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ABSTRACT 

 Servicemembers who are injured, particularly in combat, often require rapid 

evacuation and transport through contested environments. Using unmanned autonomous 

vehicles (UAV) may help reduce the personnel required to move patients to points of 

care, thereby reducing the potential for further casualties. However, the UAV and the 

original patient may still be subject to detection by enemy agents in the area. Safely 

transporting a casualty in as little time as possible greatly improves survivability. Current 

treatment of the problem of moving casualties involves manned medical evacuation 

(MEDEVAC) missions, often with armed escorts. Autonomous evacuation will likely 

involve simple shortest path solutions to move from one point to another; however, this 

will not help protect from adversaries. Our model uses network flow optimization to best 

determine a safe path for autonomous casualty evacuation to follow, while avoiding 

adversaries and their attacks, and delivering a patient in a timely fashion. This model 

synchronizes departure and travel times of two echelons of vehicles to effect patient 

transfer for extraction to definitive care. With two scenarios, our results prove the 

concept of this model, successfully delivering patients with synchronized efforts, within 

time limits, and solving the problem in little computational time. 
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Executive Summary

With a shift in U.S. Navy and Department of Defense focus to distributed operations in
contested environments, all logistics considerations, including the movement of injured
members, need to adjust to the realities of the newer environment. For patient evacuation,
time constraints and safety remain top concerns, and seeking a shortest route through
uncontested areas would allow better chances for patient and vehicle survivability. As
we continue to make improvements in autonomous vehicles, the opportunity to use these
vehicles for logistics and casualty/medical evacuation (CASEVAC/MEDEVAC) reduces the
number of additional personnel placed in harm’s way. Successful CASEVAC/MEDEVAC
requires multiple echelons of care and multiple modes of travel to move between them.

Our model proposes to link the echelons of vehicles, optimizing a shortest path for each,
to effect transfer of patients. Borrowing elements from classical versions of traveling sales-
person problems, we essentially propose a capacitated team orienteering problem with time
windows and synchronization (CTOPTWS) as a mixed integer linear program using network
flows. Our objective is to maximize the number of patients transferred while constraints re-
strict routes, times, and vehicles used. Outputs recommend routes and arrival and departure
times for vehicles.

Testing on multiple networks of increasing complexity, we prove the concept of this model to
properly match the echelons of vehicles required to transport patients. In all cases, vehicles
from both sides synchronize at the collection point (node) to transfer patients within the
time window determined. The model is able to solve these problems in negligible time.

This work opens a path for further exploration and elaboration of this field of optimization
with respect to MEDEVACs. The first step could be extending the network for further proof
of concept, followed by testing of real-world data with continued evaluation of the possible
improvements in the model.
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CHAPTER 1:
Introduction

Current strategic guidance and Department of Defense (DOD) focus has shifted to lines
of effort in geographic areas that differ from recent experiences in Iraq and Afghanistan.
Today’s focus is on distributed operations in contested environments, changing the total
logistics considerations, including the evacuation of injured or ill members by dedicated
medical evacuation (MEDEVAC) or non-medical casualty evacuation (CASEVAC) vehicles
(Jensen 2015; Department of the Army 2019). To assist with these changes, the DOD is
examining ways in which autonomous systems can be employed to support our distributed
units (Bornstein 2015). In this thesis, we examine the ramifications of these evolving strategic
considerations with respect to successfully identifying routes to coordinate multiple vehicles
involved in moving patients from point of injury (POI) to increasing levels of care, with
eventual delivery to a medical treatment facility (MTF).

1.1 Problem Statement
Service members in the U.S. military routinely engage in activities that, by their nature, may
be dangerous; whether training, travelling, or performing kinetic exercises. One aspect that
helps enable service members to continue these activities is the surety that they receive the
required clinical care necessary for whatever may befall them. The medical care promised
to our service members begins with the level of self-care and/or buddy aid (Role 1 care),
which happens at the POI. From that point, the patient is evacuated to increasing levels of
care (Role 1 - Role 4), as indicated by the clinical situation, with the ultimate hope that the
patient can be returned to duty from the lowest level possible, as in Figure 1.1.
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Figure 1.1.  Display of different levels of care (Roles) in military medicine 
with example theater-level locations and capabilities available. Source: 
Department of the Navy (2013).

At each level of care, more service are available for the patient; in the worst cases the focus
would be on stabilizing the patient sufficiently to be transported to the next level. A typical
diagram of movement through the different levels of care is shown in Figure 1.2. Some of
the key issues with this method, as illustrated in the diagram, is that each of the vehicles,
as well as the multiple litter bearer teams involved, place more service members in harm’s
way, while removing multiple war-fighters from the fight. Autonomous systems could help
reduce the human capital involved, but will require some measure to ensure vehicle actions
are properly synchronized for patient transfer.

2



Figure 1.2. Diagram of patient movement from point of injury through 
successive levels of care, making use of multiple types of air and ground 
ambulances. Source: Department of the Army (2019). 

The Joint Medical Planning Tool (JMPT) already provides all services with a planning
tool for locating needed resources at appropriate locations (POC 2013). Through its suite
of software, JMPT models casualty estimates along with locations for services and sup-
plies/personnel needed at those locations, simulating the interactions of these pieces for a
commander’s view of outcomes of various decisions. However, this robust tool does not
address the optimal routing of vehicles from point to point to effect these movements, a
shortfall we address in this work.

1.2 Case Scenario
Our experiment envisions three (3) casualties at our POI. They require first-echelon trans-
portation from POI to the casualty collection point (CCP), which we assume to be ground
transportation by human litter bearers or autonomous vehicle. The CCP is located suffi-
ciently distant from the POI for us to assume security of the location from adversary action.
The second echelon transportation is located at a location intermediate between the CCP
and the MTF. We assume the second echelon transport to be an aerial vehicle (human

3



piloted or autonomous), and significantly faster than the ground transport. For the purposes
of our initial experiments, the different echelons of vehicles may have different or identical
capacities for carrying casualties. We assume that the total carrying capacities are sufficient
for each echelon to meet the demand.

1.3 Proposed Solution
Our model proposes to link the two echelons of vehicles, after optimizing the path of each
to synchronize in time at an optimal CCP, for effective transfer of the patient(s) and eventual
transport to an MTF. It is likely that any particular planner is only responsible for a very
limited number of potential CCPs. As network complexity increases, computational time
is expected to increase and optimality may not be possible. However, this is a relatively
small network problem to solve, with potentially many transshipment nodes, so an exact
algorithm may be sufficient to reach optimality.

In essence, we propose a capacitated team orienteering problem with time windows and
synchronization (CTOPTWS). We use a relatively small network for proof of concept
purposes, increase to moderate complexity with limited adversary interdiction and propose
future work to further evaluate this field.

4



CHAPTER 2:
Background

In this Background chapter, we present a brief overview of the field of optimization, with
some focus given to specific network routing problems known as Traveling Salesperson,
Vehicle Routing and Orienteering.

2.1 The Traveling Salesperson Problem
Within the realm of routing problems in network flows, one of the most famous and
foundational examples is the travelling salesperson problem (TSP) (Ahuja et al. 1993). At
its core, this family of problems involves routing a salesperson from an origin to all of the
identified customers in the network, returning to the point of origin. The objective is to find
the shortest route while visiting each customer exactly once during the course.

This can be represented according to the work of Miller et al. (1960), one of several
formulations for the TSP, with a graph, 𝐺, consisting of 𝑖, 𝑗 ∈ 𝑉 vertices/nodes and
(𝑖, 𝑗) ∈ 𝐸 edges, with 𝑥𝑖 𝑗 as the decision variable and 𝑐𝑖 𝑗 as the cost (or distance) parameter
for travel from 𝑖 to 𝑗 . The objective is to minimize the total cost of travel on the network, as
in Equation (2.1).

min
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗≠𝑖; 𝑗=1

𝑐𝑖 𝑗𝑥𝑖 𝑗 . (2.1)

Constraints ensure that each city is only visited once, and that sub-tours do not exist (Miller
et al. 1960). Figure 2.1 displays the results of the simple network considered in Miller et al.
(1960), with the origin city indicated by node 1 and only the distances of the chosen route
displayed.

5



Figure 2.1. Graphic representation of solution to classic TSP. Adapted 
from Miller et al. (1960).

At this point, we begin to see some of the complexity issues with these types of problems.
As Dantzig and Ramser (1959) point out, on a symmetric network, "the total number of
different routes through 𝑛 points is 1

2𝑛!." For 𝑛 = 10, a relatively small network, the possible
number of routes would equal 1, 814, 400, and computational time for total enumeration
would increase exponentially with larger networks.

Dantzig and Ramser (1959) go on to describe variants or generalizations of the TSP, in
which a fleet of trucks is sent to deliver gasoline to customers, meeting all demand while
minimizing travel distance. Ilavarasi and Joseph (2014) provide a good survey of TSPs
over the years and describe variants of the TSP involving profit-seeking and time windows.
These would then lead to further generalizations.

2.2 The Vehicle Routing Problem
Considered a generalization of the TSP, the vehicle routing problem (VRP) considers routing
a fleet of multiple vehicles, 𝑚 ∈ 𝑀 , with certain capacities, to every customer (node) in
the network (Ahuja et al. 1993). Customers are assigned to the vehicles in the fleet, and
each vehicle is then assigned to the shortest route to reach all of its customers. The first big
change from the TSP is the additional index of the fleet of vehicles, such that the objective

6



function would become like that in Equation (2.2).

min
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗≠𝑖; 𝑗=1

∑︁
𝑚∈𝑀

𝑐𝑖 𝑗𝑥
𝑚
𝑖 𝑗 (2.2)

Constraints for the VRP, like the TSP, ensure that customers are only visited once, by one
vehicle, and that sub-tours are eliminated (Ahuja et al. 1993; Magnanti 1981). Additional
constraints lead to some of the common variants encountered in VRPs. Toth and Vigo (2014)
describe several variants within the family of VRP interesting to our endeavors, including
the capacitated VRP, in which vehicles are limited in carrying capacity, in turn restricting
which nodes can be visited; Dial-a-Ride, in which passengers are picked up and delivered
from/to sites other than the depot; VRP with time windows, in which nodes must be serviced
within certain time frames; prize-collecting VRP, in which one constraint ensures at least
a minimum prize is collected; distance constrained VRP, in which the total route cannot
exceed a distance/time; and the synchronized VRP, in which routing of multiple vehicles
needs to be coordinated for arrival at the same place and time. An extension of interest
in this work is the two-echelon VRP, in which one echelon of vehicle connects the depot
to an intermediate/satellite and the second echelon vehicle connects the satellite to the
customer (Crainic et al. 2009; Perboli et al. 2011). More recently, the problem has found
new scientific interest from applications that involve operations of autonomous vehicles
and drones (see, e.g., Faiz et al. (2020), Faiz et al. (2022), among others for operations
in humanitarian logistics). Finally, Brown et al. (2013) describe a very unique VRP with
aspects of prize-collecting, multiple depots, multiple cargoes, and fleet of vehicles with
different characteristics.

2.3 The Orienteering Problem
Vansteenwegen et al. (2011) describe the orienteering problem (OP) as another significant
generalization of the TSP and VRP, combined with aspects of the knapsack problem (KP).
The KP involves optimizing (maximizing) the profit to be earned by placing objects of
different values (and different weights/volumes) into a container with a limited total capacity
(weight/volume) (Assi and Haraty 2018). The orienteering problem, then, combines this
with the routing concerns of the VRP family to formulate a situation in which the goal is

7



to maximize the reward, 𝑃𝑖, collected by one or more vehicles visiting selected (but not
necessarily all) nodes in a network, with the general objective as in Equation (2.3).

max
𝑛−1∑︁
𝑖=2

𝑛∑︁
𝑗=2

𝑃𝑖𝑥𝑖 𝑗 (2.3)

General constraints in the OP mirror constraints from the TSP and VRP. However, the
objective is markedly different, and the issue of minimizing distance (from the objective
function in the previous models) is dealt with as a constraint in the OP family.

Variants of the orienteering problem include many of the same seen in VRP and several
that are of interest in our pursuit (Vansteenwegen and Gunawan 2019). The Profitable Tour
Problem seeks to maximize the reward earned minus the travel cost, in the objective function.
The team orienteering problem (TOP) uses multiple people/vehicles to maximize rewards
gained from multiple routes. The OP with time windows restricts the reward collection to
certain time limits at given nodes. The Capacitated OP, as expected, limits how much a
particular vehicle can carry/collect during its route.

We formulate a model using aspects of many of these variants to move patients from POI to
definitive care. We need to have multi-echelon, capacitated fleets of vehicles, operating on
distance-constrained routes, and synchronizing their efforts to arrive within specific time
windows.

8



CHAPTER 3:
Formulation

3.1 Introduction and Description
We present a mixed integer linear program with similarities to two-echelon vehicle routing
problems and team orienteering problems. Like the team orienteering type of problem, we
seek to maximize the reward earned by transporting as many patients as possible. Like the
two-echelon vehicle routing problem, we use echelons of vehicles to accomplish this.

3.2 Complete Formulation
Sets and Indices:
𝑖, 𝑗 ∈ 𝑉 = {1, 2, . . . , 𝑛} Nodes
(𝑖, 𝑗) ∈ 𝐸 Edges
𝑚 ∈ M = {1, 2, . . . , 𝑚} MEDEVAC vehicles
𝑝 ∈ 𝑃 = {1, 2, . . . , 𝑝} Patients
𝑘 ∈ 𝐾 = {𝑔, 𝑎} Class
𝑉 𝑘 ⊂ 𝑉, ∀𝑘 ∈ 𝐾 Ground and Air Nodes
𝑉 𝑐 ⊂ 𝑉 CCP Nodes
𝐸 𝑘 ⊂ 𝐸, ∀𝑘 ∈ 𝐾 Ground and Air edges
M𝑘 ⊂ 𝑀, ∀𝑘 ∈ 𝐾 Ground and Air vehicles

Data:
𝑂𝑚 = Origin node for vehicle 𝑚
𝐷𝑚 = Destination node for vehicle 𝑚
𝑄𝑚 = Carrying capacity for vehicle 𝑚 [# of patients]
𝛼𝑖 = Service time at node 𝑖 ∈ 𝑉 [minutes]
𝜏𝑖 𝑗 = Travel time from node 𝑖 ∈ 𝑉 to node 𝑗 ∈ 𝑉 [minutes]
𝑟𝑝 = Reward for transporting patient 𝑝 ∈ 𝑃 [unitless]
𝑇max = Travel time limit for vehicle 𝑚 ∈ 𝑀 [minutes]
[𝑏𝑖, 𝑙𝑖] = Time window for synchronization and transfer at CCP node 𝑖 ∈ 𝑉 𝑐[minutes].
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Decision Variables:

𝑥𝑘
𝑚𝑖 𝑗

=


1 if 𝑘 ∈ 𝐾 class asset 𝑚 ∈ M𝑘 is routed using arc (𝑖, 𝑗) ∈ 𝐸,

0 otherwise.

𝑣𝑘𝑚 =


1 if 𝑘 ∈ 𝐾 class asset 𝑚 ∈ M𝑘 is used in operation,

0 otherwise.

𝑢𝑘𝑚𝑝 =


1 if 𝑘 ∈ 𝐾 class asset 𝑚 ∈ M𝑘 transports patient 𝑝 ∈ 𝑃,

0 otherwise.

𝑤𝑝𝑖 =


1 if patient 𝑝 ∈ 𝑃 is assigned to CCP node 𝑖 ∈ 𝑉 𝑐 for transfer,

0 otherwise.

𝑦𝑘
𝑚𝑖

=


1 if 𝑘 ∈ 𝐾 class asset 𝑚 ∈ M𝑘 is assigned to CCP node 𝑖 ∈ 𝑉 𝑐 for patient transfer,

0 otherwise.
𝑠𝑘
𝑚𝑖
, 𝑒𝑘
𝑚𝑖

∈ R≥0: arrival and departure times for 𝑘 ∈ 𝐾 type asset 𝑚 ∈ M𝑔 at CCP node 𝑖 ∈ 𝑉.

max
∑︁
𝑚∈M𝑎

∑︁
𝑝∈𝑃

𝑟𝑝𝑢
𝑎
𝑚𝑝 (3.1)

𝑠.𝑡.
∑︁
𝑖∈𝑉𝑐

𝑤𝑝𝑖 ≤ 1, ∀𝑝 ∈ 𝑃,

(3.2)∑︁
𝑚∈M𝑘

𝑢𝑘𝑚𝑝 ≤ 1, ∀𝑝 ∈ 𝑃,∀𝑘 ∈ 𝐾,

(3.3)∑︁
𝑖∈𝑉𝑐

𝑦𝑘𝑚𝑖 ≤ 1, ∀𝑚 ∈ M𝑘 ,∀𝑘 ∈ 𝐾,

(3.4)∑︁
𝑝∈𝑃

𝑢𝑘𝑚𝑝 ≤ 𝑄𝑚 · 𝑣𝑘𝑚, ∀𝑚 ∈ M𝑘 ,∀𝑘 ∈ 𝐾,

(3.5)∑︁
𝑚∈M𝑘

𝑢𝑘𝑚𝑝 =
∑︁
𝑖∈𝑉𝑐

𝑤𝑝𝑖, ∀𝑝 ∈ 𝑃,∀𝑘 ∈ 𝐾,

(3.6)
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𝑣𝑘𝑚 ≤
∑︁
𝑝∈𝑃

𝑢𝑘𝑚𝑝, ∀𝑚 ∈ M𝑘 ,∀𝑘 ∈ 𝐾,

(3.7)

𝑣𝑘𝑚 ≤
∑︁
𝑖∈𝑉𝑐

𝑦𝑘𝑚𝑖, ∀𝑚 ∈ M𝑘 ,∀𝑘 ∈ 𝐾,

(3.8)∑︁
𝑝∈𝑃

𝑤𝑝𝑖 ≤
∑︁
𝑚∈M𝑘

𝑦𝑘𝑚𝑖 · 𝑄𝑚, ∀𝑖 ∈ 𝑉 𝑐,∀𝑘 ∈ 𝐾,

(3.9)∑︁
𝑗 :(𝑂𝑘 , 𝑗)∈𝐸

𝑥𝑘𝑚𝑖 𝑗 = 𝑣
𝑘
𝑚, ∀𝑚 ∈ M𝑘 ,∀𝑘 ∈ 𝐾,

(3.10)∑︁
𝑖:(𝑖,𝐷𝑘)∈𝐸

𝑥𝑘𝑚𝑖 𝑗 = 𝑣
𝑘
𝑚, ∀𝑚 ∈ M𝑘 ,∀𝑘 ∈ 𝐾,

(3.11)∑︁
(𝑖, 𝑗)∈𝐸

𝑥𝑘𝑚𝑖 𝑗 =
∑︁

( 𝑗 ,𝑖)∈𝐸
𝑥𝑘𝑚 𝑗𝑖, ∀𝑚 ∈ M𝑘 ,∀𝑘 ∈ 𝐾,

(3.12)∑︁
𝑗 :( 𝑗 ,𝑖)∈𝐸

𝑥𝑘𝑚 𝑗𝑖 = 𝑦
𝑘
𝑚𝑖, ∀𝑚 ∈ M𝑘 ,∀𝑖 ∈ 𝑉 𝑐,∀𝑘 ∈ 𝐾,

(3.13)

𝑦𝑘𝑚𝑖 ≤
∑︁
𝑝∈𝑃

𝑢𝑘𝑚𝑝 · 𝑤𝑝𝑖, ∀𝑚 ∈ M𝑘 ,∀𝑖 ∈ 𝑉 𝑐,∀𝑘 ∈ 𝐾,

(3.14)

𝑠𝑘𝑚𝑂𝑘
= 0, ∀𝑚 ∈ M𝑘 ,∀𝑘 ∈ 𝐾,

(3.15)

𝑠𝑘𝑚 𝑗 ≥ 𝑒𝑘𝑚𝑖 + 𝜏𝑖 𝑗 · 𝑥𝑘𝑚𝑖 𝑗 , ∀𝑚 ∈ M𝑘 ,∀(𝑖, 𝑗) ∈ 𝐸,∀𝑘 ∈ 𝐾,
(3.16)

𝑒𝑘𝑚𝑖 ≥ 𝑠𝑘𝑚𝑖, ∀𝑚 ∈ M𝑘 ,∀𝑖 ∈ 𝑉 𝑘 ,∀𝑘 ∈ 𝐾,
(3.17)

𝑒𝑘𝑚𝑖 ≥ 𝑠𝑘𝑚𝑖 + 𝛼𝑖 · 𝑦𝑘𝑚𝑖, ∀𝑚 ∈ M𝑘 ,∀𝑖 ∈ 𝑉 𝑐,∀𝑘 ∈ 𝐾,
(3.18)
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𝑒𝑘𝑚2𝑖
≥ 𝑠𝑘

′
𝑚𝑖𝑖

+ 𝛼𝑖 · 𝑢𝑘
′
𝑝𝑚1𝑢

𝑘
𝑝𝑚2 , ∀𝑚1 ∈ M𝑘 ′, 𝑚2 ∈ M𝑘 , 𝑘, 𝑘′ ∈ 𝐾,∀𝑖 ∈ 𝑉,∀𝑝 ∈ 𝑃,

(3.19)

𝑠𝑘𝑚𝑖 ≤ 𝑇max, ∀𝑚 ∈ M𝑘 ,∀𝑖 ∈ 𝑉 𝑘 ∪𝑉 𝑐,∀𝑘 ∈ 𝐾,
(3.20)

𝑏𝑖 · 𝑦𝑘𝑚𝑖 ≤ 𝑠𝑘𝑚𝑖 ≤ 𝑙𝑖 · 𝑦𝑘𝑚𝑖, ∀𝑚 ∈ M𝑘 ,∀𝑖 ∈ 𝑉 𝑐,∀𝑘 ∈ 𝐾,
(3.21)

𝑥𝑘𝑚𝑖 𝑗 , 𝑣
𝑘
𝑚, 𝑢

𝑘
𝑚𝑝 ∈ {0, 1}, ∀𝑚 ∈ 𝑀,∀(𝑖, 𝑗) ∈ 𝐸,∀𝑝 ∈ 𝑃,∀𝑘 ∈ 𝐾,

(3.22)

𝑤𝑝𝑖, 𝑦
𝑘
𝑚𝑖 ∈ {0, 1} ∀𝑚 ∈ 𝑀,∀𝑖 ∈ 𝑉 𝑐,∀𝑝 ∈ 𝑃,∀𝑘 ∈ 𝐾,

(3.23)

𝑠𝑘𝑚𝑖, 𝑒
𝑘
𝑚𝑖 ∈ R≥0, ∀𝑚 ∈ 𝑀,∀𝑖 ∈ 𝑉,∀𝑘 ∈ 𝐾.

(3.24)

3.2.1 Sets and Indices
We consider a graph 𝐺 (𝑉, 𝐸), in which 𝑉 represents the vertices/nodes and 𝐸 represents
the edges. We have a set of vehicles and patients. We introduce a class for ground and air
elements. Node subsets divide the nodes into ground, air, and CCP, with remaining nodes
being reserved for transshipment nodes. Likewise, edges and vehicles are partitioned into
classes for air and ground.

3.2.2 Data and Parameters
The key data for the model consists primarily of characteristics of the MEDEVAC assets
being used and time data related to nodes and edges. Origin and destination nodes for the
vehicles are represented by𝑂𝑚 and 𝐷𝑚, respectively. In general, ground vehicles begin and
end at their origin, while air vehicles terminate at a hospital location (to return to origin at
a later time). Each vehicle also has a specific carrying capacity,𝑄𝑚, which may be different
for different types of vehicles, or even within types of vehicles.

The next set of data in the model reflect times used throughout. The value of 𝛼𝑖 reflects the
service time, in minutes, for transferring patients from one vehicle to another at the 𝑖 CCP
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node. The travel time from node 𝑖 to node 𝑗 is represented by 𝜏𝑖, 𝑗 , with time windows for
service at a node depicted by [𝑏𝑖, 𝑙𝑖], all in minutes. The total time a vehicle may travel is
determined by its operating radius and depicted by 𝑇max in minutes.

Finally, reward values for patients, 𝑟𝑝, are fixed in our experiment without units; however,
indexing by patient can determine different values for different patients.

3.2.3 Objective Function
The objective of our model (3.1) is to maximize the rewards gained by transporting and
transferring patients from one vehicle to another, with ultimate successful transport to
definitive care at a higher role hospital.

Of note, the reward values can be specified based on patient indexing, and the reward is
dependent upon patient transfer to an air vehicle. In our model, the reward for patient transfer
is one, and the model seeks to maximize the number of patients transferred.

3.2.4 Constraints

Patient Constraints
Constraints 3.2 ensure that patients can be assigned to one CCP node, at most.

Vehicle Constraints
1. Constraints 3.3 ensure that each patient can only be assigned to one ground and one

air vehicle, at most.
2. Constraints 3.4 ensure that each vehicle can only be assigned to one CCP, at most.
3. Constraints 3.5 ensure that total patients carried by any vehicle (ground or air) cannot

exceed the vehicle’s carrying capacity.
4. Constraints 3.6 ensure any patient assigned to a CCP node must also be assigned to a

ground and an air vehicle.
5. Constraints 3.7 ensure that a ground or air vehicle is not assigned to operation unless

patient(s) are assigned to the vehicle.
6. Constraints 3.8 require that a vehicle selected for operations must go to at least one

CCP node.
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7. Constraints 3.9 ensure adequate carrying capacities of both types of vehicles for
patients assigned to CCP.

Routing Constraints
1. Constraints 3.10 ensure that any vehicles selected for operations must leave their re-

spective origins, while constraints 3.11 ensure they enter their respective destinations.
2. Constraints 3.12 ensure flow balance for each vehicle at each node.
3. Constraints 3.13 ensure that any vehicle routed to a CCP node must enter the CCP

node.
4. Constraints 3.14 ensure that a vehicle goes only to a CCP node if patient(s) are

assigned to the vehicle and the node.

Time Constraints
1. Constraints 3.15 ensure that vehicles arrive at their origins at time 0.
2. Constraints 3.16 ensure that a vehicle only arrives at a node after leaving the previous

node, plus sufficient time to travel between the two.
3. Constraints 3.17 ensure that the departure times from any node should be later than the

arrival time of that vehicle, while 3.18 do the same for CCP nodes with the addition
of service times to transfer patients.

4. Constraints 3.19 ensure that a vehicle on one class cannot leave a CCP node before a
vehicle of the other class has arrived.

5. Constraints 3.20 ensure that vehicles must arrive at all nodes visited before the max
operating time of the vehicle.

6. Constraints 3.21 ensure vehicles arrive within a CCP node’s time window.

Constraints 3.22-3.24 apply variable restrictions.
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CHAPTER 4:
Results

For this experiment, we use a simple network with six (6) nodes with some duplication
of nodes, following this with networks of increasing size and complexity, again with some
duplication of nodes. In this chapter, we discuss the networks used, the need for duplicated
nodes, and the results gained from our formulation.

Our formulation is modelled in Pyomo, an open-source optimization software based in
Python (Bynum et al. 2021; Python Software Foundation 1995). Incorporation of quadratic
function requires the use of a specialized solver in Pyomo, such as CPLEX solver (Cplex
2009). Our model used CPLEX, version 20.1, with all parameters set to their default values.

4.1 Introduction and Simple Problem
We imagine a simple network consisting of a POI on one side, with a MEDEVAC depot and
hospital on the other side, separated by a CCP, at which patients are transferred between
vehicles. POI is considered to be at node 1, with node 2 as a duplicate to enforce the
constraint that every node can only be entered once. Origins and destinations are data fed to
the program, CCP is user-entered, along with number of patients and 𝑇max for the vehicles.
Ground vehicles travel from node 1 to node 3, back to node 2. The air vehicle depot is at
node 4, with node 5 as its duplicate, and node 6 as the ultimate destination. This relationship
is displayed with associated distances in kilometers, in Table 4.1.

The distance data is used to determine the travel times for each type of vehicle. The travel
times are used to determine the shortest route for each type of vehicle in the network,
with the associated times being compared, and the maximum of these minima being used to
determine the time windows for service at the CCP. The time windows are used to determine
when each vehicle should leave its origin, and are used to synchronize their activities at the
CCP.
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Table 4.1. Sparse example network displaying distances along arcs that can
be travelled. This dataset is used to test the first iterations of the formulation,
to ensure functionality.

Arc Distance (km)
(1,3) 7.5
(3,2) 7.5
(3,5) 95
(4,3) 95
(5,6) 80

When the data from Table 4.1 has been read into the formulation, we get the results displayed
in Figure 4.1. Green nodes and edges/arcs represent ground vehicle travel, while blue nodes
and edges/arcs represent air vehicle travel, with node 3 being the CCP and used by both types
of vehicle. Success is indicated by a path from each vehicle’s respective origin, through the
CCP and to a respective destination node. The ground vehicles return to the origin site, to be
ready to accept any new casualties. The air vehicles have a hospital as the final destination,
rather than the origin, and return to the origin at a later time, perhaps after refueling.

For this experiment, three (3) patients are transferred, which is within the capacity of the
ground and air vehicles. Additionally, the distances traveled are well within the assigned
𝑇max of each of the vehicles. Adversarial interdiction is not considered at this point.
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Figure 4.1. Solution to the data presented in Table 4.1, green edges and
nodes indicate the route of ground units originating from node 1, travelling
to node 3 and returning to node 2 (duplicate of node 1). Blue edges and
nodes indicate the route of air vehicles. Numbers on the edges represent
distances given.

Additional output from the model verifies this graphical result, displaying number of patients
transferred, and the route of each vehicle used in the instance, as in Table 4.2. Duplicated
nodes at the origins allow for routing back to the same coordinates, though with different
index values.

Table 4.2. Simple example results. Output from the program includes the
number of patients successfully transferred in the first row, and the route
taken by those vehicles used (in the remaining rows).

Patients: 3.0
Vehicle Route (nodes)

1 [1,3,2]
3 [4,3,5,6]
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With respect to time windows and synchronization, Table 4.3 provides the program output
of arrival and departure times at nodes visited by each vehicle. Service times at the CCP,
𝛼𝑖, are fixed for our purposes, and reflect the time required to move the patient from one
vehicle to another. Service times do not reflect reality, and are not additive for multiple
patients, nor do they change with respect to patient categories or monitoring equipment. In
this simple experiment, service time is fixed at four (4) minutes.

Table 4.3. Arrival and departure times for vehicles from nodes visited. Times
are all in minutes, with a fixed service time at the CCP of 4 minutes. Bold
rows indicate synchronization of vehicle action at the CCP. Final destinations
do not have departure times, as vehicle need not depart final destinations
for this experiment.

Vehicle Node Arrival Time (minutes) Departure Time (minutes)
1 1 0.0 0.0
1 3 30.0 34.0
1 2 64.0 –
3 4 0.0 0.0
3 3 30.0 34.0
3 5 57.0 57.0
3 6 76.2 –

A solution for this model is completed in 0.14 seconds, evaluating 33 variables, 44 linear
constraints and 8 quadratic constraints.

4.2 Additional CCPs for Consideration
Having seen that the model works with a very simple network and data set, we move to
a slightly more complicated model, with multiple potential CCP nodes, and variations in
the vehicle carrying capacities. Table 4.4 displays the new arc and distance data. Notice
that patients can be routed to either CCP node 3 or 4. Air vehicles, in this experiment, are
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reduced to carrying capacity of two (2), as opposed to three (3) previously. Ground carrying
capacities remain at three (3).

Table 4.4. Second sparse network displaying distances along arcs that can
be travelled. In this network, two CCPs are available for consideration, at
nodes 3 & 4.

Arc Distance (km)
(1,3) 7.5
(1,4) 5
(3,2) 7.5
(3,6) 95
(4,2) 10
(4,8) 90
(5,3) 95
(6,9) 80
(7,4) 90
(8,9) 80

In this case, the problem is solved in 0.01 seconds, evaluating 95 variables, 98 linear
constraints and 56 quadratic constraints. Figure 4.2 shows the routes taken by the respective
vehicles, with patient transfer occurring at node 3, while Table 4.5 lists the routes taken by
each of the vehicles.
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Figure 4.2. Solution to the data presented in Table 4.4, green edges and
nodes indicate the route of ground units originating from node 1, travelling
to node 3 and returning to node 2; blue edges and nodes indicate the route
of air vehicles from node 5 to nodes 3,6 & 9. Numbers on the edges represent
distances given.

Table 4.5. Multiple CCP outcome. Output from the program includes the
number of patients successfully transferred in the first row, and the route
taken by those vehicles used (in the remaining rows). Note: one ground
vehicle required (with capacity of 3) while two air vehicles were required
(with capacity of 2, each).

Patients: 3.0
Vehicle Route (nodes)

2 [1,3,2]
3 [5,3,6,9]
4 [5,3,6,9]

As displayed in Table 4.6, ground vehicle 2 rendezvouses with air vehicles 3 & 4 at node 3
at a time of 30 minutes. Again, the service time is assigned before the vehicles depart the
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CCP, and subsequent times reflect arrival at succeeding nodes until destination is reached.

Table 4.6. Arrival and departure times for vehicles from nodes visited. Times
are all in minutes, with a fixed service time at the CCP of 4 minutes. Bold
rows indicate synchronization of vehicle action at the CCP. Final destinations
do not have departure times, as vehicle need not depart final destinations
for this experiment.

Vehicle Node Arrival Time (minutes) Departure Time (minutes)
2 1 0.0 0.0
2 3 30.0 34.0
2 2 64.0 –
3 5 0.0 0.0
3 3 30.0 34.0
3 6 57.0 57.0
3 9 77.0 –
4 5 0.0 0.0
4 3 30.0 34.0
4 6 57.0 57.0
4 9 77.0 –

4.3 Adding Complexity
Adding complexity to the network, we next test functionality with 21 nodes, with CCP
nodes at 9 & 10, as in Table 4.7. We test the model with various numbers of patients, and
with various combinations of transport vehicles/capacities.
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Table 4.7. Complex network displaying distances along arcs that can be
travelled. In this network, two CCPs are available for consideration, at nodes
9 & 10.

Arc Distance (km) Arc Distance (km)
(1,5) 5.0 (10,12) 50
(1,7) 7.0 (10,14) 75
(3,5) 6.0 (10,16) 50
(3,7) 4.0 (11,9) 50
(5,9) 5.0 (11,10) 50
(5,10) 7.0 (12,18) 35
(6,2) 5.0 (12,20) 55
(6,4) 6.0 (13,9) 50
(7,9) 6.0 (13,10) 75
(7,10) 9.0 (14,20) 25
(8,2) 7.0 (15,9) 75
(8,4) 4.0 (15,10) 50
(9,6) 5.0 (16,18) 50
(9,8) 6.0 (17,11) 35
(9,12) 50 (17,15) 50
(9,14) 50 (18,21) 35
(9,16) 75 (19,11) 55
(10,6) 7.0 (19,13) 25
(10,8) 9.0 (20,21) 40

Using six patients and vehicles with sufficient capacity, the problem is solved in 0.23
seconds, evaluating 274 variables, 352 linear constraints and 34 quadratic constraints. Table
4.8 lists the routes taken by the respective vehicles, with patient transfer occurring at node
9.
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Table 4.8. Complex network outcome. Output from the program includes the
number of patients successfully transferred in the first row, and the route
taken by those vehicles used (in the remaining rows). Note: two ground
vehicles required (each with capacity of 3) while three air vehicles were
required (with capacities of 2, 2, and 3).

Patients: 6.0
Vehicle Route (nodes)

1 [1,5,9,6,2]
2 [1,5,9,6,2]
3 [17,11,9,14,20,21]
4 [17,11,9,14,20,21]
5 [19,13,9,14,20,21]

Table 4.9 displays ground vehicles 1 & 2 rendezvousing with air vehicles 3 & 4 & 5 at node
9 at a time of 40 minutes. Again, the service time is assigned before the vehicles depart the
CCP, and subsequent times reflect arrival at succeeding nodes until destination is reached.
Figure 4.3 displays these results graphically, with ground routes in green, air routes in light
blue and CCP nodes represented in blue. For these results routes displayed indicate route
for ground vehicle 2 and air vehicle 5.
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Figure 4.3. Solution to complex network presented in Table 4.8, green edges
and nodes indicate the route of ground units originating from node 1, trav-
elling to CCP node and returning to destination node; blue edges and nodes
indicate the route of air vehicles from origin to CCP and destination. Blue
nodes represent CCP nodes available.
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Table 4.9. Arrival and departure times for vehicles from nodes visited. Times
are all in minutes, with a fixed service time at the CCP of 4 minutes. Bold
rows indicate synchronization of vehicle action at the CCP. Final destinations
do not have departure times, as vehicle need not depart final destinations
for this experiment.

Vehicle Node Arrival Time (minutes) Departure Time (minutes)
1 1 0.0 0.0
1 5 20.0 20.0
1 9 40.0 47.0
1 6 67.0 67.0
1 2 87.0 –
2 1 0.0 0.0
2 5 20.0 20.0
2 9 40.0 47.0
2 6 67.0 67.0
2 2 87.0 –
3 17 0.0 0.0
3 11 8.4 8.4
3 9 40.0 44.0
3 14 71.4 71.4
3 20 77.4 77.4
3 21 87.0 –
4 17 0.0 0.0
4 11 8.4 8.4
4 9 40.0 44.0
4 14 71.4 71.4
4 20 77.4 77.4
4 21 87.0 –
5 19 0.0 0.0
5 13 6.0 6.0
5 9 40.0 44.0
5 14 71.4 71.4
5 20 77.4 77.4
5 21 87.0 –
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Variations in the number of patients can affect the results in numerous ways. In Table 4.10,
we see that reducing the patients carried changes the air vehicles routed as well as the route
chosen for those vehicles, while maintaining the synchronization.

Table 4.10. Comparison of results from 6 versus 4 patients. With 4 patients
for transfer, note that: only vehicles 4 & 5 used for air and that the air routes
have changed.

Patients: 6.0 4.0
Vehicle Route (nodes) Route (nodes)

1 [1,5,9,6,2] [1,5,9,6,2]
2 [1,5,9,6,2] [1,5,9,6,2]
3 [17,11,9,14,20,21] []
4 [17,11,19,14,20,21] [17,15,9,12,18,21]
5 [19,13,9,14,20,21] [19,13,9,12,18,21]

To explore the effect of adversary action in the area, we apply a simple (time/distance)
penalty to an affected arc in the network, forcing the air vehicles to reroute for a shorter
path. In Table 4.11, we display the effect of adversary action on the indicated arcs, with the
resulting route change for vehicles 3 and 4.
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Table 4.11. Influence of adversary action on network and route chosen. With
adversary action affecting the arc from node 17 to node 11, vehicles 3 & 4
seek a route through node 15.

Patients: 4.0 4.0
Adversary action: None Arc (17,11)/(12,18)

Vehicle Route (nodes) Route (nodes)
1 [1,5,9,6,2] [1,5,9,6,2]
2 [1,5,9,6,2] [1,5,9,6,2]
3 [17,11,9,12,20,21] [17,15,9,16,18,21]
4 [17,11,9,12,20,21] [17,15,9,16,18,21]

In a variety of circumstances, from simple to complex networks, with varying requirements
and capacities, the model delivers a feasible solution in a reasonable time. We introduce the
effects of adversary actions in the network, with a reasonable result produced.

4.4 Computational Complexity
The complexity of our problem is NP-hard, since this problem is an extension of the TOP
and TOP is a NP-hard problem (Laporte and Martello 1990; Vansteenwegen and Gunawan
2019). Note that with multiple vehicles without vehicle capacity, synchronization and time
window constraints on an unchanged underlying network, our problem becomes TOP. Even
though the problem is NP-hard, we observe that Pyomo with Cplex solves this problem
efficiently for our small and medium sized networks.
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CHAPTER 5:
Conclusion

In this section, we discuss any restrictions or shortfalls of the formulation described in
previous chapters and explore what we consider to be future directions to correct shortfalls
or to expand the work.

5.1 Introduction and Description
Considering our initial results as proof of concept, our work can help to direct future work,
perhaps providing methods to improve life-saving efforts for patient evacuation.

There is a fundamental difference between VRP and TOP models, particularly in the way
they make us think about optimizing either distances/times or prizes. For our problem,
there are benefits for each type of model, and also detractors for each type of model. We
must make a decision about whether we want to use a VRP-type problem to minimize the
total distance travelled, by all vehicles, while transferring a minimal number of patients (as
a constraint in the model), while potentially not considering any additional patients that
may also need transport. Alternatively, we could focus efforts on the prize collection, as
we do with the OP-type problems, but we do not have as great control on minimizing the
distance/time travelled, as this is treated as a constraint. For our experiments in this thesis,
we choose to focus on the OP formulation to maximize the patient transfers, though it would
be interesting to consider a Profitable Tour Problem (PTP) approach as an alternative, in
which travel distances are subtracted from rewards (Vansteenwegen and Gunawan 2019).

In our initial computational experiments with one origin for ground, one origin for air, one
vehicle of each type, with equal capacities, and simple linear connections from origin to
target, the model was able to synchronize efforts to successfully move patients from POI to
hospital care at the final node.

As we noticed in our second experiment, with extended CCP choices for the ground side,
the model is still able to synchronize the two sides to effect transfer of patients as intended,
despite the fact that there is a shorter path available for the ground vehicles. That route is
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not shorter for the air side, and not shorter overall, so the model makes the correct choice.

Throughout the course of the experiments we experience some of the formulation restrictions
that can be expected with this family of problems, such as subtours and infeasibility. Often
the subtour complications can be addressed with subtour elimination constraints following
the Miller-Tucker-Zemlin model (Miller et al. 1960). However, time window constraints also
successfully address this issue, as in our model. Our model also relies heavily on duplicated
nodes to allow for reverse direction flow on the network, which helps us eliminate some of
the infeasible solutions we experience otherwise, as flow balance constraints often enforce
one visit per node.

5.2 Assumptions & Limitations
The formulation quickly becomes infeasible when vehicle capacity cannot accommodate
all patients requiring evacuation. In our work, we assumed that vehicle capacities would
be adequate for all patients transfers. Future work could consider relaxing constraints that
require these capacities.

Since the OP family of models uses constraints to control distances travelled, we witness the
maximum time constraint leading to later arrival times at destination nodes than anticipated.
Seemingly, the vehicles loiter en route from the CCP to the destination. Further exploration,
perhaps with a PTP-type formulation could help address this.

5.3 Extensions & Future Work Considerations
Our model serves as proof of concept of a basic framework for further exploring a form of
OP and TOP that we have not previously seen, and could benefit MEDEVAC planners in
successfully routing vehicles for delivery of patients to definitive care. Next steps should
consider further expanding the network to ensure continued functionality while fully stress-
ing the system, and evaluating computational time requirements. Whereas our model uses a
simple penalty assignment to a single arc to represent adversary action, a full consideration
of randomized adversary interdiction should be applied to ensure the model functions in
this environment.

Finally, although we use a TOP approach to the model, there could be some benefits in
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considering other approaches. For instance, a VRP approach could ensure that the routes
used are truly the shortest routes; with carefully constructed prize-collecting constraints to
ensure patients are not abandoned, or a PTP approach could be considered. Alternatively, a
multi-objective method could provide a means of addressing both the movement of patients
while minimizing distance. Exploring online optimization or other algorithms for larger
networks are additional considerations for future work.
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