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ABSTRACT 

 Cybersecurity defenders can use honeypots (decoy systems) to capture and study 

adversarial activities. An issue with honeypots is obtaining enough data on rare attacks. 

To improve data collection, we created a tool that uses machine learning to generate 

plausible artificial attacks on two protocols, Hypertext Transfer Protocol (HTTP) and IEC 

60870-5-104 (“IEC 104” for short, an industrial-control-system protocol). It uses 

evolutionary algorithms to create new variants of two cyberattacks: Log4j exploits 

(described in CVE-2021-44228 as severely critical) and the Industroyer2 malware 

(allegedly used in Russian attacks on Ukrainian power grids). Our synthetic attack 

generator (SAGO) effectively created synthetic attacks at success rates up to 70 and 40 

percent for Log4j and IEC 104, respectively. We tested over 5,200 unique variations of 

Log4j exploits and 256 unique variations of the approach used by Industroyer2. Based on 

a power-grid honeypot’s response to these attacks, we identified changes to improve 

interactivity, which should entice intruders to mount more revealing attacks and aid 

defenders in hardening against new attack variants. This work provides a technique to 

proactively identify cybersecurity weaknesses in critical infrastructure and Department of 

Defense assets. 
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I. INTRODUCTION 

Industrial control systems (ICSs) operate critical infrastructure like gas, water, and 

electric utilities, and have recently received much attention in the national cybersecurity 

strategy (The White House of the U.S., 2021). ICSs have a well-documented history of 

receiving serious attacks such as those on the Ukrainian infrastructure and on U.S. gas 

pipelines, and several technical advisories on the CrashOverride, Shamoon, and Havex 

malware campaigns against ICSs have been published (Cyber Security and Infrastructure 

Security Agency [CISA], 2021a). Consistent with federal guidance, the U.S. Navy 

considers critical-infrastructure security a top priority (Office of the Secretary of the Navy, 

2018). 

A. MOTIVATION 

Originally ICSs managed physical processes locally, using a combination of 

“programmable systems or devices that interact with the physical environment” called 

operational technology (Joint Task Force Transformation Initiative, 2018). But as the 

Internet grew, ICSs became integrated with information technology. Now about 85% of 

the U.S. critical infrastructure is commercialized, which means that throughput and 

availability are prioritized over confidentiality and integrity (Stouffer et al., 2015). ICSs 

are also vulnerability-ridden because of the difficulty of updating them. The reduced 

security of ICSs entices malicious actors and enables them to create exploits which can 

affect the physical domain and safety of people. Hence, robust cybersecurity solutions are 

needed to test and harden ICSs (Stouffer et al., 2015).  

Security of live ICSs is difficult to test and study. One solution is to emulate them 

in virtual environments, which removes the risk of harming actual services. ICS honeypots 

(decoy ICS systems) could offer richer data for analysis. Honeypots can vary with how 

much they interact with the attacker. A responsive and realistic ICS honeypot will likely 

entice more sophisticated attackers. At NPS, previous theses explored electrical-grid ICS 

honeypots and so far saw attackers favoring the Hypertext Transfer Protocol (HTTP) and 

disinterested in specialized ICS protocols (Dougherty, 2020; Washofsky, 2021).  
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Without adequate data of ICS attacks on a honeypot, it is difficult to see trends in 

attacker behavior and harden it against them. As a partial solution, free and commercial 

vulnerability databases and open-source repositories contain datasets and network traces 

to study (National Vulnerability Database [NVD], n.d.; The MITRE Corporation, 2021). 

Despite such resources, vulnerability descriptions and datasets are limited in creating 

exploits for testing. Expensive commercial products like Metasploit Pro and Immunity 

CANVAS can provide penetration testing, but each has relatively few ICS-related attacks. 

Most open-source ICS attack tools, like those in GitHub, are unfinished and unmaintained. 

Even large public repositories of collected malware samples have sparse instances of ICS 

malware (VirusShare, n.d.). 

A challenge of cybersecurity products is readiness to handle current trends and 

attacks. During this research, a new exploit targeting the Apache Log4j Library was 

revealed, and it is a serious and wide-reaching exploit (FortiGuard Labs, 2022). It targets 

a vulnerability in a software library for logging, a frequently used resource in many 

information-technology systems and ICSs (CISA, 2021b). Also during this research, a new 

variant of a known attack on the ICS protocol IEC 104 occurred which targeted the 

Ukrainian power grid (Kapellmann et al., 2022). Called Industroyer2, this malware 

disrupted critical infrastructure. 

B. OUR APPROACH 

We experimented with generating both Log4j and IEC 104 attack variants. We first 

collected real Log4j and IEC 104 network traffic on our honeypot. We analyzed the 

characteristics of the exploits in this traffic and compared them to traffic collected 

previously. With the insights gained from these analyses, we made a honeypot suspectable 

to Log4j exploits and designed a synthetic attack generator (SAGO) to study the attacks 

and test the honeypot’s behavior. 

C. THESIS OUTLINE 

Beginning in Chapter II, this thesis explains the background information 

surrounding ICSs, networking protocols, and exploit generation. Chapter III describes 

previous NPS honeypot research and explains the methodology for our experiments. 
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Chapter IV discusses the experiments and the test environment. Chapter V then covers the 

results and highlights key insights from the research. Finally, Chapter VI concludes with a 

summary, and suggests ideas for future work.  
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II. BACKGROUND 

A. INDUSTRIAL CONTROL SYSTEM PROTOCOLS 

1. Introduction 

 Operating between the cyber and physical worlds, industrial control systems are 

configurations of protocols, sensors, and actuators for operating critical infrastructure. 

Although the United States has sixteen critical industries (CISA, 2020), The National 

Institute of Standards and Technology (NIST) suggested that most critical infrastructure 

relies on the electric-power transmission and distribution grid (Stouffer et al., 2015). 

Furthermore, the complex requirements of this industry prevent more localized control as 

by distributed control systems and programmable-logic controllers. Supervisory Control 

and Data Acquisition (SCADA) systems are a subtype of ICSs that operate across 

geographically dispersed areas as the controllers for the electric grid. ICS systems include 

human-machine interfaces for operators to control on-site (“field”) devices like radio-

transmission units and programmable logic controllers. Although traditional ICS systems 

operated on dedicated and isolated networks with limited connectivity, newer Web-based 

ICS systems are on enterprise networks with connections to the Internet.  

2. Network Protocols 

Due to geography, infrastructure, and policies, different protocols are used in ICSs 

to meet different requirements. For instance, while the United States uses the Distributed 

Network Protocol 3 (DNP3) for power distribution, Western Europe and Asia 

predominantly use the International Electrotechnical Commission (IEC) 60870 and 61850 

standards (Falk, 2018). The DNP3 and IEC 60870 communication protocols were designed 

for electric-grid SCADA systems; and IEC 61850 added capabilities absent from DNP3 

and IEC 60870 (Falk, 2018). DNP3 is more complex than IEC 60870 in network 

addressing, data-link communications, data objects, security, and interoperability (Clarke 

et al., 2004). Due the complexity of the DNP3 and IEC 61850 protocols and the limited 

availability of open-source tools for them, our research focused on IEC 60870, specifically 

the IP/TCP standard of IEC 60870-5-104 also called IEC 104. 
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Although not an ICS protocol, the Hypertext Transfer Protocol (HTTP) is often 

used by ICSs to provide a Web-based user interface. Also, HTTP messages are text-based 

which makes it easier to test working concepts before using more complex protocols like 

IEC 60870. 

a. IEC 60870 

Primarily used in Western Europe for energy control and distribution, IEC 60870 

was developed between 1988 and 2000. The fifth section of the IEC 60870 standard 

concerns sending and receiving SCADA messages. The most important aspects are the 

specifications of IEC 60870-5-101 and IEC 60870-5-104, here called IEC 101 and IEC 104 

respectively. IEC 104 differs from IEC 101 in transmitting over TCP/IP communications 

channels rather than low-capacity localized links (Clarke et al., 2004). Importantly, IEC 

60870 does not use encryption or authentication, as discussed in section II.B.1. IEC 104 

Application Protocol Data Units (APDU) are included in TCP segments and transmitted 

using port 2404 (Matoušek, 2017). An APDU can have a fixed or variable length  

(Figure 1).  

 
Figure 1. IEC 104 APDU Format. Source: Matoušek (2017). 
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The IEC 104 standards describe an APDU as a frame with three formats. The 

formats distinguish the purpose of transmission: information transfer (I-format), 

supervisory activities (S-format), and unnumbered control (U-format). A U-format frame 

performs functions like testing the connection, starting and stopping data transfers, and 

providing acknowledgements to other U-format frames. An S-format frame acknowledges 

I-format frames received during data transfer. An I-format frame carries application-

specific data. The frame types have different control fields (Figure 2). The control fields 

are part of the Application Protocol Control Information (APCI) block which is the first 

six bytes of a frame. 

 
Figure 2. IEC 104 Frame Types. Source: Matoušek (2017). 

A variable-length frame has an Application Service Data Unit (ASDU) container 

after the APCI block. This container is used with I-format frames and contains application 

data. It has two parts, a Data Unit Identifier and Information Objects (the data). The Data 

Unit Identifier tells the receiving IEC host the type of data being transmitted, the format of 

the ASDU container, why it was sent, and the address (Figure 3).  
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Figure 3. IEC 104 ASDU Container’s Data Unit Identifier. Adapted from 

Matoušek (2017). 

The type identification gives the data types of the data in the ASDU container. The 

structure qualifier (SQ) bit and number of objects indicate the format and size of the data 

respectively. If set, the test bit (T) tells the IEC 104 host to ignore the data. The positive or 

negative confirmation bit (P/N) indicates the execution status of a control command. The 

least significant six bits in the third row (octet) represent the cause of transmission and the 

type data in the ASDU container. Example causes of transmission are activation, activation 

confirmation, deactivation, and deactivation confirmation.  

Each IEC 104 server and client has its own addressing scheme for the originator 

address and ASDU container address. The global addresses 0xFF and 0xFFFF are for 

single-byte and double-byte addresses. They are only used for interrogation commands, 

counter-interrogation commands, clock-synchronization commands, and reset-process 

commands. ASDU containers hold Information Objects, each with two components, an 

address and elements. The elements are the main data structures for passing information in 

the IEC 104 protocol. Each element can only contain one data type, but each ASDU 

container can hold multiple elements. Example data types are single and double commands 
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for controlling IEC devices, and short floating-point numbers for sensor values. The format 

of single and double commands is in Figure 4. We refer to I-format frames containing a 

single command by the name of the command.  

 
Figure 4. IEC 104 Single and Double Command Information Element 

Specifications. Adapted from Clarke et al. (2004). 

b. Hypertext Transfer Protocol 

HTTP uses the client-server model to send data across the World Wide Web 

(Fielding et al., 1999). HTTP clients use the TCP protocol to send requests for Web pages, 

while HTTP servers listen and respond. Each message has mandatory items and optional 

header fields. HTTP can use transport-layer security to encrypt the traffic. HTTP requests 

let clients access resources on a Web server. Each HTTP request has a first line giving the 

method, Uniform Resource Identifier (URI), and version. The most common methods are 

GET and POST, which fetch and act on resources respectively. An important but optional 

field is the user-agent, which identifies the browser software that the client is using. HTTP 

responses specify HTTP version, status code, and reason. The status code specifies the state 

of the request, with common codes like 200 and 404 indicating success and resource 

unavailability respectively. The reason value adds information associated with the status 

code, though current browsers do not use it (Stuttard & Pinto, 2008).  
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3. Other ICS Protocols 

ICS protocols designed for SCADA communication can be distinguished by their 

network infrastructure (Pliatsios et al., 2020). BITBUS, Foundation Fieldbus H1, 

PROFIBUS, and WorldFIP all use the Fieldbus topology, which uses a single cable to 

connect devices and is quick to deploy. This contrasts with the Ethernet-based protocols 

such as Modbus, Process Field Net, and SERCOS III. While Process Field Net and 

SERCOS III are specialized protocols, Modbus can handle different device types and 

network infrastructure (Pliatsios et al., 2020). Modbus is one of the oldest and most popular 

ICS protocols (Smith, 2021).  

B. PROTOCOL-BASED ATTACKS 

1. IEC 104 

IEC 104 is a vulnerable protocol since it does not use encryption or authentication. 

So network-sniffing tools can identify the IEC 104 devices and commands sent over the 

network. Attackers can also set their ASDU container’s originator address to a legitimate 

device’s address and masquerade on the network since the protocol lacks authentication. 

To add to their security problems, ICS devices also often have outdated software.  

Reconnaissance tools like Shodan can find vulnerable and outdated ICS devices 

(Matherly, 2017). Shodan is an Internet scanner which can find devices based on attributes 

like IP address, port number, location, and service. For ICS devices, Shodan can read 

banners to learn the manufacturer and firmware version. Shodan can quickly give attackers 

a list of vulnerable IEC 104 devices.  

Other popular penetration-testing tools like Nmap and Metasploit have extensions 

specific to IEC 104. Nmap has a script iec-identify that uses IEC 104 frames to probe a 

device for the number of information objects it has as well as its IP addresses; this allows 

address identification for ICS devices that use IEC 104 (Timorin & Miller, n.d.). The 

Metasploit module IEC104 Client Utility can also send commands to ICS devices using 

IEC 104 (Metasploit, n.d.). Since IEC 104 frames are not authenticated, a rogue device can 

spoof an IEC 104 server and send unauthorized commands to ICS field devices using this 

Metasploit module.  
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To assess cyberattack risks associated with IEC 104, researchers attacked an 

emulated IEC 104 network with their tools Hping, Ettercap, and OpenMuc j60870 

(Radoglou-Grammatikis et al., 2019). They concluded that unauthorized access and denial-

of-service attacks were the most likely cyberattacks a system would experience, while man-

in-the-middle and traffic-analysis attacks were less likely. Their unauthorized-access 

attacks exploited the IEC 104 protocol’s lack of authentication, while the other techniques 

attacked the TCP/IP stack through methods like Address Resolution Protocol poisoning at 

layer 2 and TCP SYN flooding at layer 4.  

Another project showed that disrupting the synchronization between two IEC 104 

devices can cause a denial of service (Baiocco & Wolthusen, 2018). Since IEC 104 does 

not authenticate time fields, the authors could manipulate them. They used the packet-

crafting tool Ostinato to send fake Network Time Protocol packets to devices to 

desynchronize them and refuse communications from each other.  

Another study sought to produce reliable testbeds for ICS devices using the tools 

Nmap and Ettercap to validate their design on an IEC 104 network (Maynard et al., 2018). 

The researchers used the previously mentioned iec-identify Nmap script for network 

discovery, port scans, and identifying IEC 104 victims. Following the scan, the authors 

used Ettercap for a man-in-the-middle attack. However, these attacks could be detected by 

any intrusion-detection system because they used obvious known signatures.  

Another project analyzed twelve attacks on the IEC 104 protocol for creating 

intrusion-detection datasets (Fundin, 2021). These included man-in-the-middle, denial-of-

service, scanning, replay, and packet-injection attacks. Eight of the twelve attacks 

succeeded, and the datasets produced met functional and non-functional requirements 

(Cordero et al., 2021). While the datasets are publicly available, the Python scripts for the 

experiments are not. Also, access to their virtualized testing environment is limited and its 

framework was updated following the publication of the research, making reproducibility 

difficult.  
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2. HTTP 

HTTP is also a vulnerable protocol since it is unencrypted, text-based, and widely 

used for Web-based communications. Since the Web is client-focused, servers, 

applications, and databases require user input, through which malicious actors can exploit 

vulnerabilities (McClure et al., 2012). HTTP sees exploits like buffer overflows, cross-site 

scripting, and command injections. Attacks can be remote, local, or client-side. Remote 

attacks are more serious since they can affect many machines across the Internet.  

Particularly relevant to this research is a recent remote attack on a commonly used 

Java logging system. This attack injected commands and could compromise systems. Rated 

a 10 out of 10 in severity by NIST’s National Vulnerability Database (NVD), the Apache 

Log4j (also called Log4Shell) vulnerability CVE-2021-44228 quickly gained attention 

(NVD, 2021). Ten days after its disclosure, the Log4j attack had been observed 350 million 

times and had 1.4 times the activity volume of the major Apache Struts exploit in its first 

year (FortiGuard Labs, 2022). A week following the disclosure of Log4j, the Cybersecurity 

and Infrastructure Security Agency (CISA) issued an Emergency Directive for Federal 

Agencies to triage their systems and report any affected systems (CISA, 2021a). As recent 

as June 2022, Log4j continues to be exploited to access VMware Horizon servers (CISA, 

2022b). Despite the widespread proliferation of the Java-based logging tool, no major 

compromises were reported (FortiGuard Labs, 2022). Nonetheless, CISA still recommends 

that organizations continue testing and hardening their devices against this exploit (CISA, 

2022a).  

C. ICS POWER GRID HONEYPOTS 

Honeypots are security tools that gather attack data by luring attackers (Joint Task 

Force Interagency Working Group, 2020). Honeypots have no purpose other than 

collecting attack data. Hence inbound traffic is either administration, scanning, or 

malicious activity (Ng et al., 2018). Good honeypots are deployed to get as much traffic as 

possible by varying deployment type and interactivity.  

Honeypots are related to other decoy technologies such as honeynets, honeyfarms, 

shadow honeypots, and honeytokens (Campbell et al., 2015; Ng et al., 2018). Honeypots 
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can be low-interaction, medium-interaction, or high-interaction. High-interaction 

honeypots allow real access to most of a system, and ICS high-interaction honeypots 

typically include realistic sensors and processes. Deployment of high-interaction 

honeypots is complex. Conversely, low-interaction honeypots simulate only the first few 

steps of access to a system. So they are easier to implement, but do not fool attackers for 

long.  

Three honeypots used for ICS security are Conpot, GridPot, and T-Pot (Hurd and 

McCarty, 2017). Conpot is a decoy ICS server that logs network traffic like HTTP and 

Modbus (Rist et al., n.d.). Users can extend Conpot’s features with custom templates to 

allow Conpot to log additional protocols like IEC 104. Conpot is easily deployed with the 

Docker utility (Docker Inc, n.d.). Despite its low interactivity, Conpot’s modularity and 

ease of use make it a useful base for honeypots like GridPot and T-Pot (Rist et al., n.d.). 

Using geographically dispersed Amazon Web Servers as hosting platforms, and 

validating against the scanning tools Nmap and Shodan, researchers confirmed that Conpot 

could masquerade as a SCADA ICS (Jicha et al., 2016). They tested four SCADA 

honeypots: Siemens S7-200, Guardian AST, IPMI, and Kampstrup Smart Meter. On an 

Ubuntu OS, they found that Ubuntu runs by default many non-ICS services like Secure 

Shell and Simple Mail Transfer Protocol. They recommended manually closing all but the 

ICS ports to aid a honeypot’s network camouflage.  

GridPot built upon Conpot to mimic an ICS managing a power grid, a desirable 

target for attackers (Redwood, 2015). It used GridLab-D (Chassin et al., 2008) to simulate 

a power distribution system. GridPot also used two protocols supported by Conpot: an ICS 

protocol to change the state of an electric grid, and the HTTP protocol to display a webpage 

with the power readings of the simulated electric grid. The primary focus of this honeypot 

was capturing malicious behavior with the IEC 61850 protocol through multiple levels of 

emulation (Figure 5). To add realism, it used GridLab-D to simulate electrical signals from 

a power grid. Communicating with GridLab-D were simulated devices which control the 

sensors and actuators. As with most ICSs, these devices and their protocols are significantly 

outdated.  
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Figure 5. GridPot Simulated Electrical Grid Honeypot. Source: Redwood 

(2015). 

T-Pot is a suite of honeypots running on a device (Telekom Security, 2016). T-Pot 

uses Docker to deploy pre-bundled containers (lightweight virtual machines) as honeypots 

with little overhead. T-Pot also allows deployment of custom honeypots on cloud servers 

and supports the Suricata intrusion-detection system. The honeypot’s log data and Suricata 

alerts are integrated and displayed with the open-source tools Elasticsearch, Logstash, and 

Kibana (also called the ELK stack). T-Pot also aggregates Internet-address reputation lists 

from 45 websites to help identify IP addresses of known attackers and mass scanners. 

A project examined attackers using five low-interaction honeypots of T-Pot (Ur 

Rashid et al., 2019). The honeypots were Honeytrap, Conpot, RDPY, Heralding, and 

Cowrie. In a Shodan scan, no OS service ports were seen open besides port 22. Despite the 

relatively short duration, the study gathered unique behaviors from attackers with little 

setup. T-Pot was also used in previous NPS work (Washofsky, 2021) on cloud platforms 

to host virtual machines with different regional IP addresses. No significant differences 

were found in attacker behavior based on the honeypot’s regional IP address. This work 

did conclude that T-Pot helps the defender since it offers good logging and visualization 

capabilities. 
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D. AUTOMATICALLY GENERATING EXPLOITS 

In software testing and machine learning, methods have evolved to generate new 

variants of attacks and exploits to test cybersecurity technology.  

1. Automated Software Testing 

From simple scripts to complex programs, automated testing reduces human 

dependency on finding vulnerabilities and allows for frequent error checking (Black et al., 

2021). Fuzzing is a common automated testing technique which takes input and perturbs 

its features to expand the number of potential tests. One project analyzed the results of 

testing different open-source ICS software with fuzzed (custom-built) ICS traffic as input 

(Luo et al., 2020) and found it effective at identifying bugs.  

For large software suites and applications, verifying correct behavior for every 

input set through automated testing is infeasible. Research suggests that exhaustive testing 

is unnecessary because only a few parameters typically contribute to faulty outcomes 

(Kuhn et al., 2009). Combinatorial testing focuses on testing small combinations of input 

groups; this reduces the testing space to a manageable size for software with many 

parameters. Such automated testing techniques help find crashes and bugs, but only 

indirectly suggests whether exploits can succeed.  

2. Machine-Learning Methods 

Compared to traditional software testing like fuzzing, unsupervised learning 

algorithms can generate more diverse tests. Two approaches in particular, generative 

adversarial networks (GANs) and evolutionary algorithms, can explore beyond the 

traditional testing options.  

a. Generative Adversarial Networks 

Generative adversarial networks have shown success in machine-learning tasks 

(Hong et al., 2020). A GAN has two neural networks that are modeled as a game between 

two competing players, a generator and a discriminator. While the generator creates 

plausible data, the discriminator tries to distinguish it from real data. For each iteration of 
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the game, the generator and discriminator try to improve themselves using feedback from 

each other. GANs have been used in testing autonomous-vehicle image recognition and 

anomaly detection in intrusion-detection systems (Lin et al., 2021; Zhang et al., 2018). 

GANs can be difficult to implement when there are not clear criteria for success.  

b. Evolutionary Algorithms 

Suggested by the Darwinian theory of evolution, evolutionary algorithms create 

solutions to optimization problems by mixing up elements of successful plans (Chiong et 

al., 2012). Such algorithms are modelled after the evolutionary cycle and use the features 

of discovered solutions to generate new solutions. Evolutionary algorithms can generate 

test cases. For our research, the problem was finding unknown vulnerabilities or behaviors 

and the solutions were the input packets that produced bugs or exploits in a honeypot.  

Evolutionary algorithms start with a set of randomly generated items called a 

population. Further items are created from them and added to the population. Items are 

rated according to a fitness function, and an evolutionary algorithm tries to find items with 

high fitness ratings. New items are generated by operations called mutation and crossover 

(Lobo et al., 2007). Mutation changes random features of an item based on a mutation rate 

and mutation magnitude (Chiong et al., 2012; Moghadampour, 2011). Mutation rate 

determines how many features are changed whereas mutation magnitude controls the 

amount and direction of the variation. Crossover take two parent items and combines their 

features based on the number-of-crossings hyperparameter which determines how many 

features are combined. Hyperparameters specify values affecting the entire evolutionary 

algorithm.  

Table 1 lists the frequently used hyperparameters of evolutionary algorithms (Lobo 

et al., 2007). The usual performance metrics are processor run time, similarity between 

solutions across generations, and number of solutions created (Sarker & Coello, 2002; Yen 

& He, 2014).  
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Table 1. Common Evolutionary Algorithm Hyperparameters 

Hyperparameter 
Stopping condition 
Population size 
Parent population size 
Number of crossings 
Mutation rate 
Mutation magnitude 

 

Example research used an evolutionary algorithm to generate adversarial SQL 

injection (SQLi) attacks for testing Web firewalls (Appelt et al., 2018). Since a firewall 

tries to stop malicious traffic at the application layer, it requires many separate tests. To 

create tests, a grammar was defined for SQLi attacks. The evolutionary algorithm 

implemented by the researchers decomposed previous attacks into features and created new 

attacks from an attack grammar (Figure 6). 

 
Figure 6. “Boolean” SQL Injection Attack Features. Source: Appelt et al. 

(2018). 
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To store ranks of attacks, the researchers used a random-forest classifier (Géron, 

2019) and estimated probabilities of whether an SQLi attack would bypass the firewall. 

This algorithm only used mutations to create new attacks, no crossings because they would 

create invalid parse trees for the SQLi grammar. The mutation operations were behavior-

changing, syntax-repairing, and obfuscation. Behavior changing added “AND”s, “OR”s, 

semi-colons, or new SQL statements.  

3. Other Test Generation Methods 

Another study generated malicious Modbus packets based on Snort rules (Al-Dalky 

et al., 2014). It used the Python-library tool Scapy (Biondi, 2021). Their variants were 

considered successful when the generated packets triggered the same Snort rules from 

which they were derived, but this created many uninteresting packets similar to the initial 

population.  

Another research project used a Markov model to generate ICS attacks (Choi et al., 

2021). It assigned a probability for each event in the MITRE ATT&CK matrix based on 

real-world observations. The method used the probabilities to make random decisions 

based on the ATT&CK matrix to create a new attack. This approach had the advantage that 

attack components with higher probabilities occurred more often.  
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III. METHODOLOGY AND ATTACKS ON ICS HONEYPOTS  

The common theme among the various test and attack generators is that to craft 

new variants, each generator requires a starting exploit template or model. Instead of 

arbitrarily choosing which attacks to generate, examining attacks observed “in-the-wild” 

allows researchers to test new variants of popular attacks. Our research builds upon the 

HTTP and IEC 104 honeypot frameworks of past research. For HTTP, we explored Log4j 

exploits due to their popularity and their well-defined syntax. For IEC 104 attacks, we 

investigated the Industroyer2 malware that targeted IEC 104 devices and attacked the 

Ukrainian power grid in April 2022. To generate variants of these attacks using an 

evolutionary algorithm, we defined the exploit schema, attack features, mutation operators, 

crossing operators, and success criteria based on attacker behavior observed in different 

datasets.  

A. PREVIOUS NPS HONEYPOTS 

Previous NPS honeypot research (Kendrick & Rucker, 2019) deployed the GridPot 

honeypot described in section II.C. To increase interaction and attract more distinctive 

attackers, GridPot was customized and improved in later work (Dougherty, 2020). While 

GridPot used the IEC 61850 protocol to communicate, it could accept IEC 104 traffic from 

Conpot’s server, a simpler protocol for attackers. Also, previous work added a SCADA 

interface (IndigoSCADA) that allowed remote users to communicate with GridPot 

(Enscada, 2022). This separate interface had a weak password and originally ran on a 

Windows 8 machine with the remote desktop protocol (RDP) enabled. With these 

improvements, the honeypot avoided detection from Shodan and collected a wide range of 

HTTP network traffic. However, its IEC 104 server experienced little traffic, and of the 

traffic that was observed, many packets were malformed (Dougherty, 2020).  

Another NPS honeypot project sought to harden the Windows system which served 

as the user interface for GridPot and improve the honeypot’s logging (Meier, 2022). While 

it focused on the RDP remove-desktop protocol, experiments also captured Log4j attacks. 
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B. ATTACK GENERATOR 

Figure 7 shows the process we followed in creating and testing exploits. The first 

step of the cycle creates an initial population of a size set by a hyperparameter called 

population size. The initial population for Log4j comprised exploits with one random 

mutation of observed real exploits. Initial mutations were necessary because the collected 

Log4j exploits had many duplicates and insufficient variety. For our fitness function we 

used the observed response by a GridPot honeypot based on (Dougherty, 2020) Phase I 

design to determine degree of success. We stored these success values in a random forest 

to predict if a new attack variant would succeed.  

 
Figure 7. Evolutionary Approach to Generating Exploits  

More specific success criteria were defined from the attacker’s objective. The 

objective of a Log4j exploit is to cause the Java application to contact a malicious server 

(CISA, 2022a; Muñoz & Mirosh, 2016). So if a generated exploit caused our honeypot to 

contact an external server, we said that the exploit succeeded. The objective of Industroyer2 

was to disrupt power-grid operation (Kapellmann et al., 2022). So if a generated IEC 104 

attack was accepted by a simulated ICS device, which in a real system could result in the 

disruption of the power grid, we said that the exploit succeeded.  

The hyperparameters of population size and parent population size affect the attack 

exploration space so, for simplicity, we defined high, medium, and low values for testing. 

For the mutation rate, we tested a range of values between 0 and 1. For the mutation 

magnitude we also defined low, medium, and high values. Furthermore, we only 

considered mutations that increased magnitude. Our number of crossings was proportional 
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to the mutable characteristics of the attack. We tested all values from zero to the maximum 

number of mutable attack properties.  

C. HTTP ATTACKS – LOG4J 

When the Apache Log4j vulnerability was first announced on December 10, 2021, 

one of our honeypots experienced a large increase in HTTP requests with Log4j commands 

in their headers. Even as the vulnerability fixes evolved, we continued to see different 

variations of the exploit. Due to the significance of the vulnerability and the many ICS 

vendors reporting exposure (Kovacs, 2022), we decided to further study the related 

exploits.  

1. Log4j Logging Features 

A vulnerability of Log4j is that it can insert values of variables into log-destination 

strings, including with regular expressions as in programming languages. The syntax is 

“${variable}” where the variable is replaced with its current value. To enrich log-

destination details, Log4j can also insert system and environment variables (The Apache 

Software Foundation, 2022). Lookups are triggered with the syntax “prefix:attribute” or 

“prefix:attribute:-default.” As an example, the string “${docker:containerId}” logs the 

Docker container’s identification. The symbol “:-” specifies a default value if the requested 

attribute cannot be mapped to the prefix. Lookups can be recursive which permits more 

complex variable representations and mappings.  

2. Exploiting Log4j 

Log4j exploits target The Java Naming and Directory Interface (JNDI), which is a 

interface for Java programs to retrieve objects from servers (Oracle, n.d.). The JNDI 

resolves objects using naming and directory services like the Lightweight Directory Access 

Protocol (LDAP), Remote Method Invocation (RMI), Domain Name Server (DNS), and 

the Common Object Request Broker Architecture (CORBA). It can also retrieve compiled 

Java files and execute them, an aspect that was previously documented as a vulnerability 

(Muñoz & Mirosh, 2016). Furthermore, Java applications with Log4j can use JNDI in the 
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form of a JNDI lookup. This allows attackers to put JNDI command injections into fields, 

like HTTP headers, that Java applications are likely to log.  

Based on the Log4j exploit strings we collected on our honeypot, we decided to 

generate exploits which used LDAP servers as the attack vector as they were the resource 

most often exploited. The LDAP specification defines client-server interactions on X.500 

data and services (Sermersheim, 2006). If an LDAP server lacks a requested object, it can 

refer the requestor to a different server address that might resolve the request. Thus the 

JNDI lookup can request compiled Java classes from other servers like HTTP servers 

(Muñoz & Mirosh, 2016), and these could be malicious. To compromise a machine, Log4j 

exploits require proper syntax, malicious servers, and a victim server that will log untrusted 

user input.  

Log4j exploits have a specific syntax. An exploit string is surrounded by the 

property substitution symbols,”${“and “}.” Inside the curly brackets is the JNDI lookup in 

the form “${jndi:service://server/Object},” where the “jndi” is the prefix, “service” is the 

name of the service, “server” is either the IP address or domain name of the server and a 

port number, and “Object” is the Java object of the exploit. For example, 

“${jndi:ldap://192.168.1.1:1389/Exploit}” looks up the directory service LDAP for the 

object “Exploit” found at 192.168.1.1 with port number 1389.  

The LDAP server can redirect the JNDI lookup to another attacker-controlled 

server. If it were an HTTP server, the JNDI server would then send an HTTP GET request 

for “Exploit.class,” receive it in the HTTP response, and immediately execute it. Figure 8 

shows the basic sequence that the JNDI follows during a Log4j exploit.  
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Figure 8. Basic Log4j Exploit Control Flow  

3. Adapting Log4j Exploits for Evolutionary Algorithms 

To thwart intrusion-detection systems, attackers embed lookups within other 

lookups to create complex variations of Log4j exploits that avoid known signatures 

(National Cyber Security Centrum, 2021). This recursive nature makes it difficult to 

manually specify all possible exploits. One way to define success is the attack gaining a 

shell or being able to run shell commands on the victim machine. This would require 

controlling servers like the LDAP and HTTP servers in Figure 8. Instead, we followed a 

simpler approach that defined a successful Log4j exploit as a string that, when logged by 

a vulnerable system, caused that system to query a DNS server to resolve a domain name 

that we controlled. After the victim system resolves the domain name, it could continue 

communicating to the malicious LDAP and HTTP servers.  

In our experiments, we used the template “${jndi:service://server/}” as the basis of 

our exploit. The Log4j samples we studied used different lookup names and variations of 

recursive lookups. Therefore, the features we could vary were the number of lookups per 

character and the number of unique lookup names. Other features like string length, the 

malicious directory, and the naming-service type were not useful to vary in the 
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evolutionary algorithm. We were limited in that we had to start and end with opening and 

closing curly brackets and include the JNDI lookup; changing any of these characters 

would break the exploit. However, if we appended certain lookup operators to characters 

in the Log4j exploit string, we could get a mutated string that would still get parsed 

correctly by Log4j.  

D. IEC 104 ATTACKS – INDUSTROYER2 

IEC 104 attacks are rarer than HTTP attacks. This could be due to rarity of IEC 104 

hosts, the complexity of the protocol, or the cost associated with such attacks. We chose to 

create variants of an IEC attack that was used against Ukrainian infrastructure in 2022 

(Tsaraias & Speziale, 2022).  

1. Industroyer2 Background 

Industroyer2 appears to be a variant of those used in the CrashOverride campaign 

in 2016 (Kapellmann et al., 2022). The original malware Industroyer targeted several ICS 

protocols including IEC 104. It was a Windows executable that established command-and-

control connections, exploited vulnerabilities of the chosen ICS protocol, and finally erased 

the machine’s data (Cherepanov, 2017). The IEC 104 part of Industroyer tried to end IEC 

104 processes and manipulated the states of the discovered devices.  

Industroyer was ineffective due to improper implementation of its ICS protocols 

(Slowik, 2019) that caused communications to be rejected due to their failure to follow 

protocol standards. Industroyer2 appears to derive from the same codebase as Industroyer 

but used the IEC 104 protocol (Tsaraias & Speziale, 2022). Its most notable improvements 

were sending test data using U-format frames prior starting a data transfer and using a 

configuration file to customize the attacks for specific victims.  

2. Synthetic Attacks Based on Industroyer2 

We focused on one form of an Industroyer2 attack. After a controller was infected 

with Industroyer2, the malware would eventually try to change the states of the connected 

ICS devices. It first sent a U-format frame to test the connection with the victim ICS device. 

If the test frame was acknowledged by the victim, it sent a start frame to begin transmitting 
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data. To get the addresses of the target’s active devices, Industroyer2 sent a general 

interrogation command. Then it iterated through the available devices and used single and 

double commands to turn them off or on; it knew which command type to send from the 

device type. Initial analyses indicated that the devices targeted by Industroyer2 controlled 

ABB Distribution Recloser Relays, and that the attackers were trying to disrupt critical 

overcurrent protections (Kapellmann et al., 2022).  

One project set up a sandbox with an IEC 104 server to test the malware and collect 

packet captures (Hjelmvik, 2022). We used its data to establish a baseline IEC 104 attack. 

The IEC 104 commands captured in (Hjelmvik, 2022) dataset were single and double 

commands. To generate further attacks, we used an evolutionary algorithm to create 

variations of these commands. Our template IEC 104 attack used the same frame fields as 

Industroyer2, except for the bits inside the commands, the Information Object address, and 

the ASDU container address. The Information Object and ASDU container addresses were 

constant and did not change like Industroyer2 did. However, we did mutate the bits of the 

command to create new variants. To test if those variants were successful, we sent the 

attacks to GridPot. IEC 104 attacks were labelled successful if Conpot’s IEC 104 server, 

running in GridPot, accepted the command. Failed attacks were the commands that caused 

Conpot’s IEC 104 server to prematurely end the connection.  

E. ANALYZING DATASETS 

We did three analyses on four datasets (Table 2) to understand the delivery method 

used by the Log4j and IEC 104 exploits observed by our honeypots. We examined the 

HTTP header fields (Washofsky, Meier, and our honeypot), Log4j lookup properties 

(Meier and our honeypot), and IEC 104 frame format fields (Washofsky, Hjelmvik, and 

our honeypot). We used the insight gained from these analyses to craft the artificial 

exploits. 
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Table 2. Datasets Used for Attack Analyses 

Dataset Collection Date 

HTTP 
Requests 
without 
Log4j 

HTTP 
Requests 

with Log4j 

IEC 104 
Frames 

(Washofsky, 2021) May 2021 – 
June 2021 5673  140 

Our honeypot November 2021 
– January 2022 7861 102 112 

(Meier, 2022) March 2022 – 
April 2022 4679 16  

(Hjelmvik, 2022) April 2022   28 

 

The Log4j analysis studied which header fields the attackers used and the format 

of the Log4j exploit strings, whereas the IEC 104 analysis studied what attacks we received 

and how they differed from legitimate IEC 104 traffic.  
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IV. EXPERIMENTS 

To test generated Log4j attacks, we needed to construct an ICS honeypot that was 

vulnerable to Log4j exploits and had a feedback mechanism that our attack generator could 

use to determine the success or failure of the attacks. To test the IEC 104 attacks, we used 

the logs already produced by the ICS honeypot to classify attacks as successful.  

A. EXPERIMENT TESTBED 

We used two Debian Linux virtual machines on a DigitalOcean cloud platform for 

the attacker and victim systems (Figure 9). The victim machine ran T-Pot with GridPot as 

one of its Docker containers. The attacker machine sent Log4j and IEC 104 attacks to the 

Conpot servers of GridPot. These attacks were generated and sent by a Python script on 

the attacker’s machine.  

We configured the DigitalOcean firewalls for each system to meet our experiment’s 

requirements. For inbound and outbound traffic between the attacker and victim systems, 

we accepted the port numbers 80 (HTTP), 2404 (IEC 104), and 22 (SSH) through the 

firewall. SSH was permitted to allow the retrieval of log data. Outbound traffic from the 

victim machine on port number 53 was also allowed because we used DNS queries as the 

success indicator for Log4j exploits.  

We made several adjustments to the victim system to log our Log4j exploits. 

GridPot and Conpot do not natively use Log4j. Since Conpot logs all HTTP requests, we 

built a custom Java application Conpot Log4j Handler, discussed in Section C.2, to read 

input from the Conpot log. This application did pattern matching to find and print user-

agent key-value pairs. If the exploit text was well-formed, the Conpot Log4j Handler would 

perform an outbound JNDI lookup and DNS request as discussed in Section III.C.3.  

The attack generator captured DNS queries by sending SSH commands over port 

22 to run Tcpdump on the victim machine (Figure 9). Tcpdump listened on port number 53 

and wrote to a DNS log. To correlate the Log4j exploits with DNS queries, the attack 

generator retrieved the DNS log using SSH over port number 22. General setup is in 

Appendix A. 
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Figure 9. Design for Log4j and IEC 104 Exploit Generation Experiments  

For IEC 104, we developed a mechanism for checking the success of the generated 

attack. Ideally our attacks would go to the Conpot IEC 104 server in GridPot and GridPot 

would send them to GridLab-D using port number 6267. However, our GridPot 

implementation only allowed read-only requests. Instead, we checked for the IEC 104 

commands that the attack generator sent in the Conpot log, which also logged all IEC 104 

frames. Some commands that used non-implemented or undefined bits caused the Conpot 

IEC 104 server to end the connection without writing to the Conpot log. Hence, we could 

tell that a command succeeded if there was a log entry for that command. After sending all 

the attacks over port 2404 to the Conpot IEC 104 server, the attack generator used SSH 

over port number 22 to retrieve the Conpot log, and then correlated the log entries with the 

IEC 104 attacks.  

B. ATTACK ANALYSIS 

We analyzed the datasets described in Section III.E before implementing our 

evolutionary algorithm. We wanted our generated attacks to be consistent with observed 
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attack traffic. We used the Scapy Library to parse TCP sessions in each packet capture 

(Biondi, 2021). We also used WEKA’s machine learning application to implement K-

Means clustering (Witten, 2017). Our analysis on these clusters is in Appendix B. For the 

clustering features we used the packet’s IP address and the HTTP headers. To identify 

traffic from non-malicious Internet scanners like Shodan, we used the Internet-scanner list 

in Maltrail, an intrusion-detection system (Stampar & Kasimov, 2022). We also ran our 

packets through Suricata to classify the severity and alert type of the HTTP request.  

The HTTP features we extracted were the request method, the version number, and 

the number of headers in the URI. We also extract secondary metrics such as the length 

and number of special characters of an URI that could indicate a fuzzing attempt, and the 

file type that could indicate the attacker’s intention. We also defined features associated 

with Internet scanners such as resources that Shodan typically requests like “/,” 

“/index.html,” “robots.txt,” “/.well-known/security.txt,” “/sitemap.xml” and “favicon.ico.”  

Our Log4j analysis focused on several features of each exploit like the HTTP 

header fields and Log4j attributes like lookups functions. We used Scapy to extract HTTP 

packets and find those which had Log4j strings in their header fields. We confirmed the 

number of Log4j exploits with Wireshark before header extraction and data processing. 

For the IEC 104 datasets the high rate of malformed frames seen by the NPS 

honeypots made validation with Wireshark harder. For example, if a packet was sent to 

port number 2404 with a byte value of 0x68, the IEC 104 start byte, Wireshark interpreted 

it as a corrupt IEC 104 packet. However, this often was data for a different protocol. 

Nonetheless, we did extract some syntactically correct IEC 104 packets and examined their 

frame attributes. 

C. LOG4J EXPLOIT GENERATION 

1. Generating Log4j Exploits  

The design of our Log4j exploits was based on the Log4j syntax and the 

components required for a Log4j exploit from Section III.C.3 (Figure 10). Here the 

“template Log4j exploit string” is a generic Log4j exploit like those described in Section 

III.C, whereas the “attack generator Log4j exploit schema” was an exploit with an instance 
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identifier in the command-and-control server position to allow the attack generator to 

correlate attack data. We used the “${“ and “}” characters because they delimited a Log4j 

lookup. For the malicious server that JNDI contacted, we used “ldap:” because most 

exploits we saw used it as the attack vector. We used a Log4j attack-instance identifier in 

place of the command-and-control server address to force the JNDI to perform a DNS 

query. Note that the part of the URI indicating the location of the malicious binary is unused 

in DNS queries, so we omitted it. 

 
Figure 10. Log4j Exploit Schema  

When the vulnerable Java program logged the Log4j exploit string, the Log4j parser 

would try to resolve all the lookups. If the parser resolved the exploit’s characters back to 

“jndi:ldap://,” then the Java program would query a DNS server for the IP address 

associated with the exploit’s instance identifier. We considered this a successful exploit as 

explained in Section III.B.  

For our single mutation operation, we encapsulated one of the Log4j exploit 

characters “jndi:ldap://” inside a lookup. An example mutation on the Log4j exploit 

character “j” was “${env::-j}.” The environment lookup’s key, an empty string between 

the two colons, was not a valid environmental variable, and forced the lookup to default to 

the character “j.” Lookup operations, and therefore mutation operations, were recursive so 

${jndi:ldap:// gen-0-test-0/}

${jndi:ldap://192.168.1.1:1389/Exploit}
Template Log4j Exploit String

Attack Generator Log4j Exploit Schema

Log4j Lookup Delimiters Characters for muta�on 
and crossing

Command-and-Control 
Server / Instance ID

Malicious Object (not 
necessary in our schema)
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“${env::-${env::-j}}” also returned the character “j.” If the Log4j parser did not resolve 

the exploit back to “jndi:ldap://,” then the JNDI lookup would ignore the string entirely 

and the exploit would fail. Appendix C lists all 21 lookup names we used in experiments. 

For the attributes we either used the “NaN” string or the empty string for every lookup to 

force a default lookup 

In doing mutation on all the characters, if a randomly generated number between 0 

and 1 exceeded a threshold probability established by the mutation rate hyperparameter, 

the character was mutated by applying a lookup to it. All lookup names were equally likely. 

The mutation-magnitude hyperparameter determined how many successive lookups were 

applied. For example, if the character “j” was selected for mutation and the mutation 

magnitude was 2, a possible outcome could be “${env::-${env::-j}}” with two lookups. 

Our crossover operation exchanged lookups between the Log4j exploit characters. For 

example, given two parent Log4j exploit strings, “${{env::-j}ndi:ldap://}” and 

“${jndi:${sys::-l}dap://},” with the number of crossings set to two and the “j” and “l” 

characters selected to cross, the result would be “${{env::-j}ndi:${sys::-l}dap://}.”  

The attack generator initialized a population of artificial Logj4 exploits of count 

determined by the target population size. Each exploit was a base Log4j exploit string 

“jndi:ldap://” with one random lookup applied. The attack generator then sent an SSH 

command to start Tcpdump on the victim machine with Tcpdump’s standard terminal 

output directed to a DNS log file. It then sent Log4j exploit strings in the user-agent header 

fields of HTTP requests to the Conpot HTTP server using the Python 3 Requests library 

(Reitz, 2022). It then sent another SSH command to stop Tcpdump and retrieve the DNS 

log.  

The retrieved DNS log reported every successful exploit. The attack generator 

could correlate success in the DNS log to the Log4j exploits using the instance identifiers. 

We sampled 75 percent of the generated Log4j exploits and trained a random-forest 

classifier. We used the Python Scikit-Learn implementation of a random forest and their 

library function train_test_split, which defaults to sampling 75 percent of the input data, to 

get our training and test sets (Géron, 2019). The probability predicted by the random forest 

classifier is the likelihood of being a successful exploit. The next population was based on 
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the exploits with highest probabilities of success, as predicted by the random forest, and 

was created by selecting the top k exploits, where k is the parent population size. For our 

evolutionary algorithm on generated Log4j exploits, we used the hyperparameters in  

Table 3.  

Table 3. Hyperparameter Combinations Used in Experiments of the Attack 
Generator for Log4j Exploits 

Stopping 
Condition 

(Max 
Generations) 

Parent 
Population 

Size 

Population 
Size 

Number 
of 

Crossings 

Mutation 
Rate 

Mutation 
Magnitude 

[5, 10, 20] 10 20 6 0.50 1 
10 [5, 10, 20] 20 6 0.50 1 
10 10 [10, 20, 40] 6 0.50 1 
10 10 20 [0...12] 0.50 1 
10 10 20 6 [0.00, 

0.10,  
... 

1.00] 

1 

10 10 20 6 0.50 [1, 2, 3] 

 

2. Implementing the Conpot Log4j Handler 

Our GridPot honeypot was running when the Log4j vulnerability was revealed on 

December 10, 2021, and caught interesting initial Log4j attack traffic. Following 

disclosure, we patched our environments to block Log4j exploits. Maintainers of Elastic 

Stack and T-Pot, two products we depended on, immediately patched the vulnerability. 

GridPot is not maintained, but we found no instances of the Log4j dependency when we 

manually searched its code.  

We mimicked a vulnerable server to test our generated Log4j exploits. Since the 

exploits use remote code execution, we used a blacklist to avoid attempts at remote 

execution on our testbeds. Since the implementation of T-Pot lacks a Log4j interface, we 

put wrappers around the interfaces of our honeypot to simulate a vulnerable server, since 

as mentioned in Section III.C, developers often use Log4j in their servers to log headers of 
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requests. Conpot does not use Log4j to log HTTP request headers either, so we used the 

Linux tail command to send the most recent entries of the Conpot log to our Conpot Log4j 

handler, a Java application that uses the Log4j logger (Figure 11).  

 
Figure 11. Our Technique for Logging with Log4j.  

We used a version of Java vulnerable to Log4j exploits to compile and run our Java 

program. The program takes the Conpot Log as input and pattern matches for user-agent 

strings; if one is found, it logs it using Log4j. A successful exploit sent to the Conpot HTTP 

server would get logged by Conpot and our Java program, resulting in the Java program 

performing a DNS query specific to the particular Log4j exploit.  

3. Prototyping Log4j Exploits 

To confirm we could recognize successful Log4j exploits, we created a test Java 

program that logs five strings using Log4j. Three of those strings were valid Log4j exploit 

strings. Figure 12 shows the console output produced by the Java program as recorded by 

TShark, a Wireshark variant. The middle three entries refer to the LDAP, DNS, and RMI 

directory and naming services discussed in Section III.C.2; all three successfully caused 

the Java program to query a DNS server. 

 
Figure 12. Console Output of the Test Java Program 
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In Wireshark output we could check if our exploit strings resulted in DNS queries 

(Figure 13). The “Hello Exploit” string did not cause a DNS query and neither did the 

exploit string with the HTTP substring; HTTP, in this case, was not a malicious server as 

described in Section III.C.2.  

 
Figure 13. Wireshark Displaying the Result of the Log4j Exploit Strings 

Logged in Figure 12 

D. IEC 104 ATTACK GENERATION 

1. Generating IEC 104 Attacks 

We modelled our IEC 104 attacks on Industroyer2’s IEC 104 traffic. This malware 

sent single and double commands to query a simulated industrial process. The commands 

are represented by 8 bits following the specifications described in Section II.A.2.a. Since 

each bit in the command signified different features, we used the bits as the features of our 

IEC 104 attack. To send these commands, we used I-format frames with the properties in 

Table 4. The type identifiers 45 and 46 specify single and double commands. Since we 

only sent one frame, the “structure qualifier” was zero and the “number of objects” was 

one. Also, we did not need command confirmation frames, an originator address, or a 

testing mode. We chose a “cause-of-transmission” value of “activation” and used GridPot’s 

default values for the “ASDU address fields” and “information object address” fields. 
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Table 4. I-Format Frame ASDU Container Field Values 

ASDU Container Fields Single Command Attacks Double Command Attacks 
Type identification 45 46 
Structure qualifier 0 0 
Number of objects 1 1 
Test bit 0 0 
Positive/Negative 
confirmation 0 0 

Cause of transmission Activation Activation 
Originator address 0 0 
ASDU address fields GridPot’s default value GridPot’s default value 
Information object address GridPot’s default value GridPot’s default value 
Information Element Single command Double command 

 

Since we only manipulated eight bits of the command field, fewer variants were 

possible for the IEC 104 attacks than for Log4j exploits. Crossover operations randomly 

selected bits and swapped their corresponding values. Mutation toggled the value of one 

random bit in the command, so the mutation-magnitude hyperparameter did not apply.  

An example crossover operation involving double command data is in Figure 14 

using the specification for double commands in Figure 4. Figure 15 shows an example 

mutation.  

 
Figure 14. Example IEC 104 Crossing Operation 
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Figure 15. Example IEC 104 Mutation Operation  

After creating the first population, the attack generator sent the attacks to the 

Conpot IEC 104 server using Scapy. The attack generator used SSH to get the Conpot log 

and correlate the entries with the attacks. If an attack was not found in the log, its data 

transfer was prematurely ended, and this was considered a failed attack as described in 

Section III.B. 

The fitness evaluation and selection steps of the IEC 104 attack generator were the 

same as the Log4j implementation using a random-forest classifier. We used the 

hyperparameters in Table 5 for testing the IEC 104 attack creation. 

Table 5. Hyperparameter Combinations Used in Experiments of the Attack 
Generator for IEC 104 Attacks 

 

Stopping Condition 
(Max Generations) 

Parent 
Population 

Size 

Population 
Size 

Number of 
Crossings 

Mutation 
Rate 

[5, 10, 20] 10 20 4 0.50 
10 [5, 10, 20] 20 4 0.50 
10 10 [10, 20, 40] 4 0.50 
10 10 20 [0...8] 0.50 
10 10 20 4 [0.00, 

0.10, 
...  

1.00] 
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2. IEC 104 Experiments 

As we tested double commands, sometimes the Conpot IEC 104 server abruptly 

ended the TCP connection before the attack generator sent the stop-data-transmission U-

format frame. This behavior was caused by sending a double command with the qualifier 

field of zero, corresponding to “no additional definition” in the specification. The Conpot 

log lacked entries to show why the error occurred. In a similar situation we tested different 

cause-of-transmission values with double commands. According to the specification, 

double commands can have the values in Table 6.  

Table 6. Double Command Cause-of-Transmission Values. Adapted from 
Matoušek (2017). 

 
 

However, transmission values other than six, eight, and ten caused the Conpot IEC 

104 server to stop the transmission and write a log entry. Since codes seven and nine are 

acknowledgements and should be sent by the server, not the client, the Conpot IEC 104 

server treated the requests as invalid. Apparently the remaining four codes are not 

supported by the Conpot IEC 104 server and it rejects the request. Since each configuration 

of bits produced a different response from the Conpot IEC 104 server, we decided to use 

its response to determine success as described in Section III.B. The other observation we 

made was that command types sent to inconsistent-type objects were ignored and produced 

no observable response from the Conpot IEC 104 server.  
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Another experiment fuzzed the bits of a command type. Commands were sent to 

GridPot to observe its handling of reserved and undefined values. For single commands, 

we tested combinations of the bit values in the Single Command State bit, the undefined 

bit, the qualifier bits, and the select or execute bit (Figure 4). The test cases are in Table 7. 

For double commands, we tested the state bits, the qualifier bits, and the select or execute 

bit. The test cases are in Table 8.  

Table 7. Single Command Fuzzing Tests for Generated IEC 104 Exploits 

Test ID Single Command State 
Value 

Undefined Bit 
Value 

Qualifier 
Value 

Select/
Execute 
Value 

 SC1 0, 1 0 1 0 
SC2 0 0, 1 1 0 
SC3 0 0 0, 1, 2, 3, 

4, 9, 16 0 

SC4 0 0 1 0, 1 
 

Table 8. Double Command Fuzzing Tests for Generated IEC 104 Exploits 

Test ID Double Command State 
Value Qualifier Value Select/Execute 

Value 
DC1 0, 1, 2, 3 1 0 

DC2 0 0, 1, 2, 3, 4, 9, 
16 0 

DC3 0 1 0, 1 
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V. RESULTS 

A. DATASET ANALYSIS 

1. Analysis of HTTP and Log4j in Live Traffic 

Initial analysis used two datasets, collected over different periods, of Log4j exploits 

from live attacks. We also analyzed more-general HTTP attacks to understand attacker 

patterns and how our attack generator could mimic these trends while sending Log4j 

exploits.  

While collecting live attack traffic with our honeypot from November 30 to January 

17, 2022, we observed 102 HTTP requests with Log4j exploits embedded in their headers. 

This activity originated from 30 unique sources and represented 1.3% of the honeypot’s 

overall HTTP requests. From March 15 to April 12, 2022, Log4j exploit attempts reported 

in (Meier, 2022) were only 0.06% of the HTTP requests; these requests came from two 

countries and five IP addresses. Table 9 summarizes the overall traffic statistics for the 

subset of Log4j samples in each packet capture.  

Table 9. Statistics on Real Attacker Log4j Traffic 

 Our Honeypot (Meier, 2022) 
Experiment 4 

Dates of collection November 30, 2021 – 
January 17, 2022 

March 15, 2022 – 
April 12, 2022 

Number of unique countries 14 2 
Number of unique IP addresses 30 5 
Total Log4j exploit attempts 102 16 
Percentage of Log4j exploit attempts  
per HTTP Request 0.013 0.0006 

 

Attackers put Log4j exploits in the header fields that they believed were the most 

likely to get logged. Attackers sent 98 HTTP GET requests compared to only four POST 

requests during our honeypot’s collection dates. The user-agent header was the most 

popular, as it was used in 73 of the HTTP attacks, of which 21 had the user-agent header 
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as the only location of the Log4j exploit string. Using only one header field for the exploit 

occurred in 42% of the attempts (Figure 16). As a result, our generated Log4j exploits were 

put exclusively in the user-agent field when we sent our HTTP GET requests. 66% of the 

HTTP requests only had one variation of the exploit in the headers. Our generator did not 

put exploits into more than one header field since our Conpot Log4j Handler logged every 

user-agent field of an HTTP request.  

 
Figure 16. The Number of Log4j Exploit Strings per HTTP Request  

In total, 263 exploit strings appeared in the 118 HTTP requests from all live traffic 

captured in our honeypot and (Meier, 2022) Experiment 4 (Table 10). 245 exploits tried to 

call an LDAP server, and 18 called a DNS server. We found eight variations of the LDAP 

exploit with different combinations of lookups (lower-case, environment-variable, and 

empty-string) to obfuscate the string. The Log4j exploit strings that used DNS as the 

callback server originated from two scanners, Scanworld and Securityscan. We identified 

them as scanners because they included their name in the resource substring of the URI. 

Scanworld used no lookups but just the string “jndi:dns://,” while Securityscan used one 

lookup, “${::-j}ndi://dns://.” Since these DNS variants were not malicious, we chose the 
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LDAP protocol for the target server of generated exploits because we had more diversity 

to draw upon when creating Logj4 exploits.  

Table 10. Embedded Log4j Exploits in HTTP Header Fields 

 

Callback 
Server 

Strings 
without 
Lookups 

Strings 
with 

Lookups 
Total 

LDAP 104 141 245 
DNS 2 16 18 
Total 106 157 263 

 

To see if attackers obscured their Log4j code after the vulnerability disclosure, we 

graphed the lookup complexity over time (Figure 17). Results were inconclusive. Many 

attackers used exploits without additional lookups even though Snort intrusion-detection 

rules were provided for these immediately.  

 
Figure 17. The Number of Log4j Lookups in the Exploit String over Time  

Four months later in the (Meier, 2022) Experiment 4 dataset, all Log4j exploit 

strings used five lookups based on two variants:  
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• “${${env:BARFOO:-j}ndi${env:BARFOO:-:}${env:BARFOO:-

l}dap${env:BARFOO:-:}//” and  

• “${${env:NaN:-j}ndi${env:NaN:-:}${env:NaN:-l}dap${env:NaN:- :}//.”  

In this data the attackers used the environmental lookup “env” with the values 

“BARFOO” and “NaN.” Since “NaN” and “BARFOO” are undefined with environment 

lookup, the default lookup operator “:-” will cause the lookup to resolve to the Log4j 

exploit character.  

HTTP requests with Log4j exploits made up less than one percent of the total HTTP 

traffic. We studied the remaining HTTP traffic to understand its statistics. Of our 

honeypot’s collected HTTP requests, GET and POST requests were 72 percent and 26 

percent of the methods respectively, while the HEAD, CONNECT, and OPTIONS HTTP 

methods were two percent of the remaining traffic. We also categorized the path types used 

in the HTTP URI path (Table 11). All these categories can use Log4j exploits in their 

header fields. For our Log4j exploits we chose “/” as our URI path since it was the most 

requested.  
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Table 11. HTTP GET URI Path Types from Live Attacks Collected on Our 
Honeypot 

Path Instances 
HTTP data 48 days 
/ 2527 (34.6%) 
Index.html 797 (10.9%) 
Category: PHP 1215 (16.6%) 
Category: SQL 0 (0.0%) 
Category: Crawler 1040 (14.2%) 
Category: .xml 142 (1.9%) 
Category: Shell commands 18 (0.2%) 
Category: JSON 12 (0.2%) 
Category: Top-level folders 701 (9.6%) 
Category: Files 18 (0.2%) 
Category: JavaScript 90 (1.2%) 
Category: Other .env 213 (2.9%) 
Other 530 (7.2%) 
Total 7303 

 

With Suricata in offline mode, we used the real-attack packet captures from our 

honeypot to assess the top Suricata alerts over time (Figure 18). “Attempted administrator 

privilege gain” occurred mostly with Log4j exploits in the beginning of the capture. Later 

alerts in this category were from an attack that used HTTP POST requests with a URI of 

“/HNAP1.” The network-scanning alerts were caused by specific user-agent strings; the 

top scanners were the user-agents of “Mozilla/5.0 zgrab/0.x” and “masscan.” Another 

category “network trojans” was linked to HTTP GET requests that used URIs like 

“/w00tw00t.at.blackhats.romanian.anti-sec:),” “/phpMyAdmin/scripts/setup.php” and 

“/Autodiscover/Autodiscover.xml.” “Web application attacks” comprised “/HNAP1” 

POST requests and variants of HTTP GET requests with “/cgi-bin/” as the URI. The 

Suricata ruleset classified “/HNAP1” as both “Web application attack” and “attempted 

administrator privilege gain.” While the Log4j exploits made up less than one percent of 

the real attacker traffic, the Suricata alerts did distinguish the Log4j exploits from other 

attacks.  
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Figure 18. The Top Suricata Alerts of Real Attack Traffic on Our Honeypot 

We also clustered the HTTP request method, HTTP path attributes, DNS A records, 

and Suricata alert categories using K-Means clustering. Four clusters appeared to represent 

the data the best (Appendix B). The most distinctive features of the clusters that WEKA 

created are in Table 12.  
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Table 12. Clusters Found in Attacks on Our Honeypot 

Cluster Percentage Centroid Key Features 

0 1341 (18%) 

Method = GET 
Default Web request (“/” or “/index.html”) 
Extension Type = Web Extensions 
Path Length = 18.23 

1 915 (12%) 
Method = POST 
Extension Type = Web Extensions 
Path Length = 15.94 

2 4091 (55%) 

Method = GET 
Default Web request (“/” or “/index.html”) 
Extension Type = None 
Path Length = 11.34 

3 1029 (14%) 
Method = POST 
Extension Type = None 
Path Length = 6.03 

 

2. Analysis of IEC 104 Traffic 

We had two datasets of real IEC 104 traffic on GridPot, our honeypot and 

(Washofsky, 2021) Experiment 4. The overall statistics are displayed in Table 13. Although 

our honeypot received less malformed frames than (Washofsky, 2021) Experiment 4, our 

well-formed frames were too few to use as a baseline IEC 104 attack. As a workaround, 

we studied another researcher’s packet capture of Industroyer2’s IEC 104 traffic 

(Hjelmvik, 2022).   
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Table 13. Statistics of Live IEC 104 Traffic 

 (Washofsky, 2021) 
Experiment 4 

Our 
Honeypot 

Number of unique countries 8 15 
Number of unique IP addresses 45 108 
Mean unique IP addresses per day 1.45 2.22 
Total IEC 104 frames 140 112 
Total IEC 104 malformed frames 104 15 
Total IEC 104 valid frames 36 97 
Mean valid IEC 104 frames per day 3.6 2.02 
Min valid IEC 104 frames requests per day 1 0 
Max valid IEC 104 frames request per day 9 18 

 

Industroyer2 sent S-format frames while the attacks on our GridPot did not see 

them (Table 14). U-format frames start and end the data transfer of I-format frames, so a 

large ratio of I-format frames to U-format frames indicated successful data flow setup and 

larger information transfers. The Industroyer2 ratio of I-format frames to U-format frames 

was significantly higher than the other two datasets, which meant that it involved more IEC 

104 data. Traffic on GridPot also lacked the stop-data-transfer U-format frame (Table 15). 

This means that the connection was either ended by GridPot or the attacker did not send a 

stop-data-transfer frame. 

Table 14. Observed Frame Types of Live IEC 104 Attacks 

 (Washofsky, 2021) Our Honeypot Industroyer2 
U-Format Frame 26 64 3 
I-Format Frame 10 33 17 
S-Format Frame 0 0 18 
Error Frames 104 15 0 
Total Frames 140 112 28 
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Table 15. Observed U-Format Frame Types of Live IEC 104 Attacks 

 
(Washofsky, 

2021) 
Experiment 4 

Our 
Honeypot Industroyer2 

Test Frame Activation 12 25 1 
Start Data Transfer Activation 8 28 1 
Start Data Transfer Confirmation 2 7 1 
Stop Data Transfer Activation 0 0 1 
Stop Data Transfer Confirmation 0 0 1 

 

We observed relatively few data types in the ASDU container of the frame (Table 

16). The attacks on GridPot were mostly general interrogation commands suggesting 

reconnaissance. The Industroyer2 sample on the other hand targeted objects that processed 

double commands.  

Table 16. Observed ASDU Container Types of Live IEC 104 Attacks 

 (Washofsky, 2021) 
Experiment 4 Our Honeypot Industroyer2 

General interrogation 7 16 1 
Double command 0 0 16 
Undefined 4 11 0 

 

We collected a variety of ASDU container addresses (Figure 17). GridPot would 

only accept its specific ASDU container address and the global address. The researcher 

that created the Industroyer2 sample set up the victim ASDU container address as “1.” In 

our honeypot’s data, all object addresses were ‘0’ and since GridPot does not support 

objects with an address ‘0’, these frames were ignored. With Industroyer 2, instead of 

sending a general interrogation command to all ASDU container addresses, it used the 

address of “1” since the attacker knew it in advance. We saw that Industroyer2 iterated 

through each address in the range 1251 to 1265 and sent them double commands. We 

developed our IEC 104 attack based on Industroyer2’s IEC 104 attack pattern (Section 

III.D.2).  
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Table 17. Observed ASDU Container Addresses of Live IEC 104 Attacks 

 (Washofsky, 2021) 
Experiment 4 Our Honeypot Industroyer2 

None 4 11 0 
1 0 0 17 
65535 (Global Address) 7 16 0 

 

B. ATTACK GENERATION RESULTS 

1. Log4j Exploit Results 

Though later generations create more exploits, we saw that the success rate of our 

generated Log4j exploits slowed by ten generations (Figure 19). 

 
Figure 19. Successful Log4j Exploits over Generations with Population Size 

20, Parent Population Size 10, Number of Crossings 6, Mutation Rate 
0.50, and Mutation Magnitude 1 
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Figure 20 shows the cumulative number of exploits discovered at each generation. 

The lowest population size of ten, during generations five to nine, caused the attack 

generator to find successful attacks more slowly while the performance with the higher 

sizes varied.  

 
Figure 20. Cumulative Percentage of Successful Log4j Exploits with Parent 

Population Size 10, Number of Crossings 6, Mutation Rate 0.50, and 
Mutation Magnitude 1 
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Varying the parent population size had little effect on discovery of exploits  

(Figure 21).  

 
Figure 21. Successful Log4j Exploits with Population Size 20, Number of 

Crossings 6, Mutation Rate 0.50, and Mutation Magnitude 1 
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Varying the number of crossings had little effect on the overall attack success 

(Figure 22). 

 
Figure 22. Variations of Number of Crossings and Their Impact on Creating 

Successful Log4j Exploits with Population Size 20, Parent Population Size 
10, Mutation Rate 0.50, Mutation Magnitude 1, and Maximum 

Generations 10 
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We also tested several mutation rates (Figure 23). The attack generator performed 

better with lower mutation rates. 

 
Figure 23. Log4j Successful Exploits When Varying Mutation Rate with 

Population Size 20, Parent Population Size 10, Number of Crossings 6, 
and Mutation Magnitude 1 
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When plotting the overall percentage of successful exploits after ten generations, 

we discovered that a mutation rate of 0.20 had about a 70 percent success rate which 

appeared to be the best (Figure 24).  

 
Figure 24. Successful Log4j Exploits Versus Mutation Rate with Population 

Size 20, Parent Population Size 10, Number of Crossings 6, and Mutation 
Magnitude 1 
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We analyzed the impact that mutation magnitude had on the cumulative percent of 

successful Log4j exploits (Figure 25). Higher magnitudes meant finding exploits quicker.  

 
Figure 25. Cumulative Percentage of Successful Log4j Exploits with 

Population Size 20, Parent Population Size 10, Number of Crossings 6, 
and Mutation Rate 0.50 

2. Synthetic IEC 104 Attack Results 

We first performed the fuzzing tests described in Section IV.D.2. Our resulted 

showed that GridPot ended IEC 104 data transfer when sent frames did not follow IEC 104 

standards or were reserved for future use. Furthermore, we found that single commands 

were ignored by GridPot, so we only generated double commands with the attack 

generator.  

When running the attack generator we expected most attacks to be discovered in 

the early generations. In Figure 26, we found after twenty generations, the cumulative 

percentage of successful attacks was about thirty percent. Also, the rate of discovering new 

attacks had not flattened at twenty generations like the Log4j attack rate.  
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Figure 26. Successful IEC 104 Attacks Discovered Versus Generations with 

Population Size 20, Parent Population Size 10, Number of Crossings 4, 
and Mutation Rate 0.50 

We observed that by the fourth generation, an experiment with a population size of 

forty found roughly half of its total successful attacks. As we expected, specifying more 

attacks per generation caused a faster discovery rate.  

 
Figure 27. Cumulative Percentage of Successful IEC 104 Attacks per 

Generation with Parent Population Size 10, Number of Crossings 4, and 
Mutation Rate 0.50 
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We also studied the effect of parent population size on success and found that the 

low and high values ended with a cumulative success rate around 30 percent while the 

middle value ended at forty percent (Figure 28).  

 
Figure 28. Successful IEC 104 Attacks with Population Size 20, Number of 

Crossings 4, and Mutation Rate 0.50 
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We ran nine experiments, one for each possible number of crossings value, and 

plotted their overall success percentage at the maximum generation. Figure 29 shows the 

differences between experiments. 

 
Figure 29. Successful IEC 104 Attacks Versus the Number of Crossings with 

Population Size 20, Parent Population Size 10, Mutation Rate 0.50, and 
Max Generations 10 
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We saw that mutation rates other than 0 or 1 were the best for IEC 104 attacks 

(Figure 30).  

 
Figure 30. Successful IEC 104 Attacks Versus Generations with Population 

Size 20, Parent Population Size 10, and Number of Crossings 4 
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C. DISCUSSION 

Overall, we found that the population sizes should be kept high as it gives the attack 

generator more chances to find successful attacks, whereas initial population sizes were 

less important. The number of crossings for each attack also had little effect on the success 

of new attacks. We also found that more successful attacks came from experiments with 

mutation rates between 0.10 and 0.40 for Log4j and between 0.50 and 0.80 for IEC 104. 

Though mutation magnitude only applied to Log4j attack generation, it should be set at its 

lowest value of one, since too much variation hindered finding successful attacks. Our 

highest success rates occurred when the attack generator used mutation rates of 0.20 for 

Log4j and 0.50 for IEC 104. In those experiments the Log4j exploits were 70 percent 

successful and the IEC 104 attacks were 40 percent successful. Also, our synthetic Log4j 

traffic was more diverse than the live exploits collected from our honeypot. Out of the 263 

exploit strings of live Log4j attacks, there were only nine unique variations of lookups, but 

our attack generator for Log4j produced over 5,200 unique variations of the exploit. For 

IEC 104, the attack generator found all 256 variations of the 8-bit double command.  
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VI. CONCLUSIONS 

Our attack generator can generate Log4j exploits similar to those observed in real 

attacks, and it can generate IEC 104 attacks similar to those of the Industroyer2 malware. 

Our results also suggest that the most influential hyperparameters were the population size 

and mutation rate; larger populations enabled more variations to get tested, and mutation 

rate controlled attack diversity. Mutation rates had an optimum value not at an extreme of 

0 or 1. For Log4j exploit generation, lower mutation rates were preferable, while with IEC 

104 exploit generation, the opposite was true. The most successful attacks in our tests were 

70 percent for Log4j exploits and 40 percent for IEC 104 attacks. 

The attack generator’s design can adapt to many other kinds of exploits. The 

synthetic attacks could be used to test intrusion-detection rules and firewalls. To create 

more interesting IEC 104 attacks, our GridPot honeypot can be modified to provide an 

interface between the IEC 104 server and a simulated power grid that allows the attack 

generator to correlate successful IEC 104 attacks with changes in the power grid readings. 

Also, many hyperparameter values and implementations of evolutionary operations were 

unexplored in our attack generator, and they could affect attack creation to create more 

successful or more diverse and attacks. 
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APPENDIX A. TESTBED SETUP 

The following instructions setup the victim and attacker systems described in 

Figure 9. 

 
Victim System Setup 

1. Install T-Pot and GridPot. Follow the steps from (Washofsky, 2021) 

Appendix A to install T-Pot. This installation also covers how to install 

the GridPot from (Dougherty, 2020) as one of T-Pot’s Docker containers. 

2. Install a vulnerable version of Java. For our testbed we downloaded the 

Java SE Development Kit 8u181 for Linux x64 from Java’s archive 

downloads. Add the Java Development Kit bin folder to your PATH. 

3. Install a vulnerable version of Log4j. We found an older version of Log4j 

at an Apache archive site: https://archive.apache.org/dist/logging/log4j/. 

We downloaded and installed version 2.14.1. We followed the directions 

from https://www.tutorialspoint.com/log4j/log4j_installation.htm. 

4. Install Tcpdump. We used version 4.9.3. 

5. Install Conpot Log4j Handler. Download the Conpot Log4j Handler.java 

file and compile it using the command: 

javac Conpot_Log4j_Handler.java 

Attacker System Setup 

1. Install Python 3.10 

2. Download the attack generator package from the NPS GitLab repository. 

Run Experiment 

3. On the victim system, run the command:  

sudo tail -f -n 1 /data/conpot/log/conpot_default.log 

| java Conpot_Log4j_Handler 
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Note: This step is only for Log4j attacks. 

4. On the attacker system, launch the attack:  

python attack_generator.py 
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APPENDIX B. K-MEANS CLUSTER ANALYSIS ON LIVE HTTP 
ATTACKS 

In Section IV.B we discussed how we identified features of the live HTTP attack 

data captured on our honeypot. These features were mostly derived from HTTP URI 

properties and data on IP addresses like DNS records. After feature engineering, we used 

Scikit-Learn’s K-Means algorithm to find which clusters would best fit our data (Géron, 

2019). The plots in Figure 31, Figure 32, and Figure 33 show the results of clustering with 

three, four, and five clusters, respectively. 

The HTTP request instances are clustered on the vertical y-axis with their 

corresponding silhouette values on the x-axis. HTTP requests with scores closer to 1.0 are 

toward the center of their cluster. The width of the clusters indicates how many instances 

are in each cluster. The dotted red line is the average silhouette score of all the instances. 

Ideally the clusters are large, and the instances extend close to 1.0 on the x-axis. At least 

the clusters should cross the red line which means they have some values that are around 

the average score of the entire dataset.  

 
Figure 31. The Silhouette Score for K-Means Clusters = 3 for the Live HTTP 

Attacks Collected on Our Honeypot 
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Figure 32. The Silhouette Score for K-Means Clusters=4 for the Live HTTP 

Attacks Collected on Our Honeypot 

 
Figure 33. The Silhouette Score for K-Means Clusters = 5 for the Live HTTP 

Attacks Collected on Our Honeypot 

K-means with four clusters produced a grouping where every cluster crossed the 

threshold past the average silhouette score. Clustering of three and five clusters have wide 

clusters like cluster four, but not all of them had instances which were at or above the 

average score. After deciding to use four clusters, we loaded our data into WEKA to run 

another K-means clustering. With Scikit-Learn we could easily generate the silhouette 

score plot, however WEKA is better at displaying the actual clusters and requires no 

additional programming compared to Scikit-Learn.  
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APPENDIX C. LOG4J LOOKUPS  

Table 18 has all the lookups that the attack generator used to mutate Log4j exploits. 

Refer to Section III.C for more details on how Log4j lookups work.  

Table 18. Log4j Prefix Attribute Mapping. Adapted from The Apache 
Software Foundation (2022). 

Lookup Prefix Attributes (not exhaustive) 
Context Map Ctx loginId 
Date date MM-dd-yyy 

Docker docker 

containerID 
containerName 
imageId 
imageName 
shortContainerId 
shortImageId 

Empty lookup Empty string None (only used with default values for 
example “{$::-DEFAULT_VALUE}”) 

Environment env USER 

Event event 

Exception 
Level 
Logger 
Marker 
Message 
ThreadId 
ThreadName 
TimeStamp 

Java java 

version 
runtime 
vm 
os 
locale 
hw 

JNDI jndi Not listed 
Java Virtual Machine jvmrunargs Not listed 

Kubernetes k8 

accountName 
clusterName 
containerId 
containerName 
host 
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Lookup Prefix Attributes (not exhaustive) 
hostIp 
imageId 
imageName 
labels 
labesl.app 
labels.podTemplateHash 
masterUrl 
namespaceId 
namespaceName 
podId 
podIp 
podName 

Log4j Configuration 
Location log4j configLocation 

configParentLocation 
Lower lower Any string 

Main Arguments main 
0-based index or based on strings found 
in the argument list  
i.e., main:myString or main:0 

Map map type 
Marker marker name 
Mapped Diagnostic 
Context mdc userID 

Spring Boot spring spring.application.name 
Structured Data sd type 
System Properties sys logPath 
Upper upper Any string 

Web web 

attr.name 
contextPath 
contextPathName 
effectiveMajorVersion 
effectiveMinorVersion 
initParam.name 
majorVersion 
minorVersion 
rootDir 
serverInfo 
servletContextName 
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