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ON CONNECTIVITY AND ROBUSTNESS OF RANDOM GRAPHS

WITH INHOMOGENEITY

YILUN SHANG,∗ Northumbria University

Abstract

The study of threshold functions has a long history in random graph theory. It

is known that the thresholds for minimum degree k, k-connectivity, as well as

k-robustness coincide for a binomial random graph. In this paper, we consider

an inhomogeneous random graph model, which is obtained by including each

possible edge independently with an individual probability. Based on an

intuitive concept of neighborhood density, we show two sufficient conditions,

respectively, guaranteeing k-connectivity and k-robustness, which are asymp-

totically equivalent. Our framework sheds some light on extending uniform

threshold values in homogeneous random graphs to threshold landscapes in

inhomogeneous random graphs.
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1. Introduction

Classical binomial random graph theory founded by Gilbert [1] and Erdős and Rényi

[2, 3] in the late 1950s considers the random graph model G(n, pn) of all graphs over

the vertex set V = {1, 2, · · · , n}, in which each edge eij ∈ E appears independently

with probability pn. Here, E = {eij = eji : 1 ≤ i 6= j ≤ n} consists of all edges in the

complete graph Kn over V . The probability of a random graph in G(n, pn) holding

a graph property is typically understood in the large graph limit as n → ∞. One of

the most important results on random graphs, shown by Erdős and Rényi [3], is the
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2 Y. SHANG

following sharp threshold for the k-connectivity. Recall that a graph G is said to be

k-connected if it remains connected when any set of at most k − 1 vertices is deleted.

Theorem 1. [3] Let pn = 1
n (lnn + (k − 1) ln ln n + ωn) for an integer k ≥ 1. Then

lim
n→∞

P(G(n, pn) is k-connected) =

lim
n→∞

P(G(n, pn) has a minimum degree no less than k) =

 0, if ωn → −∞,

1, if ωn → ∞.

The above type of zero-one law is known to be universal for all monotone properties

in random graphs [4]. The theorem indicates that although having minimum degree

at least k is weaker than k-connectedness, both properties share the same asymptotic

threshold function (In this case, 1
n (lnn + (k − 1) ln ln n)).

Connectivity is a fundamental property of graph theory and is essential to many

distributed computation problems over large-scale complex networks. For example,

synchronization of oscillators or mobile agents is not possible without a connected

underlying communication network. To cope with undesirable disturbances such as

node faults and malicious attacks in realistic networked systems, a novel graph concept

known as k-robustness was recently introduced by LeBlanc et al. [5] together with a

class of distributed resilient consensus protocols called Weighted-Mean Subsequence

Reduced (W-MSR) algorithms. In these algorithms, a node (or vertex) calculates its

value in each iteration based on the current neighbors’ states and cuts the links with

some neighbors that have extreme values. The notion of k-robustness (see Section

2 for the definition) of the communication network has been proposed as a sufficient

condition to guarantee the global consensus of the network against malicious neighbors.

This notion has been found central in a number of related network control protocols;

see e.g. [6, 7, 8]. In this context, a sufficiently connected but inadequately robust

network is not able to deliver the consensus result. As will be seen below, k-robustness

is a stronger property than k-connectivity. Interestingly, Zhang et al. [9] showed that

Theorem 1 holds verbatim for k-robustness.

Theorem 2. [9] Let pn = 1
n (lnn + (k − 1) ln ln n + ωn) for an integer k ≥ 1. Then

lim
n→∞

P(G(n, pn) is k-robust) =

 0, if ωn → −∞,

1, if ωn → ∞.
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In other words, a random graph in G(n, pn) becomes k-robust as soon as it becomes

k-connected (and as soon as its last vertex of degree k − 1 vanishes).

The aforementioned threshold 1
n (lnn+(k− 1) ln ln n) is obviously precise and plain

(note that Theorem 1 is a weaker statement than the result in [3]). However, would

there be a possibility to zoom in and examine details of the threshold landscape (across

all edges)? A natural way is to introduce unequal edge probabilities. To this end, we in

this paper consider an inhomogeneous random graph with a list of edge probabilities

pn = {pn(eij)}1≤i<j≤n by including each edge eij = eji of Kn independently with

probability pn(eij). We denote this inhomogeneous random graph model by G(n,pn).

As an effort to diversify and extend previous results regarding binomial random

graphs, it is not surprising that G(n,pn) model has been studied by a few researchers

across a relatively long time period under different names, e.g., generalized binomial

random graphs [10, 12], anisotropic random graphs [11, 15], and edge-independent

random graphs [13, 14]. We mention that Chapter 9 of the monograph [15] presents

an updated survey of connectivity related results for this and other inhomogeneous

random graphs. In the seminal work [16], the authors systematically analyze a very

general class of inhomogeneous random graphs and networks that have been studied

during the recent decade.

In this paper, we attempt to generalize the threshold result presented in Theorem 1

for both k-connectivity and k-robustness by considering the G(n,pn) model and shed

some light on the shape of the threshold landscape. We show two sufficient conditions

for k-connectivity and k-robustness, which are asymptotically equivalent as n → ∞.

It is hoped that the approach developed in the present work could facilitate relevant

research in this direction on other topics in random graphs. The main results of this

paper and their implications are discussed in Section 2 and proofs are given in Section

3.

2. Statements of main results and discussions

By convention, we will use the standard Landau asymptotic notations such as

O(·), o(·),Θ(·),∼ etc. throughout the paper; see e.g. [17]. For a simple, undirected

graph G = (VG, EG) with the vertex set VG = {1, 2, · · · , n} and the edge set EG, let
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NG(i) = {j ∈ VG : eij ∈ EG} be the set of neighbors (i.e., open neighborhood) of vertex

i ∈ VG. The degree of vertex i is denoted by dG(i) = |NG(i)|. Let NG(i) = {i}∪NG(i)

be the closed neighborhood of i. We also define the neighborhood of a set S ⊆ VG as

NG(S) = {j ∈ VG : eij ∈ EG for some i ∈ S}. As mentioned in the introduction, the

following notion of graph robustness was put forward in [5] to analyze the convergence

of W-MSR algorithms in resilient control in the presence of adversaries.

Definition 1. [5] (a) For an integer k ≥ 1 and a graph G = (VG, EG), a subset S ⊆ VG

is called k-reachable if there is some vertex i ∈ S satisfying |NG(i)\S| ≥ k. (b) A graph

G is called k-robust if for any two nonempty, disjoint sets in VG, at least one of them

is k-reachable.

From Definition 1, it is not difficult to see that k-robustness is a stronger property

compared to k-connectedness in general. In fact, if a graph G is k-connected, for any

two nonempty disjoint sets in VG at least one of them has k neighbors (collectively)

outside of the set itself. This does not guarantee k-reachability of either of these sets

for k ≥ 2. Generally, we have the following relationship between the three properties:

{k-robustness} ⊆ {k-connectedness} ⊆ {minimum degree k}, and for the binomial

random graph G(n, pn) they share the same threshold function pn = 1
n (lnn + (k −

1) ln ln n).

To accommodate the inhomogeneous random graph setting, we consider the neigh-

borhood density for a vertex i ∈ V with respect to a set S ⊆ V . For i ∈ V \S, define

ρn(i, S) = |S|−1
∑

j∈S pn(eij). This quantifies the expected fraction of neighbors of i

inside S. Let pn = 1
n (lnn+(k−1) ln ln n+ωn), where k ≥ 1 is an integer and ωn → ∞

as n → ∞. For a constant β ≥ 1, define

ρβ
n(i, S) =

1
|S|

∑
j∈S

min{pn(eij), βpn}. (1)

A sufficient condition ensuring k-connectivity and minimum degree k is formalized in

the following.

Theorem 3. Suppose that there is some constant β ≥ 1 and an integer k ≥ 1 satisfies

min
1≤i≤n

min
S: i6∈S

|S|≥bn/2c

ρβ
n(i, S) ≥ pn (2)
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for all large n. Then

lim
n→∞

P(G(n,pn) is k-connected)

= lim
n→∞

P(G(n,pn) has a minimum degree no less than k) = 1.

Theorem 3 is a generalization of the “one” part of the zero-one law in Theorem

1, which can be seen by taking pn(eij) ≡ pn for all distinct i, j ∈ V in Theorem 3.

Roughly speaking, Theorem 3 says if the edge probabilities are large enough, then the

random graph G(n,pn) is sufficiently connected with high probability. The quantity

ρβ
n(i, S) can be viewed as a capped neighborhood density with each potential edge

contributing no more than βpn. If (2) holds for a constant β, then it holds for any

larger β. Moreover, if maxi,j∈V pn(eij) ≤ βpn, then ρβ
n(i, S) = ρn(i, S) and (2) reduces

to

min
1≤i≤n

min
S: i6∈S

|S|≥bn/2c

ρn(i, S) ≥ pn (3)

concerning the neighborhood density. Since k-connectivity and minimum degree no

less than k are monotonic properties, without loss of generality we will only present

the proofs in Section 3 under this maximum probability condition.

To appreciate the above presented result, we consider an example of non-trivial edge

probabilities satisfying (2).

Example 1. To build an inhomogeneous random graph G(n,pn), we consider the

following assignment probabilities. For 1 ≤ i < j ≤ bnαc for some α ∈ (0, 1), let

pn(eij) = 0. For all other 1 ≤ i < j ≤ n, let pn(eij) = 1
n (lnn + (k − 1) ln ln n + ωn)

with k ≥ 1 and ωn → ∞. Let β = 1.

Notice that for any S ⊆ V with |S| ≥ bn/2c and i ∈ V \S,

ρβ
n(i, S) ≥ 1

|S|

(
nα · 0 + (|S| − nα) · lnn + (k − 1) ln ln n + ωn

n

)
≥ lnn + (k − 1) ln ln n + ω′

n

n
,

where ω′
n → ∞ as n → ∞. It is easy to see that (2) is satisfied and hence by Theorem

3 G(n,pn) is k-connected a.a.s. (i.e., asymptotically almost surely [17]). Loosely

speaking, this example indicates that with a sub-linear order portion of the graph

being arbitrarily sparse and the rest of the graph k-connected, the entire graph can

still be k-connected a.a.s.



6 Y. SHANG

The next example looks into a classical result regarding connectivity of G(n,pn) by

Alon, which is sharp up to a multiplicative factor c.

Example 2. It is known that [12] for every constant b > 0 there exists a constant

c > 0 so that if, for any ∅ 6= S ⊂ V ,

∑
j∈S, i∈V \S

pn(eij) ≥ c lnn, (4)

then

P(G(n,pn) is connected) ≥ 1 − n−b.

By dividing both sides of the condition (4) by |S|, we can rewrite it as

∑
i∈V \S

ρn(i, S) ≥ c lnn

|S|
. (5)

Write ρn(i) = (n − 1)−1
∑

j∈V \{i} pn(eij) for the neighborhood density of a vertex

i ∈ V in the entire graph. Firstly, taking S = V \{i}, the condition (3) becomes

mini∈V ρn(i) ≥ 1
n (lnn + ωn) when k = 1, while (5) reduces to mini∈V ρn(i) ≥ c

n lnn.

As c is unknown, it is not difficult to see that these two conditions are incomparable in

general. Secondly, the form of condition (5) takes a sum over all i 6∈ S, which mitigates

the risk of uneven contribution of edge probabilities. Our condition (2) considers a

single vertex i with minimum neighborhood density. Therefore, we have to consider a

cap on the contribution to neighborhood density. Finally, for a given random graph

G(n,pn), the condition (4) is not always easy to check compared to (2) due to the

undetermined constant c.

Next, we present our result for robustness.

Theorem 4. Suppose that there is some constant β ≥ 1 and an integer k ≥ 1 satisfies

the condition (2) for all large n. Then

lim
n→∞

P(G(n,pn) is k-robust) = 1.

Several remarks are in order. Firstly, Theorem 4 can be viewed as a generalization

of the “one” part of the zero-one law Theorem 2 for robustness of binomial random

graphs, which can be recovered by taking pn(eij) ≡ pn for all distinct i, j ∈ V in

Theorem 4.
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Secondly, the same condition is adopted here as in Theorem 3 and analogous com-

ments underneath it are applicable here. That said, k-robustness may be essentially

stronger than k-connectedness in the current setting as we are not able to match a

“zero” part statement. As an example (which appeared in [9]) of a heterogeneously

connected graph, we consider the union graph G of a complete bipartite graph Kn/2,n/2

and a perfect matching between the two partite sets. G has connectivity n/2 but is just

1-robust, suggesting a gap might exist in the thresholds for connectivity and robustness

in G(n,pn) model.

Finally, it would be useful to perform some computational experiments to vouch

for the above conjecture. Unfortunately, as shown in [9, 18] determining robustness

is significantly harder than checking connectivity, namely, NP-hard versus P in time

complexity. The most current robustness checking algorithm can only effectively handle

graphs of order about n = 30.

Example 1. (revisited) For the model G(n,pn) set up in Example 1, we can argue

in the same way and show that G(n,pn) is not only k-connected but k-robust a.a.s.

by Theorem 4.

3. Proofs of Theorem 3 and Theorem 4

In this section, we present the proofs of our main results. As commented above, we

will assume maxi,j∈V pn(eij) ≤ βpn for some constant β ≥ 1 and that the condition

(3) holds.

Proof of Theorem 3. Here, we will actually rely on the following inequality instead

of (3):

min
1≤i≤n

min
S: i6∈S

|S|≥bn−k+1
2 c

ρn(i, S) ≥ pn. (6)

The minimum in condition (6) has the same asymptotic behavior as that in condition

(3). In fact, although b(n − k + 1)/2c < bn/2c for any k ≥ 1, the difference between

the two terms is O(1). Hence, it can only make a difference of order O(n−1) to the

right-hand side of (3) or (6).

For an integer d ≥ 0, let Xd be the random variable counting the number of vertices

in G(n,pn) having degree d. Write Nn(i) := NG(n,pn)(i) and Nn(i) := NG(n,pn)(i),
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respectively, for the open and closed neighborhood of vertex i in Gn,pn
. Accordingly,

we use N∗
n(i) and N

∗
n(i) to represent a potential instance of an open and closed

neighborhood of i, respectively. By the construction of our inhomogeneous random

graph model, we have

EXd =
n∑

i=1

∑
N∗

n(i):|N∗
n(i)|=d

∏
j∈N∗

n(i)

pn(eij)
∏

j∈V \N
∗
n(i)

(1 − pn(eij)).

Capitalizing on the neighborhood density condition (6) and the estimate for binomial

coefficient
(
n
d

)
= (1 + o(1))nd/d! for fixed d as n → ∞, we obtain

EXd ≤
n∑

i=1

∑
N∗

n(i):|N∗
n(i)|=d

βdpd
ne−|V \N

∗
n(i)|·ρn(i,V \N

∗
n(i))

≤n

(
n − 1

d

)
βdpd

ne−(n−1−d)pn

≤(1 + o(1))n · nd

d!
βd (lnn)d

nd
· e−ωn

n(lnn)k−1

=(1 + o(1))
βd

d!
(lnn)de−ωn

(lnn)k−1
. (7)

It follows from (7) that

k−2∑
d=0

EXd ≤(1 + o(1))
e−ωn

(lnn)k−1

k−2∑
d=0

βd (lnn)d

d!

≤(1 + o(1))
e−ωn

lnn
(k − 1)βk−2 (8)

and

EXk−1 ≤ (1 + o(1))
βk−1

(k − 1)!
e−ωn . (9)

Since k and β are fixed constants and ωn → ∞ as n → ∞, by (8) and (9) we obtain∑k−2
d=0 EXd = o(1) and EXk−1 = o(1). Let dmin

n represent the minimum degree of

G(n,pn). Then P(dmin
n ≥ k) → 1 as n → ∞ by Markov’s inequality.

Notice that

P(G(n,pn) is k-connected)

≥P(G(n,pn) is k-connected| dmin
n ≥ k) · P(dmin

n ≥ k).

To show Theorem 3, it suffices to prove

lim
n→∞

P(G(n,pn) is k-connected| dmin
n ≥ k) = 1. (10)
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Given two subsets S1, S2 ⊆ V satisfying 0 ≤ |S1| ≤ k − 1 and k − |S1| + 1 ≤ |S2| ≤

d 1
2 (n − |S1|)e, consider an event

E(S1, S2) = {S2 is a connected component of G(n,pn)\S1}.

Notice that if G(n,pn)\S1 is not connected, it must contain a component having order

at most 1
2 (n − |S1|). In the following, we will bound the probability P12 that there

exist two vertex sets S1 and S2 such that the event E(S1, S2) occurs. For this purpose,

without loss of generality, we assume S1 is minimal for the given S2. This implies that

each vertex in S1 is adjacent to at least one vertex in S2 [Otherwise S1 can be made

smaller by removing a vertex without neighbors in S2]. Moreover NG(n,pn)(S2) = S1

since S2 is a component. Let |S1| = s1 and |S2| = s2. Therefore, we have

P12 ≤
k−1∑
s1=0

(n−s1)/2∑
s2=k−s1+1

∑
S1: |S1|=s1

S1⊆V

∑
S2: |S2|=s2

S2⊆V

∑
T⊆S2

T is a spanning tree of S2

 ∏
eij∈T

pn(eij)



·

 ∑
E∗

n(S1,S2): |E∗
n(S1,S2)|=s1

∏
i: i∈S1

j∈S2

pn(eij)

 ·
∏

eij∈E∗
n(V \(S1∪S2),S2)

(1 − pn(eij))

≤
k−1∑
s1=0

(n−s1)/2∑
s2=k−s1+1

∑
S1: |S1|=s1

S1⊆V

∑
S2: |S2|=s2

S2⊆V

∑
T⊆S2

T is a spanning tree of S2

(βpn)s2−1

·

 ∑
E∗

n(S1,S2): |E∗
n(S1,S2)|=s1

(βpn)s1

 · e−
P

eij∈E∗
n(V \(S1∪S2),S2) pn(eij), (11)

where En(S1, S2) = {eij ∈ G(n,pn) : i ∈ S1, j ∈ S2} is the random edge set between

two sets S1 and S2, and E∗
n(S1, S2) represents a potential instance accordingly. Using

the neighborhood density assumption (2) and the relation x − dx/2e = bx/2c for any

nonnegative integer x, we have

e
−

P

eij∈En(V \(S1∪S2),S2) pn(eij) = e−
P

j∈S2

P

i∈V \(S1∪S2) pn(eij) ≤ e−s2(n−s1−s2)pn .

Since S1 is minimal for the given S2, S2 must be connected. There are at most ss2−2
2

different labelled spanning trees over S2 by Cayley’s formula. Hence, the right-hand
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side of (11) is upper bounded by

k−1∑
s1=0

(n−s1)/2∑
s2=k−s1+1

(
n

s1

)(
n

s2

)
ss2−2
2

(
s1s2

s1

)
(βpn)s1+s2−1 · e−s2(n−s1−s2)pn

=:A1 + A2, (12)

where A1 represents the value for s1 = 0 and A2 the sum for 1 ≤ s1 ≤ k − 1.

We first estimate A1. Recall k ≥ 1 and
(

n
s2

)
≤ (ne/s2)s2 . We have

A1 =
n/2∑

s2=k+1

(
n

s2

)
ss2−2
2 (βpn)s2−1e−s2(n−s2)pn

≤(βpn)−1
ln n∑

s2=k+1

(
neβpne−(n−s2)pn

)s2

+ (βpn)−1

n/2∑
s2=1+ln n

(
neβpne−(n−s2)pn

)s2

:=A11 + A12.

The term neβpne−(n−s2)pn in the above sums is less than 1. Using the definition of pn

and k ≥ 1, we obtain

A11 ≤ n

β lnn
· (lnn) ·

(
neβpne−(n−ln n)pn

)k+1

=
n

β

(
(1 + o(1))eβ(lnn)e−(1+o(1)) ln n

)k+1

= o(1)

and

A12 ≤ n

β lnn

n/2∑
s2=1+ln n

(
neβpne−(n/2)pn

)s2

≤ n

β lnn

∞∑
s2=1+ln n

(
(1 + o(1))eβ(lnn + (k − 1) ln ln n + ωn)

· e−
ln n+(k−1) ln ln n+ωn

2

)s2

=(1 + o(1))
n

β lnn

(
(1 + o(1))eβ · lnn + (k − 1) ln ln n + ωn

e
ln n+(k−1) ln ln n+ωn

2

)1+ln n

=o(1).

Therefore, A1 = A11 +A12 = o(1) as n → ∞. Similarly, A2 for k ≥ 2 can be estimated
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as follows.

A2 =
k−1∑
s1=1

(n−s1)/2∑
s2=k−s1+1

(
n

s1

)(
n

s2

)
ss2−2
2

(
s1s2

s1

)
(βpn)s1+s2−1 · e−s2(n−s1−s2)pn

≤(βpn)−1
k−1∑
s1=1

(n−s1)/2∑
s2=k−s1+1

(ne2s2βpnes2pn)s1 · (neβpne−(n−s2)pn)s2

=(βpn)−1
k−1∑
s1=1

ln n∑
s2=k−s1+1

(ne2s2βpnes2pn)s1 · (neβpne−(n−s2)pn)s2

+ (βpn)−1
k−1∑
s1=1

(n−s1)/2∑
s2=1+ln n

(ne2s2βpnes2pn)s1 · (neβpne−(n−s2)pn)s2

:=A21 + A22,

where the estimate
(
n
s

)
≤ (ne/s)s is used in the first inequality. Using the definition

of pn we write pn = 1
n (lnn + (1 + o(1))(k − 1) ln ln n) = (1 + o(1)) ln n

n . Therefore, we

derive

A21 =O(1) · n

lnn

k−1∑
s1=1

ln n∑
s2=k−s1+1

(
(1 + o(1))βe2s2(lnn) · n

s2
n (lnn)

(1+o(1))s2(k−1)
n

)s1

·
(
(1 + o(1))βe(lnn) · n

s2
n −1(lnn)(1+o(1))(k−1)(

s2
n −1)

)s2

=O(1) · n

lnn

k−1∑
s1=1

(O(lnn))2s1 ·
ln n∑

s2=2

(
O

(
lnn

n

))s2

≤nk(lnn)2k ·
(

lnn

n

)2

= o(1),

where in the second equality above we note the limit limn→∞(n lnn)
c ln n

n = 1 for any

positive constant c and s2 ≤ lnn. Likewise,

A22 =O(1) · n

lnn

k−1∑
s1=1

(n−s1)/2∑
s2=1+ln n

(
(1 + o(1))βe2s2(lnn) · n

s2
n (lnn)

(1+o(1))s2(k−1)
n

)s1

·
(
(1 + o(1))βe(lnn) · n

s2
n −1(lnn)(1+o(1))(k−1)(

s2
n −1)

)s2

=O(1) · n

lnn

k−1∑
s1=1

(
O

(
n

3
2+o(1)

))s1

·
(n−s1)/2∑
s2=1+ln n

(
O

(
n− 1

2+o(1)
))s2

≤ nk

lnn

(
n

3
2+o(1)

)k

·
(
n− 1

2+o(1)
)1+ln n

= o(1),

where in the second equality above we note the relationship (lnn)c = no(1) for any
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positive constant c and s2 ≤ n/2. Therefore, A2 = A21 + A22 = o(1) as n → ∞. It

follows from (12) that P12 ≤ A1 + A2 = o(1).

Recall that G(n,pn)\S1 contains a component having order no more than 1
2 (n−|S1|)

if it is not connected. Moreover, when dmin
n ≥ k, any vertex in S1 has no less than

k − |S1| + 1 neighbors outside S1. Recalling the definition of the event E(S1, S2), we

know that the probability P12 = o(1) implies that if dmin
n ≥ k, then a.a.s. G(n,pn) is

k-connected. Hence, (10) holds true. The proof of Theorem 3 is completed. ¤
Proof of Theorem 4. Arguing similarly as in the beginning of Theorem 3, we here

will rely on the following inequality instead of (3):

min
1≤i≤n

min
S: i6∈S

|S|≥dn/2e−k+1

ρn(i, S) ≥ pn. (13)

In view of Definition 1, it suffices to show P(Any nonempty set S ⊆ V with |S| ≤

bn/2c is k-reachable in G(n,pn)) → 1 as n → ∞.

Let P0 be the probability that some set of size no more than bn/2c is not k-reachable.

Furthermore, let Pl represent the probability that some set of size l ≥ 1 is not k-

reachable in G(n,pn). Fix a set S ∈ V with |S| = l. For any vertex i ∈ S,

P(i has less than k neighbors in V \S)

=
k−1∑
r=0

∑
Nn(i)\S: |Nn(i)\S|=r

∏
j∈Nn(i)\S

pn(eij)
∏

j∈V \(S∪Nn(i))

(1 − pn(eij))

≤
k−1∑
r=0

∑
Nn(i)\S: |Nn(i)\S|=r

(βpn)re−|V \(S∪Nn(i))|·ρn(i,V \(S∪Nn(i)))

≤
k−1∑
r=0

(
n − l

r

)
(βpn)re−(n−l−r)pn ,

where we used the neighborhood density condition (13). Since
(
n−l

r

)
≤ nr, the above

probability is bounded from above by k (nβpnepn)k−1 · e−(n−l)pn . By independence,

the probability that S is not k-reachable is at most
(
k (nβpnepn)k−1 · e−(n−l)pn

)l

.

Therefore,

Pl ≤
(

n

l

) (
k (nβpnepn)k−1 · e−(n−l)pn

)l

≤
(

ekn

l
(nβpnepn)k−1 · e−(n−l)pn

)l

. (14)
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Using the assumption of pn, the right-hand side of (14) equals(
ek

l
(β(lnn + (k − 1) ln ln n + ωn)epn)k−1 1

(lnn)k−1
elpn−ωn

)l

≤
(
Cϕ(l)e−ωn

)l
, (15)

where C > 0 is a constant and the function ϕ(l) := elpn/l. A quick study of ϕ, when

seen as a function of a real variable in the interval [1, n/2], shows that it is convex and

hits its minimum at p−1
n . Thus its maximum is either ϕ(1) = epn or ϕ(n/2) = O

(
1√
n

)
.

It follows from (14) and (15) that Pl ≤ (Ce1−ωn)l.

Finally, an application of the union bound yields

P0 ≤
n/2∑
l=1

(
Ce1−ωn

)l ≤
∞∑

l=1

(
Ce1−ωn

)l
=

Ce1−ωn

1 − Ce1−ωn
= o(1)

as n → ∞, i.e., ωn → ∞. This completes the proof of Theorem 4. ¤
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