
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-09

CREATING SYNTHETIC ATTACKS WITH
EVOLUTIONARY ALGORITHMS FOR
INDUSTRIAL-CONTROL-SYSTEM SECURITY TESTING

Haynes, Nathaniel J.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/71068

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

CREATING SYNTHETIC ATTACKS
WITH EVOLUTIONARY ALGORITHMS FOR

INDUSTRIAL-CONTROL-SYSTEM SECURITY TESTING

by

Nathaniel J. Haynes

September 2022

Thesis Advisor: Thuy D. Nguyen
Co-Advisor: Neil C. Rowe

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2022 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
CREATING SYNTHETIC ATTACKS WITH EVOLUTIONARY
ALGORITHMS FOR INDUSTRIAL-CONTROL-SYSTEM SECURITY
TESTING

 5. FUNDING NUMBERS

 6. AUTHOR(S) Nathaniel J. Haynes

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Cybersecurity defenders can use honeypots (decoy systems) to capture and study adversarial activities.
An issue with honeypots is obtaining enough data on rare attacks. To improve data collection, we created a
tool that uses machine learning to generate plausible artificial attacks on two protocols, Hypertext Transfer
Protocol (HTTP) and IEC 60870-5-104 (“IEC 104” for short, an industrial-control-system protocol). It uses
evolutionary algorithms to create new variants of two cyberattacks: Log4j exploits (described in
CVE-2021-44228 as severely critical) and the Industroyer2 malware (allegedly used in Russian attacks on
Ukrainian power grids). Our synthetic attack generator (SAGO) effectively created synthetic attacks at
success rates up to 70 and 40 percent for Log4j and IEC 104, respectively. We tested over 5,200 unique
variations of Log4j exploits and 256 unique variations of the approach used by Industroyer2. Based on a
power-grid honeypot’s response to these attacks, we identified changes to improve interactivity, which
should entice intruders to mount more revealing attacks and aid defenders in hardening against new attack
variants. This work provides a technique to proactively identify cybersecurity weaknesses in critical
infrastructure and Department of Defense assets.

 14. SUBJECT TERMS
synthetic attack, evolutionary algorithm, industrial control system, security testing,
honeypot, Log4j, IEC 60870-5-104

 15. NUMBER OF
PAGES
 97
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

CREATING SYNTHETIC ATTACKS WITH EVOLUTIONARY ALGORITHMS
FOR INDUSTRIAL-CONTROL-SYSTEM SECURITY TESTING

Nathaniel J. Haynes
Captain, United States Marine Corps

BS, United States Naval Academy, 2016

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2022

Approved by: Thuy D. Nguyen
 Advisor

 Neil C. Rowe
 Co-Advisor

 Gurminder Singh
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Cybersecurity defenders can use honeypots (decoy systems) to capture and study

adversarial activities. An issue with honeypots is obtaining enough data on rare attacks.

To improve data collection, we created a tool that uses machine learning to generate

plausible artificial attacks on two protocols, Hypertext Transfer Protocol (HTTP) and IEC

60870-5-104 (“IEC 104” for short, an industrial-control-system protocol). It uses

evolutionary algorithms to create new variants of two cyberattacks: Log4j exploits

(described in CVE-2021-44228 as severely critical) and the Industroyer2 malware

(allegedly used in Russian attacks on Ukrainian power grids). Our synthetic attack

generator (SAGO) effectively created synthetic attacks at success rates up to 70 and 40

percent for Log4j and IEC 104, respectively. We tested over 5,200 unique variations of

Log4j exploits and 256 unique variations of the approach used by Industroyer2. Based on

a power-grid honeypot’s response to these attacks, we identified changes to improve

interactivity, which should entice intruders to mount more revealing attacks and aid

defenders in hardening against new attack variants. This work provides a technique to

proactively identify cybersecurity weaknesses in critical infrastructure and Department of

Defense assets.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. OUR APPROACH ...2
C. THESIS OUTLINE ..2

II. BACKGROUND ..5
A. INDUSTRIAL CONTROL SYSTEM PROTOCOLS5

1. Introduction ..5
2. Network Protocols ..5
3. Other ICS Protocols ...10

B. PROTOCOL-BASED ATTACKS ..10
1. IEC 104 ...10
2. HTTP ...12

C. ICS POWER GRID HONEYPOTS ...12
D. AUTOMATICALLY GENERATING EXPLOITS..............................15

1. Automated Software Testing ..15
2. Machine-Learning Methods ..15
3. Other Test Generation Methods ...18

III. METHODOLOGY AND ATTACKS ON ICS HONEYPOTS19
A. PREVIOUS NPS HONEYPOTS ..19
B. ATTACK GENERATOR ..20
C. HTTP ATTACKS – LOG4J ...21

1. Log4j Logging Features ...21
2. Exploiting Log4j ...21
3. Adapting Log4j Exploits for Evolutionary Algorithms23

D. IEC 104 ATTACKS – INDUSTROYER2..24
1. Industroyer2 Background ...24
2. Synthetic Attacks Based on Industroyer2..................................24

E. ANALYZING DATASETS ...25

IV. EXPERIMENTS ..27
A. EXPERIMENT TESTBED ...27
B. ATTACK ANALYSIS ...28
C. LOG4J EXPLOIT GENERATION ...29

1. Generating Log4j Exploits ..29
2. Implementing the Conpot Log4j Handler32

viii

3. Prototyping Log4j Exploits ...33
D. IEC 104 ATTACK GENERATION ...34

1. Generating IEC 104 Attacks ...34
2. IEC 104 Experiments ...37

V. RESULTS ...39
A. DATASET ANALYSIS ...39

1. Analysis of HTTP and Log4j in Live Traffic.............................39
2. Analysis of IEC 104 Traffic ...45

B. ATTACK GENERATION RESULTS ...48
1. Log4j Exploit Results ...48
2. Synthetic IEC 104 Attack Results ..54

C. DISCUSSION ...59

VI. CONCLUSIONS ..61

APPENDIX A. TESTBED SETUP ...63

APPENDIX B. K-MEANS CLUSTER ANALYSIS ON LIVE HTTP
ATTACKS ..65

APPENDIX C. LOG4J LOOKUPS..67

LIST OF REFERENCES ..69

INITIAL DISTRIBUTION LIST ...77

ix

LIST OF FIGURES

Figure 1. IEC 104 APDU Format. Source: Matoušek (2017).6

Figure 2. IEC 104 Frame Types. Source: Matoušek (2017).7

Figure 3. IEC 104 ASDU Container’s Data Unit Identifier. Adapted from
Matoušek (2017). ...8

Figure 4. IEC 104 Single and Double Command Information Element
Specifications. Adapted from Clarke et al. (2004).9

Figure 5. GridPot Simulated Electrical Grid Honeypot. Source: Redwood
(2015). ..14

Figure 6. “Boolean” SQL Injection Attack Features. Source: Appelt et al.
(2018). ..17

Figure 7. Evolutionary Approach to Generating Exploits ...20

Figure 8. Basic Log4j Exploit Control Flow ...23

Figure 9. Design for Log4j and IEC 104 Exploit Generation Experiments28

Figure 10. Log4j Exploit Schema..30

Figure 11. Our Technique for Logging with Log4j...33

Figure 12. Console Output of the Test Java Program ...33

Figure 13. Wireshark Displaying the Result of the Log4j Exploit Strings
Logged in Figure 12 ...34

Figure 14. Example IEC 104 Crossing Operation ...35

Figure 15. Example IEC 104 Mutation Operation ..36

Figure 16. The Number of Log4j Exploit Strings per HTTP Request40

Figure 17. The Number of Log4j Lookups in the Exploit String over Time41

Figure 18. The Top Suricata Alerts of Real Attack Traffic on Our Honeypot............44

Figure 19. Successful Log4j Exploits over Generations with Population Size 20,
Parent Population Size 10, Number of Crossings 6, Mutation Rate
0.50, and Mutation Magnitude 1 ..48

x

Figure 20. Cumulative Percentage of Successful Log4j Exploits with Parent
Population Size 10, Number of Crossings 6, Mutation Rate 0.50, and
Mutation Magnitude 1..49

Figure 21. Successful Log4j Exploits with Population Size 20, Number of
Crossings 6, Mutation Rate 0.50, and Mutation Magnitude 150

Figure 22. Variations of Number of Crossings and Their Impact on Creating
Successful Log4j Exploits with Population Size 20, Parent
Population Size 10, Mutation Rate 0.50, Mutation Magnitude 1, and
Maximum Generations 10..51

Figure 23. Log4j Successful Exploits When Varying Mutation Rate with
Population Size 20, Parent Population Size 10, Number of Crossings
6, and Mutation Magnitude 1 ...52

Figure 24. Successful Log4j Exploits Versus Mutation Rate with Population
Size 20, Parent Population Size 10, Number of Crossings 6, and
Mutation Magnitude 1..53

Figure 25. Cumulative Percentage of Successful Log4j Exploits with
Population Size 20, Parent Population Size 10, Number of Crossings
6, and Mutation Rate 0.50 ..54

Figure 26. Successful IEC 104 Attacks Discovered Versus Generations with
Population Size 20, Parent Population Size 10, Number of Crossings
4, and Mutation Rate 0.50 ..55

Figure 27. Cumulative Percentage of Successful IEC 104 Attacks per
Generation with Parent Population Size 10, Number of Crossings 4,
and Mutation Rate 0.50 ..55

Figure 28. Successful IEC 104 Attacks with Population Size 20, Number of
Crossings 4, and Mutation Rate 0.50 ...56

Figure 29. Successful IEC 104 Attacks Versus the Number of Crossings with
Population Size 20, Parent Population Size 10, Mutation Rate 0.50,
and Max Generations 10 ..57

Figure 30. Successful IEC 104 Attacks Versus Generations with Population
Size 20, Parent Population Size 10, and Number of Crossings 458

Figure 31. The Silhouette Score for K-Means Clusters = 3 for the Live HTTP
Attacks Collected on Our Honeypot ..65

Figure 32. The Silhouette Score for K-Means Clusters=4 for the Live HTTP
Attacks Collected on Our Honeypot ..66

xi

Figure 33. The Silhouette Score for K-Means Clusters = 5 for the Live HTTP
Attacks Collected on Our Honeypot ..66

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF TABLES

Table 1. Common Evolutionary Algorithm Hyperparameters.................................17

Table 2. Datasets Used for Attack Analyses ..26

Table 3. Hyperparameter Combinations Used in Experiments of the Attack
Generator for Log4j Exploits ...32

Table 4. I-Format Frame ASDU Container Field Values ..35

Table 5. Hyperparameter Combinations Used in Experiments of the Attack
Generator for IEC 104 Attacks ..36

Table 6. Double Command Cause-of-Transmission Values. Adapted from
Matoušek (2017). ...37

Table 7. Single Command Fuzzing Tests for Generated IEC 104 Exploits38

Table 8. Double Command Fuzzing Tests for Generated IEC 104 Exploits38

Table 9. Statistics on Real Attacker Log4j Traffic ..39

Table 10. Embedded Log4j Exploits in HTTP Header Fields41

Table 11. HTTP GET URI Path Types from Live Attacks Collected on Our
Honeypot ..43

Table 12. Clusters Found in Attacks on Our Honeypot ...45

Table 13. Statistics of Live IEC 104 Traffic ..46

Table 14. Observed Frame Types of Live IEC 104 Attacks46

Table 15. Observed U-Format Frame Types of Live IEC 104 Attacks47

Table 16. Observed ASDU Container Types of Live IEC 104 Attacks47

Table 17. Observed ASDU Container Addresses of Live IEC 104 Attacks48

Table 18. Log4j Prefix Attribute Mapping. Adapted from The Apache
Software Foundation (2022). ...67

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF ACRONYMS AND ABBREVIATIONS

APCI Application Protocol Control Information
APDU Application Protocol Data Units
ASDU Application Service Data Unit
CISA Cybersecurity and Infrastructure Security Agency
CORBA Common Object Request Broker Architecture
CVE Common Vulnerabilities and Exposures
DNP3 Distributed Network Protocol 3
DNS Domain Name Server
GAN Generative Adversarial Network
HTTP Hypertext Transfer Protocol
ICS Industrial Control System
IEC 101 IEC 60870-5-101
IEC 104 IEC 60870-5-104
IEC International Electrotechnical Commission
IOA Information Object Address
IP Internet Protocol
JNDI The Java Naming and Directory Interface
LDAP Lightweight Directory Access Protocol
NIST The National Institute of Standards and Technology
OS Operating System
RDP Remote Desktop Protocol
RMI Remote Method Invocation
SCADA Supervisory Control and Data Acquisition
SQL Structured Query Language
SQLi Structured Query Language Injection
SSH Secure Shell
TCP Transmission Control Protocol
URI Uniform Resource Identifier

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

ACKNOWLEDGMENTS

I thank my family, friends, and advisors. Without your support I would not have

had the guidance, knowledge, and support needed to complete this research.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Industrial control systems (ICSs) operate critical infrastructure like gas, water, and

electric utilities, and have recently received much attention in the national cybersecurity

strategy (The White House of the U.S., 2021). ICSs have a well-documented history of

receiving serious attacks such as those on the Ukrainian infrastructure and on U.S. gas

pipelines, and several technical advisories on the CrashOverride, Shamoon, and Havex

malware campaigns against ICSs have been published (Cyber Security and Infrastructure

Security Agency [CISA], 2021a). Consistent with federal guidance, the U.S. Navy

considers critical-infrastructure security a top priority (Office of the Secretary of the Navy,

2018).

A. MOTIVATION

Originally ICSs managed physical processes locally, using a combination of

“programmable systems or devices that interact with the physical environment” called

operational technology (Joint Task Force Transformation Initiative, 2018). But as the

Internet grew, ICSs became integrated with information technology. Now about 85% of

the U.S. critical infrastructure is commercialized, which means that throughput and

availability are prioritized over confidentiality and integrity (Stouffer et al., 2015). ICSs

are also vulnerability-ridden because of the difficulty of updating them. The reduced

security of ICSs entices malicious actors and enables them to create exploits which can

affect the physical domain and safety of people. Hence, robust cybersecurity solutions are

needed to test and harden ICSs (Stouffer et al., 2015).

Security of live ICSs is difficult to test and study. One solution is to emulate them

in virtual environments, which removes the risk of harming actual services. ICS honeypots

(decoy ICS systems) could offer richer data for analysis. Honeypots can vary with how

much they interact with the attacker. A responsive and realistic ICS honeypot will likely

entice more sophisticated attackers. At NPS, previous theses explored electrical-grid ICS

honeypots and so far saw attackers favoring the Hypertext Transfer Protocol (HTTP) and

disinterested in specialized ICS protocols (Dougherty, 2020; Washofsky, 2021).

2

Without adequate data of ICS attacks on a honeypot, it is difficult to see trends in

attacker behavior and harden it against them. As a partial solution, free and commercial

vulnerability databases and open-source repositories contain datasets and network traces

to study (National Vulnerability Database [NVD], n.d.; The MITRE Corporation, 2021).

Despite such resources, vulnerability descriptions and datasets are limited in creating

exploits for testing. Expensive commercial products like Metasploit Pro and Immunity

CANVAS can provide penetration testing, but each has relatively few ICS-related attacks.

Most open-source ICS attack tools, like those in GitHub, are unfinished and unmaintained.

Even large public repositories of collected malware samples have sparse instances of ICS

malware (VirusShare, n.d.).

A challenge of cybersecurity products is readiness to handle current trends and

attacks. During this research, a new exploit targeting the Apache Log4j Library was

revealed, and it is a serious and wide-reaching exploit (FortiGuard Labs, 2022). It targets

a vulnerability in a software library for logging, a frequently used resource in many

information-technology systems and ICSs (CISA, 2021b). Also during this research, a new

variant of a known attack on the ICS protocol IEC 104 occurred which targeted the

Ukrainian power grid (Kapellmann et al., 2022). Called Industroyer2, this malware

disrupted critical infrastructure.

B. OUR APPROACH

We experimented with generating both Log4j and IEC 104 attack variants. We first

collected real Log4j and IEC 104 network traffic on our honeypot. We analyzed the

characteristics of the exploits in this traffic and compared them to traffic collected

previously. With the insights gained from these analyses, we made a honeypot suspectable

to Log4j exploits and designed a synthetic attack generator (SAGO) to study the attacks

and test the honeypot’s behavior.

C. THESIS OUTLINE

Beginning in Chapter II, this thesis explains the background information

surrounding ICSs, networking protocols, and exploit generation. Chapter III describes

previous NPS honeypot research and explains the methodology for our experiments.

3

Chapter IV discusses the experiments and the test environment. Chapter V then covers the

results and highlights key insights from the research. Finally, Chapter VI concludes with a

summary, and suggests ideas for future work.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. BACKGROUND

A. INDUSTRIAL CONTROL SYSTEM PROTOCOLS

1. Introduction

 Operating between the cyber and physical worlds, industrial control systems are

configurations of protocols, sensors, and actuators for operating critical infrastructure.

Although the United States has sixteen critical industries (CISA, 2020), The National

Institute of Standards and Technology (NIST) suggested that most critical infrastructure

relies on the electric-power transmission and distribution grid (Stouffer et al., 2015).

Furthermore, the complex requirements of this industry prevent more localized control as

by distributed control systems and programmable-logic controllers. Supervisory Control

and Data Acquisition (SCADA) systems are a subtype of ICSs that operate across

geographically dispersed areas as the controllers for the electric grid. ICS systems include

human-machine interfaces for operators to control on-site (“field”) devices like radio-

transmission units and programmable logic controllers. Although traditional ICS systems

operated on dedicated and isolated networks with limited connectivity, newer Web-based

ICS systems are on enterprise networks with connections to the Internet.

2. Network Protocols

Due to geography, infrastructure, and policies, different protocols are used in ICSs

to meet different requirements. For instance, while the United States uses the Distributed

Network Protocol 3 (DNP3) for power distribution, Western Europe and Asia

predominantly use the International Electrotechnical Commission (IEC) 60870 and 61850

standards (Falk, 2018). The DNP3 and IEC 60870 communication protocols were designed

for electric-grid SCADA systems; and IEC 61850 added capabilities absent from DNP3

and IEC 60870 (Falk, 2018). DNP3 is more complex than IEC 60870 in network

addressing, data-link communications, data objects, security, and interoperability (Clarke

et al., 2004). Due the complexity of the DNP3 and IEC 61850 protocols and the limited

availability of open-source tools for them, our research focused on IEC 60870, specifically

the IP/TCP standard of IEC 60870-5-104 also called IEC 104.

6

Although not an ICS protocol, the Hypertext Transfer Protocol (HTTP) is often

used by ICSs to provide a Web-based user interface. Also, HTTP messages are text-based

which makes it easier to test working concepts before using more complex protocols like

IEC 60870.

a. IEC 60870

Primarily used in Western Europe for energy control and distribution, IEC 60870

was developed between 1988 and 2000. The fifth section of the IEC 60870 standard

concerns sending and receiving SCADA messages. The most important aspects are the

specifications of IEC 60870-5-101 and IEC 60870-5-104, here called IEC 101 and IEC 104

respectively. IEC 104 differs from IEC 101 in transmitting over TCP/IP communications

channels rather than low-capacity localized links (Clarke et al., 2004). Importantly, IEC

60870 does not use encryption or authentication, as discussed in section II.B.1. IEC 104

Application Protocol Data Units (APDU) are included in TCP segments and transmitted

using port 2404 (Matoušek, 2017). An APDU can have a fixed or variable length

(Figure 1).

Figure 1. IEC 104 APDU Format. Source: Matoušek (2017).

7

The IEC 104 standards describe an APDU as a frame with three formats. The

formats distinguish the purpose of transmission: information transfer (I-format),

supervisory activities (S-format), and unnumbered control (U-format). A U-format frame

performs functions like testing the connection, starting and stopping data transfers, and

providing acknowledgements to other U-format frames. An S-format frame acknowledges

I-format frames received during data transfer. An I-format frame carries application-

specific data. The frame types have different control fields (Figure 2). The control fields

are part of the Application Protocol Control Information (APCI) block which is the first

six bytes of a frame.

Figure 2. IEC 104 Frame Types. Source: Matoušek (2017).

A variable-length frame has an Application Service Data Unit (ASDU) container

after the APCI block. This container is used with I-format frames and contains application

data. It has two parts, a Data Unit Identifier and Information Objects (the data). The Data

Unit Identifier tells the receiving IEC host the type of data being transmitted, the format of

the ASDU container, why it was sent, and the address (Figure 3).

8

Figure 3. IEC 104 ASDU Container’s Data Unit Identifier. Adapted from

Matoušek (2017).

The type identification gives the data types of the data in the ASDU container. The

structure qualifier (SQ) bit and number of objects indicate the format and size of the data

respectively. If set, the test bit (T) tells the IEC 104 host to ignore the data. The positive or

negative confirmation bit (P/N) indicates the execution status of a control command. The

least significant six bits in the third row (octet) represent the cause of transmission and the

type data in the ASDU container. Example causes of transmission are activation, activation

confirmation, deactivation, and deactivation confirmation.

Each IEC 104 server and client has its own addressing scheme for the originator

address and ASDU container address. The global addresses 0xFF and 0xFFFF are for

single-byte and double-byte addresses. They are only used for interrogation commands,

counter-interrogation commands, clock-synchronization commands, and reset-process

commands. ASDU containers hold Information Objects, each with two components, an

address and elements. The elements are the main data structures for passing information in

the IEC 104 protocol. Each element can only contain one data type, but each ASDU

container can hold multiple elements. Example data types are single and double commands

9

for controlling IEC devices, and short floating-point numbers for sensor values. The format

of single and double commands is in Figure 4. We refer to I-format frames containing a

single command by the name of the command.

Figure 4. IEC 104 Single and Double Command Information Element

Specifications. Adapted from Clarke et al. (2004).

b. Hypertext Transfer Protocol

HTTP uses the client-server model to send data across the World Wide Web

(Fielding et al., 1999). HTTP clients use the TCP protocol to send requests for Web pages,

while HTTP servers listen and respond. Each message has mandatory items and optional

header fields. HTTP can use transport-layer security to encrypt the traffic. HTTP requests

let clients access resources on a Web server. Each HTTP request has a first line giving the

method, Uniform Resource Identifier (URI), and version. The most common methods are

GET and POST, which fetch and act on resources respectively. An important but optional

field is the user-agent, which identifies the browser software that the client is using. HTTP

responses specify HTTP version, status code, and reason. The status code specifies the state

of the request, with common codes like 200 and 404 indicating success and resource

unavailability respectively. The reason value adds information associated with the status

code, though current browsers do not use it (Stuttard & Pinto, 2008).

10

3. Other ICS Protocols

ICS protocols designed for SCADA communication can be distinguished by their

network infrastructure (Pliatsios et al., 2020). BITBUS, Foundation Fieldbus H1,

PROFIBUS, and WorldFIP all use the Fieldbus topology, which uses a single cable to

connect devices and is quick to deploy. This contrasts with the Ethernet-based protocols

such as Modbus, Process Field Net, and SERCOS III. While Process Field Net and

SERCOS III are specialized protocols, Modbus can handle different device types and

network infrastructure (Pliatsios et al., 2020). Modbus is one of the oldest and most popular

ICS protocols (Smith, 2021).

B. PROTOCOL-BASED ATTACKS

1. IEC 104

IEC 104 is a vulnerable protocol since it does not use encryption or authentication.

So network-sniffing tools can identify the IEC 104 devices and commands sent over the

network. Attackers can also set their ASDU container’s originator address to a legitimate

device’s address and masquerade on the network since the protocol lacks authentication.

To add to their security problems, ICS devices also often have outdated software.

Reconnaissance tools like Shodan can find vulnerable and outdated ICS devices

(Matherly, 2017). Shodan is an Internet scanner which can find devices based on attributes

like IP address, port number, location, and service. For ICS devices, Shodan can read

banners to learn the manufacturer and firmware version. Shodan can quickly give attackers

a list of vulnerable IEC 104 devices.

Other popular penetration-testing tools like Nmap and Metasploit have extensions

specific to IEC 104. Nmap has a script iec-identify that uses IEC 104 frames to probe a

device for the number of information objects it has as well as its IP addresses; this allows

address identification for ICS devices that use IEC 104 (Timorin & Miller, n.d.). The

Metasploit module IEC104 Client Utility can also send commands to ICS devices using

IEC 104 (Metasploit, n.d.). Since IEC 104 frames are not authenticated, a rogue device can

spoof an IEC 104 server and send unauthorized commands to ICS field devices using this

Metasploit module.

11

To assess cyberattack risks associated with IEC 104, researchers attacked an

emulated IEC 104 network with their tools Hping, Ettercap, and OpenMuc j60870

(Radoglou-Grammatikis et al., 2019). They concluded that unauthorized access and denial-

of-service attacks were the most likely cyberattacks a system would experience, while man-

in-the-middle and traffic-analysis attacks were less likely. Their unauthorized-access

attacks exploited the IEC 104 protocol’s lack of authentication, while the other techniques

attacked the TCP/IP stack through methods like Address Resolution Protocol poisoning at

layer 2 and TCP SYN flooding at layer 4.

Another project showed that disrupting the synchronization between two IEC 104

devices can cause a denial of service (Baiocco & Wolthusen, 2018). Since IEC 104 does

not authenticate time fields, the authors could manipulate them. They used the packet-

crafting tool Ostinato to send fake Network Time Protocol packets to devices to

desynchronize them and refuse communications from each other.

Another study sought to produce reliable testbeds for ICS devices using the tools

Nmap and Ettercap to validate their design on an IEC 104 network (Maynard et al., 2018).

The researchers used the previously mentioned iec-identify Nmap script for network

discovery, port scans, and identifying IEC 104 victims. Following the scan, the authors

used Ettercap for a man-in-the-middle attack. However, these attacks could be detected by

any intrusion-detection system because they used obvious known signatures.

Another project analyzed twelve attacks on the IEC 104 protocol for creating

intrusion-detection datasets (Fundin, 2021). These included man-in-the-middle, denial-of-

service, scanning, replay, and packet-injection attacks. Eight of the twelve attacks

succeeded, and the datasets produced met functional and non-functional requirements

(Cordero et al., 2021). While the datasets are publicly available, the Python scripts for the

experiments are not. Also, access to their virtualized testing environment is limited and its

framework was updated following the publication of the research, making reproducibility

difficult.

12

2. HTTP

HTTP is also a vulnerable protocol since it is unencrypted, text-based, and widely

used for Web-based communications. Since the Web is client-focused, servers,

applications, and databases require user input, through which malicious actors can exploit

vulnerabilities (McClure et al., 2012). HTTP sees exploits like buffer overflows, cross-site

scripting, and command injections. Attacks can be remote, local, or client-side. Remote

attacks are more serious since they can affect many machines across the Internet.

Particularly relevant to this research is a recent remote attack on a commonly used

Java logging system. This attack injected commands and could compromise systems. Rated

a 10 out of 10 in severity by NIST’s National Vulnerability Database (NVD), the Apache

Log4j (also called Log4Shell) vulnerability CVE-2021-44228 quickly gained attention

(NVD, 2021). Ten days after its disclosure, the Log4j attack had been observed 350 million

times and had 1.4 times the activity volume of the major Apache Struts exploit in its first

year (FortiGuard Labs, 2022). A week following the disclosure of Log4j, the Cybersecurity

and Infrastructure Security Agency (CISA) issued an Emergency Directive for Federal

Agencies to triage their systems and report any affected systems (CISA, 2021a). As recent

as June 2022, Log4j continues to be exploited to access VMware Horizon servers (CISA,

2022b). Despite the widespread proliferation of the Java-based logging tool, no major

compromises were reported (FortiGuard Labs, 2022). Nonetheless, CISA still recommends

that organizations continue testing and hardening their devices against this exploit (CISA,

2022a).

C. ICS POWER GRID HONEYPOTS

Honeypots are security tools that gather attack data by luring attackers (Joint Task

Force Interagency Working Group, 2020). Honeypots have no purpose other than

collecting attack data. Hence inbound traffic is either administration, scanning, or

malicious activity (Ng et al., 2018). Good honeypots are deployed to get as much traffic as

possible by varying deployment type and interactivity.

Honeypots are related to other decoy technologies such as honeynets, honeyfarms,

shadow honeypots, and honeytokens (Campbell et al., 2015; Ng et al., 2018). Honeypots

13

can be low-interaction, medium-interaction, or high-interaction. High-interaction

honeypots allow real access to most of a system, and ICS high-interaction honeypots

typically include realistic sensors and processes. Deployment of high-interaction

honeypots is complex. Conversely, low-interaction honeypots simulate only the first few

steps of access to a system. So they are easier to implement, but do not fool attackers for

long.

Three honeypots used for ICS security are Conpot, GridPot, and T-Pot (Hurd and

McCarty, 2017). Conpot is a decoy ICS server that logs network traffic like HTTP and

Modbus (Rist et al., n.d.). Users can extend Conpot’s features with custom templates to

allow Conpot to log additional protocols like IEC 104. Conpot is easily deployed with the

Docker utility (Docker Inc, n.d.). Despite its low interactivity, Conpot’s modularity and

ease of use make it a useful base for honeypots like GridPot and T-Pot (Rist et al., n.d.).

Using geographically dispersed Amazon Web Servers as hosting platforms, and

validating against the scanning tools Nmap and Shodan, researchers confirmed that Conpot

could masquerade as a SCADA ICS (Jicha et al., 2016). They tested four SCADA

honeypots: Siemens S7-200, Guardian AST, IPMI, and Kampstrup Smart Meter. On an

Ubuntu OS, they found that Ubuntu runs by default many non-ICS services like Secure

Shell and Simple Mail Transfer Protocol. They recommended manually closing all but the

ICS ports to aid a honeypot’s network camouflage.

GridPot built upon Conpot to mimic an ICS managing a power grid, a desirable

target for attackers (Redwood, 2015). It used GridLab-D (Chassin et al., 2008) to simulate

a power distribution system. GridPot also used two protocols supported by Conpot: an ICS

protocol to change the state of an electric grid, and the HTTP protocol to display a webpage

with the power readings of the simulated electric grid. The primary focus of this honeypot

was capturing malicious behavior with the IEC 61850 protocol through multiple levels of

emulation (Figure 5). To add realism, it used GridLab-D to simulate electrical signals from

a power grid. Communicating with GridLab-D were simulated devices which control the

sensors and actuators. As with most ICSs, these devices and their protocols are significantly

outdated.

14

Figure 5. GridPot Simulated Electrical Grid Honeypot. Source: Redwood

(2015).

T-Pot is a suite of honeypots running on a device (Telekom Security, 2016). T-Pot

uses Docker to deploy pre-bundled containers (lightweight virtual machines) as honeypots

with little overhead. T-Pot also allows deployment of custom honeypots on cloud servers

and supports the Suricata intrusion-detection system. The honeypot’s log data and Suricata

alerts are integrated and displayed with the open-source tools Elasticsearch, Logstash, and

Kibana (also called the ELK stack). T-Pot also aggregates Internet-address reputation lists

from 45 websites to help identify IP addresses of known attackers and mass scanners.

A project examined attackers using five low-interaction honeypots of T-Pot (Ur

Rashid et al., 2019). The honeypots were Honeytrap, Conpot, RDPY, Heralding, and

Cowrie. In a Shodan scan, no OS service ports were seen open besides port 22. Despite the

relatively short duration, the study gathered unique behaviors from attackers with little

setup. T-Pot was also used in previous NPS work (Washofsky, 2021) on cloud platforms

to host virtual machines with different regional IP addresses. No significant differences

were found in attacker behavior based on the honeypot’s regional IP address. This work

did conclude that T-Pot helps the defender since it offers good logging and visualization

capabilities.

15

D. AUTOMATICALLY GENERATING EXPLOITS

In software testing and machine learning, methods have evolved to generate new

variants of attacks and exploits to test cybersecurity technology.

1. Automated Software Testing

From simple scripts to complex programs, automated testing reduces human

dependency on finding vulnerabilities and allows for frequent error checking (Black et al.,

2021). Fuzzing is a common automated testing technique which takes input and perturbs

its features to expand the number of potential tests. One project analyzed the results of

testing different open-source ICS software with fuzzed (custom-built) ICS traffic as input

(Luo et al., 2020) and found it effective at identifying bugs.

For large software suites and applications, verifying correct behavior for every

input set through automated testing is infeasible. Research suggests that exhaustive testing

is unnecessary because only a few parameters typically contribute to faulty outcomes

(Kuhn et al., 2009). Combinatorial testing focuses on testing small combinations of input

groups; this reduces the testing space to a manageable size for software with many

parameters. Such automated testing techniques help find crashes and bugs, but only

indirectly suggests whether exploits can succeed.

2. Machine-Learning Methods

Compared to traditional software testing like fuzzing, unsupervised learning

algorithms can generate more diverse tests. Two approaches in particular, generative

adversarial networks (GANs) and evolutionary algorithms, can explore beyond the

traditional testing options.

a. Generative Adversarial Networks

Generative adversarial networks have shown success in machine-learning tasks

(Hong et al., 2020). A GAN has two neural networks that are modeled as a game between

two competing players, a generator and a discriminator. While the generator creates

plausible data, the discriminator tries to distinguish it from real data. For each iteration of

16

the game, the generator and discriminator try to improve themselves using feedback from

each other. GANs have been used in testing autonomous-vehicle image recognition and

anomaly detection in intrusion-detection systems (Lin et al., 2021; Zhang et al., 2018).

GANs can be difficult to implement when there are not clear criteria for success.

b. Evolutionary Algorithms

Suggested by the Darwinian theory of evolution, evolutionary algorithms create

solutions to optimization problems by mixing up elements of successful plans (Chiong et

al., 2012). Such algorithms are modelled after the evolutionary cycle and use the features

of discovered solutions to generate new solutions. Evolutionary algorithms can generate

test cases. For our research, the problem was finding unknown vulnerabilities or behaviors

and the solutions were the input packets that produced bugs or exploits in a honeypot.

Evolutionary algorithms start with a set of randomly generated items called a

population. Further items are created from them and added to the population. Items are

rated according to a fitness function, and an evolutionary algorithm tries to find items with

high fitness ratings. New items are generated by operations called mutation and crossover

(Lobo et al., 2007). Mutation changes random features of an item based on a mutation rate

and mutation magnitude (Chiong et al., 2012; Moghadampour, 2011). Mutation rate

determines how many features are changed whereas mutation magnitude controls the

amount and direction of the variation. Crossover take two parent items and combines their

features based on the number-of-crossings hyperparameter which determines how many

features are combined. Hyperparameters specify values affecting the entire evolutionary

algorithm.

Table 1 lists the frequently used hyperparameters of evolutionary algorithms (Lobo

et al., 2007). The usual performance metrics are processor run time, similarity between

solutions across generations, and number of solutions created (Sarker & Coello, 2002; Yen

& He, 2014).

17

Table 1. Common Evolutionary Algorithm Hyperparameters

Hyperparameter
Stopping condition
Population size
Parent population size
Number of crossings
Mutation rate
Mutation magnitude

Example research used an evolutionary algorithm to generate adversarial SQL

injection (SQLi) attacks for testing Web firewalls (Appelt et al., 2018). Since a firewall

tries to stop malicious traffic at the application layer, it requires many separate tests. To

create tests, a grammar was defined for SQLi attacks. The evolutionary algorithm

implemented by the researchers decomposed previous attacks into features and created new

attacks from an attack grammar (Figure 6).

Figure 6. “Boolean” SQL Injection Attack Features. Source: Appelt et al.

(2018).

18

To store ranks of attacks, the researchers used a random-forest classifier (Géron,

2019) and estimated probabilities of whether an SQLi attack would bypass the firewall.

This algorithm only used mutations to create new attacks, no crossings because they would

create invalid parse trees for the SQLi grammar. The mutation operations were behavior-

changing, syntax-repairing, and obfuscation. Behavior changing added “AND”s, “OR”s,

semi-colons, or new SQL statements.

3. Other Test Generation Methods

Another study generated malicious Modbus packets based on Snort rules (Al-Dalky

et al., 2014). It used the Python-library tool Scapy (Biondi, 2021). Their variants were

considered successful when the generated packets triggered the same Snort rules from

which they were derived, but this created many uninteresting packets similar to the initial

population.

Another research project used a Markov model to generate ICS attacks (Choi et al.,

2021). It assigned a probability for each event in the MITRE ATT&CK matrix based on

real-world observations. The method used the probabilities to make random decisions

based on the ATT&CK matrix to create a new attack. This approach had the advantage that

attack components with higher probabilities occurred more often.

19

III. METHODOLOGY AND ATTACKS ON ICS HONEYPOTS

The common theme among the various test and attack generators is that to craft

new variants, each generator requires a starting exploit template or model. Instead of

arbitrarily choosing which attacks to generate, examining attacks observed “in-the-wild”

allows researchers to test new variants of popular attacks. Our research builds upon the

HTTP and IEC 104 honeypot frameworks of past research. For HTTP, we explored Log4j

exploits due to their popularity and their well-defined syntax. For IEC 104 attacks, we

investigated the Industroyer2 malware that targeted IEC 104 devices and attacked the

Ukrainian power grid in April 2022. To generate variants of these attacks using an

evolutionary algorithm, we defined the exploit schema, attack features, mutation operators,

crossing operators, and success criteria based on attacker behavior observed in different

datasets.

A. PREVIOUS NPS HONEYPOTS

Previous NPS honeypot research (Kendrick & Rucker, 2019) deployed the GridPot

honeypot described in section II.C. To increase interaction and attract more distinctive

attackers, GridPot was customized and improved in later work (Dougherty, 2020). While

GridPot used the IEC 61850 protocol to communicate, it could accept IEC 104 traffic from

Conpot’s server, a simpler protocol for attackers. Also, previous work added a SCADA

interface (IndigoSCADA) that allowed remote users to communicate with GridPot

(Enscada, 2022). This separate interface had a weak password and originally ran on a

Windows 8 machine with the remote desktop protocol (RDP) enabled. With these

improvements, the honeypot avoided detection from Shodan and collected a wide range of

HTTP network traffic. However, its IEC 104 server experienced little traffic, and of the

traffic that was observed, many packets were malformed (Dougherty, 2020).

Another NPS honeypot project sought to harden the Windows system which served

as the user interface for GridPot and improve the honeypot’s logging (Meier, 2022). While

it focused on the RDP remove-desktop protocol, experiments also captured Log4j attacks.

20

B. ATTACK GENERATOR

Figure 7 shows the process we followed in creating and testing exploits. The first

step of the cycle creates an initial population of a size set by a hyperparameter called

population size. The initial population for Log4j comprised exploits with one random

mutation of observed real exploits. Initial mutations were necessary because the collected

Log4j exploits had many duplicates and insufficient variety. For our fitness function we

used the observed response by a GridPot honeypot based on (Dougherty, 2020) Phase I

design to determine degree of success. We stored these success values in a random forest

to predict if a new attack variant would succeed.

Figure 7. Evolutionary Approach to Generating Exploits

More specific success criteria were defined from the attacker’s objective. The

objective of a Log4j exploit is to cause the Java application to contact a malicious server

(CISA, 2022a; Muñoz & Mirosh, 2016). So if a generated exploit caused our honeypot to

contact an external server, we said that the exploit succeeded. The objective of Industroyer2

was to disrupt power-grid operation (Kapellmann et al., 2022). So if a generated IEC 104

attack was accepted by a simulated ICS device, which in a real system could result in the

disruption of the power grid, we said that the exploit succeeded.

The hyperparameters of population size and parent population size affect the attack

exploration space so, for simplicity, we defined high, medium, and low values for testing.

For the mutation rate, we tested a range of values between 0 and 1. For the mutation

magnitude we also defined low, medium, and high values. Furthermore, we only

considered mutations that increased magnitude. Our number of crossings was proportional

21

to the mutable characteristics of the attack. We tested all values from zero to the maximum

number of mutable attack properties.

C. HTTP ATTACKS – LOG4J

When the Apache Log4j vulnerability was first announced on December 10, 2021,

one of our honeypots experienced a large increase in HTTP requests with Log4j commands

in their headers. Even as the vulnerability fixes evolved, we continued to see different

variations of the exploit. Due to the significance of the vulnerability and the many ICS

vendors reporting exposure (Kovacs, 2022), we decided to further study the related

exploits.

1. Log4j Logging Features

A vulnerability of Log4j is that it can insert values of variables into log-destination

strings, including with regular expressions as in programming languages. The syntax is

“${variable}” where the variable is replaced with its current value. To enrich log-

destination details, Log4j can also insert system and environment variables (The Apache

Software Foundation, 2022). Lookups are triggered with the syntax “prefix:attribute” or

“prefix:attribute:-default.” As an example, the string “${docker:containerId}” logs the

Docker container’s identification. The symbol “:-” specifies a default value if the requested

attribute cannot be mapped to the prefix. Lookups can be recursive which permits more

complex variable representations and mappings.

2. Exploiting Log4j

Log4j exploits target The Java Naming and Directory Interface (JNDI), which is a

interface for Java programs to retrieve objects from servers (Oracle, n.d.). The JNDI

resolves objects using naming and directory services like the Lightweight Directory Access

Protocol (LDAP), Remote Method Invocation (RMI), Domain Name Server (DNS), and

the Common Object Request Broker Architecture (CORBA). It can also retrieve compiled

Java files and execute them, an aspect that was previously documented as a vulnerability

(Muñoz & Mirosh, 2016). Furthermore, Java applications with Log4j can use JNDI in the

22

form of a JNDI lookup. This allows attackers to put JNDI command injections into fields,

like HTTP headers, that Java applications are likely to log.

Based on the Log4j exploit strings we collected on our honeypot, we decided to

generate exploits which used LDAP servers as the attack vector as they were the resource

most often exploited. The LDAP specification defines client-server interactions on X.500

data and services (Sermersheim, 2006). If an LDAP server lacks a requested object, it can

refer the requestor to a different server address that might resolve the request. Thus the

JNDI lookup can request compiled Java classes from other servers like HTTP servers

(Muñoz & Mirosh, 2016), and these could be malicious. To compromise a machine, Log4j

exploits require proper syntax, malicious servers, and a victim server that will log untrusted

user input.

Log4j exploits have a specific syntax. An exploit string is surrounded by the

property substitution symbols,”${“and “}.” Inside the curly brackets is the JNDI lookup in

the form “${jndi:service://server/Object},” where the “jndi” is the prefix, “service” is the

name of the service, “server” is either the IP address or domain name of the server and a

port number, and “Object” is the Java object of the exploit. For example,

“${jndi:ldap://192.168.1.1:1389/Exploit}” looks up the directory service LDAP for the

object “Exploit” found at 192.168.1.1 with port number 1389.

The LDAP server can redirect the JNDI lookup to another attacker-controlled

server. If it were an HTTP server, the JNDI server would then send an HTTP GET request

for “Exploit.class,” receive it in the HTTP response, and immediately execute it. Figure 8

shows the basic sequence that the JNDI follows during a Log4j exploit.

23

Figure 8. Basic Log4j Exploit Control Flow

3. Adapting Log4j Exploits for Evolutionary Algorithms

To thwart intrusion-detection systems, attackers embed lookups within other

lookups to create complex variations of Log4j exploits that avoid known signatures

(National Cyber Security Centrum, 2021). This recursive nature makes it difficult to

manually specify all possible exploits. One way to define success is the attack gaining a

shell or being able to run shell commands on the victim machine. This would require

controlling servers like the LDAP and HTTP servers in Figure 8. Instead, we followed a

simpler approach that defined a successful Log4j exploit as a string that, when logged by

a vulnerable system, caused that system to query a DNS server to resolve a domain name

that we controlled. After the victim system resolves the domain name, it could continue

communicating to the malicious LDAP and HTTP servers.

In our experiments, we used the template “${jndi:service://server/}” as the basis of

our exploit. The Log4j samples we studied used different lookup names and variations of

recursive lookups. Therefore, the features we could vary were the number of lookups per

character and the number of unique lookup names. Other features like string length, the

malicious directory, and the naming-service type were not useful to vary in the

A�acker Vic�m

Sends HTTP Request
Server logs user-agent
with Log4j

Log4j uses the Java Naming and
Directory Interface (JNDI) to send
an LDAP request

LDAP server sends a
redirect to an HTTP
server with
Exploit.class

The Java Naming and Directory
Interface sends an HTTP GET
request for Exploit.class

HTTP server sends
Exploit.class The Java Naming and Directory

Interface executes Exploit.class

24

evolutionary algorithm. We were limited in that we had to start and end with opening and

closing curly brackets and include the JNDI lookup; changing any of these characters

would break the exploit. However, if we appended certain lookup operators to characters

in the Log4j exploit string, we could get a mutated string that would still get parsed

correctly by Log4j.

D. IEC 104 ATTACKS – INDUSTROYER2

IEC 104 attacks are rarer than HTTP attacks. This could be due to rarity of IEC 104

hosts, the complexity of the protocol, or the cost associated with such attacks. We chose to

create variants of an IEC attack that was used against Ukrainian infrastructure in 2022

(Tsaraias & Speziale, 2022).

1. Industroyer2 Background

Industroyer2 appears to be a variant of those used in the CrashOverride campaign

in 2016 (Kapellmann et al., 2022). The original malware Industroyer targeted several ICS

protocols including IEC 104. It was a Windows executable that established command-and-

control connections, exploited vulnerabilities of the chosen ICS protocol, and finally erased

the machine’s data (Cherepanov, 2017). The IEC 104 part of Industroyer tried to end IEC

104 processes and manipulated the states of the discovered devices.

Industroyer was ineffective due to improper implementation of its ICS protocols

(Slowik, 2019) that caused communications to be rejected due to their failure to follow

protocol standards. Industroyer2 appears to derive from the same codebase as Industroyer

but used the IEC 104 protocol (Tsaraias & Speziale, 2022). Its most notable improvements

were sending test data using U-format frames prior starting a data transfer and using a

configuration file to customize the attacks for specific victims.

2. Synthetic Attacks Based on Industroyer2

We focused on one form of an Industroyer2 attack. After a controller was infected

with Industroyer2, the malware would eventually try to change the states of the connected

ICS devices. It first sent a U-format frame to test the connection with the victim ICS device.

If the test frame was acknowledged by the victim, it sent a start frame to begin transmitting

25

data. To get the addresses of the target’s active devices, Industroyer2 sent a general

interrogation command. Then it iterated through the available devices and used single and

double commands to turn them off or on; it knew which command type to send from the

device type. Initial analyses indicated that the devices targeted by Industroyer2 controlled

ABB Distribution Recloser Relays, and that the attackers were trying to disrupt critical

overcurrent protections (Kapellmann et al., 2022).

One project set up a sandbox with an IEC 104 server to test the malware and collect

packet captures (Hjelmvik, 2022). We used its data to establish a baseline IEC 104 attack.

The IEC 104 commands captured in (Hjelmvik, 2022) dataset were single and double

commands. To generate further attacks, we used an evolutionary algorithm to create

variations of these commands. Our template IEC 104 attack used the same frame fields as

Industroyer2, except for the bits inside the commands, the Information Object address, and

the ASDU container address. The Information Object and ASDU container addresses were

constant and did not change like Industroyer2 did. However, we did mutate the bits of the

command to create new variants. To test if those variants were successful, we sent the

attacks to GridPot. IEC 104 attacks were labelled successful if Conpot’s IEC 104 server,

running in GridPot, accepted the command. Failed attacks were the commands that caused

Conpot’s IEC 104 server to prematurely end the connection.

E. ANALYZING DATASETS

We did three analyses on four datasets (Table 2) to understand the delivery method

used by the Log4j and IEC 104 exploits observed by our honeypots. We examined the

HTTP header fields (Washofsky, Meier, and our honeypot), Log4j lookup properties

(Meier and our honeypot), and IEC 104 frame format fields (Washofsky, Hjelmvik, and

our honeypot). We used the insight gained from these analyses to craft the artificial

exploits.

26

Table 2. Datasets Used for Attack Analyses

Dataset Collection Date

HTTP
Requests
without
Log4j

HTTP
Requests

with Log4j

IEC 104
Frames

(Washofsky, 2021) May 2021 –
June 2021 5673 140

Our honeypot November 2021
– January 2022 7861 102 112

(Meier, 2022) March 2022 –
April 2022 4679 16

(Hjelmvik, 2022) April 2022 28

The Log4j analysis studied which header fields the attackers used and the format

of the Log4j exploit strings, whereas the IEC 104 analysis studied what attacks we received

and how they differed from legitimate IEC 104 traffic.

27

IV. EXPERIMENTS

To test generated Log4j attacks, we needed to construct an ICS honeypot that was

vulnerable to Log4j exploits and had a feedback mechanism that our attack generator could

use to determine the success or failure of the attacks. To test the IEC 104 attacks, we used

the logs already produced by the ICS honeypot to classify attacks as successful.

A. EXPERIMENT TESTBED

We used two Debian Linux virtual machines on a DigitalOcean cloud platform for

the attacker and victim systems (Figure 9). The victim machine ran T-Pot with GridPot as

one of its Docker containers. The attacker machine sent Log4j and IEC 104 attacks to the

Conpot servers of GridPot. These attacks were generated and sent by a Python script on

the attacker’s machine.

We configured the DigitalOcean firewalls for each system to meet our experiment’s

requirements. For inbound and outbound traffic between the attacker and victim systems,

we accepted the port numbers 80 (HTTP), 2404 (IEC 104), and 22 (SSH) through the

firewall. SSH was permitted to allow the retrieval of log data. Outbound traffic from the

victim machine on port number 53 was also allowed because we used DNS queries as the

success indicator for Log4j exploits.

We made several adjustments to the victim system to log our Log4j exploits.

GridPot and Conpot do not natively use Log4j. Since Conpot logs all HTTP requests, we

built a custom Java application Conpot Log4j Handler, discussed in Section C.2, to read

input from the Conpot log. This application did pattern matching to find and print user-

agent key-value pairs. If the exploit text was well-formed, the Conpot Log4j Handler would

perform an outbound JNDI lookup and DNS request as discussed in Section III.C.3.

The attack generator captured DNS queries by sending SSH commands over port

22 to run Tcpdump on the victim machine (Figure 9). Tcpdump listened on port number 53

and wrote to a DNS log. To correlate the Log4j exploits with DNS queries, the attack

generator retrieved the DNS log using SSH over port number 22. General setup is in

Appendix A.

28

Figure 9. Design for Log4j and IEC 104 Exploit Generation Experiments

For IEC 104, we developed a mechanism for checking the success of the generated

attack. Ideally our attacks would go to the Conpot IEC 104 server in GridPot and GridPot

would send them to GridLab-D using port number 6267. However, our GridPot

implementation only allowed read-only requests. Instead, we checked for the IEC 104

commands that the attack generator sent in the Conpot log, which also logged all IEC 104

frames. Some commands that used non-implemented or undefined bits caused the Conpot

IEC 104 server to end the connection without writing to the Conpot log. Hence, we could

tell that a command succeeded if there was a log entry for that command. After sending all

the attacks over port 2404 to the Conpot IEC 104 server, the attack generator used SSH

over port number 22 to retrieve the Conpot log, and then correlated the log entries with the

IEC 104 attacks.

B. ATTACK ANALYSIS

We analyzed the datasets described in Section III.E before implementing our

evolutionary algorithm. We wanted our generated attacks to be consistent with observed

Conpot Log

Linux

Vic�m Cloud Pla�orm

T-Pot Applica�on

GridPot Container

Conpot GridLab-D

A�acker Cloud Pla�orm
Linux

A�ack
Generator

Conpot
Log4j

Handler

TCP 80

TCP 2404

TCP 22

DNS
Resolver

tcpdump

DNS Log

UDP 53TCP 22

Target ICS Network
Tool

Power-grid
Simula�on
So�ware

Python
A�ack
Script

Log
Storage

Custom
Logging

Tool

Honeypot External
Host

DigitalOcean
Firewall

TCP 6267

29

attack traffic. We used the Scapy Library to parse TCP sessions in each packet capture

(Biondi, 2021). We also used WEKA’s machine learning application to implement K-

Means clustering (Witten, 2017). Our analysis on these clusters is in Appendix B. For the

clustering features we used the packet’s IP address and the HTTP headers. To identify

traffic from non-malicious Internet scanners like Shodan, we used the Internet-scanner list

in Maltrail, an intrusion-detection system (Stampar & Kasimov, 2022). We also ran our

packets through Suricata to classify the severity and alert type of the HTTP request.

The HTTP features we extracted were the request method, the version number, and

the number of headers in the URI. We also extract secondary metrics such as the length

and number of special characters of an URI that could indicate a fuzzing attempt, and the

file type that could indicate the attacker’s intention. We also defined features associated

with Internet scanners such as resources that Shodan typically requests like “/,”

“/index.html,” “robots.txt,” “/.well-known/security.txt,” “/sitemap.xml” and “favicon.ico.”

Our Log4j analysis focused on several features of each exploit like the HTTP

header fields and Log4j attributes like lookups functions. We used Scapy to extract HTTP

packets and find those which had Log4j strings in their header fields. We confirmed the

number of Log4j exploits with Wireshark before header extraction and data processing.

For the IEC 104 datasets the high rate of malformed frames seen by the NPS

honeypots made validation with Wireshark harder. For example, if a packet was sent to

port number 2404 with a byte value of 0x68, the IEC 104 start byte, Wireshark interpreted

it as a corrupt IEC 104 packet. However, this often was data for a different protocol.

Nonetheless, we did extract some syntactically correct IEC 104 packets and examined their

frame attributes.

C. LOG4J EXPLOIT GENERATION

1. Generating Log4j Exploits

The design of our Log4j exploits was based on the Log4j syntax and the

components required for a Log4j exploit from Section III.C.3 (Figure 10). Here the

“template Log4j exploit string” is a generic Log4j exploit like those described in Section

III.C, whereas the “attack generator Log4j exploit schema” was an exploit with an instance

30

identifier in the command-and-control server position to allow the attack generator to

correlate attack data. We used the “${“ and “}” characters because they delimited a Log4j

lookup. For the malicious server that JNDI contacted, we used “ldap:” because most

exploits we saw used it as the attack vector. We used a Log4j attack-instance identifier in

place of the command-and-control server address to force the JNDI to perform a DNS

query. Note that the part of the URI indicating the location of the malicious binary is unused

in DNS queries, so we omitted it.

Figure 10. Log4j Exploit Schema

When the vulnerable Java program logged the Log4j exploit string, the Log4j parser

would try to resolve all the lookups. If the parser resolved the exploit’s characters back to

“jndi:ldap://,” then the Java program would query a DNS server for the IP address

associated with the exploit’s instance identifier. We considered this a successful exploit as

explained in Section III.B.

For our single mutation operation, we encapsulated one of the Log4j exploit

characters “jndi:ldap://” inside a lookup. An example mutation on the Log4j exploit

character “j” was “${env::-j}.” The environment lookup’s key, an empty string between

the two colons, was not a valid environmental variable, and forced the lookup to default to

the character “j.” Lookup operations, and therefore mutation operations, were recursive so

${jndi:ldap:// gen-0-test-0/}

${jndi:ldap://192.168.1.1:1389/Exploit}
Template Log4j Exploit String

Attack Generator Log4j Exploit Schema

Log4j Lookup Delimiters Characters for muta�on
and crossing

Command-and-Control
Server / Instance ID

Malicious Object (not
necessary in our schema)

31

“${env::-${env::-j}}” also returned the character “j.” If the Log4j parser did not resolve

the exploit back to “jndi:ldap://,” then the JNDI lookup would ignore the string entirely

and the exploit would fail. Appendix C lists all 21 lookup names we used in experiments.

For the attributes we either used the “NaN” string or the empty string for every lookup to

force a default lookup

In doing mutation on all the characters, if a randomly generated number between 0

and 1 exceeded a threshold probability established by the mutation rate hyperparameter,

the character was mutated by applying a lookup to it. All lookup names were equally likely.

The mutation-magnitude hyperparameter determined how many successive lookups were

applied. For example, if the character “j” was selected for mutation and the mutation

magnitude was 2, a possible outcome could be “${env::-${env::-j}}” with two lookups.

Our crossover operation exchanged lookups between the Log4j exploit characters. For

example, given two parent Log4j exploit strings, “${{env::-j}ndi:ldap://}” and

“${jndi:${sys::-l}dap://},” with the number of crossings set to two and the “j” and “l”

characters selected to cross, the result would be “${{env::-j}ndi:${sys::-l}dap://}.”

The attack generator initialized a population of artificial Logj4 exploits of count

determined by the target population size. Each exploit was a base Log4j exploit string

“jndi:ldap://” with one random lookup applied. The attack generator then sent an SSH

command to start Tcpdump on the victim machine with Tcpdump’s standard terminal

output directed to a DNS log file. It then sent Log4j exploit strings in the user-agent header

fields of HTTP requests to the Conpot HTTP server using the Python 3 Requests library

(Reitz, 2022). It then sent another SSH command to stop Tcpdump and retrieve the DNS

log.

The retrieved DNS log reported every successful exploit. The attack generator

could correlate success in the DNS log to the Log4j exploits using the instance identifiers.

We sampled 75 percent of the generated Log4j exploits and trained a random-forest

classifier. We used the Python Scikit-Learn implementation of a random forest and their

library function train_test_split, which defaults to sampling 75 percent of the input data, to

get our training and test sets (Géron, 2019). The probability predicted by the random forest

classifier is the likelihood of being a successful exploit. The next population was based on

32

the exploits with highest probabilities of success, as predicted by the random forest, and

was created by selecting the top k exploits, where k is the parent population size. For our

evolutionary algorithm on generated Log4j exploits, we used the hyperparameters in

Table 3.

Table 3. Hyperparameter Combinations Used in Experiments of the Attack
Generator for Log4j Exploits

Stopping
Condition

(Max
Generations)

Parent
Population

Size

Population
Size

Number
of

Crossings

Mutation
Rate

Mutation
Magnitude

[5, 10, 20] 10 20 6 0.50 1
10 [5, 10, 20] 20 6 0.50 1
10 10 [10, 20, 40] 6 0.50 1
10 10 20 [0...12] 0.50 1
10 10 20 6 [0.00,

0.10,
...

1.00]

1

10 10 20 6 0.50 [1, 2, 3]

2. Implementing the Conpot Log4j Handler

Our GridPot honeypot was running when the Log4j vulnerability was revealed on

December 10, 2021, and caught interesting initial Log4j attack traffic. Following

disclosure, we patched our environments to block Log4j exploits. Maintainers of Elastic

Stack and T-Pot, two products we depended on, immediately patched the vulnerability.

GridPot is not maintained, but we found no instances of the Log4j dependency when we

manually searched its code.

We mimicked a vulnerable server to test our generated Log4j exploits. Since the

exploits use remote code execution, we used a blacklist to avoid attempts at remote

execution on our testbeds. Since the implementation of T-Pot lacks a Log4j interface, we

put wrappers around the interfaces of our honeypot to simulate a vulnerable server, since

as mentioned in Section III.C, developers often use Log4j in their servers to log headers of

33

requests. Conpot does not use Log4j to log HTTP request headers either, so we used the

Linux tail command to send the most recent entries of the Conpot log to our Conpot Log4j

handler, a Java application that uses the Log4j logger (Figure 11).

Figure 11. Our Technique for Logging with Log4j.

We used a version of Java vulnerable to Log4j exploits to compile and run our Java

program. The program takes the Conpot Log as input and pattern matches for user-agent

strings; if one is found, it logs it using Log4j. A successful exploit sent to the Conpot HTTP

server would get logged by Conpot and our Java program, resulting in the Java program

performing a DNS query specific to the particular Log4j exploit.

3. Prototyping Log4j Exploits

To confirm we could recognize successful Log4j exploits, we created a test Java

program that logs five strings using Log4j. Three of those strings were valid Log4j exploit

strings. Figure 12 shows the console output produced by the Java program as recorded by

TShark, a Wireshark variant. The middle three entries refer to the LDAP, DNS, and RMI

directory and naming services discussed in Section III.C.2; all three successfully caused

the Java program to query a DNS server.

Figure 12. Console Output of the Test Java Program

34

In Wireshark output we could check if our exploit strings resulted in DNS queries

(Figure 13). The “Hello Exploit” string did not cause a DNS query and neither did the

exploit string with the HTTP substring; HTTP, in this case, was not a malicious server as

described in Section III.C.2.

Figure 13. Wireshark Displaying the Result of the Log4j Exploit Strings

Logged in Figure 12

D. IEC 104 ATTACK GENERATION

1. Generating IEC 104 Attacks

We modelled our IEC 104 attacks on Industroyer2’s IEC 104 traffic. This malware

sent single and double commands to query a simulated industrial process. The commands

are represented by 8 bits following the specifications described in Section II.A.2.a. Since

each bit in the command signified different features, we used the bits as the features of our

IEC 104 attack. To send these commands, we used I-format frames with the properties in

Table 4. The type identifiers 45 and 46 specify single and double commands. Since we

only sent one frame, the “structure qualifier” was zero and the “number of objects” was

one. Also, we did not need command confirmation frames, an originator address, or a

testing mode. We chose a “cause-of-transmission” value of “activation” and used GridPot’s

default values for the “ASDU address fields” and “information object address” fields.

35

Table 4. I-Format Frame ASDU Container Field Values

ASDU Container Fields Single Command Attacks Double Command Attacks
Type identification 45 46
Structure qualifier 0 0
Number of objects 1 1
Test bit 0 0
Positive/Negative
confirmation 0 0

Cause of transmission Activation Activation
Originator address 0 0
ASDU address fields GridPot’s default value GridPot’s default value
Information object address GridPot’s default value GridPot’s default value
Information Element Single command Double command

Since we only manipulated eight bits of the command field, fewer variants were

possible for the IEC 104 attacks than for Log4j exploits. Crossover operations randomly

selected bits and swapped their corresponding values. Mutation toggled the value of one

random bit in the command, so the mutation-magnitude hyperparameter did not apply.

An example crossover operation involving double command data is in Figure 14

using the specification for double commands in Figure 4. Figure 15 shows an example

mutation.

Figure 14. Example IEC 104 Crossing Operation

36

Figure 15. Example IEC 104 Mutation Operation

After creating the first population, the attack generator sent the attacks to the

Conpot IEC 104 server using Scapy. The attack generator used SSH to get the Conpot log

and correlate the entries with the attacks. If an attack was not found in the log, its data

transfer was prematurely ended, and this was considered a failed attack as described in

Section III.B.

The fitness evaluation and selection steps of the IEC 104 attack generator were the

same as the Log4j implementation using a random-forest classifier. We used the

hyperparameters in Table 5 for testing the IEC 104 attack creation.

Table 5. Hyperparameter Combinations Used in Experiments of the Attack
Generator for IEC 104 Attacks

Stopping Condition
(Max Generations)

Parent
Population

Size

Population
Size

Number of
Crossings

Mutation
Rate

[5, 10, 20] 10 20 4 0.50
10 [5, 10, 20] 20 4 0.50
10 10 [10, 20, 40] 4 0.50
10 10 20 [0...8] 0.50
10 10 20 4 [0.00,

0.10,
...

1.00]

37

2. IEC 104 Experiments

As we tested double commands, sometimes the Conpot IEC 104 server abruptly

ended the TCP connection before the attack generator sent the stop-data-transmission U-

format frame. This behavior was caused by sending a double command with the qualifier

field of zero, corresponding to “no additional definition” in the specification. The Conpot

log lacked entries to show why the error occurred. In a similar situation we tested different

cause-of-transmission values with double commands. According to the specification,

double commands can have the values in Table 6.

Table 6. Double Command Cause-of-Transmission Values. Adapted from
Matoušek (2017).

However, transmission values other than six, eight, and ten caused the Conpot IEC

104 server to stop the transmission and write a log entry. Since codes seven and nine are

acknowledgements and should be sent by the server, not the client, the Conpot IEC 104

server treated the requests as invalid. Apparently the remaining four codes are not

supported by the Conpot IEC 104 server and it rejects the request. Since each configuration

of bits produced a different response from the Conpot IEC 104 server, we decided to use

its response to determine success as described in Section III.B. The other observation we

made was that command types sent to inconsistent-type objects were ignored and produced

no observable response from the Conpot IEC 104 server.

38

Another experiment fuzzed the bits of a command type. Commands were sent to

GridPot to observe its handling of reserved and undefined values. For single commands,

we tested combinations of the bit values in the Single Command State bit, the undefined

bit, the qualifier bits, and the select or execute bit (Figure 4). The test cases are in Table 7.

For double commands, we tested the state bits, the qualifier bits, and the select or execute

bit. The test cases are in Table 8.

Table 7. Single Command Fuzzing Tests for Generated IEC 104 Exploits

Test ID Single Command State
Value

Undefined Bit
Value

Qualifier
Value

Select/
Execute
Value

 SC1 0, 1 0 1 0
SC2 0 0, 1 1 0
SC3 0 0 0, 1, 2, 3,

4, 9, 16 0

SC4 0 0 1 0, 1

Table 8. Double Command Fuzzing Tests for Generated IEC 104 Exploits

Test ID Double Command State
Value Qualifier Value Select/Execute

Value
DC1 0, 1, 2, 3 1 0

DC2 0 0, 1, 2, 3, 4, 9,
16 0

DC3 0 1 0, 1

39

V. RESULTS

A. DATASET ANALYSIS

1. Analysis of HTTP and Log4j in Live Traffic

Initial analysis used two datasets, collected over different periods, of Log4j exploits

from live attacks. We also analyzed more-general HTTP attacks to understand attacker

patterns and how our attack generator could mimic these trends while sending Log4j

exploits.

While collecting live attack traffic with our honeypot from November 30 to January

17, 2022, we observed 102 HTTP requests with Log4j exploits embedded in their headers.

This activity originated from 30 unique sources and represented 1.3% of the honeypot’s

overall HTTP requests. From March 15 to April 12, 2022, Log4j exploit attempts reported

in (Meier, 2022) were only 0.06% of the HTTP requests; these requests came from two

countries and five IP addresses. Table 9 summarizes the overall traffic statistics for the

subset of Log4j samples in each packet capture.

Table 9. Statistics on Real Attacker Log4j Traffic

 Our Honeypot (Meier, 2022)
Experiment 4

Dates of collection November 30, 2021 –
January 17, 2022

March 15, 2022 –
April 12, 2022

Number of unique countries 14 2
Number of unique IP addresses 30 5
Total Log4j exploit attempts 102 16
Percentage of Log4j exploit attempts
per HTTP Request 0.013 0.0006

Attackers put Log4j exploits in the header fields that they believed were the most

likely to get logged. Attackers sent 98 HTTP GET requests compared to only four POST

requests during our honeypot’s collection dates. The user-agent header was the most

popular, as it was used in 73 of the HTTP attacks, of which 21 had the user-agent header

40

as the only location of the Log4j exploit string. Using only one header field for the exploit

occurred in 42% of the attempts (Figure 16). As a result, our generated Log4j exploits were

put exclusively in the user-agent field when we sent our HTTP GET requests. 66% of the

HTTP requests only had one variation of the exploit in the headers. Our generator did not

put exploits into more than one header field since our Conpot Log4j Handler logged every

user-agent field of an HTTP request.

Figure 16. The Number of Log4j Exploit Strings per HTTP Request

In total, 263 exploit strings appeared in the 118 HTTP requests from all live traffic

captured in our honeypot and (Meier, 2022) Experiment 4 (Table 10). 245 exploits tried to

call an LDAP server, and 18 called a DNS server. We found eight variations of the LDAP

exploit with different combinations of lookups (lower-case, environment-variable, and

empty-string) to obfuscate the string. The Log4j exploit strings that used DNS as the

callback server originated from two scanners, Scanworld and Securityscan. We identified

them as scanners because they included their name in the resource substring of the URI.

Scanworld used no lookups but just the string “jndi:dns://,” while Securityscan used one

lookup, “${::-j}ndi://dns://.” Since these DNS variants were not malicious, we chose the

41

LDAP protocol for the target server of generated exploits because we had more diversity

to draw upon when creating Logj4 exploits.

Table 10. Embedded Log4j Exploits in HTTP Header Fields

Callback
Server

Strings
without
Lookups

Strings
with

Lookups
Total

LDAP 104 141 245
DNS 2 16 18
Total 106 157 263

To see if attackers obscured their Log4j code after the vulnerability disclosure, we

graphed the lookup complexity over time (Figure 17). Results were inconclusive. Many

attackers used exploits without additional lookups even though Snort intrusion-detection

rules were provided for these immediately.

Figure 17. The Number of Log4j Lookups in the Exploit String over Time

Four months later in the (Meier, 2022) Experiment 4 dataset, all Log4j exploit

strings used five lookups based on two variants:

42

• “${${env:BARFOO:-j}ndi${env:BARFOO:-:}${env:BARFOO:-

l}dap${env:BARFOO:-:}//” and

• “${${env:NaN:-j}ndi${env:NaN:-:}${env:NaN:-l}dap${env:NaN:- :}//.”

In this data the attackers used the environmental lookup “env” with the values

“BARFOO” and “NaN.” Since “NaN” and “BARFOO” are undefined with environment

lookup, the default lookup operator “:-” will cause the lookup to resolve to the Log4j

exploit character.

HTTP requests with Log4j exploits made up less than one percent of the total HTTP

traffic. We studied the remaining HTTP traffic to understand its statistics. Of our

honeypot’s collected HTTP requests, GET and POST requests were 72 percent and 26

percent of the methods respectively, while the HEAD, CONNECT, and OPTIONS HTTP

methods were two percent of the remaining traffic. We also categorized the path types used

in the HTTP URI path (Table 11). All these categories can use Log4j exploits in their

header fields. For our Log4j exploits we chose “/” as our URI path since it was the most

requested.

43

Table 11. HTTP GET URI Path Types from Live Attacks Collected on Our
Honeypot

Path Instances
HTTP data 48 days
/ 2527 (34.6%)
Index.html 797 (10.9%)
Category: PHP 1215 (16.6%)
Category: SQL 0 (0.0%)
Category: Crawler 1040 (14.2%)
Category: .xml 142 (1.9%)
Category: Shell commands 18 (0.2%)
Category: JSON 12 (0.2%)
Category: Top-level folders 701 (9.6%)
Category: Files 18 (0.2%)
Category: JavaScript 90 (1.2%)
Category: Other .env 213 (2.9%)
Other 530 (7.2%)
Total 7303

With Suricata in offline mode, we used the real-attack packet captures from our

honeypot to assess the top Suricata alerts over time (Figure 18). “Attempted administrator

privilege gain” occurred mostly with Log4j exploits in the beginning of the capture. Later

alerts in this category were from an attack that used HTTP POST requests with a URI of

“/HNAP1.” The network-scanning alerts were caused by specific user-agent strings; the

top scanners were the user-agents of “Mozilla/5.0 zgrab/0.x” and “masscan.” Another

category “network trojans” was linked to HTTP GET requests that used URIs like

“/w00tw00t.at.blackhats.romanian.anti-sec:),” “/phpMyAdmin/scripts/setup.php” and

“/Autodiscover/Autodiscover.xml.” “Web application attacks” comprised “/HNAP1”

POST requests and variants of HTTP GET requests with “/cgi-bin/” as the URI. The

Suricata ruleset classified “/HNAP1” as both “Web application attack” and “attempted

administrator privilege gain.” While the Log4j exploits made up less than one percent of

the real attacker traffic, the Suricata alerts did distinguish the Log4j exploits from other

attacks.

44

Figure 18. The Top Suricata Alerts of Real Attack Traffic on Our Honeypot

We also clustered the HTTP request method, HTTP path attributes, DNS A records,

and Suricata alert categories using K-Means clustering. Four clusters appeared to represent

the data the best (Appendix B). The most distinctive features of the clusters that WEKA

created are in Table 12.

45

Table 12. Clusters Found in Attacks on Our Honeypot

Cluster Percentage Centroid Key Features

0 1341 (18%)

Method = GET
Default Web request (“/” or “/index.html”)
Extension Type = Web Extensions
Path Length = 18.23

1 915 (12%)
Method = POST
Extension Type = Web Extensions
Path Length = 15.94

2 4091 (55%)

Method = GET
Default Web request (“/” or “/index.html”)
Extension Type = None
Path Length = 11.34

3 1029 (14%)
Method = POST
Extension Type = None
Path Length = 6.03

2. Analysis of IEC 104 Traffic

We had two datasets of real IEC 104 traffic on GridPot, our honeypot and

(Washofsky, 2021) Experiment 4. The overall statistics are displayed in Table 13. Although

our honeypot received less malformed frames than (Washofsky, 2021) Experiment 4, our

well-formed frames were too few to use as a baseline IEC 104 attack. As a workaround,

we studied another researcher’s packet capture of Industroyer2’s IEC 104 traffic

(Hjelmvik, 2022).

46

Table 13. Statistics of Live IEC 104 Traffic

 (Washofsky, 2021)
Experiment 4

Our
Honeypot

Number of unique countries 8 15
Number of unique IP addresses 45 108
Mean unique IP addresses per day 1.45 2.22
Total IEC 104 frames 140 112
Total IEC 104 malformed frames 104 15
Total IEC 104 valid frames 36 97
Mean valid IEC 104 frames per day 3.6 2.02
Min valid IEC 104 frames requests per day 1 0
Max valid IEC 104 frames request per day 9 18

Industroyer2 sent S-format frames while the attacks on our GridPot did not see

them (Table 14). U-format frames start and end the data transfer of I-format frames, so a

large ratio of I-format frames to U-format frames indicated successful data flow setup and

larger information transfers. The Industroyer2 ratio of I-format frames to U-format frames

was significantly higher than the other two datasets, which meant that it involved more IEC

104 data. Traffic on GridPot also lacked the stop-data-transfer U-format frame (Table 15).

This means that the connection was either ended by GridPot or the attacker did not send a

stop-data-transfer frame.

Table 14. Observed Frame Types of Live IEC 104 Attacks

 (Washofsky, 2021) Our Honeypot Industroyer2
U-Format Frame 26 64 3
I-Format Frame 10 33 17
S-Format Frame 0 0 18
Error Frames 104 15 0
Total Frames 140 112 28

47

Table 15. Observed U-Format Frame Types of Live IEC 104 Attacks

(Washofsky,

2021)
Experiment 4

Our
Honeypot Industroyer2

Test Frame Activation 12 25 1
Start Data Transfer Activation 8 28 1
Start Data Transfer Confirmation 2 7 1
Stop Data Transfer Activation 0 0 1
Stop Data Transfer Confirmation 0 0 1

We observed relatively few data types in the ASDU container of the frame (Table

16). The attacks on GridPot were mostly general interrogation commands suggesting

reconnaissance. The Industroyer2 sample on the other hand targeted objects that processed

double commands.

Table 16. Observed ASDU Container Types of Live IEC 104 Attacks

 (Washofsky, 2021)
Experiment 4 Our Honeypot Industroyer2

General interrogation 7 16 1
Double command 0 0 16
Undefined 4 11 0

We collected a variety of ASDU container addresses (Figure 17). GridPot would

only accept its specific ASDU container address and the global address. The researcher

that created the Industroyer2 sample set up the victim ASDU container address as “1.” In

our honeypot’s data, all object addresses were ‘0’ and since GridPot does not support

objects with an address ‘0’, these frames were ignored. With Industroyer 2, instead of

sending a general interrogation command to all ASDU container addresses, it used the

address of “1” since the attacker knew it in advance. We saw that Industroyer2 iterated

through each address in the range 1251 to 1265 and sent them double commands. We

developed our IEC 104 attack based on Industroyer2’s IEC 104 attack pattern (Section

III.D.2).

48

Table 17. Observed ASDU Container Addresses of Live IEC 104 Attacks

 (Washofsky, 2021)
Experiment 4 Our Honeypot Industroyer2

None 4 11 0
1 0 0 17
65535 (Global Address) 7 16 0

B. ATTACK GENERATION RESULTS

1. Log4j Exploit Results

Though later generations create more exploits, we saw that the success rate of our

generated Log4j exploits slowed by ten generations (Figure 19).

Figure 19. Successful Log4j Exploits over Generations with Population Size

20, Parent Population Size 10, Number of Crossings 6, Mutation Rate
0.50, and Mutation Magnitude 1

49

Figure 20 shows the cumulative number of exploits discovered at each generation.

The lowest population size of ten, during generations five to nine, caused the attack

generator to find successful attacks more slowly while the performance with the higher

sizes varied.

Figure 20. Cumulative Percentage of Successful Log4j Exploits with Parent

Population Size 10, Number of Crossings 6, Mutation Rate 0.50, and
Mutation Magnitude 1

50

Varying the parent population size had little effect on discovery of exploits

(Figure 21).

Figure 21. Successful Log4j Exploits with Population Size 20, Number of

Crossings 6, Mutation Rate 0.50, and Mutation Magnitude 1

51

Varying the number of crossings had little effect on the overall attack success

(Figure 22).

Figure 22. Variations of Number of Crossings and Their Impact on Creating

Successful Log4j Exploits with Population Size 20, Parent Population Size
10, Mutation Rate 0.50, Mutation Magnitude 1, and Maximum

Generations 10

52

We also tested several mutation rates (Figure 23). The attack generator performed

better with lower mutation rates.

Figure 23. Log4j Successful Exploits When Varying Mutation Rate with

Population Size 20, Parent Population Size 10, Number of Crossings 6,
and Mutation Magnitude 1

53

When plotting the overall percentage of successful exploits after ten generations,

we discovered that a mutation rate of 0.20 had about a 70 percent success rate which

appeared to be the best (Figure 24).

Figure 24. Successful Log4j Exploits Versus Mutation Rate with Population

Size 20, Parent Population Size 10, Number of Crossings 6, and Mutation
Magnitude 1

54

We analyzed the impact that mutation magnitude had on the cumulative percent of

successful Log4j exploits (Figure 25). Higher magnitudes meant finding exploits quicker.

Figure 25. Cumulative Percentage of Successful Log4j Exploits with

Population Size 20, Parent Population Size 10, Number of Crossings 6,
and Mutation Rate 0.50

2. Synthetic IEC 104 Attack Results

We first performed the fuzzing tests described in Section IV.D.2. Our resulted

showed that GridPot ended IEC 104 data transfer when sent frames did not follow IEC 104

standards or were reserved for future use. Furthermore, we found that single commands

were ignored by GridPot, so we only generated double commands with the attack

generator.

When running the attack generator we expected most attacks to be discovered in

the early generations. In Figure 26, we found after twenty generations, the cumulative

percentage of successful attacks was about thirty percent. Also, the rate of discovering new

attacks had not flattened at twenty generations like the Log4j attack rate.

55

Figure 26. Successful IEC 104 Attacks Discovered Versus Generations with

Population Size 20, Parent Population Size 10, Number of Crossings 4,
and Mutation Rate 0.50

We observed that by the fourth generation, an experiment with a population size of

forty found roughly half of its total successful attacks. As we expected, specifying more

attacks per generation caused a faster discovery rate.

Figure 27. Cumulative Percentage of Successful IEC 104 Attacks per

Generation with Parent Population Size 10, Number of Crossings 4, and
Mutation Rate 0.50

56

We also studied the effect of parent population size on success and found that the

low and high values ended with a cumulative success rate around 30 percent while the

middle value ended at forty percent (Figure 28).

Figure 28. Successful IEC 104 Attacks with Population Size 20, Number of

Crossings 4, and Mutation Rate 0.50

57

We ran nine experiments, one for each possible number of crossings value, and

plotted their overall success percentage at the maximum generation. Figure 29 shows the

differences between experiments.

Figure 29. Successful IEC 104 Attacks Versus the Number of Crossings with

Population Size 20, Parent Population Size 10, Mutation Rate 0.50, and
Max Generations 10

58

We saw that mutation rates other than 0 or 1 were the best for IEC 104 attacks

(Figure 30).

Figure 30. Successful IEC 104 Attacks Versus Generations with Population

Size 20, Parent Population Size 10, and Number of Crossings 4

59

C. DISCUSSION

Overall, we found that the population sizes should be kept high as it gives the attack

generator more chances to find successful attacks, whereas initial population sizes were

less important. The number of crossings for each attack also had little effect on the success

of new attacks. We also found that more successful attacks came from experiments with

mutation rates between 0.10 and 0.40 for Log4j and between 0.50 and 0.80 for IEC 104.

Though mutation magnitude only applied to Log4j attack generation, it should be set at its

lowest value of one, since too much variation hindered finding successful attacks. Our

highest success rates occurred when the attack generator used mutation rates of 0.20 for

Log4j and 0.50 for IEC 104. In those experiments the Log4j exploits were 70 percent

successful and the IEC 104 attacks were 40 percent successful. Also, our synthetic Log4j

traffic was more diverse than the live exploits collected from our honeypot. Out of the 263

exploit strings of live Log4j attacks, there were only nine unique variations of lookups, but

our attack generator for Log4j produced over 5,200 unique variations of the exploit. For

IEC 104, the attack generator found all 256 variations of the 8-bit double command.

60

THIS PAGE INTENTIONALLY LEFT BLANK

61

VI. CONCLUSIONS

Our attack generator can generate Log4j exploits similar to those observed in real

attacks, and it can generate IEC 104 attacks similar to those of the Industroyer2 malware.

Our results also suggest that the most influential hyperparameters were the population size

and mutation rate; larger populations enabled more variations to get tested, and mutation

rate controlled attack diversity. Mutation rates had an optimum value not at an extreme of

0 or 1. For Log4j exploit generation, lower mutation rates were preferable, while with IEC

104 exploit generation, the opposite was true. The most successful attacks in our tests were

70 percent for Log4j exploits and 40 percent for IEC 104 attacks.

The attack generator’s design can adapt to many other kinds of exploits. The

synthetic attacks could be used to test intrusion-detection rules and firewalls. To create

more interesting IEC 104 attacks, our GridPot honeypot can be modified to provide an

interface between the IEC 104 server and a simulated power grid that allows the attack

generator to correlate successful IEC 104 attacks with changes in the power grid readings.

Also, many hyperparameter values and implementations of evolutionary operations were

unexplored in our attack generator, and they could affect attack creation to create more

successful or more diverse and attacks.

62

THIS PAGE INTENTIONALLY LEFT BLANK

63

APPENDIX A. TESTBED SETUP

The following instructions setup the victim and attacker systems described in

Figure 9.

Victim System Setup

1. Install T-Pot and GridPot. Follow the steps from (Washofsky, 2021)

Appendix A to install T-Pot. This installation also covers how to install

the GridPot from (Dougherty, 2020) as one of T-Pot’s Docker containers.

2. Install a vulnerable version of Java. For our testbed we downloaded the

Java SE Development Kit 8u181 for Linux x64 from Java’s archive

downloads. Add the Java Development Kit bin folder to your PATH.

3. Install a vulnerable version of Log4j. We found an older version of Log4j

at an Apache archive site: https://archive.apache.org/dist/logging/log4j/.

We downloaded and installed version 2.14.1. We followed the directions

from https://www.tutorialspoint.com/log4j/log4j_installation.htm.

4. Install Tcpdump. We used version 4.9.3.

5. Install Conpot Log4j Handler. Download the Conpot Log4j Handler.java

file and compile it using the command:

javac Conpot_Log4j_Handler.java

Attacker System Setup

1. Install Python 3.10

2. Download the attack generator package from the NPS GitLab repository.

Run Experiment

3. On the victim system, run the command:

sudo tail -f -n 1 /data/conpot/log/conpot_default.log

| java Conpot_Log4j_Handler

64

Note: This step is only for Log4j attacks.

4. On the attacker system, launch the attack:

python attack_generator.py

65

APPENDIX B. K-MEANS CLUSTER ANALYSIS ON LIVE HTTP
ATTACKS

In Section IV.B we discussed how we identified features of the live HTTP attack

data captured on our honeypot. These features were mostly derived from HTTP URI

properties and data on IP addresses like DNS records. After feature engineering, we used

Scikit-Learn’s K-Means algorithm to find which clusters would best fit our data (Géron,

2019). The plots in Figure 31, Figure 32, and Figure 33 show the results of clustering with

three, four, and five clusters, respectively.

The HTTP request instances are clustered on the vertical y-axis with their

corresponding silhouette values on the x-axis. HTTP requests with scores closer to 1.0 are

toward the center of their cluster. The width of the clusters indicates how many instances

are in each cluster. The dotted red line is the average silhouette score of all the instances.

Ideally the clusters are large, and the instances extend close to 1.0 on the x-axis. At least

the clusters should cross the red line which means they have some values that are around

the average score of the entire dataset.

Figure 31. The Silhouette Score for K-Means Clusters = 3 for the Live HTTP

Attacks Collected on Our Honeypot

66

Figure 32. The Silhouette Score for K-Means Clusters=4 for the Live HTTP

Attacks Collected on Our Honeypot

Figure 33. The Silhouette Score for K-Means Clusters = 5 for the Live HTTP

Attacks Collected on Our Honeypot

K-means with four clusters produced a grouping where every cluster crossed the

threshold past the average silhouette score. Clustering of three and five clusters have wide

clusters like cluster four, but not all of them had instances which were at or above the

average score. After deciding to use four clusters, we loaded our data into WEKA to run

another K-means clustering. With Scikit-Learn we could easily generate the silhouette

score plot, however WEKA is better at displaying the actual clusters and requires no

additional programming compared to Scikit-Learn.

67

APPENDIX C. LOG4J LOOKUPS

Table 18 has all the lookups that the attack generator used to mutate Log4j exploits.

Refer to Section III.C for more details on how Log4j lookups work.

Table 18. Log4j Prefix Attribute Mapping. Adapted from The Apache
Software Foundation (2022).

Lookup Prefix Attributes (not exhaustive)
Context Map Ctx loginId
Date date MM-dd-yyy

Docker docker

containerID
containerName
imageId
imageName
shortContainerId
shortImageId

Empty lookup Empty string None (only used with default values for
example “{$::-DEFAULT_VALUE}”)

Environment env USER

Event event

Exception
Level
Logger
Marker
Message
ThreadId
ThreadName
TimeStamp

Java java

version
runtime
vm
os
locale
hw

JNDI jndi Not listed
Java Virtual Machine jvmrunargs Not listed

Kubernetes k8

accountName
clusterName
containerId
containerName
host

68

Lookup Prefix Attributes (not exhaustive)
hostIp
imageId
imageName
labels
labesl.app
labels.podTemplateHash
masterUrl
namespaceId
namespaceName
podId
podIp
podName

Log4j Configuration
Location log4j configLocation

configParentLocation
Lower lower Any string

Main Arguments main
0-based index or based on strings found
in the argument list
i.e., main:myString or main:0

Map map type
Marker marker name
Mapped Diagnostic
Context mdc userID

Spring Boot spring spring.application.name
Structured Data sd type
System Properties sys logPath
Upper upper Any string

Web web

attr.name
contextPath
contextPathName
effectiveMajorVersion
effectiveMinorVersion
initParam.name
majorVersion
minorVersion
rootDir
serverInfo
servletContextName

69

LIST OF REFERENCES

Al-Dalky, R., Abduljaleel, O., Salah, K., Otrok, H., & Al-Qutayri, M. (2014). A Modbus
traffic generator for evaluating the security of SCADA systems. 2014 9th
International Symposium on Communication Systems, Networks Digital Sign
(CSNDSP), 809–814. https://doi.org/10.1109/CSNDSP.2014.6923938

The Apache Software Foundation (2022, February 23). Lookups. Apache Logging
Services. https://logging.apache.org/log4j/2.x/manual/lookups.html

Appelt, D., Nguyen, C. D., Panichella, A., & Briand, L. C. (2018). A machine-learning-
driven evolutionary approach for testing web application firewalls. IEEE
Transactions on Reliability, 67(3), 733–757. https://doi.org/10.1109/
TR.2018.2805763

Baiocco, A., & Wolthusen, S. D. (2018). Indirect synchronisation vulnerabilities in the
IEC 60870-5-104 standard. 2018 IEEE PES Innovative Smart Grid Technologies
Conference Europe (ISGT-Europe), 1–6. https://doi.org/10.1109/
ISGTEurope.2018.8571604

Biondi, P. (2021). Scapy (Version 2.4.5) [Computer software]. https://github.com/secdev/
scapy

Black, P. E., Guttman, B., & Okun, V. (2021). Guidelines on minimum standards for
developer verification of software. U.S. Department of Commerce. https://doi.org/
10.6028/NIST.IR.8397

Campbell, R. M., Padayachee, K., & Masombuka, T. (2015). A survey of honeypot
research: Trends and opportunities. 2015 10th International Conference for
Internet Technology and Secured Transactions (ICITST), 208–212.
https://doi.org/10.1109/ICITST.2015.7412090

Chassin, D. P., Schneider, K., & Gerkensmeyer, C. (2008). GridLAB-D: An open-source
power systems modeling and simulation environment. 1–5. https://doi.org/
10.1109/TDC.2008.4517260

Cherepanov, A. (2017). WIN32/INDUSTROYER a new threat for industrial control
systems (p. 17) [Fact sheet]. ESET. https://www.welivesecurity.com/wp-content/
uploads/2017/06/Win32_Industroyer.pdf

Chiong, R., Weise, T., & Michalewicz, Z. (Eds.). (2012). Variants of evolutionary
algorithms for real-world applications. Springer-Verlag. https://doi.org/10.1007/
978-3-642-23424-8

70

Choi, S., Yun, J.-H., & Min, B.-G. (2021). Probabilistic attack sequence generation and
execution based on MITRE ATT&CK for ICS datasets. Cyber Security
Experimentation and Test Workshop, 41–48. https://doi.org/10.1145/
3474718.3474722

Clarke, G., Reynders, D., & Wright, E. (2004). Practical modern SCADA protocols
DNP3, 60870.5 and related systems. Elsevier. https://ebookcentral-proquest-
com.libproxy.nps.edu/lib/ebook-nps/reader.action?docID=226682

Cordero, C. G., Vasilomanolakis, E., Wainakh, A., Mühlhäuser, M., & Nadjm-Tehrani, S.
(2021). On generating network traffic datasets with synthetic attacks for intrusion
detection. ACM Transactions on Privacy and Security, 24(2), 39. https://doi.org/
10.1145/3424155

Cyber Security and Infrastructure Security Agency (2020, October 21). Critical
infrastructure sectors. https://www.cisa.gov/critical-infrastructure-sectors

Cyber Security and Infrastructure Security Agency (2021a, July 20). Significant
historical cyber-intrusion campaigns targeting ICS. https://us-cert.cisa.gov/ncas/
current-activity/2021/07/20/significant-historical-cyber-intrusion-campaigns-
targeting-ics

Cyber Security and Infrastructure Security Agency (2021b). Mitigate Apache Log4j
vulnerability (Emergency Directive 22–02). https://www.cisa.gov/emergency-
directive-22-02

Cyber Security and Infrastructure Security Agency (2022a, April 8). Apache Log4j
vulnerability guidance. https://www.cisa.gov/uscert/apache-log4j-vulnerability-
guidance?msclkid=0ea0d4e9c0f111ec88f6476b5ae61ed5

Cyber Security and Infrastructure Security Agency (2022b, July 18). Malicious cyber
actors continue to exploit Log4Shell in VMware Horizon systems.
https://www.cisa.gov/uscert/ncas/alerts/aa22-174a

Docker Incorporated (n.d.). Docker. Retrieved September 1, 2022, from
https://www.docker.com/

Dougherty, J. (2020). Evasion of honeypot detection mechanisms through improved
interactivity of ICS-based systems [Thesis, Naval Postgraduate School]. NPS
Archive: Calhoun. https://calhoun.nps.edu/handle/10945/66065

Enscada (2022, April 18). IndigoSCADA. http://www.enscada.com/a7khg9/
IndigoSCADA_user_manual.pdf

71

Falk, H. (2018). IEC 61850 demystified. Artech House. https://us-artechhouse- The
MITRE Corporation (2021, October 12). CVE. https://cve.mitre.org/

com.libproxy.nps.edu/CloudPublish/book.aspx?isbn=9781630816612

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T.
(1999). Hypertext transfer protocol—HTTP/1.1 (RFC No. 2616). RFC Editor.
https://www.rfc-editor.org/rfc/rfc2616.txt

FortiGuard Labs (2022). Global threat landscape report (Report No. 2H 2021).
FortiGuard. https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/
report-q1-2022-threat-landscape.pdf

Fundin, A. (2021). Generating datasets through the introduction of an attack agent in a
SCADA testbed [Thesis, Linköping University]. http://liu.diva-portal.org/smash/
get/diva2:1557696/FULLTEXT01.pdf

Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow
(2nd ed). O’Reilly Media, Inc.

Hjelmvik, E. (2022, April 25). Industroyer2 IEC-104 analysis [Blog]. Netresec.
https://www.netresec.com/?page=Blog&month=2022-04&post=Industroyer2-
IEC-104-Analysis

Hong, Y., Hwang, U., Yoo, J., & Yoon, S. (2020). How generative adversarial networks
and their variants work: An overview. ACM Computing Surveys, 52(1), 1–43.
https://doi.org/10.1145/3301282

Hurd, C. M., & McCarty, M. V. (2017). A survey of security tools for the industrial
control system environment (Report No. INL/EXT-17-42229; p. 15). Idaho
National Lab. https://doi.org/10.2172/1376870

Jicha, A., Patton, M., & Chen, H. (2016). SCADA honeypots: An in-depth analysis of
Conpot. 2016 IEEE Conference on Intelligence and Security Informatics (ISI),
196–198. https://doi.org/10.1109/ISI.2016.7745468

Joint Task Force Interagency Working Group (2020). Security and privacy controls for
information systems and organizations (National Institute of Standards and
Technology Special Publication Report No. 800–53, Rev.5). National Institute of
Standards and Technology. https://doi.org/10.6028/NIST.SP.800-53r5

Joint Task Force Transformation Initiative (2018). Risk management framework for
information systems and organizations: A system life cycle approach for security
and privacy (National Institute of Standards and Technology Special Publication
Report No. 800–37, Rev.2). National Institute of Standards and Technology.
https://doi.org/10.6028/NIST.SP.800-37r2

72

Kapellmann, D., Leong, R., Sistrunk, C., Proska, K., Hildebrandt, C., Lunden, K., &
Brubaker, N. (2022, April 25). INDUSTROYER.V2: Old malware learns new
tricks [Blog]. Mandiant. https://www.mandiant.com/resources/industroyer-v2-
old-malware-new-tricks

Kendrick, M. M., & Rucker, Z. A. (2019). Energy-grid threat analysis using honeypots
[Thesis, Naval Postgraduate School]. NPS Archive: Calhoun.
https://calhoun.nps.edu/handle/10945/62843

Kovacs, E. (2022, January 5). ICS vendors respond to Log4j vulnerabilities [Blog].
Security Week. https://www.securityweek.com/ics-vendors-respond-log4j-
vulnerabilities

Kuhn, R., Kacker, R., Lei, Y., & Hunter, J. (2009). Combinatorial software testing.
Computer, 42(8), 94–96. https://doi.org/10.1109/MC.2009.253

Lin, Z., Shi, Y., & Xue, Z. (2021). IDSGAN: Generative adversarial networks for attack
generation against intrusion detection. Advances in Knowledge Discovery and
Data Mining, 79–91. https://doi.org/10.48550/arXiv.1809.02077

Lobo, F. G., Lima, C. F., & Michalewicz, Z. (Eds.). (2007). Parameter setting in
evolutionary algorithms (Vol. 54). Springer-Verlag.

Luo, Z., Zuo, F., Shen, Y., Jiao, X., Chang, W., & Jiang, Y. (2020). ICS protocol fuzzing:
Coverage guided packet crack and generation. 2020 57th ACM/IEEE Design
Automation Conference (DAC), 1–6. https://doi.org/10.1109/
DAC18072.2020.9218603

Matherly, J. (2017). Complete guide to Shodan. Lean Publishing.

Matoušek, P. (2017). Description and analysis of IEC 104 protocol (Technical Report
No. FIT-TR-2017-12). Brno University of Technology. https://www.fit.vut.cz/
research/publication-file/11570/TR-IEC104.pdf

Maynard, P., Mclaughlin, K., & Sezer, S. (2018). An Open Framework for Deploying
Experimental SCADA Testbed Networks. 89–98. https://doi.org/10.14236/ewic/
ICS2018.11

McClure, S., Scambray, J., & Kurtz, G. (2012). Hacking exposed 7: Network security
secrets & solutions. McGraw-Hill.

Meier, J. (2022). Hardening Windows-based honeypots to protect collected data [Thesis].
Naval Postgraduate School.

Metasploit (n.d.). IEC 104 client utility—Metasploit. Retrieved March 25, 2022, from
https://github.com/rapid7/metasploit-framework/blob/master/modules/auxiliary/
client/iec104/iec104.rb

73

Moghadampour, G. (2011). Self-adaptive integer and decimal mutation operators for
genetic algorithms. Proceedings of the 13th International Conference on
Enterprise Information Systems: Vol. 1, 184–191. https://doi.org/10.5220/
0003494401840191

Muñoz, A., & Mirosh, O. (2016). A journey from JNDI/LDAP manipulation to remote
code execution dream land. Hewlett Packard Enterprise.
https://www.blackhat.com/us-16/briefings.html#a-journey-from-jndi-ldap-
manipulation-to-remote-code-execution-dream-land

National Cyber Security Centrum (2021, December 23). Log4Shell. GitHub.
https://github.com/NCSC-NL/log4shell

National Vulnerability Database (n.d.). General information. National Institute of
Standards and Technology. Retrieved April 5, 2022, from https://nvd.nist.gov/

National Vulnerability Database (2021, December 10). CVE-2021-44228. National
Institute of Standards and Technology. https://nvd.nist.gov/vuln/detail/CVE-2021-
44228

Ng, C. K., Pan, L., & Xiang, Y. (2018). Honeypot frameworks and their applications: A
new framework. Springer. https://doi.org/10.1007/978-981-10-7739-5_2

Office of the Secretary of the Navy (2018). SECNAV Instruction 3501.1D. Department of
the Navy. https://irp.fas.org/doddir/navy/secnavinst/3501_1d.pdf

Oracle (n.d.). Lesson: Overview of JNDI. Java Documentation. Retrieved September 1,
2022, from https://docs.oracle.com/javase/tutorial/jndi/overview/index.html

Pliatsios, D., Sarigiannidis, P., Lagkas, T., & Sarigiannidis, A. G. (2020). A survey on
SCADA systems: Secure protocols, incidents, threats, and tactics. IEEE
Communications Surveys Tutorials, 22(3), 1942–1976. https://doi.org/10.1109/
COMST.2020.2987688

Radoglou-Grammatikis, P., Sarigiannidis, P., Giannoulakis, I., Kafetzakis, E., &
Panaousis, E. (2019). Attacking IEC-60870-5-104 SCADA systems. 2019 IEEE
World Congress on Services, 2642–939X, 41–46. https://doi.org/10.1109/
SERVICES.2019.00022

Redwood, W. O. (2015). Cyber physical system vulnerability research [Dissertation,
Florida State University]. FSU Digital Library. https://diginole.lib.fsu.edu/
islandora/object/fsu:360429

Reitz, K. (2022). Requests (Version 2.28.1) [Computer software]. Python Software
Foundation. https://github.com/psf/requests

74

Rist, L., Vestergaard, J., Haslinger, D., & Pasquale, A. (n.d.). Conpot. Retrieved
November 11, 2021, from http://conpot.org/

Sarker, R., & Coello, C. A. (2002). Assessment methodologies for multiobjective
evolutionary algorithms. In R. Sarker, M. Mohammadian, & X. Yao (Eds.),
Evolutionary Optimization (pp. 177–195). Springer U.S. https://doi.org/10.1007/
0-306-48041-7_7

Sermersheim, Ed. J. (2006). Lightweight directory access protocol (LDAP): The protocol
(RFC No. 4511). RFC Editor. https://doi.org/10.17487/RFC4511

Slowik, J. (2019). CRASHOVERRIDE: Reassessing the 2016 Ukraine electric power
event as a protection-focused attack. Dragos Inc. https://www.dragos.com/wp-
content/uploads/CRASHOVERRIDE.pdf

Smith, P. (2021). Pentesting industrial control systems. Packt Publishing.
https://app.knovel.com/hotlink/toc/id:kpPICS000E/pentesting-industrial/
pentesting-industrial

Stampar, M., & Kasimov, M. (2022). Maltrail (Version 0.48) [Computer software].
https://github.com/stamparm/maltrail

Stouffer, K., Lightman, S., Pillitteri, V., Abrams, M., & Hahn, A. (2015). Guide to
industrial control systems (ICS) security (National Institute of Standards and
Technology Special Publication Report No. 800–82 Rev. 2). U.S. Department of
Commerce. https://doi.org/10.6028/NIST.SP.800-82r2

Stuttard, D., & Pinto, M. (2008). The web application hacker’s handbook: Discovering
and exploiting security flaws. John Wiley & Sons.

Telekom Security (2016). T-Pot (Version 16.03) [Computer software]. Telekom Security.
https://github.security.telekom.com/2016/03/honeypot-tpot-16.03-released.html

Timorin, A., & Miller, D. (n.d.). Script IEC-identify. NMAP. Retrieved March 25, 2022,
from https://nmap.org/nsedoc/scripts/iec-identify.html

Tsaraias, G., & Speziale, I. (2022). Industroyer vs. Industroyer2: Evolution of the IEC
104 component. Nozomi Network Labs. https://www.nozominetworks.com/
downloads/US/Nozomi-Networks-WP-Industroyer2.pdf

Ur Rashid, S. M. Z., Uddin, M. J., & Islam, A. (2019). Know your enemy: Analysing
cyber-threats against industrial control systems using honeypot. 2019 IEEE
International Conference on Robotics, Automation, Artificial-Intelligence, and
Internet-of-Things (RAAICON), 151–154. https://doi.org/10.1109/
RAAICON48939.2019.69

VirusShare (n.d.). Retrieved April 5, 2022, from https://virusshare.com/

75

Washofsky, A. D. (2021). Deploying and analyzing containerized honeypots in the cloud
with T-Pot [Thesis, Naval Postgraduate School]. NPS Archive: Calhoun.
http://hdl.handle.net/10945/68394

The White House of the U.S. (2021). National security memorandum on improving
cybersecurity for critical infrastructure control systems [Statements and releases].
https://www.whitehouse.gov/briefing-room/statements-releases/2021/07/28/
national-security-memorandum-on-improving-cybersecurity-for-critical-
infrastructure-control-systems/

Witten, I. H. (2017). Data mining: Practical machine learning tools and techniques (4th
ed.). Elsevier.

Yen, G. G., & He, Z. (2014). Performance metric ensemble for multiobjective
evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 18(1),
131–144. https://doi.org/10.1109/TEVC.2013.2240687

Zhang, M., Zhang, Y., Zhang, L., Liu, C., & Khurshid, S. (2018). DeepRoad: GAN-based
metamorphic testing and input validation framework for autonomous driving
systems. Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 132–142. https://doi.org/10.1145/
3238147.3238187

76

THIS PAGE INTENTIONALLY LEFT BLANK

77

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	22Sep_Haynes_Nathaniel_First8
	22Sep_Haynes_Nathaniel
	I. Introduction
	A. Motivation
	B. Our Approach
	C. Thesis Outline

	II. Background
	A. Industrial Control System Protocols
	1. Introduction
	2. Network Protocols
	a. IEC 60870
	b. Hypertext Transfer Protocol

	3. Other ICS Protocols

	B. Protocol-Based Attacks
	1. IEC 104
	2. HTTP

	C. ICS Power Grid Honeypots
	D. Automatically Generating Exploits
	1. Automated Software Testing
	2. Machine-Learning Methods
	a. Generative Adversarial Networks
	b. Evolutionary Algorithms

	3. Other Test Generation Methods

	III. Methodology and Attacks on ICS honeypots
	A. Previous NPS Honeypots
	B. Attack Generator
	C. HTTP Attacks – Log4j
	1. Log4j Logging Features
	2. Exploiting Log4j
	3. Adapting Log4j Exploits for Evolutionary Algorithms

	D. IEC 104 Attacks – Industroyer2
	1. Industroyer2 Background
	2. Synthetic Attacks Based on Industroyer2

	E. Analyzing Datasets

	IV. Experiments
	A. Experiment Testbed
	B. Attack Analysis
	C. Log4j Exploit Generation
	1. Generating Log4j Exploits
	2. Implementing the Conpot Log4j Handler
	3. Prototyping Log4j Exploits

	D. IEC 104 Attack Generation
	1. Generating IEC 104 Attacks
	2. IEC 104 Experiments

	V. Results
	A. Dataset Analysis
	1. Analysis of HTTP and Log4j in Live Traffic
	2. Analysis of IEC 104 Traffic

	B. Attack Generation Results
	1. Log4j Exploit Results
	2. Synthetic IEC 104 Attack Results

	C. Discussion

	VI. Conclusions
	Appendix A. Testbed Setup
	Appendix B. K-Means Cluster Analysis on Live HTTP Attacks
	Appendix C. Log4j Lookups
	List of References
	Initial Distribution List

