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ABSTRACT 

 Currently, Naval Facilities Engineering Command (NAVFAC) records all data on 

the process from application to awarding of Military Construction (MILCON) projects. 

This data is not utilized to increase poor performance and lack of timely results on the 

completion of MILCON projects. The poor performance leads to delays in deliveries to 

important facilities and delays in warship deployment and degradation of warfighting 

capabilities. NAVFAC currently has personnel investigating methods on improving the 

project timelines to minimize delays. Majority of the delays occur during the pre-award 

phase of the projects with the post-award phase causing additional delays. The purpose of 

this thesis is to analyze projects across multiple fiscal years from project initiation to 

contract award. To accomplish this, data was acquired from NAVFAC’s eProjects 

database and analyzed using machine learning techniques as well as statistical analysis to 

determine a correlation between the possible causes and the delays that occurred to 

develop a predictive model for analyzing future project contract delays. This collection 

will potentially assist NAVFAC in focusing onto ongoing improvements. Reducing the 

delays in project awarding will further the process for reducing the overall time required 

to complete MILCON projects. This will shorten the amount of time that ships are in the 

shipyard further enhancing the Navy’s undersea warfare capabilities with more 

submarines and other assets deployed. 
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EXECUTIVE SUMMARY 

In the past decade, the United States’ global naval supremacy has been dwindling 

at a rapid pace. Foreign countries, specifically China, have been increasing their naval 

power by rapidly increasing the size of their fleet. As stated by the Chief of Naval 

Operations (CNO) in 2018, the United States needs to increase its agility and capabilities 

to react and take actions (Department of Navy, 2018). Naval Facilities Engineering 

Command (NAVFAC) is pursuing improvement in all processes for completing projects. 

NAVFAC’s framework for the improvements is laid out in their Strategic Design 2.0. The 

first component of the framework is to decrease the time it takes for projects to be awarded 

(Naval Facilities Engineering Command, 2019). 

In this study, we focus on determining the major factors that cause projects to be 

delayed in the awarding process. This analysis is done by determining if a project is 

awarded within its assigned budget year. This is important as all projects not awarded 

within their budget year are reported to Congress, and often have lasting repercussions. 

Our analysis covers the fiscal years (FY) 2011–2021. 

After performing statistical analysis, we will use machine learning algorithms, 

decision trees and neural networks, to generate predictive models for projects late to award. 

The purpose of these predictive models is to determine what projects are likely to be late 

to award. Further analysis into these projects will allow NAVFAC to improve project 

award processes. 

We found that decision trees outperform the neural networks for predicting what 

projects will be delayed. We trained the models on FY11–20, using FY21 to test the 

accuracy of the models. Overall, by using decision trees we were able to create a model 

that is 95% accurate for predicting what projects were late, while the neural networks 

models were only 72% accurate. 
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I. INTRODUCTION 

A. BACKGROUND 

Every year Naval Facilities Engineering Command (NAVFAC) performs statistical 

analysis to determine what percentage of projects are delayed in completion. In 2018, the 

Chief of Naval Operations (CNO) updated the Navy’s expectations of the fleet. He stated 

that the United States needed the fleet to have increased agility across all areas (Department 

of Navy 2018). The increased expectations mean the NAVFAC has a more prominent role 

in improving fleet readiness. Most naval projects go through NAVFAC to some extent. 

Many NAVFAC projects, especially Military Construction (MILCON) project, are large 

scale, requiring substantial amounts of time, effort, and personnel to complete. Delays in 

project completion often lead to increased cost. Therefore, aside from increasing fleet 

agility, NAVFAC is interested in determining the leading factors for delays as well as 

predicting the projects likely to be delayed. Projects are generally split into two phases, the 

pre-award phase, and the post-award phase. The pre-award phase relates to the process of 

project submission to incorporate whether congress has provided or will provide funding 

as well as awarding a contract. The post-award phase details the aspects of the project once 

a contract is awarded. The goal of this thesis is to analyze data, using statistical analysis 

and machine learning algorithms to determine major factors in project delays, as well as 

develop predictive models for determining the likelihood of a project being delayed in the 

pre-award phase. 

B. PURPOSE 

The purpose of this research is to support NAVFAC with improving timelines for 

project awarding. NAVFAC has limited resources to apply to improving the current 

methodization for project awarding. Therefore, the goal of our research is to provide ample 

statistical data, and predictive models to NAVFAC for timeline improvement. We 

accomplish this by using statistical analysis to determine the major factors impacting 

project timelines. We then apply these factors to machine learning algorithms to create 
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predictive models that will determine which projects are likely to experience delays in the 

awarding process. 

C. RELATED WORK 

In 2020, LCDR Robert Thompson conducted research into the NAVFAC project 

pre-award timeline, specifically the MILCON projects. His research was primarily using 

the random forest machine learning technique to analyze the impact of the projected initial 

project cost on the project awarding across multiple NAVFAC databases (Thompson, 

2020). NAVFAC’s annual Performance to Plan (P2P) for Military Construction outlines 

the previous year’s analysis as well as the goal and plan moving forward for upcoming 

years. The FY 2021 P2P outlines the goals to develop predictive models that will flag at-

risk projects for further analysis to improve and prevent delays (Komiss & Saulo, 2021). 

D. ORGANIZATION 

In this thesis, we focus on the collection and analysis of data available from the 

eProjects database. Chapter II describes the collection of data. In Chapter III, we display 

the information determined through statistical analysis. Chapter IV provides the 

methodology, model generation, and analysis of decision tree machine learning algorithms 

applied to the data. Chapter V provides the methodology, model generation, and analysis 

of the data applied to neural networks. Conclusion and recommendation for future work 

are provided in Chapter VI. 
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II. DATA INTRODUCTION 

In this chapter, we cover the possible sources for data regarding NAVFAC projects. 

We identify which program we used for gathering data, the issues with the dataset, and the 

correlation with undersea warfare (USW) related projects. 

A. DATASET 

NAVFAC used multiple information databases to store and manage project data. 

Many of these databases store similar data but some are designed for tracking data in the 

pre-award phase, i.e., eProjects, while some are designed for the post-award phase, i.e., 

Electronic Construction Management System (eCMS) (Brown 2020). Below is a list of 

other NAVFAC databases for project management. 

• Electronic Project Generator (EPG) 

• eContracts 

• Internet Naval Facilities Assets Data Store (iNFADS) 

• Maximo 

These databases tend to have overlapped data, therefore eProjects was used for the 

analysis of pre-awarded phase of the projects from Fiscal Year (FY) 2011–2021. Due to 

the redundancy and overlap of the different databases there are issues with incomplete data. 

Specifically, with the eProjects database there were 53240 accepted, closed-out, and 

completed/ready for closeout projects, but due to missing dates and cost information, only 

20414 projects were able to be analyzed. As Robert Thompson discussed in his thesis in 

2020, merging the data from EPG and eProjects would compile a more complete database 

for the pre-award phase (Thompson, 2020). 

B. EPROJECTS DATABASE 

eProjects is one of the major applications used by NAVFAC’s Asset Management 

team to track projects through the pre-award phase. Our research compiled the projects 

from FY 2011–2021. Prior to data analysis, we removed all projects with incomplete date 
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and cost information. While this resulted in the dataset being shrunk by approximately 

60%, there was still sufficient data to analyze. Over FY 2011–2021, there were 20414 

projects with complete data. For initial statistical analysis the projects were split into 

groups based on projected cost, shown in Figure 1. There are fewer projects with complete 

data for FY18–21 due to COVID-19 and delays in project completion. 

 
Figure 1. NAVFAC Project Distribution by FY (FY11-21) 

C. INCOMPLETE DATA 

As stated in section A above, 60% of the data was incomplete. Of the incomplete 

data most of it was missing the date of project awarding or the initial projected cost. There 

are two causes for the missing data. One being the responsible agencies not reporting all 

the information to NAVFAC, and the other being delays/failures of NAVFAC personnel 

to input the data into the eProjects database. Even though most of the data was incomplete, 

we determined that over 20000 projects were sufficient to create an accurate model for 

predicting whether projects would be late. 
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D. USW RELATED PROJECTS 

Most USW projects are not processed through NAVFAC. Many projects on 

submarines go through Naval Support Activity Crane. Over FY11–21, the only USW 

related projects with complete data were through Crane. Two of the projects were for Ship 

Service Motor Generator work on submarines and the others were Submarine Valve 

Regulated Lead Acid Battery replacements. The projects submitted by Crane for 

submarines were awarded on-time or early. 
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III. EXPLORATORY DATA ANALYSIS 

In this chapter, we discuss the project parameters that we used for our statistical 

analysis and as our inputs for our machine learning algorithms. We show the results from 

the statistical analysis and the determination of parameters which have a larger impact on 

the project awarding process. The statistical analysis served as process for determining 

which parameters would serve as the fundamental inputs for the machine learning 

algorithms. 

A. DATA ANALYSIS INTRODUCTION 

Prior to applying machine learning algorithms to the dataset to develop a predictive 

model, we had to determine the important factors in determining the causes for a project 

being delayed in the pre-award phase. To accomplish this, we separated the data into 

multiple sections based on following parameters: 

• Projected Cost 

• Fiscal Year 

• Month of Project Submission 

• Continental United States (CONUS) verses outside the continental United 

States (OCONUS) 

• Responsible Component 

• Branch Association 

Once the data was separated, we calculated the number of projects in each section, 

how many in each was late, and the percentage of late projects in each section. 

B. PROJECTED COST 

Cost plays an important role in whether a project is accepted or not due to limited 

budgets for new projects. During the data analysis of cost, the projects were separated into 
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the following four categories: projected cost less than one million dollars, projected cost 

between one and 50 million dollars, projected cost between 50 and 100 million dollars, and 

projected cost greater than 100 million dollars. As shown in Figure 2, through FY11-21, 

82% of projects had a projected cost less than one million dollars, and 17% of projects had 

a projected cost between one and 50 million dollars. For projects less than one million 

dollars, 36% were late; for projects between one and 50 million, 33% were late; for projects 

between 50 and 100 million, 28% were late; for projects over 100 million dollars, 33% 

were late. The small difference in late projects by initial cost indicates that the initial 

projected cost is not a major factor in the determination of a project being awarded late. 

 
Figure 2. Number of Late Projects Separated into Projected Cost Brackets 

C. FISCAL YEAR 

Next, we analyzed the projects separated by FY. Through this analysis the only 

determination was that there were less projects in recent years, most likely due to COVID-

19. 
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Figure 3. Number of Projects and Late Projects Separated by FY 

Figures 3 and 4 show that the large disparity between the number of projects in the 

earlier FYs and the more recent years still did not have an impact on the percentage of 

projects that were late in the awarding process. Therefore, with a negligible difference in 

the percentage of late projects across FYs we decided not to include FY in the machine 

learning algorithms for predictive model generation. 
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Figure 4. Percentage of Projects Late for Award by Separated by FY 

D. MONTH OF PROJECT SUBMISSION 

We analyzed when the projects were submitted during the FY due to the additional 

time constraints for project approval. Aside from the projected cost of the project, this was 

determined to be one of the leading causes for delays in project approval. Through the 

analysis, shown in Figure 5, we determined that projects submitted closer to the end of the 

FY had a higher chance of being approved on time or early. 
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Figure 5. Percentage of Late Approvals Separated by Month of Project 

Submission 

After noting that projects submitted in August and September had a much lower 

percentage of late awards, we questioned whether there were less projects being submitted, 

leading to a better approval rate. Based on the number of projects submitted each month, 

that could not be the case. August had the second most projects submitted and the second 

lowest percentage of late awards, while September had fewer projects submitted than most 

months, it also had the lowest percentage of late projects (see Figure 6). 
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Figure 6. Number of Projects and Late Awards Separated by Month of 

Project Submission 

E. CONUS/OCONUS 

Next, we thought that whether the project was submitted for CONUS would have 

a higher on time approval rate than projects submitted for overseas. Figure 7 displays that 

60% of projects are CONUS while the other 40% are OCONUS. 
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Figure 7. Total Number of Projects and Late Projects Separated by Location 

Through calculations we determined that OCONUS projects had a better 

percentage of approval time (see Figure 8). The difference between the percentage of late 

projects whether they are CONUS or OCONUS made it one of the factors entered into the 

machine learning algorithms. 
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Figure 8. Percentage of Late Projects Separated by Location 

F. RESPONSIBLE COMPONENT 

One of the other data points in the eProjects database is the responsible component. 

The responsible component is the agency that is responsible for the submission of the 

project. The agency that submits the project is responsible for determining the projected 

cost, when the project is submitted, and the wording/reason for the project. Therefore, the 

agency responsible for the project plays an important part in the timeliness of project 

award. If the reason for the project is well-defined, the project has a higher chance of being 

awarded on time due to the overall necessity of the project. Figure 9 shows that there is a 

large disparity between the number of projects submitted by different agencies.  
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Figure 9. Number of Projects Submitted Separated by Responsible 

Component 

Most of the responsible components shown above are different branches of 

NAVFAC. Even though the projects are submitted through NAVFAC agencies, in some 

cases, they have vastly different rates at which projects are awarded on time. Shown in 

Figure 10, the NAVFAC Headquarters, while only submitted 15 projects over the past 

decade, had over 70% late in the awarding process. This is similar for Crane (designs the 

batteries and Ship Service Motor Generators for the submarine force), who submitted 86 

projects in the last decade with 64% of them being late for awarding. The large disparity 

for percentage of late projects between the different responsible components, implies that 

the quality of the project submittal report could play a factor in the whether the project is 

awarded on time. 
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Figure 10. Percentage of Late Projects Separated by Responsible Component 

G. BRANCH ASSOCIATION 

The last data point we analyzed in Figure 11 was the branches associated with the 

project. Through analysis we split the data into five components for branch association. 

There are projects that are associated with the Army, Air Force, Marine Corps, more than 

two branches, and just the Navy. As expected, most projects have no associated branch 

other than the Navy. The Marine Corps has many projects in conjunction with the Navy as 

well, but there are very few projects associated with solely the Army and Air Force. 
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Figure 11. Total Projects Separated by Branch Association 
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Figure 12. Percentage of Late Projects Separated by Branch Association 
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Figure 13. Number of Projects and Late Projects by Branch Association 

 
Figure 14. Percentage of Late Projects by Branch Association 
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IV. MACHINE LEARNING—DECISION TREES 

In this chapter, we cover the basics of decision trees, what decision trees we used, 

the trained models, and the results of the models. The chapter concludes with the accuracy 

of the trained decision tree models. 

A. DECISION TREES 

Decision Trees are constructed with directed graphs (Kamiński et al., 2017). Most 

of these graphs are weakly connected as they only allow traversal in one direction. The 

trees are created by denoting probabilities and payoffs. An example of a decision tree for 

our analysis of NAVFAC project data is shown in Figure 15. 

 
Figure 15. A Sample Decision Tree 
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We utilized MATLAB’s Machine Learning toolbox to train and analyze the data. 

We trained on the data from spanning FY11–20, saving the FY21 to test the accuracy of 

the generated models. MATLAB’s machine learning toolbox includes five different 

decision tree models: Fine Tree, Coarse Tree, Medium Tree, Bagged Tree, and Boosted 

Tree. To create the most accurate model, we trained the data to each of the decision trees 

as well as using different combinations of data inputs. 

In 2020, Robert Thompson used the random forest machine learning technique to 

analyze the project cost on whether projects were late (Thompson, 2020). We used the 

machine learning application in MATLAB. For continuity between theses, we applied the 

bagged tree machine learning algorithm as it uses the random forest algorithm. 

B. MODEL TRAINING 

Figures 16, 17, and 18 show the trained predictive models for Fine Tree, Medium 

Tree, and Coarse Tree. The difference among these three models is the Coarse Tree model 

has a maximum of four splits, the Medium Tree has a maximum of 20 splits, and the Fine 

Tree has a maximum of 100 splits (Mathworks, Decision Trees, 2022). Each Tree was 

trained using all the following parameters from the data set: Initial cost, month of 

application, responsible component, CONUS/OCONUS, and associated branch.  
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Figure 16. Graphical Representation of Fine Tree Model (40 Splits) 

 
Figure 17. Graphical Representation of Medium Tree Model (20 Splits) 
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Figure 18. Graphical Representation of Coarse Tree Model (4 Splits) 
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Figure 19. Graphical Representation of Bagged Tree Model 

 
Figure 20. Graphical Representation of Boosted Tree Model 
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While the above models were trained using five parameters, we also trained the 

models three other times using different numbers of parameters. We trained the model 

without including the branch, without including the responsible component, and without 

the branch and responsible component. All models were similar to the Figures 17–21 with 

slight variances. 

C. MODEL TESTING 

As discussed in the sections above, we applied the trained models to FY21 to test 

the accuracy. The main difference between the trained figures and the testing figures is that 

the testing was done on 842 projects while we trained to 20000 projects. Figures 21–25 

show graphical representation of the test results for the models with all five parameters 

used for training. Each of the test models show similar representation with the test results 

as they did with the trained models. 

 
Figure 21. Test Results for Fine Tree Model (40 Splits) 
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Figure 22. Test Results for Medium Tree Model (20 Splits) 

 
Figure 23. Test Results for Coarse Tree Model (4 Splits) 
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Figure 24. Test Results for Bagged Tree Model 

 
Figure 25. Test Results for Boosted Tree Model 
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Through model training and testing the Fine Tree model was the only model that 

showed any projects having a 0% and a 100% chance of being award late. The Boosted 

Tree model seems the least effective with almost all projects having around a 35% chance 

of being awarded late. 

D. MODEL ACCURACY 

To further test the accuracy of the model, we adjust the test results to have a 

resulting value greater than or equal 0.5 to be set to one, and any value less than 0.5 to be 

set to zero. This adjusted the result to only have outputs of zero and one, and therefore the 

results could be directly compared to the actual results from FY21. The results are shown 

in Table 1. As predicted by the trained models, the Fine Tree model was the most accurate 

model ranging between 92–96% accuracy. The Boosted Tree model was the least accurate 

with an accuracy of 72%. The inaccuracy of the boosted tree model is most likely caused 

by the hyperparameters used for boosting. With AdaBoost the Boosted Tree model acts 

similar to a neural network and requires a larger dataset to create an accurate predictive 

model. The boosted tree model does not provide any useful data as it only predicted a few 

projects as being late resulting in the 72% accuracy (approximately 27% of projects were 

late in FY21). 

Table 1. Decision Tree Test Accuracy (FY21) 

 
 

The confusion matrix, Figure 26, shows that the Fine Tree model is predominantly 

true positives and true negatives, confirming the accuracy of the model. There are still a 

ALL 
PARAMATERS

ACCURACY NO BRANCH ACCURACY
NO 

RESPONSIBLE 
COMPONENT

ACCURACY

NO BRANCH 
OR 

RESPONSIBLE 
COMPONENT

ACCURACY

Fine Tree 94.54% Fine Tree 95.37% Fine Tree 95.49% Fine Tree 92.76%
Medium Tree 88.24% Medium Tree 88.48% Medium Tree 90.02% Medium Tree 87.89%
Coarse Tree 84.09% Coarse Tree 83.37% Coarse Tree 83.13% Coarse Tree 80.76%
Bagged Trees 86.10% Bagged Trees 85.75% Bagged Trees 89.19% Bagged Trees 86.94%
Boosted Tree 72.68% Boosted Tree 72.92% Boosted Tree 72.68% Boosted Tree 72.57%
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significant number of false positives and negatives showing that there are improvements 

that can be made to the mode. 

 
Figure 26. Confusion Matrix for Fine Tree Model Results 
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V. MACHINE LEARNING—NEURAL NETWORKS 

In this chapter we cover a brief overview of neural networks, followed by options 

for neural networks in MATLAB’s regression learner application. We then discuss the 

methods used for training models along with the models trained by each neural network 

available. This chapter concludes with our testing of the models and the results of the tests. 

A. NEURAL NETWORKS 

Neural networks are adaptive systems made up of interconnected nodes and layers. 

Neural networks can learn from inputted data. To train the gathered data, we used the same 

process as with the decision trees, using FY11–20 to train the data, and then used FY21 to 

test the trained data. 

Figure 27 displays an example neural network with three total layers. The initial 

layer in a neural network is the input layer. The inputted data is then weighted and applied 

to the hidden layer. This process is continued for each of the hidden layers until the output 

layered is reached. Figure 26 shows the calculation process that occurs in each of the hidden 

layers and the output layer for any neural network. These calculations determine each of 

the individual nodes of each layer to determine the overall output. Equations (1), (2), and 

(3) show the different activation functions available in MATLAB’s machine learning 

toolbox. The use of these activation functions can be seen in calculation process shown in 

Figure 28 (Goodfellow, 2017). 
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Figure 27. A Sample Neural Network 

 
Figure 28. Calculation Process for Neural Networks 

MATLAB’s machine learning toolbox has five built-in neural networks that we 

used for modeling: narrow, medium, wide, bilayered, and trilayered. The differences 

between the narrow, medium, and wide neural networks are the learning flexibility based 
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on the size of the first layer, while the bilayered neural network flexibility is based on the 

first and second layers, and the trilayered neural networks is based on the first three layers 

(Mathworks Inc., Choose Regression Model Options 2022). MATLAB’s machine learning 

toolbox also has limitations. The regression learner application we used for data analysis 

and model generation limits the neural networks to three layers maximum and does not 

allow the user to adjust of weights between layers. The regression learner also allows for 

choosing of the activation function. The options for activation function are, Rectified 

Linear Unit (ReLU), sigmoid, and hyperbolic tangent (tanh) (Mathworks Inc., Regression 

Learner Application 2022). We tested models using each of the three activation functions. 

B. MODEL TRAINING 

Figures 29, 30, and 31 are the trained models for narrow, medium, and wide neural 

network models representing the FY11–FY20. These models are three layered neural 

networks with 50 nodes in the first layer, 25 nodes in the second layer, and 10 nodes in the 

third layer. We varied the number of nodes in first layer starting with 10 nodes and 

increasing by 10 up to a final value of 100. The number of nodes in the second and third 

layers were increased starting by 5 up to 50. Changes in the size of the nodes did not change 

the overall accuracy of the model in an appreciable manner. We also varied the number of 

layers from one layer to three layers with similar negligible changes in the model accuracy. 

The activation function used for the neural networks did have a large effect on the resulting 

models. Testing each of the activation functions resulted in tanh providing the most 

accurate models. Therefore, for the final model training we determined that using the three 

layers discussed above with tanh activation function was optimal for maintaining 

similarities for comparing the different neural networks while meeting the minimum 

requirements for each of the neural network modeling requirements. 



34 

 
Figure 29. Graphical Representation of Narrow Neural Network Model 

 
Figure 30. Graphical Representation of Medium Neural Network Model 
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Figure 31. Graphical Representation of Wide Neural Network Model 
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Figure 32. Graphical Representation of Bilayered Neural Network Model 

 
Figure 33. Graphical Representation of Trilayered Neural Network Model 
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The Models above were trained using all five parameters: initial cost, month of 

application, responsible component, CONUS/OCONUS, and associated branch. The 

trained models without including the associated branch, responsible component, and both 

the associated branch and responsible component parameters resulted in similar graphs. 

C. MODEL TESTING 

After training the models discussed above, we applied the models to FY21. Figures 

34–38 are the graphical representations of the test results for the models including all five 

parameters. All the tested models showed similar results without any projects having a 0% 

chance of being awarded late, and very few projects having a 100% chance of being 

awarded late. 

 
Figure 34. Test Results for Narrow Neural Network Model 
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Figure 35. Test Results for Medium Neural Network Model 

 
Figure 36. Test Results for Wide Neural Network Model 
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Figure 37. Test Results for Bilayered Neural Network Model 

 
Figure 38. Test Results for Trilayered Neural Network Model 
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Each of the resulting figures from the tests were extremely similar to those 

generated from the training dataset. Looking at the test result figures above, there are very 

few projects with greater than a 50% chance of being awarded late. Therefore, from visual 

analysis of the models, the neural network models will be less accurate than the decision 

tree models. 

D. MODEL ACCURACY 

To determine the overall model accuracy, we performed the same data 

manipulation as for the decision tree models. We adjusted the data such that the results 

with values greater than 0.5 would be set to one, and the values less than 0.5 would be set 

to zero. The results showed that there was a minimal difference in the accuracy of each of 

the models, shown in Table 2. All the created neural network models had an accuracy 

between 72–73% with the Trilayered Neural Network model without the inclusion of the 

associated branch and responsible component parameters having the highest accuracy of 

72.92%. Similar to the Boosted Tree model, the neural networks only predict a few projects 

to be late resulting the accuracy around 72% (approximately 27% of projects are late). 

Table 2. Neural Network Model Test Accuracy (FY21) 

 
 

The poor results for the neural networks, compared to the results of the decision 

trees, was likely due to the limitations of MATLAB’s machine learning toolbox. We were 

forced to use shallow neural networks (limited to three layers maximum) without the ability 

to adjust the weights between layers. The other likely reason for the neural network 

ALL 
PARAMATERS

ACCURACY NO BRANCH ACCURACY
NO 

RESPONSIBLE 
COMPONENT

ACCURACY

NO BRANCH 
OR 

RESPONSIBLE 
COMPONENT

ACCURACY

Narrow 72.68% Narrow 72.80% Narrow 72.80% Narrow 72.68%
Medium 72.80% Medium 72.80% Medium 72.68% Medium 72.68%
Wide 72.68% Wide 72.68% Wide 72.80% Wide 72.80%
Bilayered 72.68% Bilayered 72.68% Bilayered 72.80% Bilayered 72.80%
Trilayered 72.68% Trilayered 72.80% Trilayered 72.68% Trilayered 72.92%
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performance is the amount of data input into the training algorithm. Neural networks 

perform better with more data used for training. Therefore, if the entire eProjects dataset 

was complete, the neural networks would have been able to train 50000 projects vice 

20000, thereby increasing the overall performance. Neural Networks also perform better 

for nontabular data; therefore decision trees are a better option for analyzing this dataset. 

The confusion matrix, Figure 39, shows that the Trilayered Neural Network model 

provides solely true positives and false negatives. This confirms that the neural networks 

predominantly do not predict projects as being late for awarding. 

 
Figure 39. Confusion Matrix for Trilayered Neural Network Model Results 
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VI. CONCLUSION AND FUTURE WORK 

This chapter presents a summary of the conclusions derived from our statistical 

analysis, decision trees, and neural networks. We present the results of our findings and 

the possible improvements that could be made to the neural networks. The chapter ends 

with the possibilities for future work for the analysis and improvement of NAVFAC project 

timelines. 

A. CONCLUSION 

Overall, eProjects has an extensive amount of data. While we analyzed the data 

using the five most prominent parameters (initial cost, month of submission, responsible 

component, CONUS/OCONUS, and branch association), there were many other 

parameters that could have been used for analysis. The issue with using more parameters 

would be shrinking the overall dataset. All the data in the eProjects database must be 

received by NAVFAC, therefore incomplete data sent to NAVFAC limited the number of 

projects that we could analyze. Through the statistical analysis and machine learning 

algorithms we determined that the incomplete data played a large factor in the accuracy of 

the statistical analysis and neural network models. 

Through statistical analysis, we were able to determine that there is no single 

parameter that causes projects to be awarded late. All the analyzed parameters resulted in 

a 30–40% of the project being awarded late except for the month of project submission. 

Therefore, statistically, the responsible components will have a higher chance of projects 

being awarded on time if they submit the projects in August or September. On another 

note, if the projects are associated with branches other than the Navy and Marine Corps 

there is greater than a 50% chance of projects being awarded late. 

The machine learning techniques we used to create the predictive models were 

decision trees and neural networks. As shown in Table 3, the decision trees proved to create 

more accurate models than the neural networks. 
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Table 3. Model Accuracy for All Generated Models (Decision Trees and 
Neural Networks) 

 
 

The inaccuracies in the neural networks have three likely causes. The first likely 

cause is that we only used shallow neural networks for our model generation. The 

regression learning application in the machine learning toolbox limits the neural networks 

to a three-layer maximum. Deep neural networks may have been able to generate more 

accurate models due to the parameters and dataset. If any of the analyzed parameters had 

been a prominent cause for delays in project award, then the neural networks would have 

likely been able to generate more accurate models. The next cause for the inaccuracies of 

the neural networks is the size of the dataset. Neural Networks work better with larger 

datasets. Through FY11-20 there was initially 53000 projects for analysis, but due to 

missing parameters across the projects we ended up with approximately 22000 projects for 

analysis. If we had been able to use the full 53000 projects, the neural networks would have 

likely been able to produce more accurate models.  

In conclusion, the Fine Tree model had a 95% accuracy for predicting whether 

projects would be awarded on time. Follow-on analysis would be necessary to accurately 

apply neural networks to the data for predictive models. The only parameter that had a 

decisive indication for impacting the timeliness of project awarding is the month of 

submission. Overall, the decision tree models performed as expected as decision trees 

ALL 
PARAMATERS

ACCURACY NO BRANCH ACCURACY
NO 

RESPONSIBLE 
COMPONENT

ACCURACY

NO BRANCH 
OR 

RESPONSIBLE 
COMPONENT

ACCURACY

Narrow NN 72.68% Narrow NN 72.80% Narrow NN 72.80% Narrow NN 72.68%
Medium NN 72.80% Medium NN 72.80% Medium NN 72.68% Medium NN 72.68%
Wide NN 72.68% Wide NN 72.68% Wide NN 72.80% Wide NN 72.80%
Bilayered NN 72.68% Bilayered NN 72.68% Bilayered NN 72.80% Bilayered NN 72.80%
Trilayered NN 72.68% Trilayered NN 72.80% Trilayered NN 72.68% Trilayered NN 72.92%
Fine Tree 94.54% Fine Tree 95.37% Fine Tree 95.49% Fine Tree 92.76%
Medium Tree 88.24% Medium Tree 88.48% Medium Tree 90.02% Medium Tree 87.89%
Coarse Tree 84.09% Coarse Tree 83.37% Coarse Tree 83.13% Coarse Tree 80.76%
Bagged Trees 86.10% Bagged Trees 85.75% Bagged Trees 89.19% Bagged Trees 86.94%
Boosted Tree 72.68% Boosted Tree 72.92% Boosted Tree 72.68% Boosted Tree 72.57%
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generally perform well for tabular data. The complete dataset could have provided different 

results as 60% of the data was incomplete. While there were few USW related projects in 

the eProjects database almost all of them had incomplete data. Therefore, we were unable 

to analyze the causes for delays in USW related project awarding. 

B. FUTURE RESEARCH 

Our research primarily focused on statistical analysis, decision trees, and shallow 

neural networks. However, we recommend applying deep neural networks to the data to 

determine the impact on model accuracy. Neural networks are more versatile than decision 

trees and would be better for long term predictive models. Aside from deep neural 

networks, combining the eProjects data with EPG database could produce a more complete 

dataset, thereby improving the accuracy of the statistical analysis and possibly the neural 

networks. 

We also recommend further analysis into the NAVFAC databases. NAVFAC is 

interested in the causes for overall project delays. While the eProjects database only covers 

the projects until project award, the Electronic Construction and Facility Support Contracts 

Management System (eCMS) database follows the projects from award to completion. 

Therefore, we recommend further research and analysis into the eCMS database to 

determine likely causes for project delays and for correlations between project parameters 

and delays in project completion. 
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