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ABSTRACT: The modeling and simulation community has used probability threat maps and other similar 
approaches to address search problems and improve decision-making. Probability threat maps describe the 
probability of a location containing one or more enemy entities at a particular time. Although useful, they only 
describe the likelihood that the location is occupied without addressing the degree to which it is occupied. Thus, we 
investigate whether threat density maps that describe the searcher’s expectation of seeing a number of target agents 
at a certain location in a given time interval are a viable method for improving synthetic behaviors in combat 
simulations. As a proof of principle, this paper introduces a probability model which quantifies the searcher agent’s 
subjective belief about the number of enemy entities in a location, given the initial information described by a prior 
density function and the information provided by the assumed sensing model. In addition, this paper discusses a 
framework for initializing the model, as well as the model’s key advantages and current limitations.  
 
 
1. Introduction 
 
A probability threat map is a knowledge representation 
of the search environment as a discrete probability 
distribution, which provides a snapshot in time of 
unobserved threat locations. More specifically, 
probability threat maps are models of the perceived 
threat that describe the probability that any given one 
of a number of unseen entities that are moving 
independently is in a location (Darken, McCue, & 
Guerrero, 2010). They have been applied successfully 
to drive the synthetic behaviors for target scanning in 
military training simulations by prioritizing locations 
that are most likely to contain targets (Darken et al., 
2010; Evangelista, Ruck, Balogh, & Darken, 2011). 
 
Probability threat maps are derivatives of probabilistic 
occupancy maps used by game developers for 
opponent and target tracking (Isla & Blumberg, 2002; 
Isla, 2006); in addition, they use methods and 
techniques originally developed for mobile robotics 
designed to improve localization, search, navigation, 
and decision-making behaviors (Elfes, 1989; Thrun 
2003). Others analogous approaches have been applied 
to investigate search problems with incomplete and 
uncertain information using unmanned aerial sensors 
and autonomous ground sensors (Bertucelli & How, 
2005, 2006; Chung & Burdick, 2008, 2012; Chung, 
Kress, & Royset, 2009; Kagan & Ben‐Gal, 2013). 
 
Existing probability threat maps approaches for 
military simulations (Darken et al., 2010; Evangelista 

et al., 2011) provide simulated entities with subjective 
knowledge of likely enemy locations over a defined 
area, which is then used to carry out search decisions 
and search behaviors (e.g., select the next search area, 
modify movement, change tactical formations, path 
planning). These methods successfully improved the 
representation of search based on situational awareness 
and environmental factors in military simulations. 
However, there is a stated need and interest for 
expanding these methods essentially to enhance the 
representation of search, reasoning, and decision-
making behaviors in combat simulations.  
 
We believe that the current implementation of 
probability threat maps could be augmented with 
additional subjective knowledge of the threat necessary 
to model and simulate combat scenarios. Probability 
threat maps use statistical description of likely enemy 
locations but lack the ability to infer the number of the 
enemy from observed data and prior information. 
Ideally, the searcher should gain whatever information 
he can during the search process and then assess his 
subjective belief to infer the likely disposition (i.e. 
location and number of entities) of the threat.  
 
A threat density map is a knowledge representation of 
the expected number of the enemy entities located 
inside each subdivision of the simulated area. More 
specifically, it quantifies the searcher agent’s 
expectation of finding a number of enemy entities at a 
particular location in a time interval. The purpose 
threat density maps is to augment combat simulations 
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with actionable subjective knowledge that can be 
exploited by the simulated entities for reasoning and 
decision-making in response to the threat and 
environment circumstances. 
 
In contrast to probability threat maps, threat density 
maps provide the searcher agent with additional data 
needed in combat simulated scenarios to make better 
decisions amongst different courses of action 
consistent with the situation presented by the enemy 
forces (Pew & Mavor, 1998). For instance, depending 
on the size of the enemy forces the searcher agent can 
decide whether to defend, assault, attack, withdraw, 
avoid combat, or bypass. Such decisions would control 
other behaviors such as searching techniques, path 
planning, patrolling strategies, etc. In this context, 
simulated entities would have additional threat 
knowledge to reason and act upon.  
 
In this paper, we introduce a threat density map model 
as a proof of principle. We build on current probability 
threat maps approaches to model the searcher’s 
subjective belief regarding the threat size as a posterior 
density map instead of a discrete probability 
distribution. The main contribution of this paper is the 
formulation of the proposed threat density map model 
for combat simulations. This introductory section is 
followed, in Section 2, with a description of the 
problem and the model formulation. Section 3 
describes the advantages and limitations of the current 
state of the model. Section 4 provides concluding 
remarks and discusses the direction of the future 
research.  
 
2. Problem Description and Formulation 
 
A threat density map, !", is a random variable defined 
over a finite set of locations, !, which assigns a score 
to each individual cell !! ∈ !, ! = 1,… ,!, at a certain 
time step ! describing the expected number of enemy 
entities in each cell. The set of locations, !, represents 
the area of operations discretized into a two-
dimensional grid comprising ! total cells, which can 
either be unoccupied or occupied by one or more 
enemy entities. The random variable 
!" = !"!,… , !"!  denotes the state of the threat 
density map, where the random variable !"! indicates 
the number of enemy entities in cell !!. Let ! ∈ ℤ! be 
the grand total number of enemy entities across all cells 
in !, namely, ! = !"!

!
!!! .  

 
Our fundamental problem is to infer the unknown 
value of !"!, namely the unknown number of enemy 
entities located in the individual cells, based on a 
sequence of sensing outcomes and assumptions about 
the success of those sensing actions. To accomplish 
this, we first initialize each cell with a prior density 
function, ! !"! , based on how the searcher believes 

the enemy is spatially distributed and the certainty of 
prior information available. This prior information is 
then combined with the data from our assumed sensing 
model, ! !!!|!"! , which is the probability density 
function of the number of enemy entities sensed in cell 
!! at time step !, !!!, conditional on!!"!. Finally, for 
each individual cell we update the prior ! !"!  to the 
posterior, ! !"!|!!! , with the data from the sensing 
model, ! !!!|!"! , and infer the expected number of 
enemy entities through successive Bayesian updates.  
 
It is important to define key assumptions required for 
our framework. First, the total number of enemy 
entities in the set of locations is a priori unknown but 
bounded by ! enemy entities. Second, the spatial 
distribution of the enemy entities across the set of 
locations can be represented with a prior density 
function. Third, the number of enemy entities in any 
given cell is independent of the number of entities in 
all other cells. Lastly, sensing actions within the same 
cell are conditionally independent from other sensing 
actions whether in the same cell or in other cells. 
Clearly, the assumptions of independence and 
conditional independence may not be realistic as the 
knowledge that a cell is occupied or not at a particular 
time can help figure out the state of it and other cells at 
the current and future times. However, these 
assumptions, commonly used in related literature, 
reduce computational complexities and allow us to 
decompose the problem for solving threat density maps 
for the individual cells independently (Thrun, 2003; 
Merali & Barfoot, 2013). 
 
2.1. Initializing Threat Density Maps 
 
To initialize !"! at time step ! = 0, we choose a prior 
density function, ! !"! , for every cell to represent the 
searcher’s subjective belief about the enemy’s spatial 
distribution in the location set previous to initiating the 
search. This prior density function summarizes the 
probability that the random variable !"! takes on any 
given values !, which we can write explicitly as 
! !"! = ! .  
 
Defining sensible prior density functions varies by the 
type of prior information (i.e. specific, vague, 
insufficient) about the enemy and the unknown 
parameter !"!. Information regarding the enemy (e.g., 
size, composition, known or suspected locations, likely 
formations and movement) normally exists in military 
scenarios for combat simulations and should be used to 
initialize priors for each cell. Exact or credible 
intelligence data available (e.g., intelligence reports, 
situation reports, satellite imagery) of the enemy and 
the environment can be useful to define ! and strong 
priors and perhaps to define other aspects of the world 
(e.g., likely movement routes, probable employment 
areas, key terrain, obstacles). On the other hand, with 
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vague intelligence data we might have to assume a 
prior based on general considerations (e.g. most 
probable or most dangerous enemy disposition). 
 
In brief, we have distinct cases of prior information 
available (i.e. specific, vague, and no prior information 
available) to consider when specifying ! !"! . The 
inclusion of prior information into the prior ! !"!  is 
one of the benefits of our approach because it leads to 
stronger inferences about !"!. Regardless of the level 
of certainty, we can specify a prior to quantify 
uncertainty around the spatial distribution of the enemy 
entities and express what is believed or known about 
!"! before inspecting any cell !! ∈ !. Below we 
discuss a discrete prior density function that can be 
used to initialize the ! !"!  with prior information. 
 
2.1.1. Discrete Prior Density Function 
 
Consider the case in which the search agent lacks or 
has vague prior information. A common practice in 
such situation is to define a conventional prior, such as 
the discrete uniform, that does not favor any particular 
value. However, as previously mentioned prior 
information for combat simulation scenarios is 
typically available. Therefore, it is then sensible to 
define a prior density function that can account for a 
broad range of possibilities fundamental to combat 
simulated scenarios. 
 
For this particular problem, with no idea about the 
distribution of !"! we define a discrete prior assuming 
that any cell in ! could contain up to ! targets evenly 
distributed but more likely for the enemy to be 
nonexistent in some cells. Accordingly, !"! is a 
discrete random variable with a finite range bounded 
by !, i.e., 0, 1,… , ! . Further, we assume that the 
prior!is defined for each cell such that ! !"! = 1 ! 
for ! = 1,… , !. However, our prior subjective belief 
inclines us to anticipate that many cells will be empty 
rather than occupied because enemy forces tend to 
cluster together whether they operate as cohesive large 
element or as smaller dispersed elements. To represent 
such belief we define the parameter ! such that each of 
the values in the range 1 ≤ ! ≤ ! occurs with 
probability ! 1 !  and 1 − !  for ! = 0. That is, the 
unconditional prior probability distribution for an 
individual cell is given by the following probability 
density function: 
 

 

  

p tmi = n( ) =
ε 1

k( ),    n = 1,  2,  . . . ,  k
1− ε ,       n = 0
0,           o therwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (1) 

 
 

The expected value of the random variable !"! for cell 
!! at time step ! = 0 is: 
 

 
  
µtmi

= E(tmi ) = nε 1
k( ) = ε k +1

2( )
n=1

k

∑   (2) 

 
Although the choice of ! is subjective it is also suitable 
to initialize ! !"!  when specific prior information is 
available. For instance, suppose we know the mean 
number of enemy entities for some specific cells. In 
this case, we do not have any difficulty incorporating 
this information in ! !"! . We simply solve Eq. (2) for 
!, i.e., ! = 2! (! + 1), for ! ∈ [0,1], and use this 
value to define the prior of !"! for those particular 
cells. 
 
2.2. Sensing Model 
 
Sensing actions, namely, observing or inspecting cells, 
are knowledge-producing events that changes the 
searcher’s subjective belief of the threat. The 
searcher’s ability to observe enemy entities in a cell is 
modeled using the combat simulation’s target detection 
model, which specifies the probability of detecting a 
target, !!, as a function of the brightness of the target, 
the brightness of the target’s background, and the 
subjective size of the target given that one or more 
targets are present in the location. Although !! varies 
by type of target, it is generally constant for targets of 
the same type and size, and against a particular 
background.  
 
In our framework, sensing actions represent binomial 
trials with ! + 1  possible outcomes (i.e. observing 
between zero and ! enemy entities) of the actual 
number of entities in the cell. They return the number 
of enemy entities sensed, !!!, in cell !! at time step !. 
Therefore, we specify a binomial sampling model, 
! !!!|!"! , which describes the searcher’s ability to 
gain subjective knowledge regarding !"!. This 
sampling model provides the conditional probability 
that !!! is ! conditioned on !"! and given !!, i.e., 
! !!!|!"! = ! !!! = !|!"! = ! , expressed as 
 

 
  
p si

t = b tmi = n( ) = n!
b! n− b( )! Pd( )b 1− Pd( )n−b   (3) 

 
for ! = 0, 1,… , ! and 0 ≤ !! ≤ 1. In Eq. (3) the 
binomial coefficient !! !! ! − ! ! describes the 
number of combinations of ! things taken ! at a time 
without regard of their order; !! ! is the likelihood of 
! detections given !!; and 1 − !! !!! is the 
probability of missing ! − !  of the possible 
detections. 
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2.3. Multiple Sensing Actions 
 
Above we focused on the probability for a single 
sensing action at time step !. However, our goal is to 
infer !"! based on all cell inspections through time 
step !. Let ! !!!|!"!  indicate the distribution of the 
sensing outcomes for cell !! up to time step ! and let 
!!! = !!

!! ,… , !!
!!  denote the history of the number of 

enemy entities sensed through time step !. Assuming 
multiple inspections of cell !! at different time steps, 
!!
!!, ! = 1,… , !, represents the number of enemy 

entities sensed at time !!.  
 
As previously stated, the probability of each sensing 
action is conditionally independent of other sensing 
actions; specifically, !!! and !!!!! are conditionally 
independent given !"!. In other words, if !"! is 
known, additional knowledge of !!!!! does not change 
the searcher’s belief about how many enemy entities he 
will see at the next observation (!!!). Therefore, the 
probability of the data set (i.e. history of the enemy 
entities sensed) is given by: 
 
   p δ i

t tmi( ) = p si
t ,δ i

t−1 tmi( ) = p si
t tmi( ) p δ i

t−1 tmi( )  (4) 
 
2.4. Updating Threat Density Maps 
 
We now discuss how to update probabilities after a 
new sensing action is performed. According to 
Bayesian inference, we can estimate the posterior 
through time step !, ! !"!|!!! , given a prior on !"! 
and the data resulting from the sensing model, 
! !!! !"! . Applying Bayes rule to the terms 
! !!!|!"!  and ! !!!!!|!"!  in Eq. (4) and with the 
conditional independence assumption of the sensing 
actions results in the posterior density function 
! !"!|!!!  of !"! given the history of enemy entities 
sensed in cell !! through time step !. The posterior 
density is given by 
 

 
  
p tmi δ i

t( ) = p si
t tmi( ) p tmi δ i

t−1( )
p si

t δ i
t−1( )   (5) 

 
where ! !!!|!"!  is obtained from the sensing model in 
Eq. (3); p !"!|!!!!!  represents either a prior at time 
step ! = 0, i.e., ! !"! , or a posterior without the most 
recent sensing action result; and ! !!! !!!!!  is the 
normalization factor resulting from marginalizing over 
!"! and applying the foregoing conditional 
independence assumption of sensing actions given !"!: 
 

 
  
p si

t δ i
t−1( ) = p si

t tmi = n( )
n=0

k

∑  p tmi = n δ i
t−1( ).   (6) 

 

Substituting Eq. (6) in Eq. (5), the individual cell 
beliefs can be updated using the following: 
 

 

  

p tmi δ i
t( ) =

p si
t tmi( ) p tmi δ i

t−1( )

p si
t tmi = n( )

n=0

k

∑  p tmi = nδ i
t−1( )

.   (7) 

 
Eq. (7) results in a distribution of the unknown number 
of enemy forces in the cell conditioned on the observed 
sample data. Thus we have a probability model that 
quantifies the searcher’s new state of subjective belief 
about !"!, given the initial information described by 
the prior ! !"!  and the information provided by the 
sensing model ! !!!|!"! . 
 
2.5. Inference about the Number of Enemy Entities 
 
During initialization we estimate the expected number 
of enemy entities for every cell from the prior 
probabilities and maintain this during runtime until the 
cell posterior distribution is updated after a sensing 
action. Once the posterior is computed, we utilize Eq. 
(8) to determine the expected number of entities !!.  
 

 
  
E tmi δ i

t( ) = np tmi = nδ i
t( )

n=0

k

∑ .   (8) 

 
3. Advantages of Threat Density Maps 
 
In this section we discuss the advantages of providing 
simulated entities with threat density maps as well as 
the limitations of the current state of the model. Simply 
put, the main advantage of the proposed approach as 
compared to probability threat maps is that a threat 
density map provides a probability distribution of the 
unknown number of enemy entities and the expected 
number of enemy entities in a cell, which can be 
influenced by a detailed prior distribution. To 
conceptualize the notion of threat density maps applied 
to combat simulations and to demonstrate its 
practicality and advantages, we coded and 
implemented in a rudimentary JavaScript simulation 
the aforementioned threat density map and for 
comparison, an adaptation of the probability threat 
maps (see Appendix 1) discussed in Darken et al. 
(2010).  
 
The notional scenario consists of a simulated infantry 
soldier (searcher) searching for an enemy fireteam to 
either engage them or to report their disposition, 
location, and actions. From intelligence data the 
searcher knows that enemy fireteam (targets) is not 
moving and consists of three entities close together and 
one scout far ahead. Figure 2(a) shows the targets 
actual distribution, i.e., !!! = 1, !!!" = 3 , which is 
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unknown to the searcher. Based on their doctrinal 
spatial dispersion and the size of a cell we initialized 
threat density maps for the individual cells assuming 
that any cell could contain one or three targets but not 
two or four, yet being free of enemy entities is even 
more probable than occupation by one or three. Figure 
1 shows an example of this prior for a single cell. 
Finally, we assumed a uniform prior to initialize the 
probability threat map and the probability of detection 
remained constant for the simulation, i.e., !!! = 0.65.  
 

 
Figure 1: Discrete prior distribution of !"! for cell !! 
with ! = 0.4 assuming that it is more likely that the 

cell is occupied (containing either one or three targets) 
than empty. 

 
One of the main advantages of our Bayesian approach 
to threat density maps is the availability of a posterior 
distribution of the unknown number of targets in a cell 
rather than a single value as in the probability threat 
map approach. For example, consider the situation 
shown in Figure 2 in which the searcher sensed zero 
targets after inspecting cell !!. The low probability 
value in the probability threat map [Figure 2(b)] 
indicates that cell !! is less likely to contain one or 
more targets when compared to the other cells. 
However, the searcher lacks knowledge about the 
degree to which the cell !! is occupied, when in fact it 
can be empty or occupied by one or three targets 
because cell inspections are not perfect. The coarse 
threat knowledge provided by the probability threat 
map, although useful for search decisions is not 
sufficient for making decisions related to tactical 
courses of action. 
 
On the other hand, the threat density map posterior 
distribution summarizes the state of knowledge about 
the unknown number of targets in the cell conditional 
on the prior and sensing data. In contrast to the 
probability threat map, the threat density map in Figure 
2(d) suggests that although cell !! is more likely to be 
empty there is still a chance to find one or three targets 
in the cell. In this situation, the posterior distribution of 
!"! provides the searcher with a more accurate picture 

of the likely state of cell !!. This more detailed 
representation of threat knowledge provides the 
searcher the basis for a more confident course of action 
selection. 
 

 
Figure 2: Screenshot of the simulated scenario at time 
step ! = 0.25 where the searcher is depicted in blue 
and the targets are depicted in red (a), the probability 

threat map (b) and threat density map consisting of the 
expected number of targets (c) and the related 

probability distributions of the number of targets (d). 
 
Consider the situation in Figure 3 in which the searcher 
after inspecting several cells sensed two targets (dark 
red entities) in cell !!". For such situation, it would be 
difficult for the searcher to select a course of action 
that provides the best possibility of success based 
solely on the probability threat map. Therefore, it is 
appealing to quantify the searcher’s expectation of 
finding a number of targets at the cell. Updating the 
threat density map’s prior information with sensed 
data, provides interpretable answers, such as the event 
that !"!" equals three has probability of one [Figure 
3(d)] thus, the searcher could expect to see three targets 
in the cell [Figure 3(c)]. Then, he can exploit this 
subjective knowledge to make reasonable decisions 
consistent with the likely state of the threat, for 
example, decide to search the cell for the unobserved 
target or to move out of the cell and avoid combat.  
 
Likewise, threat density map data can also be used to 
support reasoning. Consider a separate simulation run 
(Figure 4) in which the searcher sensed one target (dark 
red entity) in cell !!! given !!! = 0.9. Based on the 
threat density map the searcher could assume with a 
high degree of certainty that he found the scout entity 
of the enemy fireteam and hence could use this belief 
for identifying the neighboring cell that could contain 

(a) (b) 

(c) (d) 
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the remaining three targets and to determine how he 
deploys, orient, and engages the remaining targets.  
 

 
Figure 3: Screenshot of the scenario and the state of 
subjective threat knowledge in which the searcher 

sensed two targets (depicted in dark red) in cell !!". 
 

 
Figure 4: Screenshot of the scenario and the state of 

subjective knowledge in which the searcher sensed one 
target (depicted in dark red) in cell !!!. 

 
3.1. Integrating Prior Information 
 
The incorporation of a prior density function for !"! 
with prior information is the final favorable feature of 
the threat density map that differentiates it from the 
probability threat map. As previously mentioned, 
intelligence data or prior information is typically 

available for combat simulated scenarios. Regardless of 
the level of certainty of the prior information, we can 
use the aforementioned discrete prior density function 
or other suitable discrete distributions to describe 
uncertainty for !"! in a mathematical model. However, 
from a modeling perspective the difficulty is in how to 
effectively integrate prior information from different 
sources (e.g., intelligence, doctrine, environment) using 
a prior density function (Blasco, 2007).  
 
In Figure 1 above we already demonstrated an example 
for initializing threat density maps given prior 
information and intelligence data (i.e. the total number 
of targets and their tactical formation). Below we 
briefly discuss two cases of prior information available 
common to combat simulated scenarios for initializing 
threat density maps.  
 
First, presume that the prior information available 
consists only of the total number of enemy entities (a 
fireteam of four entities) and their posture (not moving) 
but neither their actual location nor their tactical 
formation is known. In this situation of vague prior 
information is sensible to assume that any cell could 
contain up to four enemy entities and logically we can 
expect that many cells will be empty instead of 
occupied. Accordingly, we could set the value of ! to 
be 0.75 and utilize Eq. (1) to initialize threat density 
maps for each cell !! ∈ !. Figure 5 shows the prior 
distribution for cell !!.  
 

 
Figure 5: Discrete prior distribution of !"! for cell !! 

assuming that it is more probable to be empty and 
equally likely to be occupied by at least one and no 

more than four targets. 
 
The plot in Figure 5 shows that it is more likely for a 
cell to be unoccupied and equally possible to be 
occupied by one, two, three, or four enemy entities. 
The expected number of enemy entities in each cell is 
1.875, thus the searcher can expect to find 
approximately two enemy entities in any particular cell 
at the next time step.  

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 

B-7



Second, specific prior information can easily be 
incorporated through the prior density function. For 
example, suppose that from the most current 
intelligence data available it is known that there is a 
squad-size element in a linear defense, arrayed from 
the southwest corner of the area of operations to the 
northeast corner, heavily concentrated in cell !!!, 
defending the southeast sector of the area of operations, 
as depicted in Figure 6. Incorporating this prior 
information into the model can be done in a flexible 
manner and inferences can be compared under different 
priors in order to choose a prior that characterizes the 
most likely threat situation. One alternative, for 
example, is to set the value of ! equal to one for the 
cells known to be occupied and zero otherwise. Such 
an approach can be efficient but it does not account for 
the possibility that the situation could change before 
the searcher reaches any of these cells. Therefore, one 
could select other values of ! for the cells of interest. 
Perhaps another alternative is to deduce from doctrine 
and terrain data the maximum number of enemy 
entities that can occupy a cell and other relevant factors 
to initialize the priors for each cells that produce 
! !"!,!" = 2, ! !"!! = 5 , and zero otherwise. 
 

 
Figure 6: Screenshot of the location set with ground 
truth data. The searcher is depicted in blue and the 

targets in a linear defense, heavily concentrated in cell 
!!!, are depicted in red. 

 
3.2. Current Limitations of Threat Density Maps 
 
As we have seen in the previous examples, there are 
significant advantages of augmenting combat simulated 
scenarios with threat density maps as they provide 
simulated entities with actionable subjective 
knowledge to make course of action decisions, which 
in turn determines other search, movement, and path 
planning behaviors. However, the proposed approach 
has some fundamental limitations. While the 
assumptions of independence and conditional 
independence, described in Section 2, allows us to 
solve the threat density maps for the individual cells, 
the model excludes features for modeling spatial 
dependencies and temporal effects. This limitation is 
evident in Figure 3(c) and 3(d) as the model properly 
estimates the expected number of enemy entities in the 

cell, i.e. ! !"!" = 3.0, essentially due to the 
inclusion of prior information into the model; however, 
it fails to exploit this information for estimating !"! for 
the other cells. 
 
4. Conclusions and Future Directions 
 
In this paper we proposed a threat modeling approach 
for estimating the number of the enemy entities at a 
certain location in a given time interval. The model 
estimates the expected number of enemy entities as a 
posterior density map, can be initialized with 
intelligence reports and prior information, and works 
for any number of enemy entities and their spatial 
distribution. Although a threat density map approach is 
not required for all combat simulation models and 
scenarios, they offer several important advantages over 
probability threat maps that make them suitable for 
implementation in combat simulations for improving 
the representation of search, reasoning, and decision-
making behaviors.  
 
Efforts are underway to introduce probability 
distributions that can model threat movement. 
Furthermore, future work will focus on addressing 
known limitations and extending the proposed model 
by introducing spatial and temporal dependencies and 
interactions, and developing hierarchical threat density 
map representations. Finally, we plan to experiment 
with and characterize the utility of the model for 
improving the capabilities of simulated entities in a 
combat simulation scenario for different threat 
conditions. 
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Appendix 1: Probability Threat Map 
Adaptation 
 
In this section we briefly describe our basic adaptation 
of the probability threat maps approach discussed in 
Darken et al. (2010).  
 
Let !! be the conditional probability that an unseen 
enemy entity is present in cell !! ∈ ! and after 
inspecting cell !!, where !! ≠ !!, !! is the estimated 
probability before inspecting cell !!, and !! is the 
probability of detecting a target (see Section 2.2). 
According to the axioms of probability theory, 
0 ≤ !! ≤ 1 and the total probability over all ! cells is 

!!!
!!! = 1. Suppose the searcher inspects cell !!, 

assuming that cell inspections are independent of 
neighboring cells, then, !! takes the form 
 

 

   

qi =
!qiIi + !q j 1− Pd( ) 1− Ii( )

!qi 'Ii ' + !q j 1− Pd( )
i '=1

C∑
  (9) 

 
where the term !! is an indicator function that equals to 
zero if !! = !! and equals to one otherwise.  
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