
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-09

ASSESSMENT OF MODEL CONVERSION FROM
GENESYS TO MAGIC SYSTEM OF SYSTEMS
ARCHITECT FOR MODEL-BASED SYSTEMS
ENGINEERING INTEROPERABILITY

Donovan, Michael C.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/71058

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

ASSESSMENT OF MODEL CONVERSION FROM GENESYS
TO MAGIC SYSTEM OF SYSTEMS ARCHITECT
FOR MODEL-BASED SYSTEMS ENGINEERING

INTEROPERABILITY

by

Michael C. Donovan

September 2022

Co-Advisors: Paul T. Beery
 Ronald E. Giachetti

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2022 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
ASSESSMENT OF MODEL CONVERSION FROM GENESYS TO MAGIC
SYSTEM OF SYSTEMS ARCHITECT FOR MODEL-BASED SYSTEMS
ENGINEERING INTEROPERABILITY

 5. FUNDING NUMBERS

 6. AUTHOR(S) Michael C. Donovan

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 This thesis investigates whether the information contained in a Vitech Genesys model can retain its informational
accuracy after conversion into a Dassault Systemes’ Magic System of Systems Architect (MSOSA) model. The thesis
uses a sample system model in Vitech that implements the system definition language (SDL) and converts it to MSOSA,
which uses the systems modeling language (SysML). The study reviewed conversion methods available to the user and
converted a Genesys model to an MSOSA model using the only available method, Excel. The study then assessed the
converted model and outlined any post-migration remediation.
 The results of this thesis demonstrate that the currently available methods are feasible but inefficient, as only 34%
of the entities and 9% of the relationships transferred successfully during the experiment. Genesys can output tabular
data that represents system model entities and relationships; however, the MSOSA import function was unable to
correctly import entities that had one-to-many relationships with other entities. Consequently, the user must perform
manual manipulation during the conversion process. Furthermore, ontological differences between the tools prevented
the complete import of behavioral data, since many SDL entities map to more than one SysML entity.
 Based on the results, this thesis recommends pursuing an extensible markup language–based software solution for
Genesys and MSOSA and developing a formal Navy and Marine Corps ontology.

 14. SUBJECT TERMS
MBSE, models, GENESYS, Vitech, Cameo, Magic Systems of Systems Architect, Core,
modeling, model interoperability, semantics, ontology, SysML, SDL, conversion, modeling
tools, tool interoperability, model transformation, D/SET

 15. NUMBER OF
PAGES
 93
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

ASSESSMENT OF MODEL CONVERSION FROM GENESYS TO MAGIC
SYSTEM OF SYSTEMS ARCHITECT FOR MODEL-BASED SYSTEMS

ENGINEERING INTEROPERABILITY

Michael C. Donovan
Civilian, Department of the Navy
BSME, Drexel University, 2017

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2022

Approved by: Paul T. Beery
 Co-Advisor

 Ronald E. Giachetti
 Co-Advisor

 Oleg A. Yakimenko
 Chair, Department of Systems Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 This thesis investigates whether the information contained in a Vitech Genesys

model can retain its informational accuracy after conversion into a Dassault Systemes’

Magic System of Systems Architect (MSOSA) model. The thesis uses a sample system

model in Vitech that implements the system definition language (SDL) and converts it to

MSOSA, which uses the systems modeling language (SysML). The study reviewed

conversion methods available to the user and converted a Genesys model to an MSOSA

model using the only available method, Excel. The study then assessed the converted

model and outlined any post-migration remediation.

 The results of this thesis demonstrate that the currently available methods are

feasible but inefficient, as only 34% of the entities and 9% of the relationships transferred

successfully during the experiment. Genesys can output tabular data that represents

system model entities and relationships; however, the MSOSA import function was

unable to correctly import entities that had one-to-many relationships with other entities.

Consequently, the user must perform manual manipulation during the conversion process.

Furthermore, ontological differences between the tools prevented the complete import of

behavioral data, since many SDL entities map to more than one SysML entity.

 Based on the results, this thesis recommends pursuing an extensible markup

language–based software solution for Genesys and MSOSA and developing a formal

Navy and Marine Corps ontology.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1

1. Model-Based Systems Engineering ..1
2. Semantics, Ontologies, and Meta-Models3
3. Vitech Genesys Tool and Language ...4
4. Dassault Systemes Magic Systems of Systems Architect

Tool and Language ..6
B. MOTIVATION ..7
C. RESEARCH QUESTION ...11
D. BENEFITS OF STUDY ...11
E. ORGANIZATION ...11

II. LITERATURE REVIEW ...13
A. INTEROPERABILITY IN THE CONTEXT OF MBSE13

1. Limiting Factors of Interoperability Among Models13
2. Progress Towards a Solution ..14
3. Assessing MBSE Interoperability ...15

B. RELATED WORK ..17
1. NSWC Crane — Genesys to Cameo Conversion Process17
2. Sandia National Laboratories Demonstration19
3. SodiusWillert’s Publisher for Rhapsody20

III. ANALYSIS OF CONVERSION ...23
A. METHODOLOGY ..23

1. Experimental Setup ...23
2. Research Methodology ..28

B. EXPERIMENT EXECUTION AND OBSERVATIONS30
1. Supported File Formats by Tool ...31
2. Migration Attempts ...36

IV. RESULTS AND CONCLUSIONS ...57
A. RESULTS ...57
B. CONCLUSIONS ..59

APPENDIX A ...61

APPENDIX B ...63

viii

LIST OF REFERENCES ..65

INITIAL DISTRIBUTION LIST ...69

ix

LIST OF FIGURES

Figure 1. Sample Ontology. Source: Murdock and Carroll (2021).3

Figure 2. Concepts and their Relationships. Source: Giachetti and Vaneman
(2021). ..4

Figure 3. Vitech Genesys Schema. Source: “Genesys 4.1 Architecture
Definition Guide” (2016). ..5

Figure 4. SysML Diagram Types. Source: What is SysML? (n.d.).7

Figure 5. The Interoperability and Integration Framework (IoIF). Source:
Bone et al. (2018). ..15

Figure 6. The Levels of Conceptual Interoperability. Source: Tolk and
Muguira (2003). ...16

Figure 7. GSL Model Composition ...24

Figure 8. GSL Physical Hierarchy Diagram ...25

Figure 9. GSL Physical Block Diagram of System Context26

Figure 10. Partial GSL Activity Diagram ...27

Figure 11. Partial GSL Requirements Diagram ..28

Figure 12. Research Methodology ..29

Figure 13. MSOSA Excel/CSV Import Mapping Example. Source: “Magic
Systems of Systems Architect 2021x User Manual” (2020).35

Figure 14. Genesys Entities.xml File Example from GSL Model37

Figure 15. Genesys Relationships.xml File Example from GSL Model37

Figure 16. Table Definition of Genesys-Excel Connector in Microsoft Excel for
Component Export ...38

Figure 17. Partial Genesys Excel/CSV Export of GSL Model40

Figure 18. MSOSA Excel/CSV Import Mapping from Genesys GSL
Components Export ...40

x

Figure 19. Genesys GSL Components Imported into MSOSA (Before
Remediation) ..41

Figure 20. Genesys GSL Components Imported into MSOSA (After
Remediation) ..42

Figure 21. Physical Hierarchy in MSOSA Model Containment View43

Figure 22. Block Definition Diagram (BDD) of GSL in MSOSA44

Figure 23. Custom Table Definition of Genesys-Excel Connector in Microsoft
Excel for Function Export ..45

Figure 24. MSOSA Excel/CSV Import Mapping from Genesys GSL Functions
Export ...46

Figure 25. Example of Entity Duplication in MSOSA ...47

Figure 26. Modified GSL Requirements Table for MSOSA Import49

Figure 27. GSL Requirements Diagram In MSOSA ...49

Figure 28. Genesys Requirement Relationships Export Table Definition (Too
Rich) ...50

Figure 29. Genesys Requirement Relationships Export Table Definition
(Function Relationships) ..51

Figure 30. Genesys Requirement Relationships Export Table Definition
(Component Relationships) ...51

Figure 31. Process Summary for Genesys Export and MSOSA Import via MS
Excel ..52

xi

LIST OF TABLES

Table 1. A Non-exhaustive List of MBSE Component Variations............................2

Table 2. Applications Used in Experiment ..23

Table 3. Vitech Genesys Export/Import Formats ..32

Table 4. Dassault Systemes MSOSA Import/Export Formats34

Table 5. Limitations Exchanging Data from Genesys to MSOSA Using the
Genesys Excel Connector and MSOSA Mapping Tool58

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

BDD block definition diagram
BPMN business process model and notation
D/SET Digital/Systems Engineering Transformation
DISA Defense Information Systems Agency
DM2 DoDAF MetaModel
DOD Department of Defense
DoDAF Department of Defense Architecture Framework
DON Department of the Navy
eMASS Enterprise Mission Assurance Support Service
EMF eclipse modeling framework
ERA entity-relationship-attribute
FMU functional mock-up unit
GOTS government off-the-shelf
IME Integrated Modeling Environment
INCOSE International Council on Systems Engineering
IoIF Interoperability and Integration Framework
LML Life Cycle Modeling Language
MBSAP Model-based System Architecture Process
MBSE model-based systems engineering
MoDAF British Ministry of Defence Architecture Framework
MOF Meta-Object Facility
MSOSA Magic Systems of Systems Architect
NAVAIR Naval Air Systems Command
NAVWAR Naval Information Systems Command
NAWCADLKE Naval Air Warfare Center Aircraft Division Lakehurst
NSWC Crane Naval Surface Warfare Center - Crane Division
OMG Object Management Group
OOSEM Object Oriented Systems Engineering Method
OWL web ontology language
SCXML state chart XML

xiv

SDL System Definition Language
SE Systems Engineering
SET Systems Engineering Transformation
SoI system of interest
SYSCOM systems command
SysML Systems Modeling Language
UAF Unified Architecture Framework
UML Unified Modeling Language
WG working group
XMI XML metadata interchange
XML Extensible Markup Language
XPDL XML for Process Definition Language

xv

EXECUTIVE SUMMARY

The releases of the DOD’s Digital Engineering Strategy (2018) and the United

States Navy and Marine Corps Digital Systems Engineering Transformation Strategy

(2020) outline the strategies to formally incorporate MBSE and digital engineering

approaches in acquisition processes for the DOD and Navy and Marine Corps, respectively.

Two of the objectives detailed in the United States Navy and Marine Corps Digital Systems

Engineering Transformation Strategy (2020) are to “formalize the development,

integration, and use of models” and to “provide an enduring authoritative knowledge

source.” The Naval Digital/Systems Engineering Transformation (D/SET) Working Group

(WG) is the Department of the Navy’s (DON) cross-systems command (SYSCOM) action

team that was established with its primary purpose being “to accelerate implementation of

Digital/Systems Engineering Transformation … and increase digital engineering

collaboration across SYSCOMs” (Johnson 2020). The D/SET WG has begun

implementing the Naval Integrated Modeling Environment (IME), a modeling

environment that employs SysML and NoMagic’s Cameo Systems Modeler that is

available to all Navy and Marine Corps systems commands.

Throughout the Navy, different commands are likely using different tools. Yet, they

must share information. In pursuit of enabling model interoperability, the purpose of this

thesis is to explore user-available methods for converting a Vitech Genesys system model

to a Dassault Systemes Magic System of Systems Architect (MSOSA) model, and assess

if a model created in Genesys can retain its correctness and semantic content after the

conversion process. Various commands employ Vitech’s products to support their

programs, while the Naval IME employs Cameo Systems Modeler, which this thesis

considers to be analogous to MSOSA. These modeling tools employ different modeling

languages; Genesys uses the system definition language (SDL) with support for SysML

diagram types, while Cameo Systems Modeler and MSOSA use SysML without any pre-

defined underlying ontology. The tools also employ different ontologies, which is how a

system model conveys meaning through its semantic content.

xvi

To assess the conversion process, this thesis first identified the accepted file formats

for data import and export in each tool, as well as any built-in program extensions

supported by each tool. Second, an attempt was made to convert a system model originating

in Genesys (using SDL) to a comparable system model in MSOSA (using SysML). The

conversion methodology leveraged in the second step was informed and guided by the

accepted file formats identified in the first step. Any obstacles encountered during the

conversion process were also recorded, and finally, the informational content of the

resultant MSOSA model was assessed.

The thesis limits the conversion approach to what is currently available to the

typical user of MBSE tools. Hence, the thesis does not write any computer programs in an

attempt to automate the conversion process. Since Genesys provides a means to export

tabular data via Vitech’s Excel Connector tool, and MSOSA supports the import of tabular

data, this thesis explored the use of Microsoft Excel as an intermediary to exchange

information between the two tools.

Figure 1 defines the methodology used in this study’s attempt to convert a system

model from Genesys to MSOSA via Microsoft Excel. Figure 1 aligns to each of the three

SysML pillars in scope: physical, functional, and requirements. Within Figure 1,

Steps 1–3 convert the physical entities from Genesys into MSOSA. Steps 4–6 then convert

the functional entities from Genesys into MSOSA, and finally, Steps 7–9 convert the

requirements from Genesys into MSOSA. This study utilized the Genesys-provided

Geospatial Library (GSL) sample model as the system of interest (SoI).

xvii

Figure 1. Process Summary for Genesys Export and MSOSA Import via MS

Excel

The thesis was successful in replicating parts of the original Genesys GSL model

in MSOSA, but it took a lot of user action to do the transfer and conversion. The

experimentation involving the GSL system model revealed limitations in data transfer

between the two tools. Table 1 summarizes the limitations as observed by this study.

xviii

Table 1. Limitations Exchanging Data from Genesys to MSOSA Using the
Genesys Excel Connector and MSOSA Mapping Tool

Observation Limitation Description
Data Duplication
or Blank Data

One-to-One
Mapping

Unable to correctly transfer data when there are one-
to-many relationships between elements. Either
MSOSA creates multiple copies of the same element,
or MSOSA creates blank entities. In either case, the
user must go into the model and correct the mapping.

Multiple Imports
Required

One-to-One
Mapping

Multiple imports are required and in a particular
order in order to correctly transfer relationships
between entities.

Order of Import One-to-One
Mapping

The order of the import is of significance during the
migration process. A user may incorrectly omit
relationship information if both entities for any
single relationship do not already exist in MSOSA.

Importing
Behavioral
Modeling Data

Ontological
Differences

There is a major modeling difference between how
SDL and SysML model items and the interfaces
between components to capture behavior. SDL
defines item elements used as inputs/outputs/triggers,
whereas SysML uses object and control flows, in
addition to various combinations of object nodes,
central buffer nodes, pins, etc. (each of which also
have specialized types). The ontological mapping
between SDL and SysML for system behavior
therefore proved difficult to reproduce in MSOSA.

Post Migration
Remediation

Inefficiency The overall process was inefficient and time
intensive. As every level of the data exchange
process required a degree of manual remediation in
MSOSA, the primary advantage of the Excel method
seems to be only in establishing new entities.

This experiment was successful in transferring only 144 of 423 entities and 116 of

1,304 relationships from Genesys to MSOSA. The simple GSL sample model contained

less than 2,000 entities and relationships and took the user approximately seven hours to

adequately transfer only 17% of the original model’s overall contents. The experiment

revealed how Genesys and MSOSA have limited data transfer capabilities through the

Excel connector method. Transfer of requirement data was successful, and the Excel

connector method facilitates transfer of entities well, but it does not perform well in

exchanging relationship information. The primary obstacle in the Excel method,

xix

demonstrated by Table 1, was the one-to-one interpretation implicit to the MSOSA

mapping tool, as most models involving any degree of complexity will have one-to-many

relationships. This effectively restricted the import method to the exchange of entities only.

Imports of the physical and functional architectures were successful in MSOSA but

required manual manipulation in the MSOSA tool after the import process to be reflective

of the original model. This would require a modeling effort or project to recreate a

representative GSL model in MSOSA, which severely undercuts the value of this method.

With these results and using the Levels of Conceptual Interoperability Model

(LCIM) (Tolk and Muguira 2003), this thesis assesses the interoperability between

Genesys and MSOSA at Level 0. Documentation exists independently for the two tools for

exchange of data, but there does not exist documentation specific to the interface between

the tools since one does not exist. Since the only feasible method identified by this thesis

to transfer data is through Excel, and each tool handles this connection differently, there is

no effective means for interoperability. Therefore, this thesis arrives at an LCIM Level of

0 for this use-case.

To support a digital thread with this study’s approach, the Navy would have to

invest in developing automated programs for extracting, transferring, and loading model

data so it can piece together models from various sources. The methodology this study

presents could theoretically be automated in a fashion like IBM Cloud’s extract, transform,

and load process, which “combines data from multiple data sources into a single, consistent

data store that is loaded into a data warehouse or other target system,” (IBM Cloud

Education 2020) however this approach can be brittle as changes in either the source or

target tool can break the automated process. It is likely more efficient at the extensible

markup language (XML) data level, like Sandia’s demonstration (Carroll et al. 2021),

instead of using Excel as an intermediary and attempting to automate it.

Until the community establishes a universally available technical Genesys-MSOSA

solution and standard Navy and Marine Corps ontology, commands utilizing Genesys will

continue to diverge from the Naval IME modeling path that their sister SYSCOMS are

adopting. This conclusion may force Navy commands, such as NAWCADLKE, to

continue modeling outside of the Naval IME and will hinder any future model federation

xx

goals. For these reasons, recommended future work includes the establishment of a SysML

ontology for the Navy and Marine Corps to universally leverage and describe their systems,

and the publication of a Genesys-MSOSA software solution that allows users to import

XML data from Genesys to MSOSA. Since MSOSA was assumed to be synonymous with

the Cameo Systems Modeler tool employed by the Naval IME, it is also recommended that

the software solution be explored for specific use with Genesys and Cameo Systems

Modeler.

References

Carroll, Ed, Carlos Tafoya, Jonathan Compton, Akinli Cengiz, and Jason Jarosz. 2021.

“Retaining Systems Engineering Model Meaning Through Transformation: Demo
2.” Technical Report SAND2021-2143. Albuquerque, NM: Sandia National
Laboratories.

Department of Defense. 2018. Department of Defense Digital Engineering Strategy.
Washington, DC: Office of the Deputy Assistant Secretary of Defense for
Systems Engineering. https://ac.cto.mil/wp-content/uploads/2019/06/2018-
Digital-Engineering-Strategy_Approved_PrintVersion.pdf.

Department of the Navy. 2020. United States Navy and Marine Corps Digital
Engineering Transformation Strategy. Washington, DC: Department of the Navy.
https://ac.cto.mil/wp-content/uploads/2019/06/2018-Digital-Engineering-
Strategy_Approved_PrintVersion.pdf.

Genesys to Cameo Conversion Process. 2020. Crane, IN: NSWC Crane Division.

Johnson, Joan L. 2020. “Digital/Systems Engineering Transformation Working Group
Charter.” Official Memorandum. Washington, DC: Department of Defense.

xxi

ACKNOWLEDGMENTS

First and foremost, I would like to thank my parents for their endless support and

patience throughout my studies, as well as my many friends who have been more than

understanding whenever I needed to focus on school in lieu of attending occasions. My

family and friends will always have my gratitude for their persistent support and

encouragement through my studies.

I would also like to thank my advisors, Professor Giachetti and Professor Beery,

for their enduring guidance and tolerance during my thesis efforts.

Finally, I would like to also thank Carolyn Holguin for her recommendation that

placed me in this NPS program and provided me the opportunity to author this thesis. I

also want to extend my thanks to Michael Brazinski as well for his feedback

while I brainstormed thesis topics.

xxii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

This chapter establishes the motivation for this thesis. It also provides background

information on model-based systems engineering (MBSE), the importance of semantics

and ontologies, and how these topics are relevant to MBSE efforts. Furthermore, it

summarizes the Dassault Systemes Magic Systems of Systems Architect (MSOSA) and

Vitech Genesys modeling tools and their respective languages. Finally, this chapter details

the research problem, the benefits of this research, and the overall organization of this

document.

A. BACKGROUND

1. Model-Based Systems Engineering

The International Council on Systems Engineering (INCOSE) defines MBSE as

“the formalized application of modeling to support system requirements, design, analysis,

verification, and validation activities beginning in the conceptual design phase and

continuing throughout development and later life cycle phases” (INCOSE 2007). Adoption

of MBSE has become increasingly widespread in recent decades as industries attempt to

develop and maintain systems of increasing complexity while adequately conveying this

complexity in meaningful ways to their stakeholders (INCOSE 2007).

Giachetti and Vaneman (2021) identify the following six components required to

implement MBSE successfully: a modeling language, a schema (i.e., ontology, meta-

model), model-based processes, presentation framework, MBSE tools, and a

knowledgeable and trained workforce. Many distinct variants in performing MBSE exist

that can compose each of these MBSE elements. Table 1 illustrates some of the many

options for each component. Table 1 omits the workforce training component as the

organization must identify the other five components before any training may occur. Note

that there is no intentional relationship between each column contained in Table 1.

2

Table 1. A Non-exhaustive List of MBSE Component Variations

Modeling
Languages Schemas Model-based

Processes
Presentation
Frameworks MBSE Tools

System
Modeling
Language
(SysML)

User-defined
(infinite
variations by
extension)

Object
Oriented
Systems
Engineering
Method
(OOSEM)

Department of
Defense
Architecture
Framework
(DoDAF)

MagicDraw’s
Cameo/
Dassault
Systemes’
Magic System
of Systems
Architect
(MSOSA)

System
Definition
Language
(SDL)

Vitech’s Core
and Genesys
Meta-Model

Vitech’s
STRATA

British
Ministry of
Defence
Architecture
Framework
(MoDAF)

Vitech’s Core
and Genesys

Life cycle
Modeling
Language
(LML)

DoDAF
MetaModel
(DM2)

Model-based
System
Architecture
Process
(MBSAP)

Zachman’s
Framework

IBM’s
Rhapsody

Unified
Modeling
Language
(UML)

Meta-Object
Facility (MOF)

NoMagic’s
Magic Grid

Unified
Architecture
Framework
(UAF)

SPEC
Innovations’
Innoslate

While aspects of MBSE have progressed towards standardization, such as the

MBSE languages, MBSE is still a growing field and continues to evolve (INCOSE 2007;

2022). Though some combinations would be infeasible (e.g., leveraging LML in Vitech

Genesys), enumerating through Table 1 alone shows how a modeler could theoretically

capture and present the same system in up to 16 different ways, yet all would represent the

same information. The differences among these similar yet different theoretical models

stress the importance of semantics and ontology and shift the focus from what to model to

how to model.

3

2. Semantics, Ontologies, and Meta-Models

The Merriam-Webster dictionary formally defines the term semantics as “the study

of meanings” (n.d). In the context of MBSE:

There is a need for the semantics of the model to be formalized, which is
accomplished with a metamodel. The reason for formal semantics is to
avoid problems inherent in the communication of ambiguous
representations, to enable computer interpretation of models, and to
exchange models between systems engineering teams. The meta-model
provides a standardized and consistent terminology resulting in a shared and
precise interpretation of a model. (Giachetti 2015, 255).

Giachetti and Vaneman (2021) state that “semantics specify the interpretation of

the constructs as well as what they mean when combined in the model.” In other words,

the semantics of a model convey the predefined language and meaning of the information

captured by the model. For example, tool vendors often define a model’s semantics in

subject-predicate-object triples. Defining this semantic structure, including directionality,

establishes the formal ontology that the system model uses to convey information (Carroll

et al. 2021). That is, the modeling tool specifies or uses an ontology and the modeler uses

the modeling tool’s ontology, which includes standardized terms and their meaning to

describe the system-of-interest in the model space (Vaneman 2022). Figure 1 is an example

of a simple ontology that uses the subject-predicate-object triple construct.

Figure 1. Sample Ontology. Source: Murdock and Carroll (2021).

4

Practitioners often use the term “ontology” interchangeably with the terms “meta-

model” and “schema.” Slight differences exist among these terms, which is also an exercise

in semantics. The term “meta-model” further considers the syntax of the model, both

abstract and concrete. The abstract syntax “specifies the concepts, relationships, and rules”

governing a modeling language, whereas the concrete syntax “specifies the notation within

the modeling language” (Giachetti and Vaneman 2021). Figure 2 illustrates the

relationships among these terms with a system and its system model.

Figure 2. Concepts and their Relationships. Source: Giachetti and Vaneman

(2021).

This thesis refers to the terms “ontology,” “schema,” and “meta-model” as interchangeable

and synonymous to avoid confusion regarding these nuances.

3. Vitech Genesys Tool and Language

The Vitech Corporation, a Zuken company, developed and manages the Genesys

tool. The Genesys tool, the successor to Vitech’s Core modeling tool, implements the

System Definition Language (SDL) modeling language. Vitech (“Key Concepts” n.d.)

describes SDL as “a formal, structured language that avoids ambiguity inherent in using

common English to define or specify a system.” The SDL is a formal language with a

robust taxonomy conveying consistent semantic meaning. Figure 3 shows the meta-model

5

of the SDL. Vitech’s SDL (“Key Concepts” n.d.) uses an approach based on a subject-

predicate-object triple, which they call an “entity-relationship-attribute (ERA)” language

with obvious reference to the entity-relationship model of relational databases. A portion

of the SDL in Figure 3 shows a component element performs a function element (an entity,

a relationship, and an entity, i.e., the object, respectively). Each element then has attributes

that characterize the element, such as a title, description, unique identifier, etc.

Figure 3. Vitech Genesys Schema. Source: “Genesys 4.1 Architecture

Definition Guide” (2016).

Vitech’s Genesys tool supports Systems Modeling Language (SysML) views, but

it was not originally built around SysML. This report further discusses SysML in the

Dassault Systemes Magic Systems of Systems Architect Tool and Language section.

6

4. Dassault Systemes Magic Systems of Systems Architect Tool and
Language

The Magic Systems of Systems Architect (MSOSA) tool is a successor of the

NoMagic Cameo suite of tools. Dassault Systemes acquired NoMagic and rebranded the

tools in 2018. This thesis interchangeably refers to both NoMagic’s Cameo Systems

Modeler tool and the MSOSA tool because these tools have the same implementation of

SysML and provide the same general functionality.

MSOSA uses multiple modeling languages based on the Unified Modeling

Language (UML). MSOSA does not support Vitech’s SDL. The focus of this thesis is on

MSOSA’s implementation of SysML. SysML is an extension of the UML. The Object

Management Group (OMG) manages both UML and SysML. The OMG describes SysML

as:

A general-purpose graphical modeling language for specifying, analyzing,
designing, and verifying complex systems that may include hardware,
software, information, personnel, procedures, and facilities. In particular,
the language provides graphical representations with a semantic foundation
for modeling system requirements, behavior, structure, and parametrics,
which is used to integrate with other engineering analysis models. “What Is
SysML?” (n.d.).

SysML is tailorable to any specific domain. SysML lacks a schema to define terms

relevant to the systems engineering (SE) domain. The OMG has intentionally designed

SysML to be extensible, which requires the user or organization to define a schema. For

instance, the block is the most basic unit of structure in SysML. A block can be

“stereotyped” as different classes of blocks as the user sees fit. A generic example is a user

defining a block as a fluid that contains specific user-defined properties, such as density

and viscosity. Other blocks can then be stereotyped as a fluid, such as water or oil, and

these blocks will inherit the properties defined by a fluid with default or user-defined values

(Holt and Perry 2019). For these reasons, the user-defined ontology created to support a

given domain can differ from those in other domains, or even the same domain, despite

having similar semantic meaning.

7

Figure 4 depicts the SysML diagram types, which fall into three main categories:

behavior, requirement, and structure diagrams.

Figure 4. SysML Diagram Types. Source: What is SysML? (n.d.).

Behavior diagrams describe the system’s functions and how the system performs

under various conditions. Requirement diagrams describe the requirements the system

must meet and their traceability. Structure diagrams describe how system elements are

connected to form the system. Structure diagrams include both internal and external

connections to the system. The parametric diagram also exists as a type of structure

diagram, in which variables can be defined with relationships to support model simulation

and analysis.

B. MOTIVATION

In years past, the Department of Defense (DOD) acquisition community has

implemented some degree of MBSE and realized some of its benefits. However, “MBSE

process and methods [have] generally [been] practiced in an ad hoc manner and not

integrated into the overall systems engineering processes” (INCOSE 2007, 15). Moreover,

many commands are pursuing different MBSE approaches using different tools, which may

create challenges when those commands must work together and share model data.

8

Some of these challenges include redundant modeling efforts and obstacles in

conducting simulation and analyses of system models. They occur when system models

cannot connect or share data.

For instance, using a generic example of a car implies external interfaces with other

systems, such as a gas pump for refueling. A modeler needs to define the car with sufficient

detail in their modeling tool but cannot do so without having also defined the gas pump as

well, to some extent. Despite the modeler not having control over the gas pump, they must

still account for its interface, at the least. This is often simplified through interface

standards (e.g., all gas pumps use the same length and diameter nozzle), but if no interface

standard exists, then more details regarding the external system must be captured to

sufficiently define the car model. This leads to model duplication, as the model element(s)

representing the gas pump are captured by both the vehicle designer and the gas pump

designer. This same scenario can occur in military systems as well. One organization, such

as Boeing, may capture an aircraft’s tailhook in their aircraft model, while another

organization, such as NAWCAD, may capture the arresting cables on an aircraft carrier in

their model. There exists a physical interface between the tailhook and arresting cable

components during operations. Hence, to fully define their system, Boeing may capture

details of the arresting cables in their model, and NAWCAD may capture details of the

tailhook in their model. Neither organization has control over both components, yet a

modeler needs to capture the interface, and therefore some details of the external system,

to correctly design their own systems. In both examples, two different models contain

redundant model elements, each of which took time to define and neither entity can exert

direct control over the external elements. If the models could instead be connected and

simply share data, this redundancy would be mitigated. The redundancy in model elements

may also present risk, as modelers may incorrectly define the elements they do not control

or may not actively manage them and could eventually lead to design error.

Another symptom includes the inhibition of simulation and analysis of system of

systems or platform behavior due to discrete, unconnected models. A model’s scope

constrains any given simulation of that model. Therefore, a simulation that depends upon

external systems must assume the interactions at the interfaces as ideal, which is not always

9

the case in the real world. Aggregating, or federating, the models of each system to generate

the complete end-to-end behavior provides more detailed insight into operational risks and

is more likely to elicit identification of emergent behavior. Maintaining discrete and

unconnected models inhibits the simulation of the end-to-end functionality and deters its

analysis.

To address these areas, the DOD has published the Digital Engineering Strategy

(2018), and the Department of the Navy (DON) (2020) has published the United States

Navy and Marine Corps Digital Systems Engineering Transformation Strategy. Two

objectives of the Navy’s Transformation Strategy are to “formalize the development,

integration, and use of models” and to “provide an enduring authoritative knowledge

source” (2020).

In response to the strategic guidance, some Navy systems commands (SYSCOMs)

have recently adopted common modeling practices to assist MBSE interoperability. For

example, the Naval Information Warfare Systems Command (NAVWAR) released

NAVWARINST 5401.9 in October 2021. Among other things, NAVWARINST 5401.9

calls upon NAVWAR to identify and certify a standard tool suite and to maintain, update,

and enforce a NAVWAR Data Schema and a NAVWAR Integrated Dictionary. It also calls

upon NAVWAR to “develop and maintain MBSE models leveraging at a minimum the

Systems Modeling Language and, if appropriate, the Unified Architecture Framework

Profile” (Department of the Navy 2021). In essence, NAVWAR is recommending the

entire Navy agrees upon and uses a single set of methods, tools, and languages. This is one

approach to addressing MBSE interoperability concerns but may not be the best approach.

This type of mandate would constrain the Navy to a single tool and language, reducing its

flexibility to adapt to new methods, tools, or languages, and would dramatically increase

tool vendor dependence.

Another response to the Navy’s Transformation Strategy, NAVAIR stood up the

Systems Engineering Transformation (SET) Team to promote MBSE and Digital

Engineering, and the Navy stood up the Naval Digital/Systems Engineering

Transformation (D/SET) Working Group (WG). The SET Team is NAVAIR’s community

of practice tasked with the implementation of the DOD and Navy digital strategies. It has

10

similar goals as the greater D/SET WG, whose purpose “is to accelerate implementation of

Digital/Systems Engineering Transformation … and increase digital engineering

collaboration across SYSCOMs” (Johnson 2020). In 2019, the SET Team selected the

SysML as the standard modeling language and endorsed NoMagic’s Cameo Systems

Modeler as the preferred modeling tool (Moschler 2019, 18). The D/SET WG has also

begun implementation of the Naval Integrated Modeling Environment (IME), a modeling

environment available to all SYSCOMs that employs SysML and NoMagic’s Cameo

Systems Modeler.

Selection of a common modeling language and tool is an approach for the Navy to

avoid MBSE interoperability problems. However, adopting the SysML and Cameo

Systems Modeler challenges organizations and programs that already implement MBSE

using different languages and/or tools in a different way. These organizations and programs

may have models that: are created using different MBSE processes, conform to different

schemas, utilize a different presentation framework, or are captured in different modeling

languages or tools.

Some commands had previously embraced Vitech’s modeling tools when MBSE

gained momentum in the early 2000s. Other commands had settled on IBM’s Rhapsody

when that seemed like it would become a de facto standard tool in the Navy. With the

Navy’s selection of SysML and NoMagic’s Cameo System Modeler for the IME in 2019,

those commands are now on a divergent MBSE implementation path from the other Navy

SYSCOMS. Therefore, commands are likely to continue to encounter interoperability

hurdles when working with other commands and moving toward a single digital thread.

One may extend this scenario beyond the Navy into the DOD and even industry.

While the Navy might settle on a single tool and language, other DOD components might

choose something different causing interoperability issues with joint programs. Moreover,

there is no guarantee that industry will use the same tools and languages. Finally, even if

all the commands used the same tools and language, there are many variations which could

cause other (but more likely minor) interoperability issues. MBSE tool interoperability is

an issue the SE community must address in order to realize the greater vision of a digital

thread.

11

Throughout the Navy, different commands are likely using different tools. Yet, they

must share information. The various enumerations in and beyond those shown in Table 1

generate barriers to achieving interoperability among SE models. For instance, referring to

Figure 3, Vitech uses Operational Activities to form the basis of a capability. However,

MSOSA with SysML defines only generic Activities, which may represent any activity. It

is unknown if one can distinguish these variations in SDL after translation to SysML (e.g.,

can a user distinguish an SDL Operational Activity from an SDL system function after

translation to SysML?), especially in the absence of a previously defined ontology that

would stereotype activities in SysML. Obstacles such as this present concerns for true

interoperability among SE models. This research attempts to understand areas the SE

community must address to enable such interoperability.

C. RESEARCH QUESTION

This research investigates whether a user can feasibly export the information

contained in a Vitech model based on SDL and import the model into an MSOSA model

based on SysML while retaining model correctness and semantic content. The thesis limits

the approach to what is currently available to the typical user of MBSE tools. Hence, the

thesis does not write any computer programs in an attempt to automate the conversion

process.

D. BENEFITS OF STUDY

The results of this research will inform organizations, such as NAWCADLKE, of

the interoperability concerns that may prevent the successful conversion of models between

different MBSE tools and/or languages. Addressing MBSE interoperability concerns will

contributes to the DON’s (2020) pursuit of digital engineering.

E. ORGANIZATION

Chapter II of this thesis contains a literature review that identifies various works

related to model interoperability and integration and the means to successfully implement

an authoritative source of truth using a digital engineering thread. Chapter III of this thesis

details the experimental setup and the methodology for model conversion, and the

12

experiment execution and results found using this methodology and experimental setup.

Chapter IV of this thesis then presents the results of the experiment and reports on the

conclusions drawn from those results.

13

II. LITERATURE REVIEW

This chapter contains a literature review on the interoperability of system models,

especially in the context of MBSE. This thesis presents research on the current state of

model interoperability and how it will impact the ultimate pursuit of a singular digital

engineering thread. Two sections compose this chapter: how interoperability plays a role

in the context of MBSE and related work regarding MBSE interoperability.

A. INTEROPERABILITY IN THE CONTEXT OF MBSE

1. Limiting Factors of Interoperability Among Models

Tolk et al. (2012) identify two fundamental observations with modeling and

simulation (M&S) that inhibit interoperability: simplification and abstraction. Tolk et al.

(2012) state that all models are inherent “simplifications and abstractions of reality in order

to support a certain task.”

Simplification occurs when a modeler omits various aspects of a real object’s

definition, which defines a model’s scope. For example, suppose the system of interest

(SoI) is an information system on a naval platform. In that case, a modeler will only include

information up to the boundary of the SoI, including interfaces and first-order contextual

definitions such as the external system(s) that make up an interface. The modeler does not

model the entire naval platform, only areas that concern the SoI. Therefore, the modeler

simplifies the SoI to support its specific tasks.

Abstraction occurs when models are created “with different structures and

resolutions” (Tolk et al. 2012). For example, suppose again that the SoI is an information

system. In this case, the SoI comprises hardware, software, and firmware. One modeler

may explicitly capture all three as independent configuration items. Another modeler may

abstract firmware as an attribute of hardware and only capture two configuration items.

Both models would accurately represent the real system. However, the models would differ

in resolution due to abstraction.

14

Furthermore, Tolk et al. (2012) also describe the impact of the cognitive aspect in

M&S: “In order to conceptualize the observation, the observer needs to have an internal

model he can map this observation to. A physician will see more in an X-ray than a layman.

An educated mechanic sees more in an engine than a novice.” This cognitive aspect means

a logistician’s and a mechanical engineer’s models may represent the same SoI, but still be

entirely different. Both models would be informationally accurate and represent the same

SoI in the real world. Nevertheless, they could implement disparate schemas and have

completely different structures, both of which inhibit the interoperability of the two models

despite them representing the same SoI. Hence, the components of MBSE will be

dependent upon the domain of both the user and the SoI.

2. Progress Towards a Solution

Academia has made progress toward a solution for the MBSE interoperability

hurdle. In pursuit of enabling an authoritative source of truth in the digital engineering

thread, Bone et al. (2018) introduced the Interoperability and Integration Framework (IoIF)

to achieve model interoperability and integration that is tool, language, and process

agnostic.

The IoIF implements a software-intensive five-step process that is not yet

automated. It is “envisioned to have two main functions: (1) data acquisition and

aggregation; and (2) semantic query and reasoning that allows for consistency and

completeness checking of the data” (Bone et al. 2018). The process leverages a sequence

of file conversions, graphical mappings, data parsing, and decision logic. As such, it

requires a high degree of competence in software engineering that is not familiar to

practicing systems engineers and inhibits its overall implementation. Figure 5 depicts the

IoIF and its five-step process, using a model created in MagicDraw in SysML as an

example.

15

Figure 5. The Interoperability and Integration Framework (IoIF). Source:

Bone et al. (2018).

3. Assessing MBSE Interoperability

The assessment of interoperability among MBSE models requires a methodical

approach that is language and tool agnostic. The assessment must take account of, but not

depend upon, the tool and language. This agnostic approach warrants an assessment at the

conceptual level, for it is not interoperability between model instances in question but

interoperability between their higher-level conceptual models and ontologies. The levels

of conceptual interoperability model (LCIM) is introduced by Tolk and Muguira (2003),

whom define five levels of conceptual interoperability as captured in Figure 6.

16

Figure 6. The Levels of Conceptual Interoperability. Source: Tolk and

Muguira (2003).

The LCIM focuses on data to exchange and interface documentation to make a qualitative

assessment. Tolk and Muguira (2003) summarize each of the five levels as the following:

• Level 0 – System Specific Data: No interoperability between two
systems. Data is used within each system in a proprietary way with
no sharing. The component (or application) is a black box.

• Level 1 – Documented Data: Data is documented using a common
protocol… and is accessible via interfaces. The component is a
black box with an interface.

• Level 2 – Aligned Static Data: Data is documented using a
common reference model based on a common ontology, i.e., the
meaning of the data is unambiguously described…The component
is a black box with a standard interface.

• Level 3 – Aligned Dynamic Data: The use of the data within the
federate/ component is well defined using standard software
engineering methods such as UML. This shows the use of data
within the otherwise unknown “black box behind the interface,”
also known as white box.

• Level 4 – Harmonized Data: Semantic connections between data
that are not related concerning the execution code is made obvious
by documenting the conceptual model underlying the component.
It is not only a white box; because beyond the implemented parts
of the concept the important relations that are NOT captured in the
implementation are captured.

17

As one traverses towards higher levels of interoperability within the LCIM, model

data becomes increasingly aligned, and documentation of that data is increasingly available

and detailed. The LCIM (Tolk and Muguira 2003) defines “Harmonized Data” as being the

most mature and occurs when two models have semantic and relational consistency. A

simple example would be examining two Vitech Genesys models; Vitech predefines both

model’s ontologies and therefore achieves semantic and relational consistency at all levels.

At the other end of the spectrum, the LCIM defines “System Specific Data” as being the

least mature and occurs when there is no interoperability between two systems. The

Defense Information Systems Agency’s (DISA) Enterprise Mission Assurance Support

Service (eMASS), which is a government off-the-shelf (GOTS) solution for integrated

cybersecurity management, and Vitech’s Genesys tool are an example of “System Specific

Data,” since neither tool can integrate with the other.

One may use the LCIM may to assess conceptual agreement between two models.

It is analogous to a technology readiness level (TRL). Where a TRL can succinctly convey

technology maturity, an LCIM assessment can succinctly convey interoperability maturity

among two models.

B. RELATED WORK

There are numerous related works available regarding model interoperability. This

literature review identifies three specific efforts highly relevant to this thesis. This section

describes these efforts and the insights they provide. The first related work described in

this section is a whitepaper from Naval Surface Warfare Center (NSWC) Crane on the

Genesys to Cameo conversion process. The second is a demonstration and report from

Sandia National Labs on retaining an SE model’s meaning through transformation. The

third and final related work described in this section is a software solution presented to the

Naval D/SET community by the company SodiusWillert.

1. NSWC Crane — Genesys to Cameo Conversion Process

As of late 2021, NSWC Crane had led an effort to document the process of

converting a model created in Genesys to a model in NoMagic Cameo System Modeler.

18

NSWC Crane developed a draft whitepaper to detail this process that was obtained as part

of this research.

NSWC Crane’s (Genesys to Cameo Conversion Process 2020) first step in

converting Genesys to Cameo was to map element types and relationships from Genesys

(the source tool) to the SysML language in Cameo System Modeler (the target tool). The

mapping is a translation between the conceptual data models and ontologies of the two

tools. This translation is one of the most significant steps since all subsequent modeling

efforts will be predicated on this translation. NSWC Crane mapped common Genesys

entities and relationships to SysML. However, NSWC Crane generalized (simplified)

many Genesys elements to a generic block element in SysML, and over 50 Genesys

relationships remained unmapped to a SysML counterpart.

Once NSWC Crane (Genesys to Cameo Conversion Process 2020) established the

mapping, they used the only available export file format for the full Genesys model, a

*.gsnx file, which is unique to the Genesys tool. They then renamed the file as a *.zip file

and decompressed it. This step enables viewing of the folder structure, which separates

model data from schema data, each containing files in the extensible markup language

(XML) format. The XML file format is both human- and machine-readable.

The next step in NSWC Crane’s (Genesys to Cameo Conversion Process 2020)

process was to parse the XML files and generate data for element creation. To do so,

NSWC Crane extended Cameo System Modeler by developing a plugin in the Eclipse

Integrated Development Environment that enabled Cameo to read Genesys data. NSWC

then used structured query language (SQL) statements to create SysML elements and their

related data, all based on the previously defined mappings.

This conversion process elicits some valuable observations. First, omitting various

element and relationship mappings implies that any originating data captured by those

elements and relationships will have information lost during the conversion process. The

target model will require further manual remediation to reestablish the applicable detail in

SysML or remain incomplete. Second, an in-house development effort that yielded a

Cameo plugin was the enabler for parsing the Genesys XML files. This plugin is

19

unavailable to the greater SE community; therefore, the SE community has yet to validate

its scalable implementation. Until a plugin solution is available to the entire SE community,

organizations with existing Genesys models must develop their own conversion methods.

Finally, the white paper offers little-to-no documentation in validating the resultant model

to assess informational consistency. The results focused on a user’s navigational views and

not the model’s content, which leaves open the question “was something missed?”

2. Sandia National Laboratories Demonstration

In February 2021, Sandia National Laboratories (Carroll et al. 2021) published the

report Retaining Systems Engineering Model Meaning Through Transformation. Sandia

National Laboratories leveraged a similar yet different approach from NSWC Crane.

Sandia’s goal was to develop a “proof of concept that the meaning of a system model can

be retained during transformation,” which the authors assert is “the missing ingredient in

effective systems model-to-model interoperability” (Carroll et al. 2021). Sandia’s (Carroll

et al. 2021) approach followed these steps in converting from Genesys to MagicDraw:

1. Developed a method for exporting and transforming an entire model from
the GENESYS™ application into a file formatted according to the Resource
Description Framework (RDF).
2. Transformed a systems model of interest into an RDF file format structure
and dropped the file into a location known by the target system/target import
application, MagicDraw®.
3. Mapped the RDF file classes from GENESYS™ to custom MagicDraw®

profile elements.
a. The RDF namespaces were leveraged to guarantee valid (complete)
containment.
b. Model package structure was constructed in parallel to profile class
structure.
c. Custom profile element types and standard profile stereotype superclass/
metaclass types were designated according to the GENESYS™ object type.
i. Encapsulated in independent configuration data classes.
ii. Maintained flexibility while identifying all added data.
4. Redeveloped (refactor, expand, improve) an in-house developed
MagicDraw® plugin used in previous projects.
a. The RDF file was loaded to an in-memory ontology model, using an RDF
library.
b. Added traceability presenting views on the data for error checking.
c. Added model post-processing (consistency checks/cleanup).
d. Added prebuilt structure to process model instances.

20

Sandia’s approach relied heavily on resource description framework (RDF) files

and an internally developed Genesys RDF translator created as part of prior Sandia (Carroll

2019) research. The Genesys RDF translator’s function was “to translate (i.e., transform)

a GENESYS™ project into an RDF graph” (Carroll et al. 2021). Their approach also relied

on an RDF-to-MagicDraw plugin written in Java, another internally developed tool.

The results of the Sandia demonstration and report detail how “the GENESYS™

model transformed into a MagicDraw® model did not produce an identically matching

model.” However, Sandia (Carroll et al. 2021) reports that “100% of the GENESYS™

model data was transformed and… the model objects and relationship were transformed

(retaining the meaning of the model).” One of the most significant observations made by

the report states that “SE models can be integrated effectively when the underlying

ontological structure of the model is maintained through transformation” (Carroll et al.

2021).

As with NSWC Crane, Sandia also utilized internally developed software tools.

Thus, the same implications are associated with Sandia’s effort, as the implemented

methodology is not usable or available to the wider SE community. This proof of concept

also differs from the NSWC Crane effort in terms of validation. Sandia offers insight into

validation efforts within their report and demonstrates successful translation between

Genesys and MagicDraw. However, not all element and relationship types were present in

the two models used by Sandia, so while Sandia transformed 100% of the original model,

their method may potentially still have gaps.

The most important observation regarding both efforts and successful translation

and model interoperability is how retention of the semantic structure, and an understanding

of the ontological differences and their implications, are key to successfully integrating SE

models.

3. SodiusWillert’s Publisher for Rhapsody

 In August 2022, the company SodiusWillert presented their software solution,

Publisher for Rhapsody, to the D/SET community via virtual presentation. Publisher for

Rhapsody is a plugin for IBM’s Rhapsody modeling tool that facilitates model

21

transformation from Rhapsody to Ma gicDraw/Cameo using automated techniques. The

plugin also logs individual element transformations and alerts the user to any conflicts

during the transformation process and validates the completeness of the resultant model.

The company reports successful use of their solution on models that contain upwards of

900,000 elements and 7,000 diagrams, demonstrating the program’s scalability (Pilato

2022).

Although this solution transfers data between two tools already employing the same

modeling language (SysML), its purpose of transferring model data from one tool to

another without information loss is identical to the purpose of this thesis and demonstrates

success in doing so. Based on this evidence, a similar software solution for the use-case

examined by this thesis (i.e., going from Genesys to MSOSA), is theoretically feasible.

22

THIS PAGE INTENTIONALLY LEFT BLANK

23

III. ANALYSIS OF CONVERSION

This section presents the experimental setup and methodology used to conduct the

research. The data found by using the methodology and the experimental setup then

follows.

A. METHODOLOGY

1. Experimental Setup

Table 2 shows the software tools used, their version, and notes on their

configuration.

Table 2. Applications Used in Experiment

Application Properties to Note
Genesys 5.0 Collaborative Edition Baseline Schema: Base Schema v50

Base Set View: SysML
Excel 2016 Add-ins: Genesys 5.0 Excel Connecter

Enabled
Magic System of Systems Architect 2021x Environment: SysML (Expert)

The conversion experiment uses the Geospatial Library (GSL) sample model

provided with the Genesys software. The GSL model is a Vitech-created system model

used for demonstration and educational purposes. Vitech (“Genesys 2021 R2 Systems

Engineering Guided Tour” 2021) defines the GSL model as a “demonstration system [that]

accepts requests for imagery information, determines the best way for the system to

respond to the request, and then provides the request information to the requestor.”

The experiment addresses three of the four SysML pillars: the structure

(components), behavior (functions), and requirements pillars. The author’s experience with

modeling at NAWCADLKE has been that most models only use these three pillars.

Consequently, the fourth SysML pillar of parametrics was not in scope for the assessment.

Parametrics are useful for model simulation and analysis, but are a degree deeper into an

SoI’s structure that is not necessary for this initial assessment.

24

a. GSL Model Structure

The GSL model has nine physical components, ninety-eight functions, thirty-five

requirements, and additional entities such as states, test activities, test configurations, and

use cases. The total number of entities amounts to 423 in the GSL model. Relationships

among all entities in the GSL model total to 2,358. Accounting for relationship

directionality (e.g., considering relationships such as traces to and traced from as one bi-

directional relationship), the GSL model consists of 1,304 relationships. Figure 7 shows

the composition of the GSL model using the Project Explorer view in Genesys.

Figure 7. GSL Model Composition

Figure 8 shows the physical hierarchy of the GSL model with its larger system

context. The GSL is composed of two subsystems: the Command Center and the

Workstation. The GSL interacts with Customers, Collectors, and the Certification

Authority, which are external to the GSL system.

25

Figure 8. GSL Physical Hierarchy Diagram

Figure 9 shows the interfaces and links between each component via a physical

block diagram, including the GSL’s connections to the Customer and Collectors. In SDL,

an interface represents some form of connection to another component and includes one or

more links. Links represent more detailed connections to other components and show

transfer of items, such as energy, mass, money, or more commonly, information. For

example, the Workstation has three interfaces that include five links: the Workstation

interface to the Command Center includes the single GL Internal Link, the Workstation

interface to the Customer includes two links for disapproval notification and product

request, and the final Workstation interface to the Certification Authority includes two

links for certification request and certification response.

26

Figure 9. GSL Physical Block Diagram of System Context

b. GSL Model Behavior

Figure 10 depicts some of the system’s behavior via a partial activity diagram,

showing the various information items (represented by blue nodes) exchanged between the

GSL and Certification Authority. For example, the GSL accepts and formats the request

from the customer, provides the certification request to the Certification Authority, which

then provides certification responses back to the GSL to check the certification response.

The full activity diagram from the GSL sample model is available in APPENDIX A.

27

Figure 10. Partial GSL Activity Diagram

c. GSL Requirements Diagrams

Figure 11 depicts a requirements diagram of the GSL in Genesys and shows the

“Continuous Support and Availability” requirement decomposition. A second

requirements diagram depicts the “Specific Requirements” for the GSL in Genesys, and is

available in APPENDIX B.

28

Figure 11. Partial GSL Requirements Diagram

2. Research Methodology

This research seeks to convert a system model from a source tool using one

modeling language into a target tool using another modeling language. The research then

assesses the converted model to determine and document informational inconsistencies and

identify post-migration remediation efforts. When importing directly into a target tool

proved infeasible, the data of the exported model from the source tool was examined as

well. Figure 12 illustrates the analysis methodology as an Action Diagram created in SPEC

Innovations’ Innoslate software. With the Naval IME on the horizon for many Navy

commands, this thesis assesses two tools with this methodology: Vitech’s Genesys,

predominantly used at NAWCADLKE and accessible to the author, and Dassault

Systemes’ MSOSA, a tool similar to the tool employed by the Naval IME, Cameo Systems

Modeler.

29

Figure 12. Research Methodology

a. Activity 1 – Evaluate Export Formats in Source Tool

Activity 1 in Figure 12 represents the initial evaluation of data export methods for

the source tool. It is concerned with identifying the medium(s) available to the user for data

transfer from the source tool. Its input is the selection of the source tool, and its output is a

listing of file formats and plugins available to the user for data export in the source tool.

b. Activity 2 – Evaluate Import Formats in Target Tool

Like Activity 1, Activity 2 in Figure 12 represents the initial evaluation of data

import methods for the target tool. It is concerned with identifying the medium(s) available

to the user for data transfer to the target tool. Its input is the selection of the target tool, and

its output is a listing of file formats and plugins available to the user for data import in the

target tool.

c. Activity 3 – Directly Importable? (OR Gate)

Activity 3 in Figure 12 represents a decision based on the outputs of activities 1 and

2, the export and import formats for either tool. Being directly importable implies a

software solution is available to the user for data transfer directly from the source tool to

the target tool and is provided by one or both tools (i.e., no need exists for intermediate

software provided by a third party, such as a custom plugin). With this information, a “yes

30

or no” assessment may be made for advancement through the workflow. If yes, the

workflow advances to Activity 4. If no, the workflow advances to Activity 6.

d. Activity 4 – Export Model from Source Tool

Activity 4 in Figure 12 represents the export of a model from the source tool due to

a “yes” decision input from Activity 3. In this activity, the user exports the model from the

source tool using the identified file format detailed by Activity 1. An importable model is

the output of this activity.

e. Activity 5 – Import Model Export into Target Tool

Activity 5 in Figure 12 represents the import of a model into the target tool using

the output from Activity 4, the exported model. The imported model in the target tool is

the output of this activity.

f. Activity 6 – Export Model Data from Source Tool

Activity 6 in Figure 12 represents the export of model data from the source tool due

to a “no” decision input from Activity 3. In this activity, the user exports model data into

a human-readable file or collection of files. This file or collection of files is the output of

Activity 6.

g. Activity 7 – Assess Informational Content

Activity 7 in Figure 12 represents the final assessment of the resultant model or

model data. Dependent on the path, the imported model in the target tool or the exported

model data from the source tool are the input. The activity’s output is the assessment

results.

B. EXPERIMENT EXECUTION AND OBSERVATIONS

This section discusses the experiment and data this study collected using the

methodology described in the previous section. Its organization aligns with Figure 12 and

the three SysML pillars of interest to this research. Subsection 1 details the supported data

formats for each of the two tools assessed, covering the initial evaluations of import and

31

export formats. Section 2 then supplies the data on tool interoperability, covering the

“directly importable” assessment, the export the model and model data, and import of the

model. It is followed by Chapter IV, which provides the results of the assessment.

1. Supported File Formats by Tool

MBSE tools do not support all file formats, nor will each tool necessarily support

the same file formats. This section details the supported file formats for imports and exports

in Genesys and MSOSA.

a. Vitech Genesys File Formats

Genesys can import Genesys and Core file formats (*.gsnx and *.xml,

respectively). Many tools use the extensible markup language (XML) for data transfer,

with Vitech’s tools being among them. However, the structure of XML files can vary from

tool to tool. Vitech’s XML implementation structure appears to be unique, which limits

importable XML files to those created by Vitech tools. Genesys exports models in a single

format, a Genesys archive file (*.gsnx). Within this option, various selections are available

to the user for the export of certain parts of the project, such as a project schema, a project

template, or a full project backup.

Genesys also supports the import and export of data to and from IBM’s Dynamic

Object-Oriented Requirements System (DOORS) tool via the DOORS connector.

However, the DOORS connector only imports and exports requirement elements. Genesys

must be connected directly to the DOORS tool via this connector for its use (“Genesys 4.1

DOORS Connector Guide” 2016).

The tool also imports and exports data to and from Microsoft Excel via the Excel

connector, a Vitech-created plugin for Microsoft Excel. Genesys requires Excel to be

connected to Genesys to use the Excel connector, but in contrast to the DOORS connector,

the Excel connector allows for a user to read the data before it is imported or after it is

exported.

Table 3 summarizes the import and export file formats supported by Genesys.

32

Table 3. Vitech Genesys Export/Import Formats

Vitech Genesys

Supported Import Formats File
Extension Supported Export Formats File

Extension
Genesys Archive .gsnx Genesys Archive .gsnx
Core Archive .xml *DOORS N/A
*DOORS N/A **Excel File .xlsx
**Excel File .xlsx
*Via connector only, and limited only to requirement entities

**Via connector only

b. Observations from Genesys Supported File Formats

The Vitech Genesys tool seems to only support file exchange formats for Vitech

tools. The DOORS and Excel connectors are exceptions to this.

The DOORS connector demonstrates limited capability. A user cannot view the

output from DOORS prior to import into Genesys, or vice versa. Data transfer to or from

DOORS must occur first before it is visible to the user in the target tool. Furthermore, the

DOORS connector allows for entities of only one type: requirement because DOORS

only captures requirements.

The Excel connector is most useful when modifying existing entities in the

Genesys model by exporting data into Excel, making necessary modifications, and

importing the modified data back into the same Genesys model.

The observation regarding Vitech file exchange formats is especially important in

terms of interoperability with other models and modeling tools. Vitech seems to have

designed Genesys with only the Genesys user in mind, not the greater SE community that

may already have information captured in another vendor’s tool, or desire to interoperate

with models captured in another vendor’s tool. If an organization has existing models

created outside of a Vitech tool, it drastically reduces the appeal of Genesys to those

organizations as existing models cannot be imported into Genesys and would need to be

re-created. This presents a barrier in the adoption of Vitech’s Genesys. In the opposite

33

direction, it is also a significant limitation for organizations that have already adopted

Genesys as it effectively confines those organizations to the tool and prohibits them

interoperating with models generated outside of Genesys or Core.

Genesys has an application programming interface (API) that follows standard

Microsoft.NET framework practices (“Genesys 6.0 Getting Started with the Genesys

API” 2018). The API requires elevated privileges beyond the basic user license.

Organizations using the API would have to fund a programming project to review the

GENSYS file format and then write the code to export and/or import the model data. This

is obviously more difficult and costly than if Vitech provided data interchange

capabilities from the onset.

c. MSOSA File Formats

MSOSA can import data in multiple file formats. This includes table-based file

formats such as Microsoft Excel (*.xlsx) and comma-separated values (*.csv), as well as

MSOSA native XML file formats and various XML metadata interchange (XMI) file

formats (*.xmi). It contrasts with Genesys in that it provides greater support for data

interchange from source tools other than itself, such as IBM’s Rhapsody and Rational

Software Architect tools.

MSOSA exports data in multiple file formats. Though not the same as the supported

import file formats, MSOSA allows for the export of data in file formats such as ReqIF

(*.reqif, *.reqifz), Eclipse modeling framework (EMF) Ecore (*.ecore, *.ecore.xmi), and

various other XMI file formats. It also supports the import of dynamic model file formats

such as functional mock-up units (FMU) (*.fmu) and Simulink (*.slx).

The import and export file formats supported by MSOSA are summarized in

Table 4 (“Magic Systems of Systems Architect 2021x User Manual” 2020).

34

Table 4. Dassault Systemes MSOSA Import/Export Formats

Dassault Systemes MSOSA

Supported Import Formats File
Extension Supported Export Formats File

Extension
Excel .xlsx UML 2.5 XMI .xmi

Comma-separated values .csv Requirements Interchange
Format (ReqIF)

.reqif,

.reqifz
UML 2.1/2.5 XMI .xmi SCXML .scxml
MSOSA Native XML .xml Eclipse UML2 XMI .xmi, .uml2
MOF XMI .xmi Modelica .mo, .moe
Requirements Interchange
Format (ReqIF)

.reqif,

.reqifz Simulink .slx

CA Erwin Data Modeler .erwin XPDL .xpdl

OWL Ontology .owx,
.owl, .rdf BPMN2 .bpmn

Eclipse UML2 XMI .xmi,
.uml2

FMU .fmu
Simulink .slx
Modelica .mo, .moe
XPDL .xpdl
**Enterprise Architect UML
2.1 XMI 2.1 .xmi

*System Architect DoDAF
2.0 .xml

*Rhapsody SysML .xml
*Rational Software
Architect .xml

*Via plugin
**Enterprise Architect does not export 100% standard UML 2.1 XMI, and this causes some data
loss during the import

(“Magic Systems of Systems Architect 2021x User Manual” 2020)

d. Observations from MSOSA Supported File Formats

Imports of table-based file formats require the implementation of what MSOSA

terms a “mapping.” MSOSA requires the user to resolve any ontological differences

between the heterogeneous modeling languages and/or schemas. A user may save a

35

mapping as a template; however, mappings are user-defined and MSOSA does not provide

any predefined mappings. So, consistency is stressed when creating mappings to import

tabular data. Figure 13 shows an example of the mapping function in MSOSA, where a

user defines various parameters of the import, such as the import type, target scope, and

data location in Excel. The “Nested Properties to Map” field identifies the element

properties in MSOSA to map from data in Excel. In this example, MSOSA data elements

(left) map from columns in an excel spreadsheet (right).

Figure 13. MSOSA Excel/CSV Import Mapping Example. Source: “Magic

Systems of Systems Architect 2021x User Manual” (2020).

36

2. Migration Attempts

The experiments involved exports from Genesys (source tool) imported into

MSOSA (target tool). This thesis then made a qualitative assessment of tool

interoperability scenarios.

a. Genesys to MSOSA Migration Attempt

MSOSA cannot import .gsnx file formats, the export format of Genesys.

Consequently, a direct import of a system model from the Genesys tool is infeasible.

Following the research method presented in Figure 12, this thesis recorded the decision

node for Activity 1.3 with Genesys “no,” bringing this specific attempt to Activity 1.6.

Despite failing this activity since Genesys XML files could not be directly imported into

MSOSA, various Genesys XML files were reviewed to understand Vitech’s

implementation of XML constructs.

This research followed the steps detailed in NSWC Crane’s Genesys to Cameo

Conversion Process (2020), in which the .gsnx file can be renamed and decompressed as

a .zip file, which enables viewing of the XML files that compose the .gsnx file. The .gsnx

file consists of approximately 50 separate XML files that comprise the model’s project

data, schema data, and project metadata, such as change history and user accounts.

This research reviewed the XML files for three basic Genesys projects created for

this thesis and one sample Genesys project: one with physical definition only, one with

functional definition only, one with requirement definition only, and the sample GSL

model provided by Vitech that contains all three constructs. Reviewing the multiple

projects helped us understand Vitech’s organization of the XML files.

The review revealed how Vitech implements XML to capture model data. Vitech

uses two unique identification strings labeled “IdA” and “IdB” for each model element.

Another data element, “EntityDefinitionID,” defines the model entity type using a pre-

defined library of entity names such as component, function, and interface. To manage

relationships, Vitech uses “IdA” or “IdB,” as “SourceEntityID” and “TargetEntityID” to

establish which entities are to be related and the directionality of that relationship. Vitech

then creates relationships between the entities via a similar means as the entity definition,

37

by using a “RelationDefinitionID” from a predefined library of relationship definitions,

such as decomposes, refines, and satisfies. Some examples of the XML files generated by

Genesys that contain GSL model data, such as the Entities.xml and Relationships.xml files,

are depicted in Figure 14 and Figure 15, respectively. Some common tags in these XML

files include: IdA, IdB, and data.

Figure 14. Genesys Entities.xml File Example from GSL Model

Figure 15. Genesys Relationships.xml File Example from GSL Model

Vitech captures the entity and relationship information with two of the many XML

files within the .gsnx archive file, the “Entities.xml” file and the “Relationships.xml” file,

respectively. The review of these XML files revealed that all project data is indeed captured

and exported by the .gsnx archive file.

38

(1) Importing Model Structure into MSOSA

MSOSA accepts data in a tabular format via Excel or CSV files (i.e., *.xlsx or *.csv,

respectively) via the use of a mapping tool shown in Figure 13. Custom plugins created by

Sandia and NSWC Crane were not available to the author. Therefore, the mapping tool, in

conjunction with the Excel Connector, is the only available way to import Genesys data

into MSOSA without use of the API. As such, this study utilized the MSOSA mapping tool

and Excel method in attempt to convert the model over to MSOSA.

When the Genesys’s Excel connector outputs data to Excel, the output contains

column headers that contain data labels (e.g., element name, element number, performs,

etc.), and the body of the spreadsheet contains the content (e.g., Satellite, C.2.1, Perform

Satellite Functions). The Genesys Excel connector requires a user to define the output

columns (representing entities, relationships, and attributes to export) during the process,

as shown in Figure 16.

Figure 16. Table Definition of Genesys-Excel Connector in Microsoft Excel

for Component Export

39

Figure 16 shows a default table definition called “Components,” which defines

what model information the tool will export. “Position” identifies the numbered column

the data will export to in the Excel spreadsheet. The “Type” provides a drop-down menu

of data types (e.g., relationship, entity attribute). The “Data / Definition” drop-down menu

selections are dynamically generated lists of attributes or relationships, depending on the

“Type” selection (e.g., “name” for entity attribute, or “specified by” for relationship). The

“Based On” field represents what entity the tool is using to query data and is useful when

acquiring second-order data. In the “Based On” field, “Data” denotes the tool will pull

information directly from the entity, whereas a numerical value denotes the tool will pull

information based on the information in another numbered row, identified by the numerical

value. For example, row 4 is “Based On” row 3 in Figure 16, which means row 4 will

gather the entity attribute “description” from the entities found by row 3. In other words,

row 3 will gather data on targets that the entity is specified by, and row 4 will gather the

“description” of each entity found by row 3. The remaining fields are for formatting of the

exported spreadsheet.

When using the mapping tool in MSOSA, one serious limitation becomes evident

that severely inhibits tabular data as a scalable medium for information exchange between

Genesys and MSOSA. This limitation occurs with how the mapping tool imports tabular

data with a one-to-one mapping and obstructs complex data transfer.

Figure 17 shows how Genesys will output the data for a single element, in this case

the Geospatial Library component, using multiple rows in the spreadsheet. The Geospatial

Library component performs multiple functions, which are listed in column E. Referring

again to Figure 16, rows 5 and 6 represent columns E and F in Figure 17, respectively.

Column F, the function description, is based on the data in column E, the functions that the

component Geospatial Library perform, as reflected in Figure 16.

40

Figure 17. Partial Genesys Excel/CSV Export of GSL Model

Figure 18 shows the mapping tool to get the Excel data into MSOSA. It shows that

two columns from Excel are mapped to the properties of a block element. The Number

column in Excel is mapped to the Element ID, and the component column in Excel is

mapped to Name.

Figure 18. MSOSA Excel/CSV Import Mapping from Genesys GSL

Components Export

41

A problem occurs because in the spreadsheet (Figure 17) there are blanks cells in

the Component column. MSOSA does not know these cells are supposed to a continuation

of the previous component (i.e., Geospatial Library). Instead, MSOSA creates separate

elements based on these rows with empty component name. See Figure 19 where all the

blank cells in the Component column are created as blocks in MSOSA.

Figure 19. Genesys GSL Components Imported into MSOSA (Before

Remediation)

This conversion error occurs whenever Excel data contains a Genesys element that

has a one-to-many relationship with other elements and is imported into MSOSA. Genesys

will output tabular data pertinent to a single entity on multiple rows if a one-to-many

42

relationship exists (e.g., the GSL performs multiple functions). Subsequently, MSOSA

interprets this as separate entities in a one-to-one fashion, rather than multiple relationships

to a single entity, and creates empty MSOSA entities during import. A user must therefore

refine the Genesys export such that no blank cells are present before importing into

MSOSA or delete MSOSA data after the import process. In this case, this study deleted the

blank entities shown in Figure 19 after the import to yield Figure 20.

Figure 20. Genesys GSL Components Imported into MSOSA (After

Remediation)

Figure 20 shows that using Excel for the conversion did not exchange any

hierarchical information, which nested blocks in the containment view would illustrate.

Instead, this method established all blocks at the same level. One would expect the System

Context block to be composed of all other physical entities as it was in the original Genesys

model. The MSOSA mapping tool is incapable of importing hierarchical relationships

because MSOSA can import only one type of element at a time using the “Element Type”

dropdown menu. Therefore, the user must first create both entities (source and target)

before defining any relationship between those entities. This includes hierarchical

relationships for functional and physical decompositions. In other words, you must create

the entities that will be related before creating the relationship(s) among those entities.

This study makes two observations regarding this limitation: (1) the import

mapping tool must be run multiple times on multiple data sets to capture all of a model’s

43

information (even simple ones), and (2) the actual order of the import process is of

importance; otherwise relationship information may be incorrectly omitted.

To recreate the physical architecture of the MSOSA model such that it matches the

Genesys model, this research made multiple attempts to import the physical relationships

into MSOSA from Genesys using the Genesys-Excel connector and MSOSA Excel import

function. This proved difficult because SysML represents the physical hierarchy via an

entity property, whereas SDL uses a relationship to create hierarchy. For example, ****

provide an example of how SysML does hierarchy.

In the MSOSA Excel import function, there is no means to establish part properties

for blocks already imported, MSOSA will simply create new blocks with these part

properties that is not desired. To work around this, this study deviates from the ontological

mapping provided by NWSC Crane’s Genesys to Cameo Conversion Process (2020), and

the owner SysML property is mapped to the Genesys SDL relationship, built in. User

manipulation in the MSOSA model, with this deviation, generates a physical hierarchy

reflective of the source model in the model view, shown in Figure 21.

Figure 21. Physical Hierarchy in MSOSA Model Containment View

44

The use of the owner SysML property does not create the required relationships for

the block definition diagrams (BDDs).

MSOSA is incapable of importing the physical architecture of a model from

Genesys using the Genesys-Excel connector and MSOSA Excel import function alone.

Instead, the user must go into MSOSA after importing the component elements and

recreate the physical hierarchy by defining the owner property in the appropriate blocks.

Then, using the “directed composition” selection within the MSOSA BDD successfully

establishes the part properties and thereby creates the correct physical decomposition as

shown in Figure 22, which matches Figure 9 from Genesys.

Figure 22. Block Definition Diagram (BDD) of GSL in MSOSA

(2) Importing Model Behavior into MSOSA

This study also attempted to recreate the functional architecture of the GSL in

MSOSA. Figure 23 depicts a custom table definition used to export GSL behavior data into

MSOSA, including the function names, descriptions, allocation relationships, and

decomposition relationships from Genesys.

45

Figure 23. Custom Table Definition of Genesys-Excel Connector in Microsoft

Excel for Function Export

Using the data generated in Figure 23, Figure 24 then depicts the mapping of that

data into MSOSA. The element properties are the import fields to MSOSA, and the Excel/

CSV columns are the data from Genesys. The mapping abides by the conceptual mapping

provided by NSWC Crane’s Genesys to Cameo Conversion Process (2020), creating

CallBehaviorAction entities in MSOSA as equivalents for functions in Genesys.

46

Figure 24. MSOSA Excel/CSV Import Mapping from Genesys GSL

Functions Export

This successfully creates the Genesys functions as CallBehaviorActions in

MSOSA, and correctly maps allocation relationships to their respective blocks

(representing structure). This study observes two limitations during this import.

The first limitation concerns data duplication and is like the limitation where

MSOSA imports empty entities due to blank cells in the imported spreadsheet. In Genesys,

if an entity has multiple relationships with other entities, then when exported into Excel,

each of those relationships is a different row in the spreadsheet. When imported into

MSOSA, MSOSA incorrectly interprets each row as a different entity and creates a

separate block. Figure 25 shows the function “Accept Products” occurs five times because

it was in five separate rows in the spreadsheet.

47

Figure 25. Example of Entity Duplication in MSOSA

The second limitation this study observed is when transferring the behavior

modeling data. This study was able to export and import function definitions, but it could

not import the behavior modeling data associated with the functions, such as the inputs and

outputs for each function. This is due to semantic and ontological differences between SDL

and SysML combined with the one-to-one limitation of the Excel import method.

SDL uses the function entity type for all behaviors within the system architecture

domain. Functions output items that are themselves entities and are transferred via links

between two components in SDL. Furthermore, the SDL entities of type item can be an

input to, an output of, or a trigger of a function.

In contrast, SysML defines two element types called actions and activities in which

an activity is the higher level construct and can contain multiple actions, a lower-level

construct (Delligatti 2014, 93). Furthermore, SysML employs the concept of tokens, which

“are not model elements” and consist of two types: an object token, that represents an

instance of matter, energy, or data that flows through an activity, and a control token that

“simply indicates which action in an activity is currently enabled at a particular moment

48

during an execution of the activity” (Delligatti 2014, 71). Object nodes instantiate object

tokens in SysML and are transferred via edges. There exist many other specialized types

of nodes as well, which the edges can connect to, and edges themselves may also be

specialized. SysML also employs activity input and output pins, which are object nodes as

well but require less real estate on an activity diagram.

When mapping to SysML per NSWC Crane’s Genesys to Cameo Conversion

Process (2020), activity input and output pins as well as central buffer nodes were used.

However, activity input and output pins are properties of activities and not individual

entities themselves, with individual pins used for each block with a central buffer node

between them. This does not align with the SDL ontology to capture behavior. These

ontological differences, combined with the Excel import method’s one-to-one mapping

limitation, demonstrated that there are no means to import behavior data into MSOSA from

Genesys. Instead, model behavior must be recreated by the user within MSOSA. This limits

the usefulness of Excel imports to only the import of functions from Genesys as it does not

capture the actual dynamic behavior it represents.

These two limitations imply that the import of behavior modeling data from

Genesys to MSOSA via the Genesys-Excel connector and MSOSA mapping tool is feasible

but insufficient.

(3) Importing Model Requirements into MSOSA

The MSOSA 2021x User Manual (2020) instructs users to manually include the

additional columns “id” and “owner” when importing requirements via spreadsheets. The

additional columns enable MSOSA to interpret the decomposition of those requirements.

Consequently, after exporting requirements from Genesys, the Excel file is manipulated by

adding those columns and the required data. Figure 26 provides an excerpt of the

requirements spreadsheet after manipulation. The first requirement, “Continuous Support

and Availability,” is the parent of the second and third requirements, “Continuous Support”

and “Availability” as shown because the owner of these requirements is “1.” The fourth

requirement, “Specific Requirements,” is the parent of the “Accept Requests from Certified

Customers” requirement, and so on.

49

Figure 26. Modified GSL Requirements Table for MSOSA Import

Using this method, this study successfully imported the requirements from Genesys

into MSOSA. Figure 27 is a requirements diagram from MSOSA that demonstrates how

the nested requirements imported correctly. Note that Figure 27 reflects the content

contained in the original Genesys requirements diagram, Figure 11.

Figure 27. GSL Requirements Diagram In MSOSA

50

This study also attempted to transfer any Genesys relationships between

requirements and elements in the physical and functional architectures. Referring again to

Figure 3, requirements are the basis of a function, and a function may be specified by

requirements in Genesys. Components may also be specified by requirements. Per NSWC

Crane’s Genesys to Cameo Conversion Process (2020), the SDL basis of and specified by

relationships between requirements and functions are both mapped to the refine

relationship between a CallBehaviorAction and requirement in SysML. Furthermore, the

SDL relationships specifies/specified by between requirements and components map to the

satisfy relationship between a blocks and requirements.

Importing these relationships using a single Excel sheet, like Figure 28, yielded an

issue where MSOSA incorrectly placed the refines/refined by relationship onto blocks, and

incorrectly placed the satisfies/satisfied by relationship onto CallBehaviorActions.

Figure 28. Genesys Requirement Relationships Export Table Definition (Too

Rich)

51

This was due to the export from the Genesys Excel connector table definition and the

MSOSA import function. The table definition captured all entities for each requirement

where that requirement: was the basis of a function, specifies a function, and specifies a

component. There were simply too many different types of relationships in the table for

MSOSA to interpret correctly using a single set of import options. Instead, the user must

constrain the output scope of the table definition. The GSL export was then obtained twice

using these less-rich table definitions – once for relationships between requirements and

functions (Figure 29), and again for relationships between requirements and components

(Figure 30).

Figure 29. Genesys Requirement Relationships Export Table Definition

(Function Relationships)

Figure 30. Genesys Requirement Relationships Export Table Definition
(Component Relationships)

This study then executed the MSOSA import three times using the two exported

tables. The first two imports were for requirements that specify functions, and then for

requirements that are the basis of functions. MSOSA requires this because. Requirements

in Genesys may both specify a function and be the basis of a function, yet, the refines/

refined by is the only relationship both map to in MSOSA, per NSWC Crane’s Genesys to

Cameo Conversion Process (2020). This translates to a mapping that is two-to-one. The

MSOSA import tool does not allow for mappings that are not one-to-one, therefore it

required two separate imports. The third import established the satisfies/satisfied by

52

relationship between requirements and blocks. These three steps correctly map

requirements to refine CallBehaviorActions, and to be satisfied by blocks.

(4) Summary

To summarize the steps taken for importing data from Genesys into MSOSA via

the Excel connector and MSOSA mapping tools, Figure 31 illustrates how this study was

successful in transferring parts of the GSL model in three steps, aligned to each of the three

SysML pillars: physical, functional, and requirements.

Figure 31. Process Summary for Genesys Export and MSOSA Import via MS

Excel

Step 1 through Step 3 of Figure 31 focus on the physical aspects of the SoI. Step 1

first exported only the SoI model components from Genesys into Excel using the Genesys

Excel Connector tool. The table definition for exporting the components from Genesys may

be a simplified version of Figure 16, as only the component names and numbers are mapped

in Step 2 (an observation made in retrospect of the experiment).

53

Step 2 then used the Excel file generated in Step 1 to import the components into

MSOSA. The import followed a mapping shown in Figure 18, where the components were

created as blocks in MSOSA. Since Step 1 did not capture any relationship data from

Genesys, this Step 2 did not include the import of any relationships among physical entities,

such as the physical hierarchy of the model. It also created empty blocks within MSOSA

due to the structure of the component Excel file from Step 1. Step 3 is required to establish

the physical decomposition in MSOSA as well as to remove empty blocks.

Step 3 removed the empty blocks by simply deleting the blank entities in MSOSA.

After the deletion, there was still no hierarchical information in the model yet. To establish

this, the owner SysML property was used to create parent-child relationships and generated

the hierarchy of physical blocks. However, BDDs did not correctly generate yet and

required further manual manipulation in MSOSA. To remedy this, the “directed

composition” selection in the BDD was used to establish part properties and thereby

successfully created physical decomposition in the BDD.

Step 4 through Step 6 then focus on the functional characteristics of the SoI. Step

4 exported only the functions via the Genesys Excel Connector, using a table definition

like Figure 23. The entity and description properties, as well as the allocation and

decomposition relationships, were exported from Genesys to create an importable Excel

file for MSOSA for Step 5.

Step 5 took the export from Step 4 and imported it into MSOSA, using a mapping

reflective of Figure 24. The Genesys functions were mapped to MSOSA

CallBehaviorAction elements. The Genesys “entity,” “description,” “decomposes target”

relationship, and “allocated to” relationship mapped to the MSOSA properties “name,”

“allocated to,” “owner,” and “documentation,” respectively. This created

CallBehaviorAction entities in MSOSA with allocation relationships to the block entities

established by Steps 1 through 3. However, due to the one-to-one interpretation of

MSOSA’s mapping tool, CallBehaviorAction entities were duplicated and required manual

user input to resolve, eliciting Step 6.

54

Step 6 removed the duplicated CallBehaviorActions created by Step 5 through

simple deletion within MSOSA. However, prior to deleting each entity, their properties

and relationships were recorded for future recreation. Once only unique

CallBehaviorActions existed, the recorded properties and relationships that were deleted

were recreated within MSOSA to bring about concordance and resolve the data duplication

issue.

Step 7 through Step 9 then focus on the requirements of the SoI. The MSOSA

2021x User Manual (2020) details the steps to import requirements into MSOSA. The first

step, Step 7, is to export the requirements from Genesys using a table definition that

contains the requirement entity properties of “title,” “description,” and the “decomposes

relationship.” Then, per the MSOSA 2021x User Manual (2020), Step 7 modifies the Excel

file to include “owner” and “id” columns. The additional columns enable MSOSA to

interpret the decomposition of the requirements. “Id” is used to enumerate the

requirements, and “owner” is used to show the parent-child relationship (decomposition)

of the requirements. Once this step is complete, the Excel file was ready to be imported

into MSOSA via Step 8.

Step 8 imported the requirements into MSOSA, also per the MSOSA 2021x User

Manual (2020). The mapping between Genesys and MSOSA is one-to-one in this case, and

therefore demonstrated no issues during the import process. However, no relationship

information was captured during this step, warranting Step 9.

Step 9 added the relationships for the requirements in MSOSA by constraining the

scope of the Genesys export file and importing it multiple times. In Genesys, requirements

are the basis of a function, and a function may be specified by requirements, and

components may also be specified by requirements. Therefore, three separate imports were

warranted due to the one-to-one constraint in the MSOSA import tool. The first two imports

were for requirements that specify functions, and for requirements that are the basis of

functions. The third import established the satisfies/satisfied by relationship between

requirements and blocks. These three steps correctly mapped requirements as refining

CallBehaviorActions and as being satisfied by blocks.

55

Overall, the import of elements alone from Genesys to MSOSA was trivial, but

issues exist with the end-to-end conversion method. MSOSA creates superfluous model

elements with no data or duplicates when using tabulated data as the import method. At the

same time, the import process with tabulated data does not efficiently allow for the capture

of relationships. A user must manually remediate structural, behavioral and requirement

relationships after import process. Furthermore, the MSOSA mapping tool is the only

means to resolve semantic and ontological disparities between the tools and requires a user

to define it. In this experiment, the user-defined mappings were assumed to be accurate per

NSWC Crane’s Genesys to Cameo Conversion Process (2020), which may not be accurate

and would likely require further work to ensure both accuracy of the mappings and

standardization across all users.

This study demonstrated the successful transfer of parts of the Genesys GSL model

into MSOSA, but the combined limitations between relationship transfer and ontological

mappings result in the MSOSA Excel import method as an overall insufficient means for

transferring Genesys model data into MSOSA. The Genesys Excel connector and MSOSA

Excel import function with associated mappings is effective for transferring basic model

entities but is inefficient in transferring a complex system model. This scalability issue is

a dramatic obstacle in the pursuit of interoperable MBSE models, as nearly all systems that

warrant a model will involve complexity.

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

IV. RESULTS AND CONCLUSIONS

This chapter summarizes the results of this study and draws conclusions from those

results. The organization of this chapter includes a section for the results and a section for

the conclusions.

A. RESULTS

This study identified conversion methods available to a normal user, the limitations

observed during the GSL model experiment from Genesys to MSOSA, and the assessment

of informational content after the conversion process.

This thesis was successful in replicating parts of the original Genesys GSL model

in MSOSA, but it took a lot of user action to do the transfer and conversion. A review of

the .xml files generated by Genesys showed that output model data is comprehensive and

without omission. However, no simple means to transfer XML data into MSOSA exists.

The Genesys Excel connector, in combination with the MSOSA Excel import option and

its associated mapping tool, were the only means to transfer data from Genesys to MSOSA.

All other supported file formats for data export and import between the tools were

infeasible, making all other means to transfer data from Genesys to MSOSA also infeasible.

The experimentation involving the GSL system model as a use-case revealed that there is

exists limitations in data transfer between the two tools. Table 5 summarizes these

limitations.

58

Table 5. Limitations Exchanging Data from Genesys to MSOSA Using the
Genesys Excel Connector and MSOSA Mapping Tool

Observation Limitation Description
Data
Duplication or
Blank Data

One-to-One
Mapping

Unable to correctly transfer data when there are one-
to-many relationships between elements. Either
MSOSA creates multiple copies of the same element,
or MSOSA creates blank entities. In either case, the
user must go into the model and correct the mapping.

Multiple
Imports
Required

One-to-One
Mapping

Multiple imports are required and in a particular order
in order to correctly transfer relationships between
entities.

Order of Import One-to-One
Mapping

The order of the import is of significance during the
migration process. A user may incorrectly omit
relationship information if both entities for any single
relationship do not already exist in MSOSA.

Importing
Behavioral
Modeling Data

Ontological
Differences

There is a major modeling difference between how
SDL and SysML model items and the interfaces
between components to capture behavior. SDL
defines item elements used as inputs/outputs/triggers,
whereas SysML uses object and control flows, in
addition to various combinations of object nodes,
central buffer nodes, pins, etc. (each of which also
have specialized types). The ontological mapping
between SDL and SysML for system behavior
therefore proved difficult to reproduce in MSOSA.

Post Migration
Remediation

Inefficiency The overall process was inefficient and time
intensive. As every level of the data exchange process
required a degree of manual remediation in MSOSA,
the primary advantage of the Excel method seems to
be only in establishing new entities.

The experiment revealed how Genesys and MSOSA have limited model data

transfer capabilities through the Excel connector method. The Excel connector method

facilities transfer of entities well but does not perform well in exchanging relationship

information. The primary obstacle in the Excel method was the one-to-one interpretation

implicit to the MSOSA mapping tool, as most models involving any degree of complexity

will have one-to-many relationships. This effectively restricted the import method to the

exchange of entities only. Imports of the physical and functional architectures were

successful in MSOSA but required manual manipulation in the MSOSA tool after the

59

import process to be reflective of the original model. This would require a modeling effort

or project to recreate a representative GSL model in MSOSA, which severely undercuts

the value of this method.

With these results and using the LCIM (Tolk and Muguira 2003), this thesis

assesses the interoperability between Genesys and MSOSA at Level 0. Documentation

exists independently for the two tools for exchange of data, but there does not exist

documentation specific to the interface between the tools since one does not exist. Since

the only feasible method identified by this thesis to transfer data is through Excel, and each

tool handles this connection differently, there is no effective means for interoperability.

Therefore, this thesis arrives at an LCIM Level of 0 for this use-case.

B. CONCLUSIONS

Various conclusions were drawn based on the data and results of this experiment.

This experiment demonstrated that no simple means to transfer data from Genesys to

MSOSA exists. Model content can be transferred, but the means of doing the transfer is

such that it wouldn’t support, by any practical means, a digital thread in an enterprise such

as the Navy. The only available data transfer method, as explored by this study, was

essentially a “human-in-the-loop” approach using Excel as an intermediary. However,

using the Excel connector to export model data from Genesys or import model data from a

separate target tool demands meticulous management of the tabulated data during the

import/export process to ensure correct ERA assignments. This can over-encumber a

systems engineer and be time intensive depending on the complexity of the model.

This experiment was successful in transferring 144 of 423 entities and 116 of 1,304

relationships from Genesys to MSOSA. The simple GSL sample model contained less than

2,000 entities and relationships and took the user approximately seven hours to adequately

transfer only 17% of the original model’s overall contents. In the case of complex military

systems, system models may have upwards of 10,000 entities and relationships, or more.

Assuming similar user proficiency, extrapolating this time estimate for 100% coverage and

five times more data would require a time commitment of roughly 200 hours. This also

assumes that the ontological mapping between SDL and SysML is accurate and defined.

60

To perform its experiment, this study assumed that the ontological mapping created

by NSWC Crane is accurate and appropriate. Since the ontological mappings are not

standardized, modelers may continue to develop system models with ontological

disagreements, even with a technical solution available to transfer data. To resolve

ontological differences consistently, the Navy and Marine Corps must establish a standard

ontology that tool vendors and users may adopt and implement.

To support a digital thread with this study’s approach, the Navy would have to

invest in developing automated programs for extracting, transferring, and loading model

data so it can piece together models from various sources. The methodology this study

presents could theoretically be automated in a fashion like IBM Cloud’s extract, transform,

and load process, which “combines data from multiple data sources into a single, consistent

data store that is loaded into a data warehouse or other target system,” (IBM Cloud

Education 2020) however this approach can be brittle as changes in either the source or

target tool can break the automated process. It is likely more efficient at the XML data

level, like Sandia’s demonstration (Carroll et al. 2021), instead of using Excel as an

intermediary and attempting to automate it.

Until the community establishes a universally available technical Genesys-MSOSA

solution and standard Navy and Marine Corps ontology, commands utilizing Genesys will

continue to diverge from the Naval IME modeling path that their sister SYSCOMS are

adopting. This conclusion may force Navy commands, such as NAWCADLKE, to

continue modeling outside of the Naval IME and will hinder any future model federation

goals. For these reasons, recommended future work includes the establishment of a SysML

ontology for the Navy and Marine Corps to universally leverage and describe their systems,

and the publication of a Genesys-MSOSA software solution that allows users to import

XML data from Genesys to MSOSA. Since MSOSA was assumed to be synonymous with

the Cameo Systems Modeler tool employed by the Naval IME, it is also recommended that

the software solution be explored for specific use with Genesys and Cameo Systems

Modeler.

61

APPENDIX A

62

THIS PAGE INTENTIONALLY LEFT BLANK

63

APPENDIX B

64

THIS PAGE INTENTIONALLY LEFT BLANK

65

LIST OF REFERENCES

Bone, Mary, Mark Blackburn, Benjamin Kruse, John Dzielski, Thomas Hagedorn, and
Ian Grosse. 2018. “Toward an Interoperability and Integration Framework to
Enable Digital Thread.” Systems 6 (4): 46. http://dx.doi.org.libproxy.nps.edu/
10.3390/systems6040046.

Carroll, Ed. 2019. “Model Interoperability/Credibility - Demonstration Results.”
Presentation, Sandia National Laboratories, Albuquerque, NM, February.
https://www.osti.gov/servlets/purl/1645980.

Carroll, Ed, Carlos Tafoya, Jonathan Compton, Akinli Cengiz, and Jason Jarosz. 2021.
Retaining Systems Engineering Model Meaning Through Transformation: Demo
2. Technical Report SAND2021-2143. Albuquerque, NM: Sandia National
Laboratories.

Delligatti, Lenny. 2014. SysML Distilled: A Brief Guide to the Systems Modeling
Language. Upper Saddle River, NJ: Addison-Wesley.

Department of Defense. 2018. Department of Defense Digital Engineering Strategy.
Washington, DC: Office of the Deputy Assistant Secretary of Defense for
Systems Engineering. https://ac.cto.mil/wp-content/uploads/2019/06/2018-
Digital-Engineering-Strategy_Approved_PrintVersion.pdf.

Department of the Navy. 2020. United States Navy and Marine Corps Digital
Engineering Transformation Strategy. Washington, DC: Department of the Navy.
https://ac.cto.mil/wp-content/uploads/2019/06/2018-Digital-Engineering-
Strategy_Approved_PrintVersion.pdf.

———. 2021. Digital Engineering. NAVWAR Instruction 5401.9. San Diego, CA:
Department of the Navy.

“Genesys 4.1 DOORS Connector Guide.” 2016. Vitech Corporation.
http://www.vitechcorp.com/support/documentation/genesys/400/
DOORSConnectorGuide.pdf.

“Genesys 6.0 Getting Started with the Genesys API.” 2018. Vitech Corporation.
http://www.vitechcorp.com/support/documentation/genesys/600/
GettingStartedWithTheGENESYSAPI.pdf.

“Genesys 2021 R2 Systems Engineering Guided Tour.” 2021. Zuken Vitech Inc.

Genesys to Cameo Conversion Process. 2020. Technical Report. Crane, IN: NSWC
Crane Division.

66

Giachetti, Ronald E. 2015. “Evaluation of the DoDAF Meta-Model’s Support of Systems
Engineering.” Procedia Computer Science 61: 254–60. https://doi.org/10.1016/
j.procs.2015.09.208.

Giachetti, Ronald E., and Warren Vaneman. 2021. “Requirements for a System Model in
the Context of Digital Engineering.” In 2021 IEEE International Systems
Conference (SysCon), 1–7. https://doi.org/10.1109/SysCon48628.2021.9447088.

Holt, Jon, and Simon Perry. 2019. SysML for Systems Engineering - A Model-Based
Approach. 3rd ed. Institution of Engineering and Technology (The IET).
https://app.knovel.com/hotlink/toc/id:kpSMLSEA0L/sysml-systems-engineering/
sysml-systems-engineering.

IBM Cloud Education. 2020. “ETL (Extract, Transform, Load).” April 28, 2020.
https://www.ibm.com/cloud/learn/etl#toc-what-is-et-xeCDpL69.

INCOSE. 2007. INCOSE Systems Engineering Vision 2020. Technical Report INCOSE-
TP-2004-004-02. International Council on Systems Engineering (INCOSE).

———. 2022. “INCOSE Systems Engineering Vision 2035.” International Council on
Systems Engineering (INCOSE). https://www.incose.org/about-systems-
engineering/se-vision-2035.

Johnson, Joan L. 2020. “Digital/Systems Engineering Transformation Working Group
Charter.” Official Memorandum. Washington, DC: Department of Defense.

“Key Concepts.” n.d. Vitechcorp.Com. Accessed April 9, 2022.
https://www.vitechcorp.com/resources/core/onlinehelp/desktop/
topic.htm#t=Key_Concepts.htm.

“Magic Systems of Systems Architect 2021x User Manual.” 2020. No Magic, Inc.

Merriam-Webster. n.d. “Semantics.” Accessed March 26, 2022. https://www.merriam-
webster.com/dictionary/semantics.

Moschler, Joe. 2019. “Defense Acquisition Magazine.” Defense Acquisition University
XLVIII (No. 5, DAU 270): 51.

Murdock, Jaimie, and Edward Carroll. 2021. Simplifying and Visualizing the Ontology of
Systems Engineering Models. SAND2021-7079, 1814061, 698015.
https://doi.org/10.2172/1814061.

Pilato, Jeff. 2022. “Breaking Through System Design Tool Dependency with Automatic
Model Transformation.” Virtual Naval D/SET Presentation, August 10, 2022.
https://wiki.lift.mhpcc.hpc.mil/confluence/display/ND/
Breaking+Through+System+Design+Tool+Dependency+with+Automatic+Model
+Transformation.

67

Tolk, Andreas, Saikou Diallo, Jose Padilla, and Charles Turnista. 2012. “How Is M&S
Interoperability Different From Other Interoperability Domains?” M&S Journal 7
(3): 5–14.

Tolk, Andreas, and James A. Muguira. 2003. “The Levels of Conceptual Interoperability
Model.” Old Dominion University.

Vaneman, Warren. 2022. “MBSE Structures.” Class notes for SE4930: Model-Based
Systems Engineering, Naval Postgraduate School, Monterey, CA.
https://cle.nps.edu/access/content/group/db46b2d2-2c3a-462a-9fc3-
53b863247315/Module%204%20-%20Notes/M04-2%20Model%20Structure.pdf.

“What Is SysML?” n.d. OMGSysML. Accessed April 9, 2022.
https://www.omgsysml.org/what-is-sysml.htm.

68

THIS PAGE INTENTIONALLY LEFT BLANK

69

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	22Sep_Donovan_Michael_First8
	22Sep_Donovan_Michael
	I. INTRODUCTION
	A. Background
	1. Model-Based Systems Engineering
	2. Semantics, Ontologies, and Meta-Models
	3. Vitech Genesys Tool and Language
	4. Dassault Systemes Magic Systems of Systems Architect Tool and Language

	B. MOTIVATION
	C. Research Question
	D. Benefits of Study
	E. Organization

	II. Literature review
	A. Interoperability in the Context of MBSE
	1. Limiting Factors of Interoperability Among Models
	2. Progress Towards a Solution
	3. Assessing MBSE Interoperability

	B. Related Work
	1. NSWC Crane — Genesys to Cameo Conversion Process
	2. Sandia National Laboratories Demonstration
	3. SodiusWillert’s Publisher for Rhapsody

	III. Analysis of conversion
	A. METHODOLOGY
	1. Experimental Setup
	a. GSL Model Structure
	b. GSL Model Behavior
	c. GSL Requirements Diagrams

	2. Research Methodology
	a. Activity 1 – Evaluate Export Formats in Source Tool
	b. Activity 2 – Evaluate Import Formats in Target Tool
	c. Activity 3 – Directly Importable? (OR Gate)
	d. Activity 4 – Export Model from Source Tool
	e. Activity 5 – Import Model Export into Target Tool
	f. Activity 6 – Export Model Data from Source Tool
	g. Activity 7 – Assess Informational Content

	B. EXPERIMENT EXECUTION AND OBSERVATIONS
	1. Supported File Formats by Tool
	a. Vitech Genesys File Formats
	b. Observations from Genesys Supported File Formats
	c. MSOSA File Formats
	d. Observations from MSOSA Supported File Formats

	2. Migration Attempts
	a. Genesys to MSOSA Migration Attempt
	(1) Importing Model Structure into MSOSA
	(2) Importing Model Behavior into MSOSA
	(3) Importing Model Requirements into MSOSA
	(4) Summary

	IV. RESULTS AND CONCLUSIONS
	A. RESULTS
	B. CONCLUSIONS

	APPENDIX A
	APPENDIX B
	List of References
	initial distribution list

