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ABSTRACT 

 The United States Marine Corps must address material-readiness challenges with 

emerging technologies at minimum cost. Predictive maintenance using machine learning 

is a growing field that can be applied using free or commercial-off-the-shelf software. 

Naval aviation organizations already maintain a network of data repositories that collect 

and store current and historical data on repairable flight-critical components. Many 

components fail before their expected structural life as published their manufacturers, 

which results in costly unscheduled maintenance. The ability to predict component 

failures and plan for their replacement or repair can significantly increase operational 

readiness. This thesis develops and analyzes machine-learning models to predict the 

conditional probability of failure of various MV-22B flight-critical components using 

data from existing Naval aviation repositories. Data preprocessing, model training, and 

predictions use commercial-off-the-shelf software. This work can help improve material 

readiness and acclimatize military-aviation personnel to emerging technologies in 

decision making. 
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1 

I. INTRODUCTION 

This thesis examines the potential for machine-learning algorithms to improve 

reliability-centered maintenance (RCM) and conditions-based maintenance (CBM) to 

improve aircraft reliability in naval aviation.  

A. BACKGROUND ON MAINTENANCE 

The Commandant of the Marine Corps has said that much data collected and 

retained by the service is not exploited enough by emerging technologies (United States 

and Berger, 2019). Aircraft platforms in the Department of Defense (DOD) consistently 

struggle to meet annual readiness goals, despite the large budgets allocated to their 

programs (Crusher, 2020). Predictive maintenance using emerging technologies can use 

these large quantities of data and offer a cost-effective approach to improving aviation 

readiness. The Commandant also emphasized that solutions must use existing military data 

repositories due to the limited funding available. With over 40 billion records uploaded 

monthly, the Naval Air Systems Command (NAVAIR) data repository, Decision 

Knowledge Programming for Logistics Analysis and Technical Evaluation 

(DECKPLATE), could be a good source for machine-learning applications.  

While significant efforts are being made in addressing the root causes of aircraft-

readiness shortfalls, commanders require partial solutions now to accomplish their 

missions. For several years, commanders have resorted to high cannibalization (taking 

parts from one aircraft and putting them in another) rates and the transfer of fully mission-

capable (FMC) aircraft from squadrons returning from deployment to those preparing for 

deployment. Although an “acceptable management choice only when necessary to meet 

operational objectives” (Department of the Navy, 2021), cannibalizations and squadron 

transfers have become the norm. Between 2011 and 2017, the Marine Corps transferred 

over 650 MV-22B Ospreys between squadrons to meet flight-hour and operational 

requirements due to the lack of ready basic aircraft (RBA) (Eckstein, 2017). Meanwhile, 

demands have increased. These temporary solutions hurt future readiness due to overuse 
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or underuse of individual aircraft and additional man-hours spent transferring and 

accepting aircraft. 

Maintenance actions are categorized as scheduled or unscheduled (Susto et al., 

2015). Scheduled maintenance is proactive and done before a component degrades or runs 

to failure. The frequency of scheduled maintenance on a component is usually based on the 

vendor or original equipment manufacturer (OEM) published structural life limits and 

recommended maintenance schedule. Unscheduled maintenance is done when a 

component degrades or fails. Figure 1 compares the number of maintenance man-hours 

(MMH) spent on scheduled versus unscheduled maintenance for the MV-22B aircraft in 

the Marine Corps. Between March 2021 and February 2022, unscheduled maintenance was 

five to six times more frequent than scheduled maintenance. This ratio indicates a 

significant unreliability of aircraft components as well as a difficulty in predicting 

unscheduled maintenance. 

 
Figure 1. Scheduled versus Unscheduled Maintenance Man Hours.  

Source: NAVAIR Readiness Analysis Reports (2022). 

Scheduled maintenance is preventative or designed to continuously inspect and 

maintain components so they reach their service life. For a “type model series” (TMS) in 



3 

United States naval aviation, component inspection and removal schedules are published 

in the associated Periodic Maintenance Information Cards (PMIC) of the Inspection 

Requirements Manual (Commander, Naval Air Forces, 2021). All mandatory inspection, 

removal, or replacement events are included in this manual, which specifies scheduled-

maintenance plans. Intervals are determined by the vendor or engineering reliability and 

maintainability analyses, along with the RCM program failure management strategies 

(Department of Defense, 2011, Department of Defense, 2020a).  PMIC cards produced by 

them mandate scheduled maintenance for a fleet of aircraft or components. A problem with 

this is that maintenance intervals are identical for each aircraft or component. These 

intervals fail to consider the use, service history, or historical data for a unique component 

or aircraft.    

Naval Aviation could benefit from innovative practices in maintenance based on 

evidence of need or a prediction for individual components. In recent years, RCM has 

adopted the Condition Based Maintenance Plus (CBM+) strategy to improve reliability. 

Part of the CBM+ strategy is using machine learning to predict when a component will fail 

based on historical evidence. Because Marine Corps aviation falls under the umbrella of 

Naval Aviation, any MV-22B RCM or CBM+ activities fall under the Commander of the 

Fleet Readiness Centers (COMFRC). The V22 Fleet Support Team (FST) at Fleet 

Readiness Center (FRC) East has been working on improving aircraft and component 

reliability through many initiatives.  

One of these initiatives is estimating the probability of failure for MV-22B 

components using statistical models. Using historical maintenance records from existing 

Naval Aviation Enterprise (NAE) data repositories, the time before a component 

experiences a specific failure mode was estimated using the Weibull probability density 

function (PDF). Figure 2 is an example time-to-failure (TTF) graph showing the percentage 

of MV-22B pylon conversion actuators (PCA) that failed due to seal damage. For the PCA 

model, 70 percent of the fleet’s inventory were forecast to require removal due to seal 

damage by 3,326 flight hours while 80 percent were forecast to fail by 3,696 flight hours. 

Model accuracy is discussed in Chapter V, but this approach takes steps towards improving 

preventative maintenance policy using relevant failure data. 
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Figure 2. Weibull Model for Pylon Conversion Actuators. 
Source: FRC East V22 FST Maintenance Optimization (2022). 

This statistical model calculates reliability based on the true service life of a fleet 

of components before a defined failure mode. Figure 3 shows the results of the Weibull 

analysis for all PCA failure modes considered by the FRC East V22 FST.  

 
Figure 3. Forecasted PCA Failure Rates in Flight Hours.  
Source: FRC East V22 FST Maintenance Optimization (2022). 

When all failure modes are considered, the estimated reliability of a component can 

determine a better scheduled maintenance interval. On average, 70 percent of the fleet’s 

inventory are forecast to require removal by about 3,700 flight hours while 80 percent are 

forecast to fail by about 4,500 flight hours. Program leadership can make decisions based 
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on a confidence interval to replace the current scheduled maintenance intervals published 

in the PMIC cards. This interval would apply to the fleet of components and improve the 

likelihood of replacing the component before any of the failure modes evaluated occurred. 

The scheduled maintenance is improved with true service data and can be easily 

recalculated as data continues to be collected. 

Unfortunately, this approach only provides a cumulative probability of failure for 

components. A better approach would be to estimate the conditional probability of failure, 

also known as the hazard rate, for a component as a function of time. Machine-learning 

models such as the Cox proportional-hazards (CPH) model and artificial neural networks 

(ANN) may be useful because they have recently been used in medical research for 

predicting mortality rates (Spooner et al., 2020). Similar work could use the data 

maintained in DECKPLATE. 

B. RESEARCH QUESTIONS 

This thesis will focus on the following research questions: 

Primary Question: What machine learning algorithms produce the best survival 

models for preventative maintenance of aircraft components? 

Secondary Questions: What features in DECKPLATE and other repositories can 

be exploited in predicting component survival? How much does the mean time to 

failure (MTTF) differ between published PMIC requirements and survival models? 

For appropriate data, do classic distributions such as Weibull fit the data well to 

estimate future failures?  

C. SUMMARY 

Chapter II goes over basic concepts in machine learning and reliability analysis, 

and investigates previous attempts to use machine-learning for predictive maintenance. 

Chapter III more precisely describes the problem this thesis aims to solve, and the general 

approach used. Chapter IV describes the methodology used in this thesis and the 

justification for its structure. Chapters V and VI discusses results of this thesis and 

conclusions drawn. 
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II. MACHINE LEARNING AND FAILURE ANALYSIS 

In May of 2020, the Joint Artificial Intelligence Center (JAIC) published a request 

for information (RFI) on an artificial intelligence-based predictive maintenance initiative 

for the H-60 helicopter platform’s General Electric T700 turboshaft engine (Department of 

Defense, 2020b). Programs across the DOD have expressed interest in predictive 

maintenance, and are looking both internally and to industry to advance those capabilities 

within their CBM programs. This chapter first explores previous machine-learning 

applications towards predictive maintenance and identifies key features and practices that 

apply to this thesis. Next, the chapter explores a previous attempt to estimate the 

conditional probability of failure for the MV-22B Osprey flight-critical components using 

historical maintenance records.  

A popular method for predictive maintenance is prediction of the remaining useful 

life (RUL) of a component. The remaining-life estimates the time that a component has left 

to operate until some defined failure state or level of degradation. Many industries measure 

and record machinery operating conditions using sensors. The true remaining-life of a 

component is unknown until the component fails. Therefore, supervised training of a 

machine-learning model depends on the amount of historical failure data. For data of 

components that have failed, the life can be calculated and added as the target feature for 

training a machine-learning model.  

For predictive maintenance in the aviation industry, research has been published on 

a public dataset (Saxena & Goebel, 2008). The National Aeronautics and Space 

Administration (NASA) turbofan jet engine data have been used to compare machine-

learning algorithms, architectures, and methodologies (Mathew et al., 2017). The 

repository records 26 numerical features for engines at the end of every cycle of operation, 

which is anywhere between a few minutes and a few hours. These features include the 

engine unit number, cycle number, operating modes, and 21 sensors. Figure 4 is a snapshot 

of one training data set imported using the Orange data mining platform. The data gives a 

chronological record of sensor readings at the end of each cycle of operation. The three 

operational settings have a significant impact on engine performance and the sensors are 
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for health diagnostics. Failure occurs at the last cycle recorded for an engine unit number. 

Therefore, the remaining life is the time difference between the last record and the current 

record. 

 
Figure 4. NASA Turbofan Jet Dataset 

A. POSSIBLE MACHINE-LEARNING METHODS FOR PREDICTIVE 
ANALYSIS 

Common machine-learning models applied towards predictive maintenance 

include linear-regression and artificial neural networks. Diagnostic data have temporal 

dependencies that should be considered when generating data structures for modeling. 

1. Linear Regression 

A simple machine-learning algorithm for predictive analysis is the linear-regression 

model. Regression estimates a target continuous value from a weighted sum of other 

numbers. For remaining-life applications, linear-regression commonly predicts a life from 

other numeric features such as sensor values. The most common metrics of model accuracy 

are mean-squared error (MSE), root mean-squared error (RMSE), and mean absolute error 

(MAE). After data preprocessing, a linear-regression model yielded an average RMSE of 

36.71 cycles of operation remaining across the four NASA turbofan datasets in the 

repository (Li et al., 2018). In other words, the model prediction for engines that had not 

yet failed was off by about 36 cycles. 
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2. Artificial Neural Networks 

Time-series analysis can address predictive-maintenance applications to include 

remaining-life predictions. In the linear-regression example, inputs for model training and 

predictions were sensor readings at the end of a single cycle of operation. Because the 

sensors have temporal dependencies, a better input vector would be sensor readings over 

multiple operational cycles. This approach would better capture degradation or the health 

trajectory of an engine. Different types of neural networks are ideal for handling trends.  

a. Long Short-Term Memory Networks 

Recurrent neural networks (RNN) reason about sequences of states using an 

internal memory. This is well-suited for handling data with trends and dependencies over 

time. However, they often require much data to train. Methods such as cross-fold validation 

train the model over multiple random splits among the data to reduce overfitting. For time 

series data, dependencies occur between observations that cannot be disrupted so splitting 

must be applied only to features that distinguish sequences of observations from others. 

The Long Short-Term Memory (LSTM) network is a popular recurrent neural network for 

prognostics and health management that uses intelligent splitting. A two-layer LSTM 

trained on the NASA turbofan dataset yielded an average RMSE of 21.25 cycles of 

operation from the true time of failure (Zhang, et al., 2020).  

Time-series data requires challenging decisions during preprocessing and 

structuring for input into a model. Preparing the NASA turbojet data for an LSTM network 

demonstrated this complexity. During preprocessing, constant features and highly 

correlated features were removed, reducing the features to 13. The data was normalized 

and divided into training and test sets.  Engine units were randomly split into training and 

test sets while their sequential sensor readings maintained chronological order. For the 100 

engines in the first dataset of the repository, 75 were randomly chosen for training and the 

remaining 25 were chosen for testing. Since it was desirable for the network to handle a 

constant input size, input vectors smaller than the largest input vector size in a batch were 

padded with zeros at the end. Figure 5 shows the resulting data before and after 

preprocessing.  
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Figure 5.  NASA Engine Time Series Input Vectors for LSTM Training 

The input layer connected to a single LSTM layer with 200 hidden units. This 

corresponds to recurrently connected LSTM memory that could remember 200 pieces of 

information (Graves & Schmidhuber, 2005). Each new input is concatenated with the 

hidden state of 200 units, which then becomes the input to an LSTM memory cell. This 

layer is followed by a fully connected layer with 50 nodes, a dropout layer, and a final fully 

connected layer. The dropout layer created a twenty-percent chance of excluding a 

recurrent connection’s input to reduce overfitting the model to training data (Zhang et al., 

2020). The final fully connected layer has an output size of one, the predicted number of 

cycles of operation remaining before failure. Figure 6 is a plot of the model’s remaining-

life prediction performance on the test data, which resulted in a RMSE of 25.3 cycles of 

operation from the true time of failure. 
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Figure 6. LSTM RUL Predictions for NASA Engines 

b. Convolutional Neural Networks 

While the LSTM network is well-suited for time-series data, convolutional neural 

networks (CNN) are good for input data with many attributes (Li, Ding, & Sun, 2018). This 

approach has recently become popular in lifetime prediction with time-series data. Like the 

LSTM network, data input for the CNN can be a 2-dimensional time series representation 

of input features, but it can be split differently than a recurrent neural network. Although 

less used for lifetime predictions, convolutional models have been used on the NASA 

turbofan dataset quite a bit recently. A promising way to use them is to train several 

individual models in parallel with different random data subsets and combine results with 

averages (Wen, Dong, & Gao, 2019).  

Figure 7 shows the convolutional deep-learning architecture proposed by (Li et al., 

2018). It used a time window size of 30 and 13 features from preprocessing techniques, 

and a sequence input layer is followed by four convolutional layers. Each layer has 10 

filters with a dimensionality of 10 by 1. With a stride of one, the filters advance over the 

larger input vector by one dimension at a time. All layer us the hyperbolic tangent 

activation function. A fifth convolutional layer combines the previous feature maps into 

one, and connected to a dropout layer. The dropout layer created a fifty-percent chance of 

excluding a unit’s output to reduce overfitting the model to training data (Li et al., 2018).  
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Subsequent conventional layers reduce the output to a single lifetime prediction Figure 8 

plots the improved performance with training on the FD001 engine dataset. With a training 

RMSE of 21.59 and a test RMSE of 25.30, the deep CNN model demonstrated similar 

performance to the LSTM network.  

 
Figure 7. Deep CNN Architecture from Matlab Network Analyzer 
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Figure 8. Deep CNN Training for RUL in Matlab 

B. SURVIVAL ANALYSIS 

For a maintenance department, the timely and accurate prediction of how many 

flight hours remain until an individual component fails helps maintenance planning. 

Survival analysis estimates or predicts the probability of a terminal event occurring at or 

between some interval, and identifies prognostic factors contributing to when the failure 

occurs (Tilman, 2020). For predictive maintenance, a common survival analysis 

observation is TTF. The Weibull analysis is commonly used in engineering for survival 

analysis and can express the mathematical steps towards obtaining conditional probability 

of failure.  

The Weibull analysis models the probability of failure as a function of time.  The 

Weibull probability distribution has two-parameter and the three-parameter forms. The 

two-parameter form has a shape parameter  and a scale parameter . The value at which 

the 63rd percentile of the distribution occurs at is represented by . For a three-parameter 

Weibull,  defines the non-zero “failure-free” period of a component (Rinne, 2008).  
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Figure 9. Weibull PDF with Various Shape Parameters, . 

Source: McCool (2012, p. 75). 

Taking the integral of the Weibull distribution yields the cumulative distribution 

shown below. This gives the percentage of components estimated to have failed by a time 

, often referred to as unreliability.  

 

In survival analysis, the cumulative distribution is often used to set policy for 

removal, replacement, or some other maintenance action based on thresholds or 

percentiles. The COMFRC V22 FST provides lifecycle sustainment services to the fleet to 

include innovative research. One of their projects used Weibull analysis to develop a better 

preventative maintenance policy. The objective was a policy for taking preventative 

measures on a component that has reached a certain number of flight hours. Figure 3 in 

Chapter I Section A is an example that demonstrated how the Weibull cumulative 

distribution function (CDF) for each type of failure mode of a component could be used 

with a threshold of safety to replace the current preventative maintenance policy. Another 

useful metric is the probability of survival up to a given time given. The hazard rate,  

can be calculated using the two previous distributions.  
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Often described as the “bathtub curve,” the hazard rate of a component is high at 

installation due to early defects, and at the end of service due to wear. Between these 

periods, the hazard rate is lower and more constant (Wilkins, 2002).  A beta of one indicates 

that a component’s probability of failure is not affected by age; a beta greater than one 

indicates that the hazard function increases with age (McCool, 2012). Combining multiple 

Weibull distribution can be a better model than using just one (Dong and Nassif, 2019). 

The most important survival function in this thesis is the conditional probability of failure, 

which is the probability of failure at a future time  given the duration it has lasted . In 

Weibull analysis, this is using the cumulative probability of failure: 

 

This function is important in this thesis because it represents a univariate 

conditional estimate of failure. COMFRC V22 FST want to generate Weibull distributions 

that account for environmental factors in land or sea operations. Figure 10 shows their 

proposed method for better predicting a failure of a component based on various 

characteristics of its current operating life. The proposed approach can individually 

estimate MTTF in non-austere land-based environments, saltwater-based environments, 

and austere-based environments.  

 
Figure 10. Proposed Approach of Failure Prediction using Weibull Analysis 
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III. FAILURES OF MILITARY AIRCRAFT COMPONENTS 

This chapter explains why use of components on the Marine Corps’ MV-22B 

aircraft can differ and therefore be problematic for current scheduled maintenance policies. 

It also discusses naval aviation data repositories as a valuable source of knowledge for 

machine learning. It distinguishes conditions-based maintenance from current naval 

aviation practices, and describes reliability analysis and previous work using machine 

learning to predict conditional probability of failure.   

A. AIRCRAFT AND COMPONENT USE RATES 

Aircraft-use rates are important metrics that Aircraft Controlling Custodians 

(ACCs) must monitor and act upon. Often estimated by the average monthly hours flown, 

the use rate indicates the average operational stress on an aircraft. Aircraft Life 

Management (ALM) is part of the Marine Corps’ Aviation Readiness Program that aims 

to ensure aircraft reach their intended service life. A properly used fleet of aircraft is 

defined as falling “within 12 months of, or exceeding projected retirement or transition 

date, or are within 10% of a published aircraft utilization rate” (Department of the Navy, 

2018). A measured rate higher than the published one indicates an aircraft with a shorter 

service life than what is required. Failures to maintain acceptable use rates not only disrupt 

short-term planned maintenance schedules and distributions of repairable and consumable 

supplies but affect long-term strategic plans and acquisitions. 

While monitoring the flight hours of aircraft can help determine if they will reach 

their intended service lives, it does not include use anomalies for individual aircraft. Figure 

11 depicts the MV-22B Osprey use rates from March 2021 through February 2022 when 

the published rate was 16 flight hours per month (Commander, Naval Air Forces, 2022). 

According to ALM program parameters, the MV-22B use rate was only considered outside 

of the ten percent limit for four of the twelve months.  
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Figure 11. MV-22B Use Rates from March 2021 to February 2022.  

Source: NAVAIR Vector Aircraft Readiness Dashboard (2022). 

Instead of averaging use across all MV-22Bs, Figure 12 and Figure 13 show the 

distribution of flight hours flown per month per aircraft for the past year and the past five 

years, respectively. 

 
Figure 12. Histogram of MV-22B Use Rates from 2021 to 2022.  
Adapted from NAVAIR DECKPLATE Query of Flight Records (2022). 
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Figure 13. Histogram of MV-22B Use Rates from 2017 to 2022.  
Adapted from NAVAIR DECKPLATE Query of Flight Records (2022). 

These statistics are the average use for each aircraft in only the months they were 

active. 44 aircraft were used more than double the recommended rate over the five years. 

These aircraft are labeled the “flyers” or the “workhorses” in the squadrons. 

Unsurprisingly, the time it takes one aircraft to reach an important flight-hour milestone 

can differ by years from another. The “flyers” are more likely to be used in austere 

environments, and this accelerates their wear and degradation.  

In 2007 the Marine Corps deployed ten MV-22B Osprey in Iraq. For the next two 

years, they flew those same ten aircraft in a very austere environment at double the use rate 

as planned (O’Rourke, 2009). The practice of “relief in place / transfer of authority” 

(RIP/TOA) for deployed Osprey squadrons is still followed today. With it, airframes and 

components can have significantly different operating lives. Fortunately, these differences 

can be obtained from flight records, such as the number of flight hours flown in an austere 

environment, or the installation data on a serialized component installed on multiple 

airframes during its life. The number of days in a Marine Expeditionary Unit (MEU) 

indicates how long a component has been exposed to corrosive sea spray, and the type of 

ship the aircraft was on indicates how much closer the flight deck was to the ocean surface. 
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B. NAVAL AVIATION DATA 

Aviation organizations subject to Federal Aviation Administration (FAA) 

regulations must maintain an air-carrier maintenance program per Title 14 of the Code of 

Federal Regulations (CFR). While the FAA establishes minimum maintenance 

requirements for an aircraft, carriers can make stricter policies.  United States Naval 

aviation follows the Naval Aviation Maintenance Program (NAMP) which applies to all 

Marine Corps aviation. Certain records must be made and kept for a period following FAA 

requirements for the management of aviation maintenance.  

1. Existing Repositories 

With over 4,000 aircraft in U.S. Navy aviation, many maintenance records must be 

stored physically and electronically at individual squadrons and in data repositories online. 

The three recordkeeping systems most related to this thesis are the Naval Aviation 

Logistics Command Management Information System (NALCOMIS), DECKPLATE, and 

the Aviation Maintenance Supply Readiness Report (AMSRR).  

The NALCOMIS database is the closest to the aircraft themselves. This database is 

used by maintenance and supply personnel to record every maintenance action or supply 

request done for an aircraft, component, or support equipment. Each operational squadron 

and intermediate-level maintenance squadron keeps electronic records of every tracked 

component on that air station using NALCOMIS, whether it is installed on an aircraft. Its 

design and features satisfy the compliance requirements of the NAMP for maintenance and 

material management (Department of the Navy, 2021). Although NALCOMIS is local, 

maintenance administration specialists do routine uploads of its data to DECKPLATE.  

In the past, DECKPLATE was the data warehouse for NALCOMIS records. Today, 

DECKPLATE has absorbed over a dozen more maintenance and supply recordkeeping 

repositories (Teradata, 2016). With over 40 billion records uploaded monthly, 

DECKPLATE is useful for many purposes. Most of these records are unclassified and for 

official use only (FOUO), which permits protected quick access. Although the NAE has 

made much progress towards consolidating data, users are “drowning in data and starving 
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for information” (Lancaster, Talbert, & Kirk, 2014). More work must be done to collect 

data that aviation professionals can act upon.  

For this research, queries in DECKPLATE produce the data for reliability and 

survivability analysis. It has historical data to describe how a component failed, when it 

failed, and the details about the operating life and condition of that component before 

failure. All maintenance actions are timestamped which allows the user to determine time 

to failure. Additional information can be extracted using flight records.  

The AMSRR is a maintenance reporting system focused on the material status of 

Naval aircraft. It is used mostly by aviation maintenance and supply officers or senior 

enlisted, and offers a snapshot of material readiness. It also adds operating-life data that 

can linked to flight records in DECKPLATE such as location.  

2. Data Integrity 

Machine-learning algorithms do better as the amount of training and testing data 

increases. However, the usability of models depends on the quality of the data. Inaccuracies 

in data can degrade machine-learning applications when models do not accurately reflect 

the real-world situation they attempt to represent. Maintenance recordkeeping has not 

historically been considered important; quality requirements of data are often outweighed 

by functionality requirements (Wilson et al., 2020). Maintenance records often have errors 

due to a lack of training and experience or the limitations of the maintenance-record 

software. The lack of emphasis on the quality of data being recorded over the past few 

decades make the DECKPLATE repository sometimes unreliable.  

A contributing factor was that the DECKPLATE data repository was not designed 

for complex large-scale data extraction. Previous research done by NAVAIR identified the 

tedious process of manually mining useful data from DECKPLATE as a hindrance to 

current and future work (Burger, Jaworowski, & Meseroll, 2011). Converting the millions 

of records to a better format would be too difficult now with budget constraints. An analysis 

of alternatives to the existing maintenance record system in naval aviation estimated 

cleansing of data during migration to a more capable system would take from one the three 

years (Wilson et al., 2020).  
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This thesis work is limited to data from existing repositories to identify how much 

data integrity is an issue for future work. We assume with the Commandant of the Marine 

Corps that extracting actionable knowledge from emerging technologies cannot wait for 

the costly process of creating new repositories. This thesis uses historical flight records and 

maintenance records to extract an individual aircraft component’s use pattern. The number 

of flight hours flown during austere land-based or sea-based operations are not readily 

available for components, nor total flight hours. However, scripts can be written to generate 

this data by combining flight records and removal/installation (R/I) maintenance records. 

The challenge is determining in what aircraft a component was installed throughout its 

service life despite cannibalization and unscheduled maintenance. 

The integrity of flight records is relatively high compared to those of R/I 

maintenance records for serialized components. However, missing or erroneous records 

occur. Furthermore, some components do not carry the same part number and serial-

number combination throughout their service lives. For example, some technical directives 

that implement a major modification to a component may give it a new part number. If 

overlooked, one component could be mistaken as two different components. Due to the 

time constraints of this thesis, assumptions about the data in DECKPLATE are made to 

facilitate completion and are detailed in Chapter IV Section A.  

C. CONDITION BASED MAINTENANCE PLUS 

Maintenance actions are either scheduled or unscheduled. The DOD's CBM+ 

strategy aims to shift maintenance to a more proactive scheduled approach rather than a 

reactive unscheduled one (Department of Defense, 2020a). Although scheduled 

maintenance can prevent some failures, much of it may be unnecessary and an inefficient 

use of resources.  

The CBM+ concept has a broader view of data sources and predictive methods than 

the original CBM maintenance program in which, maintenance was triggered from 

diagnostics or sensor data. CBM+ works more closely with reliability-centered 

maintenance to analyze system performance and anticipate maintenance requirements 

before failure or degradation (Department of Defense, 2020a). Industry leaders such as 
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General Electric Aviation use CBM programs that aim to “maintain the correct equipment 

at the right time” (Aviation Pros, 2009). 

D. RELIABILITY ANALYSIS 

In engineering, reliability is defined as “the probability that a component, device, 

system or process will perform its intended function without failure for a given time” 

(Waghmode & Patil, 2016). Unreliable components hurt performance and cost.  

1. Censored Data 

Predictive maintenance differs from preventative or reactive maintenance by using 

monitoring data to anticipate when maintenance will be required. The lifetime or time to 

failure are estimates of when maintenance will be required. The units of measurement may 

be time, cycles, or uses. However, challenges with these estimates are that multiple modes 

of failure are possible, and failure is often not confirmable for a long time. This leads to 

the concept of censored data. Consider ten engines observed over a year for a specific 

failure, and suppose at the end of the year, only two engines failed and the other eight are 

still operating as expected. Those eight engines are considered “right censored” and do not 

provide failure data. Similarly, any engines that failed before the study but are still included 

in the dataset are considered “left censored.” Censoring reduces the usable cases in a 

dataset. 

2. Applying the Weibull Distribution 

The Weibull distribution covered in Chapter II Section B has proven useful in 

modeling reliability due to its flexibility and effectiveness with smaller datasets 

(Quanterion Solutions, 2015). It assumes that the data is censored and that no repairs have 

been made to the equipment being analyzed (Quanterion Solutions, 2015). Previous work 

by the COMFRC V22 FST developed comprehensive datasets of MV-22B components 

that have failed. Similar components were categorized by failure mode, which divided 

usable datapoints into smaller subsets for statistical analysis. Some subdivisions had too 

little data for meaningful analysis and were left out.  
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A disadvantage of the Weibull distribution is that it is univariate. Experts in aviation 

maintenance, engineering, and reliability acknowledge various environmental conditions 

impact a component’s health. However, the amount of failure data for each of these 

conditions for a component is insufficient for machine learning. When a component fails 

and is repaired, it is considered imperfect preventative maintenance. Altering the hazard 

function for a component after repair has proven to work for CBM to significantly reduce 

preventative maintenance hours (Zhou, Xi, & Lee, 2007). 

3. CPH 

The CPH model fits the relationship between survival time and survivability for 

censored as well as uncensored data (Chen et al. 2021). The CPH model is popular for 

medical research for predicting mortality rates of patients based on their condition at an 

operation or treatment. The data for this type of research is historical medical records, 

which makes it similar to this thesis work. While sensor data is preferred in predictive 

maintenance, the CPH model has enabled researchers to use historical maintenance data. 

It is popular due to its ability to handle censored and sparse data (Chen et al. 2021).  

Chapter II Section B suggests using multiple Weibull models for component 

failure. However, early regression models were limited in that the hazard function could 

only increase or decrease proportionally with time. The CPH model allows the hazard rate 

to fluctuate over time, which and better supports splitting a dataset of failed components 

by failure mode. It determines how covariates affect the hazard function (Korvesis, 2017). 

It does not assume that the input variables are independent, and the ratios between those 

covariate hazard rates remain constant with age (Cox, 1972). To validate these 

assumptions, the Schoenfeld residuals can be evaluated (Tai & Machin, 2014). Regression 

coefficients should change with time resulting in an increasingly greater than or less than 

zero mean or “p-value.” A residual mean threshold of 0.05 is often used. P-values less than 

this threshold indicate a covariate violates the CPH assumption. 

4. Artificial Neural Networks 

To overcome the limitation of a constant ratio of risk factors with time, solving 

nonlinear problems is required. Artificial neural networks can do this. Their use for survival 
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analysis in medicine has become increasingly popular, such as prediction of the probability 

of breast cancer recurrence after patients underwent surgery (Chi et al., 2007). This data 

was censored since it missed final outcomes of patient status. However, the predictions 

were to the nearest year (Chi et al., 2007), and predictive maintenance requires more exact 

predictions. Previous work has compared CPH models to neural networks for automobile 

maintenance prediction (Chen et al., 2021). However, LSTM networks and CNNs did 

better (Chen et al., 2021). 
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IV. METHODOLOGY 

A. RESEARCH AND DESIGN STRATEGY 

This research attempted to enhance the reliability analysis of MV-22B components 

done by the V22 FST. Many statistical machine-learning models and architectures can 

predict reliability. This research focused on comparing the conditional probability of 

failure from the univariate Weibull distribution to the multivariate Cox proportional-

hazards model and neural networks. Valuable input features beyond the time to 

maintenance action (TTMA) are collected and added to the input data creating a 

multidimensional input vector. Based on previous work and best practices, neural-network 

architectures were used to model and predict the conditional probability of failure as a 

function of time for select MV-22B components. 

The first step in our experiment was to identify key features that have the most 

impact on component degradation or failure data in the repositories available. Initial factors 

considered were the number of hours or cycles spent in austere environments, flight mode 

such as airplane, helicopter, or conversion aircraft, and removals for non-failure reasons 

such as inspection or cannibalization. Once additional features are identified, the 

methodology for gathering, relating, and sanitizing the data was developed. Every attempt 

was made to ensure this process is repeatable.  

B. SCOPE AND LIMITATIONS 

This thesis used historical MV-22B Osprey data from the NAVAIR DECKPLATE 

data repositories to train machine learning models to predict the conditional probability of 

failure for the PCA. Although hundreds of repairable flight-critical components on an MV-

22B have electronic records, this thesis attempts to focus on a top-ten component as 

determined by the program office to be the most logistically and financially challenging. 

These top ten components are typically the engines, proprotor gearboxes, and other 

dynamic components.  However, limiting this thesis to evaluation of one already evaluated 

by the V22 FST greatly reduced data collection time and enhanced their previous work. 
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The NAVAIR DECKPLATE data repositories are live databases that update 

component records daily, which could skew data if not collected properly. Therefore, 

training of models was done with a fixed set of labeled training data with supervised 

classification. When permissible, the research attempted to divided censored and 

uncensored data into training and test sets randomly and used cross-validation to reduce 

bias.  However, the failure rates for different components can vary greatly.  In previous 

work, the rule of thumb was that a ratio between the number of failure events per variable 

be at least 10:1 for analysis to be reliable (Spooner et al., 2020). This can significantly 

impact the feasibility of dividing data into training and test sets. The goal was to use data 

before 2020 as training data and data from 2020 until the current date as test data. However, 

for small data subsets, data is split on the date at which 80 percent of datapoints have 

occurred. Another consideration made for components with fewer failure records is the 

ratio between data points and features. The V22 FST has already used a minimum of 10 

failure events as a rule of thumb.  

C. DATA GENERATION 

The data used in his thesis is continuous flight data for individual serialized 

components throughout their service. This required merging data in several DECKPLATE 

repositories. These included the electronic Naval Flight Records (NAVFLIR) database, the 

Automated Maintenance Environment (AME) database, and the Serial Number Tracking 

(DP-0025) report. Figure 14 shows the data generation process we used. The queries from 

DECKPLATE were saved as Microsoft Excel comma separated values (CSV) files. Three 

Python scripts extracted this data and generated flight data for serialized components. The 

programs ran on Microsoft Windows 10 and required the Python datetime, numpy, copy, 

and csv libraries. 



29 

 
Figure 14. MV-22B PCA Flight Data Generation Flow 

Because individual serialized components are often removed and installed on 

different aircraft, their flight data is rarely identical. Within squadron Maintenance 

Administration work centers, all major serialized components have a paper log-set that 

includes removal and installation history. Unfortunately, neither the electronic Auto Log-

Set or Configuration Management databases are reliable enough to display a component’s 

installation history, particularly for those not currently in service. While many serialized 

components record data such as flight hours or cycles flown, these values are cumulative 

at query time and are often unreliable. Furthermore, this thesis needed additional flight data 

such as flight hours flown at sea or in austere environments which are not captured in log 

sets. For this, flight records from aircraft NAVFLIRs must be compared with the dates a 

component was installed on that aircraft. 

We needed to identify which DECKPLATE queries, filters, and sorting could yield 

pertinent features for model training and testing. To generate this information, 

maintenance-action details can be queried in the DECKPLATE AME report view. 

Important criteria are the removed or installed part number and serial number blocks; a 

non-blank entry in any of these fields implies a component was removed or installed. The 
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maintenance action form (MAF) origination and completion dates for such entries help 

determine which serialized components were installed on an aircraft on a given date. 

Unfortunately, these records can also be unreliable due to recordkeeping errors or missing 

entries.   

1. Component Queries 

The work unit code (WUC) identifies equipment, components, or subassemblies in 

maintenance documentation (Department of the Navy, 2021). The MV-22B flight control 

actuation equipment WUC is 2750 and has over 160 subassemblies with their own WUCs. 

The PCA, which adjusts the nacelle angle, is represented by the 275020 WUC for the right-

hand nacelle and 275021 WUC for the left-hand nacelle, each with 31 subassembly WUCs. 

When the entire PCA is removed or installed on an aircraft, the WUC for the entire PCA 

assembly should be recorded. However, due to inconsistencies in maintenance 

recordkeeping, erroneous WUCs or those for subassemblies may be recorded instead.  

Figure 15 is a snapshot of a query from the AME in DECKPLATE that returns all 

records of maintenance actions with entries in removal or installation blocks for the 275020 

and 275021 WUCs. The type equipment code (TEC) “AYNE” represents the MV-22B. 

With no date range specified, this query returned 914 removals or installations of 

conversion actuator assemblies. However, an inconsistency can be seen with the removed 

part numbers. Part number 42555-43 is the primary hydraulic powered drive unit (HPDU) 

assembly, one of three such PCA subassemblies. It is ambiguous whether the entire PCA 

assembly or only the primary HPDU was removed due to the WUC recorded. Adding to 

the complexity, currently two part numbers identify PCAs in the MV-22B fleet, 42555-400 

and 42555-401. They can be installed on either the left or right nacelle, yet different 

manufacturing details can result in components having multiple part numbers, illustrated 

in Figure 15 with part numbers 901-301-902-111 and 901-301-902-109. Besides changes 

in manufacturers, components are upgraded over time by either the squadron or depot 

facilities. Part-number consolidations or technical directives mandating alterations or 

inspections of equipment, can also change the part number.  
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Figure 15. AME Query for MV-22B 275020 and 275021 WUCs. 

Source: Report from DECKPLATE AME Query Studio (2022). 

Figure 16 illustrates a part-number conversion with serial number 161. Two MAF 

forms started on August 18, 2009, say the part number 901-301-902-109 with serial number 

161 was both removed and installed on aircraft 166387 at the MV-22B training squadron 

VMMT-204 with a cycle time of 1100 flight hours. Same day removals and installations 

do not always indicate the component was physically removed, but it could have been 

administratively transferred, depending on the type of maintenance. The following R/I 

MAF for the same aircraft on November 1, 2010, shows part number 42555-400 with serial 

number 161 received maintenance actions with a cycle time of 1379 flight hours. A flight-

hour query using the FlightHours.py script we wrote for aircraft 166387 between those 

dates returns 259 flight hours total flown by the aircraft. A discrepancy of 20 flight hours 

is not unusual due to separate reporting methods for flights and components. However, it 

is likely that this is the same PCA with an upgraded part number. 
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Figure 16. Serial Number 161 PCA Removals and Installations. 

Adapted from Report run in DECKPLATE AME Query with 
SernoHistory.py (2022). 

The NAMP also lists the Maintenance Data System (MDS) as a source of statistical 

data for analysis such as equipment reliability (Department of the Navy, 2021). Its Serial 

Number Tracking (DP-0025) tool covers component repairs that involved a removal or 

installation. A report was generated for all part numbers and serial numbers with the TEC 

of “AYNE” for the MV-22B. The resulting CSV file was filtered to exclude all R/I actions 

whose WUC did not begin with 2750. The data was sorted by serial number and action 

date and then to ensure a removal entry preceded an installation entry if they shared the 

same serial number and action date. The SernoHistory.py script we wrote generates hash 

tables mapping from serial numbers to lists of sorted R/I entries. Only maintenance actions 

with the WUCs 275020, 275021, 27502015, and 27502115 were included in our 

experiments, the latter two representing the right or left-hand PCA without the HPDU. 

Figure 17 shows the same query for serial number 161, which found more data than the 

query shown by Figure 16. 
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Figure 17. Serial Number 161 PCA Removals and Installations. 

Adapted from Report run in DECKPLATE DP-0025 Report with 
SernoHistory.py (2022). 

2. Component Imputations and Assumptions 

The R/I actions from the sorted DP-0025 report provide the critical data needed to 

determine when components were installed on aircraft. However, many entries lack an 

installation or a removal entry. The SernoHistory.py script we wrote imputes missing 

entries based on assumptions about the maintenance. The DP-0025 report does not record 

components installed on the production line because this was not maintenance. If the first 

entry is a removal MAF, it is assumed that the component was installed on the production 

line. If the first entry is an installation MAF, it is assumed that the component was not 

installed on the production line, but instead a new component from the manufacturer. Once 

all first-installation MAFs were imputed, the resultant data checked for more than one 

component occupying an aircraft’s left or right-hand PCA WUC and only the earliest 

installation was kept. 

The remaining entries were evaluated for administrative and irrelevant component 

removals. Component removals can be done due to faults or defects categorized using the 

documented malfunction, transaction, and action-taken codes. Malfunction codes reflect 

the need for maintenance while transaction codes reflect the type of data reported 

(Department of the Navy, 2021). The malfunction codes categorize failure modes. 

Furthermore, specific codes are used when symptoms or defects prompt the removal of the 

component. Figure 18 shows the frequency of malfunction codes in the PCA removal 

dataset. 
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Figure 18. Histogram of PCA Removals by Malfunction Code 

The most frequent malfunction code is a blank entry, however, the accompanying 

transaction code is 47 for technical-directive compliance. As mentioned in Chapter IV 

Section A, many documented removals are administrative in nature. The only technical 

directives that have applied to the PCA were inspections and only justified physical 

removal if they failed the inspection criteria. Of the 2,701 documented removals with a 

transaction code of 47, only 131 have an accompanying action-taken code “P” for removal. 

The RemovalHistory.py script we wrote redacts removals to include technical directive 

compliance not resulting in a removal, intermediate-level maintenance on components 

already removed, removals where the defect could not be duplicated, or other 

administrative removals. Figure 19 shows the frequencies of malfunctions in the final 

dataset. 

 
Figure 19. Histogram of Filtered PCA Removals by Malfunction Code 
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3. Flight Data  

The NAVFLIR database maintains historical flight data for maintenance, material, 

and logistics evaluation (Department of the Navy, 2016). Each record includes the Total 

Mission Requirement (TMR) hours, TMR code, number of landings, and type of landings. 

A query for all MV-22B flight records from the NAVFLIR database is done and imported 

by the FlightHistory.py script to extract input for machine learning.  

One attribute is the cumulative TMR hours flown on a component. It is associated 

with a TMR code which is three characters that represent the general purpose and specific 

purpose of the flight (Department of the Navy, 2016). For this thesis, TMR hours were 

categorized by the flight purpose only Table 1 shows the seven flight-purpose categories. 

Table 1. NAVFLIR TMR General Purpose Codes 

TMR Code Description 
1XX Training Flights conducted for the purpose of training (both individual 

and as a crew) to maintain or improve the readiness of the activity to 
perform its assigned mission. 

2XX Support Services. Flights conducted in support of an assigned mission 
including tests, logistics, search and rescue, troop transports, etc., either 
independently or as part of a squadron function 

3XX Operations. Navy flights conducted in support of operational tasking not 
specifically designated as contingency operations. 

4XX Fleet Marine Forces (FMF) Operations. Marine flights conducted as part 
of an exercise while deployed with a battle group or task force. 

5XX Contingency Flights. Flights conducted in support of contingency 
operations as delineated by the type commander. 

6XX Combat Flights. Combat flights shall be used only for aircraft and by units 
specifically designated by competent authority as being in combat status. 

7XX Exercise Flights. Flights conducted as part of an authorized fleet exercise 
as designated by the battle group or type commander 

Source: Department of the Navy (2016, p. D-8).  

 

Another attribute is the cumulative landings experienced by a component. The 

associated landing codes represent the environment that the components were flown in. 

Each landing code is one character representing the type of landing and whether it was 

conducted at day or at night (Department of the Navy, 2016). For this thesis, landings codes 
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were categorized as non-austere, austere, or ship landings. Airfield landings are considered 

non-austere, while all other non-ship landings are considered austere. Table 2 shows the 

three landing groups by day and night codes and their descriptions.  

Table 2. NAVFLIR Landing Groupings 

Group Day 
Code 

Night 
Code 

Description 

 
 
Non-
Austere 

0 K Vertical and/or Short Take-Off and Landing (V/STOL) Vertical 
Roll 

5 E Field Carrier Landing Practice (FCLP) 
8 H V/STOL Slow 
9 J V/STOL Vertical 
Y Z Naval Flight Officer (NFO) 

 
 
 
Austere 

6 F Field Full Stop/V/STOL Conventional 
7 G Field Arrest 
L M Unprepared Landing 
 P Night Vision Device (NVD) Land-Field/Field Touch and Go 
 Q NVD Field Deck Landing Practice (FDLP) 
W T Field Touch and Go 

 
 
Ship 

1 A Ship Arrest/Recovery Assist, Secure and Traverse (RAST) 
2 B Ship Touch and Go 
3 C Ship Bolter/RAST Free Deck 
4 D Ship Helicopter/Clear Deck 
 N NVD Ship 

Source: Department of the Navy (2016, p. F-3). 

 

The FlightHistory.py script we wrote performs queries for an aircraft for each date 

between a specified date range. Figure 20 shows flight data for aircraft 168217 between 

April 1, 2018 and April 13, 2018. Total flight hours, landings, TMR hours and categorical 

landings are shown. 
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Figure 20. Flight History of BuNo 168217 from 4/1/2018 to 4/13/2018. 

Adapted from DECKPLATE NAVFLIR records with FlightHours.py 
(2022)/ 

The last step in generating the PCA flight data merged flight hours and landings 

with PCA serial numbers. The RemovalHistory.py script records the filtered removal 

MAFs with the cumulative flight hours and landings at removal. Figure 21 shows the final 

data for PCA serial number 77. The data is now ready for preprocessing and model training. 

 
Figure 21. PCA Serial Number 77 Removal Data from RemovalHistory.py 

D. TRAINING AND MODEL SELECTION 

The models used for estimating the conditional probability of failure included the 

statistical Weibull analysis and the CPH model. Failure data was categorized by 

malfunction code, which divided usable data into smaller subsets for analysis. The 

malfunction code recorded on removal MAFs is not necessarily a specific failure mode, 

but the type of maintenance required (Department of the Navy, 2021). The V22 FST did 

Weibull analysis on seven failure modes for their dataset of 526 PCA failures. Their failure 

modes were determined by analyzing failure descriptions entered in the MAFs by 

maintainers. Although there were more than seven failure modes in their dataset, some 

subdivisions had too little data for meaningful analysis. This thesis took a similar approach 

and only analyzed malfunction codes whose subsets had twenty or more datapoints. Table 

3 shows the malfunction codes of the resultant 1,144 failures. 
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Table 3. Malfunction Codes Analyzed 

Mal Code Description # 
Failures 

# 
Censored 

Blank Failed Technical Directive Inspection 63 1,081 
135 Binding, Stuck, Jammed 100 1,044 
20 Worn, Stripped, Chaffed, or Frayed – not wiring  158 986 
290 Fails – diagnostic/automatic tests 38 1,106 
295 Fails – check/test 264 880 
374 Internal Failure – Foreign Object Damage 39 1,105 
70 Broken, Burst, Ruptured, Punctured, Torn, or Cut 40 1,104 
150 Chattering 22 1,122 
Source: Department of the Navy (2021, p. E-11) and Models.py Python Script (2022). 

 

For machine-learning, the data was split into training and test subsets. Because the 

data is censored, splits are done by the removal dates. Eighty percent of failures for a 

malfunction code were used as training data and the remainder were used for test data.  

Table 4 shows the date at which eighty percent failures for a malfunction code were 

recorded. Model training was performed on training failures and censored failures. 

Censored failures had not yet failed with the malfunction code being evaluated. All data 

points in the test data must be considered censored for model prediction. Therefore, the 

flight data for each serial number in the test data is not at failure, but rather the time date 

the data split occurred.  

Table 4. Training and Test Data Split by Malfunction Code 

Mal Code Date at 80% # Training Failures # Censored # Test Failures 
Blank 3/30/2021 51 830 8 
135 6/4/2013 81 727 16 
20 8/23/2021 127 784 27 
290 10/4/2017 31 928 6 
295 11/23/2020 212 759 42 
374 4/19/2013 32 767 5 
70 7/1/2019 33 910 7 
150 5/16/2020 18 969 4 
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Python libraries provide functions and methods for reliability analysis including 

Weibull analysis. The V22 FST at FRC East used a two-parameter Weibull model for the 

analysis they shared for this thesis. They fit the distribution with a rank-regression method. 

The Python Reliability library provides Weibull model fitting functions and plots for the 

Weibull PDF, CDF, hazard function, and cumulative hazard function. The Model.py script 

we wrote imported the PCA failure data and used the reliability library functions for the 

Weibull analysis. Distributions are modeled by malfunction code, while all other failures 

are considered right censored.  

While determining conditional probability of failure for future RCM policy is the 

goal, model evaluation was done on the distribution function. The Weibull distribution is 

defined by the shape and character parameters that best fit the data. To estimate those 

parameters, fit parameters were adjusted. The methods of fitting were the mean-likelihood 

estimation (MLE), rank-regression on x (RRX), or rank-regression on y RRY (Reid, 2022). 

For this data, x is the failure time and y is the unreliability estimate. The default confidence 

interval for estimating confidence limits was 95%. Models were also fitted with different 

confidence intervals. The best performing distribution was determined by the log-

likelihood function; the higher the value, the better the model fit. A measure of the badness 

of fit of the distribution is the Akaike Information Criteria (AIC). This value indicates the 

bias of the log-likelihood; a smaller value indicates less over-fitting to the data (Konishi, 

& Kitagawa, 2008).  

The Lifelines Python library provides functions and methods for CPH analysis. 

Data was split similarly to Chapter IV Section D, but included the additional multivariate 

flight data. Once again, analysis of the effects of parameter adjustment were done on the 

resultant distribution. Besides adjusting the confidence interval, a penalizer is available to 

penalize coefficients that are highly correlated (Davidson-Pilon, 2019). The best 

performing distribution was determined by the log-likelihood function.  

E. FINAL TESTING 

Once the Weibull and CPH models were trained, predictions were made on the 

remaining test data for each malfunction code. The performance of each model was 
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evaluated using RMSE. Lastly the conditional probability of failure was plotted using the 

equation in Chapter II, Section B for survival flight hours.  



41 

V. RESULTS AND ANALYSIS 

This chapter discusses the findings of the work done. The first analysis compares 

the time-to-failure (TTF) data generated with the model to the data used by the V22 FST 

and the performance of the resultant Weibull analyses. Next, the Weibull analysis was done 

by malfunction code on all the failure data generated in this thesis. Independent models 

were fit adjusting methods of fit to include rank regression (RRX and RRY), mean 

likelihood (MLE), and confidence intervals. Lastly, Cox Proportional-Hazards 

(CPH)models were independently trained while adjusting hyperparameters to include 

confidence intervals and penalizers. Results show that the CPH models perform better than 

the Weibull analysis.  

A. WEIBULL ANALYSIS COMPARISON 

In this phase, the Weibull analysis was done only on failure data that matched those 

found by the V22 FST. The Maintenance Action Form (MAF) control number (MCN) is a 

unique code that identifies the form instance. The data generated in Chapter IV of this 

thesis found 1,144 MCNs for PCA actuator failures resulting in removal. The V22 FST 

found 546 unique MAFs; however, their latest datapoint was in February 2022 and 

included failure data from the CV-22. The data generated in this thesis captured MV-22B 

data only, up to August 2022. Of the 466 MV-22B MAFs captured by the V22 FST, 439 

were also captured in this thesis. The average difference in the mean time to failure (MTTF) 

was 203 flight hours. Table 5 shows the comparison of Weibull analyses done by the V22 

FST and those done in this thesis by failure mode. The number of failures by mode, 

resultant shape and character parameters, coefficient of determination, , and proportional 

reporting ratio (PRR) are depicted. 
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Table 5. V22 Fleet Support Team Weibull Model Results 

Failure Mode Data # 
Failed 

MTTF Beta Eta r^2 PRR 

Mode 01: Internal 
Wear Before 
Scheduled Greasing 

V22 
FST 

84 2089.39 1.99 2357.49 0.93 2.02 

Thesis 69 2290.86 2.08 2586.32 0.95 0 
Mode 02: Soft Stop V22 

FST 
59 3165.5 1.62 3534.10 0.88 0 

Thesis 51 2696.25 1.93 3040.08 0.98 0 
Mode 14: Internal 
Wear Post Scheduled 
Greasing 

V22 
FST 

79 3501.40 1.32 3801.88 0.93 2.61 

Thesis 66 2301.41 2.07 2598.07 0.99 0 
Mode 15: Cross-Over 
Jam 

V22 
FST 

43 3982.88 1.49 4408.02 0.98 66.73 

Thesis 43 4479.19 1.47 4950.73 0.97 0 
Mode 16: Inefficient 
Ballscrew 

V22 
FST 

81 2325.30 1.78 2613.17 0.94 3.42 

Thesis 70 2364.38 2.11 2669.58 0.94 0 
Mode 16: Ratcheting V22 

FST 
80 3128.33 1.42 3438.86 0.88 0 

Thesis 53 2601.84 2.14 2937.87 0.98 0 
Mode 21: Seal Damage V22 

FST 
20 2766.71 2.75 3109.11 0.92 13.96 

Thesis 17 4143.92 2.18 4679.19 0.94 0 
Adapted from data provided by the V22 FST and the Models.py script (2022). 

 

The Cross-Over Jam failure mode analysis for this thesis included all 43 MAFs 

captured by the V22 FST. Figure 22 and Figure 23 are the PDF plots of the Weibull 

analyses for this failure mode from the V22 FST and this thesis, respectively. Both used 

rank regression on Y fit and a 95% confidence interval. The PDF plots for all V22 FST 

failure modes and our corresponding analyses are show in Appendix A. 
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Figure 22. V22 FST Weibull PDF of PCA Mode 15: Cross-Over Jam. 

 Source: FRC East V22 FST Maintenance Optimization (2022). 

 
Figure 23. Thesis Weibull PDF of PCA Mode 15: Cross-Over Jam. 

Source: Models.py Python Script (2022). 
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B. WEIBULL MODELS WITH DECKPLATE DATA 

The second phase of this thesis applied Weibull analysis to failure data generated 

in Chapter IV with twenty or more datapoints. The model fits included RRX, RRY, and 

MLE. Confidence intervals ranged from 0.5 to 1.0 in steps of 0.05. To compare relative 

model performance, the log-likelihood and AIC were recorded. For each malfunction code, 

the model that produced the highest log-likelihood and the model that produced the lowest 

AIC were chosen. In all cases, the model with least negative lowest log-likelihood also had 

the smallest AIC. For each malfunction mode evaluated, the best performing model used 

the MLE method of fit with a confidence of 95%. Table 6 shows the hyperparameters of 

the best performing models for each malfunction code.  

Table 6. Best Performing Weibull PDF by Malfunction Code 

Malfunction 
Code 

# 
Failures 

# 
Censored 

Fit 
Method 

Conf. 
Int. 

Log-
Likelihood 

AIC 

20 63 1081 MLE 0.95 -1482.54 2969.09 
70 100 1044 MLE 0.95 -444.02 892.05 
135 158 986 MLE 0.95 -1002.92 2009.86 
150 38 1106 MLE 0.95 -249.03 502.07 
290 264 880 MLE 0.95 -415.88 835.78 
295 39 1105 MLE 0.95 -2379.5 4763.02 
374 40 1104 MLE 0.95 -426.65 857.3 
Blank (TD) 22 1122 MLE 0.95 -676.8 1357.61 

Adapted from Models.py Python Script (2022). 

 

As the confidence interval hyperparameter increases, the y-intersection point 

(unreliability) of the beta values on the plotted PDFs increases (Quanterion Solutions, 

2015). For applications of the Weibull analysis, a higher confidence interval may 

overestimate the percentage of components that have failed at a given service life. In this 

research, the differences between models using different confidence intervals were 

minimal. The full table of Weibull models can be found at the end of Appendix B. The 

MLE fit outperformed both rank-regression methods in every case. Of the seven 

malfunction codes evaluated, the most datapoints in the subsets was 264. Therefore, at least 
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77% of datapoints were censored for each malfunction code. The MLE method is generally 

better at handling highly censored data (ReliaSoft Corporation, 2007).     

C. CPH MODELS 

The final phase of this thesis applied the CPH analysis methodology to training and 

test data generated in Chapter IV. The first step in this phase was to train CPH models on 

the training data subset, evaluate relative performance, and validate assumptions for failure 

modes with twenty or more datapoints. The confidence interval was tested from 0.5 to 1.0 

in steps of 0.05 and the penalizer from 0.15 to 0 in steps of 0.05. To compare relative model 

performance, the log-likelihood and AIC were recorded. For each malfunction code, the 

model that produced the highest log-likelihood and the model that produced the lowest AIC 

were chosen. Table 7 shows the hyperparameters of the best performing models for each 

malfunction code. 

Table 7. Best Performing CPH Model by Malfunction Code 

Malfunction 
Code 

# 
Failures 

# 
Censored 

Conf. 
Int. 

Penalty Log-
Likelihood 

AIC 

20 51 830 0.95 0.0 -386.91 793.82 
70 81 727 0.95 0.0 -99.55 219.09 
135 127 784 0.95 0.0 -241.93 503.86 
150 31 928 0.95 0.0 -52 124 
290 212 759 0.95 0.0 -87.98 195.96 
295 32 767 0.95 0.0 -641.15 1302.31 
374 33 910 0.95 0.0 -87.71 195.42 
Blank (TD) 18 969 0.95 0.0 -162.03 344.05 

Adapted from Models.py Python Script (2022). 

 

In all cases, the model with least negative lowest log-likelihood also had the 

smallest AIC. For each malfunction mode evaluated, the best performing model used a 

confidence interval of 95% and zero penalty. The penalizer prevented models using MLE 

from overfitting (Pampuri, De Luca, & De Nicolao, 2011). This is a good indication that 

the models are less likely to be overfitted to the training data. The full table of CPH models 

can be found at the end of Appendix B. 
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Section III.D.3 of this thesis assumes that the ratio between covariate hazard rates 

is constant over time for CPH analysis. The Lifelines library provides a method to check 

these assumptions using the Schoenfeld residuals (Davidson-Pilon, 2019). Using a 

threshold of 0.05, on three occasions covariate p-values violated the CPH assumption: ship 

landings for malfunction code 20, austere landings for malfunction code 70, and TMR_7 

hours for removals due to technical-directive inspection failures. Figure 24 shows 

Schoenfeld residuals of ship landings for malfunction code 20. The sums of the covariate 

residuals are depicted on vertical axis and the rank and Kaplan Meir-transformed expected 

survival times are depicted on the horizontal axis. Schoenfeld plots for malfunction code 

70 and technical-directive inspection failures are in Appendix C. 

 
Figure 24. Scaled Schoenfeld Residuals of Ship Landings for Malfunction 

Code 20 - Worn, Stripped, Chaffed, or Frayed – Not Wiring. 
Source: Models.py Python Script (2022). 

Although these three models violated the CPH assumption, they are not necessarily 

unacceptable if no “more correct” model exists to define the distribution (Tai & Machin, 

2014). These three models were run again on the training data, excluding the corresponding 

covariate that failed the CPH assumption. Table 8 shows the relative performance of 
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models. All three models passed the CPH assumption check, but their difference in 

performance is negligible. 

Table 8. CPH Assumption Model Comparison 

Malfunction 
Code 

Training Data Log-
Likelihood 

AIC Satisfies 
CPH 
Assumption? 

20 With Ship Landings -386.91 793.82 No 
Without Ship Landings -386.92 791.84 Yes 

70 With Austere Landings -99.55 219.09 No 
Without Austere Landings -99.62 217.24 Yes 

Blank (TD) With TMR_7 -162.03 344.05 No 
Without TMR_7 -161.97 341.93 Yes 

 

The predicted survival functions from the CPH models were plotted with the test 

data using the Lifelines library (Davidson-Pilon, 2019). Figure 25 show the probability that 

each PCA with malfunction code 70 in the test data has failed as a function of flight hours. 

The legend shows the true time to failure for each PCA, which can be compared to the 

corresponding survival function. All predicted survival plots are shown in Appendix C.  

 
Figure 25. CPH Predicted Survival for Malfunction Code 70 Test Data. 

Source: Models.py Python Script (2022). 
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The final step in this phase was to compare the best performing CPH to the best 

performing Weibull models for each malfunction code. The CPH models were re-trained 

on all failure data like the Weibull models with the hyperparameters chosen from Table 7. 

In all cases, the CPH models had a less negative log-likelihood and lower AIC, which 

indicated they were better. 

Table 9. Weibull and CPH Performance Comparison 

Malfunction Code Model Log-Likelihood AIC 
20 Weibull -1482.54 2969.09 

CHP -511.28 1042.57 
70 Weibull -444.02 892.05 

CHP -127.1 274.19 
135 Weibull -1002.92 2009.86 

CHP -329.2 678.4 
150 Weibull -249.03 502.07 

CHP -69.51 159.03 
290 Weibull -415.88 835.78 

CHP -116.19 252.38 
295 Weibull -2379.5 4763.02 

CHP -843.94 1707.89 
374 Weibull -426.65 857.3 

CHP -121.91 263.83 
Blank (TD) Weibull -676.8 1357.61 

CHP -213.58 447.16 
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VI. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

In this research we have shown a better way that naval-aviation data can be used 

with machine learning to determine the conditional probability of failure of aircraft 

components. By merging flight data with component-failure data, multivariate machine-

learning models can fit failure distributions with a better log-likelihood than the Weibull 

model. On the average, the log-likelihood of Cox Proportional-Hazards (CPH) models was 

31% better than the Weibull models. The CPH model can also handle the highly censored 

maintenance records for complex aircraft components without violating assumptions 

beyond an acceptable level. On average, 92% of failures were right-censored for CPH 

model training. For the covariates that did violate CPH assumptions, their impact on model 

performance we negligible. 

We evaluated data repositories in DECKPLATE to identify solutions for merging 

aircraft flight data with components installed during those flights. Through our analysis, 

we found it useful to categorize flight data as non-austere, austere, and shipboard-operation 

based on Total Mission Requirement (TMR) and landing codes. Serial-number tracking 

can be evaluated to determine approximately on what dates components were installed on 

aircraft. Failure modes can be categorized by the malfunction code, transaction code, and 

action-taken code, and censored for modelling. A comparison of Weibull and CPH models 

was made for the same PCA failures identified by the V22 FST using flight data generated 

in this thesis. Although the CPH models clearly performed better, this is not surprising in 

comparing univariate and multivariate models.  

The Weibull models were run with a wide range of hyperparameters including 

confidence intervals and methods of fitting. The confidence interval had little significance 

on performance, but mean-likelihood estimation always did best due to the high percentage 

of censored data. The CPH models were also run with a wide range of confidence intervals 

and penalizer values, but a 95% confidence interval and zero penalty always did best. The 

resultant survival function of trained CPH models often overestimated the time to failure 
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of test data. This shows that splitting censored failure data by a set date may not be the best 

method. Data points whose failures were closer to the date on which the split occurred 

tended to be overestimated more than others. 

B. FUTURE WORK 

This research met the objectives of developing a methodology to extract meaningful 

component history from maintenance records and apply machine-learning models to 

predict the conditional probability of failure. However, challenges still arise that require 

more research. The number of installation and removal imputations required to give a 

complete picture of a component’s service history is a concern. We believe that the survival 

function overestimating the time to failure of test data can be attributed to assumptions 

made in data imputation and the method for splitting censored data. The DECKPLATE 

electronic-log database is incomplete, which could be rectified by squadron-maintenance 

work centers having physical log sets of components and their maintenance history.  

Due to resource limitations, the neural-network models were not published in this 

thesis. Time-series data could be extracted from the same repositories used in this thesis as 

inputs for long short-term memory (LSTM) or other recurrent neural-network 

architectures. Additionally, flight data are not the only continuous variables available in 

these repositories for model training. We recommend including maintenance factors such 

as the number of times a component has received certain types of maintenance to see how 

they impact the survival function of those components. 

Lastly, the V22 FST did a comprehensive failure-mode analysis of the MV-22B 

PCA actuator records. With 31 tracked subassemblies and far more individual components, 

a PCA failure cannot be accurately described by the general malfunction codes used in 

naval aviation. The V22 FST manually reads the system and failure descriptions entered as 

remarks by maintainers to determine the precise failure mode that justified removal. Text 

analysis to classify failure modes from the MAF form remarks using artificial intelligence 

is an opportunity to better categorize and censor failure data. 
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APPENDIX A.  WEIBULL MODEL COMPARISONS 

 
Figure 26. Weibull PDF of PCA Mode 1: Internal Wear Before Scheduled 

Greasing. 
Source: FRC East V22 FST Maintenance Optimization (2022). 

 
Figure 27. Weibull PDF of PCA Mode 1: Internal Wear Before Scheduled 

Greasing. 
Source: Models.py Python Script (2022). 
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Figure 28. V22 FST Weibull PDF of PCA Mode 2: Soft Stop. Source: FRC 

East V22 FST Maintenance Optimization (2022). 

 
Figure 29. Thesis Weibull PDF of PCA Mode 2: Soft Stop.  

Source: Models.py Python Script (2022). 
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Figure 30. V22 FST Weibull PDF of PCA Mode 14: Internal Wear Post 

Scheduled Greasing.  
Source: FRC East V22 FST Maintenance Optimization (2022). 

 
Figure 31. Thesis Weibull PDF of PCA Mode 14: Internal Wear Post 

Scheduled Greasing.  
Source: Models.py Python Script (2022). 
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Figure 32. V22 FST Weibull PDF of PCA Mode 15: Cross-Over Jam. 

 Source: FRC East V22 FST Maintenance Optimization (2022). 

 
Figure 33. Thesis Weibull PDF of PCA Mode 15: Cross-Over Jam. 

Source: Models.py Python Script (2022). 
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Figure 34. V22 FST Weibull PDF of PCA Mode 16: Insufficient Ballscrew. 

Source: FRC East V22 FST Maintenance Optimization (2022). 

 
Figure 35. Thesis Weibull PDF of PCA Mode 16: Insufficient Ballscrew. 

Source: Models.py Python Script (2022). 
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Figure 36. V22 FST Weibull PDF of PCA Mode 16: Ratcheting. 

Source: FRC East V22 FST Maintenance Optimization (2022). 

 
Figure 37. Thesis Weibull PDF of PCA Mode 16: Ratcheting. 

Source: Models.py Python Script (2022). 
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Figure 38. V22 FST Weibull PDF of PCA Mode 21: Seal Damage. 

Source: FRC East V22 FST Maintenance Optimization (2022). 

 
Figure 39. Thesis Weibull PDF of PCA Mode 21: Seal Damage. 

Source: Models.py Python Script (2022). 
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APPENDIX B.  WEIBULL AND CPH PERFORMANCE 

Table 10. Weibull Model Performance by Failure Mode and Hyperparameter 

Malfunction Code Fit Method Conf. In.t MTTF Log-Likelihood AIC 

20 MLE 0.95 2293.71 -1482.54 2969.09 

20 MLE 0.9 2293.71 -1482.54 2969.09 

20 MLE 0.85 2293.71 -1482.54 2969.09 

20 MLE 0.8 2293.71 -1482.54 2969.09 

20 MLE 0.75 2293.71 -1482.54 2969.09 

20 MLE 0.7 2293.71 -1482.54 2969.09 

20 MLE 0.65 2293.71 -1482.54 2969.09 

20 MLE 0.6 2293.71 -1482.54 2969.09 

20 MLE 0.55 2293.71 -1482.54 2969.09 

20 MLE 0.5 2293.71 -1482.54 2969.09 

20 RRX 0.95 2213.06 -1482.84 2969.7 

20 RRX 0.9 2213.06 -1482.84 2969.7 

20 RRX 0.85 2213.06 -1482.84 2969.7 

20 RRX 0.8 2213.06 -1482.84 2969.7 

20 RRX 0.75 2213.06 -1482.84 2969.7 

20 RRX 0.7 2213.06 -1482.84 2969.7 

20 RRX 0.65 2213.06 -1482.84 2969.7 

20 RRX 0.6 2213.06 -1482.84 2969.7 

20 RRX 0.55 2213.06 -1482.84 2969.7 

20 RRX 0.5 2213.06 -1482.84 2969.7 

20 RRY 0.95 2412.89 -1483.06 2970.13 

20 RRY 0.9 2412.89 -1483.06 2970.13 

20 RRY 0.85 2412.89 -1483.06 2970.13 

20 RRY 0.8 2412.89 -1483.06 2970.13 

20 RRY 0.75 2412.89 -1483.06 2970.13 

20 RRY 0.7 2412.89 -1483.06 2970.13 

20 RRY 0.65 2412.89 -1483.06 2970.13 

20 RRY 0.6 2412.89 -1483.06 2970.13 

20 RRY 0.55 2412.89 -1483.06 2970.13 

20 RRY 0.5 2412.89 -1483.06 2970.13 

70 MLE 0.95 8566.98 -444.02 892.05 

70 MLE 0.9 8566.98 -444.02 892.05 

70 MLE 0.85 8566.98 -444.02 892.05 

70 MLE 0.8 8566.98 -444.02 892.05 

70 MLE 0.75 8566.98 -444.02 892.05 
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Malfunction Code Fit Method Conf. In.t MTTF Log-Likelihood AIC 

70 MLE 0.7 8566.98 -444.02 892.05 

70 MLE 0.65 8566.98 -444.02 892.05 

70 MLE 0.6 8566.98 -444.02 892.05 

70 MLE 0.55 8566.98 -444.02 892.05 

70 MLE 0.5 8566.98 -444.02 892.05 

70 RRX 0.95 9363.9 -444.15 892.31 

70 RRX 0.9 9363.9 -444.15 892.31 

70 RRX 0.85 9363.9 -444.15 892.31 

70 RRX 0.8 9363.9 -444.15 892.31 

70 RRX 0.75 9363.9 -444.15 892.31 

70 RRX 0.7 9363.9 -444.15 892.31 

70 RRX 0.65 9363.9 -444.15 892.31 

70 RRX 0.6 9363.9 -444.15 892.31 

70 RRX 0.55 9363.9 -444.15 892.31 

70 RRX 0.5 9363.9 -444.15 892.31 

70 RRY 0.95 10376.32 -444.24 892.5 

70 RRY 0.9 10376.32 -444.24 892.5 

70 RRY 0.85 10376.32 -444.24 892.5 

70 RRY 0.8 10376.32 -444.24 892.5 

70 RRY 0.75 10376.32 -444.24 892.5 

70 RRY 0.7 10376.32 -444.24 892.5 

70 RRY 0.65 10376.32 -444.24 892.5 

70 RRY 0.6 10376.32 -444.24 892.5 

70 RRY 0.55 10376.32 -444.24 892.5 

70 RRY 0.5 10376.32 -444.24 892.5 

135 MLE 0.95 3366.62 -1002.92 2009.86 

135 MLE 0.9 3366.62 -1002.92 2009.86 

135 MLE 0.85 3366.62 -1002.92 2009.86 

135 MLE 0.8 3366.62 -1002.92 2009.86 

135 MLE 0.75 3366.62 -1002.92 2009.86 

135 MLE 0.7 3366.62 -1002.92 2009.86 

135 MLE 0.65 3366.62 -1002.92 2009.86 

135 MLE 0.6 3366.62 -1002.92 2009.86 

135 MLE 0.55 3366.62 -1002.92 2009.86 

135 MLE 0.5 3366.62 -1002.92 2009.86 

135 RRY 0.95 3103.17 -1003.31 2010.63 

135 RRY 0.9 3103.17 -1003.31 2010.63 

135 RRY 0.85 3103.17 -1003.31 2010.63 

135 RRY 0.8 3103.17 -1003.31 2010.63 
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Malfunction Code Fit Method Conf. In.t MTTF Log-Likelihood AIC 

135 RRY 0.75 3103.17 -1003.31 2010.63 

135 RRY 0.7 3103.17 -1003.31 2010.63 

135 RRY 0.65 3103.17 -1003.31 2010.63 

135 RRY 0.6 3103.17 -1003.31 2010.63 

135 RRY 0.55 3103.17 -1003.31 2010.63 

135 RRY 0.5 3103.17 -1003.31 2010.63 

135 RRX 0.95 3014.41 -1003.67 2011.34 

135 RRX 0.9 3014.41 -1003.67 2011.34 

135 RRX 0.85 3014.41 -1003.67 2011.34 

135 RRX 0.8 3014.41 -1003.67 2011.34 

135 RRX 0.75 3014.41 -1003.67 2011.34 

135 RRX 0.7 3014.41 -1003.67 2011.34 

135 RRX 0.65 3014.41 -1003.67 2011.34 

135 RRX 0.6 3014.41 -1003.67 2011.34 

135 RRX 0.55 3014.41 -1003.67 2011.34 

135 RRX 0.5 3014.41 -1003.67 2011.34 

150 MLE 0.95 5072.81 -249.03 502.07 

150 MLE 0.9 5072.81 -249.03 502.07 

150 MLE 0.85 5072.81 -249.03 502.07 

150 MLE 0.8 5072.81 -249.03 502.07 

150 MLE 0.75 5072.81 -249.03 502.07 

150 MLE 0.7 5072.81 -249.03 502.07 

150 MLE 0.65 5072.81 -249.03 502.07 

150 MLE 0.6 5072.81 -249.03 502.07 

150 MLE 0.55 5072.81 -249.03 502.07 

150 MLE 0.5 5072.81 -249.03 502.07 

150 RRX 0.95 5070.09 -249.13 502.26 

150 RRX 0.9 5070.09 -249.13 502.26 

150 RRX 0.85 5070.09 -249.13 502.26 

150 RRX 0.8 5070.09 -249.13 502.26 

150 RRX 0.75 5070.09 -249.13 502.26 

150 RRX 0.7 5070.09 -249.13 502.26 

150 RRX 0.65 5070.09 -249.13 502.26 

150 RRX 0.6 5070.09 -249.13 502.26 

150 RRX 0.55 5070.09 -249.13 502.26 

150 RRX 0.5 5070.09 -249.13 502.26 

150 RRY 0.95 5583.61 -249.17 502.35 

150 RRY 0.9 5583.61 -249.17 502.35 

150 RRY 0.85 5583.61 -249.17 502.35 
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Malfunction Code Fit Method Conf. In.t MTTF Log-Likelihood AIC 

150 RRY 0.8 5583.61 -249.17 502.35 

150 RRY 0.75 5583.61 -249.17 502.35 

150 RRY 0.7 5583.61 -249.17 502.35 

150 RRY 0.65 5583.61 -249.17 502.35 

150 RRY 0.6 5583.61 -249.17 502.35 

150 RRY 0.55 5583.61 -249.17 502.35 

150 RRY 0.5 5583.61 -249.17 502.35 

290 MLE 0.95 5066.34 -415.88 835.78 

290 MLE 0.9 5066.34 -415.88 835.78 

290 MLE 0.85 5066.34 -415.88 835.78 

290 MLE 0.8 5066.34 -415.88 835.78 

290 MLE 0.75 5066.34 -415.88 835.78 

290 MLE 0.7 5066.34 -415.88 835.78 

290 MLE 0.65 5066.34 -415.88 835.78 

290 MLE 0.6 5066.34 -415.88 835.78 

290 MLE 0.55 5066.34 -415.88 835.78 

290 MLE 0.5 5066.34 -415.88 835.78 

290 RRX 0.95 6524.2 -416.64 837.28 

290 RRX 0.9 6524.2 -416.64 837.28 

290 RRX 0.85 6524.2 -416.64 837.28 

290 RRX 0.8 6524.2 -416.64 837.28 

290 RRX 0.75 6524.2 -416.64 837.28 

290 RRX 0.7 6524.2 -416.64 837.28 

290 RRX 0.65 6524.2 -416.64 837.28 

290 RRX 0.6 6524.2 -416.64 837.28 

290 RRX 0.55 6524.2 -416.64 837.28 

290 RRX 0.5 6524.2 -416.64 837.28 

290 RRY 0.95 7786.52 -417.5 839.01 

290 RRY 0.9 7786.52 -417.5 839.01 

290 RRY 0.85 7786.52 -417.5 839.01 

290 RRY 0.8 7786.52 -417.5 839.01 

290 RRY 0.75 7786.52 -417.5 839.01 

290 RRY 0.7 7786.52 -417.5 839.01 

290 RRY 0.65 7786.52 -417.5 839.01 

290 RRY 0.6 7786.52 -417.5 839.01 

290 RRY 0.55 7786.52 -417.5 839.01 

290 RRY 0.5 7786.52 -417.5 839.01 

295 MLE 0.95 1967.81 -2379.5 4763.02 

295 MLE 0.9 1967.81 -2379.5 4763.02 
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Malfunction Code Fit Method Conf. In.t MTTF Log-Likelihood AIC 

295 MLE 0.85 1967.81 -2379.5 4763.02 

295 MLE 0.8 1967.81 -2379.5 4763.02 

295 MLE 0.75 1967.81 -2379.5 4763.02 

295 MLE 0.7 1967.81 -2379.5 4763.02 

295 MLE 0.65 1967.81 -2379.5 4763.02 

295 MLE 0.6 1967.81 -2379.5 4763.02 

295 MLE 0.55 1967.81 -2379.5 4763.02 

295 MLE 0.5 1967.81 -2379.5 4763.02 

295 RRX 0.95 1987.42 -2379.57 4763.15 

295 RRX 0.9 1987.42 -2379.57 4763.15 

295 RRX 0.85 1987.42 -2379.57 4763.15 

295 RRX 0.8 1987.42 -2379.57 4763.15 

295 RRX 0.75 1987.42 -2379.57 4763.15 

295 RRX 0.7 1987.42 -2379.57 4763.15 

295 RRX 0.65 1987.42 -2379.57 4763.15 

295 RRX 0.6 1987.42 -2379.57 4763.15 

295 RRX 0.55 1987.42 -2379.57 4763.15 

295 RRX 0.5 1987.42 -2379.57 4763.15 

295 RRY 0.95 1994.67 -2379.6 4763.21 

295 RRY 0.9 1994.67 -2379.6 4763.21 

295 RRY 0.85 1994.67 -2379.6 4763.21 

295 RRY 0.8 1994.67 -2379.6 4763.21 

295 RRY 0.75 1994.67 -2379.6 4763.21 

295 RRY 0.7 1994.67 -2379.6 4763.21 

295 RRY 0.65 1994.67 -2379.6 4763.21 

295 RRY 0.6 1994.67 -2379.6 4763.21 

295 RRY 0.55 1994.67 -2379.6 4763.21 

295 RRY 0.5 1994.67 -2379.6 4763.21 

374 MLE 0.95 5189.38 -426.65 857.3 

374 MLE 0.9 5189.38 -426.65 857.3 

374 MLE 0.85 5189.38 -426.65 857.3 

374 MLE 0.8 5189.38 -426.65 857.3 

374 MLE 0.75 5189.38 -426.65 857.3 

374 MLE 0.7 5189.38 -426.65 857.3 

374 MLE 0.65 5189.38 -426.65 857.3 

374 MLE 0.6 5189.38 -426.65 857.3 

374 MLE 0.55 5189.38 -426.65 857.3 

374 MLE 0.5 5189.38 -426.65 857.3 

374 RRX 0.95 5602.36 -426.77 857.55 
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Malfunction Code Fit Method Conf. In.t MTTF Log-Likelihood AIC 

374 RRX 0.9 5602.36 -426.77 857.55 

374 RRX 0.85 5602.36 -426.77 857.55 

374 RRX 0.8 5602.36 -426.77 857.55 

374 RRX 0.75 5602.36 -426.77 857.55 

374 RRX 0.7 5602.36 -426.77 857.55 

374 RRX 0.65 5602.36 -426.77 857.55 

374 RRX 0.6 5602.36 -426.77 857.55 

374 RRX 0.55 5602.36 -426.77 857.55 

374 RRX 0.5 5602.36 -426.77 857.55 

374 RRY 0.95 5939.67 -426.88 857.77 

374 RRY 0.9 5939.67 -426.88 857.77 

374 RRY 0.85 5939.67 -426.88 857.77 

374 RRY 0.8 5939.67 -426.88 857.77 

374 RRY 0.75 5939.67 -426.88 857.77 

374 RRY 0.7 5939.67 -426.88 857.77 

374 RRY 0.65 5939.67 -426.88 857.77 

374 RRY 0.6 5939.67 -426.88 857.77 

374 RRY 0.55 5939.67 -426.88 857.77 

374 RRY 0.5 5939.67 -426.88 857.77 

Blank (TD) MLE 0.95 19543.52 -676.8 1357.61 

Blank (TD) MLE 0.9 19543.52 -676.8 1357.61 

Blank (TD) MLE 0.85 19543.52 -676.8 1357.61 

Blank (TD) MLE 0.8 19543.52 -676.8 1357.61 

Blank (TD) MLE 0.75 19543.52 -676.8 1357.61 

Blank (TD) MLE 0.7 19543.52 -676.8 1357.61 

Blank (TD) MLE 0.65 19543.52 -676.8 1357.61 

Blank (TD) MLE 0.6 19543.52 -676.8 1357.61 

Blank (TD) MLE 0.55 19543.52 -676.8 1357.61 

Blank (TD) MLE 0.5 19543.52 -676.8 1357.61 

Blank (TD) RRY 0.95 19494.86 -676.81 1357.62 

Blank (TD) RRY 0.9 19494.86 -676.81 1357.62 

Blank (TD) RRY 0.85 19494.86 -676.81 1357.62 

Blank (TD) RRY 0.8 19494.86 -676.81 1357.62 

Blank (TD) RRY 0.75 19494.86 -676.81 1357.62 

Blank (TD) RRY 0.7 19494.86 -676.81 1357.62 

Blank (TD) RRY 0.65 19494.86 -676.81 1357.62 

Blank (TD) RRY 0.6 19494.86 -676.81 1357.62 

Blank (TD) RRY 0.55 19494.86 -676.81 1357.62 

Blank (TD) RRY 0.5 19494.86 -676.81 1357.62 
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Malfunction Code Fit Method Conf. In.t MTTF Log-Likelihood AIC 

Blank (TD) RRX 0.95 16797.63 -676.91 1357.83 

Blank (TD) RRX 0.9 16797.63 -676.91 1357.83 

Blank (TD) RRX 0.85 16797.63 -676.91 1357.83 

Blank (TD) RRX 0.8 16797.63 -676.91 1357.83 

Blank (TD) RRX 0.75 16797.63 -676.91 1357.83 

Blank (TD) RRX 0.7 16797.63 -676.91 1357.83 

Blank (TD) RRX 0.65 16797.63 -676.91 1357.83 

Blank (TD) RRX 0.6 16797.63 -676.91 1357.83 

Blank (TD) RRX 0.55 16797.63 -676.91 1357.83 

Blank (TD) RRX 0.5 16797.63 -676.91 1357.83 

Adapted from Models.py Python Script (2022). 

Table 11. CPH Model Performance by Failure Mode and Hyperparameter 

Malfunction Code Conf. Int. Penalty Log-Likelihood AIC 

20 0.95 0 -386.91 793.82 

20 0.9 0 -386.91 793.82 

20 0.85 0 -386.91 793.82 

20 0.8 0 -386.91 793.82 

20 0.75 0 -386.91 793.82 

20 0.7 0 -386.91 793.82 

20 0.65 0 -386.91 793.82 

20 0.6 0 -386.91 793.82 

20 0.55 0 -386.91 793.82 

20 0.5 0 -386.91 793.82 

20 0.95 0.05 -627.73 1275.46 

20 0.9 0.05 -627.73 1275.46 

20 0.85 0.05 -627.73 1275.46 

20 0.8 0.05 -627.73 1275.46 

20 0.75 0.05 -627.73 1275.46 

20 0.7 0.05 -627.73 1275.46 

20 0.65 0.05 -627.73 1275.46 

20 0.6 0.05 -627.73 1275.46 

20 0.55 0.05 -627.73 1275.46 

20 0.5 0.05 -627.73 1275.46 

20 0.95 0.1 -653.68 1327.36 

20 0.9 0.1 -653.68 1327.36 

20 0.85 0.1 -653.68 1327.36 

20 0.8 0.1 -653.68 1327.36 
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Malfunction Code Conf. Int. Penalty Log-Likelihood AIC 

20 0.75 0.1 -653.68 1327.36 

20 0.7 0.1 -653.68 1327.36 

20 0.65 0.1 -653.68 1327.36 

20 0.6 0.1 -653.68 1327.36 

20 0.55 0.1 -653.68 1327.36 

20 0.5 0.1 -653.68 1327.36 

20 0.95 0.15 -667.03 1354.06 

20 0.9 0.15 -667.03 1354.06 

20 0.85 0.15 -667.03 1354.06 

20 0.8 0.15 -667.03 1354.06 

20 0.75 0.15 -667.03 1354.06 

20 0.7 0.15 -667.03 1354.06 

20 0.65 0.15 -667.03 1354.06 

20 0.6 0.15 -667.03 1354.06 

20 0.55 0.15 -667.03 1354.06 

20 0.5 0.15 -667.03 1354.06 

70 0.95 0 -99.55 219.09 

70 0.9 0 -99.55 219.09 

70 0.85 0 -99.55 219.09 

70 0.8 0 -99.55 219.09 

70 0.75 0 -99.55 219.09 

70 0.7 0 -99.55 219.09 

70 0.65 0 -99.55 219.09 

70 0.6 0 -99.55 219.09 

70 0.55 0 -99.55 219.09 

70 0.5 0 -99.55 219.09 

70 0.95 0.05 -180.35 380.69 

70 0.9 0.05 -180.35 380.69 

70 0.85 0.05 -180.35 380.69 

70 0.8 0.05 -180.35 380.69 

70 0.75 0.05 -180.35 380.69 

70 0.7 0.05 -180.35 380.69 

70 0.65 0.05 -180.35 380.69 

70 0.6 0.05 -180.35 380.69 

70 0.55 0.05 -180.35 380.69 

70 0.5 0.05 -180.35 380.69 

70 0.95 0.1 -187.07 394.14 

70 0.9 0.1 -187.07 394.14 

70 0.85 0.1 -187.07 394.14 
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70 0.8 0.1 -187.07 394.14 

70 0.75 0.1 -187.07 394.14 

70 0.7 0.1 -187.07 394.14 

70 0.65 0.1 -187.07 394.14 

70 0.6 0.1 -187.07 394.14 

70 0.55 0.1 -187.07 394.14 

70 0.5 0.1 -187.07 394.14 

70 0.95 0.15 -190.12 400.25 

70 0.9 0.15 -190.12 400.25 

70 0.85 0.15 -190.12 400.25 

70 0.8 0.15 -190.12 400.25 

70 0.75 0.15 -190.12 400.25 

70 0.7 0.15 -190.12 400.25 

70 0.65 0.15 -190.12 400.25 

70 0.6 0.15 -190.12 400.25 

70 0.55 0.15 -190.12 400.25 

70 0.5 0.15 -190.12 400.25 

135 0.95 0 -241.93 503.86 

135 0.9 0 -241.93 503.86 

135 0.85 0 -241.93 503.86 

135 0.8 0 -241.93 503.86 

135 0.75 0 -241.93 503.86 

135 0.7 0 -241.93 503.86 

135 0.65 0 -241.93 503.86 

135 0.6 0 -241.93 503.86 

135 0.55 0 -241.93 503.86 

135 0.5 0 -241.93 503.86 

135 0.95 0.05 -410.26 840.52 

135 0.9 0.05 -410.26 840.52 

135 0.85 0.05 -410.26 840.52 

135 0.8 0.05 -410.26 840.52 

135 0.75 0.05 -410.26 840.52 

135 0.7 0.05 -410.26 840.52 

135 0.65 0.05 -410.26 840.52 

135 0.6 0.05 -410.26 840.52 

135 0.55 0.05 -410.26 840.52 

135 0.5 0.05 -410.26 840.52 

135 0.95 0.1 -427.63 875.26 

135 0.9 0.1 -427.63 875.26 
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135 0.85 0.1 -427.63 875.26 

135 0.8 0.1 -427.63 875.26 

135 0.75 0.1 -427.63 875.26 

135 0.7 0.1 -427.63 875.26 

135 0.65 0.1 -427.63 875.26 

135 0.6 0.1 -427.63 875.26 

135 0.55 0.1 -427.63 875.26 

135 0.5 0.1 -427.63 875.26 

135 0.95 0.15 -436.5 893.01 

135 0.9 0.15 -436.5 893.01 

135 0.85 0.15 -436.5 893.01 

135 0.8 0.15 -436.5 893.01 

135 0.75 0.15 -436.5 893.01 

135 0.7 0.15 -436.5 893.01 

135 0.65 0.15 -436.5 893.01 

135 0.6 0.15 -436.5 893.01 

135 0.55 0.15 -436.5 893.01 

135 0.5 0.15 -436.5 893.01 

150 0.95 0 -52 124 

150 0.9 0 -52 124 

150 0.85 0 -52 124 

150 0.8 0 -52 124 

150 0.75 0 -52 124 

150 0.7 0 -52 124 

150 0.65 0 -52 124 

150 0.6 0 -52 124 

150 0.55 0 -52 124 

150 0.5 0 -52 124 

150 0.95 0.05 -97.3 214.6 

150 0.9 0.05 -97.3 214.6 

150 0.85 0.05 -97.3 214.6 

150 0.8 0.05 -97.3 214.6 

150 0.75 0.05 -97.3 214.6 

150 0.7 0.05 -97.3 214.6 

150 0.65 0.05 -97.3 214.6 

150 0.6 0.05 -97.3 214.6 

150 0.55 0.05 -97.3 214.6 

150 0.5 0.05 -97.3 214.6 

150 0.95 0.1 -99.4 218.79 
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150 0.9 0.1 -99.4 218.79 

150 0.85 0.1 -99.4 218.79 

150 0.8 0.1 -99.4 218.79 

150 0.75 0.1 -99.4 218.79 

150 0.7 0.1 -99.4 218.79 

150 0.65 0.1 -99.4 218.79 

150 0.6 0.1 -99.4 218.79 

150 0.55 0.1 -99.4 218.79 

150 0.5 0.1 -99.4 218.79 

150 0.95 0.15 -100.25 220.5 

150 0.9 0.15 -100.25 220.5 

150 0.85 0.15 -100.25 220.5 

150 0.8 0.15 -100.25 220.5 

150 0.75 0.15 -100.25 220.5 

150 0.7 0.15 -100.25 220.5 

150 0.65 0.15 -100.25 220.5 

150 0.6 0.15 -100.25 220.5 

150 0.55 0.15 -100.25 220.5 

150 0.5 0.15 -100.25 220.5 

290 0.95 0 -87.98 195.96 

290 0.9 0 -87.98 195.96 

290 0.85 0 -87.98 195.96 

290 0.8 0 -87.98 195.96 

290 0.75 0 -87.98 195.96 

290 0.7 0 -87.98 195.96 

290 0.65 0 -87.98 195.96 

290 0.6 0 -87.98 195.96 

290 0.55 0 -87.98 195.96 

290 0.5 0 -87.98 195.96 

290 0.95 0.05 -159.66 339.32 

290 0.9 0.05 -159.66 339.32 

290 0.85 0.05 -159.66 339.32 

290 0.8 0.05 -159.66 339.32 

290 0.75 0.05 -159.66 339.32 

290 0.7 0.05 -159.66 339.32 

290 0.65 0.05 -159.66 339.32 

290 0.6 0.05 -159.66 339.32 

290 0.55 0.05 -159.66 339.32 

290 0.5 0.05 -159.66 339.32 
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Malfunction Code Conf. Int. Penalty Log-Likelihood AIC 

290 0.95 0.1 -165.51 351.02 

290 0.9 0.1 -165.51 351.02 

290 0.85 0.1 -165.51 351.02 

290 0.8 0.1 -165.51 351.02 

290 0.75 0.1 -165.51 351.02 

290 0.7 0.1 -165.51 351.02 

290 0.65 0.1 -165.51 351.02 

290 0.6 0.1 -165.51 351.02 

290 0.55 0.1 -165.51 351.02 

290 0.5 0.1 -165.51 351.02 

290 0.95 0.15 -168.16 356.32 

290 0.9 0.15 -168.16 356.32 

290 0.85 0.15 -168.16 356.32 

290 0.8 0.15 -168.16 356.32 

290 0.75 0.15 -168.16 356.32 

290 0.7 0.15 -168.16 356.32 

290 0.65 0.15 -168.16 356.32 

290 0.6 0.15 -168.16 356.32 

290 0.55 0.15 -168.16 356.32 

290 0.5 0.15 -168.16 356.32 

295 0.95 0 -641.15 1302.31 

295 0.9 0 -641.15 1302.31 

295 0.85 0 -641.15 1302.31 

295 0.8 0 -641.15 1302.31 

295 0.75 0 -641.15 1302.31 

295 0.7 0 -641.15 1302.31 

295 0.65 0 -641.15 1302.31 

295 0.6 0 -641.15 1302.31 

295 0.55 0 -641.15 1302.31 

295 0.5 0 -641.15 1302.31 

295 0.95 0.05 -1018.27 2056.53 

295 0.9 0.05 -1018.27 2056.53 

295 0.85 0.05 -1018.27 2056.53 

295 0.8 0.05 -1018.27 2056.53 

295 0.75 0.05 -1018.27 2056.53 

295 0.7 0.05 -1018.27 2056.53 

295 0.65 0.05 -1018.27 2056.53 

295 0.6 0.05 -1018.27 2056.53 

295 0.55 0.05 -1018.27 2056.53 



71 

Malfunction Code Conf. Int. Penalty Log-Likelihood AIC 

295 0.5 0.05 -1018.27 2056.53 

295 0.95 0.1 -1071.59 2163.17 

295 0.9 0.1 -1071.59 2163.17 

295 0.85 0.1 -1071.59 2163.17 

295 0.8 0.1 -1071.59 2163.17 

295 0.75 0.1 -1071.59 2163.17 

295 0.7 0.1 -1071.59 2163.17 

295 0.65 0.1 -1071.59 2163.17 

295 0.6 0.1 -1071.59 2163.17 

295 0.55 0.1 -1071.59 2163.17 

295 0.5 0.1 -1071.59 2163.17 

295 0.95 0.15 -1100.52 2221.05 

295 0.9 0.15 -1100.52 2221.05 

295 0.85 0.15 -1100.52 2221.05 

295 0.8 0.15 -1100.52 2221.05 

295 0.75 0.15 -1100.52 2221.05 

295 0.7 0.15 -1100.52 2221.05 

295 0.65 0.15 -1100.52 2221.05 

295 0.6 0.15 -1100.52 2221.05 

295 0.55 0.15 -1100.52 2221.05 

295 0.5 0.15 -1100.52 2221.05 

374 0.95 0 -87.71 195.42 

374 0.9 0 -87.71 195.42 

374 0.85 0 -87.71 195.42 

374 0.8 0 -87.71 195.42 

374 0.75 0 -87.71 195.42 

374 0.7 0 -87.71 195.42 

374 0.65 0 -87.71 195.42 

374 0.6 0 -87.71 195.42 

374 0.55 0 -87.71 195.42 

374 0.5 0 -87.71 195.42 

374 0.95 0.05 -162.77 345.53 

374 0.9 0.05 -162.77 345.53 

374 0.85 0.05 -162.77 345.53 

374 0.8 0.05 -162.77 345.53 

374 0.75 0.05 -162.77 345.53 

374 0.7 0.05 -162.77 345.53 

374 0.65 0.05 -162.77 345.53 

374 0.6 0.05 -162.77 345.53 
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Malfunction Code Conf. Int. Penalty Log-Likelihood AIC 

374 0.55 0.05 -162.77 345.53 

374 0.5 0.05 -162.77 345.53 

374 0.95 0.1 -168.29 356.57 

374 0.9 0.1 -168.29 356.57 

374 0.85 0.1 -168.29 356.57 

374 0.8 0.1 -168.29 356.57 

374 0.75 0.1 -168.29 356.57 

374 0.7 0.1 -168.29 356.57 

374 0.65 0.1 -168.29 356.57 

374 0.6 0.1 -168.29 356.57 

374 0.55 0.1 -168.29 356.57 

374 0.5 0.1 -168.29 356.57 

374 0.95 0.15 -170.8 361.59 

374 0.9 0.15 -170.8 361.59 

374 0.85 0.15 -170.8 361.59 

374 0.8 0.15 -170.8 361.59 

374 0.75 0.15 -170.8 361.59 

374 0.7 0.15 -170.8 361.59 

374 0.65 0.15 -170.8 361.59 

374 0.6 0.15 -170.8 361.59 

374 0.55 0.15 -170.8 361.59 

374 0.5 0.15 -170.8 361.59 

Blank (TD) 0.95 0 -162.03 344.05 

Blank (TD) 0.9 0 -162.03 344.05 

Blank (TD) 0.85 0 -162.03 344.05 

Blank (TD) 0.8 0 -162.03 344.05 

Blank (TD) 0.75 0 -162.03 344.05 

Blank (TD) 0.7 0 -162.03 344.05 

Blank (TD) 0.65 0 -162.03 344.05 

Blank (TD) 0.6 0 -162.03 344.05 

Blank (TD) 0.55 0 -162.03 344.05 

Blank (TD) 0.5 0 -162.03 344.05 

Blank (TD) 0.95 0.05 -282.04 584.08 

Blank (TD) 0.9 0.05 -282.04 584.08 

Blank (TD) 0.85 0.05 -282.04 584.08 

Blank (TD) 0.8 0.05 -282.04 584.08 

Blank (TD) 0.75 0.05 -282.04 584.08 

Blank (TD) 0.7 0.05 -282.04 584.08 

Blank (TD) 0.65 0.05 -282.04 584.08 
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Malfunction Code Conf. Int. Penalty Log-Likelihood AIC 

Blank (TD) 0.6 0.05 -282.04 584.08 

Blank (TD) 0.55 0.05 -282.04 584.08 

Blank (TD) 0.5 0.05 -282.04 584.08 

Blank (TD) 0.95 0.1 -294.62 609.25 

Blank (TD) 0.9 0.1 -294.62 609.25 

Blank (TD) 0.85 0.1 -294.62 609.25 

Blank (TD) 0.8 0.1 -294.62 609.25 

Blank (TD) 0.75 0.1 -294.62 609.25 

Blank (TD) 0.7 0.1 -294.62 609.25 

Blank (TD) 0.65 0.1 -294.62 609.25 

Blank (TD) 0.6 0.1 -294.62 609.25 

Blank (TD) 0.55 0.1 -294.62 609.25 

Blank (TD) 0.5 0.1 -294.62 609.25 

Blank (TD) 0.95 0.15 -300.72 621.44 

Blank (TD) 0.9 0.15 -300.72 621.44 

Blank (TD) 0.85 0.15 -300.72 621.44 

Blank (TD) 0.8 0.15 -300.72 621.44 

Blank (TD) 0.75 0.15 -300.72 621.44 

Blank (TD) 0.7 0.15 -300.72 621.44 

Blank (TD) 0.65 0.15 -300.72 621.44 

Blank (TD) 0.6 0.15 -300.72 621.44 

Blank (TD) 0.55 0.15 -300.72 621.44 

Blank (TD) 0.5 0.15 -300.72 621.44 

Adapted from Models.py Python Script (2022). 
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APPENDIX C.  COX PROPORTIONAL HAZARD PLOTS 

 
Figure 40. Scaled Schoenfeld Residuals of Austere Landings for Malfunction 

Code 70 – Broken, Burst, Ruptured, Punctured, Torn, or Cut. 
Source: Models.py Python Script (2022). 

 
Figure 41. Scaled Schoenfeld Residuals of TMR_7 Hours for Blank – 

Technical Directive Inspection Failure. 
Source: Models.py Python Script (2022). 
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Figure 42. CPH Predicted Survival for Malfunction Code 20 Test Data. 

Source: Models.py Python Script (2022). 

 
Figure 43. CPH Predicted Survival for Malfunction Code 70 Test Data. 

Source: Models.py Python Script (2022). 
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Figure 44. CPH Predicted Survival for Malfunction Code 135 Test Data. 

Source: Models.py Python Script (2022). 

 
Figure 45. CPH Predicted Survival for Malfunction Code 150 Test Data. 

Source: Models.py Python Script (2022). 
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Figure 46. CPH Predicted Survival for Malfunction Code 290 Test Data. 

Source: Models.py Python Script (2022). 

 
Figure 47. CPH Predicted Survival for Malfunction Code 295 Test Data. 

Source: Models.py Python Script (2022). 
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Figure 48. CPH Predicted Survival for Malfunction Code 374 Test Data. 

Source: Models.py Python Script (2022). 

 
Figure 49. CPH Predicted Survival for Failed Technical Directive Inspection 

Test Data. 
Source: Models.py Python Script (2022). 
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APPENDIX D.  MATLAB SOURCE CODE FOR REMAINING 
USEFUL LIFE PREDICTIONS USING LSTM NETWORK 

%% NASA Turbofan LSTM Net 
% Captain William Frazier 
% NPS Thesis research 
% Predicting RUL of NASA Turbofan Dataset 
% https://www.kaggle.com/c/predictive-maintenance 
 
clear  
clc 
 
labels = ["id","cycle","op1","op2","op3","sensor1","sensor2",... 
  "sensor3","sensor4","sensor5","sensor6","sensor7","sensor8",... 
  "sensor9","sensor10","sensor11","sensor12","sensor13","sensor14",... 
  "sensor15","sensor16","sensor17","sensor18","sensor19","sensor20",... 
  "sensor21","RUL","TTF_Window"]; 
 
% Load first set of training data 
% train_FD001_new.csv is the updated version of the original train_FD001.csv 
% it includes two new columns at the end which were created in orange for 
% RUL and a TTF window 
%train_FD001 =  
train_FD001 = 
readtable('C:\Users\willi\OneDrive\Desktop\Thesis\Kaggle\NASA\train_FD001_new.
csv'); 
train_FD001.Properties.VariableNames = labels; 
X_all_train = table2array(train_FD001(:,1:26)); 
Y_train = table2array(train_FD001(:,27)); 
 
% Load first set of test data 
test_FD001 = 
readtable('C:\Users\willi\OneDrive\Desktop\Thesis\Kaggle\NASA\test_FD001_new.c
sv'); 
test_FD001.Properties.VariableNames = labels; 
X_all_test = table2array(test_FD001(:,1:26)); 
Y_test = table2array(test_FD001(:,27)); 
 
% Grab the number of engines in the training/test sets 
num_units_train = X_all_train(length(X_all_train),1); 
num_units_test = X_all_test(length(X_all_test),1); 
 
results = table(); 
% Declare how many input features to keep 
for numFeatures = 3:16 
 
  % Remove constant features 
  [X_train, X_labels] = removeConstants(X_all_train, labels); 
  [X_test, X_labels] = removeConstants(X_all_test, labels); 
   
  % Identify any missing data 
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  missing = imputeMissing(X_all_train, Y_train, X_all_test, Y_test); 
   
  % Calculate VIF of training inputs 
  [VIF, VIFTable] = getVIF(X_train(:,(3:18)), X_labels(:,(3:18))); 
 
  % Retain only engine ID, cycle, and the numFeatures least correlated 
  [X_train, X_labels, X_test] = removeCorrInputs(X_train, X_labels, ... 
    X_test, VIF, numFeatures); 
   
  % Normalize data 
  [X_train, RUL_train, X_test, RUL_test] = normalize(X_train, Y_train, ... 
    X_test, Y_test); 
   
  [LSTM_input_train, LSTM_RUL_train] = createCells(num_units_train, X_train, 
RUL_train); 
  [LSTM_input_test, LSTM_RUL_test] = createCells(num_units_test, X_test, 
RUL_test); 
   
  % Healthy State 
  health_index = 150; 
  LSTM_RUL_train = adjustHealth(LSTM_RUL_train, health_index); 
   
  % Split training into train/val 
  train_perc = .75; 
  val_perc = .25; 
     
  % Padding 
  [LSTM_input_train, LSTM_RUL_train] = padding(LSTM_input_train, 
LSTM_RUL_train); 
   
   
  % De 
  numHiddenUnits = 200; 
  FCnumNodes = 50; 
  dropoutrate = 0.2; % 0.5 
  maxEpochs = 1000; 
  miniBatchSize = 49; 
  InitialLearnRate = 0.01; 
  GradientThreshold = 1; 
   
  % No splitting 
  [net,info] = LSTM(LSTM_input_train, LSTM_RUL_train, numHiddenUnits, ... 
    FCnumNodes, dropoutrate, maxEpochs, miniBatchSize, ... 
    InitialLearnRate, GradientThreshold); 
 
  % Predict 
  % Apply the over-padding prevention by setting minibatchsize to 1 
  Y_pred_test = predict(net, LSTM_input_test,'MiniBatchSize',1); 
  results.(numFeatures - 2) = [info.TrainingRMSE(end); getError(LSTM_RUL_test, 
Y_pred_test)]; 
   
end 
results.Properties.Description = ["Loss by number of input features used"]; 
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results.Properties.VariableNames = 
["3","4","5","6","7","8","9","10","11","12","13","14","15","16"]; 
results.Properties.RowNames = ["Final Training RMSE"; "Test RMSE"]; 
results 
 
 
%% Remove constant features 
function [X_new, X_labels] = removeConstants(X, labels) 
  % Sensors 1, 5, 6, 10, 16, 18, 19, Operation Setting 3 are all constant 
  X_new = X(:,[1:4,7:9,12:14,16:20,22,25:26]); 
  X_labels = labels([1:4,7:9,12:14,16:20,22,25:26]); 
end 
%% Find missing data 
function missing = imputeMissing(X_all_train, Y_train, X_all_test, Y_test) 
   
  missing = []; 
  check_for_missing = isnan(X_all_train); 
  [rowmissing, colmissing] = find(check_for_missing); 
  %missing(:,1) = [rowmissing, colmissing]; 
 
  check_for_missing = isnan(Y_train); 
  [rowmissing, colmissing] = find(check_for_missing); 
  %missing(:,2) = [rowmissing, colmissing]; 
 
  check_for_missing = isnan(X_all_test); 
  [rowmissing, colmissing] = find(check_for_missing); 
  %missing(:,3) = [rowmissing, colmissing]; 
 
  check_for_missing = isnan(Y_test); 
  [rowmissing, colmissing] = find(check_for_missing); 
  %missing(:,4) = [rowmissing, colmissing]; 
end 
%% Calculate VIF 
% Looks at multicolinearity between input features 
function [VIF, VIFTable] = getVIF(X_train, X_labels) 
  R = corrcoef(X_train); 
  rowNames = X_labels; 
  VIF = diag(inv(R)); 
  colNames = ["VIF"]; 
  VIFTable = array2table(VIF,'RowNames',rowNames,'VariableNames',colNames); 
end 
%% Calculate PCA 
%% Remove highly correlated input features 
function [X_train_new, X_labels_new, X_test_new] = ... 
  removeCorrInputs(X_train, X_labels, X_test, VIF, numFeatures) 
% Initialize output datasets with engine and cycle columns 
X_train_new = X_train(:,1:2); 
X_labels_new = X_labels(1:2); 
X_test_new = X_test(:,1:2); 
 
for i = 3:2+numFeatures 
  [val, pos] = min(VIF); 
  VIF(pos) = []; 
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  X_train_new(:,i) = X_train(:,pos+2); 
  X_labels_new(i) = X_labels(pos+2); 
  X_labels(pos+2) = []; 
  X_test_new(:,i) = X_test(:,pos+2); 
end 
 
 
end 
 
%% Normalize/Standardize 
% Transpose for MatLab mapminmax(); by default normalizes between -1 and 1 
function [X_train, Y_train, X_test, Y_test] = normalize(X_train, Y_train, ... 
  X_test, Y_test) 
% Transpose for MatLab mapminmax(); by default normalizes between -1 and 1 
X_train = X_train'; 
X_test = X_test'; 
% Normalize the training data and apply that mapping to the test data 
% Exclude engine id and cycle 
[X_train_scaled, PS] = mapminmax(X_train(3:size(X_train,1),:)); 
X_test_scaled = mapminmax('apply',X_test(3:size(X_test,1),:),PS); 
% Rejoin with engine and cycle 
X_train(3:size(X_train,1),:) = X_train_scaled; 
X_test(3:size(X_train,1),:) = X_test_scaled; 
% Don't need to transpose back, keep for Cell creation 
% Transpose the target though, to match 
Y_train = Y_train'; 
Y_test = Y_test'; 
end 
%% Create LSTM Network Training Input and Output Cells 
% MatLab LSTM expects a cell 
% Dimensions of the cell are n_samples x 1 
% Each element in the cell is a unique engine id's sequential data 
function [input_cell, target_cell] = createCells(num_units, X, Y) 
% Initialize the input/target cells for MatLab LSTM expectations 
% Number of units is equal to the last cell's engine id 
input_cell = cell(num_units,1); 
target_cell = cell(num_units,1); 
% Counters so we can grab all the rows of data for an engine unit and 
% insert that as one element into the cell 
unit_id = 1; 
row_index = 1; 
cell_index = 1; 
first_cycle = 1; 
 
% Index from 1 to the length of all rows in x data 
while row_index <= length(X) 
 
  % Insert the rows of data for each unique engine ID  
  % If the current row's engine ID is not = unit 
  % Fill from first index to i-1 
  % update first = i, unit and cell index increment by 1 
  if X(1,row_index) ~= unit_id 
    input_cell{cell_index} = X(3:size(X,1),[first_cycle:row_index-1]); 
    target_cell{cell_index} = Y(:,[first_cycle:row_index-1]); 



85 

    cell_index = cell_index + 1; 
    first_cycle = row_index; 
    unit_id = unit_id + 1; 
  end 
  % If this is the last row, there are no more engines. fill from first 
  if row_index == length(X) 
    input_cell{cell_index} = X(3:size(X,1),[first_cycle:row_index]); 
    target_cell{cell_index} = Y(:,[first_cycle:row_index]); 
  end 
  row_index = row_index + 1; 
end 
end 
%% Splitting 
function [LSTM_input_train, LSTM_RUL_train, LSTM_input_val, LSTM_RUL_val] = 
... 
  dataSplit(X_train, Y_train, test_perc, val_perc, num_units) 
 
  LSTM_input_train = cell(num_units*test_perc,1); 
  LSTM_RUL_train = cell(num_units*test_perc,1); 
  LSTM_input_val = cell(num_units*val_perc,1); 
  LSTM_RUL_val = cell(num_units*val_perc,1); 
   
  a = randperm(numel(X_train)); 
  for i = 1:num_units*test_perc 
    LSTM_input_train(i) = X_train(a(i)); 
    LSTM_RUL_train(i) = Y_train(a(i)); 
  end 
  j = i; 
  for i = 1:num_units*val_perc 
   LSTM_input_val(i) = X_train(a(i+j)); 
   LSTM_RUL_val(i) = Y_train(a(i+j)); 
  end 
end 
%% Padding 
% Because each engine has variable length samples/cycles, padding can be 
% really aggressive for an engine that only has 10 cycles recorded if it 
% is mini-batched with one with 150 cycles. To avoid this, we are going 
% to sort our sequential data in descending order by number of cycles. 
% We will also be sure to set our network options to never shuffle. 
function [LSTM_input, LSTM_target] = padding(X, Y) 
  % map/sort for training cell 
  for i=1:numel(X) 
    unit_id = X{i}; 
    num_cycles(i) = size(unit_id,2); 
  end 
   
  [num_cycles,index] = sort(num_cycles,'descend'); 
  LSTM_input = X(index); 
  LSTM_target = Y(index); 
end 
%% How far back do we look? 
% We've been discussing how far back to look in historical data before  
% the data is no longer useful. Set a healthy RUL threshold and anything 
% above that RUL value is set equal to that threshold 
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% Treat any RUL over 150 as 150 
function Y_train = adjustHealth(Y_train, health_index) 
 
  for i = 1:numel(Y_train) 
    Y_train{i}(Y_train{i} > health_index) = health_index; 
  end 
end 
%% RMSE Function 
function RMSE = getError(NN_target_test, Y_pred_test) 
 
  for i = 1:numel(NN_target_test) 
    YTestLast(i) = NN_target_test{i}(end); 
    YPredLast(i) = Y_pred_test{i}(end); 
  end 
  RMSE = sqrt(mean((YPredLast - YTestLast).^2)); 
end 
%% Function for LSTM  
function [net, info] = LSTM(LSTM_input_train, LSTM_RUL_train, ... 
  numHiddenUnits, FCnumNodes, dropoutrate, maxEpochs, miniBatchSize, ... 
  InitialLearnRate, GradientThreshold) 
 
numFeatures = size(LSTM_input_train{1},1); 
numResponses = size(LSTM_RUL_train{1},1); 
% Hyperparameters / Model Architecture 
layers = [ ... 
  sequenceInputLayer(numFeatures) 
   
  lstmLayer(numHiddenUnits,'Name', 'LSTM_1', 'OutputMode','sequence') 
  fullyConnectedLayer(FCnumNodes, 'Name', 'FC_1') 
  dropoutLayer(dropoutrate, 'Name', 'Dropout_1') 
 
  %lstmLayer(numHiddenUnits,'Name', 'LSTM_2', 'OutputMode','sequence') 
  %fullyConnectedLayer(FCnumNodes, 'Name', 'FC_2') 
  %dropoutLayer(dropoutrate, 'Name', 'Dropout_2') 
 
  fullyConnectedLayer(numResponses) 
  regressionLayer]; 
% Training Options 
options = trainingOptions('adam', ... 
  'MaxEpochs',maxEpochs, ... 
  'MiniBatchSize',miniBatchSize, ... 
  'InitialLearnRate',InitialLearnRate, ... 
  'GradientThreshold',GradientThreshold, ... 
  'Shuffle','never', ... 
  'Plots','none', ...  
  'Verbose',0); 
 
[net,info] = trainNetwork(LSTM_input_train, LSTM_RUL_train, layers, options); 
end 
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APPENDIX E.  MATLAB SOURCE CODE FOR REMAINING 
USEFUL LIFE PREDICTIONS USING CNN 

%% NASA Turbofan LSMT Net 
%  Captain William Frazier 
%  NPS Thesis practice/research 
%  Predicting RUL of NASA Turbofan Dataset 
%  https://www.kaggle.com/c/predictive-maintenance 
 
clear  
clc 
 
labels = ["id","cycle","op1","op2","op3","sensor1","sensor2",... 
    "sensor3","sensor4","sensor5","sensor6","sensor7","sensor8",... 
    "sensor9","sensor10","sensor11","sensor12","sensor13","sensor14",... 
    "sensor15","sensor16","sensor17","sensor18","sensor19","sensor20",... 
    "sensor21","RUL","TTF_Window"]; 
 
% Load first set of training data 
% train_FD001_new.csv is the updated version of the original train_FD001.csv 
% it includes two new columns at the end which were created in orage for 
% RUL and a TTF window 
train_FD001 = 
readtable('C:\Users\willi\OneDrive\Desktop\Thesis\Orange\NASA\MatLab\train_FD0
01_new.csv'); 
train_FD001.Properties.VariableNames = labels; 
X_all_train = table2array(train_FD001(:,1:26)); 
Y_train = table2array(train_FD001(:,27)); 
 
% Load first set of test data 
test_FD001 = 
readtable('C:\Users\willi\OneDrive\Desktop\Thesis\Orange\NASA\MatLab\test_FD00
1_new.csv'); 
test_FD001.Properties.VariableNames = labels; 
X_all_test = table2array(test_FD001(:,1:26)); 
Y_test = table2array(test_FD001(:,27)); 
 
% Grab the number of engines in the training/test sets 
num_units_train = X_all_train(length(X_all_train),1); 
num_units_test = X_all_test(length(X_all_test),1); 
 
%% Remove constant features 
% Sensors 1, 5, 6, 10, 16, 18, 19, Operation Setting 3 are all constant 
X_train = X_all_train(:,[1:4,7:9,12:14,16:20,22,25:26]); 
x_labels = labels([1:4,7:9,12:14,16:20,22,25:26]); 
 
%% Calculate Coeff Correlation and VIF of training data 
% Lets first just look at multicolinearity between input features 
 
R = corrcoef(X_train); 
rowNames = x_labels; 
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colNames = x_labels; 
RTable = array2table(R,'RowNames',rowNames,'VariableNames',colNames); 
 
VIF = diag(inv(R)); 
rowNames = x_labels; 
colNames = ["VIF"]; 
VIFTable = array2table(VIF,'RowNames',rowNames,'VariableNames',colNames); 
 
%% Remove extremely highly correlated and recalculate VIF 
% Remove sensor 9, 11, and 14 due to high VIF 
 
X_train = X_all_train(:,[3:4,7:9,12,13,17,18,20,22,25,26]); 
x_labels = labels([3:4,7:9,12,13,17,18,20,22,25,26]); 
 
R = corrcoef(X_train); 
rowNames = x_labels; 
colNames = x_labels; 
RTable = array2table(R,'RowNames',rowNames,'VariableNames',colNames); 
 
VIF = diag(inv(R)); 
rowNames = x_labels; 
colNames = ["VIF"]; 
VIFTable = array2table(VIF,'RowNames',rowNames,'VariableNames',colNames); 
 
% Apply the reduction to the test data as well 
X_test = X_all_test(:,[3:4,7:9,12,13,17,18,20,22,25,26]); 
 
%% Normalize/Standardize 
% Transpose for MatLab mapminmax(); by default normalizes between -1 and 1 
X_train = X_train'; 
X_test = X_test'; 
 
% Normalize the training data and apply that mapping to the test data 
[X_train_scaled, PS] = mapminmax(X_train); 
X_test_scaled = mapminmax('apply',X_test,PS); 
 
X_train = X_train'; 
X_test = X_test'; 
 
X_train_scaled = X_train_scaled'; 
X_test_scaled = X_test_scaled'; 
%% OPTIONAL 
% rejoin with cycle/engine ID for train/validation splitting 
X_train_pre_split = cat(2,X_all_train(:,1:2),X_train_scaled); 
X_test_pre_split = cat(2,X_all_test(:,1:2),X_test_scaled); 
%% How far back do we look? 
%  We've been discussing how far back to look in historical data before  
%  the data is no longer useful. Set a healthy RUL threshold and anything 
%  above that RUL value is set equal to that threshold 
 
% Treat any RUL over 150 as 150 
healthy = 150; 
for i = 1:numel(Y_train) 
    if Y_train(i) > healthy 



89 

        Y_train(i) = healthy; 
    end 
end 
 
%% This takes the training data set and creates a new NN input data set 
% Takes 30 sonsecutive cycles with a step size of 1 
window_size = 30; 
 
NN_input_train = []; 
NN_RUL_train = []; 
 
unit_id = 1; 
row_index = 1; 
cell_index = 1; 
first_cycle = 1; 
 
while row_index <= length(X_all_train) - window_size 
    if row_index == 1 
        NN_input_train(:,:,:,row_index) = 
X_train_scaled(row_index:row_index+window_size-1,:); 
        %NN_RUL_train(:,:,:,row_index) = 
Y_train(row_index:row_index+window_size-1,:); 
        NN_RUL_train(:,row_index) = Y_train(row_index:row_index+window_size-
1,:); 
        row_index = row_index+1; 
    end 
     
    % Ensure there are at least window_size cycles recorded before failure 
    if Y_train(row_index,1) >= window_size 
        % While unit number is still the same, insert samples into final 
        while X_all_train(row_index+window_size-1,1) == unit_id 
            % Insert rows i to i+window_size, all columns 
            NN_input_train(:,:,:,cell_index) = 
X_train_scaled(row_index:row_index+window_size-1,:); 
            %NN_RUL_train(:,:,:,cell_index) = 
Y_train(row_index:row_index+window_size-1,:); 
            NN_RUL_train(:,cell_index) = 
Y_train(row_index:row_index+window_size-1,:); 
            cell_index = cell_index + 1; 
            row_index = row_index+1; 
            if row_index > length(X_train_scaled) - window_size 
                return 
            end 
        end 
        % Once the unit number is changed, need to 'hop' down, change unit 
        row_index = row_index + window_size-1; 
        unit_id = X_all_train(row_index,1); 
    % If there aren't enough, move index to the new unit 
    else 
        while row_index < length(X_all_train) 
            if X_all_train(row_index,1) == unit_id 
                row_index = row_index+1; 
            
            else 
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                unit_id = X_all_train(row_index,1); 
                break 
            end 
        end 
    end 
end 
 
 
%% This takes the test data set and creates a new NN input data set 
NN_input_test = []; 
NN_RUL_test = []; 
 
unit_id = 1; 
row_index = 1; 
cell_index = 1; 
first_cycle = 1; 
 
while row_index <= length(X_all_test) - window_size 
    if row_index == 1 
        NN_input_test(:,:,:,row_index) = 
X_test_scaled(row_index:row_index+window_size-1,:); 
        NN_RUL_test(:,row_index) = Y_test(row_index:row_index+window_size-
1,:); 
        row_index = row_index+1; 
    end 
     
    % Ensure there are at least window_size cycles recorded before failure 
    if Y_test(row_index,1) >= window_size 
        % While unit number is still the same, insert samples into final 
        while X_all_test(row_index+window_size-1,1) == unit_id 
            % Insert rows i to i+window_size, all columns 
            NN_input_test(:,:,:,cell_index) = 
X_test_scaled(row_index:row_index+window_size-1,:); 
            NN_RUL_test(:,cell_index) = 
Y_test(row_index:row_index+window_size-1,:); 
            cell_index = cell_index + 1; 
            row_index = row_index+1; 
            if row_index > length(X_test_scaled) - window_size 
                return 
            end 
        end 
        % Once the unit number is changed, need to 'hop' down, change unit 
        row_index = row_index + window_size-1; 
        unit_id = X_all_test(row_index,1); 
    % If there aren't enough, move index to the new unit 
    else 
        while row_index < length(X_all_test) 
            if X_all_test(row_index,1) == unit_id 
                row_index = row_index+1; 
            
            else 
                unit_id = X_all_test(row_index,1); 
                break 
            end 
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        end 
    end 
end 
%% OPTIONAL 
% attempt to split 75 - 25 
% ensure the inputs and target are in the same cell indexes 
% create an array from 1 to 100 (number of engines) psuedo randomly 
% without repeating or omitting any numbers 
test_perc = .75; 
val_perc = .25; 
a = randperm(num_units_train); 
CNN_input_train = []; 
CNN_RUL_train = []; 
index = 1; 
% for the first 75% of engine ids 
for i = 1:num_units_test*test_perc 
    % iterate through all 
    for j = 1:length(X_train_pre_split) 
        if X_train_pre_split(j,1) == a(i) 
            CNN_input_train(index,:) = X_train_pre_split(j,:); 
            CNN_RUL_train(index,:) = Y_train(j,:); 
            index = index + 1; 
        end 
    end 
end 
k = i; 
 
CNN_input_val = []; 
CNN_RUL_val = []; 
index = 1; 
for i = 1:num_units_test*val_perc 
    % iterate through all 
    for j = 1:length(X_train_pre_split) 
        if X_train_pre_split(j,1) == a(i+k) 
            CNN_input_val(index,:) = X_train_pre_split(j,:); 
            CNN_RUL_val(index,:) = Y_train(j,:); 
            index = index + 1; 
        end 
    end 
end 
%% This takes the training data set and creates a new NN input data set (75 %) 
% Takes 30 sonsecutive cycles with a step size of 1 
window_size = 30; 
 
NN_input_train = []; 
NN_RUL_train = []; 
 
unit_id = 1; 
row_index = 1; 
cell_index = 1; 
first_cycle = 1; 
 
while row_index <= length(CNN_input_train) - window_size 
    if row_index == 1 
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        NN_input_train(:,:,:,row_index) = 
CNN_input_train(row_index:row_index+window_size-1,3:15); 
        NN_RUL_train(:,row_index) = 
CNN_RUL_train(row_index:row_index+window_size-1,:); 
        row_index = row_index+1; 
    end 
     
    if CNN_RUL_train(row_index,1) >= window_size 
        while CNN_input_train(row_index+window_size-1,1) == unit_id 
            NN_input_train(:,:,:,cell_index) = 
CNN_input_train(row_index:row_index+window_size-1,3:15); 
            NN_RUL_train(:,cell_index) = 
CNN_RUL_train(row_index:row_index+window_size-1,:); 
            cell_index = cell_index + 1; 
            row_index = row_index+1; 
            if row_index > length(CNN_input_train) - window_size 
                return 
            end 
        end 
        % Once the unit number is changed, need to 'hop' down, change unit 
        row_index = row_index + window_size-1; 
        unit_id = CNN_input_train(row_index,1); 
    % If there aren't enough, move index to the new unit 
    else 
        while row_index < length(CNN_input_train) 
            if CNN_input_train(row_index,1) == unit_id 
                row_index = row_index+1; 
            
            else 
                unit_id = CNN_input_train(row_index,1); 
                break 
            end 
        end 
    end 
end 
 
%% This takes the test data set and creates a new NN validation data set (25 
%) 
% Takes 30 consecutive cycles with a step size of 1 
window_size = 30; 
 
NN_input_val = []; 
NN_RUL_val = []; 
 
unit_id = 1; 
row_index = 1; 
cell_index = 1; 
first_cycle = 1; 
 
while row_index <= length(CNN_input_val) - window_size 
    if row_index == 1 
        NN_input_val(:,:,:,row_index) = 
CNN_input_val(row_index:row_index+window_size-1,3:15); 
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        NN_RUL_val(:,row_index) = CNN_RUL_val(row_index:row_index+window_size-
1,:); 
        row_index = row_index+1; 
    end 
     
    if CNN_RUL_val(row_index,1) >= window_size 
        while CNN_input_val(row_index+window_size-1,1) == unit_id 
            NN_input_val(:,:,:,cell_index) = 
CNN_input_val(row_index:row_index+window_size-1,3:15); 
            NN_RUL_val(:,cell_index) = 
CNN_RUL_val(row_index:row_index+window_size-1,:); 
            cell_index = cell_index + 1; 
            row_index = row_index+1; 
            if row_index > length(CNN_input_val) - window_size 
                return 
            end 
        end 
        % Once the unit number is changed, need to 'hop' down, change unit 
        row_index = row_index + window_size-1; 
        unit_id = CNN_input_val(row_index,1); 
    % If there aren't enough, move index to the new unit 
    else 
        while row_index < length(CNN_input_val) 
            if CNN_input_val(row_index,1) == unit_id 
                row_index = row_index+1; 
            
            else 
                unit_id = CNN_input_val(row_index,1); 
                break 
            end 
        end 
    end 
end 
 
%% Neural Net Model Building and Training Function 
 
% Architecture Hyperparameters/ 
% Training Hyperparameters 
dropoutrate = 0.50; 
maxEpochs = 600; 
miniBatchSize = 512; 
numFeatures = [30 13 1]; 
numHiddenNodes = 100; 
numResponses = 30; 
InitialLearnRate = 0.01; 
GradientThreshold = 1; 
   
% CNN inputs are 2D: time_window x n_features  
% Four convolutional layers with 10 filters and filter size 10x1 
% numResponses should be a 30x1 RUL prediction 
 
lgraph = layerGraph; 
lgraph = addLayers(lgraph, [sequenceInputLayer(numFeatures,"Name","input"); 
    sequenceFoldingLayer("Name", "fold")]); 
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lgraph = addLayers(lgraph, [convolution2dLayer([10 
1],10,"Padding","Same","Name","conv_1"); 
    tanhLayer("Name","tanh_1")]);  
 
lgraph = addLayers(lgraph, [convolution2dLayer([10 
1],10,"Padding","Same","Name","conv_2"); 
    tanhLayer("Name","tanh_2")]);  
 
lgraph = addLayers(lgraph, [convolution2dLayer([10 
1],10,"Padding","Same","Name","conv_3"); 
    tanhLayer("Name","tanh_3")]);  
 
lgraph = addLayers(lgraph, [convolution2dLayer([10 
1],10,"Padding","Same","Name","conv_4"); 
    tanhLayer("Name","tanh_4")]);  
 
lgraph = addLayers(lgraph, [convolution2dLayer([3 
1],1,"Padding","Same","Name","conv_5"); 
    tanhLayer("Name","tanh_5")]);  
 
lgraph = addLayers(lgraph, [sequenceUnfoldingLayer("Name", "unfold") 
    flattenLayer("Name", "flatten") 
    dropoutLayer(dropoutrate, "Name", "dropout")]); 
 
lgraph = addLayers(lgraph, [fullyConnectedLayer(numHiddenNodes, "Name", 
"FC_1"); 
    tanhLayer("Name","tanh_6")]);  
 
lgraph = addLayers(lgraph, [fullyConnectedLayer(1, "Name", "FC_2"); 
    regressionLayer("Name", "output")]); 
 
lgraph = connectLayers(lgraph, "fold/out", "conv_1"); 
lgraph = connectLayers(lgraph, "tanh_1", "conv_2"); 
lgraph = connectLayers(lgraph, "tanh_2", "conv_3"); 
lgraph = connectLayers(lgraph, "tanh_3", "conv_4"); 
lgraph = connectLayers(lgraph, "tanh_4", "conv_5"); 
lgraph = connectLayers(lgraph, "tanh_5", "unfold/in"); 
lgraph = connectLayers(lgraph, "dropout", "FC_1"); 
lgraph = connectLayers(lgraph, "fold/miniBatchSize", "unfold/miniBatchSize"); 
lgraph = connectLayers(lgraph, "tanh_6", "FC_2"); 
 
% Training Options 
options = trainingOptions('adam', ... 
    'MaxEpochs',maxEpochs, ... 
    'MiniBatchSize',miniBatchSize, ... 
    'InitialLearnRate',InitialLearnRate, ... 
    'GradientThreshold',GradientThreshold, ... 
    'Shuffle','never', ... 
    'Plots','training-progress',... 
    'ValidationData', {NN_input_val, NN_RUL_val_new}, ... 
    "OutputNetwork", "best-validation-loss",... % added to keep best model 
    'Verbose',0); 
 



95 

%%  
for i=1:size(NN_RUL_train,2) 
    NN_RUL_train_new(i) = NN_RUL_train(30,i); 
end 
%%  
for i=1:size(NN_RUL_test,2) 
    NN_RUL_test_new(i) = NN_RUL_test(30,i); 
end 
%%  
for i=1:size(NN_RUL_val,2) 
    NN_RUL_val_new(i) = NN_RUL_val(30,i); 
end 
%%  
 
net = trainNetwork(NN_input_train, NN_RUL_train_new,lgraph,options); 
 
%%  
 
t_hat_test = predict(net, NN_input_test); 
 
%RMSE_train = {sqrt(mean((Y_train - t_hat_train).^2))} 
RMSE_test = {sqrt(mean((NN_RUL_test_new - t_hat_test).^2))}; 
 
%%  
for i = 1:width(NN_RUL_test) 
    YTestLast(i) = NN_RUL_test(30,i); 
end 
%end 
figure() 
plot(t_hat_test, YTestLast, 'X') 
hold on 
title("LSMT Predictions for FD001 Test. RMSE = ", RMSE_test) 
xlabel("Predicted RUL") 
ylabel("True RUL") 
 
hold off 
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APPENDIX F.  PYTHON SOURCE CODE FOR GENERATING 
FLIGHT HOUR DATA 

# FlightHours.py 
# Captain William Frazier 
# NPS Thesis research 
import csv 
from datetime import date, timedelta 
import matplotlib.pyplot as plt 
class FlightHours(object): 
''' Dictionary of BUNOs:calendar{date:fltshrs} ''' 
def __init__(self): 
self.data = [] 
self.bunos = {} 
self.beginning = date(1997, 4, 3) 
self.end = date.today() 
self.day_delta = (self.end - self.beginning).days 
self.input_filename = 'Buno Flight Hours Between Dates_22_Aug_22.csv' 
self.output_filename = 'Buno Flight Data Between Dates_22_Aug_22.csv' 
self.temp_output = [] 
# Indicies 
self.TEC = 0 
self.BUNO = 1 
self.HRS = 2 
self.TMR_CODE = 3 
self.TMR_DESC = 4 
self.TTL_LNDG = 5 
self.LNDG_TYPE = 6 
self.LNDG_DESC = 7 
self.DATE = 8 
self.NON_AUST_LNDG_CODES = ['0','5','8','9','E','H','J','K','Y','Z'] 
self.AUST_LNDG_CODES = ['6','7','F','G','L','M','P','Q','T','W'] 
self.SHIP_LNG_CODES = ['1','2','3','4','A','B','C','D','N'] 
self.BUNO_HRS = 0 
self.BUNO_LNDG = 1 
self.TMR_1 = 2 
self.TMR_2 = 3 
self.TMR_3 = 4 
self.TMR_4 = 5 
self.TMR_5 = 6 
self.TMR_6 = 7 
self.TMR_7 = 8 
self.NON_AUST_LNDGS = 9 
C:\Users\willi\OneDrive\Desktop\Latest_9\FlightHours.py 
Page 2, last modified 08/31/22 18:03:19 
self.AUST_LNDGS = 10 
self.SHIP_LNDGS = 11 
def read_data(self): 
''' Reads in NAVFLIR data from the DECKPLATE saved csv file. ''' 
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with open(self.input_filename, 'r') as file: 
reader = csv.reader(file) 
for row in reader: 
self.data.append(row) 
def write_data(self): 
''' Writes the flight data generated by this class to a csv. ''' 
with open(self.output_filename, 'w', newline='') as file: 
writer = csv.writer(file) 
writer.writerow(['flthrs', 'lndgs', 'TMR_1_hrs', 'TMR_2_hrs', 'TMR_3_hrs', 
'TMR_4_hrs', 'TMR_5_hrs', 'TMR_6_hrs', 'TMR_7_hrs', 'NON_AUST_lndgs', 
'AUST_lndgs', 'SHIP_lndgs']) 
for buno in self.bunos.keys(): 
writer.writerows(self.bunos[buno]) 
def format_date(self): 
''' Converts flight hour date string from .csv into datetime data type. 
Assumes .csv date is in MM/DD/YYYY and needs to be [YYYY, MM, DD]''' 
for row in range(1,len(self.data)): 
mdy = self.data[row][self.DATE].split("/") 
self.data[row][self.DATE] = date(int(mdy[2]), int(mdy[0]), int(mdy[1])) 
def build_calendar(self): 
''' Fills the dictionary with the key:value pair of date:[0] 
The date range is from self.beginning to date.today() 
''' 
new_calendar = {} 
# Each day has a list of the flight data: 
# [Total flthrs, Total Landings, TMR_1 flthrs, TMR_2 flthrs, TMR_3 flthrs, 
# TMR_4 flthrs, TMR_5 flthrs, TMR_6 flthrs, TMR_7 flthrs, 
# NON_AUST_LNDGS, AUST_LNDGS, SHIP_LNDGS] 
for day in range(self.day_delta): 
new_calendar[self.beginning + timedelta(day)] = [0,0,0,0,0,0,0,0,0,0,0,0] 
return new_calendar 
def build_bunos(self): 
''' Generates master dictionary of BUNOs:calendar{} which also 
calls build_calendar to generate the value which is a dictionary as well. ''' 
C:\Users\willi\OneDrive\Desktop\Latest_9\FlightHours.py 
Page 3, last modified 08/31/22 18:03:19 
for row in range(1,len(self.data)): 
if self.data[row][self.BUNO] not in self.bunos: 
self.bunos[self.data[row][self.BUNO]] = self.build_calendar() 
def fill_flthrs(self): 
''' Fills the BUNO's calendar with flighthours using flight summary .csv data 
The date column is already in datetime format which matches dictionary key''' 
# Step 1: Fill flight record hours into the dates flown 
for row in range(1,len(self.data)): 
TMR_1_hrs = 0 
TMR_2_hrs = 0 
TMR_3_hrs = 0 
TMR_4_hrs = 0 
TMR_5_hrs = 0 
TMR_6_hrs = 0 
TMR_7_hrs = 0 
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# Column values from csv 
data = self.data[row] 
current_buno = self.data[row][self.BUNO] # Key for self.bunos dictionary 
current_date = self.data[row][self.DATE] # Key for buno's calendar dictionary 
flt_hrs_flown = self.data[row][self.HRS] # Value to increment for buno's 
calendar dictionary 
tmr_code = self.data[row][self.TMR_CODE] 
if tmr_code != '': 
tmr_code = str(tmr_code)[0] 
if tmr_code == "1": 
TMR_1_hrs = flt_hrs_flown 
elif tmr_code == "2": 
TMR_2_hrs = flt_hrs_flown 
elif tmr_code == "3": 
TMR_3_hrs = flt_hrs_flown 
elif tmr_code == "4": 
TMR_4_hrs = flt_hrs_flown 
elif tmr_code == "5": 
TMR_5_hrs = flt_hrs_flown 
elif tmr_code == "6": 
TMR_6_hrs = flt_hrs_flown 
elif tmr_code == "7": 
TMR_7_hrs = flt_hrs_flown 
if flt_hrs_flown != '': 
current_hrs = self.bunos[current_buno][current_date][self.BUNO_HRS] 
C:\Users\willi\OneDrive\Desktop\Latest_9\FlightHours.py 
Page 4, last modified 08/31/22 18:03:19 
current_TMR_1_hrs = self.bunos[current_buno][current_date][self.TMR_1] 
current_TMR_2_hrs = self.bunos[current_buno][current_date][self.TMR_2] 
current_TMR_3_hrs = self.bunos[current_buno][current_date][self.TMR_3] 
current_TMR_4_hrs = self.bunos[current_buno][current_date][self.TMR_4] 
current_TMR_5_hrs = self.bunos[current_buno][current_date][self.TMR_5] 
current_TMR_6_hrs = self.bunos[current_buno][current_date][self.TMR_6] 
current_TMR_7_hrs = self.bunos[current_buno][current_date][self.TMR_7] 
# Increment date's flthrs for that BUNO 
# Allows for multiple flights documented for one day 
self.bunos[current_buno][current_date][self.BUNO_HRS] = 
round(float(flt_hrs_flown) + float(current_hrs), 2) 
self.bunos[current_buno][current_date][self.TMR_1] = round(float(TMR_1_hrs) 
+ float(current_TMR_1_hrs), 2) 
self.bunos[current_buno][current_date][self.TMR_2] = round(float(TMR_2_hrs) 
+ float(current_TMR_2_hrs), 2) 
self.bunos[current_buno][current_date][self.TMR_3] = round(float(TMR_3_hrs) 
+ float(current_TMR_3_hrs), 2) 
self.bunos[current_buno][current_date][self.TMR_4] = round(float(TMR_4_hrs) 
+ float(current_TMR_4_hrs), 2) 
self.bunos[current_buno][current_date][self.TMR_5] = round(float(TMR_5_hrs) 
+ float(current_TMR_5_hrs), 2) 
self.bunos[current_buno][current_date][self.TMR_6] = round(float(TMR_6_hrs) 
+ float(current_TMR_6_hrs), 2) 
self.bunos[current_buno][current_date][self.TMR_7] = round(float(TMR_7_hrs) 
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+ float(current_TMR_7_hrs), 2) 
# Step 2: Iterate through each date in the calendar and sum current with previous 
for current_buno in self.bunos.keys(): 
for day in range(1, self.day_delta): 
current_day = self.beginning + timedelta(day) 
prev_day = current_day - timedelta(1) 
current_day_hrs = self.bunos[current_buno][current_day][self.BUNO_HRS] 
current_day_TMR_1_hrs = self.bunos[current_buno][current_day][self.TMR_1] 
current_day_TMR_2_hrs = self.bunos[current_buno][current_day][self.TMR_2] 
current_day_TMR_3_hrs = self.bunos[current_buno][current_day][self.TMR_3] 
current_day_TMR_4_hrs = self.bunos[current_buno][current_day][self.TMR_4] 
current_day_TMR_5_hrs = self.bunos[current_buno][current_day][self.TMR_5] 
current_day_TMR_6_hrs = self.bunos[current_buno][current_day][self.TMR_6] 
current_day_TMR_7_hrs = self.bunos[current_buno][current_day][self.TMR_7] 
prev_day_hrs = self.bunos[current_buno][prev_day][self.BUNO_HRS] 
prev_day_TMR_1_hrs = self.bunos[current_buno][prev_day][self.TMR_1] 
prev_day_TMR_2_hrs = self.bunos[current_buno][prev_day][self.TMR_2] 
prev_day_TMR_3_hrs = self.bunos[current_buno][prev_day][self.TMR_3] 
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prev_day_TMR_4_hrs = self.bunos[current_buno][prev_day][self.TMR_4] 
prev_day_TMR_5_hrs = self.bunos[current_buno][prev_day][self.TMR_5] 
prev_day_TMR_6_hrs = self.bunos[current_buno][prev_day][self.TMR_6] 
prev_day_TMR_7_hrs = self.bunos[current_buno][prev_day][self.TMR_7] 
self.bunos[current_buno][current_day][self.BUNO_HRS] = round(prev_day_hrs + 
current_day_hrs,2) 
self.bunos[current_buno][current_day][self.TMR_1] = round(prev_day_TMR_1_hrs 
+ current_day_TMR_1_hrs,2) 
self.bunos[current_buno][current_day][self.TMR_2] = round(prev_day_TMR_2_hrs 
+ current_day_TMR_2_hrs,2) 
self.bunos[current_buno][current_day][self.TMR_3] = round(prev_day_TMR_3_hrs 
+ current_day_TMR_3_hrs,2) 
self.bunos[current_buno][current_day][self.TMR_4] = round(prev_day_TMR_4_hrs 
+ current_day_TMR_4_hrs,2) 
self.bunos[current_buno][current_day][self.TMR_5] = round(prev_day_TMR_5_hrs 
+ current_day_TMR_5_hrs,2) 
self.bunos[current_buno][current_day][self.TMR_6] = round(prev_day_TMR_6_hrs 
+ current_day_TMR_6_hrs,2) 
self.bunos[current_buno][current_day][self.TMR_7] = round(prev_day_TMR_7_hrs 
+ current_day_TMR_7_hrs,2) 
def fill_landings(self): 
''' Fills the BUNO's calendar with number of landings and type. ''' 
# Step 1: Fill number of landings into the dates flown 
for row in range(1,len(self.data)): 
non_aust_lndgs = 0 
aust_lndgs = 0 
ship_lndgs = 0 
# Column values from csv 
current_buno = self.data[row][self.BUNO] # Key for self.bunos dictionary 
current_date = self.data[row][self.DATE] # Key for buno's calendar dictionary 
num_landings = self.data[row][self.TTL_LNDG] # Value to increment for buno's 
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calendar dictionary 
lndg_code = self.data[row][self.LNDG_TYPE] 
if lndg_code != '': 
lndg_code = str(lndg_code) 
if lndg_code in self.NON_AUST_LNDG_CODES: 
non_aust_lndgs = num_landings 
elif lndg_code in self.AUST_LNDG_CODES: 
aust_lndgs = num_landings 
elif lndg_code in self.SHIP_LNG_CODES: 
ship_lndgs = num_landings 
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if num_landings != '': 
current_landings = self.bunos[current_buno][current_date][self.BUNO_LNDG] 
current_non_aust_lndgs = 
self.bunos[current_buno][current_date][self.NON_AUST_LNDGS] 
current_aust_lndgs = self.bunos[current_buno][current_date][self.AUST_LNDGS] 
current_ship_lndgs = self.bunos[current_buno][current_date][self.SHIP_LNDGS] 
# Increment date's flthrs for that BUNO 
# Allows for multiple flights documented for one day 
self.bunos[current_buno][current_date][self.BUNO_LNDG] = 
round(float(num_landings) + float(current_landings), 2) 
self.bunos[current_buno][current_date][self.NON_AUST_LNDGS] = 
round(float(non_aust_lndgs) + float(current_non_aust_lndgs), 2) 
self.bunos[current_buno][current_date][self.AUST_LNDGS] = 
round(float(aust_lndgs) + float(current_aust_lndgs), 2) 
self.bunos[current_buno][current_date][self.SHIP_LNDGS] = 
round(float(ship_lndgs) + float(current_ship_lndgs), 2) 
# Step 2: Iterate through each date in the calendar and sum current with previous 
for current_buno in self.bunos.keys(): 
for day in range(1, self.day_delta): 
current_day = self.beginning + timedelta(day) 
prev_day = current_day - timedelta(1) 
current_day_lndgs = self.bunos[current_buno][current_day][self.BUNO_LNDG] 
current_day_non_aust_lndgs = 
self.bunos[current_buno][current_day][self.NON_AUST_LNDGS] 
current_day_aust_lndgs = self.bunos[current_buno][current_day][self.AUST_LNDGS] 
current_day_ship_lndgs = self.bunos[current_buno][current_day][self.SHIP_LNDGS] 
prev_day_lndgs = self.bunos[current_buno][prev_day][self.BUNO_LNDG] 
prev_day_non_aust_lndgs = 
self.bunos[current_buno][prev_day][self.NON_AUST_LNDGS] 
prev_day_aust_lndgs = self.bunos[current_buno][prev_day][self.AUST_LNDGS] 
prev_day_ship_lndgs = 
self.bunos[current_buno][prev_day][self.SHIP_LNDGS] 
self.bunos[current_buno][current_day][self.BUNO_LNDG] = round(prev_day_lndgs 
+ current_day_lndgs,2) 
self.bunos[current_buno][current_day][self.NON_AUST_LNDGS] = 
round(prev_day_non_aust_lndgs + current_day_non_aust_lndgs,2) 
self.bunos[current_buno][current_day][self.AUST_LNDGS] = 
round(prev_day_aust_lndgs + current_day_aust_lndgs,2) 
self.bunos[current_buno][current_day][self.SHIP_LNDGS] = 
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round(prev_day_ship_lndgs + current_day_ship_lndgs,2) 
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def buno_query(self, buno, start_date, end_date): 
''' Returns the tracked numbers flown by a buno between two dates ''' 
records = [0,0,0,0,0,0,0,0,0,0,0,0] 
if buno in self.bunos.keys(): 
flthrs = round(self.bunos[buno][end_date][self.BUNO_HRS] - 
self.bunos[buno][start_date][self.BUNO_HRS] , 2) 
lndgs = round(self.bunos[buno][end_date][self.BUNO_LNDG] - 
self.bunos[buno][start_date][self.BUNO_LNDG] , 2) 
TMR_1_hrs = round(self.bunos[buno][end_date][self.TMR_1] - 
self.bunos[buno][start_date][self.TMR_1] , 2) 
TMR_2_hrs = round(self.bunos[buno][end_date][self.TMR_2] - 
self.bunos[buno][start_date][self.TMR_2] , 2) 
TMR_3_hrs = round(self.bunos[buno][end_date][self.TMR_3] - 
self.bunos[buno][start_date][self.TMR_3] , 2) 
TMR_4_hrs = round(self.bunos[buno][end_date][self.TMR_4] - 
self.bunos[buno][start_date][self.TMR_4] , 2) 
TMR_5_hrs = round(self.bunos[buno][end_date][self.TMR_5] - 
self.bunos[buno][start_date][self.TMR_5] , 2) 
TMR_6_hrs = round(self.bunos[buno][end_date][self.TMR_6] - 
self.bunos[buno][start_date][self.TMR_6] , 2) 
TMR_7_hrs = round(self.bunos[buno][end_date][self.TMR_7] - 
self.bunos[buno][start_date][self.TMR_7] , 2) 
NON_AUST_lndgs = round(self.bunos[buno][end_date][self.NON_AUST_LNDGS] - 
self.bunos[buno][start_date][self.NON_AUST_LNDGS] , 2) 
AUST_lndgs = round(self.bunos[buno][end_date][self.AUST_LNDGS] - 
self.bunos[buno][start_date][self.AUST_LNDGS] , 2) 
SHIP_lndgs = round(self.bunos[buno][end_date][self.SHIP_LNDGS] - 
self.bunos[buno][start_date][self.SHIP_LNDGS] , 2) 
records = [flthrs, lndgs, TMR_1_hrs, TMR_2_hrs, TMR_3_hrs, TMR_4_hrs, TMR_5_hrs, 
TMR_6_hrs, TMR_7_hrs, NON_AUST_lndgs, AUST_lndgs, SHIP_lndgs] 
start_date = start_date.strftime('%m/%d/%Y') 
temp_records = records 
temp_records = list(str(x) for x in temp_records) 
temp_records.insert(0,start_date) 
temp_records.insert(0,buno) 
self.temp_output.append(temp_records) 
return records 
def buno_query_all_data(self, buno, start_date, end_date): 
''' Returns the tracked numbers flown by a buno between two dates ''' 
C:\Users\willi\OneDrive\Desktop\Latest_9\FlightHours.py 
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if buno in self.bunos.keys(): 
flthrs = round(self.bunos[buno][end_date][self.BUNO_HRS] - 
self.bunos[buno][start_date][self.BUNO_HRS] , 2) 
lndgs = round(self.bunos[buno][end_date][self.BUNO_LNDG] - 
self.bunos[buno][start_date][self.BUNO_LNDG] , 2) 
TMR_1_hrs = round(self.bunos[buno][end_date][self.TMR_1] - 
self.bunos[buno][start_date][self.TMR_1] , 2) 
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TMR_2_hrs = round(self.bunos[buno][end_date][self.TMR_2] - 
self.bunos[buno][start_date][self.TMR_2] , 2) 
TMR_3_hrs = round(self.bunos[buno][end_date][self.TMR_3] - 
self.bunos[buno][start_date][self.TMR_3] , 2) 
TMR_4_hrs = round(self.bunos[buno][end_date][self.TMR_4] - 
self.bunos[buno][start_date][self.TMR_4] , 2) 
TMR_5_hrs = round(self.bunos[buno][end_date][self.TMR_5] - 
self.bunos[buno][start_date][self.TMR_5] , 2) 
TMR_6_hrs = round(self.bunos[buno][end_date][self.TMR_6] - 
self.bunos[buno][start_date][self.TMR_6] , 2) 
TMR_7_hrs = round(self.bunos[buno][end_date][self.TMR_7] - 
self.bunos[buno][start_date][self.TMR_7] , 2) 
NON_AUST_lndgs = round(self.bunos[buno][end_date][self.NON_AUST_LNDGS] - 
self.bunos[buno][start_date][self.NON_AUST_LNDGS] , 2) 
AUST_lndgs = round(self.bunos[buno][end_date][self.AUST_LNDGS] - 
self.bunos[buno][start_date][self.AUST_LNDGS] , 2) 
SHIP_lndgs = round(self.bunos[buno][end_date][self.SHIP_LNDGS] - 
self.bunos[buno][start_date][self.SHIP_LNDGS] , 2) 
else: 
return [0,0,0,0,0,0,0,0,0,0,0,0] 
return [flthrs, lndgs, TMR_1_hrs, TMR_2_hrs, TMR_3_hrs, TMR_4_hrs, TMR_5_hrs, 
TMR_6_hrs, TMR_7_hrs, NON_AUST_lndgs, AUST_lndgs, SHIP_lndgs] 
def display_records(self): 
''' Prints the gathered flight records with proper formatting. ''' 
self.temp_output.insert(0,['buno', 'start_date', 'flthrs', 'lndgs', 'TMR_1_hrs', 
'TMR_2_hrs', 'TMR_3_hrs', 'TMR_4_hrs', 'TMR_5_hrs', 'TMR_6_hrs', 'TMR_7_hrs', 
'NON_AUST_lndgs', 'AUST_lndgs', 'SHIP_lndgs']) 
max_lens = [len(str(max(i, key=lambda x: len(str(x))))) for i in 
zip(*self.temp_output)] 
print('\n'.join(' '.join(item[i].ljust(max_lens[i]) for i in range(len(max_lens))) 
for item in self.temp_output)) 
print() 
self.temp_output = [] 
C:\Users\willi\OneDrive\Desktop\Latest_9\FlightHours.py 
Page 9, last modified 08/31/22 18:03:19 
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APPENDIX G.  PYTHON SOURCE CODE FOR GENERATING 
SERIAL NUMBER HISTORIES 

# SernoHistory.py 
# Captain William Frazier 
# NPS Thesis research 
# Save each P/N reports from Deckplate using DP-0025 Serial Number Tracking as a .csv 
import csv 
from datetime import date, timedelta 
import matplotlib.pyplot as plt 
from copy import deepcopy 
import FlightHours 
# Steps taken by this program: 
# 
# - Read in .csv files for each P/N associated with the component being evaluated 
# - Those files are sorted oldest to newest completion date 
# - The dates are formatted 
# - A dictionary is created for the unique SerNo's as the keys 
# - Each row of the data is read and new SerNo's are added to the dict 
# - SerNo's already added have the row of data appended to the value list 
class SernoHistory(object): 
''' Dictionary of Sernos whose key:value pair will be 
serno:[list of historical flight data]. 
This class has methods that will map out by calendar date 
which BUNO the serno was installed on throughout its service. 
It will then utilize methods from the FlightHours class to 
populate data from flight records for that buno during a date 
range subsequently providing the flight data of a serno during 
a date range. ''' 
def __init__(self): 
self.data = [] 
self.final_v22_PCA_data = [] 
self.sernos = {} 
self.beginning = date(1997, 4, 3) 
self.end = date.today() 
self.day_delta = (self.end - self.beginning).days 
self.raw_data_filename = 'DP-0025_WUC_27502X.csv' 
self.save_data_filename = 'SORTED_WUC_27502X.csv' 
self.save_decon_data_filename = 'DECONFLICTED_WUC_27502X.csv' 
self.header = '' 
self.header_extended = '' 
self.serno_flight_data = {} 
self.sorted_data = [] 
C:\Users\willi\OneDrive\Desktop\Latest_9\SernoHistory.py 
Page 2, last modified 08/31/22 18:12:17 
# Indicies 
self.ACTION_DATE = 0 
self.PART_NO = 1 
self.CAGE = 2 
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self.SERNO = 3 
self.WUC = 4 
self.WEC_DESC = 5 
self.ORG = 6 
self.ORG_DESC = 7 
self.TEC = 8 
self.TMS = 9 
self.BUNO = 10 
self.REM_INS_FLAG = 11 
self.JCN = 12 
self.MCN = 13 
self.TYPE_MAINT = 14 
self.TRANS_CODE = 15 
self.ACT_TAKEN = 16 
self.MAL_CODE = 17 
self.COMP_DATE = 18 
self.TIME_1_CODE = 19 
self.TIME_1_CYCLE = 20 
self.TIME_2_CODE = 21 
self.TIME_2_CYCLE = 22 
self.TIME_3_CODE = 23 
self.TIME_3_CYCLE = 24 
# Indicies 
self.HRS = 25 
self.LNDGs = 26 
self.TMR_1 = 27 
self.TMR_2 = 28 
self.TMR_3 = 29 
self.TMR_4 = 30 
self.TMR_5 = 31 
self.TMR_6 = 32 
self.TMR_7 = 33 
self.NON_AUST_LNDGS = 34 
self.AUST_LNDGS = 35 
self.SHIP_LNDGS = 36 
# WUC Criteria 
self.WUC_criteria = ['275021', '275020', '27502015', '27502115'] 
self.FlightHours = FlightHours.FlightHours() 
self.FlightHours.read_data() 
self.FlightHours.format_date() 
C:\Users\willi\OneDrive\Desktop\Latest_9\SernoHistory.py 
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self.FlightHours.build_bunos() 
self.FlightHours.fill_flthrs() 
self.FlightHours.fill_landings() 
#self.FlightHours.write_data() 
def read_data(self): 
''' Reads in the DP-0025 report csv file generated from Deckplate. ''' 
with open(self.raw_data_filename, 'r') as file: 
reader = csv.reader(file) 
# Create local list that includes first row header 
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new_data = [] 
for row in reader: 
new_data.append(row) 
# save the header row and pop it off 
self.header = new_data[0] 
self.header_extended = self.header 
self.header_extended.extend(['flthrs', 'lndgs']) 
new_data.pop(0) 
for row in new_data: 
self.data.append(row) 
def format_date(self): 
''' Converts maintenance action date string from .csv into datetime data type. 
Assumes .csv date is in MM/DD/YYYY and needs to be [YYYY, MM, DD]''' 
for row in range(0,len(self.data)): 
# Action Taken Date 
mdy = self.data[row][self.ACTION_DATE].split("/") 
if len(mdy) == 3: 
self.data[row][self.ACTION_DATE] = date(int(mdy[2]), int(mdy[0]), int(mdy[1])) 
else: 
mdy = self.data[row][self.ACTION_DATE].split("-") 
if len(mdy) == 3: 
self.data[row][self.ACTION_DATE] = date(int(mdy[0]), int(mdy[1]), 
int(mdy[2])) 
# Action Completion Date 
mdy = self.data[row][self.COMP_DATE].split("/") 
if len(mdy) == 3: 
self.data[row][self.COMP_DATE] = date(int(mdy[2]), int(mdy[0]), int(mdy[1])) 
else: 
mdy = self.data[row][self.COMP_DATE].split("-") 
if len(mdy) == 3: 
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self.data[row][self.COMP_DATE] = date(int(mdy[0]), int(mdy[1]), 
int(mdy[2])) 
def write_data(self): 
''' Saves the resultant data to a csv file. ''' 
with open(self.save_data_filename, 'w', newline="") as file: 
writer = csv.writer(file) 
writer.writerow(self.header_extended) 
for key in self.sernos.keys(): 
entries = self.sernos[key] 
writer.writerows(entries) 
def sort_by_date(self, history): 
''' Sorts an input list of historical R/I records by their action date value. ''' 
history.sort(key=lambda x: x[self.ACTION_DATE]) 
return history 
def display_records(self, records): 
''' Prints the gathered R/I action records with proper formatting. ''' 
max_lens = [len(str(max(i, key=lambda x: len(str(x))))) for i in zip(*records)] 
print('\n'.join(' '.join(item[i].ljust(max_lens[i]) for i in range(len(max_lens))) 
for item in records)) 
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print() 
def build_calendar(self, serno): 
''' Fills the dictionary with the key:value pair of date:buno 
The date range is from self.beginning to date.today() 
Default BUNO installed on is blank ''' 
# All R/I are sorted. There is one I and one R for an installation period 
# Iterate every 2 entries 
new_calendar = self.FlightHours.build_calendar() 
serno_history = self.sernos[serno] 
index = 1 
while index < len(serno_history): 
buno = serno_history[index][self.BUNO] 
install_date = serno_history[index-1][self.ACTION_DATE] 
removal_date = serno_history[index][self.ACTION_DATE] 
day_delta = (removal_date - install_date).days 
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for day in range(1, day_delta): 
#current_day = install_date + timedelta(day) 
current_day = install_date + timedelta(day) 
prev_day = current_day - timedelta(1) 
new_calendar[current_day] = self.FlightHours.buno_query(buno, prev_day, 
current_day) 
index += 2 
return new_calendar 
def build_sernos(self): 
''' Generates master dictionary of sernos:[R/I actions]. 
If the SerNo is not yet a key in the dict, it is added and its 
value is the corresponding row of data i.e. the oldest action 
completed from the data. Subsequent rows with that same SerNo will 
have that data appended to the value list. ''' 
for row in range(0,len(self.data)): 
# Ensures only entries whose WUC begins with the WUC_criteria 
if str(self.data[row][self.WUC]) in self.WUC_criteria: 
#key = str(self.data[row][self.SERNO]) + '/' + 
str(self.data[row][self.PART_NO]) 
key = str(self.data[row][self.SERNO]) 
if key not in self.sernos: 
self.sernos[key] = [self.data[row]] 
else: 
self.sernos[key].extend([self.data[row]]) 
def check_missing(self): 
''' Compares all of the JCNs for FST Weibull analysis with JCNs found for 
R/I data in deckplate to ensure each component used in the analysis has an R/I MAF. ''' 
# load all MCNs from v22 fst file 
with open('v22_fst_results_pca.csv', 'r') as file: 
reader = csv.reader(file) 
failures = [] 
for row in reader: 
failures.append(row) 
MCNs_fst = [str(row[2]) for row in failures] 
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MCNs_deckplate = [str(row[self.MCN]) for row in self.data] 
for mcn in MCNs_fst: 
C:\Users\willi\OneDrive\Desktop\Latest_9\SernoHistory.py 
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if mcn not in MCNs_deckplate: 
print("MCN missing:", mcn) 
def sort_serno_history(self, serno_history): 
''' Applies the logic to the serno:[history] dict key:value pairs that sorts 
the R/I actions in the correct chronological sequence. This rearranging sets 
the conditions to begin recording the ranges of dates for which a SerNo was 
installed on a BUNO. ''' 
new_history = [] 
entry = 0 
while entry < len(serno_history): 
# Get records 
current_record = deepcopy(serno_history[entry]) 
previous_record = None 
next_record = None 
# If this isnt the first entry, get the previous record 
if entry != 0: 
previous_record = deepcopy(serno_history[entry-1]) 
# If this isnt the last entry, get the next record 
if entry < len(serno_history) - 1: 
next_record = deepcopy(serno_history[entry+1]) 
# First Entry 
if entry == 0: 
# First Entry is Install 
if current_record[self.REM_INS_FLAG] == "I": 
new_history.append(current_record) 
# Is there another same day entry 
if next_record and current_record[self.ACTION_DATE] == 
next_record[self.ACTION_DATE]: 
# Same day is another Install, removal missing, impute 
if next_record[self.REM_INS_FLAG] == "I": 
imputed_record = deepcopy(current_record) 
imputed_record[self.REM_INS_FLAG] = "R" 
# First Entry is Install, second is not same date, Second is Install 
elif next_record and next_record[self.REM_INS_FLAG] == "I": 
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# A removal is missing, impute it with the current record's Action date 
imputed_record = deepcopy(current_record) 
imputed_record[self.REM_INS_FLAG] = "R" 
new_history.append(imputed_record) 
# First Entry is Install, second is not same date, Second is Removal 
# First Entry is Removal, install is missing 
elif entry == 0 and current_record[self.REM_INS_FLAG] == "R": 
# Assumed component has been installed from aircraft's delivery 
imputed_record = deepcopy(current_record) 
imputed_record[self.ACTION_DATE] = self.beginning 
imputed_record[self.REM_INS_FLAG] = "I" 
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new_history.append(imputed_record) 
new_history.append(current_record) 
# Last entry 
elif entry == len(serno_history) - 1: 
# Last Entry is Install and previous is install, missing removal, impute 
if current_record[self.REM_INS_FLAG] == "I" and 
previous_record[self.REM_INS_FLAG] == "I": 
imputed_record = deepcopy(current_record) 
imputed_record[self.REM_INS_FLAG] = "R" 
new_history.append(imputed_record) 
new_history.append(current_record) 
# Middle entry 
else: 
# Entry is Install 
if current_record[self.REM_INS_FLAG] == "I": 
# Previous is also Install, missing removal, impute 
if previous_record[self.REM_INS_FLAG] == "I": 
imputed_record = deepcopy(current_record) 
imputed_record[self.REM_INS_FLAG] = "R" 
new_history.append(imputed_record) 
# Entry is Removal 
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else: 
# Previous is also Removal, missing removal, impute 
if previous_record[self.REM_INS_FLAG] == "R": 
imputed_record = deepcopy(current_record) 
imputed_record[self.REM_INS_FLAG] = "I" 
new_history.append(imputed_record) 
new_history.append(current_record) 
entry += 1 
return new_history 
def add_flight_data_to_history(self, serno): 
# History is now sorted there is an Install and Removal pair every aircraft 
total_hrs = 0 
total_lndgs = 0 
total_TMR_1_hrs = 0 
total_TMR_2_hrs = 0 
total_TMR_3_hrs = 0 
total_TMR_4_hrs = 0 
total_TMR_5_hrs = 0 
total_TMR_6_hrs = 0 
total_TMR_7_hrs = 0 
total_NON_AUST_lndgs = 0 
total_AUST_lndgs = 0 
total_SHIP_lndgs = 0 
data = [str(total_hrs), str(total_lndgs), str(total_TMR_1_hrs), str(total_TMR_2_hrs), 
str(total_TMR_3_hrs), str(total_TMR_4_hrs), str(total_TMR_5_hrs), 
str(total_TMR_6_hrs), 
str(total_TMR_7_hrs), str(total_NON_AUST_lndgs), str(total_AUST_lndgs), 
str(total_SHIP_lndgs)] 
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entry = 0 
while entry < len(self.sernos[serno]): 
if entry == 0: 
self.sernos[serno][entry].extend(data) 
elif self.sernos[serno][entry][self.REM_INS_FLAG] == "I": 
self.sernos[serno][entry].extend(data) 
C:\Users\willi\OneDrive\Desktop\Latest_9\SernoHistory.py 
Page 9, last modified 08/31/22 18:12:17 
else: 
install_date = self.sernos[serno][entry-1][self.ACTION_DATE] 
removal_date = self.sernos[serno][entry][self.ACTION_DATE] 
buno = self.sernos[serno][entry][self.BUNO] 
[flthrs, lndgs, TMR_1_hrs, TMR_2_hrs, TMR_3_hrs, 
TMR_4_hrs, TMR_5_hrs, TMR_6_hrs, TMR_7_hrs, 
NON_AUST_lndgs, AUST_lndgs, SHIP_lndgs] = 
self.FlightHours.buno_query_all_data(buno, install_date, removal_date) 
total_hrs += flthrs 
total_lndgs += lndgs 
total_TMR_1_hrs += TMR_1_hrs 
total_TMR_2_hrs += TMR_2_hrs 
total_TMR_3_hrs += TMR_3_hrs 
total_TMR_4_hrs += TMR_4_hrs 
total_TMR_5_hrs += TMR_5_hrs 
total_TMR_6_hrs += TMR_6_hrs 
total_TMR_7_hrs += TMR_7_hrs 
total_NON_AUST_lndgs += NON_AUST_lndgs 
total_AUST_lndgs += AUST_lndgs 
total_SHIP_lndgs += SHIP_lndgs 
data = [str(total_hrs), str(total_lndgs), str(total_TMR_1_hrs), 
str(total_TMR_2_hrs), 
str(total_TMR_3_hrs), str(total_TMR_4_hrs), str(total_TMR_5_hrs), 
str(total_TMR_6_hrs), 
str(total_TMR_7_hrs), str(total_NON_AUST_lndgs), 
str(total_AUST_lndgs), str(total_SHIP_lndgs)] 
self.sernos[serno][entry].extend(data) 
entry += 1 
def flight_hour_query_steps(self): 
''' Takes the user through steps of inputting flight hour query parameters. ''' 
try: 
# Enter BUNO 
buno = str(input("Enter the BUNO\n")) 
# Start date or enter 0 to use the earliest flight date of the V22 program 
start = str(input("Enter the start date of the query such as MM/DD/YYYY or 0 for 
the beginning of the V22 program\n")) 
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if start != "0": 
mdy = start.split("/") 
start = date(int(mdy[2]), int(mdy[0]), int(mdy[1])) 
else: 
start = self.beginning 
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end = str(input("Enter the end date of the query such as MM/DD/YYYY\n")) 
mdy = end.split("/") 
end = date(int(mdy[2]), int(mdy[0]), int(mdy[1])) 
except Exception: 
print("not a valid component or response format\n") 
# input parameters for the FlightHours class 
return buno, start, end 
def serno_query_steps(self): 
''' Takes the user through input steps to choose parameters for a SerNo R/I history 
query. ''' 
try: 
serno = str(input("Enter the SerNo you wish to evaluate\n")) 
self.query_serno(serno) 
except Exception: 
print(str(serno) + "is not a valid component or response format\n") 
def auto_serno_query_steps(self): 
''' Takes the user through input steps to choose parameters for a SerNo R/I history 
query. ''' 
try: 
for serno in self.sernos.keys(): 
self.auto_serno_query(serno) 
self.write_data() 
except Exception: 
print(str(serno) + "had an issue in auto_serno_query_steps\n") 
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def auto_serno_query(self, serno): 
''' Takes the input serno and returns all R/I records for that 
SerNo to include all part numbers. Used to identify errors. ''' 
try: 
# Iterate through serno values in the dict 
temp_results = [] 
temp_value = deepcopy(self.sernos[serno]) 
for row in temp_value: 
temp_results.append(row) 
# Properly sort/impute R/I entries and replace the old history with the new 
new_history = self.sort_serno_history(self.get_history(serno)) 
self.sernos[serno] = new_history 
# append cumulative flight data to R/I entry 
self.add_flight_data_to_history(serno) 
# Call for the creation of flight data calendar and insert into serno_calendar 
serno_calendar = self.build_calendar(serno) 
self.serno_flight_data[serno] = serno_calendar 
except Exception as e: 
print("Error with Serno ", str(serno), e) 
def get_history(self, serno): 
''' Generates the list of R/I actions based on a serno/part combo and adds the 
header. ''' 
history_list = deepcopy(self.sernos[serno]) 
return history_list 
def SerNo_query_short(self, history_list): 
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''' Returns the R/I history of a SerNo ''' 
history_list.insert(0,self.header) 
# Convert dates to strings for formating 
for row in range(1,len(history_list)): 
history_list[row][self.ACTION_DATE] = 
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history_list[row][self.ACTION_DATE].strftime('%m/%d/%Y') 
history_list[row][self.COMP_DATE] = 
history_list[row][self.COMP_DATE].strftime('%m/%d/%Y') 
# only the essential columns of data 
#indicies = [0,1,3,7,10,11,12,13,22,24] 
indicies = [self.ACTION_DATE, 
self.PART_NO, 
self.SERNO, 
self.WUC, 
self.ORG_DESC, 
self.BUNO, 
self.REM_INS_FLAG, 
self.JCN, 
self.MCN, 
self.COMP_DATE, 
self.TIME_1_CYCLE] 
short_list = [] 
for row in history_list: 
short_list.append([row[index] for index in indicies]) 
# Print using formatting 
self.display_records(short_list) 
def SerNo_query_long(self, history_list, header): 
''' Returns the R/I history of a SerNo ''' 
history_list.insert(0,header) 
# Convert dates to strings for formating 
for row in range(1,len(history_list)): 
history_list[row][self.ACTION_DATE] = 
history_list[row][self.ACTION_DATE].strftime('%m/%d/%Y') 
history_list[row][self.COMP_DATE] = 
history_list[row][self.COMP_DATE].strftime('%m/%d/%Y') 
# Print using formatting 
self.display_records(history_list) 
def query_serno(self, user_serno): 
''' Takes the users input serno and returns all R/I records for that 
SerNo to include all part numbers. Used to identify errors. ''' 
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try: 
# Iterate through serno values in the dict 
temp_results = [] 
for key in self.sernos.keys(): 
# make a copy of the dict key 
temp_key = deepcopy(key) 
# compare the current dict key with the user input serno 
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if str(user_serno) == str(temp_key): 
# If they match, add a copy of the dict key's value to the return list 
temp_value = deepcopy(self.sernos[temp_key]) 
for row in temp_value: 
temp_results.append(row) 
short_results = deepcopy(temp_results) 
long_results = deepcopy(temp_results) 
# Automaticall provide short version of results 
self.SerNo_query_short(short_results) 
long_response = str(input("Enter y to see long version or n to continue\n" 
"Enter s to sort and build flight data\n")) 
if long_response == 'y': 
self.SerNo_query_long(long_results, self.header) 
elif long_response == 's': 
# Properly sort/impute R/I entries and replace the old history with the new 
new_history = self.sort_serno_history(self.get_history(user_serno)) 
self.sernos[user_serno] = new_history 
# append cumulative flight data to R/I entry 
self.add_flight_data_to_history(user_serno) 
# Call for the creation of flight data calendar and insert into serno_calendar 
serno_calendar = self.build_calendar(user_serno) 
self.serno_flight_data[user_serno] = serno_calendar 
response = str(input("Enter full to see all serno flight entries\n" 
"Enter short to see cululative flight data for R/I 
entries only\n")) 
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if response == 'full': 
calendar = self.serno_flight_data[user_serno] 
for day in calendar.keys(): 
print(calendar[day]) 
elif response == 'short': 
self.SerNo_query_long(self.get_history(user_serno), self.header_extended) 
except Exception: 
print("something went wrong") 
def query_buno(self, buno): 
''' Iterates through all serno/part keys in the dict and their 
value lists of R/I actions to search for the BUNO. ''' 
try: 
# Iterate through all serno/part_num key values in the dict 
temp_results = [] 
for key in self.sernos.keys(): 
# make a copy of the dict key 
temp_key = deepcopy(key) 
temp_value = deepcopy(self.sernos[temp_key]) 
for row in temp_value: 
if row[self.BUNO] == buno: 
temp_results.append(row) 
# sort the results by completion date oldest to newest 
sorted_results = self.sort_by_date(temp_results) 
results = deepcopy(sorted_results) 
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return results 
except Exception: 
print("something went wrong quurying buno ", str(buno)) 
def deconflict_duplicates(self): 
''' Once all missing R/I data has been imputed, deconflicts multiple 
SerNos that were assumed to have been installed during production that 
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occupy and aircrafts left or right hand WUC. ''' 
try: 
self.data = [] 
self.new_data = [] 
self.sernos = {} 
with open(self.save_data_filename, 'r') as file: 
reader = csv.reader(file) 
# Create local list that includes first row header 
new_data = [] 
for row in reader: 
new_data.append(row) 
# save the header row and pop it off 
self.header_extended = new_data[0] 
new_data.pop(0) 
for row in new_data: 
self.data.append(row) 
self.format_date() 
self.build_sernos() 
# Returns all R/I entries for a buno 
for buno in self.FlightHours.bunos.keys(): 
buno_history = self.query_buno(buno) 
buno_history.insert(0,self.header_extended) 
# DECONFLICTION 
# Get all entries that are installations from the beginning until a removal 
is introduced 
buno_history.pop(0) 
right_PCA = None 
left_PCA = None 
right_PCA_index = None 
left_PCA_index = None 
i = 0 
# Get the first removals for right and left PCAs 
while right_PCA == None and i < len(buno_history): 
if buno_history[i][self.WUC][:6] == '275020' and 
buno_history[i][self.REM_INS_FLAG] == "R": 
right_PCA = buno_history[i][self.SERNO] 
right_PCA_index = i 
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break 
i += 1 
i = 0 
while left_PCA == None and i < len(buno_history): 
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if buno_history[i][self.WUC][:6] == '275021' and 
buno_history[i][self.REM_INS_FLAG] == "R": 
left_PCA = buno_history[i][self.SERNO] 
left_PCA_index = i 
break 
i += 1 
i = 0 
# Check if there is an install for a different serno but the same WUC before 
the first removed indecies 
while right_PCA != None and i < right_PCA_index: 
if buno_history[i][self.REM_INS_FLAG] == "I": 
if buno_history[i][self.WUC][:6] == '275020' and 
buno_history[i][self.SERNO] != right_PCA: 
buno_history.pop(i) 
i -= 1 
i += 1 
i = 0 
# Check if there is an install for a different serno but the same WUC before 
the first removed indecies 
while left_PCA != None and i < left_PCA_index: 
if buno_history[i][self.REM_INS_FLAG] == "I": 
if buno_history[i][self.WUC][:6] == '275021' and 
buno_history[i][self.SERNO] != left_PCA: 
buno_history.pop(i) 
i -= 1 
i += 1 
print("Buno ", buno, "deconflicted") 
for entry in buno_history: 
new_data.append(entry) 
with open(self.save_decon_data_filename, 'w', newline="") as file: 
header = self.header_extended 
header.extend(['total_TMR_1_hrs', 'total_TMR_2_hrs', 'total_TMR_3_hrs', 
'total_TMR_4_hrs', 'total_TMR_5_hrs', 'total_TMR_6_hrs', 
'total_TMR_7_hrs', 
'total_NON_AUST_lndgs', 'total_AUST_lndgs', 
'total_SHIP_lndgs']) 
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writer = csv.writer(file) 
writer.writerow(header) 
writer.writerows(new_data) 
except Exception: 
print("what happened") 
x = SernoHistory() 
x.read_data()
x.format_date()
x.build_sernos()
x.auto_serno_query_steps()
x.deconflict_duplicates()
x.auto_serno_query_steps()
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APPENDIX H.  PYTHON SOURCE CODE FOR GENERATING 
SERIAL NUMBER REMOVAL DATA 

C:\Users\willi\OneDrive\Desktop\Latest_9\RemovalHistory.py 
Page 1, last modified 08/31/22 18:14:54 
# RemovalHistory.py 
# Captain William Frazier 
# NPS Thesis research 
import csv 
from datetime import date, timedelta 
import matplotlib.pyplot as plt 
import numpy as np 
from copy import deepcopy 
class SernoRemovals(object): 
def __init__(self): 
self.data = [] 
self.sernos = {} 
self.PCA_removals_filename = 'PCA_Data.csv' 
self.new_filename = 'FINAL_REMOVALS_WUC_27502X.csv' 
self.header = '' 
# Indicies 
self.ACTION_DATE = 0 
self.PART_NO = 1 
self.CAGE = 2 
self.SERNO = 3 
self.WUC = 4 
self.WEC_DESC = 5 
self.ORG = 6 
self.ORG_DESC = 7 
self.TEC = 8 
self.TMS = 9 
self.BUNO = 10 
self.REM_INS_FLAG = 11 
self.JCN = 12 
self.MCN = 13 
self.TYPE_MAINT = 14 
self.TRANS_CODE = 15 
self.ACT_TAKEN = 16 
self.MAL_CODE = 17 
self.COMP_DATE = 18 
self.TIME_1_CODE = 19 
self.TIME_1_CYCLE = 20 
self.TIME_2_CODE = 21 
self.TIME_2_CYCLE = 22 
self.TIME_3_CODE = 23 
self.TIME_3_CYCLE = 24 
self.HRS = 25 
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self.LNDGs = 26 
self.TMR_1 = 27 
self.TMR_2 = 28 
self.TMR_3 = 29 
self.TMR_4 = 30 
self.TMR_5 = 31 
self.TMR_6 = 32 
self.TMR_7 = 33 
self.NON_AUST_LNDGS = 34 
self.AUST_LNDGS = 35 
self.SHIP_LNDGS = 36 
def read_data(self): 
''' Reads in the DP-0025 report csv file generated from Deckplate. ''' 
with open(self.PCA_removals_filename, 'r') as file: 
reader = csv.reader(file) 
for row in reader: 
self.data.append(row) 
# save the header row and pop it off 
self.header = self.data[0] 
self.data.pop(0) 
def format_date(self): 
''' Converts maintenance action date string from .csv into datetime data type. 
Assumes .csv date is in MM/DD/YYYY and needs to be [YYYY, MM, DD]''' 
for row in range(0,len(self.data)): 
# Action Taken Date 
mdy = self.data[row][self.ACTION_DATE].split("/") 
self.data[row][self.ACTION_DATE] = date(int(mdy[2]), int(mdy[0]), int(mdy[1])) 
# Action Completion Date 
mdy = self.data[row][self.COMP_DATE].split("/") 
self.data[row][self.COMP_DATE] = date(int(mdy[2]), int(mdy[0]), int(mdy[1])) 
def sort_by_date(self, history): 
''' Sorts an input list of historical R/I records by their action date value. ''' 
history.sort(key=lambda x: x[self.ACTION_DATE]) 
return history 
def display_records(self, records): 
''' Prints the gathered R/I action records with proper formatting. ''' 
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max_lens = [len(str(max(i, key=lambda x: len(str(x))))) for i in zip(*records)] 
print('\n'.join(' '.join(item[i].ljust(max_lens[i]) for i in range(len(max_lens))) 
for item in records)) 
print() 
def build_sernos(self): 
''' Generates master dictionary of sernos:[R/I actions]. 
If the SerNo is not yet a key in the dict, it is added and its 
value is the corresponding row of data i.e. the oldest action 
completed from the data. Subsequent rows with that same SerNo will 
have that data appended to the value list. ''' 
for row in range(0,len(self.data)): 
key = str(self.data[row][self.SERNO]) 
if key not in self.sernos: 
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self.sernos[key] = [self.data[row]] 
else: 
self.sernos[key].extend([self.data[row]]) 
def SerNo_query_short(self, history_list): 
''' Returns the R/I history of a SerNo ''' 
history_list.insert(0,self.header) 
# Convert dates to strings for formating 
for row in range(1,len(history_list)): 
history_list[row][self.ACTION_DATE] = 
history_list[row][self.ACTION_DATE].strftime('%m/%d/%Y') 
history_list[row][self.COMP_DATE] = 
history_list[row][self.COMP_DATE].strftime('%m/%d/%Y') 
# only the essential columns of data 
#indicies = [0,1,3,7,10,11,12,13,22,24] 
indicies = [self.ACTION_DATE, 
self.PART_NO, 
self.SERNO, 
self.ORG_DESC, 
self.BUNO, 
self.TRANS_CODE, 
self.ACT_TAKEN, 
self.MAL_CODE, 
self.HRS, 
self.LNDGs, 
self.TMR_1, 
self.TMR_2, 
self.TMR_3, 
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self.TMR_4, 
self.TMR_5, 
self.TMR_6, 
self.TMR_7, 
self.NON_AUST_LNDGS, 
self.AUST_LNDGS, 
self.SHIP_LNDGS] 
short_list = [] 
for row in history_list: 
short_list.append([row[index] for index in indicies]) 
# Print using formatting 
self.display_records(short_list) 
def get_history(self, serno): 
''' Generates the list of R/I actions based on a serno/part combo and adds the 
header. ''' 
history_list = deepcopy(self.sernos[serno]) 
history_list = self.sort_by_date(history_list) 
return history_list 
def remove_duplicates(self): 
for serno in self.sernos.keys(): 
new_history = [] 
temp_history = deepcopy(self.sernos[serno]) 
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for removal in temp_history: 
if removal not in new_history: 
new_history.append(removal) 
self.sernos[serno] = new_history 
def remove_admin_removals(self): 
''' Removes any removal MAFs that are administrative in nature. 
Determined by transaction, action taken, and malfunction codes. 
Comments are from the NAMP 4790.2D Appendix E. ''' 
for serno in self.sernos.keys(): 
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temp_history = deepcopy(self.sernos[serno]) 
row = 0 
while row < len(temp_history): 
trans_code = temp_history[row][self.TRANS_CODE] 
mal_code = temp_history[row][self.MAL_CODE] 
act_code = temp_history[row][self.ACT_TAKEN] 
if str(trans_code) == '11': 
# Could not duplicate or found within tolerances 
if act_code == "A": 
temp_history.pop(row) 
row -= 1 
elif str(trans_code) == '16': 
# No Defect Removal 
temp_history.pop(row) 
row -= 1 
elif str(trans_code) == '17': 
# Installation, should not have a removal serno 
temp_history.pop(row) 
row -= 1 
elif str(trans_code) == '18': 
# Cannibalization or removal for defect 
pass 
elif str(trans_code) == '20': 
# Cannibalization 
pass 
elif str(trans_code) == '21': 
# repairable component is removed 
pass 
elif str(trans_code) == '23': 
# Removal and replacement of a defective, suspected defective, or scheduled 
# maintenance of a repairable component from an end item 
pass 
elif str(trans_code) == '30': 
# I Level test and check, component already removed 
temp_history.pop(row) 
row -= 1 
C:\Users\willi\OneDrive\Desktop\Latest_9\RemovalHistory.py 
Page 6, last modified 08/31/22 18:14:54 
elif str(trans_code) == '31': 
# I Level maintenance, component already removed 
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temp_history.pop(row) 
row -= 1 
elif str(trans_code) == '47': 
# TDs not resulting in a removal 
if act_code == "C": 
temp_history.pop(row) 
row -= 1 
row += 1 
row = 0 
self.sernos[serno] = temp_history 
def write_data(self): 
with open(self.new_filename, 'w', newline='') as file: 
writer = csv.writer(file) 
writer.writerow(self.header) 
for serno in self.sernos.keys(): 
writer.writerows(self.sernos[serno]) 
x = SernoRemovals() 
x.read_data()
x.format_date()
x.build_sernos()
x.remove_duplicates()
x.remove_admin_removals()

x.write_data()
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APPENDIX I.  PYTHON SOURCE CODE FOR WEIBULL AND CPH 
MODELS 

# Models.py 
# Captain William Frazier 
# NPS Thesis research 
from copy import deepcopy 
import csv 
from datetime import date, timedelta 
import scipy.stats as s 
from scipy.special import gammaln 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.stats import weibull_min, exponweib, weibull_max, norm, chi2, beta, linregress, 
trim_mean 
import math 
from predictr import Analysis 
import weibull 
import reliability 
import pandas as pd 
from lifelines import KaplanMeierFitter 
from lifelines import CoxPHFitter 
from statistics import mean 
import FlightHours 
class Weibull(object): 
def __init__(self): 
# Indicies for data columns 
self.TTF = 0 
self.MODE = 1 
self.MCN = 2 
self.RAW_MCN = 0 
self.RAW_SERNO = 1 
self.RAW_PN= 2 
# PCA Data from V22 FST Weibull Analysis 
self.PCA_Data_filename = 'FINAL_REMOVALS_WUC_27502X.csv' 
self.Weibull_data_filename = 'PCA_Weibull.csv' 
self.PCA_Test_Data_filename = 'FINAL_REMOVALS_WUC_27502X.csv' 
self.failures = [] 
self.num_failures = 0 
self.data_header = '' 
self.failures_by_mal = {} 
self.modes_to_ignore = ['0', '813', '815'] 
self.sernos = {} 
C:\Users\willi\OneDrive\Desktop\Thesis\Latest_Final\Weibull.py 
Page 2, last modified 09/04/22 19:58:55 
self.data_at_test_data = {} 
# Indicies 
self.ACTION_DATE = 0 
self.PART_NO = 1 
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self.CAGE = 2 
self.SERNO = 3 
self.WUC = 4 
self.WEC_DESC = 5 
self.ORG = 6 
self.ORG_DESC = 7 
self.TEC = 8 
self.TMS = 9 
self.BUNO = 10 
self.REM_INS_FLAG = 11 
self.JCN = 12 
self.MCN = 13 
self.TYPE_MAINT = 14 
self.TRANS_CODE = 15 
self.ACT_TAKEN = 16 
self.MAL_CODE = 17 
self.COMP_DATE = 18 
self.TIME_1_CODE = 19 
self.TIME_1_CYCLE = 20 
self.TIME_2_CODE = 21 
self.TIME_2_CYCLE = 22 
self.TIME_3_CODE = 23 
self.TIME_3_CYCLE = 24 
self.HRS = 25 
self.LNDGs = 26 
self.TMR_1 = 27 
self.TMR_2 = 28 
self.TMR_3 = 29 
self.TMR_4 = 30 
self.TMR_5 = 31 
self.TMR_6 = 32 
self.TMR_7 = 33 
self.NON_AUST_LNDGS = 34 
self.AUST_LNDGS = 35 
self.SHIP_LNDGS = 36 
self.CENS = 37 
# Results tables 
self.results_header = ['Failure Mode','# Failures', 'MTTF', 
'Eta','Beta','Rsqr','AbPval'] 
self.results = [self.results_header] 
self.final_results = [self.results_header] 
C:\Users\willi\OneDrive\Desktop\Thesis\Latest_Final\Weibull.py 
Page 3, last modified 09/04/22 19:58:55 
def read_data(self): 
''' Reads in the final data of TTF and Mode from a csv file. ''' 
with open(self.PCA_Data_filename, 'r') as file: 
reader = csv.reader(file) 
for row in reader: 
self.failures.append(row) 
self.data_header = self.failures[0] 
self.failures.pop(0) 
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def write_data(self): 
''' Connects the SerNo from FRC's Raw Data to the resultant data via MCN. ''' 
with open(self.Weibull_data_filename, 'w', newline='') as file: 
writer = csv.writer(file) 
writer.writerow(self.data_header) 
writer.writerows(self.failures) 
def remove_zeros(self): 
''' Removes any TTFs == 0 which could cause NaN or Inf in weibull calc. ''' 
without_zeros = [row for row in self.failures if (float(row[self.HRS]) != float(0))] 
self.failures = without_zeros 
def ensure_floats(self): 
''' Ensures TTF in data is in proper format. ''' 
for row in range(len(self.failures)): 
self.failures[row][self.HRS] = float(self.failures[row][self.HRS]) 
def censor_flag(self): 
''' Adds the censored boolean column for all TTF data for weibull module. ''' 
self.data_header.append('Censor Flag') 
for row in range(len(self.failures)): 
self.failures[row].append(False) 
def sort_by_mal(self): 
failures = deepcopy(self.failures) 
for row in failures: 
C:\Users\willi\OneDrive\Desktop\Thesis\Latest_Final\Weibull.py 
Page 4, last modified 09/04/22 19:58:55 
if row[self.MAL_CODE] not in self.failures_by_mal: 
self.failures_by_mal[row[self.MAL_CODE]] = row 
else: 
self.failures_by_mal[row[self.MAL_CODE]].append(row) 
def split_data_weibull(self, mal_code, num_failures, split_perc): 
train_failures = [] 
train_suspensions = [] 
test_failures = [] 
num_train_failures = 0 
num_test_failures = 0 
num_train_suspensions = 0 
count = 0 
end_date = 0 
date_flag = 0 
for row in self.failures: 
if count <= float(num_failures * split_perc): 
if str(row[self.MAL_CODE]) == str(mal_code): 
train_failures.append(row[self.HRS]) 
num_train_failures += 1 
count += 1 
else: 
train_suspensions.append(row[self.HRS]) 
num_train_suspensions += 1 
else: 
if date_flag == 0: 
end_date = row[self.ACTION_DATE] 
date_flag = 1 
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if str(row[self.MAL_CODE]) == str(mal_code): 
test_failures.append(row[self.HRS]) 
num_test_failures += 1 
return train_failures, num_train_failures, train_suspensions, num_train_suspensions, 
test_failures, num_test_failures, end_date 
def split_data_CPH(self, mal_code, num_failures, split_perc): 
train_failures = [] 
test_failures = [] 
num_train_failures = 0 
C:\Users\willi\OneDrive\Desktop\Thesis\Latest_Final\Weibull.py 
Page 5, last modified 09/04/22 19:58:55 
num_test_failures = 0 
num_train_suspensions = 0 
count = 0 
end_date = 0 
date_flag = 0 
for row in self.failures: 
if count <= float(num_failures * split_perc): 
if str(row[self.MAL_CODE]) == str(mal_code): 
row[self.CENS] = 1 
train_failures.append(row) 
num_train_failures += 1 
count += 1 
else: 
row[self.CENS] = 0 
train_failures.append(row) 
num_train_suspensions += 1 
else: 
if date_flag == 0: 
end_date = row[self.ACTION_DATE] 
date_flag = 1 
if str(row[self.MAL_CODE]) == str(mal_code): 
row[self.CENS] = 1 
test_failures.append(row) 
num_test_failures += 1 
else: 
row[self.CENS] = 0 
test_failures.append(row) 
num_train_suspensions += 1 
return train_failures, num_train_failures, num_train_suspensions, test_failures, 
num_test_failures, end_date 
def reliability_RRY(self, train_failures, train_suspensions, m, conf_int, mode): 
model = reliability.Fitters.Fit_Weibull_2P(failures=train_failures, 
right_censored=train_suspensions, show_probability_plot=True, print_results=True, 
CI=conf_int, quantiles=None, CI_type='time', method=m, optimizer=None, 
force_beta=None, downsample_scatterplot=True) 
MTTF = model.alpha * math.exp( gammaln( 1 + (1 / model.beta)) ) 
print('MTTF: ' + str(round(MTTF,2)) + '\n' 
C:\Users\willi\OneDrive\Desktop\Thesis\Latest_Final\Weibull.py 
Page 6, last modified 09/04/22 19:58:55 
'Eta: ' + str(round(model.alpha,2)) + '\n' 
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'Beta: ' + str(round(model.beta,2))) 
return round(float(MTTF),2), round(float(model.loglik),2), 
round(float(model.AICc),2) #, model.loglik2, model.AICc, model.BIC, model.AD] 
def CoxPropHazard(self, mal_code, train_failures, a, p): 
test_failures = [] 
cph_data = [] 
for key in self.data_at_test_data.keys(): 
if str(self.data_at_test_data[key][self.MAL_CODE]) == str(mal_code): 
test_failures.append(self.data_at_test_data[key]) 
df_train = pd.DataFrame({ 
'TTF': [row[self.HRS] for row in train_failures], 
'TMR_1 Hours': [row[self.TMR_1] for row in train_failures], 
'TMR_2 Hours': [row[self.TMR_2] for row in train_failures], 
'TMR_3 Hours': [row[self.TMR_3] for row in train_failures], 
'TMR_4 Hours': [row[self.TMR_4] for row in train_failures], 
C:\Users\willi\OneDrive\Desktop\Thesis\Latest_Final\Weibull.py 
Page 7, last modified 09/04/22 19:58:55 
'TMR_5 Hours': [row[self.TMR_5] for row in train_failures], 
'TMR_6 Hours': [row[self.TMR_6] for row in train_failures], 
'TMR_7 Hours': [row[self.TMR_7] for row in train_failures], 
'Non-Austere Landings': [row[self.NON_AUST_LNDGS] for row in train_failures], 
'Austere Landings': [row[self.AUST_LNDGS] for row in train_failures], 
'Ship Landings': [row[self.SHIP_LNDGS] for row in train_failures], 
'Fail': [row[self.CENS] for row in train_failures] 
}) 
df_test = pd.DataFrame({ 
'TTF': [row[self.HRS] for row in test_failures], 
'TMR_1 Hours': [row[self.TMR_1] for row in test_failures], 
'TMR_2 Hours': [row[self.TMR_2] for row in test_failures], 
'TMR_3 Hours': [row[self.TMR_3] for row in test_failures], 
'TMR_4 Hours': [row[self.TMR_4] for row in test_failures], 
'TMR_5 Hours': [row[self.TMR_5] for row in test_failures], 
'TMR_6 Hours': [row[self.TMR_6] for row in test_failures], 
'TMR_7 Hours': [row[self.TMR_7] for row in test_failures], 
'Non-Austere Landings': [row[self.NON_AUST_LNDGS] for row in test_failures], 
'Austere Landings': [row[self.AUST_LNDGS] for row in test_failures], 
'Ship Landings': [row[self.SHIP_LNDGS] for row in test_failures], 
}) 
print(df_test) 
cph = CoxPHFitter(alpha=a, penalizer=p) 
cph.fit(df_train, duration_col="TTF", event_col="Fail") 
cph.print_summary() 
plt.figure() 
if mal_code == ' ': 
mal_code = 'Blank (Failed Technical Directive Inspection)' 
plt.title('Malfunction Code ' + str(mal_code) + ' Coefficient Ranges') 
cph.plot(hazard_ratios=True) 
plt.show() 
cph.check_assumptions(df_train,p_value_threshold=0.05,show_plots=True) 
plt.figure() 
test_rows = df_test.iloc[:,1:11] 
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print(test_rows) 
cph.predict_survival_function(test_rows).plot() 
plt.title('Malfunction Code ' + str(mal_code) + ' Survival Function for Test Data 
Failures') 
plt.ylabel('Survival (1 - Unreliability)') 
plt.xlabel('Flight Hours') 
plt.legend(labels=df_test['TTF'], loc = 'lower left') 
plt.show() 
cph.predict_median(test_rows) 
C:\Users\willi\OneDrive\Desktop\Thesis\Latest_Final\Weibull.py 
Page 8, last modified 09/04/22 19:58:55 
cph.predict_expectation(test_rows) 
return round(float(cph.log_likelihood_),2), round(float(cph.AIC_partial_),2) 
def v22_fst_weibull(self): 
TTF = 0 
MODE = 1 
MCN = 2 
diff = [] 
v22_fst_data = [] 
with open('v22_fst_results_PCA.csv', 'r') as file: 
reader = csv.reader(file) 
for row in reader: 
v22_fst_data.append(row) 
my_data = deepcopy(self.failures) 
for entry in range(len(v22_fst_data)): 
for entry_2 in my_data: 
if v22_fst_data[entry][MCN] == entry_2[self.MCN]: 
v22_fst_data[entry].extend(entry_2[self.HRS:self.CENS+1]) 
failure_modes = [] 
for entry in v22_fst_data: 
if entry[MODE] not in failure_modes: 
failure_modes.append(entry[MODE]) 
for mode in failure_modes: 
train_failures = [] 
train_suspensions = [] 
for row in v22_fst_data: 
if len(row) > 3: 
if str(row[MODE]) == str(mode): 
train_failures.append(row[3]) 
diff.append(float(row[0]) - float(row[3])) 
else: 
train_suspensions.append(row[3]) 
print('Failure Mode: ' + str(mode) + ' reliability - RRY ' + 
str(len(train_failures)) + ' failures, ' + str(len(train_suspensions)) + ' right 
censored\n') 
w_mttf, w_llh, w_aic = self.reliability_RRY(train_failures, train_suspensions, 
'RRY', 0.95, mode) 
C:\Users\willi\OneDrive\Desktop\Thesis\Latest_Final\Weibull.py 
Page 9, last modified 09/04/22 19:58:55 
print(len(diff)) 
print(mean(diff)) 
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def create_serno_removal_history(self): 
with open(self.PCA_Test_Data_filename, 'r') as file: 
reader = csv.reader(file) 
for row in reader: 
if row[self.SERNO] not in self.sernos.keys(): 
self.sernos[row[self.SERNO]] = [row] 
else: 
self.sernos[row[self.SERNO]].append(row) 
def build_test_flight_data(self, test_data, end_date): 
for failure in test_data: 
serno = failure[self.SERNO] 
if serno not in self.data_at_test_data.keys(): 
stopper = 0 
total_hrs = 0 
total_lndgs = 0 
total_TMR_1_hrs = 0 
total_TMR_2_hrs = 0 
total_TMR_3_hrs = 0 
total_TMR_4_hrs = 0 
total_TMR_5_hrs = 0 
total_TMR_6_hrs = 0 
total_TMR_7_hrs = 0 
total_NON_AUST_lndgs = 0 
total_AUST_lndgs = 0 
total_SHIP_lndgs = 0 
data = [str(total_hrs), str(total_lndgs), str(total_TMR_1_hrs), 
str(total_TMR_2_hrs), 
str(total_TMR_3_hrs), str(total_TMR_4_hrs), str(total_TMR_5_hrs), 
str(total_TMR_6_hrs), 
str(total_TMR_7_hrs), str(total_NON_AUST_lndgs), 
str(total_AUST_lndgs), str(total_SHIP_lndgs)] 
entry = 0 
while entry < len(self.sernos[serno]): 
if stopper == 0: 
C:\Users\willi\OneDrive\Desktop\Thesis\Latest_Final\Weibull.py 
Page 10, last modified 09/04/22 19:58:55 
if entry == 0: 
self.sernos[serno][entry][self.HRS:self.CENS] = data 
elif self.sernos[serno][entry][self.REM_INS_FLAG] == "I": 
self.sernos[serno][entry][self.HRS:self.CENS] = data 
else: 
install = self.sernos[serno][entry-1][self.ACTION_DATE] 
removal = self.sernos[serno][entry][self.ACTION_DATE] 
mdy = install.split("-") 
install = date(int(mdy[0]), int(mdy[1]), int(mdy[2])) 
mdy = removal.split("-") 
removal = date(int(mdy[0]), int(mdy[1]), int(mdy[2])) 
mdy = str(end_date).split("-") 
end_date = date(int(mdy[0]), int(mdy[1]), int(mdy[2])) 
if removal > end_date: 
removal = end_date 
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stopper = 1 
buno = self.sernos[serno][entry][self.BUNO] 
[flthrs, lndgs, TMR_1_hrs, TMR_2_hrs, TMR_3_hrs, 
TMR_4_hrs, TMR_5_hrs, TMR_6_hrs, TMR_7_hrs, 
NON_AUST_lndgs, AUST_lndgs, SHIP_lndgs] = 
self.FlightHours.buno_query_all_data(buno, install, removal) 
total_hrs += flthrs 
total_lndgs += lndgs 
total_TMR_1_hrs += TMR_1_hrs 
total_TMR_2_hrs += TMR_2_hrs 
total_TMR_3_hrs += TMR_3_hrs 
total_TMR_4_hrs += TMR_4_hrs 
total_TMR_5_hrs += TMR_5_hrs 
total_TMR_6_hrs += TMR_6_hrs 
total_TMR_7_hrs += TMR_7_hrs 
total_NON_AUST_lndgs += NON_AUST_lndgs 
total_AUST_lndgs += AUST_lndgs 
total_SHIP_lndgs += SHIP_lndgs 
data = [str(total_hrs), str(total_lndgs), str(total_TMR_1_hrs), 
str(total_TMR_2_hrs), 
str(total_TMR_3_hrs), str(total_TMR_4_hrs), 
C:\Users\willi\OneDrive\Desktop\Thesis\Latest_Final\Weibull.py 
Page 11, last modified 09/04/22 19:58:55 
str(total_TMR_5_hrs), str(total_TMR_6_hrs), 
str(total_TMR_7_hrs), str(total_NON_AUST_lndgs), 
str(total_AUST_lndgs), str(total_SHIP_lndgs)] 
self.sernos[serno][entry][self.HRS:self.CENS] = data 
print(self.sernos[serno][entry]) 
if stopper == 1: 
self.data_at_test_data[serno] = self.sernos[serno][entry] 
entry += 1 
entry += 1 
def build_test_flight_data_new(self, test_data): 
for failure in test_data: 
serno = failure[self.SERNO] 
serno_history = deepcopy(self.sernos[serno]) 
self.data_at_test_data[serno] = serno_history[-1] 
# Main 
x = Weibull() 
x.read_data()
x.remove_zeros()
x.ensure_floats()
x.censor_flag()
x.sort_by_mal()
x.write_data()
x.create_serno_removal_history()
#x.v22_fst_weibull()
# Iterate through each component
split_perc = .80
results = [['mal_code', 'method', 'CI', 'MTTF', 'Log Likelihood', 'AIC']]
for mal in [150]:
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num_failures = 0 
# Check that the total number of failures is over 20 
for row in x.failures: 
if str(row[x.MAL_CODE]) == str(mal): 
num_failures += 1 
C:\Users\willi\OneDrive\Desktop\Thesis\Latest_Final\Weibull.py 
Page 12, last modified 09/04/22 19:58:55 
if num_failures >= 20 and str(mal) not in x.modes_to_ignore: 
# Split the data into train and test data 
train_failures, num_train_failures, num_train_suspensions, test_data, 
num_test_failures, end_date = x.split_data_CPH(mal, num_failures, split_perc) 
# based on the date the split occured, call RemovalHistory to get the flight data 
for the test serial numbers at the time of split 
x.build_test_flight_data_new(test_data)
alphas = [0.05]
pens = [0]
for alpha in alphas:
for pen in pens:
#cph_llh, cph_aic = x.CoxPropHazard(mal, train_failures, test_failures,
1-(alpha/100), 1-(pen/100))
cph_llh, cph_aic = x.CoxPropHazard(mal, train_failures, alpha, pen)
if mal == ' ':
mal = 'Blank (TD)'
results.append([str(mal), str(alpha), str(pen), str(cph_llh), str(cph_aic)])
print()
print()
with open('CPH.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerows(results)
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