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Abstract: Air pollution is one of the most challenging global sustainability problems in the world.
Roughly 90% of global citizens live in areas that exceed the acceptable air pollution levels according
to the World Health Organization air quality guidelines. However, socially disadvantaged groups
are disproportionately located in areas exposed to higher levels of air pollution. Understanding
the association between risk exposure to air pollutants and the underlying socio-economic factors
determining risk is central for sustainable urban planning. The purpose of this study was to explore
environmental inequalities in Mexico City, specifically the spatial association between air pollutants
and socioeconomic status (SES) indicators. We propose that SES indicators will be expected to spa-
tially cluster vulnerable individuals and groups into heavily polluted areas. To test this hypothesis,
we used 2017–2019 data from governmental records to perform spatial interpolations to explore the
spatial distribution of criteria pollutants. We carried out spatial autocorrelations of air pollutants
and SES indicators using the bivariate Moran’s I index. Our findings provide strong evidence of
spatial heterogeneity in air pollution exposure in Mexico City. We found that socially deprived areas
located in the southern periphery of Mexico City were exposed to higher ozone concentrations. On
the contrary, wealthiest areas concentrated in the city center were exposed to greater concentrations of
nitrogen dioxide and carbon monoxide. Our findings highlight the need for policy-driven approaches
that take into consideration not only the geographic variability and meteorological dynamics associ-
ated with air pollution exposure, but also the management of socioeconomic risk factors aimed at
reducing disparate exposure to air pollution and potential health impacts.

Keywords: environmental inequality; air pollution exposure; socioeconomic indicators; sustainable
urban planning; Mexico City
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1. Introduction

Air pollution is recognized as one of the greatest global sustainability problems of
the 21st century. According to the World Health Organization (WHO), approximately
4.2 million deaths per year are attributable to air pollution [1]. Air pollution refers to
the presence of small particles, chemical substances or gases in the atmosphere that are
harmful to the health of human populations and other living beings [2]. Anthropogenic
activities including traffic, waste burning, solid fuel combustion, industry and agrochemical
activities emit high levels of criteria air pollutants (hereafter “air pollutants”) such as carbon
monoxide (CO), particulate matter (PM, both PM2.5 and PM10), sulfur dioxide (SO2) and
nitrogen dioxide (NO2)—known as primary pollutants—into the atmosphere. Secondary
air pollutants, such as ozone (O3), are formed in the atmosphere by reactions among NOx
and volatile organic compounds in the presence of sunlight [3]. It is estimated that roughly
90% of global citizens live in areas that exceed the acceptable air pollution levels according
to the World Health Organization (WHO) air quality guidelines [4,5]. However, numerous
case studies have found that socially disadvantaged groups, such as persons and groups
of lower socioeconomic status (SES), are disproportionately located in areas exposed to
higher levels of air pollution, a phenomenon referred to as environmental injustice or
environmental inequality [6–9].

Although the terms environmental injustice and environmental inequality are occa-
sionally used interchangeably in the literature, they do have distinct meanings [10,11].
Environmental justice is a normative concept with political connotations that implies dis-
tributive (i.e., equitable distribution of resources and capacities to implement strategies),
procedural (i.e., extent to which actors participate in decision-making processes) and pre-
cautionary (i.e., attitudes, values and judgments regarding environmental risks) justice
levels [11–13]. Environmental inequality, on the other hand, is primarily a quantitative
concept that involves measuring and comparing exposure risks among different individuals
and groups [11,12]. In this paper, we focus on environmental inequality understood as
disparities in air pollution exposure related to SES indicators.

In the context of urban air pollution, exposure risks derive from hazards that include
pollutants emissions from transport, industry and domestic activities, wildfires and open
burning among others [2]. However, in the literature regarding vulnerability, it is empha-
sized that risk (i.e., the probability of occurrence of an adverse event) emerges through
the interactions between environmental conditions and socio-political factors [14,15]. This
analytical framework recognizes that stakeholders actions and responses to hazards can
also act as main determinants of risk [14,15]. In this perspective, risk exposure to air
pollution in urban areas is not only a product of environmental hazards, but it is also
shaped by socio-political processes including infrastructure and technological investment
decisions (i.e., urban settlements, roads, highways, urban services, technology [16]) as well
as mitigation and adaptation decision-making [13].

Environmental assessments are important analytical tools for effective exposure risk
management generally conceived as centrally planned instruments aimed at supporting
urban planning [17]. However, relevant environmental assessments for sustainable urban
planning require providing evidence on the existence of systematic disparities in the distri-
bution of risk exposure [8,10,17]. This need has motivated the development of integrated
approaches capable of addressing disparities in environmental risk exposure across individ-
uals and groups with differing SES [10,14]. For example, environmental inequality research
in the context of air pollution has been mainly conducted in cities from North America,
Europe, Asia and Oceania [17]. Results from these studies consistently report increasing
exposure to air pollutants as SES decreased [18–22]. Only those from Europe [23] appear
to find counterintuitive relationships between SES and air pollution as housing in historic
city centers in Europe, that generally experience higher levels of atmospheric pollutants,
has become unaffordable to individuals of lower SES [23]. However, studies carried out
in cities from industrialized countries in Africa, Latin America and the Caribbean, which
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often face uncontrolled urban sprawl, rampant population growth, increasing automobile
emissions and consequently higher air pollution, are still scarce [17,19,24].

Despite these efforts, we still lack a full understanding of the association between
risk exposure to air pollutants and the underlying socio-economic factors determining risk.
This study aims to fill this knowledge gap by assessing whether in Mexico City—one of the
most important economic hubs in Latin America—individuals and groups of lower SES are
exposed to a higher burden of air pollution exposure. Thus, the purpose of this study is
to explore environmental inequalities in Mexico City, specifically the spatial association
between air pollutants and SES indicators. We posit that SES indicators will be expected to
spatially cluster vulnerable populations into heavily polluted areas. To test this hypothesis,
we conducted a set of spatial autocorrelations using 2017–2019 data from governmental
records. Our methodological approach makes use of spatial analytic techniques that ensure
independence among observations. We argue that the results of our study contribute
to environmental inequality, a growing body of research aimed at analyzing the extent,
causes and consequences of disproportional risk exposure among regions and populations.
The analytical approach presented here can help to understand and make visible the
socioeconomic inequalities in air pollution exposure to better derive and establish targeted
sustainable urban planning interventions committed to environmental justice.

2. Methods
2.1. Study Setting

Mexico City is located at 19◦35′34′′ N and 99◦21′54′′ W (INEGI 2017), in the lower Basin
of Mexico area, constituting an endorheic system surrounded by mountains. The Mexico
City urbanized area occupies a surface of 2300 km2 at 2240 m and has a current population
of 9,209,944 inhabitants [25]. Urban expansion in Mexico City has been characterized by
a horizontal occupation pattern that has progressively incorporated the rural peripheries
which often display marked socioeconomic inequalities [26]. Mexico City has a cold dry
season from November to February followed by a dry warm season from March to May
and a wet season from June to October. Temperatures are moderate and vary little along
the year [27,28]. Mexico City is the fifth largest urban area in the world and one of the most
important economies in Latin America [29,30]. It is estimated that nearly 4 million mobile
vehicles including public transport trucks, vans, cargo trucks and motorcycles and more
than 88,000 industries which are located mostly in the northern areas of the city, operate
daily (Figure 1) [29]. The transportation sector accounts for over 80% and 40% of NOx and
PM emissions, respectively [29], while industrial and domestic activities including the use
of aerosol products and fuel burning are responsible for nearly 55% of volatile organic
compounds (VOCs) emissions (Figure 1). Agriculture, construction and urban activities,
including waste management and electrical energy generation, account for 36% to 46% of
PM and 23% of VOCs emissions (Figure 1) [30]. Air pollution in Mexico City reached its
peak during the 1980s and 1990s [31]. For more than 30 years, federal planning instruments
and regulatory strategies have been designed and implemented with the aim at improving
air quality in Mexico City [31]. Despite the efforts, air pollution has not been reduced
enough to meet international and national standards, especially for PM and O3 [29,31,32].
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Figure 1. Mexico City showing the sixteen administrative units (bold lines) and the SIMAT monitoring
stations (circles). Industrial (in yellow) and agricultural (in green) areas within Mexico City and the
State of Mexico are also shown. The upper left panel indicates the distribution of air pollution sources
by main activities (e.g., transportation, industry, domestic fuel burning).

2.2. Data
Air Pollution and Meteorological Data

A historical air quality dataset (2017–2019) was obtained from the Atmospheric Mon-
itoring System (SIMAT, Figure 1), the main monitoring network in Mexico City. The
monitoring network consists of 44 stations distributed within Mexico City (Figure 1). The
air quality dataset included the monitoring station name and coordinates, the date of
measurement, as well as hourly measurements of air pollutant concentrations, namely
NO2 (µg/m3), CO (ppm), O3 (µg/m3), PM10 (µg/m3), PM2.5 (µg/m3) and SO2 (µg/m3).
For each pollutant, we selected a set of monitoring stations with at least 75% sufficiency
of hourly measurement data [27]. In the case of SO2, less than 14% (n = 6) of monitoring
stations met the sufficiency criterion, therefore this pollutant was excluded from further
analysis. We calculated annual 2017–2019 average concentrations for O3, NO2 and CO, and
the 90th percentile of daily average concentrations for PM10 and PM2.5. Summary statistics
for selected pollutants are shown in Table 1.

Meteorological data (2017–2019) was derived from the Meteorology Network (RED-
MET) formed by 26 monitoring stations distributed within Mexico City. The dataset
included the monitoring station name, the date of measurement and hourly measurements
of main surface variables, including temperature (◦C), relative humidity (%) and wind
speed (m/s2). We calculated annual averages for each surface variable and grouped them
into three sets based on the season the measurement took place. We then intersected the
average annual temperature, relative humidity, and wind speed by season with the NO2,
CO, O3, PM10 and PM2.5 calculated concentrations. Table A1 shows seasonal summary
statistics of the analyzed meteorological variables.
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Table 1. Selected monitoring stations from the Mexico City Atmospheric Monitoring System used to calculate 2017–2019 pollutants concentrations. Basic information
for each station including ID, station name, coordinates, and elevation (m) is shown. The 90th percentile of daily average concentrations (µg/m3) for PM10 and
PM2.5 and annual average concentrations (mean ± sd) for CO (ppm), NO2 (µg/m3) and O3 (µg/m3). See Figure 1 for distribution of stations within Mexico City.

ID Name Lon Lat Elevation PM10 PM2.5 CO O3 NO2

ACO Acolman −98.91 19.63 2198 88 − 0.32 ± 0.22 26.65 ± 22 16.12 ± 9.2
AJM Ajusco Medio −99.20 19.27 2548 − 35 0.33 ± 0.20 39.33 ± 24.8 16.64 ± 9.1
AJU Ajusco −99.16 19.15 2942 − 37 − 35.41 ± 26.5 −
ATI Atizapán −99.25 19.57 2341 76 − 0.41 ± 0.35 27.81 ± 23.6 20.66 ± 11.3
BJU Benito Juárez −99.15 19.37 2249 69 41 0.49 ± 0.37 32.19 ± 29.7 24.16 ± 12.7

CAM Camarones −99.16 19.46 2233 87 46 0.53 ± 0.44 28.44 ± 29.1 31.49 ± 14.8
CCA Centro de Ciencias de la Atmósfera −99.17 19.32 2294 − 35 0.41 ± 0.30 32.75 ± 29.6 22.99 ± 11.1
CHO Chalco −98.88 19.26 2253 100 − 0.52 ± 0.42 29.33 ± 25.1 20.56 ± 9.5
CUA Cuajimalpa −99.29 19.36 2704 55 − 0.38 ± 0.27 30.64 ± 22 22.59 ± 12.2
CUT Cuautitlán −99.19 19.72 2263 94 − − 28.02 ± 26.3 18.93 ± 11.3
FAC FES Acatlán −99.24 19.48 2299 70 − 0.52 ± 0.48 29.87 ± 26.3 24.54 ± 14.2
FAR FES Aragón −99.04 19.47 2230 − − − 34.6 ± 28.4 18.19 ± 11.2

GAM Gustavo A. Madero −99.09 19.48 2227 79 46 − 30.83 ± 29.6 23.58 ± 13.5
HGM Hospital General de México −99.15 19.41 2234 72 44 0.49 ± 0.39 30.83 ± 28.6 29.82 ± 14.4
INN Investigaciones Nucleares −99.38 19.29 3082 46 28 0.18 ± 0.11 38.69 ± 21.1 −
IZT Iztacalco −99.11 19.38 2238 68 − 0.59 ± 0.45 29.37 ± 28.7 29.37 ± 13.5
LLA Los Laureles −99.03 19.57 2230 − − 0.48 ± 0.41 27.15 ± 25.8 23.75 ± 12.7
LPR La Presa −99.11 19.53 2302 − − 0.65 ± 0.55 28.31 ± 25.7 −
MER Merced −99.11 19.42 2245 87 45 0.59 ± 0.45 26.96 ± 27.4 33.45 ± 14.8
MGH Miguel Hidalgo −99.20 19.40 2327 64 40 0.52 ± 0.40 28.24 ± 27 29.05 ± 14
MON Montecillo −98.90 19.46 2252 − 39 0.36 ± 0.37 31.71 ± 26.6 16.23 ± 10.1
MPA Milpa Alta −98.99 19.17 2594 67 38 0.23 ± 0.15 44.8 ± 23.5 6.36 ± 4.8
NEZ Nezahualcóyotl −99.02 19.39 2235 − 45 0.54 ± 0.48 28.39 ± 25.6 24.35 ± 12.7
PED Pedregal −99.20 19.32 2326 56 35 0.36 ± 0.26 35.9 ± 29.6 21.96 ± 11.6
SAC Santiago Acahualtepec −99.00 19.34 2293 − − 0.42 ± 0.41 32.21 ± 25.5 21.28 ± 12.3
SAG San Agustín −99.03 19.53 2241 100 45 0.54 ± 0.43 26.94 ± 24.4 23.6 ± 11.9
SFE Santa fe −99.26 19.35 2599 62 37 0.31 ± 0.22 30.8 ± 25.5 21.8 ± 11.6
TAH Tláhuac −99.01 19.24 2297 88 − 0.41 ± 0.32 34.45 ± 27 17.6 ± 13.3
TLA Tlalnepantla −99.20 19.52 2311 86 44 0.54 ± 0.40 25.23 ± 23.9 31.04 ± 14.1
TLI Tultitlán −99.17 19.60 2313 99 − 0.47 ± 0.41 28.91 ± 26.6 25.17 ± 14.2

UAX UAM Xochimilco −99.10 19.30 2246 − 39 0.49 ± 0.33 32.51 ± 28.7 21.62 ± 11.7
UIZ UAM Iztapalapa −99.07 19.36 2221 72 43 0.51 ± 0.42 27.73 ± 26.4 26.71 ± 13.4
VIF Villa de las Flores −99.09 19.65 2242 105 − 0.39 ± 0.35 27.47 ± 23.3 18.47 ± 12.1
XAL Xalostoc −99.08 19.52 2160 134 54 0.7 ± 0.61 25.82 ± 24 30 ± 14.4
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2.3. Socioeconomic Status Indicators

SES indicator data were obtained from the 2020 INEGI database at the census block
(Áreas Geoestadísticas Básicas-AGEBs; by its name in Spanish) sub-municipality scale [25].
AGEBs represent the smallest administrative units in Mexico and are expected to be ho-
mogenous in terms of their SES characteristics [24]. We selected a set of SES indicators
which best depicted the conditions of poverty and inequality to which a substantial pro-
portion of the population lives in Mexico City. The SES indicators (Table 2; see Glossary in
Appendix B) included: total population (POBTOT), male population (POPMAS), female
population (POP_FEM), indigenous population (P_HOG_IND), afro-descendant popula-
tion (POBAFRO), population with disabilities (PCON_DIS), population older than 60 years
old (P_60YMAS), population of children younger than 5 years old (P_0A2 and P_3A5),
population without access to health care (PSINDER), number of houses on dirt floors
(VPH_PISOTI), number of houses without electricity (VPH_S_ELEC), number of houses
without a drainage system (VPH_NODRAIN), number of houses without access to potable
water (VPH_AGUAFV), number of houses lacking access to private motorized transport
(VPH_NDACMM) and number of houses without access to communication technologies
(VPH_SINTIC). In addition to these indicators, we included the Urban Marginalization
Index (IMU2010) derived from the Consejo Nacional de Población [33]. The Urban Marginal-
ization Index represents a compound measure built on different inequality dimensions
such as access to education and health care, availability of first-order goods, and enjoy-
ment of adequate housing rights. This index measures the severity of marginalization
and can take negative or positive values, with higher positive values indicative of greater
marginalization levels [33]. We performed a set of individual Pearson tests to evaluate
significant correlations among SES indicators and to consequently avoid data redundancy.
SES indicators with positive coefficients r ≤ 0.6, indicating significant weak correlations
(alpha = 0.05), were kept for further analyses (Table A2).

Table 2. Summary statistics (mean, sd, minimum and maximum) for the SES indicators. * denotes
selected indicators based on Pearson correlation coefficients r ≤ 0.6 (see Table A2).

Indicator Mean ± SD Minimum Maximum

POBTOT 3847.02 ± 2382.90 0 21,198
POBFEM 2012.79 ± 1235.73 0 11,128
POBMAS 1834.22 ± 1149.56 0 10,070
P_0A20 111.46 ± 85.29 0 709
P_3A5 135.59 ± 101.38 0 796

P_60YMAS 627.25 ± 351.80 0 2703
PHOG_IND * 117.87 ± 145.94 0 1430
PCON_DISC 206.84 ± 136.71 0 810

PSINDER 1045.72 ± 724.38 0 4713
VPH_PISOTI * 5.73 ± 11.15 0 147
VPH_S_ELEC * 0.23 ± 1.15 0 22

VPH_AGUAFV * 8.43 ± 54.28 0 1236
VPH_NODREN * 1.14 ± 4.29 0 79
VPH_NDACMM * 580.21 ± 415.92 0 3025

VPH_SINTIC * 3.93 ± 5.80 0 66
IMU2010 * −0.63 ± 0.54 −1.61 1.74

2.4. Spatial Distribution of Air Pollutants

We implemented spatial interpolations using the Kriging method to obtain the spatial
distribution of the air pollutants analyzed. The Kriging method is a statistical technique
widely used to determine the spatial variation of atmospheric pollutants while providing a
measure of error [34]. Given the geographic complexity of Mexico City, this interpolation
method is particularly recommended (SEDEMA, pers. obs). The Kriging method assumes
that nearby points have less variance than those that are more distant in space [35]. This
method obtains the influence of the values by solving Equations (A1) and (A2) [36] (see
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Appendix B). The Kriging method calculates a semivariogram which depicts the autocorre-
lation of the observed sample points according to their similarity, meaning that the greater
the similarity, the lower the variance [36,37]. Therefore, the semivariogram evaluates the
fit of the statistical model in terms of its predictions [38]. The Kriging spatial technique
approximates a theoretical semivariogram to an empirical one (which is obtained from the
data) to quantify the autocorrelation of the observations. We used Equations (A1) and (A2)
to fit individual statistical models to each pollutant and estimated the parameters for each
corresponding theoretical semivariogram (Table A3).

2.5. Spatial Autocorrelations: Bivariate Moran’s I Index

The bivariate Moran’s I index is a useful metric that tests for spatial autocorrelation by
quantifying the spatial dependence between two variables [39]. Therefore, spatial autocor-
relation gives us an idea of the degree to which two features tend to be clustered together or
evenly dispersed over a geographic space. We calculated the Moran’s I statistic, given Equa-
tion (A3) (see Appendix B), which entails specifying a contiguity weight matrix [40]. We
performed individual spatial autocorrelation analysis between each pollutant and each SES
indicator. This procedure resulted in 40 tests. The bivariate Moran’s I index is interpreted
similarly to the univariate Moran Index. That is, given a set of entities and an associated
attribute, it evaluates whether the pattern is clustered, sparse or random. The domain
of the bivariate Moran’s I index is [−1, +1], where the autocorrelation is positive when
I > 0 and the spatial pattern is clustered; it is negative when I < 0 and the spatial pattern
is heterogeneous; and null when I = 0 or values very close to 0. However, the bivariate
Moran’s I index can hide local patterns of spatial clustering which can represent a serious
flaw when dealing with a large spatial dataset [39]. As a result, the local version of Moran’s
I index, normally referred to Local Indicators of Spatial Association (LISA), was used [41].
The LISA values provide a measure of the level of significant spatial clustering relative
to the values that are located around that observation. In other words, it uses the local
Moran’s I index to geographically locate spatial clusters. The LISA is constructed from two
Cartesian axes, representing on the X axis the normalized values of variable 1, and on the Y
axis, the values of the lag or spatial lagged of variable 2. The lagged or spatial lag is the
mean value of the standardized variable in all its neighboring spatial units which is needed
to analyze a variable based on its neighbors. We then used Moran scatterplots to visualize
and identify the degree of spatial autocorrelations among air pollutants and SES indicators.
The Moran scatterplot is a neighborhood view approach that shows the distribution of
points in four quadrants centered on the global mean: (1) high values surrounded by high
values (HH; hotspots- environmental inequalities), (2) low values surrounded by high
values (LH; outliers), (3) low values surrounded by low values (LL; coldspots) and (4)
high values surrounded by low values (HL; outliers) [41]. All data manipulations and
spatial analysis were implemented in R software version 4.1.1 [42] and in a free Geographic
Information System (GIS) software named GeoDaTM [43].

2.6. Seasonal and Meteorological Effects on Air Pollutants’ Concentrations

To complement the spatial analysis presented in the previous sections, we evaluated
seasonal and meteorological relative effects on O3, NO2, CO, PM10 and PM2.5 concentra-
tions (response variables). We fitted linear regression models to the data and performed
associated ANOVAs to test for significant impacts of the year (factor with 3 levels 2017,
2018 and 2019), season (factor with 3 levels: dry cold, dry warm and wet), temperature
(continuous), relative humidity (continuous) and wind speed (continuous) on the response
variables. All analyses were carried out in R [44].

3. Results
3.1. Spatial Distribution of Air Pollution Exposure in Mexico City

The spatial interpolations showed that exposure to air pollutants displayed distinctive
distribution patterns over Mexico City (Figure 2). Average 2017–2019 NO2 and CO exposure
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was greatest in the northern and center parts of Mexico City, with average concentration
values ranging from 21 to 33 µg/m3 and 0.52 to 0.68 ppm, respectively, and decreasing
in the southern parts with average concentrations between 6.3 to 21 µg/m3 and 0.19 to
0.41 ppm, respectively (Figure 2a,b). In the case of O3, exposure was more pronounced in
the southern part of the city, with concentrations ranging from 34 to 44 µg/m3, decreasing
in the north with average concentration values from 26 to 32 µg/m3 (Figure 3c). In the
case of PM10 and PM2.5, the highest concentrations were observed in the northern and
eastern parts of the city, with values from 76 to 100 µg/m3 and 40 to 50 µg/m3, respectively,
whereas the lowest concentrations were observed in the southern and western parts of the
city, with values from 46 to 70 µg/m3 and 28 to 38 µg/m3 (Figure 2d,e). Figure 3 shows
time-series plots displaying temporal patterns of the studied air pollutants from 2017 to
2019. For O3 and PM2.5, average concentrations often exceeded international standards
with greater concentrations recorded during the dry warm season (Figure 3b,d). For the
latter, discrete peaks exceeding national standards were observed during 2019. In the case
of NO2 and PM10, temporal trends were dominated by annual seasonal patterns with the
highest peaks observed during the dry cold season (Figure 4a,e). CO was the only pollutant
which consistently remained below international and national air quality limits.
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Figure 4. Local spatial autocorrelation of (a) NO2, (b) CO and (c) O3 exposure by marginalization
index levels (IMU2010) in Mexico City. Scatterplots consist of four quadrants: High–High (hotspots-
environmental inequalities), Low–High (outliers), Low–Low (coldspots) and High–Low (outliers).

3.2. Seasonal and Meteorological Effects on Air Pollutants’ Concentrations

The ANOVA results revealed significant seasonal and meteorological effects on the
concentrations of pollutants. O3, PM10, NO2 and CO concentrations were significantly
affected by season (F = 36.7, 26.6, 4.9, 53.2, p < 0.05, respectively). For PM2.5, a significant
interaction effect between year and season was also found (F = 2.9, p = 0.02). For these
pollutants, highest mean concentrations (38.4 µg/m3, 53.3 µg/m3, 26.4 µg/m3, 0.47 ppm
and 27.1 µg/m3) were observed during the dry warm season, whereas lowest mean concen-
trations (26.6 µg/m3, 32.4 µg/m3, 22.3 µg/m3, 0.39 ppm and 17.6 µg/m3) were observed
during the wet season. Concerning the meteorological variables analyzed, we found a
significant effect of temperature on O3, PM2.5, NO2 and CO concentrations (F = 4.0, 5.9,
1.8, 25.0, p < 0.05, respectively) and a significant effect of relative humidity on PM10, PM2.5,
NO2 and CO (F = 5.6, 11.5, 4.3, 16.3, p < 0.05, respectively). Wind speed had a significant
effect on PM10 and PM2.5 concentrations (F = 12.0, 6.1, p < 0.05, respectively).

3.3. Spatial Autocorrelation of Air Pollutants and SES Indicators

Most of the spatial autocorrelations between air pollutants and the SES indicators
showed global Moran’s I estimates of −0.30 ≤ I ≤ 0.30, which represent weak autocorrela-
tions and were therefore considered as non-significant and excluded from further analyses.
In other words, significant autocorrelations included bivariate. For those which resulted in
significant values (Moran’s I from−1 to−0.30 and 0.30 to 1), our analysis indicated positive
spatial autocorrelations between O3 and both IMU_2010 and VPH_PISOTI (Table 3).
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Table 3. Bivariate Moran’s I index between air pollutants and socioeconomic status indicators.
Numbers in bold represent significant associations.

SES Indicator
Pollutant

NO2 CO O3 PM10 PM2.5

P_HOG_IND −0.25 −0.23 0.22 −0.02 −0.19
VPH_PISOTI −0.39 −0.33 0.35 −0.13 −0.13
VPH_S_ELEC −0.13 −0.11 0.12 −0.05 −0.08

VPH_AGUAFV −0.22 −0.28 0.22 −0.18 −0.23
VPH_NODRAIN −0.23 −0.21 0.25 −0.11 −0.15

VPH_SINTIC 0.020 0.008 −0.05 0.11 0.02
VPH_NDACMM −0.14 −0.12 0.10 0.03 −0.04

IMU2010 −0.39 −0.30 0.30 0.01 −0.17
P_HOG_IND: indigenous population; VPH_PISOTI: number of houses on dirt floors; VPH_S_ELEC: number of
hoses without electricity; VPH_AGUAFV: number of houses without access to potable water; VPH_NODRAIN:
number of houses without a drainage system; VPH_SINTIC: number of houses without access to communication
technologies; VPH_NDACMM: number of houses lacking access to private motorized transport; IMU2010: urban
marginalization index.

On the other hand, we found negative spatial autocorrelations between both pollutants
NO2 and CO, and the SES indicators IMU2010 and VPH_PISOTI (Table 3). The pollu-
tants PM10 and PM2.5 were weakly associated with the SES indicators evaluated (Table 3).
Figure 4 shows the local spatial autocorrelation between the air pollutants CO, NO2 and
O3 and the SES indicator IMU2010, measured by the global Moran’s coefficient. Regarding
CO, 15% of the AGEBs (n = 361) were distributed in the quadrant HL, indicating a cluster
of spatial units exposed to high CO concentrations (cluster mean of 0.25 ppm), which are
also characterized by low marginalization values (cluster mean of −1.2) according to the
IMU2010 index (Figures 4a and 5). On the other hand, 3% of AGEBs (n = 58) were clustered
in the HH quadrant (hotspots), indicating spatial units exposed to high CO concentrations
(cluster mean of 0.54 ppm) characterized by high marginalization values (cluster mean =
−0.04; Figures 4a and 5), while 22% of AGEBs (n = 534) were distributed in the LH and LL
(coldspots) quadrants, indicating exposure to low CO concentrations.
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Similar to the spatial patterns found for CO, the spatial analysis showed several HH
and LL spots for the association between NO2 and the SES indicator IMU2010, along with
other areas in the HL and LH categories (Figure 4b). Overall, 14% (n = 345) and 2% of
AGEBs (n = 55) were distributed in the HL and HH quadrants of the Moran’s diagram,
respectively, indicating spatial units exposed to high NO2 concentrations (cluster mean
of 29.0 and 28.2 µg/m3, respectively). The former quadrant was characterized by low
marginalization, whereas the latter to high marginalization values (cluster mean of −1.2
and −0.01, respectively) according to the IMU2010 index (Figure 4b).

Regarding O3, more than 26% of AGEBs were distributed in quadrants HH and HL
(n = 545) of the Moran’s diagram, indicating areas exposed to high concentrations of O3
(cluster mean = 35 µg/m3; Figure 4c). Of this percentage, nearly 52% of AGEBs (n = 285)
were clustered in the quadrant HH, indicating areas exposed to high concentrations of O3
(cluster mean = 37 µg/m3) characterized by high marginalization values (cluster mean =
0.5) according to the IMU2010 (Figures 4c and 5). Similar spatial autocorrelation patterns
were observed between CO, NO2 and O3 and the SES indicator VPH_PISOTI (Appendix A
Figure A1).

4. Discussion

In this paper, we explored the socioeconomic inequalities in air pollution exposure in
Mexico City through the use of spatial statistics tools and analysis. We perfomed Kriging
interpolations to assess spatial distribution patterns of NO2, CO, O3, PM10 and PM2.5 over
Mexico City for the period 2017–2019. We then implemented spatial autocorrelations to
evaluate the spatial association among air pollutants and a set of SES indicators. We also
assessed seasonal and meteorological effects on the concentration of air pollutants, and
identified specific time periods when risk exposure to air pollution increased. This study
highlights the importance of incorporating spatial dynamics associated with air pollution
combined with socioeconomic asymetries when evaluating exposure risks.

4.1. Spatial Distribution of Air Pollutions Exposure in Mexico City

The spatial interpolations showed that air pollutants displayed distinctive distribution
patterns over Mexico City (Figure 2), consistent with findings from other studies [17–23,31].
Ref. [44] explored differences in the spatial distribution of gaseous air pollutants in urban
centers and explained the observed variations in terms of the physicochemical properties
of pollutants, the rate of emission and reaction as well as meteorological factors such as
wind direction. In their study, concentrations of inert pollutants such as CO decreased
in downwind areas as they diluted with ambient air. For more reactive pollutants, such
as NO2, the production rate was identified as a critical parameter that was able to slow
down the dilution process, thus concentrations decreased more gradually in downwind
areas. In Mexico City, prevailing winds blow from the north to the south [33], transporting
NO2, CO and O3 precursors which are emitted mostly by industrial and transportation
activities in the northern and central parts of the city [27,28,30,31] (Figure 1). In the urban
atmosphere, the distribution of ozone O3 varies with both the intensity of solar radiation
and the concentrations of precursor compounds such as NOx and VOCs [44].

Ref. [45] studied changes in O3 concentrations in both outdoor and indoor environ-
ments, concluding that seasonal changes in air movement, cloud cover, humidity along
with emission rates of reactive VOCs and NOx can alter ozone concentrations in the at-
mosphere. Additionally, empirical studies performed in urban-rural environments have
demonstrated that ozone concentrations tend to be lower in urban areas since the freshly
emitted NO, from road traffic, can deplete ozone locally [46]. The higher O3 concentration
in the southern periphery of Mexico City reported in this study aligns with those findings.
On the other hand, the spatial distribution of particulate matter depends mostly on the
size [44]. Transportation activities along with particulates from agriculture, industry and
suspended dust emitted from eroded areas are likely to explain the higher concentrations
of PM in the northern and eastern parts of the city (Figure 1) [28,30,31]. In 2001, the Air
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Quality Program ProAire was launched by the Mexico City Government as a public policy
instrument aimed at reducing the concentration of air pollutants by improving vehicle
fuel combustion, regulating traffic hours and facilitating greater institutional coordina-
tion [30]. The current ProAire program contains new measures and actions across eight
themes from reduction in consumption, technology shifts and environmental education to
capacity building and citizen participation. Overall, air quality has improved in Mexico
City since 2001, with important reductions in CO and SO2 emissions [28]. The time-series
plots (Figure 3) showing pollutants concentrations from 2017–2019 are consistent with those
observations. In this line of thinking, it is worth noticing that CO was the sole pollutant
that remained below international and national standards (Figure 3c).

Our findings provided strong evidence of spatial heterogeneity in air pollution expo-
sure in Mexico City. The spatial patterns in air pollution exposure reported in this study
can be partially explained by the observed sesonal variation in meteorological factors
including temperature, relative humidity and wind speed. However, we acknowledge
that the mechanisms and feedbacks behind the observed distribution of air pollution in
Mexico City require further exploration. For instance, patterns of domestic and industrial
energy use, efficiency in solid waste management actions, formal and informal land-use
patterns and the location of green and blue urban infrastructure within the city, in addi-
tion to political factors including weak air pollution governance and agency, are potential
factors explaining the observed distribution patterns in air pollution exposure in Mexico
City [47,48]. Exposure to air pollutants is known to have detrimental long- and short-term
effects on human health indicated by increases in hospital admissions for cardiovascular
and respiratory diseases, asthma and reduced lung function among others [2,32]. Ref. [2]
demonstrated that recurrent air pollution exposure, even to low concentration levels, can be
extremely harmful for human health. In Mexico City, [24,32] a positive association between
adverse health events and increased exposure to PM10 and O3 was revealed. Although
outside the scope of this study, our results build upon the idea that recurrent exposure to
air pollutants above recommended international and national limits, which mostly occur
during the dry warm season, could exacerbate risk exposure, thus increasing the negative
health outcomes reported for Mexico City (Figure 3).

4.2. Spatial Autocorrelations of Air Pollutants and SES Indicators

Our findings suggest the presence of socioeconomic disparities in air pollution expo-
sure in Mexico City. Particularly, the southern periphery of Mexico City has emerged as
an area of concern since 12% of AGEBs characterized by precarious socioeconomic con-
ditions (Figure 4c) were also exposed to high ozone concentrations. These hotspots were
mostly distributed in the administrative municipalities of Tlalpan, Milpa Alta, Xochimilco,
Tláhuac, Cuajimalpa, Álvaro Obregón, Magdalena Contreras and Iztapalapa, where much
of the conservation land (CL) is located. The CL is a space of high ecological value which
covers nearly 50% of the total area of Mexico City [49]. During the past decades, the CL
has undergone extensive urban expansion heavily marked by high population growth and
increasing environmental deterioration [48,49]. From 1990 to 2020, the population in the CL
almost doubled, with the highest growth rates taking place in the municipalities of Tlalpan
and Tláhuac [48]. The CL population represents a sector at high risk of marginalization
(Figure 5), characterized by greater job insecurity, deficits in water infrastructure (e.g.,
indoor plumbing and water supply), high levels of economic informality, lower education
levels and shortages of household goods [50,51]. In these fast-growing areas, the lack
of services, capacities and resources diminishes the likelihood of people to build robust
strategies to mitigate air pollution [52]. In this perspective, mobilizing individuals for
collective political actions represents an opportunity for developing locally-led solutions
that promote environmental equity and justice [52,53].

The results of the LISA tests revealed a strong spatial association between CO and NO2
exposure and the marginalization index in 2% to 3% of the AGEBs located in the northern
portion of the municipality of Gustavo A. Madero (Figure 4a,b). Yet, 15% of AGEBs located
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in the city’s center (e.g., municipalities of Miguel Hidalgo, Cuauhtémoc and Benito Juarez)
were also exposed to high concentrations of NO2 and CO, highlighting a reverse trend than
the rest of the city. This matches with some environmental studies found in Europe [22].
According to [22], European urban centers commonly developed in such a way that the
wealthiest population sectors tended to occupy the city’s central areas, where vehicular
traffic and consequently NO2 and CO emissions were more pronounced. In Mexico City,
the financial and economic activities are primarily located in the city’s center, the wealthiest
core that sustains a significant proportion of all governmental and private services [25,52].
It is estimated that 70% of Mexico City’s working age population commute daily to work
to the city’s central areas [53], increasing traffic load and associated pollutant emissions.
Since most of the traveling takes place during busy hours, commuters are very likely to be
exposed to high transport-related NO2 and CO emissions [27,52].

Several studies have highlighted the uneven nature of risk exposure for different envi-
ronmental stressors including air pollution [12,24,30,50]. Such is the case of those carried
out in the United States, Canada and Australia which demonstrated that low-socioeconomic
status populations were exposed to higher concentrations of O3, CO and NO2 [54,55]. Yet,
opposite results have also been reported [17–24]. The nature of these discrepancies has
been extensively discussed by [10] who identified two major sources of uncertainty when
performing environmental justice studies. The first source of uncertainty relates to the
spatial and temporal scale of the analysis, that is, the spatial analytical unit, while the
second source corresponds to the choice of an appropriate methodological framework
capable of dealing with spatial dependences. Thus, comparing and generalizing results
can often be challenging. While the drivers conducive to varying spatial distributions
in air pollution exposure might differ across regional and local scales, managing the so-
cioeconomic risk factors is instrumental in reducing unequal air pollution exposure and
informing sustainable urban planning interventions. In this line of thinking, we argue that
urban planning interventions in Mexico City should be able to tackle the trade-offs between
socioeconomic, environmental and health impacts of air pollution, while fostering equality
and well-being primarily in informal settings.

4.3. Limitations and Future Research

In this study, we used observed (2017–2019) air pollutants concentrations together
with spatial statistics tools and analysis to derive spatial distribution patterns of NO2, CO,
O3, PM10 and PM2.5. This paper provides spatially explicit information on differentiated
risk exposure to air pollution in Mexico City. We acknowledge that the resulting spatial
patterns could have been improved by including long-term historical air pollution data.
However, ensuring data sufficiency across monitoring stations for extended time periods
was challenging in our case. An important limitation of our study concerns the spatial scale
of the socioeconomic data we used to perform the spatial autocorrelations. Although the
scale of AGEB was appropriate for this study given its fine resolution and homogeneity,
there are few studies which monitor individual-scale exposure to air pollution on a daily
basis [56].

The results presented here can be incorporated in further studies. For instance, dis-
eases associated with air pollution represent a serious public health issue with important
economic implications due to absences from productive work. Exploring differentiated
health and economic impacts of air pollution in urban systems can help to design risk
mitigation strategies specifically tailored to the needs and conditions of vulnerable individ-
uals and groups. The role of innovation (social and technological) in reducing pollutants
emissions is instrumental in reaching sustainability. However, innovation implementation
faces significant challenges given the lack of procedures that facilitate the systematic inte-
gration of multiple stakeholders preferences and interests [57]. The latter emphasizes the
increasing need to develop capacity building programs for effective participation in the
process of air pollution control.
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Climate change is expected to increase the frequency and severity of extreme weather
events such as heat waves, wildfires and droughts worldwide [2]. Consequently, interna-
tional and national efforts to meet the Sustainable Development Goals (SDGs), including
those related to air pollution and human well-being, could be dampened. Analyzing
the combined effects of climate change and air pollution is therefore critical to achieve
sustainable urban systems. Future environmental assessment studies for sustainable urban
planning need to also investigate the political and economic factors associated with air
pollution exposure and the associated cascading risks [16]. These studies should focus not
only on analyzing how risk exposure is negotiated but also how resources and mitigation
costs are distributed within socially complex and highly uncertain contexts [13]. These
types of studies can shed light on why pollutant sources have been historically placed
in underprivileged neighborhoods characterized by acute shortages of services and poor
access to local resources such as health care.

5. Conclusions

Environmental assessments for sustainable urban planning require providing evidence
on the existence of systematic disparities in the distribution of risk exposure. In this paper,
we propose that SES indicators will be expected to spatially cluster vulnerable individuals
and groups into heavily polluted areas. To test this hypothesis, we conducted a set of spatial
autocorrelations using 2017–2019 data from governmental records. This study demonstrates
the presence of socioeconomic disparities in air pollution exposure in Mexico City. Low-
socioeconomic-status populations located in the southern periphery were exposed to greater
concentrations of O3. Our spatial analyses for NO2 and CO shows, however, that greater
exposure was observed in the city’s center, the wealthiest core of Mexico City. Our results
agree with studies performed in other cities worldwide which argued that populations of
high socioeconomic status usually positioned themselves in the city center, where there is a
high vehicular flow and a great concentration of economic activities. Our findings highlight
the need for policy-driven approaches that take into consideration air pollution geographic
variability, meteorological variability, and the main drivers of socioeconomic inequality to
mitigate air pollution exposure and potential economic and health impacts.
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Figure A1. Moran’s scatterplots for (a) NO2, (b) CO and (c) O3 exposure by number of houses on
dirt floors (VPH_PISOTI) in Mexico City. Scatterplots consist of four quadrants: High-High (hotspots-
environmental inequalities), Low-High (outliers), Low-Low (coldspots) and High-Low (outliers).
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Table A1. 2017–2019 average relative humidity (%), temperature (◦C) and wind speed (m/s2) for the dry-cold (November to February), dry-warm (March to May),
and wet (June to October) seasons calculated in each of the 26 monitoring stations derived from the Meteorology Network (REDMET).

Station
Dry-Cold Dry-Warm Wet

RH
Mean ± SD

T ◦C
Mean ± SD

WS
Mean ± SD

RH
Mean ± SD

T ◦C
Mean ± SD

WS
Mean ± SD

Rh
Mean ± SD

T ◦C
Mean ± SD

WS
Mean ± SD

ACO 59.9 ± 22 17.6 ± 4.6 2.4 ± 1.4 47.1 ± 22.7 18.2 ± 5.6 2.6 ± 1.5 67.0 ± 18.1 17.3 ± 3.8 2.3 ± 1.3
AJU 72.1 ± 21.9 11.9 ± 4.2 2.5 ± 1.1 41.1 ± 18.5 17.7 ± 3.9 3.2 ± 1.8 63.6 ± 16.6 16.5 ± 2.9 2.6 ± 1.3
AJM 54.5 ± 20.6 17.0 ± 3.4 2.8 ± 1.5 62.7 ± 24.1 11.7 ± 5.5 2.9 ± 1.3 79.7 ± 16.5 12.0 ± 3.4 2.2 ± 1.0
BJU 54.0 ± 20.8 18.8 ± 3.8 1.8 ± 0.9 42.1 ± 19.6 19.5 ± 4.5 1.9 ± 1.0 61.3 ± 18.0 18.4 ± 3.3 1.8 ± 0.8

CHO 58.7 ± 20.6 17.7 ± 4.3 1.7 ± 1.1 45.6 ± 19.6 18.3 ± 5.2 1.8 ± 1.2 67.6 ± 16.0 17.2 ± 3.6 1.6 ± 1.1
CUA 59.3 ± 21.3 15.2 ± 3.6 2.0 ± 0.9 44.4 ± 19.3 16.3 ± 4.0 2.2 ± 1.0 68.8 ± 16.6 14.6 ± 3.1 1.9 ± 0.9
CUT 65.0 ± 24.2 16.8 ± 5.2 1.6 ± 0.9 52.8 ± 26.8 16.8 ± 7.0 1.7 ± 1.0 71.6 ± 19.8 16.8 ± 4.2 1.6 ± 0.8
FAC 55.6 ± 24.0 18.5 ± 5.7 1.8 ± 0.9 43.0 ± 22.9 19.1 ± 6.8 1.9 ± 1.0 63.5 ± 21.1 18.2 ± 4.9 1.8 ± 0.9

GAM 58.5 ± 21.0 19.2 ± 4.0 2.0 ± 1.3 46.1 ± 20.1 20.0 ± 4.7 2.1 ± 1.3 66.1 ± 17.8 18.8 ± 3.4 2.0 ± 1.2
HGM 51.1 ± 19.4 18.9 ± 3.7 1.9 ± 1.1 37.8 ± 17.9 19.9 ± 4.3 1.9 ± 1.2 57.4 ± 16.8 18.4 ± 3.3 1.9 ± 1.0
INN 69.0 ± 22.5 11.5 ± 5.5 1.6 ± 0.9 57.4 ± 23.3 11.4 ± 5.9 1.8 ± 1.1 79.1 ± 16.2 11.8 ± 3.7 1.4 ± 0.8
LAA 58.5 ± 23.4 18.2 ± 4.3 1.9 ± 0.9 44.2 ± 21.5 19.1 ± 5.1 1.9 ± 1.0 67.0 ± 20.1 17.8 ± 3.7 1.9 ± 0.9
MER 54.8 ± 20.9 18.8 ± 3.8 2.2 ± 1.0 42.1 ± 19.9 19.7 ± 4.5 2.2 ± 1.2 62.4 ± 17.6 18.3 ± 3.3 2.2 ± 1.0
MGH 50.8 ± 21.4 18.8 ± 3.9 2.1 ± 1.0 37.0 ± 19.2 19.8 ± 4.5 2.2 ± 1.1 59.2 ± 18.1 18.2 ± 3.3 2.0 ± 0.9
MON 59.1 ± 22.1 18.3 ± 5.0 2.2 ± 1.5 46.4 ± 21.9 18.9 ± 6.1 2.4 ± 1.6 67.3 ± 18.0 18.0 ± 4.2 2.0 ± 1.5
MPA 59.0 ± 20.1 16.2 ± 3.8 2.8 ± 1.3 44.2 ± 19.2 17.7 ± 4.4 3.3 ± 1.6 67.8 ± 14.8 15.3 ± 3.1 2.5 ± 1.1
NEZ 54.0 ± 19.8 17.8 ± 3.9 2.5 ± 1.3 42.1 ± 19.1 18.7 ± 4.6 2.6 ± 1.5 61.4 ± 16.3 17.2 ± 3.3 2.5 ± 1.3
PED 56.0 ± 21.3 18.1 ± 3.9 1.9 ± 0.9 42.4 ± 19.2 19.1 ± 4.5 2.2 ± 1.1 64.3 ± 17.9 17.6 ± 3.3 1.9 ± 0.8
SAG 48.3 ± 21.7 19.6 ± 4.1 1.6 ± 0.8 37.2 ± 20.1 20.3 ± 4.8 1.5 ± 0.8 56.3 ± 19.2 19.2 ± 3.5 1.6 ± 0.9
SFE 58.7 ± 21.8 16.0 ± 3.6 2.3 ± 1.0 43.8 ± 19.4 17.1 ± 4.3 2.7 ± 1.0 69.1 ± 16.7 15.4 ± 3.0 2.2 ± 0.9
TAH 54.5 ± 20.2 18.0 ± 4.2 2.1 ± 1.1 39.9 ± 19.4 19.0 ± 5.1 2.3 ± 1.4 61.4 ± 16.7 17.6 ± 3.6 2.0 ± 1.0
TLA 52.0 ± 19.9 18.0 ± 4.0 2.1 ± 1.1 39.7 ± 19.1 18.7 ± 4.8 2.1 ± 1.2 59.3 ± 16.5 17.6 ± 3.4 2.2 ± 1.1
UAX 55.6 ± 20.7 18.5 ± 4.1 2.0 ± 1.0 44.6 ± 20.0 19.0 ± 4.8 2.2 ± 1.2 62.9 ± 17.7 18.1 ± 3.5 1.9 ± 0.9
UIZ 56.7 ± 21.5 19.2 ± 3.7 2.2 ± 1.1 44.7 ± 20.7 20.2 ± 4.6 2.3 ± 1.3 64.0 ± 18.5 18.9 ± 3.5 2.2 ± 1.1
VIF 56.9 ± 22.6 18.5 ± 4.5 2.0 ± 1.1 44.7 ± 22.4 19.2 ± 5.4 2.0 ± 1.2 64.2 ± 19.4 18.0 ± 3.7 2.0 ± 1.1
XAL 51.3 ± 18.9 18.2 ± 3.6 2.9 ± 2.0 39.3 ± 18.3 19.0 ± 4.3 2.8 ± 2.1 57.7 ± 15.8 17.9 ± 3.1 2.9 ± 2.0

Average 57.0 17.5 2.1 42.9 18.2 2.3 65.1 17.1 2.1
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Table A2. Significant Pearson correlation coefficients (alpha = 0.05) among socioeconomic status indicators. SES indicators with positive coefficients r ≤ 0.6
were kept for further analyses. The selected SES indicators and associated correlation coefficients are shown in bold. IMU2010: urban marginalization index;
POBTOT: total population; POBFEM: female population; POBMAS: male population; P0A20 and P_3A5: children population younger than 5 years old; P_60YMAS:
population older than 60 years old; P_HOG_IND: indigenous population; PCON_DISC: population with disabilities; PSINDER: population without access to health
care; VPH_PISOTI: number of houses on dirt floors; VPH_S_ELEC: number of hoses without electricity; VPH_AGUAFV: number of houses without access to
potable water; VPH_NODRAIN: number of houses without a drainage system; VPH_NDACMM: number of houses lacking access to private motorized transport;
VPH_SINTIC: number of houses without access to communication technologies.

IMU2010 POBTOT POBFEM POBMAS P_0A20 P_3A5 P_60
YMAS

PHOG
_IND

PCON
_DISC PSINDER VPH_

PISOTI
VPH_S
_ELEC

VPH
_AGUAFV

VPH_
NODRAIN

VPH_NDA
CMM

VPH_SIN
TIC

IMU2010 1 0.3 0.3 0.4 0.5 0.5 0.0 0.6 0.4 0.5 0.6 0.4 0.4 0.4 0.4 0.5
POBTOT 0.3 1 1 1 0.9 0.9 0.8 0.7 0.8 0.9 0.4 0.3 0.2 0.3 0.9 0.5
POBFEM 0.3 1 1 1 0.9 0.9 0.8 0.7 0.8 0.9 0.4 0.3 0.2 0.3 0.9 0.5
POBMAS 0.4 1 1 1 0.9 0.9 0.8 0.7 0.8 0.9 0.4 0.3 0.2 0.3 0.9 0.6
P_0A20 0.5 0.9 0.9 0.9 1 0.9 0.7 0.7 0.8 0.9 0.5 0.4 0.3 0.4 0.8 0.6
P_3A5 0.5 0.9 0.9 0.9 0.9 1 0.7 0.7 0.8 0.9 0.5 0.4 0.3 0.4 0.9 0.6

P_60YMAS 0.0 0.8 0.8 0.8 0.7 0.7 1 0.3 0.7 0.7 0.1 0.1 0.0 0.1 0.7 0.3
PHOG_IND 0.6 0.7 0.7 0.7 0.7 0.7 0.3 1 0.6 0.7 0.6 0.5 0.5 0.6 0.6 0.6
PCON_DISC 0.4 0.8 0.8 0.8 0.8 0.8 0.7 0.6 1 0.8 0.4 0.3 0.2 0.3 0.8 0.5

PSINDER 0.5 0.9 0.9 0.9 0.9 0.9 0.7 0.7 0.8 1 0.5 0.4 0.2 0.3 0.9 0.6
VPH_PISOTI 0.6 0.4 0.4 0.4 0.5 0.5 0.1 0.6 0.4 0.5 1 0.6 0.5 0.6 0.4 0.5
VPH_S_ELEC 0.4 0.3 0.3 0.3 0.4 0.4 0.1 0.5 0.3 0.4 0.6 1 0.4 0.6 0.3 0.5

VPH_AGUAFV 0.4 0.2 0.2 0.2 0.3 0.3 0.0 0.5 0.2 0.2 0.5 0.4 1 0.6 0.2 0.3
VPH_NODRAIN 0.4 0.3 0.3 0.3 0.4 0.4 0.1 0.6 0.3 0.3 0.6 0.6 0.6 1 0.3 0.4
VPH_NDACMM 0.4 0.9 0.9 0.9 0.8 0.9 0.7 0.7 0.8 0.9 0.4 0.3 0.2 0.3 1 0.6

VPH_SINTIC 0.5 0.5 0.5 0.6 0.6 0.6 0.3 0.6 0.5 0.6 0.5 0.5 0.3 0.4 0.6 1
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Table A3. Value estimates for the nugget, psill and range parameters obtained in the theoretical
semivariograms and the models that best fit the observed data for each pollutant.

Estimate
Pollutant

PM2.5 PM10 O3 CO NO2

Nugget 5.3 134.4 0 0 0

Psill 254.6 1297.6 18.5 0.01 30.1

Range 59.9 10.8 21.4 26.4 4.2

Model Gaussian Materon Materon Lineal Materon

Appendix B

Table A4. Glossary of SES indicators.

SES Indicator Description

POBTOT Total population

POPMAS Total male population

POP_FEM Total female population

P_HOG_IND Population who declared speaking an indigenous language or
considered themselves as indigenous

POBAFRO Population who considers themselves Afro-Mexican or
Afro-descendant

PCON_DIS Population with disabilities that perform with great difficulties

P_60YMAS Population aging 60 to 130 years

P_0A2 and P_3A5 Population younger than 5 years old.

PSINDER Population without access to health services

VPH_PISOTI Number of houses with dirt floors.

VPH_S_ELEC Number of houses without electricity.

VPH_NODRAIN Number of houses without drainage connection

VPH_AGUAFV Number of houses without access to potable water

VPH_NDACMM Number of houses lacking access to private motorized transport

VPH_SINTIC Number of houses without technology

IMU2010
Compound index built on different inequality dimensions such as
access to education and health care, availability of first-order
goods, of and enjoyment of adequate housing rights

Glossary of Equations

1. Spatial Distribution of Air Pollutants

Equation (A1).

n

∑
i=1

λiγ
[
d
(
Si, Sj

)]
+ m = γ[d(So, Si)], i = 1, . . . , n ;

n

∑
i=1

λi = 1 (A1)

where n is the number of observations for each measured variable, m is the Lagrange
multiplier used to derive local maxima and minima of a function subjected to equality
constraints, λ is the weight given to each of the observations; in our case, we assumed all
observations have equal weights and γ is the semivariogram. The sum of all observation
weights must be equal to one. In Equation (A1), S is the measured variable at a given
sample point (monitoring station); in our case, the calculated annual 2017–2019 average
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concentrations for O3, NO2 and CO, and the 90th percentile of daily average concentrations
for PM10 and PM2.5; the subscript 0 is the estimation point (unknown) and the subscripts
i and j corresponded to the coordinates of the observed sample point. Finally, the term
d(Si,So) represented the distance between observed and unknown points estimated from
the semivariogram using Equation (A2):

Equation (A2).
γ[d(Si, So)] = var[z(Si)− z(So)] (A2)

2. Spatial Autocorrelation Index

Equation (A3).

IX,Y =
∑i ∑j ωij(xi − x)(yi − y)
√∑(xi − x)2√∑

(
yj − y

)2 (A3)

where Wij are the elements of the contiguity matrix (Queen); (xi − mean(xi)) and (yi −
mean(yi)) are normalized values of variables X and Y in location i and j.
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