for model evaluation. The scenario design principles and an exploratory data

analysis on the datasets generated using CMO are presented. Chapter IV introduces the

KF algorithm, formulating data filtering as a predictive task for the KF’s parameter and

approach to generating ML models. Chapter V informs the performance of each model.

Finally, Chapter VI concludes with the limitations of the research, lessons learned,

recommendations, and future areas of study.

5

II. LITERATURE REVIEW

This chapter outlines a summary of the literature and sources used to improve our

understanding of AI/ML techniques applied as a data fusion technique. The review aims

to provide 1) an overview of data fusion systems and their relevance to the DoD, 2)

background on existing AI/ML technologies applied in data fusion and track

management, and 3) methods for evaluating data fusion systems.

A. BACKGROUND OF DATA FUSION

Catalyzed by the need to enhance multi-domain battlespace awareness and reduce

decision time to respond to threats, and thereby gain a superior advantage against near-

peer threats, data fusion technology remains one of the key areas of investment for the

DoD (Hoehn, 2022). The conduct of data fusion aims to aid decision making, answer

commanders’ questions, and reduce the uncertainty of the battlespace. The Data Fusion

Group formed by the Joint Directors of Laboratories (JDL), proposed the following

definition of Data Fusion: “Data fusion is the process of combining data to refine state

estimates and prediction” (Steinberg et al., 2017). The DoD has made significant

investments in data fusion technology, cutting across a wide range of mission sets and

fusion capabilities (Nicholas, 2008).

1. Data Fusion Architectures and Models

The JDL Data Fusion Model identifies key functions related to data fusion by

providing common systems engineering standards and vocabulary for developers. To

date, it is the most widely used framework for the development of data fusion functions

in military applications (Steinberg et al., 2017). While there are contending fusion models

and architectures available, the JDL Data Fusion Model serves as a useful reference for

this thesis due to our use case on track management and data filtering.

The model consists of five levels of processing where data fusion would occur

(Figure 2). Depending on the application, a data fusion system may hierarchically

implement these levels of fusion. We expand on the levels in the following paragraphs:

6

• Source Pre-processing. This pre-processing step is often conducted at the

sensor node. For example, a radar may utilize the moving target indicator

technique to confirm the presence of an object at a given time and space. It

can change its pulse width and increase its range resolution to improve the

signal-to-noise ratio in the presence of a potential target and thus reduce

environmental clutter noise. This process results in the detection of an

object when the raw signature (signal or pixel) received by the sensor is

above the signal-to-noise ratio threshold. This initial “contact” with the

target results in a track initialization with the sensor continuously

measuring and estimating the state of the object (Dietrich, 2001).

• Level 1 Processing—Object Refinement. The object refinement process

provides estimates and predictions of an entity’s physical states (position,

velocity, attributes such as size and signatures, and identity) in the

battlespace. For example, a radar tracking a threat in the battlespace may

cross-cue an imaging sensor to zoom in on the area where a target is

estimated to be. If the imaging sensor was able to detect a target within its

field of view, positive contact and track would be formed. The fusion of

both sensors’ tracks would result in a fused track. The output from level 1

processing is predictive, as the fused track not only provides the estimated

current position, but also the projected location of the object based on

existing sensor measurements. This thesis focuses on the refinement of

fused track data from multiple sensors.

• Level 2 Processing—Situation Refinement. This level allows the user to

draw inferences about the relationship between objects. The fused product

allows the user to infer the force structure and command relationship

between entities, providing context to their estimated state. For example,

in a hierarchical data fusion system, the analysis of velocity histories of

level 1 tracks affords further classification of the movement formation

7

from commonly used doctrines (e.g., the advancement of a carrier strike

group is distinctly different from the movement of a littoral combat team).

• Level 3 Processing—Threat Refinement. This process aims to estimate

and predict the outcome of a course of action, or the potential impact of

the entities’ actions. Continuing the example from level 2, having

classified the tracks based on their velocity profile and inferring the size

and disposition of the threat, the fusion system would further increase the

threat level of the targets. This refinement and change in threat

classification would result in a strong warning and alert to the user.

• Level 4 Processing—Process Refinement. While source preprocessing to

level 3 preprocessing manipulates the sensor data or its derivative directly,

level 4 processing is concern with answering the question of “does the

products from source pre-processing to level 3 processing fulfills the

mission?”. To that end, level 4 processing observes the performance of the

fusion process occurring at levels 1 to 3 and aims to optimize resource

allocation (e.g., sensors and deployment time) to meet the goals of the

mission.

Figure 2. JDL Fusion Processing Model. Source: Steinberg et al. (2017).

8

2. Processes and Methods Used in Object Refinement (Level 1)

This section details the processes that occur within JDL level 1 object refinement

fusion processing. It aims to provide common algorithms and methods used for fusing

multiple state estimations from various sensors. Smith and Singh (2006) outlined four

key processes in JDL level 1 fusion processing of process refinement as data registration,

data association, state estimation, and identification.

a. Data Registration

Data registration is the process of aligning data from various sources into the

same frame of reference. This process is often required when the sensors are spatially

distributed and have different fields of view. Converting all sensor readings to a common

reference frame prevents confusion by the algorithm in subsequent stages. Common

methods include the conversion of an estimated target position to latitude or longitude by

referencing the target range to the sensor and standardizing the estimated target

temperature to the same reference units such as Fahrenheit or Kelvin.

b. Data Association

The data association process can be sub-categorized into measurement-to-track

and track-to-track, depending on the data type that is being provided to the association

algorithm, and it aims to correlate measurement or tracks from each sensor to the

identical real-world object the sensor is measuring. The algorithm, also known as a

correlator, can be complex as it manages the entire track cycle. A track cycle comprises

three sequential stages: 1) track initialization, 2) track maintenance, and 3) track deletion.

The MATLAB & Simulink Sensor Fusion and Tracking Toolbox (MathWorks, 2022)

describes the tracker’s operating logic when a new detection has been made:

(1) The tracker tries to assign a detection to an existing track.

(2) The tracker creates a track for each detection it cannot assign. When

starting the tracker, all detections are used to create tracks.

(3) The tracker evaluates the status of each track. For new tracks, the status is

tentative until enough detections are made to confirm the track. For

9

existing tracks, newly assigned detections are used by the filter to update

the track state. When a track has no new added detections, the track is

predicted until new detections are assigned to it. If no new detections are

added after a specified number of updates, the track is deleted.

Common methods include joint probabilistic data association, nearest neighbor

clustering, and fuzzy logic systems. Ideally, the output from this step provides a fused

track for each real-world object. Sub-optimally, the algorithm may result in a track

breaking or a redundant track.

c. State Estimation

Once the tracks are clustered, attributes related to the specific fused track can be

estimated, such as location, velocity, heading, and altitude. The most common method

used is the KF, a recursive Bayesian estimator for attributes of interests based on sensor

measurements in the presence of uncertainties. To utilize a KF, the sensor noise and

model of the object to be detected must be known and hence most state estimators are

often hand-crafted by subject matter experts for the data fusion system based on the set of

targets the system intends to track. Many variants of KF have since been developed

(Akca & Efe, 2019). For example, Extended KF, Unscented KF, Particle Filter, or

Multiple Models Filters (an ensemble of filters modeling different possible system

dynamics) are used to estimate the state of a non-linear dynamic system.

d. Identification

Finally, the object is given a combat identification based on its state and

attributes. Common methods include Bayesian inference, expert system with hand-

crafted rulesets developed by subject matter experts, and ensemble models that weigh the

confidence level for each independent classifier to determine the final classification of the

target. Like state estimation, identification often requires expert knowledge on the type of

target the fusion system will be tracking for the target to be identified successfully.

10

3. Challenges and Limitations in Data Fusion Models

Esteban et al. (2005) surveyed widely used data fusion architectures and models

from a systems engineering perspective. They found that different use cases and

applications have resulted in a wide range of architectures and models and having a

common unified architecture for data fusion is challenging. For instance, a fusion process

model of a multi-sensor data fusion system may differ from another one due to the

sensors’ configurations (sensors may be set up in parallel or serial configuration), the

level(s) of information desired from the fusion system, and location of fusion algorithm

(on level 1 fusion conducted at each sensor in a decentralized model, or a

computationally intensive centralized fusion based on all sensors’ raw data). Due to the

different mission sets and profiles, nuances within each data fusion system exist and there

is no all-encompassing data fusion model to holistically describe all existing and potential

systems.

In addition, there is no commonly agreed-upon data governance framework to

control data input into a fusion system. Research by Watson (2021), building on the

dissertation work by Rothenhaus (2008), proposed and showed that a data governance

framework for a multi-source data fusion system to remove poor quality sources would

significantly improve the performance of track correlators while reducing analysts’ time

to rectify incorrect position reports. As the adage “garbage in garbage out” goes, the data

fusion process is not a panacea when sensor readings are biased or flawed.

4. Data Fusion Applications

a. Intelligence Operations

The joint targeting cycle presents a useful case study for fusion in JDL level 3

threat refinement, often involving intelligence analysts in the loop due to the high cost of

erroneous analysis. The DoD Joint Publication on Joint Targeting (JP-3-60) (Joint Chief

of Staff, 2018) and Joint Publication on Joint Tactics, Techniques, and Procedures for

Intelligence Support to Targeting (JP-2-01.1) (Joint Chief of Staff, 2013) outline the

importance of all-source intelligence fusion in the success of a targeting mission. It is

time-critical to inform commanders on the effectiveness of munitions in the conduct of

11

combat assessment and whether the objective of the mission has been achieved. The

ability to achieve quality damage assessment requires intelligence analysts to exploit all-

source data through the fusion process. The fused report would provide reattack

recommendations for the decision maker, signifying the importance of the report and the

iterative nature of intelligence operations.

b. Surveillance

Other military-related data fusion applications include target tracking (Koch,

2014); multi-sensors automated target recognition (ATR) (Schachter, 2020); aerial

surveillance (Maltese & Lucas, 1998); maritime surveillance (Guerriero et al., 2008);

space-based ISR over an area of interest and threat monitoring of Earth (Crothers et al.,

2009); and deep-space surveillance of military and commercial satellites orbiting Earth

(Sharma & Stokes, 2002).

Building on the physical space, military data fusion applications increasingly

augment data sources from the physical space with sources from cyberspace, such as

wireless and computer networks, and social space in online social media (Wang et al.,

2019). The counterinsurgency campaigns in Iraq provide a case study where data from

social networks, communications networks, and geospatial data were combined to

conduct a cultural analysis of the adversary (Merten, 2014). The shift to increasing the

volume and variety of data sources for data fusion is a testament to the increasingly

digitalized world that we live in, one where data will be exploited for data-driven

decision making.

c. Other Applications

Outside of the military, data fusion is widely used in criminal investigations,

medical diagnosis, system fault diagnosis, weather forecasting, and economic analysis

(Blasch et al., 2014; Li et al., 2018; Murashov, 2021). In recent years, advancements in

machine learning, artificial intelligence, and the Internet of Things have resulted in

applications in 1) autonomous vehicle navigation and control (Yeong et al., 2021); 2)

urban planning decisions, infrastructure management, environment, and waste

monitoring, and mobility management (Lau et al., 2019); 3) precision manufacturing

12

(Kong et al., 2020); and 4) management of pandemics, such as the recent COVID-19

pandemic (Singapore Armed Forces, 2022).

B. EVALUATING THE PERFORMANCE OF DATA FUSION SYSTEMS

Evaluation of a data fusion system is critical to understanding its effectiveness

and performance.

1. Challenges in Evaluating Fusion System

In a NATO Science and Technology Organization lecture series on data fusion,

Koch noted that a comprehensive evaluation of sensor fusion performance is only

possible in highly controlled real-life laboratory testing (Koch, 2015). This is because, for

level 1 fusion, it is often impossible to measure the ground truth of an actual target to a

high degree of accuracy in real-life scenarios due to the presence of systemic and random

errors, making a performance evaluation of a live system futile. One possible way of

evaluating sensor fusion algorithms is through simulation-based experiments, where

fusion algorithms ingest data from simulated sensors and randomness is introduced to

probabilistically simulate the detection of a target based on each sensor’s expected

performance (Miller et al., 2020).

2. Evaluation of Object Refinement Fusion Process

Given that the end goal of the level 1 object refinement fusion process is to

improve the measured state of a target, the following measures of performance (MOP)

were proposed: number of valid tracks or number of false tracks to measure the

performance of data association and identification (Koch, 2015), accuracy of a track to

measure the state estimation performance (Llinas, 2008), and time to track to measure

timelines of information (Dietrich, 2001).

a. Number of Valid Tracks, Number of False Tracks

Ideally, the fusion system should assign one track ID per target. Additional tracks

of the same target are potentially confusing to the warfighter, and misleading to the

13

analysts. False tracks may occur due to objects that are irrelevant but detected by the

sensors, such as clutter, countermeasures, and environmental noise (Koch, 2015).

b. Track Accuracy (State Estimation Metric)

Naturally, the fused track should improve the estimation of the object’s state, and

hence an effective fusion system should have a small difference between the ground truth

of the target state and the estimated state (Llinas, 2008).

c. Time to Track

Due to communications and computation processes, the time taken to fuse tracks

within a sensor and across multiple sensors may induce an “extraction delay” between the

first detection by the sensor and the confirmation of a track. The timeliness of

information is a measure of effectiveness (MOE) of the overall fusion system to

determine whether the system was able to assist the warfighter in its operational mission

(Dietrich, 2001).

C. AI/ML FOR DATA FILTERING

1. Motivation: AI/ML as a DOD Capability

The 2019 DoD Digital Modernization Strategy and 2018 DoD Artificial

Intelligence Strategy highlighted Artificial Intelligence and Big Data Analytics as key

technology areas of interest for the DoD. Specifically, the DoD is committed to

developing and using AI technologies and systems to augment duty personnel by

reducing their cognitive workload for dull and repetitive tasks where machines excel.

Supporting these strategies, the 2020 DoD Data Strategy aims to leverage data as a

warfighting asset. The Data Strategy sets the direction for the development of data-driven

operations wherein operators and decision makers exploit data for enhanced battlespace

awareness to outsmart adversaries in multiple operating domains and across levels of

operations. AI and ML are key enabling technologies to realize this goal. Our sponsor,

NAVIFOR, is interested in exploiting readily available AI and ML technology and

techniques to enhance both situational awareness and C2 of our force’s operations

through the improvement of our COP/CTP.

14

2. Defining AI and ML

This section aims to provide background on AI and ML techniques that are used

for data fusion. In the authoritative and most-used artificial intelligence textbook

Artificial Intelligence: A Modern Approach, Russell et al. (2010) defines an artificial

intelligence agent as a rational agent that “takes the best possible action in a situation.”

An AI perceives and interacts with its task environment and its purpose is to maximize its

performance as defined by the programmer. To improve its performance, an AI goes

through a learning process to adapt to novel and unseen circumstances. ML is a subfield

of AI in which an agent can use the techniques to learn from data to make an informed

decision. Through learning, the agent develops models that maps the agent’s perceptual

inputs from the environment to actions that interact with the environment.

The ML field can be classified into three core paradigms—supervised learning,

unsupervised learning, and reinforcement learning—often related to the task that the user

aims to solve and the data that is available for learning (Goodfellow et al., 2016). Another

buzzword “deep learning” (DL) would be used along with ML because DL is a subfield

of ML and focuses on methods that utilize deep neural networks (DNN) as part of the

learning algorithm, allowing simpler concepts to be combined into a more complex and

nuanced one (Goodfellow et al., 2016).

a. Supervised Learning

Supervised learning requires a labeled dataset, and the objective of the learning

algorithm is to build a statistical model of each input-output pair that optimizes a metric

that measures the performance of the model (Goodfellow et al., 2016). The ML task is

often a classification or regression task that predicts a class label or numerical value.

Metrics used to assess the performance of a supervised learning method would include

classification error, accuracy, or mean squared error.

b. Unsupervised Learning

Unsupervised learning does not require a labeled dataset and focuses on

descriptive tasks such as understanding the structure of data, reducing the feature

15

dimension of data, and generative modeling (Goodfellow et al., 2016). We may use

unsupervised learning in data fusion to answer the question of “Is a given fused track

from a sensor associated with that of another?”

c. Reinforcement Learning

Reinforcement learning is fundamentally different from supervised and

unsupervised learning methods because the data used for learning is obtained by the AI

agent sampling an environment, such as a simulation engine (Goodfellow et al., 2016).

The AI agent would perceive and act on the environment to understand the potential

reward or penalty it will receive from the environment. If the agent is rational, then the

learning algorithm will update the parameters of the agent such that it maximizes its long-

term reward (Russell et al., 2010). Recent advances in reinforcement learning include AI

achieving grandmaster status in the game of Go without learning from a dataset of games

from professional human players (AlphaGoZero), and predicting 3D protein structure

from an amino acid sequence (AlphaFold) by DeepMind (Jumper et al., 2021; Silver et

al., 2017).

3. Machine Learning Operations and Frameworks

In this section, we introduce Machine Learning Operations (MLOps) and its

common ML frameworks. In their survey on MLOps, Kreuzberger et al., (2022) define

MLOps as an engineering practice focused on developing ML products and bringing

them into operations. It is concerned with the “end-to-end conceptualization,

implementation, monitoring, deployment, and scalability of machine learning

product(s),” supported by a multi-disciplinary team comprising the business owners, data

scientists, data engineers, software engineers, and ML engineers.

Based on their research, an end-to-end MLOps architecture and workflow

(depicted in Figure 3) that comprises four key stages:

a. MLOps project initialization aims to establish the ML problem from its

business goal.

16

b. A feature engineering pipeline is set up by establishing rules for extracting

features from the dataset. This feature engineering pipeline would be an

iterative process with the subsequent experimentation stage until a model

that performs well for the task has been developed.

c. In the experimentation stage, the data scientists lead the team through an

iterative model training process to test different algorithms and associated

hyperparameters. The intended outcome of the experimentation stage is to

inform the best-performing model for the task.

d. Finally, the automated ML workflow pipeline is triggered. This workflow

pipeline includes similar steps in the experimentation stages but is

automated for continuous build, test, and deployment (Figure 3). This

allows the model deployed to be periodically updated as new versions of

data features are extracted and updated by the model. The automated ML

workflow interfaces with the operations through a continuous deployment

process. Feedback from the consumer would be monitored so that timely

updates to the model can be integrated effectively.

Figure 3. Automated ML Workflow Pipeline. Adapted from Kreuzberger et
al. (2022b).

17

The review of MLOps inform us that integrating an ML model as part of existing

operations requires a separate developmental workflow and automated processes to be

constructed and integrated into the existing operations. From a systems engineering

perspective, some of the key factors influencing the decision on a framework include: 1)

ease of exporting trained models for deployment, 2) interoperability with existing

systems and between frameworks, 3) licensing cost, and 4) ease of development and

maintenance (usability, speed, and programming language). Figure 4 illustrates the

multitude of software and hardware options available for each part of the workflow

pipeline, as well as platforms that provide a full suite of services, such as Amazon’s

SageMaker, Microsoft’s Azure ML, and Google’s Vertex AI platform.

Figure 4. Commonly Used Software in the Various Workflows of MLOps.
Source: Karayev et al. (2022).

ML software frameworks provide the necessary abstraction from the low-level

implementation, freeing up software developers and programmers to focus on designing,

training, and validating models. These ML frameworks are an integral part of MLOps,

and hence, careful consideration of the framework is necessary before the

commencement of the MLOps workflow. Multiple reviews and surveys have been

18

conducted to provide a broad overview of existing frameworks, comparative analysis,

and benchmarking frameworks for specific ML tasks, such as computer vision and

language modeling (Cardoso Silva et al., 2020; Liermann, 2021; Nguyen et al., 2019;

Winder, 2019). The most used frameworks for machine learning include PyTorch

developed and maintained by Facebook’s AI Research Lab (Paszke et al., 2019);

TensorFlow and Keras developed by Google’s Brain Team (Abadi et al., 2015; Chollet,

2015); MXNet developed by Apache Foundation (Chen et al., 2015); and beginner

friendly framework Scikit-Learn (Pedregosa et al., 2011). No one framework provides all

the required tools and algorithms; often ML engineers use a combination of tools for the

entire MLOps workflow.

4. Using AI/ML to Predict Measurement Noise for KF

In a review on KF with AI techniques by Kim et al. (2022), there are four

approaches to integrating AI/ML techniques with a KF:

a. Techniques to tune the parameters of a KF, such as the process noise

covariance matrix and measurement noise covariance matrix. This method

is mostly used to improve the state estimation in a dynamic environment

where external factors that may affect the state of the system are not

directly measured by the system. Hence, by using ML techniques to

predict the parameters of a KF, the KF can dynamically adapt and adjust

its uncertainty matrices, thereby improving its accuracy when the external

environment changes.

b. AI/ML techniques predict the errors between the state are estimated by the

KF and the ground truth data, and subsequently compensate for error in

the KF estimation to provide the final state estimated. During state

estimation, the AI predicts the error of the state estimated by the KF and

compensates for this error by adding it to the output of the KF.

c. Compared to the previous approach, instead of predicting the error in the

KF’s estimation, the AI/ML technique predicts the error in the state

19

estimation first. This state estimation error is subsequently added to the

sensor measurements before the new updated KF estimate is produced.

d. Techniques also exist to provide additional measurements for KF, which

improves the state estimation. This aims to overcome an imperfect prior

mathematical model of state estimation. The AI learns the mathematical

model of the state and is subsequently used to generate measurements to

be used by a KF. Thus, instead of using the sensor measurements directly,

the KF algorithm uses the measurements generated by the AI. This

technique is relatively new compared to the previously described

techniques.

In this thesis, we explore the first technique—using the AI/ML technique to

predict the parameters of the KF. Some notable research and related work done in this

area include the following:

The KF algorithm has been integrated with a neural network (NN) which enables

it to adapt its parameters when the assumptions built into the KF model are invalid.

Bekhtaoui et al. (2017) put forth a Q-learning KF1 for tracking maneuvering targets. In

their research, a reinforcement learning regime is used to learn a policy for deciding

which noise matrices are to be used by the KF depending on the sensor measurements of

the target. Using Monte-Carlo simulation, the authors found that their proposed methods

can provide faster filtering, compared to an Interacting Multiple Models KF algorithm,

while preserving the tracking accuracy. Jouaber et al. (2021) solve a similar problem by

training a recurrent neural network embedded in the KF to predict additive process noise,

thereby modifying the process covariance matrix 𝑄𝑄 parameter in the KF.

Another parameter of interest is sensor measurement noise represented as

covariance matrix 𝑅𝑅, in the KF algorithm. Like the process covariance matrix,

adjustments to matrix 𝑅𝑅 allow the KF to update its probabilistic belief of the

1 Q-learning is a procedure used to generate a table of state-action pairs with the expected rewards
achievable when an action is taken at a given state. This table is called the Q-table. The estimates are
updated during the learning by maximizing a given reward function that characterize the cost and benefit of
being in a particular state given the history of states visited by an agent.

20

measurements compared to the estimated state. In 2019, Ullah et al. embedded an NN in

a KF to estimate the error in sensor readings. They demonstrated that such a learning

module improves the estimation of temperatures by about 10% in varying humidity

conditions by taking into account humidity readings during the training of the NN (2019).

They furthered their work in 2020 using additional external atmospheric data (solar

radiation, wind speed, external CO2) and internal operational conditions of various

actuators in the NN model to filter temperature, CO2, and humidity readings of a

greenhouse’s indoor environment.

21

III. SIMULATING SENSORS DATA FOR DATA FILTERING

This chapter introduces the methodology for simulating sensor data using CMO

simulation software and analyzes the dataset generated. Before we delve into the

simulation process, we put forth the value of using simulations to generate sensor data

and describe a three-phase process workflow adopted for this thesis.

A. PROPERTIES OF SIMULATIONS

The advantage of using computer simulation includes convenience, flexibility,

and reproducibility.

(1) Convenience

A simulated dataset enables greater control of the data format output while

reducing operational and technology security concerns when exporting operational data.

In addition, ML training requires a voluminous dataset for learning; simulation software

is best suited for replicating scenarios in quick succession in a fraction of the time

required.

(2) Flexibility

Computer simulations afford the ease of changing scenario parameters when and

where required. For instance, for our investigation of different weather conditions, using

an operational dataset would have limited our investigation to the available weather

conditions when the sensors were operating.

(3) Reproducibility

A reproducible experiment provides reassurance to researchers and users on the

effectiveness of the methods used. By using a computer simulation, we can replicate the

dataset generated and methods used for our experiments, thereby enabling further study

into the topic or affirming the results generated from the study. Simulation software

allows the ground truth of a target to be recorded, as opposed to a real-life target, whose

real position can be difficult to measure accurately.

22

B. OVERVIEW OF PROCESS WORKFLOW

As illustrated in Figure 1, a three-phase process workflow has been adopted for

this research. The three phases are:

1. Generation of sensor dataset using CMO

2. Create data filtering models (KF model and ML-KF model)

3. Assess accuracy of data filtering models

In Phase 1, we use the simulation software CMO to generate a sensor dataset,

whereby multiple sensors sense and track a target moving along a designated pathway

defined by waypoints in the scenario. The sensor dataset is stored, and the scenario is

repeated with slight random variations to the starting position of the target to introduce

randomness between each iteration of the simulation run. We use the dataset to build

models using AI/ML techniques (Phase 2) and assess the data filtering algorithms (Phase

3).

In Phase 2, an ML-KF model is generated from the training dataset. A train-

evaluate-test approach was adopted to determine the best hyperparameters of the machine

learning model. This phase is unique as our baseline models using KF do not require any

learning.

In Phase 3, the baseline models and the ML-KF model from Phase 2 are evaluated

against the desired MOPs, using the test dataset.

The subsequent sections in this chapter elaborate on Phase 1 in detail.

C. SCENARIO DESIGN

This section provides an overview of the simulation software, the parameters and

considerations adopted for creating the scenarios for generating the dataset.

1. Overview of CMO

CMO was used to simulate and generate sensor data and the target position in the

simulated scenario. The data is generated and stored as comma-separated value (CSV)

files. CMO is “Matrix Games’ flagship commercial wargame of modern cross-domain

23

military operations” (Matrix Games, 2022b). While there are various modes of play in

CMO2, we use CMO as a computer simulation application through the Scenario Design

mode because it provides the flexibility for designers to create scenarios for

experimentation or analysis and simulate the interactions of agents using physics-based

models. In addition, CMO’s built-in database of capabilities ranges from post-World War

II 1940s to modern-day 2020s to a hypothetical next generation. Thus, using CMO as

simulation software reduces the complexity required to design sensors for our data fusion

experiments. Figure 5 illustrates a slice of the extensive parameters required to define a

sensor in CMO, showing the depth of modeling capabilities in CMO. For this thesis, we

utilized Command Professional Edition v2.0—a professional-oriented superset of CMO

for data generation. To prevent confusion, we continue to use CMO throughout this paper

to refer to the simulation software.

Figure 5. Screenshot of the CMO Database Editor of a Built-in Radar sensor

2. Physics and Stochastic Modeling in CMO

Under the hood, a user designs the following: 1) parameters of the mission and

environment; 2) purpose, attributes, and disposition of agents within the environment;

2 Based on the user manual for CMO, there are four game modes available (Matrix Games, 2022b):

Campaign allows users to play multi-mission campaigns; Quick Battle allows users to enter a pre-defined
scenario and role play the game to execute the mission; Normal Play is like Quick Play but provides
flexibility for players to select a side to execute the mission; Scenario Design allows user to define their
own scenario.

24

and 3) the interaction behaviors of agents (e.g., to determine if an agent should engage a

certain category of agents).

During each simulation run, CMO uses its built-in, physics-based model and

game mechanics to simulate the movement and interaction between agents and the

environment (e.g., poor visibility due to a heavy rainstorm). While the algorithms and

mathematical equations used are not made publicly available, Command Professional

Edition User Manual Version 2.0 (Matrix Games, 2022c) provides insight into the factors

taken into consideration for evaluating sensor detections. For instance, to determine if a

surface ship can be detected by ground-based radar, the simulation engine is said to

account for terrain and sea clutter, presence and geometry of jamming sources, weather

effects, properties of the radar (such as pulse width, beamwidth, power output, and

operating frequency), and location of the target relative to the sensor.

3. Considerations and Constraints in the Design of the Scenario

The following considerations and constraints were defined so that the

effectiveness of the data filtering algorithm can be assessed and variations in the scenario

do not influence the performance of the algorithm:

a. At least two simulated sensors should be included, each from different

sensor domains; for example, radar and Electro-Optical (EO) camera

covering electronic and imagery intelligence, respectively.

b. All sensors should be able to track the target simultaneously.

c. Targets should move between pre-defined waypoints.

d. Variations to the target’s start point should be made to provide slight

differences between each sample in the dataset.

4. Scenario Design—Sensors

Figure 6 illustrates the global view of the scenario created, and Table 1 defines

the sensors used and their technology domain. The scenario consists of the target (yellow

icon) and four sensor platforms (green icons). To mimic the data fusion among

25

heterogeneous data sources and entities dispersed across the battlespace, we placed four

sensors at different locations on the map while allowing the sensor detection ranges to be

sufficiently overlapped to maintain track of the target. This design decision allows the

target to be detected by all the sensors as it carries out its planned mission. In essence,

this creates a synthetic test range for conducting measurement and analysis.

Figure 6. Scenario with Target and Four Sensor Platforms.

Radar

ESM

Target

RP-41

IR
RP-43

RP-43

26

Table 1. Description of Simulated Sensors in Scenario

Sensor Name Sensor

Domain

Technology

AN/KAX-2
SeaFLIR II [EO]

IMINT The SeaFLIR II is developed by FLIR Systems and is
equipped with a color Charge-Coupled Device-
Television (CCD-TV) camera.

AN/ KAX-2
SeaFLIR II [IR]

IMINT Like the SeaFLIR II [EO] above, the IR version
consists of a mid-wave IR thermal imager for
imagery of targets.

Bridgemaster E
ATA

ELINT The Bridgemaster E series radar developed by
Northrop Grumman Sperry Marine B.V. (2005)
operates in the S and X bands and is equipped with
automatic tracking aid to track up to 60 surface
objects moving up to 150 knots.

AN/ SLQ-
32(V2) [ESM]

Passive
ELINT

Developed by Raytheon Technologies, the AN/SLQ-
32 (Variant 2) electronic support measures (ESM)
systems are passive shipboard electronic warfare
(EW) systems for early warning against,
identification of, and direction finding of targets.

Initially, we attempted to group all the sensor platforms into a single player.

However, after observing the initial data throughput, we observed that CMO definitively

shares detection information between sensor platforms. This is a natural design for a

typical mission, as the sharing of intelligence between sensors is expected for making

decisions and taking actions. For our purpose, however, this results in each sensor having

the same estimated target location instead of the sensor’s independent estimate. To

mitigate this effect, we define each sensor platform as an independent player in the

simulation.

5. Scenario Design—Target

A single target is given a Sea Control Mission to patrol between the three

reference points (RP-41, RP-42, and RP-43 in Figure 6) in a repeatable loop within the

timeframe of the simulation. The reference points were defined to satisfy the constraint of

maintaining the target’s detectability by the sensors. The expected movement of the

target is as follows:

27

a. When the scenario is initialized, a target is randomly generated within the

boundaries of a navigation area—a triangle defined by the reference

points. To accomplish this, a Lua programming language script was used

to set the start point of the target. Refer to Appendix A for the script used.

b. The target is expected to move from the start point to RP-41, RP-42, and

then RP-43.

c. Upon reaching RP-43, the target moves towards RP-41, RP-42, and then

RP-43 again.

6. Scenario Design—Weather Conditions

Sensor performance in CMO is affected by both terrain and weather—average

temperature, rainfall rate, visibility, and wind/sea state. Based on CMO’s user manual

(Matrix Games, 2022c), we learn that high temperature decreases IR sensor range more

than it does for EO; rainfall rate degrades the performance of visual, IR, and laser

sensors; visibility—due to cloud cover—affects line-of-sight sensors such as visual and

IR sensors; and sea states affect the performance of radar.

Hence, by changing the weather conditions in CMO, we would expect the EO and

IR FLIR sensors to be most affected and thus least effective in detecting the target’s

position when the temperature is warm, rainfall is high, and sky is overcast. To that end,

we designed two sets of weather condition settings. Figures 7 and 8 illustrate the nominal

and sub-optimal weather conditions for sensors, respectively.

28

Figure 7. Weather Settings for Ideal Weather Conditions.

Figure 8. Weather Settings for Sub-optimal Weather Conditions for EO/ IR

sensor.

7. Simulation Runs

For each scenario setting, 100 iterations were run using PowerShell script (see

Appendix A for PowerShell script used), and the entities’ positions and sensor detections

were logged into CSV files. Each iteration of the simulation ends when the simulation

time exceeds two hours. Figure 9 illustrates the scenario time settings used in CMO. As

the scenario contains only four agents and a limited number of mathematical calculations,

each iteration of simulation runs took an average of five to seven minutes to complete on

a laptop with Graphics Processing Unit (GPU).

29

Figure 9. Simulation Runtime Setting

D. DATASET

In this section, we describe the dataset obtained from a simulation execution.

Each iteration generates two sets of files—the unit position of the target and each

sensor’s detection attempt (i.e., the sensor’s success in detecting other objects in the

scenario). A data dictionary of the fields, description, data type, and sample value of each

field is expanded in Appendix B.

1. Overview of Dataset

A dataset is generated for each weather condition settings; for each set, five CSV

files were generated per iteration of the simulation run, giving a total of 100 CSVs for the

target unit positions and 400 for sensor detection. The TimelineID associates the

simulation runs with files so that sensor readings and target positions are aligned to the

same run. Following, we describe the pre-processing required for each type of file, which

30

is achieved using the Pandas Data Analysis Library written in the Python programming

language (2020).

a. Pre-processing Carried Out for All Files

For all data files generated, the following data pre-processing steps were taken:

(1) Data headers and their values that are deemed unnecessary for the

subsequent phases of the experiment were removed.

(2) All Time data are represented in the number of seconds elapsed in the

scenario instead of the default time format (HH:MM:SS).

(3) A single copy of the duplicated data entries is kept, thereby reducing the

size of the overall dataset.

(4) All geodesic longitude and latitude were converted from degrees to East,

North, Up (ENU) representation using Python 3-D Coordinate

Conversions [Computer Software] (2022). An ENU representation takes

reference from a longitude and latitude (longitude = -118.992 degrees and

latitude = 33.660 degrees) and each geodesic point is calculated for this

reference point. The projection of geodesic points into Cartesian

coordinates allow us to calculate distance between points.

b. Pre-processing Specific for Sensor Detection Files

In addition to the pre-processing steps just listed, the following steps were carried

out for sensor detection files. Sensor data contains attempted detection of all players

(simulated sensors), except itself, in the simulation. This means that there are additional

detection attempts that are not related to the target. Hence, we removed all sensor data

where the object detected did not correspond to the target of interest. In addition, we

conducted checks on the dataset to make sure that any duplicate entries corresponding to

the same time are also removed and that the frequency between each sensor detection

attempt is constant.

31

2. Data Analysis—Target Position

The simulation logged the target’s position per simulated second, giving a total of

7,202 entries.3 The data fields stored are TimelineID, Time, UnitID, UnitName,

UnitClass, UnitLongitude, UnitLatitude, and UnitCourse. Figure 10 uses the Time,

UnitLongitude, UnitLatitude, and UnitCourse fields to visualize the movement of the

target. The green dot represents the randomly generated initial position of the target while

the black dot represents the final position of the target. Graphing the trajectory of the

target is useful for visualizing the position prediction by a data filtering algorithm. This is

integrated with the corresponding prediction errors against the ground truth position in

the Chapter V.

Figure 10. Visualization of Target’s Movement during the Simulation.

3 Although the maximum simulation run-time is two hours (7,200 seconds), two additional seconds

were logged, one prior to the start of the simulation (zeroth second) and another after the simulation has
ended. These additional position and sensor detection data are logged by CMO directly.

32

3. Data Analysis—Sensor Detection

The data field in the sensor detection dataset consists of four parts:

• General simulation parameters: TimelineID, Time

• Information about the sensor: SensorID, SensorName,

SensorParentLongitude, SensorParentLatitude,

SensorParentAltitude_AGL

• Information about the target the sensor is attempting to detect: TargetID,

'TargetName, TargetLongitude, TargetLatitude, TargetAltitude_AGL_m,

TargetRangeSlant_nm.

• Outcome of detection: DetectionResult, DetectionAOU.

a. Sensor Detection Period

The sensor detection period is the time between each sensor detection attempt. It

is a characteristic of each sensor and is independent of the weather setting. Table 2

presents the sensor detection period (Detection Period) for each sensor used in the

simulation. The ESM passive sensor has the least number of detections, as it takes a

longer time for the passive sensor to complete a detection cycle, while the radar—a high-

frequency active sensor—has the most detection attempts. We also note that the arrival of

the first sensor detections differs between sensors (First Detection Time). The different

arrival times and detection periods mean that the algorithms need to handle the different

arrival periods of the data stream.

Table 2. Sensor Detection Period and Start Time

Sensor Detection
Period

(seconds)

First
Detection

Time

Number of Detections
per Simulation Run

Radar 2 0 3601
EO 10 2 720
IR 10 2 720

ESM 20 13 360

33

b. Detection Success

The DetectionResult allows us to understand if the detection attempt by the sensor

is a success or a failure. A failed detection attempt means that the sensor did not

successfully detect the target, and the target’s position is estimated based on its last

successful detection attempt. Table 3 presents the average proportion of successful

detection across all runs in the different weather conditions for each sensor (as defined in

Figures 7 and 8). In normal weather conditions (15 deg C, no rain, sky is clear, calm

seas), all the sensors have a 100% detection success rate, which is expected since our

scenario is designed to have the target maneuver within the sensor detection ranges. In

contrast, with extreme weather conditions (33 deg C, heavy storms, sky is full with thick

clouds, seas 4/10 on Beaufort scale), the IR sensor proportion of successful detection is

almost halved, indicating that the impact on the IR sensor is the most significant. While

we would have expected the impact on sensor detection to be broad-based and affect the

radar and ESM sensors due to the impact of weather on electromagnetic wave

propagation and the impact of low visibility on the performance of EO and IR visual

sensors, it is not evident in the proportion of detection success in the extreme weather

scenario. This may be due to the relatively close distances between the target and the

sensors which make the extreme weather effects negligible, or the sensors are well-

equipped to adapt their characteristics and parameters (such as power and pulse width of

the radar to improve range resolution) based on the weather.

Table 3. Sensor Detection Success

Sensor Detection Success (%)
Normal Weather Extreme Weather

Radar 100 +/- 0.0 99 +/- 0.0001
EO 100 +/- 0.0 100 +/- 0.0
IR 100 +/- 0.0 53.62 +/- 3.86

ESM 100 +/- 0.0 100 +/- 0.0

34

c. Average Residual from Target’s Position

The accuracy of a sensor is an MOP and can be calculated using the root mean

squared error (RMSE). A higher RMSE corresponds to poorer performance while a lower

RMSE suggests that the sensor’s estimation of the target’s state is closer to the ground

truth. Before we use the dataset for data fusion, it is necessary to analyze the performance

of each sensor so that subsequent analysis allows us to ascertain the improvement in state

estimation accuracy by each data fusion algorithm.

To calculate the RMSE, we compare the longitude and latitude of the target

detected by the sensor and the target’s actual location at the corresponding timestep. The

following equations were used to calculate the RMSE.

Subsequently, the performance of the sensor across all simulation scenarios is

averaged to provide the mean error and standard deviation. Table 4 presents the average

performance of each sensor in different weather conditions.

35

Table 4. Average Sensor Detection Error in Different Weather Settings

Sensor Average RMSE (meters)
Normal Weather Extreme Weather

Radar 6.1725 +/- 0.001865 6.1710 +/- 0.0019342
EO 6.1635 +/- 0.001850 6.1640 +/- 0.0018425
IR 6.1656 +/- 0.001895 6.1637 +/- 0.001844
ESM 0.4215 +/- 0.001416 0.4220+/- 0.001413

It is interesting to note that the average performance of the sensor did not worsen

as much as expected, and the sensors have a relatively low sensor detection error (a

maximum of 6.17 meters or 0.0033 nm). Comparing the sensors, Radar, EO, and IR have

similar performance in both weather conditions, while ESM has the best performance

(lowest error) among the sensors (0.42 meters or 0.00023 nm). This is a deviation from

real-world performance as ESM sensors often provide an area of uncertainty about the

target’s position, translating to higher error. As CMO’s sensors models are proprietary

knowledge, we are limited by the sensor dataset provided from the simulation.

It is also interesting to study the IR performance in detail since it has a high

detection failure rate in extreme weather conditions, with marginal changes in sensor

detection performance. In CMO, a detection is considered a failure when the sensor made

a contact with the target but was not successful in classifying it. Further analysis of the

average detection error based on the sensor attempt shows that the target’s error when the

detection is a failure is statistically significantly higher at a 95% confidence level than

that when the detection is successful. Thus, the extreme weather effect does have a

significant impact on the sensor detection error for IR sensor.

E. LIMITATIONS OF DATASET

1. Insignificant Improvement between Simulation Settings

The exploratory data analysis in Section C illustrates that the dataset has a fairly

accurate independent sensor estimation of the target’s position, even in the case of

extreme weather scenario settings. In addition, the effects of extreme weather affected

36

only the IR sensor, when the performance of EO, IR, and radar sensors was expected to

be affected as well. Thus, to reduce the complexity and further focus our efforts on this

research, in subsequent chapters, we only consider the dataset in the normal environment

to illustrate the improvement in target position estimation. This means that the AI/ML

algorithms utilize only the normal weather dataset for training and evaluating the

accuracy of the model.

2. Absence of Measurement Errors

The family of KF algorithms requires covariance of the sensor measurement to

represent measurement uncertainty. In our dataset, only the ESM sensor provided an Area

of Uncertainty (AOU), while the rest of the sensors did not. Despite our effort to utilize

AOU information, we decided that all sensor datasets should provide the same type of

information to reduce the complexity and confounding factors in our experiments.

Specifically, when using the dataset with the KF algorithm, we would be required to

estimate the sensor noise present in the measurements. The methodology to estimate

sensor noise is elaborated upon in Chapter IV.

37

IV. MODEL GENERATION METHODOLOGY

In this chapter, we describe the methodology to create models that take in sensor

estimates of the target position in the battlespace and output a refined estimate of the

target position. First, we describe our baseline model using the KF algorithm. Second, we

describe an ML model that is used to estimate the error from the KF algorithm to improve

the performance of the KF algorithm. Appendix C list all Python packages used in the

development of our source code, and Appendices D, E, and F are the scripts and output

from running the scripts using a Jupyter Python Notebook.

A. KALMAN FILTERS

The KF algorithm is a recursive estimator that predicts the future state of a system

based on its previous state (Faragher, 2012). It operates on the current sensor

measurements and previously filtered measurement data; thus, requiring a reduced

amount of memory and is a fast and efficient real-time estimator. Generally, KF

algorithms operate in a two-step procedure—the predict step and the update step (Labbe,

2022). This two steps are executed sequentially in a single iteration of the algorithm. In

our case, we execute the algorithm at every time step of the simulation to estimate the

target’s state in the subsequent time step.

The predict step uses the system process model to predict the state at the next time

step and to adjust its probabilistic belief to account for uncertainty and prediction errors.

The update step uses the sensor measurement to update its estimation of the system state.

While a sensor model is used in the update step to account for uncertainty and errors in

the measurements. Following, we elaborate on the mathematical symbols and equations

used for each step, and the parameters used for our model.

38

1. Predict Step

Table 5 presents the mathematical symbols used in the predict step.

Table 5. Symbols Used in the Predict Step

Symbol Variable Definition
𝑋𝑋 State of system A vector of state parameters representing the

position (latitude/longitude), velocity, and
acceleration of the target.

𝑃𝑃 State covariance
matrix

The state covariance matrix represents the
uncertainty of the corresponding state
parameters. The diagonal terms of 𝑃𝑃 are the
variances associated with the state parameters,
while the off-diagonal terms are the covariances
between terms in the state vector, which informs
us of how much the state vector terms vary from
each other.

𝐹𝐹 State transition
matrix

The state transition matrix applies the effect of
each state parameter at time 𝑘𝑘 − 1 on parameters
at time 𝑘𝑘.

𝑤𝑤 Process noise The process noise are random errors associated
with noisy control inputs to the system. It is a
vector of random errors assumed to be drawn
from a zero mean multivariate normal
distribution with covariance 𝑄𝑄.

𝑄𝑄 Process noise
covariance

The process covariance represents the
uncertainty (process noise) in the transition from
the current state to the subsequent state.

We are interested in predicting the position and velocity of the target, and hence,

𝑋𝑋𝑘𝑘 is the state vector representing the latitude 𝑚𝑚𝑘𝑘, longitude 𝑦𝑦𝑘𝑘, and the respective

velocities �̇�𝑚𝑘𝑘 and 𝑦𝑦�̇�𝑘 in 𝑚𝑚 𝑠𝑠⁄ and acceleration 𝑚𝑚�̈�𝑘 and 𝑦𝑦�̈�𝑘 in 𝑚𝑚 𝑠𝑠2⁄ of the target at time 𝑘𝑘 =

0,1,2,3, …. (seconds). The system dynamics model from time 𝑘𝑘 − 1 to time 𝑘𝑘 in a finite

timestep ∆𝑡𝑡 uses a combination of linear equations with Gaussian noise with mean zero

and covariances defined by matrix 𝑃𝑃:

𝑋𝑋𝑘𝑘 = [𝑚𝑚 𝑦𝑦 �̇�𝑚 �̇�𝑦 �̈�𝑚 �̈�𝑦]𝑇𝑇

𝑋𝑋𝑘𝑘 = 𝐹𝐹𝑘𝑘−1𝑋𝑋𝑘𝑘−1 + 𝑤𝑤𝑘𝑘−1

39

where [.]𝑇𝑇 is the transpose operation.

The state covariance matrix 𝑃𝑃, represents the uncertainty of our state variables,

and will be updated in the update step when measurement inputs are considered. Since

the target has a cruising speed of approximately 7𝑚𝑚 𝑠𝑠⁄ (15 kts), the uncertainty in the

measurement of position data in one second would be approximately 65 m (0.035 nm).

We further assume that the uncertainty in velocity measurement would be 0.5 𝑚𝑚 𝑠𝑠⁄ (1 kt)

and the uncertainty in acceleration 0.52 𝑚𝑚 𝑠𝑠2⁄ . The resulting initial covariance matrix, 𝑃𝑃0

is

𝑃𝑃0 =

⎣
⎢
⎢
⎢
⎢
⎡

652 0 0 0 0 0
0 652 0 0 0 0
0 0 0.52 0 0 0
0 0 0 0.52 0 0
0 0 0 0 0.54 0
0 0 0 0 0 0.54⎦

⎥
⎥
⎥
⎥
⎤

Newton’s Equations of Motion provide us with the state transition equations.

While the target in the scenario moves at a constant speed for most of the scenario, the

change in direction implies that the target is moving at varying velocity during the

simulation, but the rate of change of velocity is constant. Hence, a constant acceleration

model is used to model the system dynamics.

With constant acceleration, the kinematic equations describing the change in

position and velocity of the target at time 𝑘𝑘 in a timestep ∆𝑡𝑡 are given by

𝑚𝑚𝑘𝑘 = 𝑚𝑚𝑘𝑘−1 + 𝑚𝑚𝑘𝑘−1̇ ∆𝑡𝑡 +
1
2
�̈�𝑚∆𝑡𝑡2

𝑦𝑦𝑘𝑘 = 𝑦𝑦𝑘𝑘−1 + 𝑦𝑦𝑘𝑘−1̇ ∆𝑡𝑡 +
1
2
�̈�𝑦∆𝑡𝑡2

𝑚𝑚�̇�𝑘 = 𝑚𝑚𝑘𝑘−1 +̇ �̈�𝑚∆𝑡𝑡

𝑦𝑦�̇�𝑘 = 𝑦𝑦𝑘𝑘−1 +̇ �̈�𝑦∆𝑡𝑡

𝑚𝑚�̈�𝑘 = 𝑚𝑚𝑘𝑘−1̈

𝑦𝑦�̈�𝑘 = 𝑦𝑦𝑘𝑘−1̈

The resulting state transition matrix 𝐹𝐹 is

40

𝐹𝐹 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 ∆𝑡𝑡 0
∆𝑡𝑡2

2
0

0 1 0 ∆𝑡𝑡 0
∆𝑡𝑡2

2
0 0 1 0 ∆𝑡𝑡 0
0 0 0 0 0 ∆𝑡𝑡
0 0 0 0 1 0
0 0 0 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

The prediction of state parameters at time 𝑘𝑘 is given by

𝑋𝑋�𝑘𝑘 = 𝐹𝐹𝑘𝑘−1 𝑋𝑋�𝑘𝑘−1

Considering the Gaussian process noise 𝑤𝑤𝑘𝑘−1~𝑁𝑁(0,𝑄𝑄𝑘𝑘−1), the updated state

covariance matrix 𝑃𝑃𝑘𝑘 is

𝑃𝑃𝑘𝑘 = 𝐹𝐹𝑘𝑘−1𝑃𝑃𝑘𝑘−1𝐹𝐹𝑘𝑘−1𝑇𝑇 + 𝑄𝑄𝑘𝑘−1

2. Update Step

Using the defined system dynamic model, the KF algorithm uses the previous

measurements to predict the system state at the next time step 𝑘𝑘. This state estimation 𝑋𝑋�𝑘𝑘

is then further refined in the subsequent update step by considering the measurements.

The update step refines two key components of the prediction equation: 1) the prior state

estimation is refined using the Kalman gain and the residual between state estimates and

measurements; 2) the uncertainty associated with the refined system state estimate. Table

6 presents the mathematical symbols used in the update step.

Table 6. Symbols Used in the Update Step

Symbol Variable Definition
𝑧𝑧 Measurement Sensor’s estimation of target’s longitude and

latitude in ENU representation
𝑦𝑦 Residual The difference between measurement 𝑧𝑧 and the

predicted state from the prediction step 𝑋𝑋�𝑘𝑘
𝐾𝐾 Kalman Gain The amount of correction applied by the KF

algorithm to measurements to make the
measurements less noisy

𝑅𝑅 Measurement
noise covariance

The uncertainty associated with the
measurements for each state parameters

41

Symbol Variable Definition
measured. The diagonal of 𝑅𝑅 represents the
variance in the respective sensor measurements,
while the off-diagonal elements represent the
variances in measurements between different
sensors

𝐻𝐻 Measurement
function

Projects the state parameters 𝑋𝑋 into the
measurement space. Since the sensors are not
measuring accelerations or velocities directly, we
convert the state space to measurement space by
removing those terms that are not measured

a. Sensor Measurements and Noise

Since the sensor measurement arrives at different periods and starts at different

time interval, we update the KF when a sensor measurement has arrived at the filter. This

is possible since we assume that all sensor measurements are independent measurements

of the target. The measurements from our sensors are the longitude and latitude of the

target, and 𝑧𝑧𝑘𝑘 is a column vector representing the measurements from the sensor 𝑚𝑚 ∈

[𝑅𝑅𝑚𝑚𝑅𝑅𝑚𝑚𝑅𝑅,𝐸𝐸𝐸𝐸, 𝐼𝐼𝑅𝑅,𝐸𝐸𝐸𝐸𝐸𝐸] at a specific timestep 𝑘𝑘 = 0,1,2,…

𝑧𝑧𝑖𝑖 = [𝑚𝑚𝑖𝑖 , 𝑦𝑦𝑖𝑖]𝑇𝑇

The associated uncertainty in the sensor measurements is defined in the

covariance matrix 𝑅𝑅𝑖𝑖. However, as noted in Chapter III, the uncertainty in the sensor

measurement is not an output in the sensor data in CMO. Thus, to estimate the

uncertainty in the sensor measurements, we derive the variance in the sensor

measurements of the longitude and latitude from the dataset. We further assume

independence between the sensors’ detections and between the longitude and latitude

variables. Hence, 𝑅𝑅𝑖𝑖 is a 2 × 2 matrix for sensor 𝑚𝑚 with the diagonals representing the

variances in the uncertainty measurement of longitude and latitude, and the off diagonals

are zeros. Mathematically, standard deviation, 𝜎𝜎, is given by 𝜎𝜎 = �1
𝑁𝑁
∑ (𝑚𝑚𝑖𝑖 − 𝜇𝜇)2𝑁𝑁
𝑖𝑖=1 .

The standard deviation in sensor measurement error across all detection is

presented in Table 7.

42

Table 7. Sensor Measurement Noise Derived from Dataset

Sensor

Sensor Noise (Standard Deviation in Error,
meters)

Longitude Latitude

Radar 1.7091 1.9157

EO 1.7113 1.9194

IR 1.7113 1.9193
ESM 0.2095 0.2104

b. Measurement Function

To convert the state space 𝑋𝑋 to measurement space 𝑧𝑧, we define measurement

function 𝐻𝐻 as:

𝐻𝐻 = �1 0 0 0 0 0
0 1 0 0 0 0�

c. Kalman Gain

In KF, the sensor measurements are used to inform the algorithm of the difference

in the estimated prediction and the measured position of the target, informing it of the

amount required to correct its prediction in the subsequent timestep 𝑘𝑘. The Kalman Gain

𝐾𝐾𝑘𝑘 is calculated as

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘𝐻𝐻𝐾𝐾𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1

d. Update State Estimation

The residual 𝑦𝑦𝑘𝑘 tells us of how far the estimated state in the predict state is from

the measurement. The updated state estimation is given by

𝑦𝑦𝑘𝑘 = 𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑋𝑋�𝑘𝑘

𝑋𝑋�𝑘𝑘 = 𝑋𝑋�𝑘𝑘 + 𝐾𝐾𝑘𝑘𝑦𝑦𝑘𝑘

43

e. Update State Covariance Matrix

The state covariance matrix 𝑃𝑃 is updated to reflect the changes in uncertainty with

the Kalman Gain, 𝐾𝐾

𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘

B. CREATING KF BASELINE MODEL USING FILTERPY

We use the FilterPy python package to implement the KF. The standard KF

function was used to generate the KF’s estimate of the longitude and latitude at every

timestep of simulation. The KF is updated when a sensor reading(s) has arrived at the

timestep before a state estimation is made (prediction step). We use the same formula

defined in Chapter III to calculate the squared error between the target and KF’s estimate,

and subsequently calculate the RMSE and standard deviation of the error of each

simulation run. The average error across the 100 simulation runs is used to compare the

performance of the model.

The algorithm used in the experimentation set up is as follows:

1. Define a simulation iteration and retrieve the corresponding dataset for

sensor detection and unit position.

2. Initialize the KF with measurement function, state transition matrix, and

process covariance matrix.

3. Initialize KF’s target initial position with the first sensor reading.

4. For each timestep 𝑘𝑘 subsequently:

• Get a prediction of the target’s state estimate from KF and save the

estimate.

• Retrieve sensor detection at that timestep 𝑘𝑘, and extract the

longitude and latitude of the sensor detection: 𝑧𝑧𝑖𝑖,𝑘𝑘 = {𝑚𝑚𝑖𝑖 ,𝑦𝑦𝑖𝑖}𝑘𝑘.

• Update KF measurement error matrix of sensor 𝑅𝑅𝑖𝑖.

• Update KF with a measurement 𝑧𝑧𝑖𝑖,𝑘𝑘 from sensor 𝑚𝑚.

44

• Repeat until there is no additional sensor detection at timestep 𝑘𝑘.

• Advance to the next timestep.

Chapter V presents the results of the KF model.

C. MACHINE LEARNING MODELS

In this section, we describe the methods used to create an ML model that is used

to estimate the parameters of a KF. Specifically, we take inspiration from the work done

by Ullah et al. in 2019 and 2020, whereby a neural network was used to estimate the error

matrix to be used in the update step of the KF and thus improve the estimated state of the

object. In the subsequent section, we formulate our desire to create an NN using the ML

approach and expand in detail the procedures used in the creation and tuning of an ML

model.

1. Formulation of ML Problem—Modeling Uncertainty

We desire to use a NN to estimate each sensor error matrix 𝑅𝑅𝑖𝑖 instead of using the

average error estimated from the dataset. This is beneficial for the KF algorithm as the

error matrix informs the KF of the uncertainty in the sensor’s measurement, and hence, a

representative error matrix would shift the KF’s probabilistic belief of the sensor’s

measurement accordingly. Therefore, the goal of the NN is to approximate a function to

predict the sensor’s measurement uncertainty when given the sensor’s measurement of

the target’s longitude and latitude.

A model’s uncertainty can broadly be classified with both epistemic uncertainty

and aleatoric uncertainty (Bishop, 2006; Kendall & Gal, 2017; Seitzer et al., 2022).

Epistemic uncertainty can be reduced with increasing data points, thus improving the

probabilistic belief of the model. In comparison, aleatoric uncertainty is embedded as part

of the information which our data is unable to explain. Aleatoric uncertainty can be

independent of the input space and can be constant (homoscedastic) or vary with the

input (heteroscedastic). In our ML task, we are predicting the sensor’s variance, which is

a natural physical characteristic of the sensor.

45

Next, we wish to derive the loss function for optimization of the NN. Goodfellow

et al. (2016) illustrated that the cost function of a neural network is to minimize the cross-

entropy loss between the probability distribution inferred from the training data and the

model’s distribution. The negative log-likelihood of a model 𝑝𝑝(𝑦𝑦|𝑚𝑚; 𝜃𝜃) determines the

model’s cost function i.e., 𝐽𝐽(𝜃𝜃) = −log 𝑝𝑝(𝑦𝑦 |𝑚𝑚;𝜃𝜃).

a. Heteroscedastic Interpretation

Adapting from Nix & Weigend (1994), the sensor 𝑚𝑚’s measurement function 𝑓𝑓 is

 𝑓𝑓(𝑚𝑚) = 𝑚𝑚 + 𝜖𝜖(𝑚𝑚)

where 𝜖𝜖 ~ 𝑁𝑁�0,𝜎𝜎2(𝑚𝑚)� is the additive Gaussian noise with zero-mean and variance, and

𝑚𝑚 is the ground truth location of the target. The input-dependent variance suggests sensor

noise is dependent on the actual location of the target. This is a suitable assumption since

a sensor measurement may vary as the distance between the target and the sensor varies.

Given training data of sensor 𝑚𝑚, ��𝑚𝑚(1),𝑦𝑦(1)�, �𝑚𝑚(2),𝑦𝑦(2)�, … , �𝑚𝑚(𝑛𝑛),𝑦𝑦(𝑛𝑛)��,

consisting of: 𝑚𝑚, location of the target, and 𝑦𝑦, the sensor measurements at some time 𝑡𝑡 ∈

{1, . . ,𝑚𝑚} the maximum likelihood estimate (MLE) of the variance of a dataset can be

derived as follows:

• The probability distribution of sensor measurement 𝑦𝑦 given 𝑚𝑚 is normally

distributed

𝑝𝑝(𝑦𝑦|𝑚𝑚) = 𝑁𝑁�𝑚𝑚,𝜎𝜎2(𝑚𝑚)� =
1

�2𝜋𝜋𝜎𝜎2(𝑚𝑚)
𝑒𝑒𝑚𝑚𝑝𝑝 �−

(𝑦𝑦 − 𝑚𝑚)2
2𝜎𝜎2(𝑚𝑚) �

In other words, the uncertainty of locating a target is a Gaussian

distribution around its actual location and it is assumed that the

uncertainty varies with 𝑚𝑚.

• Assuming that each example in the training dataset is independent and

identically distributed, then the negative log-likelihood of 𝑝𝑝(𝑦𝑦|𝑚𝑚) is

46

− 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑦𝑦 |𝑚𝑚;𝜃𝜃)

= −�𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝�𝑦𝑦(𝑖𝑖)�𝑚𝑚(𝑖𝑖);𝜃𝜃�
𝑛𝑛

𝑖𝑖=1

= −
𝑚𝑚
2
𝑙𝑙𝑙𝑙𝑙𝑙 𝜎𝜎𝜃𝜃2(𝑚𝑚) −

𝑚𝑚
2
𝑙𝑙𝑙𝑙𝑙𝑙(2𝜋𝜋) + �

�𝑦𝑦(𝑖𝑖) − 𝑚𝑚(𝑖𝑖)�
2

2𝜎𝜎𝜃𝜃2(𝑚𝑚)

𝑛𝑛

𝑖𝑖=1

= −
𝑚𝑚
2
𝑙𝑙𝑙𝑙𝑙𝑙 𝜎𝜎𝜃𝜃2(𝑚𝑚) + �

�𝑦𝑦(𝑖𝑖) − 𝑚𝑚(𝑖𝑖)�
2

2𝜎𝜎𝜃𝜃2(𝑚𝑚) + 𝑐𝑐𝑙𝑙𝑚𝑚𝑠𝑠𝑡𝑡𝑚𝑚𝑚𝑚𝑡𝑡
𝑛𝑛

𝑖𝑖=1

• Ignoring the constant terms, the cost function 𝐽𝐽 to optimize the model

parameters 𝜃𝜃 is

𝐽𝐽(𝜃𝜃) =
1
2
��

�𝑦𝑦(𝑖𝑖) − 𝑚𝑚(𝑖𝑖)�
2

2𝜎𝜎𝜃𝜃2(𝑚𝑚) + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜎𝜎𝜃𝜃2(𝑚𝑚)�
𝑛𝑛

𝑖𝑖=1

where (𝑦𝑦(𝑖𝑖) − 𝑚𝑚(𝑖𝑖))2 is the squared error between the sensor’s

measurement, 𝑦𝑦(𝑖𝑖) and the target’s actual location, 𝑚𝑚(𝑖𝑖), and 𝜎𝜎𝜃𝜃2(𝑚𝑚) is the

predicted variance from our NN with parameters 𝜃𝜃.4

b. Homoscedastic Interpretation

If we relax the assumption that sensor measurement noise is parameterized based

on the actual location of the target 𝑚𝑚, then 𝜎𝜎𝜃𝜃2 is a constant, and the MLE of the variance

is 𝜎𝜎2 = 1
𝑛𝑛
∑ �𝑦𝑦(𝑡𝑡) − 𝑚𝑚(𝑡𝑡)�

2𝑚𝑚
𝑡𝑡=1 .

Hence, we use the following cost function–the difference between the underlying

variance 𝜎𝜎2, and the model’s prediction 𝜎𝜎𝜃𝜃2–for the training of the model 𝜃𝜃:

𝐽𝐽(𝜃𝜃) =
1
𝑚𝑚
�‖𝜎𝜎2
𝑛𝑛

𝑖𝑖=1

−𝜎𝜎𝜃𝜃2�

4 The derivation of our negative log-likelihood cost function is different from that in Kendall & Gal

(2017) and Seitzer et al. (2022), as we do not use the NN model to predict the ground truth location of the
target.

47

=
1
𝑚𝑚
���𝑦𝑦(𝑖𝑖) − 𝑚𝑚(𝑖𝑖)�

2
−𝜎𝜎𝜃𝜃2�

𝑛𝑛

𝑖𝑖=1

where ‖.‖ is the L1 norm.

We use the cost function resulting from homoscedastic interpretation in the

subsequent experiment set up and posit the heteroscedastic cost function for future work.

2. ML Experiment Framework

An ML Experiment Framework describes the operation phases involved in

creation of an ML model. Figure 11 illustrates the three-phase framework. It closely

mimics an MLOps workflow pipeline described in Kreuzberger et al. (2022b).

Figure 11. ML Experiment Framework

The following subsections describe each phase in detail.

3. Phase 1: Generation of Dataset

A sensor dataset, one for each sensor, was generated using CMO simulation

software as described in Chapter III. The dataset was subsequently split into input

variables (𝒙𝒙) and the output variable (𝑦𝑦). Only the normal weather dataset was used.

We used the longitude, 𝑚𝑚1, and latitude, 𝑚𝑚2, as the input variables to the NN

model; hence, at time 𝑡𝑡, the measurement by sensor 𝑚𝑚 is 𝒙𝒙𝒊𝒊,𝒕𝒕 = �𝑚𝑚1
(𝑡𝑡) , 𝑚𝑚2

(𝑡𝑡)�.

The variable to be predicted is the sensor measurement variance for each physical

dimension (longitude and latitude). This is given by the squared error between the sensor

48

measurement and the ground truth target location (𝒙𝒙𝑡𝑡∗) along each of the physical

dimensions at time 𝑡𝑡: 𝑦𝑦1,𝑖𝑖,𝑡𝑡 = �𝑚𝑚1,𝑡𝑡 − 𝑚𝑚1,𝑡𝑡
∗ �

2
and 𝑦𝑦2,𝑖𝑖,𝑡𝑡 = �𝑚𝑚2,𝑡𝑡 − 𝑚𝑚2,𝑡𝑡

∗ �
2
.

4. Phase 2: Build ML Model—Creating a Neural Network

At the heart of the framework is the development of ML models to meet the

objectives of the task. The key activity in this phase includes the following steps.

a. Data Preparation for ML Experimentation

In this phase, the data is further split into three subsets for training, validation, and

testing of the model. Subsequently, we normalize the training set, so that each input

variable to the model is within the range of zero and one. We use the pre-processing

package in Scikit-Learn (Pedregosa et al., 2011) to accomplish the data preparation.

The training set allows the model to update the values of its parameters while the

validation set is used to score the model so that the learning algorithm can determine if

the model is overfitted to the training set. In other words, we aim to determine if the

model has learned (or memorized) the training set to the extent that it was unable to

perform when given a dataset that it has not seen during training. In addition, the

validation set is used to compare models trained with different hyperparameters, thereby

determining the best hyperparameter for each model. Since the model is trained on the

training set and tuned using the validation set, the test set provides an unbiased evaluation

of the model. To that end, the training set is 70% of the entire dataset while the validation

and test sets are 15% each. A random number generating seed is set so that each model is

trained on the same subset of the dataset.

We scale the raw dataset so that each input variable is within the range of 0 to 1

according to the following formula

𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚) −𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚)

The minimum and maximum range of the variable is sampled from the training

set, instead of the entire dataset, to prevent data leakage during the training process. By

49

scaling the dataset, each variable is in the same range and each variable receives equal

weighting by the neural network.

b. NN Architecture and Parameters

A dual-head neural network (DHNN) is designed to estimate the sensor error for

longitude and latitude (Figure 12). The NN is a fully connected NN with two hidden

layers, consisting of an input layer with two neurons for the longitude and latitude of the

sensor measurement, and an output layer with two neurons for the estimated error in

sensor readings for longitude and latitude, respectively. The ℎ1 hidden layer is a shared

layer between all neurons, while the ℎ2 hidden layer is disconnected from the other

output nodes. This architecture design decision was adopted so that the output nodes can

learn the nuances in the data specific to longitude and latitude independently, while not

completely foregoing the interdependence that may exist between the dimensions. All

neurons in the NN use rectified linear units (ReLU) as their activation function. The

number of neurons in each hidden layer is a hyperparameter to be tuned independently, as

elaborated in Step 4 below.

Figure 12. Architecture of Dual-Head Neural Network

50

c. Training the Neural Network

Training an NN is an iterative process and the NN aims to minimize the loss

function by updating its parameters (weights and biases). Each iteration of the training

procedure consists of a full pass through the training set whereby the training set is

randomly sampled to produce batches of training data and the derivative of the loss

function is backpropagated through the network to update the parameters accordingly.

After each complete pass of the training set, the validation set is used to assess the

performance of the DHNN. When the DHNN validation error stops improving, training is

terminated.

We use the adaptive moment estimation (Adam) optimizer algorithm—“an

algorithm for first-order gradient-based optimization of stochastic objective functions”

(Kingma & Ba, 2017)—to optimize the weights and biases of the neural network. In

addition, we bound the error derivate that is being backpropagated to update the

parameters of the network (commonly known as gradient clipping), stabilize the weight

updates across iteration using weight decay factor (L2 Regularization), and conduct

learning rate annealing to prevent the optimization procedure from being stuck in local

minima and saddle points and converging towards the global optima point. Table 8

summarizes the parameter values.

Table 8. Optimization Algorithm Parameters

Parameter Values Remarks
Optimization Algorithm

Optimization algorithm Adaptive Moment
Estimation (Adam)

Gradient clipping 1.0 Maximum value for the norm of
gradients

Weight decay 0.0001
Decay rate of gradient
moving average (𝛽𝛽1)

0.9 Default value in PyTorch

Decay rate of squared
gradient moving average
(𝛽𝛽2)

0.999

51

Parameter Values Remarks
Initial learning rate (Refer to Table 9)
Learning Rate Scheduler
Scheduler type Stepwise decay
Step size (Refer to Table 9) Period of learning rate decay

Gamma (Refer to Table 9) Multiplicative factor of learning
rate decay

Training Procedure
Maximum Number of
Iterations (Epoch)

500

Batch size (Refer to Table 9) The size of the subset of the
training dataset used to evaluate
gradient of the loss function and
update NN weights

Validation patience 20 The number of times the
validation loss can be larger
than or equal to the previously
smallest loss before terminating
training

The training of the DHNN is accomplished using PyTorch: An Imperative Style,

High-Performance Deep Learning Library written in the Python Programming Language.

The pre-processing of data, training, and tuning of the DHNN was carried out on an HP

Workstation running 24 x64-based Intel Core i9-7920X CPUs and an NVIDIA GeForce

GTX 1080 Ti GPU.

d. Model Tuning

The goal of model tuning is to discover the set of hyperparameters that yield the

best performance by the DHNN on the validation set. Table 9 presents the

hyperparameters search space.

52

Table 9. Hyperparameter Search Space

Hyperparameter
Category

Hyperparameter Possible Values

NN architecture Number of neurons in ℎ1 8, 16

Number of neurons in ℎ2 2, 4

Optimization
algorithm

Initial learning rate 0.1, 0.2, 0.3, 0.5
Learning rate step size 10, 15, 20

Learning rate gamma 0.1, 0.5, 0.8, 0.9

Batch size 16, 32, 64

In total, there are 576 potential combinations of hyperparameters. To create

models and sample the hyperparameter search space, we use Python library Tune (Liaw

et al., 2018). Tune integrates with PyTorch by providing a wrapper function around the

training and validation procedures and executes the hyperparameter tuning in parallel. In

total, we sampled approximately 69% of the hyperparameter search space using a

maximum sample of 500 to derive the best performing hyperparameters for DHNN

model for each sensor. The test set is then used to approximate the generalization error of

the best model.

The selected hyperparameters and performance of each sensor’s DHNN ML

model are presented in Table 10 and Table 11 respectively.

Table 10. Selected Hyperparameters of DHNN Models

Parameter Radar EO IR ESM

Number of neurons in ℎ1 16 16 16 16

Number of neurons in ℎ2 4 4 4 2

Initial Learning rate 0.1 0.1 0.2 0.1

Learning rate step size 10 10 15 20

Learning rate gamma 0.5 0.1 0.1 0.5

Batch size 64 64 32 32

53

Table 11. Model Performance and Description

 Radar EO IR ESM

Total number of weights 152 424 424 356

Total number of biases 26 42 42 38

Score on validation set 0.1046 0.0798 0.0897 0.0099

Score on test set 0.1061 0.0837 0.0937 0.0071

5. Phase 3: Publish the ML Model

In the final phase of the ML Experiment Framework, the best model derived from

Phase 2 is stored in a compatible format for subsequent deployment in the operating

system. For our purpose, the Tune library used in Phase 2d (Model Tuning),

automatically save a copy of the state of the model after each iteration of the training step

and the validation score that the model achieves. Hence, the best DHNN model for each

sensor can be retrieved using PyTorch.

D. STATE ESTIMATION BY THE ML-KF MODEL

An ML-KF model consists of the trained sensor’s DHNN and a KF. The input and

output of the ML-KF algorithm are like the algorithm described in Section A2 of this

chapter, with the following modifications:

1. The scalers derived from the training dataset are used to scale the sensor

measurement inputs to the ML-KF model.

2. The scaled measurements are fed into the DHNN, which would provide

the variance of the longitude and latitude.

3. The variances form the sensor measurement error matrix 𝑅𝑅 of the ML-KF.

Figure 13 is a graphical representation of the variables and process flow used by

the ML-KF to estimate the target state. The prediction algorithm, with bold-face fonts

emphasis on the modifications made to the KF model, is described in the following and

highlighted in yellow boxes in Figure 13.

54

1. Define a simulation iteration and retrieve the corresponding dataset for

sensor detection and unit position.

2. Load the DHNN models for each sensor and the respective sensor

scalers.

3. Initialize the KF with measurement function, state transition matrix, and

process covariance matrix.

4. Initialize KF’s target initial position with the first sensor reading.

5. For each timestep 𝑘𝑘 subsequently:

• Get a prediction of the target’s state estimate from KF and save the

estimate.

• Retrieve sensor detection at that timestep 𝑘𝑘, and extract the

longitude and latitude of the sensor detection: 𝑧𝑧𝑖𝑖,𝑘𝑘 = {𝑚𝑚𝑖𝑖 ,𝑦𝑦𝑖𝑖}𝑘𝑘.

• Update the KF measurement error matrix to that of sensor 𝒓𝒓𝒊𝒊

by using the DHNN to predict the longitude and latitude

variance.

• Update KF with a measurement𝑧𝑧𝑖𝑖,𝑘𝑘 from sensor 𝑚𝑚.

• Repeat until there is no additional sensor detection at timestep 𝑘𝑘.

• Advance to the next time step.

55

Figure 13. Process Flow for Predicting Target State by ML-KF Model

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

V. ANALYSIS OF RESULTS

In this chapter, we present and analyze the results obtained from each model

generated. We shed light on the performance of each model in predicting the state of a

target using sensor measurements from a wide range of sensors.

We evaluate each model in two ways: 1) using the average RMSE in estimating

the target’s state across all simulation runs, and 2) evaluating the model’s residual error

during the prediction of a single run. The average RMSE in estimating the target’s state

across all simulation runs is useful as a broad and holistic performance metric because

each simulation run has subtle differences. However, taking the RMSE of the entire

simulation run does not provide us with a means to quantify the performance of each

model during specific instances in each scenario, such as when the target is changing its

course rapidly as opposed to while traveling on a constant course. This motivates the

investigation of the models’ performance at different phases of the scenario.

A. OVERALL PERFORMANCE

Table 12 presents the average estimation error for both models across the 100

simulation runs from each environment settings. Recall that the Normal weather

environment settings represents an ideal condition in the simulated battlespace while the

Extreme weather environment settings simulates a battlespace with poor weather

conditions that cause the sensors to perform poorer than the ideal condition. The

motivation to compare the two different weather settings is to highlight the improvement

in performance even in degraded weather condition.

Overall, the ML-KF model outperforms the KF model and achieves a lower

estimation error across the 100 simulation runs for both environment settings (results are

highlighted in green in Table 12). Under normal weather conditions, the KF model has an

average RMSE of 9.324 ± 0.073 meters (30.59 ± 0.24 feet). In comparison, the ML-

KF model has an average RMSE of 7.462 ± 0.043 meters (24.48 ± 0.014 feet),

58

significantly outperforming the KF model in estimating the target’s state by

approximately 20% using a 5% significance level5.

Table 12. Performance of Models across 100 Simulation Runs

Environment Model RMSE

Longitude Latitude Overall

Normal KF mean 7.541179 5.478568 9.323550

std 0.181759 0.131409 0.073194

ML-KF mean 5.725176 4.783331 7.462227

std 0.129570 0.111124 0.043657

Extreme KF mean 7.559086 5.467258 9.331756
std 0.195241 0.140200 0.079345

ML-KF mean 5.733017 4.773831 7.462399

std 0.135887 0.118889 0.043015

1. Comparison of Performance between Weather Datasets

The performance of the KF model is poorer in extreme weather conditions with a

result of 9.332 ± 0.079 meters. Once again, the ML-KF model outperforms the KF

model with a result of 7.4623 ± 0.043 meters (green background in Table 12). When

comparing the performance of the model in the extreme weather dataset against the

normal weather dataset, we observe that both models did not perform significantly better

or worse at a 5% confidence level.

5 We conducted a hypothesis testing to determine if the ML-KF model outperforms the KF model. The

null hypothesis is that there is no difference in the average RMSE across 100 simulation runs, while the
alternate hypothesis is that the ML-KF model have a lower average RMSE. We used a significance level at
5%. The paired t-test across the simulation runs yield a p-value of 3.16 × 10−23, which is less than the
significance level of 0.05. Thus, we strongly reject the null hypothesis that the performance of ML-KF and
KF model is similar.

59

We would have expected the performance of the ML-KF model to perform worse

than in the normal weather settings because the ML-KF DHNN models were not trained

on the extreme weather dataset and the weather dataset was expected to contain noise that

is not like that observed in the normal weather dataset. However, despite the strong

performance of the model in extreme weather settings, this comparison is not a strong

testament to the performance of the ML-KF model. This is because, as noted in the

limitations of the dataset in Chapter III, the extreme dataset only has slight variability in

sensor errors when compared to the normal weather dataset. Thus, we are unable to

conclude that the ML-KF model outperforms the KF model when sensor measurements

are corrupted due to external factors (such as weather) and if the DHNN embedded in the

ML-KF model was effective in adapting the measurement noise matrix when sensor

measurements are noisy.

2. Performance in Prediction of Longitude and latitude

The distribution of errors across the 100 simulation runs of each environment set

is presented in Figure 14 and Figure 15 for the KF and ML-KF models respectively.

Evaluating the performance for each physical dimension (longitude and latitude)

independently, we observe the following:

a. The error in longitude was much greater than that in the latitude,

contributing the most to the overall RMSE. A potential reason is that the

range of possible values for longitude is larger than that of latitude

(𝜎𝜎𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑡𝑡𝑙𝑙𝑠𝑠𝑠𝑠 = 2876.88 > 𝜎𝜎𝑠𝑠𝑙𝑙𝑛𝑛𝑙𝑙𝑖𝑖𝑡𝑡𝑙𝑙𝑠𝑠𝑠𝑠 = 2680.81), resulting in a larger

margin for error in state estimation.

b. The distribution of error in latitude is a heavy-right tail, while the

distribution of longitude is a heavy-left tail, like the distribution of the

overall RMSE. This suggests that the overall RMSE is strongly influenced

by the errors in the longitude since the range of RMSE(longitude) is larger

than that of RMSE(latitude), so the overall RMSE would be skewed by

RMSE(longitude).

60

c. Comparing the distribution of RMSEs between the KF and ML-KF

models, no significant differences were observed; both models have

RMSEs that are heavy-tailed as described previously. A notable difference

is the range of RMSE values, suggesting that the RMSE for the ML-KF

model is smaller (lower mean than the KF model) and the spread of the

RMSE values is smaller (lower standard deviation than KF Model) (Table

12).

Figure 14. KF Model RMSE Distribution

61

Figure 15. ML-KF Model RMSE Distribution

B. PREDICTION ERROR DURING KEY PHASES OF TARGET
MOVEMENT

Investigating the performance of our models during the simulation run offers

additional insights, we randomly selected a simulation run–simulation run number 5–

from the normal dataset and visualized the RMSE for the prediction of the target’s

longitude and latitude. Figure 16 illustrates the model’s RMSE for longitude and latitude

respectively. We use a simple moving average (SMA) function to smooth the RMSE

calculated.6 The SMA(100) plot for each model suggests that the RMSE changes

drastically whenever the target changes its heading. The target is said to be changing its

6The SMA function averages the RMSE from the previous 100 timesteps in the simulation.

62

heading when the gradient of the longitude and latitude plots changes, highlighted by the

green vertical bands in Figure 16. The target’s heading changes whenever the target has

arrived at an RP (reference point) in the simulation and is heading towards another RP.

Figure 16. Model’s State Estimation Error during a Single Simulation Run

Now, we investigate the model’s error when moving between reference points

(target has a constant heading) and at a reference point (target is changing its course).

1. Constant Heading

Figure 17 illustrates the RMSEs when the target is moving between RP-43 and

RP-41 for simulation run 5 in normal weather conditions. During this movement, the

target is expected to traverse at a constant speed (hence constant heading). The following

observation and analysis can be made regarding the RMSE values:

63

Figure 17. Target Moving between RP-43 to RP-41 (Constant Heading)

The sensor measurements arrive at the KF whenever a detection was made; the

pattern in RMSE correlates with the measurement arrival period of each sensor, thereby

suggesting that the sensor measurements may disrupt the KF estimation when the sensor

measurement matrix does not accurately reflect the uncertainty in sensor measurement.

For example, we note that the KF model RMSE increases drastically every 20 timesteps

of the simulation, corresponding to the arrival of ESM sensor detection. The purple boxes

in Figure 17 highlights this insight.

64

One reason for the sharp changes in prediction may be due to the low uncertainty

in ESM sensor measurements,7 causing the KF to “increase” its probabilistic belief in the

ESM sensor measurements. Then, in subsequent timesteps when the other sensor

measurements are different from the KF’s prediction, the KF over (or under)

compensates for the difference in its prediction and the sensor’s measurement, thereby

resulting in a sudden jerk in the state estimated by the KF.

Since the ML-KF model uses the KF algorithm for prediction, similar jerks in

prediction error are observed as well. In this vein of analysis, the ML-KF model was able

to reduce the error (the ML-KF model reports a lower RMSE when the jerks occur) by

improving the sensor measurement error to be used by the KF, but not reducing the poor

estimation by the KF algorithm.

2. Changing Heading

Figures 18 and 19 illustrate the models’ estimates against the ground truth and

RMSE error in measurement of longitude and latitude when the target is approaching an

RP and subsequently moving away from it towards another RP. In general, both figures

show us that 1) the models’ estimates at the turning point fluctuate, and 2) the KF

estimate is often further away from that of the ML-KF estimate compared to the ground

truth. These observations are expected because the KF algorithm assumes a constant

acceleration state process model, which would not perform well when a target changes its

acceleration, such as a change in the target’s heading. In other words, the prediction by

the models that uses a constant acceleration KF model is unable to generalize to the case

with a target varying its acceleration.

Ideally, the ML-KF model should be able to reduce estimation errors when the

target’s heading changes, by dynamically adjusting the probabilistic belief of the sensor

measurement. A well-performing ML-KF model would result in a consistently low

RMSE before and after the target has changed its heading. However, observing that the

7 The ESM sensor had the lowest sensor detection error compared to the EO, IR and Radar sensors

(Table 4, Chapter III).

65

trend in RMSE by the ML-KF model is strongly correlated to that of the KF model, it

was inconclusive that the ML-KF model was adjusting the prediction dynamically when

the target is changing its course.

Figure 18. Target Changing its Course around RP-43

66

Figure 19. Target Changing its Course around RP-42

From our simulation runs and performance evaluation, we observe that the KF

algorithm performance is dependent on the sensor’s measurement and can be abruptly

changed by the measurements. This is exacerbated by the fact that the sensor’s

measurement noise has a smaller confidence interval, resulting in varying changes in

state estimation, instead of a consistent improvement in state estimation across all time

steps. The ML-KF model improves the estimation errors by providing the KF algorithm

with improved estimation of the uncertainty of the sensor measurements. However, both

the KF and ML-KF models were unable to dynamically adjust when the target changed

its heading as the prediction is still strongly predicated on the assumptions embedded in

the KF itself.

67

VI. CONCLUSIONS

A. SUMMARY OF RESEARCH

We set out to investigate whether ML models are able to improve the accuracy of

state estimation in a COP/CTP. We adopted a quantitative approach and our findings

have shown that integration of ML models to estimate the sensor measurement error

matrix for the standard KF algorithm can significantly improve the accuracy of target

state estimation by approximately 20%. In summary, our contributions are:

1. We have developed an ML operations pipeline that ingests data from a

simulation to train, validate, and test machine learning modules for

subsequent deployment in a KF system. The methodology, dataset, and

models generated are reproducible and replicable, as the code base and

frameworks used for this development are fully open source.

2. We have demonstrated that a learning module embedded in a standard KF

algorithm can improve state estimation over a standard KF model. The

ML-KF model was able to generate a sensor measurement error matrix to

update the KF algorithm’s probabilistic belief of the sensor measurements,

thereby improving the KF’s estimation.

3. We were only able to train the learning module used in the KF model only

because our simulation system provides a ground truth target state that live

ranges may not be able to provide. This demonstrates the potential of

using simulation to develop ML models and of subsequently deploying

them in the field.

The following sections present the limitations of our research, challenges faced

when developing and executing the ML operations pipeline, and areas for future work.

68

B. LIMITATIONS AND FUTURE WORK

1. Simulated Dataset

a. Sensor Measurement Uncertainty

As highlighted in Chapter III, we are limited by the dataset generated using the

CMO simulation software to generate sensor measurements. As a commercial product, it

did not allow the researcher to obtain detailed information about the models used in the

simulation and the software could not be modified directly to pursue particular research

goals. Critically, the absence of sensor measurement uncertainty output for each of the

simulated sensors resulted in the use average error in sensor measurement, against the

ground truth target position, as the sensor measurement error matrix in our baseline

model. In addition, we found that some of the sensors have measurements that do not

meet our realistic expectations for the sensor. Specifically, the ESM sensor measurements

had very high accuracy (small error). This may not be the case, since the ESM sensor

provides an area of uncertainty where the target may be located, instead of a spot

measurement.

For future research, it may be better to employ a more open simulation

environment, such as the Advanced Framework for Simulation, Integration, and

Modeling (AFSIM) (West & Birkmire, 2019). Modeling processes of interest in AFSIM

may require more detailed design and implementation effort, accompanied by necessary

verification and validation procedures, which can be more demanding than directly

employing a simulation "as-is." However, there are numerous organizations using

AFSIM, so there is greater opportunity for scenario and software reuse than in other

environments. Of note, there are distribution restrictions on AFSIM that prevent its use in

an academic environment by foreign students and make studies using AFSIM less

available to the research community at-large. Even so, in an environment such as the

Naval Postgraduate School and recognizing the inherent military sensitivity of such

topics as data fusion, investigation into the use of AFSIM to support future research is

warranted.

69

b. Inclusion of External Factors in ML models

We started the work intending to discover if variance in external factors affecting

sensor measurements would be mitigated by ML models, as described in Ullah et al.,

(2019 and 2020). Our desire, however, was not satisfied, as the output from the

simulation does not provide a dataset suggestive of large variation when the weather

conditions have changed. We propose for future researchers to include noise in the sensor

dataset to investigate ML-KF models. The additive noise can be modeled as a parameter

of water conditions, such as higher noise in sensor measurement corresponding to the

degradation of sensor measurements in the presence of heavy rainfall.

2. Model Limitations

We now present some of the limitations of our models. While the ML-KF model

has improved performance over the standard KF model, we think that the following areas

must be studied further to provide a more conclusive evaluation of the embedding the ML

model in a KF to predict parameters for the KF:

a. How Well Does the AI/ML Model Generalize?

This thesis has provided a proof-of-concept on using ML as part of the data

filtering process in state estimation but is limited in showing that the ML models can

generalize well to different use cases or scenarios. Since the ML models are trained on a

fixed set of datasets, the models are not expected to perform well when the simulation

settings changes. For example, if the simulation longitude and latitude coordinates were

to be set in a different geographic area, and the sensors were set up differently, the AI/

ML models trained in one setting may not be useful in another. Another case where the

models may not adapt well is when there are external factors influencing the sensor

measurements, such as weather conditions.

While we have attempted to generate a set of datasets based on the different

weather conditions, there was not much notable difference in the estimation error across

all sensors, and hence, we decided to limit our training dataset to the normal weather

70

dataset and restrict the number of inputs to the DHNN to only the sensor measurements.

Following, we propose different ways to improve the generalizability of the model.

(1) Randomized Reference Points in Simulation

In our dataset, the target moves in a fixed set of pre-defined reference points.

While we have randomized the initial target position for each of the simulation run, there

exists significant correlations exist between each run, such as the position where a target

would be turning. A simulation set up and sensor dataset to train the ML models would

enhance the models’ adaptiveness for different types of maneuvers.

(2) Inclusion of External Factors for the ML Model Input

Should we have a dataset that is significantly different from nominal conditions,

we could include these inputs to the ML model so that the KF parameter to be predicted

would dynamically adapt, thereby increasing the accuracy in managing a wide range of

potential scenarios.

Another line of effort would be to embed trained ML model(s) within other

variants of KF models, such as Interacting Multiple Models KF and Extended KF. In our

KF algorithm, we made a bold assumption that the target will be moving in constant

acceleration. This assumption was useful for us to assess if the ML-KF model were to be

able to improve the performance during a change in acceleration, since a standard KF

would perform poorly on it. Since we do not see an improvement in state prediction when

the target is accelerating or decelerating, we think that it would be useful to conduct an

ablation study, to assess the key contributing factors or changes that brought to bear the

improvement in state estimation by the KF (and its variants) or the learning module

embed in an ML-KF model.

b. Formulating a Time-series Problem

In our approach, we have assumed that the samples in the dataset are independent

and identically distributed. This means each sensor detection provides nothing new about

the history of detections or subsequent detections made by the sensor. We assumed time

to be an independent random variable in our dataset, as it simplifies the ML problem

71

formulation. We thus encourage future research to consider the case where the sensor

measurements are temporally dependent. To that end, we put forth two suggestions that

are potentially mutually reinforcing:

(1) Using LSTM modules in NN

Jung et al. (2020) proposed a Long Short-Term Memory (LSTM) KF that

integrates LSTM modules to output a target state estimation. A recurrent NN with an

LSTM module differs from the standard feedforward NN in that LSTM has feedback

connections designed to process sequences of data and only important information from

the sequence is kept to aid the processing of subsequent data points (Graves, 2012).

Hence, using a recurrent NN with LSTM modules in a KF could improve the confidence

of the model in predicting target state estimates and alleviate the Markov property of the

KF.

(2) Reinforcement Learning (RL)

Gao et al. (2020) showed that ML models learned using reinforcement learning

were effective in predicting process noise covariance matrix for the KF. The ML model

was trained using the deep deterministic policy gradient algorithm with the target location

error as the penalty to the AI agent. Hence, a potential area for exploring the use of AI/

ML in improving data filtering would be to use reinforcement learning agents as the ML

model. This is useful because the reinforcement learning agent will be able to search the

action space (the possible outputs of the noise covariance matrices) by interacting with

the simulation engine directly. This would be especially beneficial for an ML model

where the AI-controlled targets in the simulation moves randomly based on different

mission sets. Hence, by learning the target’s movement online, there is no need to

generate and store datasets for the ML phase, and the agent would be generalized.

These two suggestions are potentially mutually reinforcing. This is evidenced by

the successes by Google’s DeepMind in creating an AI to achieve Grandmaster status in

StarCraft (Vinyals et al., 2019), which uses deep LSTM NN and an RL training regime to

create the AI. The AI was able to improve its score through multiple hours of game plays

in the simulated environment to improve its decision-making abilities.

72

c. Multiple Target Data Filtering

In our scenario, only one target is used for this proof-of-concept. It would be of

interest to our sponsor and the larger IW community to be able to filter multiple targets.

In this requirement, the ML problem would therefore consist of two tasks: classification

and regression. While the regression task–to predict sensor measurement errors–remains

unchanged, the additional classification task is to classify the target’s importance to the

analysts–such as if the target is a friend or foe. A more sophisticated multi-class

classification problem would be to classify the different types of targets (e.g., different

classes of naval ships). In addition, we have not field tested the improved system, and

would encourage future researchers to implement similar methods to assess the efficacy,

latency, and system overhead incurred to provide performance measures of such a

system.

C. CONCLUSION

Our research used ML models to predict sensor measurement errors for a standard

KF algorithm. Our ML-KF model was able to significantly outperform our baseline

model at 5% confidence level, showing that using an ML-KF model would improve the

performance of target position state estimations, alleviating the performance issue when

uncertainty of sensor measurement is absent from heterogenous sensor data streams. In

other words, in the absence of uncertainty measurements of sensor data, the ML

embedded in the KF was able to predict the uncertainty and dynamically updating the

parameters of the KF algorithm.

This proof-of-concept has the potential to be further extended using more

sophisticated methods. We have proposed three key areas for future research:

1. To improve the generalizability of the ML-KF model by including other

parameters (such as weather conditions in the battlespace) that are not

directly modeled or used in KF.

2. Using time-series methods to model temporal movement of a target,

thereby increasing the predictive power of the learning module embedded

in the KF.

73

3. Using ML models to conduct multiple target data filtering (JDL Level 2),

by including a classification task to categorize the track data.

As the DoD increasingly shifts its focus to the application of ML, we believe that

such an application in data filtering would be able to augment existing data filtering

methods and eliminate the expense of replacing them. For instance, by enhancing existing

COP/CTP data filtering algorithms, we would be able to have a more accurate state

estimation of the target, thereby providing a higher confidence of the target’s position in

the COP/CTP. The ability for such an ML-KF model to ingest heterogenous data stream

is also a powerful tool to automate the work of intelligence analysts who would

frequently need to cross-reference their sources across different intelligence domains. By

improving the suite of tools available to our warfighters, they will be more lethal in their

response to any adversary.

74

THIS PAGE INTENTIONALLY LEFT BLANK

75

APPENDIX A. SCRIPTS FOR CMO SIMULATION

A. LUA SCRIPTING FOR RANDOMLY GENERATING A TARGET’S
POSITION

Lua is a programming language used by CMO to provide advanced users with the

ability to “implement virtually any desired behavior” (Matrix Games, 2022a). For

instance, players can use the Lua command to extend existing AI behaviors and spawn

units within the game based on the status of the scenario. For this thesis, we endeavor to

have our target to be randomly generated at a random location within the designated

patrol area defined by the reference points RP-41, RP-42, and RP-43. Since the three

points describe a triangle, vector arithmetic is used to randomly generate a point within

the triangle to initialize the target’s position. The Lua script used is reproduced below:

76

B. POWERSHELL SCRIPT TO RUN CMO FROM COMMAND LINE
INTERFACE

Only available in the premium edition of CMO, a command-line interface (CLI)

is available for analysts to run their simulation without the graphical user interface (GUI)

hence reducing the graphics processing overhead and allowing the simulation to run

faster and more efficiently. Since we must run each scenario 100 times, we leverage the

CLI CMO provides to automate the process. The PowerShell script used to run CMO

from the CLI is reproduced below.

Upon completion of the PowerShell command, there is a folder with 100 sub-

folders, each consisting of the dataset generated for its respective scenario.

77

APPENDIX B. DATA DICTIONARY

A. UNIT POSITION TABLE

Field Description Data
Type

Sample Value/
Remarks

TimelineID The unique ID of the simulation
run under which the event
occurred

String 5c945cd6-18ba-
4bf4-9622-
bc26d6c33932

Time The scenario time at which the
event occurred

String The string is
formatted as
hh:mm:ss

UnitID The unique ID of the unit String KGQ0E2-
0HMIBR4PMU7G
2

UnitDBID The database ID of the unit Integer 2868
UnitName The actual name of the unit String DDG 72 Mahan

[Arleigh Burke
Flight II]

UnitType The type of unit String Ship
UnitClass The class of unit String DDG 72 Mahan

[Arleigh Burke
Flight II]

UnitSide The name of the side to which
the unit belongs

String Target or Sensors

UnitLongitude The longitude of the unit Float -119.0180886
UnitLatitude The latitude of the unit Float 33.69657902
UnitCourse The heading of the unit in

degrees
Float 60.61721

UnitSpeed_kts The speed of the unit in knots Float 12
UnitAltitude_m The altitude of the unit in

meters
Float Not applicable for

this project
UnitAttitude_Pitch The pitch of the unit Float Not applicable for

this project
UnitAttitude_Roll The roll of the unit Float Not applicable for

this project
Status The status of the unit String Not applicable for

this project
Condition_AirOps The condition of air operations String Not applicable for

this project
Condition_Dockin
gOps

The condition of docking
operations

String Not applicable for
this project

AssignedMission The name of the mission String Mission: Patrol

78

assigned to the unit
DamagePercent The percentage of the unit that

is damaged
Integer Not applicable for

this project
Fire The unit is on fire Boolean Not applicable for

this project
Flood The unit is flooded Boolean Not applicable for

this project
ComponentStatus The status of the component on

the unit
String Not applicable for

this project

B. SENSOR DETECTION ATTEMPT TABLE

Field Description Data
Type

Sample Value/
Remarks

TimelineID The unique ID of the simulation
run under which the event
occurred

String 5c945cd6-18ba-4bf4-
9622-bc26d6c33932

Time The scenario time at which the
event occurred

String 00:00:10

SensorID The unique ID of the sensor Integer KGQ0E2-
0HMJ3OD15T23H

SensorName The name of the sensor's parent String AN/ SLQ-32(V)2
[ESM]

SensorParentID The unique ID of the sensor's
parent

Integer KGQ0E2-
0HMJ3OD15T230

SensorParentNam
e

The name of the sensor's parent String esm

SensorParentLon
gitude

The sensor's parent longitude Float -119.06086

SensorParentLatit
ude

The sensor's parent latitude Float 33.7624658

SensorParentAltit
ude_ASL

The sensor's parent altitude
above sea level in m

Float Not applicable for this
project

SensorParentAltit
ude_AGL

The sensor's parent altitude
above ground level in m

Float Not applicable for this
project

SensorParentSide The side of the sensor's parent String Sensor(ESM)
DetectionMode The mode of detection String Search
TargetID The target's unique ID String KGQ0E2-

0HMIBR4PMU7G2
TargetName The actual name of the target String DDG 72 Mahan

[Arleigh Burke Flight
II]

TargetSide The side of the target String Target
TargetLongitude The estimated longitude of the Float -119.01751

79

target
TargetLatitude The estimated latitude of the

target
Float 33.6967081

TargetAltitude_A
SL_m

The estimated target altitude
above sea level in m

Float Not applicable for this
project

TargetAltitude_A
GL_m

The estimated target altitude
above ground level in m

Float Not applicable for this
project

TargetRangeHori
z_nm

The horizon range from the
sensor to the target in nm

Float 4.49954

TargetRangeSlant
_nm

The slant range from the sensor
to the target in nm

Float 4.49954

DetectionResult The outcome of the detection String SUCCESS
DetectionAOU The area of the uncertainty of

the detection is defined by six
sets of longitude and latitude
coordinates

Array
of floats

{Lon:-
119.06086272032 -
Lat:33.762465802667
7}{Lon:-
119.06086272032 -
Lat:33.762465802667
7}{Lon:-
119.06086272032 -
Lat:33.762465802667
7}{Lon:-
118.978922492301 -
Lat:33.590429378211
4}{Lon:-
118.960190968491 -
Lat:33.597455955306
2}{Lon:-
118.942315320068 -
Lat:33.605891109887
5}

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

APPENDIX C. SOFTWARE PACKAGES USED

This appendix lists the software packages used in this thesis.

Name of Software Version Purpose

Simulation Software
Command: Modern
Operations

Professional
Edition V2.0

Simulation software that creates a scenario
to generate the sensor detection dataset for
our subsequent use

Data Analysis
Pandas Python Library 1.4.2 Software that enables the manipulation of

data, such as converting the longitude and
latitude into ENU format

Matplotlib 3.5.1 Data visualization
Seaborn 0.11.2 Data visualization
PyMap3D 2.9.1 Package to convert geodesic coordinates to

ENU format.

Kalman Filter
FilterPy 1.4.5 Python library that implements Kalman

filters

Machine Learning
PyTorch 1.11.0 For training neural network
Scikit-Learn 1.0.2 For the creation of and datasets partitioning
Tune (by Ray) 1.13.0 For the efficiently conduct of

hyperparameter search

82

THIS PAGE INTENTIONALLY LEFT BLANK

83

APPENDIX D. PYTHON NOTEBOOK–EXPLORATORY DATA
ANALYSIS

import os
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import time
import itertools
from helper import *

defines the path for the datasetss
path_normalweather = '../data/normal_weather'
path_xtremeweather = '../data/extreme_weather'

SAVE_DF = False
Load the DF:
if not SAVE_DF:
 dataset = load_all_dfs() # dataset[weather][sensor] = get_sensor_df(sensor, weather)

A. INSPECTING HEADERS OF DATASET

sensor_detect_filename = '../data/extreme_weather/0/Sensor(Radar)_SensorDetectionAttempt.csv'
target_pos_filename = '../data/extreme_weather/0/Target_UnitPositions.csv'
df_pos = pd.read_csv(target_pos_filename, nrows=3)
print(list(df_pos.columns))

['TimelineID', 'Time', 'UnitID', 'UnitDBID', 'UnitName', 'UnitType', 'UnitClass', 'UnitSide',
'UnitLongitude', 'UnitLatitude', 'UnitCourse', 'UnitSpeed_kts', 'UnitAltitude_m',
'UnitAttitude_Pitch', 'UnitAttitude_Roll', 'Status', 'Condition_AirOps', 'Condition_DockingOps',
'AssignedMission', 'DamagePercent', 'Fire', 'Flood', 'ComponentStatus']

df_sense = pd.read_csv(sensor_detect_filename, nrows=3)
print(list(df_sense.columns))

['TimelineID', 'Time', 'SensorID', 'SensorName', 'SensorParentID', 'SensorParentName',
'SensorParentLongitude', 'SensorParentLatitude', 'SensorParentAltitude_ASL',
'SensorParentAltitude_AGL', 'SensorParentSide', 'DetectionMode', 'TargetID', 'TargetName',
'TargetSide', 'TargetLongitude', 'TargetLatitude', 'TargetAltitude_ASL_m', 'TargetAltitude_AGL_m',
'TargetRangeHoriz_nm', 'TargetRangeSlant_nm', 'DetectionResult', 'DetectionAOU']

B. COMPARISON OF COORDINATE SYSTEMS (GEODESIC AND ENU
REPRESENTATION)

1. We are given the following geodesic coordinates:

• actual target location (ground truth),

• sensor location (sensor parent lat lon alt), and

• estimated target location (target lat lon...)

84

2. We want to calculate the error between estimated target location and the

actual target location.

1. Sample Dataset

Sample a dataset
dataset = load_all_dfs()
df_pos = dataset['normal']['pos']
df_radar = dataset['normal']['Radar']

timeline_sample = df_pos.TimelineID.iloc[0]
df_pos = df_pos[df_pos.TimelineID == timeline_sample]
df_radar = df_radar[df_radar.TimelineID == timeline_sample]
df_merged = pd.merge(df_pos, df_radar, left_on=['TimelineID', 'Time'], right_on=['TimelineID',
'Time'], how='left')
df_merged.dropna(axis=0, inplace=True)

a. Conversion to ENU representation

(1) Converts the Lon Lat from database into East-North-Up representation.

This requires a reference point to be defined and is abstracted in the

get_ENU() helper function. We use a common point (middle of all 3

reference points in the simulation as the reference point for projection).

ENU is less accurate due to the projection from the reference point.

(2) Subsequently calculate the cartesian distance between a set of ENU points

(i.e., the L2-Norm)

(3) In ENU (xyz), we can consider the height dimension easily, it performs

better than geodesic distance in this aspect. The latter only considers

surface distance (i.e., a walk along earth's surface)
import pymap3d as pm
from geopy.units import nautical

Using the get_ENU function.
lon = df_pos.iloc[0]['UnitLongitude']
lat = df_pos.iloc[0]['UnitLatitude']
alt = df_pos.iloc[0]['UnitAltitude_m']
get_ENU(lon, lat, alt)

(-554.4601823446596, 2023.0458401609612, -100.34608059636821)

Unit
df_merged_pm = pd.concat(
 [df_merged, df_merged.apply(lambda r: get_ENU(r.UnitLongitude, r.UnitLatitude,
r.UnitAltitude_m), axis=1, result_type='expand')], axis=1)
df_merged_pm.rename({0: 'Unit_E', 1: 'Unit_N', 2: 'Unit_U'}, axis=1, inplace=True)
Target
df_merged_pm = pd.concat(
 [df_merged_pm,
 df_merged_pm.apply(lambda r: get_ENU(r.TargetLongitude, r.TargetLatitude,

85

r.TargetAltitude_AGL_m), axis=1, result_type='expand')],
 axis=1)
df_merged_pm.rename({0: 'Target_E', 1: 'Target_N', 2: 'Target_U'}, axis=1, inplace=True)
Sensor
df_merged_pm = pd.concat([
 df_merged_pm,
 df_merged_pm.apply(lambda r: get_ENU(r.SensorParentLongitude, r.SensorParentLatitude,
r.SensorParentAltitude_AGL), axis=1, result_type='expand')
],
 axis=1)
df_merged_pm.rename({0: 'Sensor_E', 1: 'Sensor_N', 2: 'Sensor_U'}, axis=1, inplace=True)

df_merged['Err_ENU'] = df_merged.apply(lambda r: l2_norm_3d(r.Target_E, r.Target_N, r.Target_U,
r.Unit_E, r.Unit_N, r.Unit_U), axis=1)
df_merged['SlantRange_ENU'] = df_merged.apply(
 lambda r: l2_norm_2d(r.Target_E, r.Target_N, r.Target_U, r.Sensor_E, r.Sensor_N, r.Sensor_U),
axis=1)
df_merged['Err_ENU_x'] = df_merged.apply(lambda r: sq_err_1d(r.Target_E, r.Unit_E), axis=1)
df_merged['Err_ENU_y'] = df_merged.apply(lambda r: sq_err_1d(r.Target_N, r.Unit_N), axis=1)
df_merged['Err_ENU_z'] = df_merged.apply(lambda r: sq_err_1d(r.Target_U, r.Unit_U), axis=1)
df_merged['Err_ENU_2d'] = df_merged.apply(lambda r: l2_norm_2d(r.Target_E, r.Target_N, r.Unit_E,
r.Unit_N), axis=1)

Check how far off we are with respect to the target slant range calculated in CMO.
df_merged.loc[:,['TargetRangeSlant_nm','SlantRange_ENU']].describe()

 TargetRangeSlant_nm SlantRange_ENU
count 3601.000000 3601.000000
mean 8.542361 8.545815
std 1.403697 1.403840
min 7.059873 7.065747
25% 7.282954 7.288187
50% 8.114071 8.114512
75% 9.505038 9.508726
max 11.821140 11.826809

the error distribution of sensor radar in this scenario.
df_merged.loc[:,['Err_ENU','Err_ENU_2d','Err_ENU_x','Err_ENU_y','Err_ENU_z']].describe()

 Err_ENU Err_ENU_2d Err_ENU_x Err_ENU_y Err_ENU_z
count 3601.000000 3601.000000 3601.000000 3601.000000 3601.000000
mean 0.376391 0.003337 0.002088 0.002221 0.376376
std 0.086746 0.000163 0.000891 0.001038 0.086750
min 0.207910 0.002956 0.000005 0.000002 0.207885
25% 0.313193 0.003219 0.001129 0.002164 0.313175
50% 0.374205 0.003334 0.002321 0.002376 0.374192
75% 0.477333 0.003461 0.002548 0.003101 0.477321
max 0.490292 0.003760 0.003533 0.003684 0.490281

f, axes = plt.subplots(1, 4, figsize=(16, 5))
sns.histplot(data=df_merged, x='Err_ENU', kde=True, ax=axes[0])
for i, t in enumerate(['x', 'y', 'z']):
 sns.histplot(data=df_merged, x=f'Err_ENU_{t}', kde=True, ax=axes[i + 1])

86

Visualization of distribution plot in the two different coordinate systems
sns.displot(data=df_merged, x='Err_Geodesic', y='Err_ENU', kind='kde')

Visualization of the ENU correlation error between longitude and latitude
sns.displot(data=df_merged,x='Err_ENU_x',y='Err_ENU_y', kind='kde')
>> Seems to suggest some negative correlation in the error.

87

np.corrcoef(df_merged.Err_ENU_x, df_merged.Err_ENU_y)

array([[1. , -0.91733101],
 [-0.91733101, 1.]])

Visualization of the ENU correlation error between longitude and altitude
sns.displot(data=df_merged, x='Err_ENU_x', y='Err_ENU_z', kind='kde')
>> fairly random

np.corrcoef(df_merged.Err_ENU_x, df_merged.Err_ENU_z)

array([[1. , 0.1382019],
 [0.1382019, 1.]])

Visualization of the ENU correlation error between latitude and altitude
sns.displot(data=df_merged, x='Err_ENU_y', y='Err_ENU_z', kind='kde')
>> fairly random

88

np.corrcoef(df_merged.Err_ENU_y, df_merged.Err_ENU_z)

array([[1. , -0.26009732],
 [-0.26009732, 1.]])

C. EXPLORATORY DATA ANALYSIS OF TARGET UNIT POSITION
DATASET

1. General Statistics of Dataset

The following tasks were carried out:

(1) Count number of entries per simulation run (each unique TimelineID) in

each dataset

(2) Confirm that each simulation run yield the same number of data fields per

run

(3) Check the frequency of data yield by CMO in the dataset.
df_pos_normal = make_targetPosition_dataset(path_normalweather)
df_pos_normal.describe()

completed

 Time UnitLongitude UnitLatitude UnitCourse \
count 720200.000000 720200.000000 720200.000000 720200.000000
mean 3601.500000 -118.992098 33.660832 209.886546
std 2079.039743 0.030194 0.025971 94.379690
min 1.000000 -119.054763 33.617448 0.276733
25% 1801.000000 -119.015539 33.637804 151.529900
50% 3601.500000 -118.987425 33.659155 193.527200
75% 5402.000000 -118.967407 33.685672 311.924800
max 7202.000000 -118.944904 33.703720 359.889900

 UnitSpeed_kts UnitAltitude_m Unit_E Unit_N \

89

count 720200.0 720200.0 720200.000000 720200.000000
mean 12.0 0.0 -9.027049 92.659519
std 0.0 0.0 2800.117175 2880.817604
min 12.0 0.0 -5819.901243 -4719.496264
25% 12.0 0.0 -2183.034084 -2461.850713
50% 12.0 0.0 424.335504 -93.413210
75% 12.0 0.0 2281.806939 2848.451202
max 12.0 0.0 4366.065613 4850.241856

 Unit_U TimeDelta
count 720200.000000 720200.0
mean -101.267654 1.0
std 0.761930 0.0
min -103.294023 1.0
25% -101.732566 1.0
50% -101.153923 1.0
75% -100.671927 1.0
max -100.000002 1.0

Confirm that all the value counts are equal:
all(df_pos_normal.TimelineID.value_counts().values ==
np.mean(df_pos_normal.TimelineID.value_counts().values))

True

df_pos_extreme = make_targetPosition_dataset(path_xtremeweather)
df_pos_extreme.describe()

completed

 Time UnitLongitude UnitLatitude UnitCourse \
count 720200.000000 720200.000000 720200.000000 720200.000000
mean 3601.500000 -118.992354 33.660935 210.573347
std 2079.039743 0.030425 0.025963 94.640156
min 1.000000 -119.054762 33.617485 0.279358
25% 1801.000000 -119.016254 33.637868 151.905600
50% 3601.500000 -118.987607 33.659434 193.526100
75% 5402.000000 -118.967409 33.685694 311.925800
max 7202.000000 -118.944905 33.703720 359.889400

 UnitSpeed_kts UnitAltitude_m Unit_E Unit_N \
count 720200.0 720200.0 720200.000000 720200.000000
mean 12.0 0.0 -32.693080 104.092812
std 0.0 0.0 2821.531144 2879.873852
min 12.0 0.0 -5819.821307 -4715.385638
25% 12.0 0.0 -2249.440267 -2454.791947
50% 12.0 0.0 407.492540 -62.372272
75% 12.0 0.0 2281.350168 2850.786373
max 12.0 0.0 4365.971307 4850.248208

 Unit_U TimeDelta
count 720200.000000 720200.0
mean -101.276908 1.0
std 0.761801 0.0
min -103.294010 1.0
25% -101.742425 1.0
50% -101.159624 1.0
75% -100.686284 1.0
max -100.000089 1.0

Confirm that all the value counts are equal:
all(df_pos_extreme.TimelineID.value_counts().values ==
np.mean(df_pos_extreme.TimelineID.value_counts().values))

True

90

if SAVE_DF:
 # save target DF!
 df_pos_normal.reset_index(drop=True, inplace=True)
 df_pos_normal.to_feather('../data/df_pos_normal.ftr')
 df_pos_extreme.reset_index(drop=True, inplace=True)
 df_pos_extreme.to_feather('../data/df_pos_extreme.ftr')

Conclusion from Exploratory Data Analysis:

• Both normal and extreme weather datasets have the same number of target

unit position data (up to 7202 timesteps, equivalent to 2 hours and 2

seconds of simulation time)

• TimelineID is unique, total 100 unique TimelineID in each dataset

• Each “simulation pulse” is equivalent to 1 second in real time. each entry

represents the state of the target for that second.

2. Visualization of Target Movement in Simulation

df_pos_sampled = extract_target_unitpos(os.path.join(path_xtremeweather, '11',
'Target_UnitPositions.csv'))
plot_tgt_latlon_time_grid(df_pos_sampled)

91

plot_tgt_latlon_time(df_pos_sampled)

92

ax = df_pos_sampled.UnitCourse.plot()
ax.grid()

Constant Speed (magnitude, does not consider the direction i.e., the course)
ax = df_pos_sampled.UnitSpeed_kts.plot()
ax.grid()

93

D. EXPLORATORY DATA ANALYSIS OF SENSOR DATASET

We aim to answer the following questions:

• What is the difference in sensor measurements in different weather

conditions? Are there notable differences for each sensors?

• What is the time between detection for each of the sensor? Are they all

equal?

• What is the average number of detections for each sensor in a given

simulation run? What is the periodicity per sensor?

• For each of the sensors, what is its performance with respect to the actual

target position?

1. Periodicity of Data, Number of Detection, Failure Rate in
Dataset

• ESM Sensor

create ESM dataset
df_esm_normal = make_sensoDetection_dataset(path_normalweather, sensor_name='ESM')
df_esm_normal.describe()

completed

 Time SensorParentLongitude SensorParentLatitude \
count 36000.000000 3.600000e+04 36000.000000
mean 3604.000000 -1.190609e+02 33.762466
std 2078.481818 2.842210e-14 0.000000
min 14.000000 -1.190609e+02 33.762466
25% 1809.000000 -1.190609e+02 33.762466
50% 3604.000000 -1.190609e+02 33.762466
75% 5399.000000 -1.190609e+02 33.762466
max 7194.000000 -1.190609e+02 33.762466

 SensorParentAltitude_AGL TargetLongitude TargetLatitude \
count 36000.0 36000.000000 36000.000000
mean 888.0 -118.992107 33.660829
std 0.0 0.030203 0.025972
min 888.0 -119.054747 33.617455
25% 888.0 -119.015619 33.637815
50% 888.0 -118.987425 33.659152
75% 888.0 -118.967405 33.685674
max 888.0 -118.944905 33.703719

 TargetAltitude_AGL_m TargetRangeSlant_nm Target_E Target_N \
count 36000.000000 36000.000000 36000.000000 36000.000000
mean 693.702000 7.164574 -9.822697 92.384244
std 159.271411 1.527780 2801.229704 2881.228633
min 385.000000 4.155985 -5818.960479 -4719.046097

94

25% 580.000000 5.813999 -2191.126705 -2460.934385
50% 687.000000 7.228280 424.538082 -93.738987
75% 884.000000 8.467664 2282.264226 2848.953632
max 919.000000 9.754641 4366.579380 4850.744997

 Target_U Sensor_E Sensor_N Sensor_U TimeDelta
count 36000.000000 3.600000e+04 3.600000e+04 3.600000e+04 36000.000000
mean 592.433848 -6.380407e+03 1.136893e+04 7.746446e+02 19.983333
std 159.204976 1.819015e-12 1.819015e-12 2.273768e-13 0.315793
min 283.533681 -6.380407e+03 1.136893e+04 7.746446e+02 14.000000
25% 477.006498 -6.380407e+03 1.136893e+04 7.746446e+02 20.000000
50% 586.643116 -6.380407e+03 1.136893e+04 7.746446e+02 20.000000
75% 782.790066 -6.380407e+03 1.136893e+04 7.746446e+02 20.000000
max 818.391497 -6.380407e+03 1.136893e+04 7.746446e+02 20.000000

Check the TimeDelta, if there are any deviations in the periodicity of the sensor data.
df_esm_normal.TimeDelta.value_counts()
>> There are 14s, 100 in total, because 100 simulation, TimeDelta at start is 14-0=14

20.0 35900
14.0 100
Name: TimeDelta, dtype: int64

Check the DetectionResult:
df_esm_normal.DetectionResult.value_counts()

SUCCESS 36000
Name: DetectionResult, dtype: int64

create ESM dataset for extreme_weather
df_esm_extreme = make_sensoDetection_dataset(path_xtremeweather, sensor_name='ESM')
df_esm_normal.describe()

completed

 Time SensorParentLongitude SensorParentLatitude \
count 36000.000000 3.600000e+04 36000.000000
mean 3604.000000 -1.190609e+02 33.762466
std 2078.481818 2.842210e-14 0.000000
min 14.000000 -1.190609e+02 33.762466
25% 1809.000000 -1.190609e+02 33.762466
50% 3604.000000 -1.190609e+02 33.762466
75% 5399.000000 -1.190609e+02 33.762466
max 7194.000000 -1.190609e+02 33.762466

 SensorParentAltitude_AGL TargetLongitude TargetLatitude \
count 36000.0 36000.000000 36000.000000
mean 888.0 -118.992107 33.660829
std 0.0 0.030203 0.025972
min 888.0 -119.054747 33.617455
25% 888.0 -119.015619 33.637815
50% 888.0 -118.987425 33.659152
75% 888.0 -118.967405 33.685674
max 888.0 -118.944905 33.703719

 TargetAltitude_AGL_m TargetRangeSlant_nm Target_E Target_N \
count 36000.000000 36000.000000 36000.000000 36000.000000
mean 693.702000 7.164574 -9.822697 92.384244
std 159.271411 1.527780 2801.229704 2881.228633
min 385.000000 4.155985 -5818.960479 -4719.046097
25% 580.000000 5.813999 -2191.126705 -2460.934385
50% 687.000000 7.228280 424.538082 -93.738987
75% 884.000000 8.467664 2282.264226 2848.953632
max 919.000000 9.754641 4366.579380 4850.744997

 Target_U Sensor_E Sensor_N Sensor_U TimeDelta
count 36000.000000 3.600000e+04 3.600000e+04 3.600000e+04 36000.000000

95

mean 592.433848 -6.380407e+03 1.136893e+04 7.746446e+02 19.983333
std 159.204976 1.819015e-12 1.819015e-12 2.273768e-13 0.315793
min 283.533681 -6.380407e+03 1.136893e+04 7.746446e+02 14.000000
25% 477.006498 -6.380407e+03 1.136893e+04 7.746446e+02 20.000000
50% 586.643116 -6.380407e+03 1.136893e+04 7.746446e+02 20.000000
75% 782.790066 -6.380407e+03 1.136893e+04 7.746446e+02 20.000000
max 818.391497 -6.380407e+03 1.136893e+04 7.746446e+02 20.000000

df_esm_extreme.TimeDelta.value_counts()

20.0 35900
14.0 100
Name: TimeDelta, dtype: int64

df_esm_extreme.DetectionResult.value_counts()

SUCCESS 36000
Name: DetectionResult, dtype: int64

Frequency of ESM sensor is every 20 seconds

• EO Sensor

create EO dataset
df_eo_normal = make_sensoDetection_dataset(path_normalweather, sensor_name='EO')
df_eo_normal.describe()

completed

 Time SensorParentLongitude SensorParentLatitude \
count 72006.000000 7.200600e+04 72006.000000
mean 3597.909035 -1.188638e+02 33.754513
std 2078.510558 7.105477e-14 0.000000
min 3.000000 -1.188638e+02 33.754513
25% 1793.000000 -1.188638e+02 33.754513
50% 3598.000000 -1.188638e+02 33.754513
75% 5393.000000 -1.188638e+02 33.754513
max 7193.000000 -1.188638e+02 33.754513

 SensorParentAltitude_AGL TargetLongitude TargetLatitude \
count 72006.0 72006.000000 72006.000000
mean 903.0 -118.992067 33.660833
std 0.0 0.030179 0.025976
min 903.0 -119.054756 33.617448
25% 903.0 -119.015471 33.637794
50% 903.0 -118.987380 33.659148
75% 903.0 -118.967404 33.685679
max 903.0 -118.944905 33.703719

 TargetAltitude_AGL_m TargetRangeSlant_nm Target_E Target_N \
count 72006.000000 72006.000000 72006.000000 72006.000000
mean 693.810432 8.664566 -6.101467 92.842988
std 159.377596 1.485807 2799.021389 2881.652354
min 385.000000 5.092077 -5819.775043 -4719.805203
25% 580.000000 7.707906 -2177.360386 -2463.121653
50% 687.000000 9.384436 428.445750 -94.139975
75% 884.000000 9.744898 2282.353082 2849.409924
max 919.000000 10.487470 4366.533488 4850.804139

 Target_U Sensor_E Sensor_N Sensor_U TimeDelta
count 72006.000000 7.200600e+04 7.200600e+04 72006.000000 72006.000000
mean 592.543037 1.187992e+04 1.049199e+04 783.289474 9.989445
std 159.311443 1.819002e-12 5.457006e-12 0.000000 0.276174
min 283.533591 1.187992e+04 1.049199e+04 783.289474 0.000000
25% 477.002299 1.187992e+04 1.049199e+04 783.289474 10.000000

96

50% 586.644457 1.187992e+04 1.049199e+04 783.289474 10.000000
75% 782.792665 1.187992e+04 1.049199e+04 783.289474 10.000000
max 818.407433 1.187992e+04 1.049199e+04 783.289474 10.000000

df_eo_normal.TimeDelta.value_counts()
Starts at time

10.0 71900
3.0 100
0.0 6
Name: TimeDelta, dtype: int64

Remove those rows that have timedelta = 0.0
df_eo_normal = df_eo_normal[df_eo_normal.TimeDelta != 0.0]
Confirm that timedelta = 0. are removed. See the last column, std = 0.
df_eo_normal.describe()

 Time SensorParentLongitude SensorParentLatitude \
count 72000.000000 7.200000e+04 72000.000000
mean 3598.000000 -1.188638e+02 33.754513
std 2078.473398 8.526572e-14 0.000000
min 3.000000 -1.188638e+02 33.754513
25% 1800.500000 -1.188638e+02 33.754513
50% 3598.000000 -1.188638e+02 33.754513
75% 5395.500000 -1.188638e+02 33.754513
max 7193.000000 -1.188638e+02 33.754513

 SensorParentAltitude_AGL TargetLongitude TargetLatitude \
count 72000.0 72000.000000 72000.000000
mean 903.0 -118.992069 33.660833
std 0.0 0.030179 0.025976
min 903.0 -119.054756 33.617448
25% 903.0 -119.015474 33.637794
50% 903.0 -118.987390 33.659149
75% 903.0 -118.967404 33.685679
max 903.0 -118.944905 33.703719

 TargetAltitude_AGL_m TargetRangeSlant_nm Target_E Target_N \
count 72000.000000 72000.000000 72000.000000 72000.000000
mean 693.808403 8.664635 -6.258486 92.838562
std 159.378240 1.485811 2799.059415 2881.679140
min 385.000000 5.092077 -5819.775043 -4719.805203
25% 580.000000 7.707944 -2177.436968 -2463.144540
50% 687.000000 9.384846 427.795137 -93.971853
75% 884.000000 9.744924 2282.351654 2849.314603
max 919.000000 10.487470 4366.533488 4850.804139

 Target_U Sensor_E Sensor_N Sensor_U TimeDelta
count 72000.000000 72000.000000 7.200000e+04 72000.000000 72000.000000
mean 592.540978 11879.917919 1.049199e+04 783.289474 9.990278
std 159.312117 0.000000 5.457006e-12 0.000000 0.260695
min 283.533591 11879.917919 1.049199e+04 783.289474 3.000000
25% 477.002268 11879.917919 1.049199e+04 783.289474 10.000000
50% 586.644457 11879.917919 1.049199e+04 783.289474 10.000000
75% 782.792572 11879.917919 1.049199e+04 783.289474 10.000000
max 818.407433 11879.917919 1.049199e+04 783.289474 10.000000

df_eo_normal.DetectionResult.value_counts()

SUCCESS 72000
Name: DetectionResult, dtype: int64

create EO dataset (for extreme weather condition)
df_eo_extreme = make_sensoDetection_dataset(path_xtremeweather, sensor_name='EO')
df_eo_extreme.describe()

completed

97

 Time SensorParentLongitude SensorParentLatitude \
count 72004.000000 7.200400e+04 72004.000000
mean 3597.979168 -1.188638e+02 33.754513
std 2078.458621 7.105477e-14 0.000000
min 3.000000 -1.188638e+02 33.754513
25% 1800.500000 -1.188638e+02 33.754513
50% 3598.000000 -1.188638e+02 33.754513
75% 5393.000000 -1.188638e+02 33.754513
max 7193.000000 -1.188638e+02 33.754513

 SensorParentAltitude_AGL TargetLongitude TargetLatitude \
count 72004.0 72004.000000 72004.000000
mean 903.0 -118.992321 33.660935
std 0.0 0.030410 0.025967
min 903.0 -119.054761 33.617493
25% 903.0 -119.016182 33.637856
50% 903.0 -118.987563 33.659429
75% 903.0 -118.967400 33.685701
max 903.0 -118.944907 33.703719

 TargetAltitude_AGL_m TargetRangeSlant_nm Target_E Target_N \
count 72004.000000 72004.000000 72004.000000 72004.000000
mean 693.394784 8.671238 -29.627579 104.185974
std 159.363265 1.489474 2820.421546 2880.725599
min 385.000000 5.092161 -5820.208383 -4714.832246
25% 580.000000 7.703418 -2243.371949 -2456.290195
50% 687.000000 9.415813 411.456345 -62.767558
75% 884.000000 9.747221 2282.375877 2851.928632
max 919.000000 10.487660 4366.390027 4850.753869

 Target_U Sensor_E Sensor_N Sensor_U TimeDelta
count 72004.000000 72004.000000 7.200400e+04 72004.000000 72004.000000
mean 592.118150 11879.917919 1.049199e+04 783.289474 9.989723
std 159.298687 0.000000 5.457006e-12 0.000000 0.271113
min 283.533859 11879.917919 1.049199e+04 783.289474 0.000000
25% 477.007620 11879.917919 1.049199e+04 783.289474 10.000000
50% 586.641710 11879.917919 1.049199e+04 783.289474 10.000000
75% 782.796552 11879.917919 1.049199e+04 783.289474 10.000000
max 818.410904 11879.917919 1.049199e+04 783.289474 10.000000

df_eo_extreme.TimeDelta.value_counts()

10.0 71900
3.0 100
0.0 4
Name: TimeDelta, dtype: int64

df_eo_extreme = df_eo_extreme[df_eo_extreme.TimeDelta != 0.]
df_eo_extreme.describe()

 Time SensorParentLongitude SensorParentLatitude \
count 72000.000000 7.200000e+04 72000.000000
mean 3598.000000 -1.188638e+02 33.754513
std 2078.473398 8.526572e-14 0.000000
min 3.000000 -1.188638e+02 33.754513
25% 1800.500000 -1.188638e+02 33.754513
50% 3598.000000 -1.188638e+02 33.754513
75% 5395.500000 -1.188638e+02 33.754513
max 7193.000000 -1.188638e+02 33.754513

 SensorParentAltitude_AGL TargetLongitude TargetLatitude \
count 72000.0 72000.000000 72000.000000
mean 903.0 -118.992322 33.660934
std 0.0 0.030410 0.025967
min 903.0 -119.054761 33.617493
25% 903.0 -119.016187 33.637855
50% 903.0 -118.987568 33.659428

98

75% 903.0 -118.967403 33.685701
max 903.0 -118.944907 33.703719

 TargetAltitude_AGL_m TargetRangeSlant_nm Target_E Target_N \
count 72000.000000 72000.000000 72000.000000 72000.000000
mean 693.384306 8.671354 -29.777571 104.046248
std 159.361327 1.489421 2820.420844 2880.709446
min 385.000000 5.092161 -5820.208383 -4714.832246
25% 580.000000 7.704518 -2243.737269 -2456.344871
50% 687.000000 9.416157 411.164526 -63.099273
75% 884.000000 9.747223 2282.345251 2851.889394
max 919.000000 10.487660 4366.390027 4850.753869

 Target_U Sensor_E Sensor_N Sensor_U TimeDelta
count 72000.000000 72000.000000 7.200000e+04 72000.000000 72000.000000
mean 592.107681 11879.917919 1.049199e+04 783.289474 9.990278
std 159.296763 0.000000 5.457006e-12 0.000000 0.260695
min 283.533859 11879.917919 1.049199e+04 783.289474 3.000000
25% 477.007476 11879.917919 1.049199e+04 783.289474 10.000000
50% 586.641540 11879.917919 1.049199e+04 783.289474 10.000000
75% 782.796391 11879.917919 1.049199e+04 783.289474 10.000000
max 818.410904 11879.917919 1.049199e+04 783.289474 10.000000

df_eo_extreme.DetectionResult.value_counts()

SUCCESS 72000
Name: DetectionResult, dtype: int64

Frequency of EO sensor is every 10 seconds

• IR Sensor

create IR dataset
df_ir_normal = make_sensoDetection_dataset(path_normalweather, sensor_name='IR')
df_ir_normal.describe()

completed

 Time SensorParentLongitude SensorParentLatitude \
count 72005.000000 7.200500e+04 7.200500e+04
mean 3597.844941 -1.188296e+02 3.358266e+01
std 2078.504077 4.263286e-14 7.105477e-15
min 3.000000 -1.188296e+02 3.358266e+01
25% 1793.000000 -1.188296e+02 3.358266e+01
50% 3593.000000 -1.188296e+02 3.358266e+01
75% 5393.000000 -1.188296e+02 3.358266e+01
max 7193.000000 -1.188296e+02 3.358266e+01

 SensorParentAltitude_AGL TargetLongitude TargetLatitude \
count 72005.0 72005.000000 72005.000000
mean 607.0 -118.992069 33.660832
std 0.0 0.030180 0.025976
min 607.0 -119.054756 33.617448
25% 607.0 -119.015475 33.637794
50% 607.0 -118.987391 33.659149
75% 607.0 -118.967405 33.685677
max 607.0 -118.944905 33.703719

 TargetAltitude_AGL_m TargetRangeSlant_nm Target_E Target_N \
count 72005.000000 72005.000000 72005.000000 72005.000000
mean 693.803861 9.494121 -6.337075 92.806810
std 159.378527 1.557213 2799.094753 2881.659295
min 385.000000 7.302612 -5819.775043 -4719.805203
25% 580.000000 8.112456 -2177.637142 -2463.128034
50% 687.000000 9.296807 427.709268 -93.936991

99

75% 884.000000 10.705660 2282.322727 2849.119877
max 919.000000 12.730020 4366.533488 4850.804139

 Target_U Sensor_E Sensor_N Sensor_U TimeDelta
count 72005.000000 72005.000000 7.200500e+04 7.200500e+04 72005.000000
mean 592.536430 15074.295905 -8.567119e+03 4.834323e+02 9.989584
std 159.312455 0.000000 5.457006e-12 3.410629e-13 0.273656
min 283.533591 15074.295905 -8.567119e+03 4.834323e+02 0.000000
25% 477.002269 15074.295905 -8.567119e+03 4.834323e+02 10.000000
50% 586.644438 15074.295905 -8.567119e+03 4.834323e+02 10.000000
75% 782.792466 15074.295905 -8.567119e+03 4.834323e+02 10.000000
max 818.407433 15074.295905 -8.567119e+03 4.834323e+02 10.000000

df_ir_normal.TimeDelta.value_counts()

10.0 71900
3.0 100
0.0 5
Name: TimeDelta, dtype: int64

df_ir_normal = df_ir_normal[df_ir_normal.TimeDelta != 0]
df_ir_normal.describe()

 Time SensorParentLongitude SensorParentLatitude \
count 72000.000000 7.200000e+04 7.200000e+04
mean 3598.000000 -1.188296e+02 3.358266e+01
std 2078.473398 2.842191e-14 7.105477e-15
min 3.000000 -1.188296e+02 3.358266e+01
25% 1800.500000 -1.188296e+02 3.358266e+01
50% 3598.000000 -1.188296e+02 3.358266e+01
75% 5395.500000 -1.188296e+02 3.358266e+01
max 7193.000000 -1.188296e+02 3.358266e+01

 SensorParentAltitude_AGL TargetLongitude TargetLatitude \
count 72000.0 72000.000000 72000.000000
mean 607.0 -118.992069 33.660833
std 0.0 0.030179 0.025976
min 607.0 -119.054756 33.617448
25% 607.0 -119.015474 33.637794
50% 607.0 -118.987390 33.659149
75% 607.0 -118.967404 33.685679
max 607.0 -118.944905 33.703719

 TargetAltitude_AGL_m TargetRangeSlant_nm Target_E Target_N \
count 72000.000000 72000.000000 72000.000000 72000.000000
mean 693.808403 9.494098 -6.258405 92.839063
std 159.378240 1.557179 2799.059538 2881.679526
min 385.000000 7.302612 -5819.775043 -4719.805203
25% 580.000000 8.112457 -2177.436968 -2463.144540
50% 687.000000 9.296772 427.795137 -93.971853
75% 884.000000 10.705652 2282.351654 2849.314603
max 919.000000 12.730020 4366.533488 4850.804139

 Target_U Sensor_E Sensor_N Sensor_U TimeDelta
count 72000.000000 7.200000e+04 7.200000e+04 7.200000e+04 72000.000000
mean 592.540978 1.507430e+04 -8.567119e+03 4.834323e+02 9.990278
std 159.312117 1.819002e-12 5.457006e-12 3.410629e-13 0.260695
min 283.533591 1.507430e+04 -8.567119e+03 4.834323e+02 3.000000
25% 477.002268 1.507430e+04 -8.567119e+03 4.834323e+02 10.000000
50% 586.644457 1.507430e+04 -8.567119e+03 4.834323e+02 10.000000
75% 782.792572 1.507430e+04 -8.567119e+03 4.834323e+02 10.000000
max 818.407433 1.507430e+04 -8.567119e+03 4.834323e+02 10.000000

df_ir_normal.DetectionResult.value_counts()

SUCCESS 72000
Name: DetectionResult, dtype: int64

100

create IR dataset
df_ir_extreme = make_sensoDetection_dataset(path_xtremeweather, sensor_name='IR')
df_ir_extreme.describe()

completed

 Time SensorParentLongitude SensorParentLatitude \
count 72001.000000 7.200100e+04 7.200100e+04
mean 3597.960487 -1.188296e+02 3.358266e+01
std 2078.486007 4.263286e-14 7.105477e-15
min 3.000000 -1.188296e+02 3.358266e+01
25% 1793.000000 -1.188296e+02 3.358266e+01
50% 3593.000000 -1.188296e+02 3.358266e+01
75% 5393.000000 -1.188296e+02 3.358266e+01
max 7193.000000 -1.188296e+02 3.358266e+01

 SensorParentAltitude_AGL TargetLongitude TargetLatitude \
count 72001.0 72001.000000 72001.000000
mean 607.0 -118.992322 33.660933
std 0.0 0.030410 0.025967
min 607.0 -119.054761 33.617493
25% 607.0 -119.016187 33.637853
50% 607.0 -118.987567 33.659427
75% 607.0 -118.967404 33.685701
max 607.0 -118.944907 33.703719

 TargetAltitude_AGL_m TargetRangeSlant_nm Target_E Target_N \
count 72001.000000 72001.000000 72001.000000 72001.000000
mean 693.381161 9.507952 -29.759436 104.002125
std 159.362454 1.567453 2820.405710 2880.713922
min 385.000000 7.302612 -5820.208383 -4714.832246
25% 580.000000 8.111111 -2243.712115 -2456.355915
50% 687.000000 9.312607 411.219979 -63.113737
75% 884.000000 10.740300 2282.336923 2851.885242
max 919.000000 12.729870 4366.390027 4850.753869

 Target_U Sensor_E Sensor_N Sensor_U TimeDelta
count 72001.000000 7.200100e+04 7.200100e+04 7.200100e+04 72001.000000
mean 592.104542 1.507430e+04 -8.567119e+03 4.834323e+02 9.990139
std 159.297883 1.819002e-12 5.457006e-12 2.842191e-13 0.263339
min 283.533859 1.507430e+04 -8.567119e+03 4.834323e+02 0.000000
25% 477.007354 1.507430e+04 -8.567119e+03 4.834323e+02 10.000000
50% 586.641513 1.507430e+04 -8.567119e+03 4.834323e+02 10.000000
75% 782.796353 1.507430e+04 -8.567119e+03 4.834323e+02 10.000000
max 818.410904 1.507430e+04 -8.567119e+03 4.834323e+02 10.000000

df_ir_extreme.TimeDelta.value_counts()

10.0 71900
3.0 100
0.0 1
Name: TimeDelta, dtype: int64

df_ir_extreme = df_ir_extreme[df_ir_extreme.TimeDelta != 0]
df_ir_extreme.describe()

 Time SensorParentLongitude SensorParentLatitude \
count 72000.000000 7.200000e+04 7.200000e+04
mean 3598.000000 -1.188296e+02 3.358266e+01
std 2078.473398 2.842191e-14 7.105477e-15
min 3.000000 -1.188296e+02 3.358266e+01
25% 1800.500000 -1.188296e+02 3.358266e+01
50% 3598.000000 -1.188296e+02 3.358266e+01
75% 5395.500000 -1.188296e+02 3.358266e+01
max 7193.000000 -1.188296e+02 3.358266e+01

 SensorParentAltitude_AGL TargetLongitude TargetLatitude \

101

count 72000.0 72000.000000 72000.000000
mean 607.0 -118.992322 33.660934
std 0.0 0.030410 0.025967
min 607.0 -119.054761 33.617493
25% 607.0 -119.016187 33.637855
50% 607.0 -118.987568 33.659428
75% 607.0 -118.967403 33.685701
max 607.0 -118.944907 33.703719

 TargetAltitude_AGL_m TargetRangeSlant_nm Target_E Target_N \
count 72000.000000 72000.000000 72000.000000 72000.000000
mean 693.384306 9.507973 -29.777824 104.046549
std 159.361327 1.567454 2820.420980 2880.709263
min 385.000000 7.302612 -5820.208383 -4714.832246
25% 580.000000 8.111196 -2243.737269 -2456.344871
50% 687.000000 9.312612 411.164526 -63.099273
75% 884.000000 10.740325 2282.345251 2851.889394
max 919.000000 12.729870 4366.390027 4850.753869

 Target_U Sensor_E Sensor_N Sensor_U TimeDelta
count 72000.000000 7.200000e+04 7.200000e+04 7.200000e+04 72000.000000
mean 592.107681 1.507430e+04 -8.567119e+03 4.834323e+02 9.990278
std 159.296763 1.819002e-12 5.457006e-12 3.410629e-13 0.260695
min 283.533859 1.507430e+04 -8.567119e+03 4.834323e+02 3.000000
25% 477.007476 1.507430e+04 -8.567119e+03 4.834323e+02 10.000000
50% 586.641540 1.507430e+04 -8.567119e+03 4.834323e+02 10.000000
75% 782.796391 1.507430e+04 -8.567119e+03 4.834323e+02 10.000000
max 818.410904 1.507430e+04 -8.567119e+03 4.834323e+02 10.000000

df_ir_extreme.DetectionResult.value_counts() # NOTE THE LARGE NUMBER OF FAILURE!

SUCCESS 38604
FAILURE 33396
Name: DetectionResult, dtype: int64

Frequency of IR sensor is every 10 seconds

• Radar Sensor

create Radar dataset
df_radar_normal = make_sensoDetection_dataset(path_normalweather, sensor_name='Radar')
df_radar_normal.describe()

completed

 Time SensorParentLongitude SensorParentLatitude \
count 360147.000000 3.601470e+05 3.601470e+05
mean 3600.866843 -1.190876e+02 3.354606e+01
std 2079.116050 5.684350e-14 2.842175e-14
min 1.000000 -1.190876e+02 3.354606e+01
25% 1801.000000 -1.190876e+02 3.354606e+01
50% 3601.000000 -1.190876e+02 3.354606e+01
75% 5401.000000 -1.190876e+02 3.354606e+01
max 7201.000000 -1.190876e+02 3.354606e+01

 SensorParentAltitude_AGL TargetLongitude TargetLatitude \
count 360147.0 360147.000000 360147.000000
mean 177.0 -118.992089 33.660832
std 0.0 0.030189 0.025972
min 177.0 -119.054763 33.617448
25% 177.0 -119.015520 33.637800
50% 177.0 -118.987410 33.659155
75% 177.0 -118.967407 33.685674
max 177.0 -118.944905 33.703720

102

 TargetAltitude_AGL_m TargetRangeSlant_nm Target_E \
count 360147.000000 360147.000000 360147.000000
mean 693.756125 8.541511 -8.177971
std 159.339332 1.405408 2799.914827
min 385.000000 7.030613 -5820.429935
25% 580.000000 7.287161 -2181.938157
50% 687.000000 8.066295 425.734235
75% 884.000000 9.528920 2282.070128
max 919.000000 11.821320 4366.579380

 Target_N Target_U Sensor_E Sensor_N \
count 360147.000000 360147.000000 3.601470e+05 3.601470e+05
mean 92.756207 592.488525 -8.883363e+03 -1.263428e+04
std 2881.204708 159.273136 5.456976e-12 3.637984e-12
min -4719.805203 283.533361 -8.883363e+03 -1.263428e+04
25% -2462.362747 477.004657 -8.883363e+03 -1.263428e+04
50% -93.434946 586.644092 -8.883363e+03 -1.263428e+04
75% 2848.831384 782.791056 -8.883363e+03 -1.263428e+04
max 4850.929508 818.407433 -8.883363e+03 -1.263428e+04

 Sensor_U TimeDelta
count 360147.000000 360147.000000
mean 58.261496 1.999461
std 0.000000 0.028273
min 58.261496 0.000000
25% 58.261496 2.000000
50% 58.261496 2.000000
75% 58.261496 2.000000
max 58.261496 2.000000

df_radar_normal.TimeDelta.value_counts()

2.0 360000
1.0 100
0.0 47
Name: TimeDelta, dtype: int64

df_radar_normal = df_radar_normal[df_radar_normal.TimeDelta != 0]
df_radar_normal.describe()

 Time SensorParentLongitude SensorParentLatitude \
count 360100.000000 3.601000e+05 3.601000e+05
mean 3601.000000 -1.190876e+02 3.354606e+01
std 2079.041126 5.684350e-14 2.842175e-14
min 1.000000 -1.190876e+02 3.354606e+01
25% 1801.000000 -1.190876e+02 3.354606e+01
50% 3601.000000 -1.190876e+02 3.354606e+01
75% 5401.000000 -1.190876e+02 3.354606e+01
max 7201.000000 -1.190876e+02 3.354606e+01

 SensorParentAltitude_AGL TargetLongitude TargetLatitude \
count 360100.0 360100.000000 360100.000000
mean 177.0 -118.992090 33.660833
std 0.0 0.030189 0.025972
min 177.0 -119.054763 33.617448
25% 177.0 -119.015520 33.637800
50% 177.0 -118.987412 33.659156
75% 177.0 -118.967407 33.685674
max 177.0 -118.944905 33.703720

 TargetAltitude_AGL_m TargetRangeSlant_nm Target_E \
count 360100.000000 360100.000000 360100.000000
mean 693.756934 8.541522 -8.249560
std 159.337394 1.405437 2799.969614
min 385.000000 7.030613 -5820.429935
25% 580.000000 7.287151 -2181.951401
50% 687.000000 8.066305 425.637259

103

75% 884.000000 9.529140 2282.069816
max 919.000000 11.821320 4366.579380

 Target_N Target_U Sensor_E Sensor_N \
count 360100.000000 360100.000000 3.601000e+05 3.601000e+05
mean 92.824525 592.489297 -8.883363e+03 -1.263428e+04
std 2881.231633 159.271177 5.456976e-12 1.818992e-12
min -4719.805203 283.533361 -8.883363e+03 -1.263428e+04
25% -2462.360313 477.004735 -8.883363e+03 -1.263428e+04
50% -93.236604 586.644093 -8.883363e+03 -1.263428e+04
75% 2848.948128 782.791065 -8.883363e+03 -1.263428e+04
max 4850.929508 818.407433 -8.883363e+03 -1.263428e+04

 Sensor_U TimeDelta
count 360100.000000 360100.000000
mean 58.261496 1.999722
std 0.000000 0.016662
min 58.261496 1.000000
25% 58.261496 2.000000
50% 58.261496 2.000000
75% 58.261496 2.000000
max 58.261496 2.000000

df_radar_normal.DetectionResult.value_counts()

SUCCESS 360100
Name: DetectionResult, dtype: int64

create Radar dataset
df_radar_extreme = make_sensoDetection_dataset(path_xtremeweather, sensor_name='Radar')
df_radar_extreme.describe()

completed

 Time SensorParentLongitude SensorParentLatitude \
count 360206.000000 3.602060e+05 3.602060e+05
mean 3600.742825 -1.190876e+02 3.354606e+01
std 2079.086320 5.684350e-14 2.842175e-14
min 1.000000 -1.190876e+02 3.354606e+01
25% 1801.000000 -1.190876e+02 3.354606e+01
50% 3601.000000 -1.190876e+02 3.354606e+01
75% 5401.000000 -1.190876e+02 3.354606e+01
max 7201.000000 -1.190876e+02 3.354606e+01

 SensorParentAltitude_AGL TargetLongitude TargetLatitude \
count 360206.0 360206.000000 360206.000000
mean 177.0 -118.992345 33.660934
std 0.0 0.030419 0.025963
min 177.0 -119.054761 33.617485
25% 177.0 -119.016219 33.637867
50% 177.0 -118.987596 33.659432
75% 177.0 -118.967409 33.685694
max 177.0 -118.944905 33.703720

 TargetAltitude_AGL_m TargetRangeSlant_nm Target_E \
count 360206.000000 360206.000000 360206.000000
mean 693.323726 8.541366 -31.895451
std 159.322074 1.404933 2821.314200
min 0.000000 7.034362 -5820.208383
25% 580.000000 7.288851 -2246.500214
50% 687.000000 8.062613 408.664318
75% 884.000000 9.528897 2281.445486
max 919.000000 11.821310 4366.557253

 Target_N Target_U Sensor_E Sensor_N Sensor_U \
count 360206.000000 360206.000000 3.602060e+05 3.602060e+05 3.602060e+05
mean 104.135351 592.046883 -8.883363e+03 -1.263428e+04 5.826150e+01

104

std 2880.262490 159.257441 5.456976e-12 1.818992e-12 7.105437e-15
min -4715.694308 -100.834577 -8.883363e+03 -1.263428e+04 5.826150e+01
25% -2455.097115 477.008369 -8.883363e+03 -1.263428e+04 5.826150e+01
50% -62.485051 586.641057 -8.883363e+03 -1.263428e+04 5.826150e+01
75% 2851.109719 782.795140 -8.883363e+03 -1.263428e+04 5.826150e+01
max 4850.924599 818.426246 -8.883363e+03 -1.263428e+04 5.826150e+01

 TimeDelta
count 360206.000000
mean 1.999134
std 0.038131
min 0.000000
25% 2.000000
50% 2.000000
75% 2.000000
max 2.000000

df_radar_extreme.TimeDelta.value_counts()

2.0 360000
0.0 106
1.0 100
Name: TimeDelta, dtype: int64

df_radar_extreme = df_radar_extreme[df_radar_extreme.TimeDelta != 0.]
df_radar_extreme.describe()

 Time SensorParentLongitude SensorParentLatitude \
count 360100.000000 3.601000e+05 3.601000e+05
mean 3601.000000 -1.190876e+02 3.354606e+01
std 2079.041126 5.684350e-14 2.842175e-14
min 1.000000 -1.190876e+02 3.354606e+01
25% 1801.000000 -1.190876e+02 3.354606e+01
50% 3601.000000 -1.190876e+02 3.354606e+01
75% 5401.000000 -1.190876e+02 3.354606e+01
max 7201.000000 -1.190876e+02 3.354606e+01

 SensorParentAltitude_AGL TargetLongitude TargetLatitude \
count 360100.0 360100.000000 360100.000000
mean 177.0 -118.992345 33.660935
std 0.0 0.030420 0.025963
min 177.0 -119.054761 33.617485
25% 177.0 -119.016219 33.637867
50% 177.0 -118.987596 33.659433
75% 177.0 -118.967408 33.685694
max 177.0 -118.944905 33.703720

 TargetAltitude_AGL_m TargetRangeSlant_nm Target_E \
count 360100.000000 360100.000000 360100.000000
mean 693.322646 8.541402 -31.863930
std 159.325000 1.404936 2821.370839
min 0.000000 7.034362 -5820.208383
25% 580.000000 7.288854 -2246.531834
50% 687.000000 8.062624 408.680739
75% 884.000000 9.529084 2281.542512
max 919.000000 11.821310 4366.557253

 Target_N Target_U Sensor_E Sensor_N \
count 360100.000000 360100.000000 3.601000e+05 3.601000e+05
mean 104.179312 592.045769 -8.883363e+03 -1.263428e+04
std 2880.282450 159.260372 5.456976e-12 1.818992e-12
min -4715.694308 -100.834577 -8.883363e+03 -1.263428e+04
25% -2455.104375 477.008353 -8.883363e+03 -1.263428e+04
50% -62.471799 586.641054 -8.883363e+03 -1.263428e+04
75% 2851.147074 782.795196 -8.883363e+03 -1.263428e+04
max 4850.924599 818.426246 -8.883363e+03 -1.263428e+04

105

 Sensor_U TimeDelta
count 360100.000000 360100.000000
mean 58.261496 1.999722
std 0.000000 0.016662
min 58.261496 1.000000
25% 58.261496 2.000000
50% 58.261496 2.000000
75% 58.261496 2.000000
max 58.261496 2.000000

df_radar_extreme.DetectionResult.value_counts()

SUCCESS 360098
FAILURE 2
Name: DetectionResult, dtype: int64

Frequency of Radar is every 2 seconds

(1) Observation:

Number of entries per scenario run for normal and extreme weather remains

unchanged for target position and sensors.

𝐸𝐸𝑚𝑚𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑅𝑅𝑃𝑃𝑒𝑒𝑅𝑅𝑚𝑚𝑙𝑙𝑅𝑅 =
Number of target positions

Number of sensor detections

Dataset Normal Weather Extreme Weather Expected Sensor Period

Target Position 7202 7202 -
Radar 3601 3601 2

ESM 360 360 20

EO 360 360 10

IR 720 720 10

Presence of data with TimeDelta being 0 days 00:00:00 This suggests that these

data are replicated within the dataset,m hence the TimeDelta is different. Modification

made to import script is to remove rows with TimeDelta = 0.

2. Detection Success / Failure Rate across Each Scenario

def scn_detect_proportion(df):
 avg = []
 for _, _df in df.groupby('TimelineID'):
 val = _df.DetectionResult.value_counts()
 success = val['SUCCESS']
 total = len(df)
 success_rate = success / total * 100
 avg.append(success_rate)
 return avg, np.mean(avg), np.std(avg)

for sensor in SENSORS:
 _, mu, std = scn_detect_proportion(dataset['normal'][sensor])
 print(f'{sensor}: {mu:.4e} +/- {std:.4e}')

106

IR: 1.0000e+00 +/- 0.0000e+00
EO: 1.0000e+00 +/- 0.0000e+00
Radar: 1.0000e+00 +/- 0.0000e+00
ESM: 1.0000e+00 +/- 0.0000e+00

for sensor in SENSORS:
 _, mu, std = scn_detect_proportion(dataset['extreme'][sensor])
 print(f'{sensor}: {mu:.4f} +/- {std:.4f}')

IR: 0.5362 +/- 0.0386
EO: 1.0000 +/- 0.0000
Radar: 1.0000 +/- 0.0001
ESM: 1.0000 +/- 0.0000

Conclusion:

• Detection Rate for NORMAL weather is 100%,

• while that for EXTREME weather is about 50% for IR, while close to

perfect for Radar. EO and ESM is unaffected by extreme weather

simulated

• Individual Sensor Error with respect to Ground Truth

weather = 'normal'
df_pos = dataset[weather]['pos']
for sensor in SENSORS:
 _df_sensor = dataset[weather][sensor].copy(deep=True)
 _df_pos = df_pos.copy(deep=True)
 df_merged = pd.merge(_df_sensor, _df_pos, left_on=['TimelineID', 'Time'],
right_on=['TimelineID', 'Time'], how='left')
 df_merged['Err_ENU_x'] = df_merged.apply(lambda r: sq_err_1d(r.Target_E, r.Unit_E), axis=1)
 df_merged['Err_ENU_y'] = df_merged.apply(lambda r: sq_err_1d(r.Target_N, r.Unit_N), axis=1)
 df_merged['Err_ENU_z'] = df_merged.apply(lambda r: sq_err_1d(r.Target_U, r.Unit_U), axis=1)
 df_merged['Err_ENU_2d'] = df_merged.apply(lambda r: l2_norm_2d(r.Target_E, r.Target_N, r.Unit_E,
r.Unit_N), axis=1)

 del _df_pos, _df_sensor # memory management
 errs = []
 for _, _df in df_merged.groupby('TimelineID'):
 errs.append(_df.Err_ENU_2d.mean())

 # save file for future reference:
 if SAVE_DF:
 df_merged.to_feather(f'../data/df_merged_normal_pos_{sensor}.ftr')

 # sensor-aggregated performance
 mu = np.mean(errs)
 std = np.std(errs)
 print(f'{sensor}: {mu:.4e} +/- {std:.4e}')

IR: 6.1656e+00 +/- 1.8957e-02
EO: 6.1653e+00 +/- 1.8502e-02
Radar: 6.1725e+00 +/- 1.8650e-02
ESM: 4.2150e-01 +/- 1.4163e-02

dataset['extreme']['IR'].DetectionResult.value_counts()

107

SUCCESS 38604
FAILURE 33396
Name: DetectionResult, dtype: int64

weather = 'extreme'
df_pos = dataset[weather]['pos']
for sensor in SENSORS:
 _df_sensor = dataset[weather][sensor].copy(deep=True)
 _df_pos = df_pos.copy(deep=True)
 df_merged = pd.merge(_df_sensor, _df_pos, left_on=['TimelineID', 'Time'],
right_on=['TimelineID', 'Time'], how='left')
 df_merged['Err_ENU_x'] = df_merged.apply(lambda r: sq_err_1d(r.Target_E, r.Unit_E), axis=1)
 df_merged['Err_ENU_y'] = df_merged.apply(lambda r: sq_err_1d(r.Target_N, r.Unit_N), axis=1)
 df_merged['Err_ENU_z'] = df_merged.apply(lambda r: sq_err_1d(r.Target_U, r.Unit_U), axis=1)
 df_merged['Err_ENU_2d'] = df_merged.apply(lambda r: l2_norm_2d(r.Target_E, r.Target_N, r.Unit_E,
r.Unit_N), axis=1)
 df_merged.to_feather(f'../data/df_merged_{weather}_pos_{sensor}.ftr')

 del _df_pos, _df_sensor # memory management
 errs = []
 for _, _df in df_merged.groupby('TimelineID'):
 errs.append(_df.Err_ENU_2d.mean())

 # save file for future reference:
 if SAVE_DF:
 df_merged.to_feather(f'../data/df_merged_extreme_pos_{sensor}.ftr')

 # sensor-aggregated performance
 mu = np.mean(errs)
 std = np.std(errs)
 print(f'{sensor}: {mu:.4e} +/- {std:.4e}')

IR: 6.1637e+00 +/- 1.8438e-02
EO: 6.1640e+00 +/- 1.8425e-02
Radar: 6.1710e+00 +/- 1.9342e-02
ESM: 4.2200e-01 +/- 1.4134e-02

(1) Are there significant differences in DetectionResult = FAILURE vs
SUCCESSS for IR in adverse weather?

df_merged = pd.read_feather('../data/df_merged_extreme_pos_IR.ftr')

global statistics
sns.displot(df_merged, x='Err_ENU_2d',col='DetectionResult')

108

sns.displot(df_merged, x='Err_ENU_x',col='DetectionResult')

109

sns.displot(df_merged, x='Err_ENU_y',col='DetectionResult')

Average across all the scenarios, instead of global statistics.
success_errs = []
failure_errs = []
for _, _df_merged in df_merged.groupby('TimelineID'):
 success = _df_merged[_df_merged.DetectionResult == 'SUCCESS']
 failure = _df_merged[_df_merged.DetectionResult == 'FAILURE']
 success_errs.append(success.Err_ENU_2d.mean())
 failure_errs.append(failure.Err_ENU_2d.mean())
print(f'{sensor}, DetectionResult=Success: {np.mean(success_errs):.4e} +/-
{np.std(success_errs):.4e}')
print(f'{sensor}, DetectionResult=Failure: {np.mean(failure_errs):.4e} +/-
{np.std(failure_errs):.4e}')

ESM, DetectionResult=Success: 6.1788e+00 +/- 1.0368e-02
ESM, DetectionResult=Failure: 6.1471e+00 +/- 3.7479e-02

sx = pd.DataFrame({'Err':success_errs,'Detection Result':'Success'})
fx = pd.DataFrame({'Err':failure_errs, 'Detection Result':'Failure'})
out = pd.concat([sx,fx],ignore_index=True)

f, ax = plt.subplots(1,1,figsize=(7,7))
sns.histplot(out, x='Err',hue='Detection Result', ax=ax,kde=True, fill=False, multiple='stack')
ax.set_xlabel('Error')

110

E. CALCULATE THE SENSOR ERRORS

The purpose of calculating each sensor’s error is to provide KF with uncertainty

of measurement, so that KF will be able to update its probabilistic belief of the target’s

state. There is an error for each dimension of the state measured - i.e., lon (x), lat (y).

Thus, we represent the sensor's uncertainty as an average across all measurements by the

sensor vis-a-vis the ground truth dataset.

weather = 'normal'
stats = {}
for sensor in SENSORS:
 df_merged = pd.read_feather(f'../data/df_merged_{weather}_pos_{sensor}.ftr')
 f, axes = plt.subplots(1, 2, figsize=(16, 5))
 plt.suptitle(f'{sensor}')
 mu_x = df_merged.Err_ENU_x.mean()
 std_x = df_merged.Err_ENU_x.std()
 mu_y = df_merged.Err_ENU_y.mean()
 std_y = df_merged.Err_ENU_y.std()

 for i, t in enumerate(['x', 'y']):
 ax =axes[i]
 sns.histplot(data=df_merged, x=f'Err_ENU_{t}', kde=True, ax=ax)
 if t=='x':
 ax.set_xlabel(f'Estimation Error along Dim {t} ({mu_x:.3e}+/-{std_x:.3e})')
 else:

111

 ax.set_xlabel(f'Estimation Error along Dim {t} ({mu_y:.3e}+/-{std_y:.3e})')
 stats.update({sensor:{'mu_x':mu_x, 'std_x':std_x,'mu_y':mu_y, 'std_y':std_y}})

112

dat = pd.DataFrame(stats)
dat.to_pickle('../data/sensor_err_stats.pkl')

dat

 IR EO Radar ESM
mu_x 3.889024 3.889116 3.890564 0.266667
std_x 1.711266 1.711265 1.709136 0.209541
mu_y 4.052315 4.051945 4.058989 0.276587
std_y 1.919304 1.919407 1.915697 0.210433

113

APPENDIX E. PYTHON NOTEBOOK — BASELINE MODEL
WITH KF

The objective of this notebook is to implement Kalman filter as a predictor-

corrector estimator for position prediction.

A. PARAMETERS IN THE KALMAN FILTER ALGORITHM

Outline of the KF algorithm:

1. Initialization

• Initialize the state of the filter

• Initialize our probabilistic belief in the state

2. Predict Step

• Use process model to predict state at the next time step

• Adjust probabilistic belief to account for the uncertainty in prediction

3. Update Step

• Get a measurement and associated probabilistic belief about its accuracy

• Compute residual between estimated state and measurement

• Compute scaling factor based on whether the measurement or prediction is

more accurate

• Set state between the prediction and measurement based on scaling factor

• Update model’s probabilistic belief of the estimated state, using the

measurement noise covariance matrix

import os
import pandas as pd
import numpy as np

114

import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
sns.set_context('notebook', font_scale = 1)
from pprint import pprint
from helper import *
Kalman Filter Package
from filterpy.Kalman import KalmanFilter
from filterpy.common import Saver
from filterpy.common import Q_discrete_white_noise

1. Import dataset
data = load_all_dfs()
data_merged=load_merged_dfs(weather='normal')

data_merged['EO'].columns

Index(['TimelineID', 'Time', 'SensorID', 'SensorName', 'SensorParentLongitude',
 'SensorParentLatitude', 'SensorParentAltitude_AGL', 'TargetID',
 'TargetName', 'TargetLongitude', 'TargetLatitude',
 'TargetAltitude_AGL_m', 'TargetRangeSlant_nm', 'DetectionResult',
 'DetectionAOU', 'Target_E', 'Target_N', 'Target_U', 'Sensor_E',
 'Sensor_N', 'Sensor_U', 'TimeDelta_x', 'UnitID', 'UnitName', 'UnitType',
 'UnitClass', 'UnitLongitude', 'UnitLatitude', 'UnitCourse',
 'UnitSpeed_kts', 'UnitAltitude_m', 'Unit_E', 'Unit_N', 'Unit_U',
 'TimeDelta_y', 'Err_ENU_x', 'Err_ENU_y', 'Err_ENU_z', 'Err_ENU_2d'],
 dtype='object')

B. SET UP KALMAN FILTER FUNCTIONS

This section illustrates how a KF is set up and the internal workings.

The state variable would be [𝑚𝑚, 𝑦𝑦,𝑅𝑅𝑚𝑚,𝑅𝑅𝑦𝑦, 𝑅𝑅2𝑚𝑚,𝑅𝑅2𝑦𝑦] where:

• Velocity: 𝑅𝑅𝑚𝑚, 𝑅𝑅𝑦𝑦 are the rate of change for 𝑚𝑚, 𝑦𝑦 and

• Acceleration: 𝑅𝑅2𝑚𝑚, 𝑅𝑅2𝑦𝑦 are the rate of change for 𝑅𝑅𝑚𝑚, 𝑅𝑅𝑦𝑦

• 𝑚𝑚 = longitude,

• 𝑦𝑦 = latitude

Number of state parameters
dim_x = 6
size of measurement vector = each sensor provides x and y == 2
dim_z = 2

tracker = KalmanFilter(dim_x = dim_x, dim_z=dim_z)
dt = 1. # we set the timestep = 1 because that is the target position update periodicity.

115

a. Define the State Transition Matrix

(1) Constant Acceleration Model

F_accl = np.array([[1, 0, dt, 0, (dt**2) / 2, 0], [0, 1, 0, dt, 0, (dt**2) / 2], [0, 0, 1, 0, dt,
0], [0, 0, 0, 0, 0, dt], [0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 1]])

(2) Constant Velocity Model

F_vel = np.array([[1, 0, dt, 0, 0, 0], [0, 1, 0, dt, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0,
0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]])

b. Define the Process Noise Matrix

• Assume that the process is a discrete Wiener Process

• This assumes independence between lat, lon (N and E respectively) (the

dimensions of each state variables)

X=[x y dx dy d2x d2y]
Q = Cov(X)

Hence, 𝑄𝑄11 = 𝜎𝜎x and etc
q = Q_discrete_white_noise(dim=3, dt=dt, var=1, block_size=2, order_by_dim=False)
tracker.Q = q
print(tracker.Q)

[[0.25 0. 0.5 0. 0.5 0.]
 [0. 0.25 0. 0.5 0. 0.5]
 [0.5 0. 1. 0. 1. 0.]
 [0. 0.5 0. 1. 0. 1.]
 [0.5 0. 1. 0. 1. 0.]
 [0. 0.5 0. 1. 0. 1.]]

c. Define the Measurement Function

tracker.H = np.array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0]])
print(tracker.H)

[[1 0 0 0 0 0]
 [0 1 0 0 0 0]]

print(tracker.H.shape)

(2, 6)

d. Define the Measurement Noise Matrix

• Assume that lat, lon, lat are independent White Gaussian Process ~ 𝑁𝑁(0,5)

- i.e., a measurement gaussian noise of 5𝑚𝑚2

116

• Measurement noise per sensor per dimension of measurement.

or assume that the noise is uniform and constant for all sensors.
q = np.eye(tracker.dim_z, tracker.dim_z)
assume that the sensor noise is 1e-6...
sensor_noise = 1e-6
tracker.R = q * sensor_noise # replicate onces for each of the sensors.

e. Define Initial Conditions

Define the initial condition
std for location E, N: 2800.117175 2880.817604
P0 = [2800**2, 2800**2, 1, 1, .5, .5]
P0 = np.eye(6, 6) @ P0

print(P0)

[7.84e+06 7.84e+06 1.00e+00 1.00e+00 5.00e-01 5.00e-01]

assume that we do not know the initial
x0 = np.zeros([6,1])

Initialise tracker with our belief and initial uncertainity
tracker.P = P0
tracker.x = x0

C. CREATING AN INTERFACE WITH DATASET

The dataset has the following properties that require our attention

1. The sensor data does not arrive at regular timestep; each sensor has its

own periodicity

2. Lack of covariances in the measurement function.
class SensorDataWrapper:
 """
 Define each sensor as a sensor class itself, and provides the dataset when
 called by the other function.
 """

 def __init__(self, dataset_dict, sensor, weather='normal'):
 self.data = dataset_dict[weather][sensor]
 self.timelineID = None
 self.time = 0. # maintains a clock within itself to provide error-checking.
 self._data = None
 self.num_entries = None
 self.start_time = self.data.Time.min()
 self.end_time = self.data.Time.max()
 self.sensor = sensor # name of sensor

 def update_periodicity(self, period):
 self.periodicity = period

 def set_timelineID(self, timelineID):
 self.timelineID = timelineID

117

 self.set_time(0) # reset the clock, since we are interested in the new timeline now
 self._data = self.data[self.data.TimelineID == timelineID]
 self._data.set_index('Time', inplace=True)
 self.num_entries = len(self._data)

 def set_time(self, time):
 self.time = time

 def get_next_detection(self):
 """
 this is the main interface with various functions.
 After calling the set_timelineID, get_next_detection would return parameters of interests
 returns (t,x,y) where t= time of detection, x=latitude, y=longitude
 """
 try:
 x = self._data.loc[self.time]['Target_E']
 y = self._data.loc[self.time]['Target_N']
 return (self.time, x, y)
 except KeyError:
 print(f'{self.time} is not in the index from data')

 def tick(self):
 # Advance the clock
 # if there are no more sensor data, return False
 self.time += 1.
 return self.time <= self.end_time and self.check_alert()

 def check_alert(self):
 ### alert when there is a detection.
 return self.time in self._data.index

def get_sensor_stats():
 sensor_err_stats = pd.read_pickle('../data/sensor_err_stats.pkl')
 mat_R = {}
 for sensor in SENSORS:
 mat_R[sensor] = np.array([[sensor_err_stats.loc['std_x', sensor]**2, 0.], [0.,
sensor_err_stats.loc['std_y', sensor]**2]])
 return mat_R

class KFWrapper:
 """
 Creates a Kalman Filter Wrapper around KalmanFilter from FilterPy to interface with the dataset
 """

 def __init__(self, F_type='acc', dim_x=6, dim_z=2, var_Q=10., sensor_err_stats=None):
 """
 F_type : The type of systems dynamic model. Either 'acc' or 'vel' for constant acceleration
or constant velocity model
 dim_x : sizer of state parameters
 dim_z : size of measurement space per sensor
 """
 dim_x = dim_x
 dim_z = dim_z
 # Set up the KF:
 self.kf = KalmanFilter(dim_x=dim_x, dim_z=dim_z)
 self.dt = 1.
 self.init = False
 self.saver = Saver(self.kf)

 # Process model

118

 assert F_type in ['acc', 'vel']
 if F_type == 'acc':
 self.kf.F = np.array([[1, 0, self.dt, 0, (self.dt**2) / 2, 0], [0, 1, 0, self.dt, 0,
(self.dt**2) / 2], [0, 0, 1, 0, self.dt, 0],
 [0, 0, 0, 0, 0, self.dt], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]])
 elif F_type == 'vel':
 self.kf.F = np.array([[1, 0, self.dt, 0, 0, 0], [0, 1, 0, self.dt, 0, 0], [0, 0, 1, 0, 0,
0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0]])

 # process noise
 # High variance in process ==> KF relies on measurement more.
 self.kf.Q = Q_discrete_white_noise(dim=3, dt=self.dt, var=var_Q, block_size=2,
order_by_dim=False)
 # print(self.kf.Q)

 # measurement function
 # we only have 1 set of x, y measurement from the sensor
 self.kf.H = np.array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0]])

 # measurement noise
 # the measurements is a 2x1 matrix z
 # hence the measurement noise would be 2x2
 # assume each measurement of x and y are independent and constant noise
 # sensor_noise = 1e-3
 # self.kf.R = np.eye(dim_z, dim_z) * sensor_noise

 def set_init_process_noise(self, P0):
 self.kf.P = P0

 def update_observation(self, sensor, z):
 if not self.init:
 self.kf.x[0] = z[0]
 self.kf.x[1] = z[1]
 self.init = True
 print(f'init kf with position {z}')
 else:
 self.kf.R = sensor_err_stats[sensor]
 # print(self.kf.R)
 self.kf.update(z)
 # self.saver.save() # save the state of x after updating with observation.

 def get_prediction(self):
 self.kf.predict()
 self.saver.save()

use the mu, std from population statistics...
sensor_err_stats = pd.read_pickle('../data/sensor_err_stats.pkl')
print(sensor_err_stats)
R is an 2x2 matrix, there will be one matrix for each sensor, based on the std in
sensor_err_stats
power 2 because cov is sigma^2
def get_sensor_stats():
 sensor_err_stats = pd.read_pickle('../data/sensor_err_stats.pkl')
 mat_R = {}
 for sensor in SENSORS:
 mat_R[sensor] = np.array([[sensor_err_stats.loc['std_x', sensor]**2, 0.], [0.,
sensor_err_stats.loc['std_y', sensor]**2]])
 return mat_R
get_sensor_stats()

 IR EO Radar ESM
mu_x 3.889024 3.889116 3.890564 0.266667
std_x 1.711266 1.711265 1.709136 0.209541
mu_y 4.052315 4.051945 4.058989 0.276587
std_y 1.919304 1.919407 1.915697 0.210433

119

{'IR': array([[2.92843122, 0.],
 [0. , 3.68372751]]),
 'EO': array([[2.92842714, 0.],
 [0. , 3.68412198]]),
 'Radar': array([[2.92114647, 0.],
 [0. , 3.66989405]]),
 'ESM': array([[0.04390724, 0.],
 [0. , 0.04428191]])}

def setup_run(timelineID, data, weather):
 sensor_dat = {}
 for sensor in SENSORS:
 sensor_dat[sensor] = SensorDataWrapper(data, sensor, weather=weather)
 sensor_dat[sensor].set_timelineID(timelineID)
 print(
 f'sensor: {sensor}\tstart: {sensor_dat[sensor].start_time}\t#entries:
{sensor_dat[sensor].num_entries}'
)
 endtime = data['normal']['pos'].Time.max()
 return sensor_dat, endtime

D. RUNNING A SIMULATION WITH KF

def run(timelineID, kf, data, weather='normal'):
 """
 Run the Kalman filter on the sensor dataset
 """
 print(f"filtering timelineID: {timelineID}")
 time = 0.
 sensor_dat, endtime = setup_run(timelineID, data, weather=weather)

 while time < endtime:
 time += 1
 # Predict Step:
 # estimate the location of the target, only update the prediction
 # iff there are measurements from the sensors.
 if time > 1:
 kf.get_prediction()
 # update clock of sensors_dat
 # get the detection if the sensor has a detection at this timestep
 # accumulate all the measurements from the sensors
 for sensor in SENSORS:
 if sensor_dat[sensor].tick():
 (t, x, y) = sensor_dat[sensor].get_next_detection()
 assert t == time, f"alert is out of sync (got t={t}, but time is {time})"
 # print(f'{sensor}:{t}')
 kf.update_observation(sensor, np.array([[x, y]]).T)

 return kf

sensor_err_stats = get_sensor_stats()
kf = KFWrapper(sensor_err_stats=sensor_err_stats)
Define the initial condition
P0 = [65**2, 65**2, .5**2, .5**2, .5**4, .5**4]
P0 = np.eye(6, 6) * P0
kf.set_init_process_noise(P0)
sample for a timeline ID.
timelineIDs = data['normal']['ESM'].TimelineID.unique()
timelineID = timelineIDs[5] # running on normal weather sample 5
kf = run(timelineID, kf=kf, data=data, weather='normal')

filtering timelineID: 67362da0-b4b9-458e-b14d-e76d72dbbc9d
sensor: IR start: 3 #entries: 720
sensor: EO start: 3 #entries: 720
sensor: Radar start: 1 #entries: 3601
sensor: ESM start: 14 #entries: 360

120

init kf with position [[1774.92667137]
 [-720.46927762]]

(1) Calculate Estimation Error by KF Algorithm

def get_metrics(kf, df_pos, timelineID):
 pos_extract = np.array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0]]).T
 df_pos = df_pos[df_pos.TimelineID == timelineID]
 df_pos = df_pos.loc[:, ['Time', 'Unit_E', 'Unit_N']]
 df_pos.drop(df_pos.index[0], axis=0, inplace=True)
 df_pos.reset_index(inplace=True, drop=True)
 kf_latlon = np.array(kf.saver.x).squeeze() @ pos_extract
 df_kf = pd.DataFrame(kf_latlon, columns=[
 'KF_E',
 'KF_N',
])
 df_merged = pd.concat([df_pos, df_kf], axis=1)
 df_merged['residual_E'] = df_merged.apply(lambda r: sq_err_1d(r.KF_E, r.Unit_E), axis=1)
 df_merged['residual_N'] = df_merged.apply(lambda r: sq_err_1d(r.KF_N, r.Unit_N), axis=1)
 df_merged['residual_2d'] = df_merged.apply(lambda r: sq_err_2d(r.KF_N, r.Unit_N, r.KF_E,
r.Unit_E), axis=1)
 return kf_latlon, df_pos, df_merged

df_pos = data['normal']['pos']
df_latlon, df_pos, df_merged = get_metrics(kf, df_pos, timelineID)

(2) Visualization

df_merged.describe()

 Time Unit_E Unit_N KF_E KF_N \
count 7201.000000 7201.000000 7201.000000 7201.000000 7201.000000
mean 3602.000000 -121.291135 78.954700 -120.139041 78.649491
std 2078.893977 2924.502682 2859.777332 2924.188147 2860.033013
min 2.000000 -5813.182289 -4619.082017 -5816.758788 -4620.465758
25% 1802.000000 -2656.802653 -2435.575792 -2658.526479 -2435.807653
50% 3602.000000 329.895356 -98.149750 329.942908 -99.538963
75% 5402.000000 2280.884665 2820.640969 2279.818083 2820.919260
max 7202.000000 4361.794368 4849.184519 4362.413869 4850.974606

 residual_E residual_N residual_2d
count 7.201000e+03 7201.000000 7201.000000
mean 5.807884e+01 29.268166 87.347004
std 1.612977e+02 41.794770 174.577502
min 4.967165e-08 0.001089 0.987838
25% 4.107866e+00 14.620390 35.281986
50% 1.954108e+01 19.202310 39.954806
75% 3.984480e+01 35.008957 50.015390
max 1.221567e+03 326.047007 1235.578773

121

sns.scatterplot(df_merged.loc[:, 'residual_E'], df_merged.loc[:, 'residual_N'])
ax = plt.gca()

sns.scatterplot(df_merged.loc[0:1000, 'Time'], df_merged.loc[0:1000, 'residual_N'])

122

f, (ax1, ax2) = plt.subplots(2, 1, figsize=(9, 8), sharex=True)

_df_merged = df_merged.iloc[1:]
Longitude
ax1.scatter(_df_merged.Time, _df_merged.KF_E, label='KF estimated position', facecolor='none',
edgecolors='r', marker='o', linewidths=1)
ax1.plot(_df_merged.Time, _df_merged.Unit_E, linewidth=2, label='Ground Truth')
ax1.set_ylabel('Longitude')
ax1.legend()
Latitude
ax2.scatter(_df_merged.Time, _df_merged.residual_E, marker='.', linewidths=.5, alpha=0.2)
ax2.set_xlabel('Simulation Time')
ax2.set_ylabel('Residual')

Text(0, 0.5, 'Residual')

123

f, (ax1, ax2) = plt.subplots(2, 1, figsize=(9, 8), sharex=True)

_df_merged = df_merged.iloc[1:]
Longitude
ax1.scatter(_df_merged.Time, _df_merged.KF_N, label='KF estimated position', facecolor='none',
edgecolors='r', marker='o', linewidths=1)
ax1.plot(_df_merged.Time, _df_merged.Unit_N, linewidth=2, label='Ground Truth')
ax1.set_ylabel('Longitude')
ax1.legend()
Latitude
ax2.scatter(_df_merged.Time, _df_merged.residual_E, marker='.', linewidths=.5, alpha=0.2)
ax2.set_xlabel('Simulation Time')
ax2.set_ylabel('Residual')

Text(0, 0.5, 'Residual')

f, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8), sharex=True)

_df_merged = df_merged.iloc[1:]
Longitude
ax1.scatter(_df_merged.Time, _df_merged.KF_E, label='KF estimated position', facecolor='none',
edgecolors='r', marker='o', linewidths=1, alpha=.5)
ax1.plot(_df_merged.Time, _df_merged.Unit_E, linewidth=1.5, label='Ground Truth')
ax1.set_ylabel('Longitude')
ax1.legend()

124

ax1.set_xlim(2300, 2500)
ax1.set_ylim(-6000, -5000)
Latitude
ax2.scatter(_df_merged.Time, _df_merged.residual_E, marker='.', alpha=.5, linewidths=2)
ax2.set_xlim(2300, 2500)
ax2.set_xlabel('Simulation Time')
ax2.set_ylabel('RMSE(Longitude)')

125

f, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8), sharex=True)

_df_merged = df_merged.iloc[1:]
Longitude
ax1.scatter(_df_merged.Time, _df_merged.KF_E, label='KF estimated position', facecolor='none',
edgecolors='r', marker='o', linewidths=1, alpha=.5)
ax1.plot(_df_merged.Time, _df_merged.Unit_E, linewidth=1.5, label='Ground Truth')
ax1.set_ylabel('Longitude')
ax1.legend()
ax1.set_xlim(0, 200)
ax1.set_ylim(1750, 1900)
Latitude
ax2.scatter(_df_merged.Time, _df_merged.residual_E, marker='.', alpha=.5, linewidths=2)
ax2.set_xlim(0, 200)
ax2.set_ylim(-1, 10)
ax2.set_xlabel('Simulation Time')
ax2.set_ylabel('RMSE(Longitude)')

f, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8), sharex=True)

_df_merged = df_merged.iloc[1:]
Longitude
ax1.scatter(_df_merged.Time, _df_merged.KF_E, label='KF estimated position', facecolor='none',
edgecolors='r', marker='o', linewidths=1, alpha=.5)
ax1.plot(_df_merged.Time, _df_merged.Unit_E, linewidth=1.5, label='Ground Truth')
ax1.set_ylabel('Longitude')
ax1.legend()
ax1.set_xlim(1500, 1700)
ax1.set_ylim(-3000, -1900)
Latitude
ax2.scatter(_df_merged.Time, _df_merged.residual_E, marker='.',alpha=.5, linewidths=2)

126

ax2.set_xlim(1500, 1700)
ax2.set_xlabel('Simulation Time')
ax2.set_ylabel('RMSE(Longitude)')

f, (ax1, ax2) = plt.subplots(2,1,figsize=(8,8), sharex=True)

_df_merged = df_merged.iloc[1:]
Longitude
ax1.scatter(_df_merged.Time, _df_merged.KF_N, label='KF estimated Latitude', facecolor='none',
edgecolors='r', marker='o', alpha=.5, linewidths=2)
ax1.plot(_df_merged.Time, _df_merged.Unit_N, linewidth=1.5, label='Unit Position (Latitude)')
ax1.scatter(_df_merged.Time, _df_merged.KF_E, label='KF estimated Longitude', facecolor='none',
edgecolors='b', marker='o', alpha=.5, linewidths=2)
ax1.plot(_df_merged.Time, _df_merged.Unit_E, linewidth=1.5, label='Unit Position (Longitude)')
ax1.set_ylabel('Longitude and latitude')
ax1.legend(loc=1,bbox_to_anchor=(1.4,1))
ax2.scatter(_df_merged.Time, _df_merged.residual_E, linewidth=.1, label='Squared Error
(Longitude)',alpha=.2)
ax2.scatter(_df_merged.Time, _df_merged.residual_N, linewidth=.1, label='Squared Error
(Latitude)',alpha=.2)
ax2.legend(loc=1,bbox_to_anchor=(1.4,1))
ax2.set_yscale('log')
ax2.set_xlabel('Simulation Time')
ax2.set_ylabel('Log(Squared Error)')

127

f, (ax1, ax2) = plt.subplots(2,1,figsize=(8,8), sharex=True)

_df_merged = df_merged.iloc[1:]
Longitude
ax1.scatter(_df_merged.Time, _df_merged.KF_N, label='KF estimated Latitude', facecolor='none',
edgecolors='r', marker='o', alpha=.5, linewidths=2)
ax1.plot(_df_merged.Time, _df_merged.Unit_N, linewidth=1.5, label='Unit Position (Latitude)')
ax1.scatter(_df_merged.Time, _df_merged.KF_E, label='KF estimated Longitude', facecolor='none',
edgecolors='b', marker='o', alpha=.5, linewidths=2)
ax1.plot(_df_merged.Time, _df_merged.Unit_E, linewidth=1.5, label='Unit Position (Longitude)')
ax1.set_ylabel('Longitude and latitude')
ax1.legend(loc=1,bbox_to_anchor=(1.4,1))
Latitude
ax2.scatter(_df_merged.Time, _df_merged.residual_E, linewidth=.1, label='Squared Error
(Longitude)',alpha=.2)
ax2.scatter(_df_merged.Time, _df_merged.residual_N, linewidth=.1, label='Squared Error
(Latitude)',alpha=.2)
ax2.legend(loc=1,bbox_to_anchor=(1.4,1))
ax2.set_xlabel('Simulation Time')
ax2.set_ylabel('Log(Squared Error)')

128

E. EVALUATION OF RESULTS

NORMAL DATASET
kf_runs = {}
sensor_err_stats = get_sensor_stats()
for timelineID, df_pos in data['normal']['pos'].groupby('TimelineID'):
 kf = KFWrapper(sensor_err_stats=sensor_err_stats)
 # Define the initial condition
 P0 = [65**2, 65**2, .5**2, .5**2, .5**4, .5**4]
 P0 = np.eye(6, 6) * P0
 kf.set_init_process_noise(P0)
 kf = run(timelineID, kf=kf, data=data, weather='normal')
 _, _, df_merged = get_metrics(kf, df_pos, timelineID)
 # save for subsequent processing
 df_merged.to_feather(f'./kf_eval_normal/{timelineID}.ftr')

EXTREME DATASET
kf_runs = {}
sensor_err_stats = get_sensor_stats()
for timelineID, df_pos in data['extreme']['pos'].groupby('TimelineID'):
 kf = KFWrapper(sensor_err_stats=sensor_err_stats)
 # Define the initial condition
 P0 = [65**2, 65**2, .5**2, .5**2, .5**4, .5**4]
 P0 = np.eye(6, 6) * P0
 kf.set_init_process_noise(P0)
 kf = run(timelineID, kf=kf, data=data, weather='extreme')
 _, _, df_merged = get_metrics(kf, df_pos, timelineID)
 # save for subsequent processing
 df_merged.to_feather(f'./kf_eval_extreme/{timelineID}.ftr')

129

The following analysis is conducted for each scenario.

1. Calculate the average detection error (RMSE) for each simulation run,

2. Calculate the mean and standard deviation of detection error for KF

estimation for each type of settings.
Normal environment
dir = './kf_eval_normal/'
res_mu_normal_x = []
res_mu_normal_y = []
res_mu_normal = []
for outfile in os.listdir(dir):
 df = pd.read_feather(os.path.join(dir, outfile))
 res_mu_normal_x.append(np.sqrt(df.residual_E.mean())) # calculates the RMSE of the error
 res_mu_normal_y.append(np.sqrt(df.residual_N.mean()))
 res_mu_normal.append(np.sqrt(df.residual_2d.mean()))

df.describe()

 Time Unit_E Unit_N KF_E KF_N \
count 7201.000000 7201.000000 7201.000000 7201.000000 7201.000000
mean 3602.000000 239.824163 141.206389 240.200543 141.893502
std 2078.893977 2658.804546 2899.506122 2658.940273 2900.052696
min 2.000000 -5816.487395 -4650.551169 -5817.020354 -4652.149989
25% 1802.000000 -1519.905938 -2458.942698 -1522.850643 -2459.945697
50% 3602.000000 686.380796 44.131313 686.463870 44.890885
75% 5402.000000 2282.164401 2893.976985 2282.316028 2895.304009
max 7202.000000 4365.368905 4850.039709 4367.081153 4851.811333

 residual_E residual_N residual_2d
count 7201.000000 7201.000000 7201.000000
mean 53.163313 32.026724 85.190037
std 155.677964 44.883423 168.368409
min 0.000002 0.001087 1.475548
25% 3.618628 15.637721 35.834311
50% 18.204557 20.282036 40.453811
75% 38.292947 36.485428 49.754200
max 1245.670857 346.307507 1252.985527

res_normal = pd.DataFrame({
 'RMSE(longitude)': res_mu_normal_x,
 'RMSE(latitude)': res_mu_normal_y,
 'RMSE(overall)': res_mu_normal,
 'Environment': 'Normal'
})

g = sns.pairplot(res_normal, corner=True, aspect=.9,
hue='Environment',palette=dict(Normal=sns.color_palette()[0], Extreme=sns.color_palette()[1]),
plot_kws=dict(), diag_kws=dict(fill=False), diag_kind="hist")
f = plt.gcf()
f.suptitle('Distribution of errors between KF prediction and actual unit position\n(Normal Weather
Dataset)')

Text(0.5, 0.98, 'Distribution of errors between KF prediction and actual unit position\n(Normal
Weather Dataset)')

130

res_normal.describe()

 RMSE(longitude) RMSE(latitude) RMSE(overall)
count 100.000000 100.000000 100.000000
mean 7.541179 5.478568 9.323550
std 0.181759 0.131409 0.073194
min 7.279208 5.038347 9.223251
25% 7.404439 5.398342 9.273100
50% 7.505960 5.507928 9.308336
75% 7.633440 5.579259 9.351967
max 8.172307 5.664053 9.600601

131

Extreme environment
dir = './kf_eval_extreme/'
res_mu_extreme_x = []
res_mu_extreme_y = []
res_mu_extreme = []
for outfile in os.listdir(dir):
 df = pd.read_feather(os.path.join(dir, outfile))
 res_mu_extreme_x.append(np.sqrt(df.residual_E.mean()))
 res_mu_extreme_y.append(np.sqrt(df.residual_N.mean()))
 res_mu_extreme.append(np.sqrt(df.residual_2d.mean()))
res_extreme = pd.DataFrame({
 'RMSE(longitude)': res_mu_extreme_x,
 'RMSE(latitude)': res_mu_extreme_y,
 'RMSE(overall)': res_mu_extreme,
 'Environment': 'Extreme'
})

g = sns.pairplot(res_extreme, corner=True,
hue='Environment',palette=dict(NormaL=sns.color_palette()[0], Extreme=sns.color_palette()[1]),
plot_kws=dict(), diag_kws=dict(fill=False), diag_kind="hist")
f = plt.gcf()
f.suptitle('Distribution of errors between KF prediction and actual unit position\n(Extreme
Weather Dataset)')

Text(0.5, 0.98, 'Distribution of errors between KF prediction and actual unit position\n(Extreme
Weather Dataset)')

132

res_extreme.describe()

 RMSE(longitude) RMSE(latitude) RMSE(overall)
count 100.000000 100.000000 100.000000
mean 7.559086 5.467258 9.331756
std 0.195241 0.140200 0.079345
min 7.290751 5.040938 9.229639
25% 7.409365 5.381114 9.272755
50% 7.522444 5.497256 9.320632
75% 7.668317 5.577457 9.370688
max 8.179266 5.659610 9.607884

Put EXTREME and NORMAL together
res_combined = pd.concat([res_extreme, res_normal], axis=0, ignore_index=True)
g = sns.pairplot(res_combined, corner=True, hue='Environment', diag_kind='kde')
f = plt.gcf()
f.suptitle('Distribution of RMSE by KF model')

Text(0.5, 0.98, 'Distribution of RMSE by KF model')

133

APPENDIX F. PYTHON SCRIPTS–ML MODEL TUNING

File: tune_nn.py
1. import os
2. import numpy as np
3. import torch as th
4. import torch.nn.functional as F
5. import pandas as pd
6. import random
7.
8. from ray import tune
9. from ray.tune.schedulers import ASHAScheduler
10. from functools import partial
11. from helper import *
12. from sensor import SensorDataWrapper, SensorDataset
13. from collections import OrderedDict
14. from sklearn.model_selection import train_test_split
15. from sklearn.preprocessing import MinMaxScaler
16.
17. # Set the manual seed for reproducibility.
18. seed = 3
19. random.seed(seed)
20. np.random.seed(seed)
21. th.manual_seed(seed)
22.
23.
24. # Create Data Lodaer
25. class CustomDataset(th.utils.data.Dataset):
26.
27. def __init__(self, x, y):
28. self.x = th.tensor(x)
29. self.y = th.tensor(y)
30. # debug
31. # print(self.x.shape)
32. # print(self.y.shape)
33. assert self.x.shape[0] == self.y.shape[0], "x, y do not agree in length"
34.
35. def __len__(self):
36. return self.x.shape[0]
37.
38. def __getitem__(self, i):
39. return self.x[i], self.y[i]
40.
41.
42. class FC_NN(th.nn.Module):
43. ### Creates a simple fc regression neural net
44.
45. def __init__(self, input_dim, layers_dim, act_fn):
46. super().__init__()
47.
48. # input layer
49. layers = [('input', th.nn.Linear(input_dim, layers_dim[0])), ('act_fn_0',

act_fn())]
50.
51. # fc hidden layers
52. for i in range(1, len(layers_dim)):
53. layers.append((f'layer_{i}', th.nn.Linear(layers_dim[i - 1],

134

layers_dim[i])))
54. layers.append((f'act_fn_{i}', act_fn()))
55.
56. # output layer
57. layers.append(('output_layer', th.nn.Linear(layers_dim[-1], 2)))
58.
59. self.model = th.nn.Sequential(OrderedDict(layers))
60.
61. def forward(self, obs):
62. o = self.model(obs)
63. return o
64.
65.
66. class Double_Head_NN(th.nn.Module):
67. ### Creates a simple fc regression neural net
68. ### Takes as input the
69.
70. def __init__(self, input_dim, act_fn=th.nn.ReLU, num_hidden_nodes_1=8,

num_hidden_nodes_2=2):
71. super().__init__()
72.
73. # input layer
74. layers = [('input', th.nn.Linear(input_dim, num_hidden_nodes_1)),

('act_fn_0', act_fn())]
75. layers.append((f'layer_1', th.nn.Linear(num_hidden_nodes_1,

num_hidden_nodes_1)))
76. layers.append((f'act_fn_1', act_fn()))
77.
78. # fc mixed layers
79. layers_1 = layers.copy()
80. layers_1.append((f'layer_2_1', th.nn.Linear(num_hidden_nodes_1,

num_hidden_nodes_2)))
81. layers_1.append((f'act_fn_2_1', act_fn()))
82. layers_1.append((f'output_1', th.nn.Linear(num_hidden_nodes_2, 1)))
83.
84. layers_2 = layers.copy()
85. layers_2.append((f'flayer_2_2', th.nn.Linear(num_hidden_nodes_1,

num_hidden_nodes_2)))
86. layers_2.append((f'act_fn_2_2', act_fn()))
87. layers_2.append((f'output_2', th.nn.Linear(num_hidden_nodes_2, 1)))
88.
89. self.model_1 = th.nn.Sequential(OrderedDict(layers_1))
90. self.model_2 = th.nn.Sequential(OrderedDict(layers_2))
91.
92. def forward(self, obs):
93. x = self.model_1(obs)
94. y = self.model_2(obs)
95. # print(o)
96. return th.cat([x, y], dim=1)
97.
98.
99. def create_dataset(sensor, weather='normal'):
100. ds = {}
101. random_state = 29071993
102. data =

pd.read_feather(f'C:\\Users\\moves\\Documents\\ml4cop\\data\\df_merged_{weather}
pos{sensor}.ftr')

103. ds = {}
104. # remove columns that are not required, save memory
105. data.drop([

135

106. 'TimelineID', 'Time', 'SensorID', 'SensorName',
'SensorParentLongitude', 'SensorParentLatitude', 'SensorParentAltitude_AGL',
'TargetID',

107. 'TargetName', 'TargetLongitude', 'TargetLatitude',
'TargetAltitude_AGL_m', 'TargetRangeSlant_nm', 'DetectionResult',
'DetectionAOU', 'Target_U',

108. 'Sensor_U', 'TimeDelta_x', 'UnitID', 'UnitName', 'UnitType',
'UnitClass', 'UnitLongitude', 'UnitLatitude', 'UnitCourse', 'UnitSpeed_kts',

109. 'UnitAltitude_m', 'Unit_E', 'Unit_N', 'Unit_U', 'TimeDelta_y',
'Err_ENU_z', 'Err_ENU_2d'

110.],
111. axis=1,
112. inplace=True)
113. train_data, test_data = train_test_split(data, test_size=0.3,

random_state=random_state, shuffle=True)
114. val_data, test_data = train_test_split(test_data, test_size=0.5,

random_state=random_state, shuffle=True)
115. ds['train'] = {
116. 'x': train_data[['Target_E',

'Target_N']].to_numpy(dtype=np.float32),
117. 'y': train_data[['Err_ENU_x',

'Err_ENU_y']].to_numpy(dtype=np.float32)
118. }
119. ds['val'] = {
120. 'x': val_data[['Target_E',

'Target_N']].to_numpy(dtype=np.float32),
121. 'y': val_data[['Err_ENU_x',

'Err_ENU_y']].to_numpy(dtype=np.float32)
122. }
123. ds['test'] = {
124. 'x': test_data[['Target_E',

'Target_N']].to_numpy(dtype=np.float32),
125. 'y': test_data[['Err_ENU_x',

'Err_ENU_y']].to_numpy(dtype=np.float32)
126. }
127.
128. print(f'sensor: {sensor}')
129. print(f"train: {ds['train']['x'].shape}, {ds['train']['y'].shape}")
130. print(f"val: {ds['val']['x'].shape}, {ds['val']['y'].shape}")
131. print(f"test: {ds['test']['x'].shape}, {ds['test']['y'].shape}\n")
132.
133. # we only fit it to the training dataset, and use the fitted scaler to

scale the rest of splits.
134. scalers = MinMaxScaler()
135. scalers.fit(ds['train']['x'])
136. # Transform input:
137. for _type in ['train', 'test', 'val']:
138. ds[_type]['x'] = scalers.transform(ds[_type]['x'])
139.
140. return ds
141.
142.
143. # Function to train moodel on training dataset.
144. def train(model, dataLoader, criterion, optimizer, grad_clip_value,

device='cpu'):
145. # store training statistics
146. batch_loss = []
147. # Set model to training
148. model.train()
149. for x, y in dataLoader:

136

150. x = x.to(device)
151. y = y.to(device)
152. optimizer.zero_grad()
153. y_pred = model(x)
154. loss = criterion(y, y_pred)
155. # calculate gradient
156. loss.backward()
157. # clip the gradients to norm(grad) = 1.0
158. th.nn.utils.clip_grad_norm_(model.parameters(), grad_clip_value)
159. optimizer.step()
160. # calculate training loss across batches.
161. batch_loss.append(loss.item())
162. avg_loss = np.mean(batch_loss)
163. return avg_loss
164.
165.
166. # Function for validating model on validation dataset.
167. def val(model, dataLoader, criterion, device='cpu'):
168. val_loss = []
169. # set model to evaluation model
170. model.eval()
171. for x, y in dataLoader:
172. x = x.to(device)
173. y = y.to(device)
174. y_pred = model(x)
175. loss = criterion(y, y_pred)
176. val_loss.append(loss.item())
177. avg_loss = np.mean(val_loss)
178. return avg_loss
179.
180.
181. def train_doublehead_tune(config, checkpoint_dir=None, sensor=None):
182.
183. # Create model
184. model = Double_Head_NN(input_dim=config['input_dim'],
185. num_hidden_nodes_1=config['num_hidden_nodes_1']

,
186. num_hidden_nodes_2=config['num_hidden_nodes_2']

)
187. optimizer = th.optim.Adam(model.parameters(), lr=config['lr_init'],

weight_decay=1e-4)
188. scheduler = th.optim.lr_scheduler.StepLR(optimizer,

step_size=config['lr_drop_step'], gamma=config['lr_drop_fraction']) #,
verbose=True)

189. criterion = th.nn.L1Loss()
190.
191. # Check for GPU
192. device = 'cpu'
193. # if th.cuda.is_available():
194. # device = 'cuda:0'
195. # print(device)
196. model = model.to(device)
197.
198. # Create dataset
199. data = create_dataset(sensor)
200. train_dataset = CustomDataset(data['train']['x'], data['train']['y'])
201. train_dataLoader = th.utils.data.DataLoader(train_dataset,

batch_size=config['batch_size'])
202. val_dataset = CustomDataset(data['val']['x'], data['val']['y'])
203. val_dataLoader = th.utils.data.DataLoader(val_dataset)

137

204. # store variables.
205. best_epoch = None
206. best_loss = np.inf
207. # epoch_loss = {'train': [], 'val': []}
208. patience_count = 0
209.
210. # begins training neural network
211. for epoch in range(config['max_epochs']):
212.
213. # training step
214. train_loss = train(model, train_dataLoader, criterion, optimizer,

config['grad_clip'], device=device)
215. scheduler.step() # update the scheduler and change lr when

required.
216.
217. # validation step
218. val_loss = val(model, val_dataLoader, criterion, device=device)
219.
220. # store loss metrics for graphing:
221. # epoch_loss['train'].append(train_loss)
222. # epoch_loss['val'].append(val_loss)
223. tune.report(train_loss=train_loss, val_loss=val_loss)
224.
225. if val_loss < best_loss:
226. best_loss = val_loss
227. best_epoch = epoch
228. # print(f'epoch {best_epoch}: best model loss = {best_loss:.4f}')
229. # reset patience_count:
230. patience_count = 0
231. # Early stop training if the validation loss does not improve after

val_patience epoch.
232. if patience_count == config['patience']:
233. break
234. else:
235. patience_count += 1
236.
237. with tune.checkpoint_dir(epoch) as checkpoint_dir:
238. path = os.path.join(checkpoint_dir, "checkpoint")
239. th.save((model.state_dict(), optimizer.state_dict()), path)
240. # print(path)
241.
242.
243. if __name__ == "__main__":
244.
245. def main(sensor=None, weather='normal'):
246. # load dataset
247. # the dataset consists of target_E,N,U and sensor_E,N,U and the

measurement error (using RMSE)
248. max_num_epochs = 500
249. num_samples = 400
250.
251. config = {
252. "patience": 20,
253. "input_dim": 2,
254. "max_epochs": 500,
255. "num_hidden_nodes_1": tune.choice([8, 16]),
256. "num_hidden_nodes_2": tune.choice([2, 4]),
257. "lr_init": tune.choice([0.5, 0.3, 0.2, 0.1]),
258. "lr_drop_step": tune.choice([10, 15, 20]),
259. "lr_drop_fraction": tune.choice([0.9, 0.8, 0.5, 0.1]),

138

260. "batch_size": tune.choice([16, 32, 64]),
261. "grad_clip": 1,
262. }
263.
264. Scheduler = ASHAScheduler(metric="val_loss", mode="min",

max_t=max_num_epochs, grace_period=10, reduction_factor=2)
265.
266. reporter = tune.CLIReporter(metric_columns=["train_loss",

"val_loss", "training_iteration"], print_intermediate_tables=True)
267. result = tune.run(
268. partial(train_doublehead_tune, checkpoint_dir=f'./tune/',

sensor=sensor),
269. config=config,
270. num_samples=num_samples,
271. scheduler=scheduler,
272. local_dir=f'./tune/',
273. name=f'{sensor}',
274. resources_per_trial={"cpu": 2},
275. max_concurrent_trials=10, # 24 CPU in total, using up to 20

CPU.
276. resume=True,
277. progress_reporter=reporter)
278.
279. best_trial = result.get_best_trial("val_loss", "min", "last")
280. print("Best trial config: {}".format(best_trial.config))
281.
282. main(sensor='ESM')
283. main(sensor='EO')
284. main(sensor='IR')
285. main(sensor='Radar')

File: Sensor.py

1. """"
2. Everything related to sensors here.
3. """
4.
5. from helper import SENSORS
6. import pandas as pd
7. import numpy as np
8.
9. DEBUG_PRINT = True
10.
11.
12. class SensorDataWrapper:
13. """
14. Define each sensor as a sensor class itself, and provides the dataset when
15. called by the other function.
16. """
17.
18. def __init__(self, dataset_dict, sensor, weather='normal'):
19. self.data = dataset_dict[weather][sensor]
20. self.timelineID = None
21. self.time = 0. # maintains a clock within itself to provide error-checking.
22. self._data = None
23. self.num_entries = None
24. self.start_time = self.data.Time.min()
25. self.end_time = self.data.Time.max()
26. self.sensor = sensor # name of sensor

139

27.
28. def update_periodicity(self, period):
29. self.periodicity = period
30.
31. def set_timelineID(self, timelineID):
32. self.timelineID = timelineID
33. self.set_time(0) # reset the clock, since we are interested in the new

timeline now
34. self._data = self.data[self.data.TimelineID == timelineID]
35. self._data.set_index('Time', inplace=True)
36. self.num_entries = len(self._data)
37.
38. def set_time(self, time):
39. self.time = time
40.
41. def get_next_detection(self):
42. """
43. this is the main interface with various functions.
44. After calling the set_timelineID, get_next_detection would return parameters

of interests
45. returns (t,x,y) where t= time of detection, x=latitude, y=longitude
46. """
47. try:
48. x = self._data.loc[self.time]['Target_E']
49. y = self._data.loc[self.time]['Target_N']
50. return (self.time, x, y)
51. except KeyError:
52. print(f'{self.time} is not in the index from data')
53.
54. def tick(self):
55. # Advance the clock
56. # if there are no more sensor data, return False
57. self.time += 1.
58. return self.time <= self.end_time and self.check_alert()
59.
60. def check_alert(self):
61. ### alert when there is a detection.
62. return self.time in self._data.index
63.
64.
65. class SensorDataset:
66. """
67. SensorDataset is a class comprising of all the sensor dataset for a specific

run.
68. """
69.
70. def __init__(self, data, weather='normal') -> None:
71. self.sensor_dat = {}
72. for sensor in SENSORS:
73. self.sensor_dat[sensor] = SensorDataWrapper(data, sensor, weather=weather)
74. if DEBUG_PRINT:
75. print(f'sensor: {sensor}\tstart:

{self.sensor_dat[sensor].start_time}\t#entries:
{self.sensor_dat[sensor].num_entries}')

76. self.timelineIDs = self.sensor_dat[SENSORS[0]].TimleineID.unique()
77. self.detections = []
78.
79. def get_timelineIDs(self):
80. return self.timelineIDs
81.

140

82. def set_timelineID(self, timelineID):
83. """
84. The simulation run defined by the timelineID that the dataset should be

focused on
85. """
86. self.time = 0 # reset the clock when setter is called.
87. self.detections = {}
88. for sensor in SENSORS:
89. self.sensor_dat[sensor].set_timelineID(timelineID)
90. if DEBUG_PRINT:
91. print(f'sensor dataset: set timeline @ {timelineID}')
92.
93. def tick(self):
94. """
95. provide the next available sensor detection from the dataset.
96. Some seconds may have more than 1 detection, hence we prepare an array of

detection from all sensors
97. and provide the detection to the environment accordingly.
98. The order in which the detections are presented are in an unspecified order.
99. """
100. self.time += 1
101. self.detections = []
102. for sensor in SENSORS:
103. if self.sensor_dat[sensor].tick():
104. (t, x, y) = self.sensor_dat[sensor].get_next_detection()
105. assert t == self.time, f"alert is out of sync (got t={t}, but

time is {self.time})"
106. if DEBUG_PRINT:
107. print(f'{sensor}:{t}')
108. self.detections.append((sensor, t, x, y))
109.
110.
111. def get_sensor_stats():
112. sensor_err_stats = pd.read_pickle('../data/sensor_err_stats.pkl')
113. mat_R = {}
114. for sensor in SENSORS:
115. mat_R[sensor] = np.array([[sensor_err_stats.loc['std_x', sensor]**2,

0.], [0., sensor_err_stats.loc['std_y', sensor]**2]])
116. return mat_R

141

LIST OF REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … & Zheng, X.
(2015). Tensorflow: Large-scale machine learning on heterogeneous systems
[Python]. https://www.tensorflow.org/

Akca, A., & Efe, M. Ö. (2019). Multiple model Kalman and particle filters and
applications: A survey. IFAC-PapersOnLine, 52(3), 73–78. https://doi.org/
10.1016/j.ifacol.2019.06.013

Bekhtaoui, Z., Meche, A., Dahmani, M., & Meraim, K. A. (2017). Maneuvering target
tracking using Q-learning based Kalman filter. 2017 5th International Conference
on Electrical Engineering – Boumerdes (ICEE-B), 1–5. https://doi.org/10.1109/
ICEE-B.2017.8192005

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Blasch, E. P., Rogers, S. K., Holloway, H., Tierno, J., Jones, E. K., & Hammoud, R. I.
(2014). QuEST for information fusion in multimedia reports. International
Journal of Monitoring and Surveillance Technologies Research, 2(3), 1–30.
https://doi.org/10.4018/IJMSTR.2014070101

Cardoso Silva, L., Rezende-Zagatti, F., Silva-Sette, B., Nildaimon dos Santos Silva, L.,
Lucredio, D., Furtado Silva, D., & de Medeiros Caseli, H. (2020). Benchmarking
machine learning solutions in production. 2020 19th IEEE International
Conference on Machine Learning and Applications (ICMLA), 626–633.
https://doi.org/10.1109/ICMLA51294.2020.00104

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C., &
Zhang, Z. (2015). MXNet: A flexible and efficient machine learning library for
heterogeneous distributed systems (Item No. arXiv:1512.01274). arXiv.
http://arxiv.org/abs/1512.01274

Chollet, F. (2015). Keras [Python]. https://keras.io

Crothers, M. B., Lanphear, M. J., & Garino, M. B. (2009). U.S. space-based intelligence,
surveillance, and reconnaissance. In AU-18 space primer. Air University Press.
https://www.airuniversity.af.edu/Portals/10/AUPress/Books/AU-18.PDF

Department of Defense. (2018). Summary of the 2018 Department of Defense artificial
intelligence strategy. https://media.defense.gov/2019/Feb/12/2002088963/-1/-1/
1/summary-of-dod-ai-strategy.PDF

142

Department of Defense. (2019). DoD digital modernization strategy 2019.
https://media.defense.gov/2019/Jul/12/2002156622/-1/-1/1/DOD-digital-
modernization-strategy-2019.PDF

Department of Defense. (2020). DoD data strategy 2020. https://media.defense.gov/2020/
Oct/08/2002514180/-1/-1/0/DOD-data-strategy.PDF

Dietrich, N. S. (2001). Performance metrics for correlation and tracking algorithms.
[Master's thesis, Naval Postgraduate School]. NPS Archive: Calhoun.
https://calhoun.nps.edu/handle/10945/2473

Esteban, J., Starr, A., Willetts, R., Hannah, P., & Bryanston-Cross, P. (2005). A review of
data fusion models and architectures: Towards engineering guidelines. Neural
Computing and Applications, 14(4), 273–281. https://doi.org/10.1007/s00521-
004-0463-7

Faragher, R. (2012). Understanding the basis of the Kalman filter via a simple and
intuitive derivation. IEEE Signal Processing Magazine, 29(5), 128–132.
https://doi.org/10.1109/MSP.2012.2203621

FLIR Systems. (2010). Datasheet of SeaFLIR-II. https://www.psicompany.com/man-
prod-info/FLIR/Thermal-Imaging-Cameras/SeaFLIR-II/SeaFLIR-II-
Datasheet.pdf

Gao, X., Luo, H., Ning, B., Zhao, F., Bao, L., Gong, Y., Xiao, Y., & Jiang, J. (2020). Rl-
AKF: An adaptive Kalman filter navigation algorithm based on reinforcement
learning for ground vehicles. Remote Sensing, 12(11), 1704. https://doi.org/
10.3390/rs12111704

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
http://www.deeplearningbook.org

Graves, A. (2012). Long short-term memory. In A. Graves (Ed.), Supervised Sequence
Labelling with Recurrent Neural Networks (pp. 37–45). Springer. https://doi.org/
10.1007/978-3-642-24797-2_4

Guerriero, M., Willett, P., Coraluppi, S., & Carthel, C. (2008). Radar/AIS data fusion and
SAR tasking for maritime surveillance. 2008 11th International Conference on
Information Fusion, 1–5.

Hoehn, J.R. (2022). Joint all-domain command and control (JADC2) (CRS Report No.
IF11493). Congressional Research Service. https://crsreports.congress.gov/
product/pdf/R/R46725/2

Joint Chiefs of Staff. (2013). Joint tactics, techniques, and procedures for intelligence
support to targeting. https://irp.fas.org/doddir/dod/jp2_01_1.pdf

143

Joint Chief of Staff. (2018). Joint targeting. https://www.justsecurity.org/wp-content/
uploads/2015/06/Joint_Chiefs-Joint_Targeting_20130131.pdf

Jouaber, S., Bonnabel, S., Velasco-Forero, S., & Pilté, M. (2021). NNAKF: A neural
network adapted Kalman filter for target tracking. ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
4075–4079. https://doi.org/10.1109/ICASSP39728.2021.9414681

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,
Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer,
C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S.,
Jain, R., Adler, J., … & Hassabis, D. (2021). Highly accurate protein structure
prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/
s41586-021-03819-2

Jung, S., Schlangen, I., & Charlish, A. (2020). Time-dependent state prediction for the
Kalman filter based on recurrent neural networks. 2020 IEEE 23rd International
Conference on Information Fusion (FUSION), 1–7. https://doi.org/10.23919/
FUSION45008.2020.9190484

Karayev, S., Van Pelt, C., & Tobin, J. (2022). Full stack deep learning. Full Stack Deep
Learning. https://fullstackdeeplearning.com/

Kendall, A., & Gal, Y. (2017). What uncertainties do we need in Bayesian deep learning
for computer vision? (arXiv:1703.04977). arXiv. https://doi.org/10.48550/
arXiv.1703.04977

Kim, S., Petrunin, I., & Shin, H.-S. (2022). A review of Kalman filter with artificial
intelligence techniques. 2022 Integrated Communication, Navigation and
Surveillance Conference (ICNS), 1–12. https://doi.org/10.1109/
ICNS54818.2022.9771520

Kingma, D. P., & Ba, J. (2017). Adam: A method for stochastic optimization
(arXiv:1412.6980). arXiv. https://doi.org/10.48550/arXiv.1412.6980

Koch, W. (2014). Tracking and sensor data fusion. Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-39271-9

Koch, W. (2015). Hard & soft fusion cornerstone of information processing and
management an introduction with defence and security examples. NATO STO
Lecture Series - Advanced Algorithms for Effectively Fusing hard and soft
Information (IST-134). https://www.sto.nato.int/publications/
STO%20Educational%20Notes/STO-EN-IST-134/EN-IST-134-01.pdf

144

Kong, L., Peng, X., Chen, Y., Wang, P., & Xu, M. (2020). Multi-sensor measurement
and data fusion technology for manufacturing process monitoring: A literature
review. International Journal of Extreme Manufacturing, 2(2), 022001.
https://doi.org/10.1088/2631-7990/ab7ae6

Kreuzberger, D., Kühl, N., & Hirschl, S. (2022). Machine learning operations (MLOps):
Overview, definition, and architecture (arXiv:2205.02302). arXiv. https://doi.org/
10.48550/arXiv.2205.02302

Labbe, R. (2022). Filterpy [Python]. https://github.com/rlabbe/filterpy (Original work
published 2014)

Lau, B. P. L., Marakkalage, S. H., Zhou, Y., Hassan, N. U., Yuen, C., Zhang, M., & Tan,
U.-X. (2019). A survey of data fusion in smart city applications. Information
Fusion, 52, 357–374. https://doi.org/10.1016/j.inffus.2019.05.004

Li, G., Yan, Z., Fu, Y., & Chen, H. (2018). Data fusion for network intrusion detection: A
review. Security and Communication Networks, https://doi.org/10.1155/2018/
8210614

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E., & Stoica, I. (2018). Tune:
A research platform for distributed model selection and training. ArXiv Preprint
ArXiv:1807.05118.

Liermann, V. (2021). Overview machine learning and deep learning frameworks. In C.
Stegmann (Ed.), Data storage, data processing and data analysis: Vol. III.
Springer International Publishing. https://doi.org/10.1007/978-3-030-78821-6

Llinas, J. (2008). Assessing the performance of multisensor fusion processes. In M. I.
Liggins & D. Hall (Eds.), Handbook of multisensor data fusion (2nd ed.). CRC
Press.

Maltese, D., & Lucas, A. (1998). Data fusion: Principles and applications in air defense.
Signal Processing, Sensor Fusion, and Target Recognition VII, 3374, 329–336.
https://doi.org/10.1117/12.327110

MathWorks. Tracking and tracking Filters—MATLAB & Simulink. (2022). Retrieved
July 8, 2022, from https://www.mathworks.com/help/fusion/gs/tracking-and-
tracking-filters.html

Matrix Games. (2022a). Command Lua API documentation v1147.34.
https://commandlua.github.io/index.html

Matrix Games. (2022b). Command: Modern operations (1.04.114745) [Windows].
https://www.matrixgames.com/game/command-modern-operations

Matrix Games. (2022c). Command professional edition user manual, version 2.0.

145

Merten, S. (2014). Employing data fusion in cultural analysis and COIN in tribal social
systems. In Culture, conflict, and counterinsurgency. Stanford University Press.
https://doi.org/10.11126/stanford/9780804785952.003.0004

Miller, S., Blais, C., & Green, J. (2020). Modeling the operational value of data fusion on
ASW and other missions. [Master's thesis, Naval Postgraduate School]. NPS
Archive: Calhoun. https://calhoun.nps.edu/handle/10945/67927

Murashov, D. (2021). A review and proposal for developing of data fusion models and
frameworks for decision making systems. Proceedings of the 33rd European
Modeling & Simulation Symposium, 116–125. https://doi.org/10.46354/
i3m.2021.emss.016

Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López García, Á., Heredia, I., Malík,
P., & Hluchý, L. (2019). Machine learning and deep learning frameworks and
libraries for large-scale data mining: A survey. Artificial Intelligence Review,
52(1), 77–124. https://doi.org/10.1007/s10462-018-09679-z

Nicholas, M. L. (2008). Survey of multisensor data fusion systems. In L. I. Martin, D.
Hall, & J. Llinas (Eds.), Handbook of multisensor data fusion (2nd ed.). CRC
Press.

Nix, D. A., & Weigend, A. S. (1994). Estimating the mean and variance of the target
probability distribution. Proceedings of 1994 IEEE International Conference on
Neural Networks (ICNN’94), 1, 55–60. https://doi.org/10.1109/
ICNN.1994.374138

Northrop Grumman Sperry Marine B.V. (2005). BridgeMaster E radar ship’s manual.
Northrop Grunmman Sperry Marine B.V. https://www.marinsat.com/en/product/
bridgemaster-e

Pandas Development Team. (2020). Pandas-dev/pandas: Pandas (latest). Zenodo.
https://doi.org/10.5281/zenodo.3509134

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S.
(2019). Pytorch: An imperative style, high-performance deep learning library.
Advances in Neural Information Processing Systems, 32.
https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-Learn:
Machine learning in python. Journal of Machine Learning Research, 12, 2825–
2830.

146

Python. (2022). Python 3-D coordinate conversions [Computer Software]. Geospace
code. https://github.com/geospace-code/pymap3d

Raytheon Technologies. (2005). AN/SLQ-32(V) shipboard EW system. Raytheon
Technologies. http://www.raytheon.com/products/stellent/groups/sas/documents/
asset/slq32.pdf

Rothenhaus, K. J. (2008). Data strategies to support automated multi-sensor data fusion
in a service oriented architecture [Doctoral Dissertation, Naval Postgraduate
School]. NPS Archive: Calhoun. https://calhoun.nps.edu/handle/10945/10348

Russell, S., Norvig, P., & Davis, E. (2010). Artificial intelligence: A modern approach
(3rd ed.). Prentice Hall. http://aima.cs.berkeley.edu/

Schachter, B. J. (2020). Automatic target recognition. SPIE Press.
https://books.google.com/books?id=EfvIzAEACAAJ

Seitzer, M., Tavakoli, A., Antic, D., & Martius, G. (2022). On the pitfalls of
heteroscedastic uncertainty estimation with probabilistic neural networks.
https://arxiv.org/abs/2203.09168

Sharma, J., & Stokes, G. H. (2002). Toward Operational Space-Based Space
Surveillance. 13(2), 26.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van
den Driessche, G., Graepel, T., & Hassabis, D. (2017). Mastering the game of Go
without human knowledge. Nature, 550(7676), 354–359. https://doi.org/10.1038/
nature24270

Singapore Armed Forces [SAF]. (2022). Fighting the COVID-19 pandemic—Leadership
and reflections from the SAF. Singapore Armed Forces.

Smith, D., & Singh, S. (2006). Approaches to multisensor data fusion in target tracking:
A survey. IEEE Transactions on Knowledge and Data Engineering, 18(12),
1696–1710. https://doi.org/10.1109/TKDE.2006.183

Steinberg, A. N., Bowman, C. L., & White, F. E. (2017). Revisions to the JDL data
fusion model. In Handbook of multisensor data fusion (pp. 65–88). CRC press.

Ullah, I., Fayaz, M., & Kim, D. (2019). Improving accuracy of the Kalman filter
algorithm in dynamic conditions using ANN-based learning module. Symmetry,
11(1), 94. https://doi.org/10.3390/sym11010094

Ullah, I., Fayaz, M., Naveed, N., & Kim, D. (2020). ANN based learning to Kalman filter
algorithm for indoor environment prediction in smart greenhouse. IEEE Access,
8, 159371–159388. https://doi.org/10.1109/ACCESS.2020.3016277

147

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi,
D. H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M.,
Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M., … &
Silver, D. (2019). Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782), 350–354. https://doi.org/10.1038/
s41586-019-1724-z

Wang, P., Yang, L. T., Li, J., Chen, J., & Hu, S. (2019). Data fusion in cyber-physical-
social systems: State-of-the-art and perspectives. Information Fusion, 51, 42–57.
https://doi.org/10.1016/j.inffus.2018.11.002

Watson, F. O. (2021). Design methodologies for 21st century entity correlation [Master’s
thesis, Naval Postgraduate School]. NPS Archive: Calhoun.
https://calhoun.nps.edu/handle/10945/68396

West, T. D., & Birkmire, B. (2019). AFSIM: The air force research laboratory’s approach
to making M&S ubiquitous in the weapon system concept development process.
CSIAC Journal, 7(3), 50–55.

Winder, P. (2019, July 1). A comparison of reinforcement learning frameworks.
https://winder.ai/a-comparison-of-reinforcement-learning-frameworks-dopamine-
rllib-keras-rl-coach-trfl-tensorforce-coach-and-more/

Yeong, D. J., Velasco-Hernandez, G., Barry, J., & Walsh, J. (2021). Sensor and sensor
fusion technology in autonomous vehicles: A review. 21(6), 2140. https://doi.org/
10.3390/s21062140

148

THIS PAGE INTENTIONALLY LEFT BLANK

149

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	22Sep_Goh_Wei Ting_First8
	22Sep_Goh_Weiting
	I. INTRODUCTION
	A. Overview
	B. Motivation
	C. Objectives
	D. Assumptions
	E. Approach
	F. Benefits of Research
	G. Structure of Paper

	II. Literature Review
	A. Background of Data Fusion
	1. Data Fusion Architectures and Models
	2. Processes and Methods Used in Object Refinement (Level 1)
	a. Data Registration
	b. Data Association
	c. State Estimation
	d. Identification

	3. Challenges and Limitations in Data Fusion Models
	4. Data Fusion Applications
	a. Intelligence Operations
	b. Surveillance
	c. Other Applications

	B. Evaluating ThE Performance of Data Fusion Systems
	1. Challenges in Evaluating Fusion System
	2. Evaluation of Object Refinement Fusion Process
	a. Number of Valid Tracks, Number of False Tracks
	b. Track Accuracy (State Estimation Metric)
	c. Time to Track

	C. AI/ML for Data FILTering
	1. Motivation: AI/ML as a DOD Capability
	2. Defining AI and ML
	a. Supervised Learning
	b. Unsupervised Learning
	c. Reinforcement Learning

	3. Machine Learning Operations and Frameworks
	4. Using AI/ML to Predict Measurement Noise for KF

	III. Simulating Sensors Data for Data Filtering
	A. Properties of Simulations
	(1) Convenience
	(2) Flexibility
	(3) Reproducibility

	B. Overview of Process Workflow
	C. Scenario Design
	1. Overview of CMO
	2. Physics and Stochastic Modeling in CMO
	3. Considerations and Constraints in the Design of the Scenario
	4. Scenario Design—Sensors
	5. Scenario Design—Target
	6. Scenario Design—Weather Conditions
	7. Simulation Runs

	D. Dataset
	1. Overview of Dataset
	a. Pre-processing Carried Out for All Files
	b. Pre-processing Specific for Sensor Detection Files

	2. Data Analysis—Target Position
	3. Data Analysis—Sensor Detection
	a. Sensor Detection Period
	b. Detection Success
	c. Average Residual from Target’s Position

	E. Limitations of Dataset
	1. Insignificant Improvement between Simulation Settings
	2. Absence of Measurement Errors

	IV. Model generation Methodology
	A. Kalman FilterS
	1. Predict Step
	2. Update Step
	a. Sensor Measurements and Noise
	b. Measurement Function
	c. Kalman Gain
	d. Update State Estimation
	e. Update State Covariance Matrix

	B. Creating KF Baseline Model using FilterPy
	C. Machine Learning Models
	1. Formulation of ML Problem—Modeling Uncertainty
	a. Heteroscedastic Interpretation
	b. Homoscedastic Interpretation

	2. ML Experiment Framework
	3. Phase 1: Generation of Dataset
	4. Phase 2: Build ML Model—Creating a Neural Network
	a. Data Preparation for ML Experimentation
	b. NN Architecture and Parameters
	c. Training the Neural Network
	d. Model Tuning

	5. Phase 3: Publish the ML Model

	D. State Estimation by the ML-KF Model

	V. Analysis of Results
	A. Overall performance
	1. Comparison of Performance between Weather Datasets
	2. Performance in Prediction of Longitude and latitude

	B. Prediction Error During Key Phases of Target Movement
	1. Constant Heading
	2. Changing Heading

	VI. Conclusions
	A. Summary of Research
	B. Limitations and future work
	1. Simulated Dataset
	a. Sensor Measurement Uncertainty
	b. Inclusion of External Factors in ML models

	2. Model Limitations
	a. How Well Does the AI/ML Model Generalize?
	(1) Randomized Reference Points in Simulation
	(2) Inclusion of External Factors for the ML Model Input

	b. Formulating a Time-series Problem
	(1) Using LSTM modules in NN
	(2) Reinforcement Learning (RL)

	c. Multiple Target Data Filtering

	C. Conclusion

	appendix A. SCRIPTS FOR CMO SIMULATION
	A. LUA Scripting for randomly generating A Target’s Position
	B. PowerShell Script to run CMO from Command Line Interface

	APPENDIX B. Data Dictionary
	A. Unit Position Table
	B. Sensor Detection Attempt Table

	APPENDIX C. Software Packages Used
	APPENDIX D. Python Notebook–Exploratory Data Analysis
	A. Inspecting Headers of dataset
	B. Comparison of coordinate systems (Geodesic and ENU representation)
	1. Sample Dataset
	a. Conversion to ENU representation

	C. Exploratory Data Analysis OF Target Unit Position dataset
	1. General Statistics of Dataset
	2. Visualization of Target Movement in Simulation

	D. EXPLORATORY DATA ANALYSIS of Sensor Dataset
	1. Periodicity of Data, Number of Detection, Failure Rate in Dataset
	(1) Observation:

	2. Detection Success / Failure Rate across Each Scenario
	(1) Are there significant differences in DetectionResult = FAILURE vs SUCCESSS for IR in adverse weather?

	E. Calculate the sensor errors

	APPENDIX E. Python Notebook — Baseline Model with KF
	A. Parameters in The Kalman Filter Algorithm
	1. Initialization
	2. Predict Step
	3. Update Step

	B. Set up Kalman Filter Functions
	a. Define the State Transition Matrix
	(1) Constant Acceleration Model
	(2) Constant Velocity Model

	b. Define the Process Noise Matrix
	c. Define the Measurement Function
	d. Define the Measurement Noise Matrix
	e. Define Initial Conditions

	C. Creating an Interface with dataset
	D. Running a simulation with KF
	(1) Calculate Estimation Error by KF Algorithm
	(2) Visualization

	E. Evaluation of Results

	APPENDIX F. Python Scripts–ML MOdel tuning
	List of References
	initial distribution list

