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ABSTRACT 

 This thesis investigates whether the information contained in a Vitech Genesys 

model can retain its informational accuracy after conversion into a Dassault Systemes’ 

Magic System of Systems Architect (MSOSA) model. The thesis uses a sample system 

model in Vitech that implements the system definition language (SDL) and converts it to 

MSOSA, which uses the systems modeling language (SysML). The study reviewed 

conversion methods available to the user and converted a Genesys model to an MSOSA 

model using the only available method, Excel. The study then assessed the converted 

model and outlined any post-migration remediation. 

 The results of this thesis demonstrate that the currently available methods are 

feasible but inefficient, as only 34% of the entities and 9% of the relationships transferred 

successfully during the experiment. Genesys can output tabular data that represents 

system model entities and relationships; however, the MSOSA import function was 

unable to correctly import entities that had one-to-many relationships with other entities. 

Consequently, the user must perform manual manipulation during the conversion process. 

Furthermore, ontological differences between the tools prevented the complete import of 

behavioral data, since many SDL entities map to more than one SysML entity. 

 Based on the results, this thesis recommends pursuing an extensible markup 

language–based software solution for Genesys and MSOSA and developing a formal 

Navy and Marine Corps ontology. 

v 



THIS PAGE INTENTIONALLY LEFT BLANK 

vi 



vii 

TABLE OF CONTENTS 

I. INTRODUCTION..................................................................................................1 
A. BACKGROUND ........................................................................................1 

1. Model-Based Systems Engineering ..............................................1 
2. Semantics, Ontologies, and Meta-Models ....................................3 
3. Vitech Genesys Tool and Language .............................................4 
4. Dassault Systemes Magic Systems of Systems Architect 

Tool and Language ........................................................................6 
B. MOTIVATION ..........................................................................................7 
C. RESEARCH QUESTION .......................................................................11 
D. BENEFITS OF STUDY ...........................................................................11 
E. ORGANIZATION ...................................................................................11 

II. LITERATURE REVIEW ...................................................................................13 
A. INTEROPERABILITY IN THE CONTEXT OF MBSE ....................13 

1. Limiting Factors of Interoperability Among Models ...............13 
2. Progress Towards a Solution ......................................................14 
3. Assessing MBSE Interoperability ...............................................15 

B. RELATED WORK ..................................................................................17 
1. NSWC Crane — Genesys to Cameo Conversion Process ........17 
2. Sandia National Laboratories Demonstration ..........................19 
3. SodiusWillert’s Publisher for Rhapsody ...................................20 

III. ANALYSIS OF CONVERSION .........................................................................23 
A. METHODOLOGY ..................................................................................23 

1. Experimental Setup .....................................................................23 
2. Research Methodology ................................................................28 

B. EXPERIMENT EXECUTION AND OBSERVATIONS .....................30 
1. Supported File Formats by Tool .................................................31 
2. Migration Attempts .....................................................................36 

IV. RESULTS AND CONCLUSIONS .....................................................................57 
A. RESULTS .................................................................................................57 
B. CONCLUSIONS ......................................................................................59 

APPENDIX A ...................................................................................................................61 

APPENDIX B ...................................................................................................................63 



viii 

LIST OF REFERENCES ................................................................................................65 

INITIAL DISTRIBUTION LIST ...................................................................................69 

 

  



ix 

LIST OF FIGURES  

Figure 1. Sample Ontology. Source: Murdock and Carroll (2021). ............................3 

Figure 2. Concepts and their Relationships. Source: Giachetti and Vaneman 
(2021). ..........................................................................................................4 

Figure 3. Vitech Genesys Schema. Source: “Genesys 4.1 Architecture 
Definition Guide” (2016). ............................................................................5 

Figure 4. SysML Diagram Types. Source: What is SysML? (n.d.). ...........................7 

Figure 5. The Interoperability and Integration Framework (IoIF). Source: 
Bone et al. (2018). ......................................................................................15 

Figure 6. The Levels of Conceptual Interoperability. Source: Tolk and 
Muguira (2003). .........................................................................................16 

Figure 7. GSL Model Composition ...........................................................................24 

Figure 8. GSL Physical Hierarchy Diagram .............................................................25 

Figure 9. GSL Physical Block Diagram of System Context .....................................26 

Figure 10. Partial GSL Activity Diagram ...................................................................27 

Figure 11. Partial GSL Requirements Diagram ..........................................................28 

Figure 12. Research Methodology ..............................................................................29 

Figure 13. MSOSA Excel/CSV Import Mapping Example. Source: “Magic 
Systems of Systems Architect 2021x User Manual” (2020). ....................35 

Figure 14. Genesys Entities.xml File Example from GSL Model ..............................37 

Figure 15. Genesys Relationships.xml File Example from GSL Model .....................37 

Figure 16. Table Definition of Genesys-Excel Connector in Microsoft Excel for 
Component Export .....................................................................................38 

Figure 17. Partial Genesys Excel/CSV Export of GSL Model ...................................40 

Figure 18. MSOSA Excel/CSV Import Mapping from Genesys GSL 
Components Export ...................................................................................40 



x 

Figure 19. Genesys GSL Components Imported into MSOSA (Before 
Remediation) ..............................................................................................41 

Figure 20. Genesys GSL Components Imported into MSOSA (After 
Remediation) ..............................................................................................42 

Figure 21. Physical Hierarchy in MSOSA Model Containment View .......................43 

Figure 22. Block Definition Diagram (BDD) of GSL in MSOSA ..............................44 

Figure 23. Custom Table Definition of Genesys-Excel Connector in Microsoft 
Excel for Function Export ..........................................................................45 

Figure 24. MSOSA Excel/CSV Import Mapping from Genesys GSL Functions 
Export .........................................................................................................46 

Figure 25. Example of Entity Duplication in MSOSA ...............................................47 

Figure 26. Modified GSL Requirements Table for MSOSA Import ..........................49 

Figure 27. GSL Requirements Diagram In MSOSA ...................................................49 

Figure 28. Genesys Requirement Relationships Export Table Definition (Too 
Rich) ...........................................................................................................50 

Figure 29. Genesys Requirement Relationships Export Table Definition 
(Function Relationships) ............................................................................51 

Figure 30. Genesys Requirement Relationships Export Table Definition 
(Component Relationships) .......................................................................51 

Figure 31. Process Summary for Genesys Export and MSOSA Import via MS 
Excel ..........................................................................................................52 

  



xi 

LIST OF TABLES 

Table 1. A Non-exhaustive List of MBSE Component Variations............................2 

Table 2. Applications Used in Experiment ..............................................................23 

Table 3. Vitech Genesys Export/Import Formats ....................................................32 

Table 4. Dassault Systemes MSOSA Import/Export Formats .................................34 

Table 5. Limitations Exchanging Data from Genesys to MSOSA Using the 
Genesys Excel Connector and MSOSA Mapping Tool .............................58 

 



xii 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

BDD block definition diagram 
BPMN business process model and notation 
D/SET Digital/Systems Engineering Transformation 
DISA Defense Information Systems Agency 
DM2 DoDAF MetaModel 
DOD Department of Defense 
DoDAF Department of Defense Architecture Framework 
DON Department of the Navy 
eMASS Enterprise Mission Assurance Support Service 
EMF eclipse modeling framework 
ERA entity-relationship-attribute 
FMU functional mock-up unit 
GOTS government off-the-shelf 
IME Integrated Modeling Environment 
INCOSE International Council on Systems Engineering  
IoIF Interoperability and Integration Framework  
LML Life Cycle Modeling Language  
MBSAP Model-based System Architecture Process 
MBSE model-based systems engineering 
MoDAF British Ministry of Defence Architecture Framework 
MOF Meta-Object Facility 
MSOSA Magic Systems of Systems Architect 
NAVAIR Naval Air Systems Command 
NAVWAR Naval Information Systems Command 
NAWCADLKE Naval Air Warfare Center Aircraft Division Lakehurst 
NSWC Crane Naval Surface Warfare Center - Crane Division 
OMG Object Management Group 
OOSEM Object Oriented Systems Engineering Method  
OWL web ontology language 
SCXML state chart XML 



xiv 

SDL System Definition Language 
SE Systems Engineering 
SET Systems Engineering Transformation 
SoI system of interest 
SYSCOM systems command 
SysML Systems Modeling Language 
UAF Unified Architecture Framework 
UML Unified Modeling Language 
WG working group 
XMI XML metadata interchange 
XML Extensible Markup Language 
XPDL XML for Process Definition Language  



xv 

EXECUTIVE SUMMARY 

The releases of the DOD’s Digital Engineering Strategy (2018) and the United 

States Navy and Marine Corps Digital Systems Engineering Transformation Strategy 

(2020) outline the strategies to formally incorporate MBSE and digital engineering 

approaches in acquisition processes for the DOD and Navy and Marine Corps, respectively. 

Two of the objectives detailed in the United States Navy and Marine Corps Digital Systems 

Engineering Transformation Strategy (2020) are to “formalize the development, 

integration, and use of models” and to “provide an enduring authoritative knowledge 

source.”  The Naval Digital/Systems Engineering Transformation (D/SET) Working Group 

(WG) is the Department of the Navy’s (DON) cross-systems command (SYSCOM) action 

team that was established with its primary purpose being “to accelerate implementation of 

Digital/Systems Engineering Transformation … and increase digital engineering 

collaboration across SYSCOMs” (Johnson 2020). The D/SET WG has begun 

implementing the Naval Integrated Modeling Environment (IME), a modeling 

environment that employs SysML and NoMagic’s Cameo Systems Modeler that is 

available to all Navy and Marine Corps systems commands. 

Throughout the Navy, different commands are likely using different tools. Yet, they 

must share information. In pursuit of enabling model interoperability, the purpose of this 

thesis is to explore user-available methods for converting a Vitech Genesys system model 

to a Dassault Systemes Magic System of Systems Architect (MSOSA) model, and assess 

if a model created in Genesys can retain its correctness and semantic content after the 

conversion process. Various commands employ Vitech’s products to support their 

programs, while the Naval IME employs Cameo Systems Modeler, which this thesis 

considers to be analogous to MSOSA. These modeling tools employ different modeling 

languages; Genesys uses the system definition language (SDL) with support for SysML 

diagram types, while Cameo Systems Modeler and MSOSA use SysML without any pre-

defined underlying ontology. The tools also employ different ontologies, which is how a 

system model conveys meaning through its semantic content.  
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To assess the conversion process, this thesis first identified the accepted file formats 

for data import and export in each tool, as well as any built-in program extensions 

supported by each tool. Second, an attempt was made to convert a system model originating 

in Genesys (using SDL) to a comparable system model in MSOSA (using SysML). The 

conversion methodology leveraged in the second step was informed and guided by the 

accepted file formats identified in the first step. Any obstacles encountered during the 

conversion process were also recorded, and finally, the informational content of the 

resultant MSOSA model was assessed.  

The thesis limits the conversion approach to what is currently available to the 

typical user of MBSE tools. Hence, the thesis does not write any computer programs in an 

attempt to automate the conversion process. Since Genesys provides a means to export 

tabular data via Vitech’s Excel Connector tool, and MSOSA supports the import of tabular 

data, this thesis explored the use of Microsoft Excel as an intermediary to exchange 

information between the two tools. 

Figure 1 defines the methodology used in this study’s attempt to convert a system 

model from Genesys to MSOSA via Microsoft Excel. Figure 1 aligns to each of the three 

SysML pillars in scope: physical, functional, and requirements. Within Figure 1,  

Steps 1–3 convert the physical entities from Genesys into MSOSA. Steps 4–6 then convert 

the functional entities from Genesys into MSOSA, and finally, Steps 7–9 convert the 

requirements from Genesys into MSOSA. This study utilized the Genesys-provided 

Geospatial Library (GSL) sample model as the system of interest (SoI).  
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Figure 1. Process Summary for Genesys Export and MSOSA Import via MS 

Excel 
 

The thesis was successful in replicating parts of the original Genesys GSL model 

in MSOSA, but it took a lot of user action to do the transfer and conversion. The 

experimentation involving the GSL system model revealed limitations in data transfer 

between the two tools. Table 1 summarizes the limitations as observed by this study.  
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Table 1. Limitations Exchanging Data from Genesys to MSOSA Using the 
Genesys Excel Connector and MSOSA Mapping Tool 

 
Observation Limitation Description 
Data Duplication 
or Blank Data 

One-to-One 
Mapping 

Unable to correctly transfer data when there are one-
to-many relationships between elements. Either 
MSOSA creates multiple copies of the same element, 
or MSOSA creates blank entities. In either case, the 
user must go into the model and correct the mapping. 

Multiple Imports 
Required 

One-to-One 
Mapping 

Multiple imports are required and in a particular 
order in order to correctly transfer relationships 
between entities. 

Order of Import One-to-One 
Mapping 

The order of the import is of significance during the 
migration process. A user may incorrectly omit 
relationship information if both entities for any 
single relationship do not already exist in MSOSA. 

Importing 
Behavioral 
Modeling Data 

Ontological 
Differences 

There is a major modeling difference between how 
SDL and SysML model items and the interfaces 
between components to capture behavior. SDL 
defines item elements used as inputs/outputs/triggers, 
whereas SysML uses object and control flows, in 
addition to various combinations of object nodes, 
central buffer nodes, pins, etc. (each of which also 
have specialized types). The ontological mapping 
between SDL and SysML for system behavior 
therefore proved difficult to reproduce in MSOSA. 

Post Migration 
Remediation 

Inefficiency The overall process was inefficient and time 
intensive. As every level of the data exchange 
process required a degree of manual remediation in 
MSOSA, the primary advantage of the Excel method 
seems to be only in establishing new entities.  

 

This experiment was successful in transferring only 144 of 423 entities and 116 of 

1,304 relationships from Genesys to MSOSA. The simple GSL sample model contained 

less than 2,000 entities and relationships and took the user approximately seven hours to 

adequately transfer only 17% of the original model’s overall contents. The experiment 

revealed how Genesys and MSOSA have limited data transfer capabilities through the 

Excel connector method. Transfer of requirement data was successful, and the Excel 

connector method facilitates transfer of entities well, but it does not perform well in 

exchanging relationship information. The primary obstacle in the Excel method, 
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demonstrated by Table 1, was the one-to-one interpretation implicit to the MSOSA 

mapping tool, as most models involving any degree of complexity will have one-to-many 

relationships. This effectively restricted the import method to the exchange of entities only. 

Imports of the physical and functional architectures were successful in MSOSA but 

required manual manipulation in the MSOSA tool after the import process to be reflective 

of the original model. This would require a modeling effort or project to recreate a 

representative GSL model in MSOSA, which severely undercuts the value of this method.  

With these results and using the Levels of Conceptual Interoperability Model 

(LCIM) (Tolk and Muguira 2003), this thesis assesses the interoperability between 

Genesys and MSOSA at Level 0. Documentation exists independently for the two tools for 

exchange of data, but there does not exist documentation specific to the interface between 

the tools since one does not exist. Since the only feasible method identified by this thesis 

to transfer data is through Excel, and each tool handles this connection differently, there is 

no effective means for interoperability. Therefore, this thesis arrives at an LCIM Level of 

0 for this use-case. 

To support a digital thread with this study’s approach, the Navy would have to 

invest in developing automated programs for extracting, transferring, and loading model 

data so it can piece together models from various sources. The methodology this study 

presents could theoretically be automated in a fashion like IBM Cloud’s extract, transform, 

and load process, which “combines data from multiple data sources into a single, consistent 

data store that is loaded into a data warehouse or other target system,” (IBM Cloud 

Education 2020) however this approach can be brittle as changes in either the source or 

target tool can break the automated process. It is likely more efficient at the extensible 

markup language (XML) data level, like Sandia’s demonstration (Carroll et al. 2021), 

instead of using Excel as an intermediary and attempting to automate it. 

Until the community establishes a universally available technical Genesys-MSOSA 

solution and standard Navy and Marine Corps ontology, commands utilizing Genesys will 

continue to diverge from the Naval IME modeling path that their sister SYSCOMS are 

adopting. This conclusion may force Navy commands, such as NAWCADLKE, to 

continue modeling outside of the Naval IME and will hinder any future model federation 
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goals. For these reasons, recommended future work includes the establishment of a SysML 

ontology for the Navy and Marine Corps to universally leverage and describe their systems, 

and the publication of a Genesys-MSOSA software solution that allows users to import 

XML data from Genesys to MSOSA. Since MSOSA was assumed to be synonymous with 

the Cameo Systems Modeler tool employed by the Naval IME, it is also recommended that 

the software solution be explored for specific use with Genesys and Cameo Systems 

Modeler.  
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I. INTRODUCTION 

This chapter establishes the motivation for this thesis. It also provides background 

information on model-based systems engineering (MBSE), the importance of semantics 

and ontologies, and how these topics are relevant to MBSE efforts. Furthermore, it 

summarizes the Dassault Systemes Magic Systems of Systems Architect (MSOSA) and 

Vitech Genesys modeling tools and their respective languages. Finally, this chapter details 

the research problem, the benefits of this research, and the overall organization of this 

document.  

A. BACKGROUND   

1. Model-Based Systems Engineering 

The International Council on Systems Engineering (INCOSE) defines MBSE as 

“the formalized application of modeling to support system requirements, design, analysis, 

verification, and validation activities beginning in the conceptual design phase and 

continuing throughout development and later life cycle phases” (INCOSE 2007). Adoption 

of MBSE has become increasingly widespread in recent decades as industries attempt to 

develop and maintain systems of increasing complexity while adequately conveying this 

complexity in meaningful ways to their stakeholders (INCOSE 2007).  

Giachetti and Vaneman (2021) identify the following six components required to 

implement MBSE successfully: a modeling language, a schema (i.e., ontology, meta-

model), model-based processes, presentation framework, MBSE tools, and a 

knowledgeable and trained workforce. Many distinct variants in performing MBSE exist 

that can compose each of these MBSE elements. Table 1 illustrates some of the many 

options for each component. Table 1 omits the workforce training component as the 

organization must identify the other five components before any training may occur. Note 

that there is no intentional relationship between each column contained in Table 1.  
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Table 1. A Non-exhaustive List of MBSE Component Variations 

Modeling 
Languages Schemas Model-based 

Processes 
Presentation 
Frameworks MBSE Tools 

System 
Modeling 
Language 
(SysML) 

User-defined 
(infinite 
variations by 
extension) 

Object 
Oriented 
Systems 
Engineering 
Method 
(OOSEM) 

Department of 
Defense 
Architecture 
Framework 
(DoDAF) 

MagicDraw’s 
Cameo/
Dassault 
Systemes’ 
Magic System 
of Systems 
Architect 
(MSOSA) 

System 
Definition 
Language 
(SDL) 

Vitech’s Core 
and Genesys 
Meta-Model 

Vitech’s 
STRATA 

British 
Ministry of 
Defence 
Architecture 
Framework 
(MoDAF) 

Vitech’s Core 
and Genesys 

Life cycle 
Modeling 
Language 
(LML) 

DoDAF 
MetaModel 
(DM2) 

Model-based 
System 
Architecture 
Process 
(MBSAP) 

Zachman’s 
Framework 

IBM’s 
Rhapsody 

Unified 
Modeling 
Language 
(UML) 

Meta-Object 
Facility (MOF) 

NoMagic’s 
Magic Grid 

Unified 
Architecture 
Framework 
(UAF) 

SPEC 
Innovations’ 
Innoslate  

 

While aspects of MBSE have progressed towards standardization, such as the 

MBSE languages, MBSE is still a growing field and continues to evolve (INCOSE 2007; 

2022). Though some combinations would be infeasible (e.g., leveraging LML in Vitech 

Genesys), enumerating through Table 1 alone shows how a modeler could theoretically 

capture and present the same system in up to 16 different ways, yet all would represent the 

same information. The differences among these similar yet different theoretical models 

stress the importance of semantics and ontology and shift the focus from what to model to 

how to model. 
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2. Semantics, Ontologies, and Meta-Models 

The Merriam-Webster dictionary formally defines the term semantics as “the study 

of meanings” (n.d). In the context of MBSE:  

There is a need for the semantics of the model to be formalized, which is 
accomplished with a metamodel. The reason for formal semantics is to 
avoid problems inherent in the communication of ambiguous 
representations, to enable computer interpretation of models, and to 
exchange models between systems engineering teams. The meta-model 
provides a standardized and consistent terminology resulting in a shared and 
precise interpretation of a model. (Giachetti 2015, 255).  

Giachetti and Vaneman (2021) state that “semantics specify the interpretation of 

the constructs as well as what they mean when combined in the model.” In other words, 

the semantics of a model convey the predefined language and meaning of the information 

captured by the model. For example, tool vendors often define a model’s semantics in 

subject-predicate-object triples. Defining this semantic structure, including directionality, 

establishes the formal ontology that the system model  uses to convey information (Carroll 

et al. 2021). That is, the modeling tool specifies or uses an ontology and the modeler uses 

the modeling tool’s ontology, which includes standardized terms and their meaning to 

describe the system-of-interest in the model space (Vaneman 2022). Figure 1 is an example 

of a simple ontology that uses the subject-predicate-object triple construct.  

 
Figure 1. Sample Ontology. Source: Murdock and Carroll (2021). 
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Practitioners often use the term “ontology” interchangeably with the terms “meta-

model” and “schema.” Slight differences exist among these terms, which is also an exercise 

in semantics. The term “meta-model” further considers the syntax of the model, both 

abstract and concrete. The abstract syntax “specifies the concepts, relationships, and rules” 

governing a modeling language, whereas the concrete syntax “specifies the notation within 

the modeling language” (Giachetti and Vaneman 2021). Figure 2 illustrates the 

relationships among these terms with a system and its system model.  

 
Figure 2. Concepts and their Relationships. Source: Giachetti and Vaneman 

(2021). 

This thesis refers to the terms “ontology,” “schema,” and “meta-model” as interchangeable 

and synonymous to avoid confusion regarding these nuances. 

3. Vitech Genesys Tool and Language 

The Vitech Corporation, a Zuken company, developed and manages the Genesys 

tool. The Genesys tool, the successor to Vitech’s Core modeling tool, implements the 

System Definition Language (SDL) modeling language. Vitech (“Key Concepts” n.d.) 

describes SDL as “a formal, structured language that avoids ambiguity inherent in using 

common English to define or specify a system.” The SDL is a formal language with a 

robust taxonomy conveying consistent semantic meaning. Figure 3 shows the meta-model 
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of the SDL. Vitech’s SDL (“Key Concepts” n.d.) uses an approach based on a subject-

predicate-object triple, which they call an “entity-relationship-attribute (ERA)” language 

with obvious reference to the entity-relationship model of relational databases. A portion 

of the SDL in Figure 3 shows a component element performs a function element (an entity, 

a relationship, and an entity, i.e., the object, respectively). Each element then has attributes 

that characterize the element, such as a title, description, unique identifier, etc.  

 
Figure 3. Vitech Genesys Schema. Source: “Genesys 4.1 Architecture 

Definition Guide” (2016). 

Vitech’s Genesys tool supports Systems Modeling Language (SysML) views, but 

it was not originally built around SysML. This report further discusses SysML in the 

Dassault Systemes Magic Systems of Systems Architect Tool and Language section.  
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4. Dassault Systemes Magic Systems of Systems Architect Tool and 
Language 

The Magic Systems of Systems Architect (MSOSA) tool is a successor of the 

NoMagic Cameo suite of tools. Dassault Systemes acquired NoMagic and rebranded the 

tools in 2018. This thesis interchangeably refers to both NoMagic’s Cameo Systems 

Modeler tool and the MSOSA tool because these tools have the same implementation of 

SysML and provide the same general functionality.  

MSOSA uses multiple modeling languages based on the Unified Modeling 

Language (UML). MSOSA does not support Vitech’s SDL. The focus of this thesis is on 

MSOSA’s implementation of SysML. SysML is an extension of the UML. The Object 

Management Group (OMG) manages both UML and SysML. The OMG describes SysML 

as:  

A general-purpose graphical modeling language for specifying, analyzing, 
designing, and verifying complex systems that may include hardware, 
software, information, personnel, procedures, and facilities. In particular, 
the language provides graphical representations with a semantic foundation 
for modeling system requirements, behavior, structure, and parametrics, 
which is used to integrate with other engineering analysis models. “What Is 
SysML?” (n.d.). 

SysML is tailorable to any specific domain. SysML lacks a schema to define terms 

relevant to the systems engineering (SE) domain. The OMG has intentionally designed 

SysML to be extensible, which requires the user or organization to define a schema. For 

instance, the block is the most basic unit of structure in SysML. A block can be 

“stereotyped” as different classes of blocks as the user sees fit. A generic example is a user 

defining a block as a fluid that contains specific user-defined properties, such as density 

and viscosity. Other blocks can then be stereotyped as a fluid, such as water or oil, and 

these blocks will inherit the properties defined by a fluid with default or user-defined values 

(Holt and Perry 2019). For these reasons, the user-defined ontology created to support a 

given domain can differ from those in other domains, or even the same domain, despite 

having similar semantic meaning. 
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Figure 4 depicts the SysML diagram types, which fall into three main categories: 

behavior, requirement, and structure diagrams.  

 
Figure 4. SysML Diagram Types. Source: What is SysML? (n.d.). 

Behavior diagrams describe the system’s functions and how the system performs 

under various conditions. Requirement diagrams describe the requirements the system 

must meet and their traceability. Structure diagrams describe how system elements are 

connected to form the system. Structure diagrams include both internal and external 

connections to the system. The parametric diagram also exists as a type of structure 

diagram, in which variables can be defined with relationships to support model simulation 

and analysis.  

B. MOTIVATION 

In years past, the Department of Defense (DOD) acquisition community has 

implemented some degree of MBSE and realized some of its benefits. However, “MBSE 

process and methods [have] generally [been] practiced in an ad hoc manner and not 

integrated into the overall systems engineering processes” (INCOSE 2007, 15). Moreover, 

many commands are pursuing different MBSE approaches using different tools, which may 

create challenges when those commands must work together and share model data. 
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Some of these challenges include redundant modeling efforts and obstacles in 

conducting simulation and analyses of system models. They occur when system models 

cannot connect or share data.  

For instance, using a generic example of a car implies external interfaces with other 

systems, such as a gas pump for refueling. A modeler needs to define the car with sufficient 

detail in their modeling tool but cannot do so without having also defined the gas pump as 

well, to some extent. Despite the modeler not having control over the gas pump, they must 

still account for its interface, at the least. This is often simplified through interface 

standards (e.g., all gas pumps use the same length and diameter nozzle), but if no interface 

standard exists, then more details regarding the external system must be captured to 

sufficiently define the car model. This leads to model duplication, as the model element(s) 

representing the gas pump are captured by both the vehicle designer and the gas pump 

designer. This same scenario can occur in military systems as well. One organization, such 

as Boeing, may capture an aircraft’s tailhook in their aircraft model, while another 

organization, such as NAWCAD, may capture the arresting cables on an aircraft carrier in 

their model. There exists a physical interface between the tailhook and arresting cable 

components during operations. Hence, to fully define their system, Boeing may capture 

details of the arresting cables in their model, and NAWCAD may capture details of the 

tailhook in their model. Neither organization has control over both components, yet a 

modeler needs to capture the interface, and therefore some details of the external system, 

to correctly design their own systems. In both examples, two different models contain 

redundant model elements, each of which took time to define and neither entity can exert 

direct control over the external elements. If the models could instead be connected and 

simply share data, this redundancy would be mitigated. The redundancy in model elements 

may also present risk, as modelers may incorrectly define the elements they do not control 

or may not actively manage them and could eventually lead to design error.  

Another symptom includes the inhibition of simulation and analysis of system of 

systems or platform behavior due to discrete, unconnected models. A model’s scope 

constrains any given simulation of that model. Therefore, a simulation that depends upon 

external systems must assume the interactions at the interfaces as ideal, which is not always 
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the case in the real world. Aggregating, or federating, the models of each system to generate 

the complete end-to-end behavior provides more detailed insight into operational risks and 

is more likely to elicit identification of emergent behavior. Maintaining discrete and 

unconnected models inhibits the simulation of the end-to-end functionality and deters its 

analysis.  

To address these areas, the DOD has published the Digital Engineering Strategy 

(2018), and the Department of the Navy (DON) (2020) has published the United States 

Navy and Marine Corps Digital Systems Engineering Transformation Strategy. Two 

objectives of the Navy’s Transformation Strategy are to “formalize the development, 

integration, and use of models” and to “provide an enduring authoritative knowledge 

source” (2020). 

In response to the strategic guidance, some Navy systems commands (SYSCOMs) 

have recently adopted common modeling practices to assist MBSE interoperability. For 

example, the Naval Information Warfare Systems Command (NAVWAR) released 

NAVWARINST 5401.9 in October 2021. Among other things, NAVWARINST 5401.9 

calls upon NAVWAR to identify and certify a standard tool suite and to maintain, update, 

and enforce a NAVWAR Data Schema and a NAVWAR Integrated Dictionary. It also calls 

upon NAVWAR to “develop and maintain MBSE models leveraging at a minimum the 

Systems Modeling Language and, if appropriate, the Unified Architecture Framework 

Profile” (Department of the Navy 2021). In essence, NAVWAR is recommending the 

entire Navy agrees upon and uses a single set of methods, tools, and languages. This is one 

approach to addressing MBSE interoperability concerns but may not be the best approach. 

This type of mandate would constrain the Navy to a single tool and language, reducing its 

flexibility to adapt to new methods, tools, or languages, and would dramatically increase 

tool vendor dependence.  

Another response to the Navy’s Transformation Strategy, NAVAIR stood up the 

Systems Engineering Transformation (SET) Team to promote MBSE and Digital 

Engineering, and the Navy stood up the Naval Digital/Systems Engineering 

Transformation (D/SET) Working Group (WG). The SET Team is NAVAIR’s community 

of practice tasked with the implementation of the DOD and Navy digital strategies. It has 
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similar goals as the greater D/SET WG, whose purpose “is to accelerate implementation of 

Digital/Systems Engineering Transformation … and increase digital engineering 

collaboration across SYSCOMs” (Johnson 2020). In 2019, the SET Team selected the 

SysML as the standard modeling language and endorsed NoMagic’s Cameo Systems 

Modeler as the preferred modeling tool (Moschler 2019, 18). The D/SET WG has also 

begun implementation of the Naval Integrated Modeling Environment (IME), a modeling 

environment available to all SYSCOMs that employs SysML and NoMagic’s Cameo 

Systems Modeler. 

Selection of a common modeling language and tool is an approach for the Navy to 

avoid MBSE interoperability problems. However, adopting the SysML and Cameo 

Systems Modeler challenges organizations and programs that already implement MBSE 

using different languages and/or tools in a different way. These organizations and programs 

may have models that: are created using different MBSE processes, conform to different 

schemas, utilize a different presentation framework, or are captured in different modeling 

languages or tools.  

Some commands had previously embraced Vitech’s modeling tools when MBSE 

gained momentum in the early 2000s. Other commands had settled on IBM’s Rhapsody 

when that seemed like it would become a de facto standard tool in the Navy. With the 

Navy’s selection of SysML and NoMagic’s Cameo System Modeler for the IME in 2019, 

those commands are now on a divergent MBSE implementation path from the other Navy 

SYSCOMS. Therefore, commands are likely to continue to encounter interoperability 

hurdles when working with other commands and moving toward a single digital thread.  

One may extend this scenario beyond the Navy into the DOD and even industry. 

While the Navy might settle on a single tool and language, other DOD components might 

choose something different causing interoperability issues with joint programs. Moreover, 

there is no guarantee that industry will use the same tools and languages. Finally, even if 

all the commands used the same tools and language, there are many variations which could 

cause other (but more likely minor) interoperability issues. MBSE tool interoperability is 

an issue the SE community must address in order to realize the greater vision of a digital 

thread.  
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Throughout the Navy, different commands are likely using different tools. Yet, they 

must share information. The various enumerations in and beyond those shown in Table 1 

generate barriers to achieving interoperability among SE models. For instance, referring to 

Figure 3, Vitech uses Operational Activities to form the basis of a capability. However, 

MSOSA with SysML defines only generic Activities, which may represent any activity. It 

is unknown if one can distinguish these variations in SDL after translation to SysML (e.g., 

can a user distinguish an SDL Operational Activity from an SDL system function after 

translation to SysML?), especially in the absence of a previously defined ontology that 

would stereotype activities in SysML. Obstacles such as this present concerns for true 

interoperability among SE models. This research attempts to understand areas the SE 

community must address to enable such interoperability.  

C. RESEARCH QUESTION 

This research investigates whether a user can feasibly export the information 

contained in a Vitech model based on SDL and import the model into an MSOSA model 

based on SysML while retaining model correctness and semantic content. The thesis limits 

the approach to what is currently available to the typical user of MBSE tools. Hence, the 

thesis does not write any computer programs in an attempt to automate the conversion 

process. 

D. BENEFITS OF STUDY 

The results of this research will inform organizations, such as NAWCADLKE, of 

the interoperability concerns that may prevent the successful conversion of models between 

different MBSE tools and/or languages. Addressing MBSE interoperability concerns will 

contributes to the DON’s (2020) pursuit of digital engineering.  

E. ORGANIZATION 

Chapter II of this thesis contains a literature review that identifies various works 

related to model interoperability and integration and the means to successfully implement 

an authoritative source of truth using a digital engineering thread. Chapter III of this thesis 

details the experimental setup and the methodology for model conversion, and the 
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experiment execution and results found using this methodology and experimental setup. 

Chapter IV of this thesis then presents the results of the experiment and reports on the 

conclusions drawn from those results. 
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II. LITERATURE REVIEW 

This chapter contains a literature review on the interoperability of system models, 

especially in the context of MBSE. This thesis presents research on the current state of 

model interoperability and how it will impact the ultimate pursuit of a singular digital 

engineering thread. Two sections compose this chapter: how interoperability plays a role 

in the context of MBSE and related work regarding MBSE interoperability. 

A. INTEROPERABILITY IN THE CONTEXT OF MBSE 

1. Limiting Factors of Interoperability Among Models 

Tolk et al. (2012) identify two fundamental observations with modeling and 

simulation (M&S) that inhibit interoperability: simplification and abstraction. Tolk et al. 

(2012) state that all models are inherent “simplifications and abstractions of reality in order 

to support a certain task.” 

Simplification occurs when a modeler omits various aspects of a real object’s 

definition, which defines a model’s scope. For example, suppose the system of interest 

(SoI) is an information system on a naval platform. In that case, a modeler will only include 

information up to the boundary of the SoI, including interfaces and first-order contextual 

definitions such as the external system(s) that make up an interface. The modeler does not 

model the entire naval platform, only areas that concern the SoI. Therefore, the modeler 

simplifies the SoI to support its specific tasks.  

Abstraction occurs when models are created “with different structures and 

resolutions” (Tolk et al. 2012). For example, suppose again that the SoI is an information 

system. In this case, the SoI comprises hardware, software, and firmware. One modeler 

may explicitly capture all three as independent configuration items. Another modeler may 

abstract firmware as an attribute of hardware and only capture two configuration items. 

Both models would accurately represent the real system. However, the models would differ 

in resolution due to abstraction.  
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Furthermore, Tolk et al. (2012) also describe the impact of the cognitive aspect in 

M&S: “In order to conceptualize the observation, the observer needs to have an internal 

model he can map this observation to. A physician will see more in an X-ray than a layman. 

An educated mechanic sees more in an engine than a novice.” This cognitive aspect means 

a logistician’s and a mechanical engineer’s models may represent the same SoI, but still be 

entirely different. Both models would be informationally accurate and represent the same 

SoI in the real world. Nevertheless, they could implement disparate schemas and have 

completely different structures, both of which inhibit the interoperability of the two models 

despite them representing the same SoI. Hence, the components of MBSE will be 

dependent upon the domain of both the user and the SoI.  

2. Progress Towards a Solution 

Academia has made progress toward a solution for the MBSE interoperability 

hurdle. In pursuit of enabling an authoritative source of truth in the digital engineering 

thread, Bone et al. (2018) introduced the Interoperability and Integration Framework (IoIF) 

to achieve model interoperability and integration that is tool, language, and process 

agnostic.  

The IoIF implements a software-intensive five-step process that is not yet 

automated. It is “envisioned to have two main functions: (1) data acquisition and 

aggregation; and (2) semantic query and reasoning that allows for consistency and 

completeness checking of the data” (Bone et al. 2018). The process leverages a sequence 

of file conversions, graphical mappings, data parsing, and decision logic. As such, it 

requires a high degree of competence in software engineering that is not familiar to 

practicing systems engineers and inhibits its overall implementation. Figure 5 depicts the 

IoIF and its five-step process, using a model created in MagicDraw in SysML as an 

example.  
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Figure 5. The Interoperability and Integration Framework (IoIF). Source: 

Bone et al. (2018). 

3. Assessing MBSE Interoperability 

The assessment of interoperability among MBSE models requires a methodical 

approach that is language and tool agnostic. The assessment must take account of, but not 

depend upon, the tool and language. This agnostic approach warrants an assessment at the 

conceptual level, for it is not interoperability between model instances in question but 

interoperability between their higher-level conceptual models and ontologies. The levels 

of conceptual interoperability model (LCIM) is introduced by Tolk and Muguira (2003), 

whom define five levels of conceptual interoperability as captured in Figure 6.  
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Figure 6. The Levels of Conceptual Interoperability. Source: Tolk and 

Muguira (2003). 

The LCIM focuses on data to exchange and interface documentation to make a qualitative 

assessment. Tolk and Muguira (2003) summarize each of the five levels as the following: 

• Level 0 – System Specific Data: No interoperability between two 
systems. Data is used within each system in a proprietary way with 
no sharing. The component (or application) is a black box. 

• Level 1 – Documented Data: Data is documented using a common 
protocol… and is accessible via interfaces. The component is a 
black box with an interface.  

• Level 2 – Aligned Static Data: Data is documented using a 
common reference model based on a common ontology, i.e., the 
meaning of the data is unambiguously described…The component 
is a black box with a standard interface.  

• Level 3 – Aligned Dynamic Data: The use of the data within the 
federate/ component is well defined using standard software 
engineering methods such as UML. This shows the use of data 
within the otherwise unknown “black box behind the interface,” 
also known as white box.  

• Level 4 – Harmonized Data: Semantic connections between data 
that are not related concerning the execution code is made obvious 
by documenting the conceptual model underlying the component. 
It is not only a white box; because beyond the implemented parts 
of the concept the important relations that are NOT captured in the 
implementation are captured. 
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As one traverses towards higher levels of interoperability within the LCIM, model 

data becomes increasingly aligned, and documentation of that data is increasingly available 

and detailed. The LCIM (Tolk and Muguira 2003) defines “Harmonized Data” as being the 

most mature and occurs when two models have semantic and relational consistency. A 

simple example would be examining two Vitech Genesys models; Vitech predefines both 

model’s ontologies and therefore achieves semantic and relational consistency at all levels. 

At the other end of the spectrum, the LCIM defines “System Specific Data” as being the 

least mature and occurs when there is no interoperability between two systems. The 

Defense Information Systems Agency’s (DISA) Enterprise Mission Assurance Support 

Service (eMASS), which is a government off-the-shelf (GOTS) solution for integrated 

cybersecurity management, and Vitech’s Genesys tool are an example of “System Specific 

Data,” since neither tool can integrate with the other.  

One may use the LCIM may to assess conceptual agreement between two models. 

It is analogous to a technology readiness level (TRL). Where a TRL can succinctly convey 

technology maturity, an LCIM assessment can succinctly convey interoperability maturity 

among two models.  

B. RELATED WORK 

There are numerous related works available regarding model interoperability. This 

literature review identifies three specific efforts highly relevant to this thesis. This section 

describes these efforts and the insights they provide. The first related work described in 

this section is a whitepaper from Naval Surface Warfare Center (NSWC) Crane on the 

Genesys to Cameo conversion process. The second is a demonstration and report from 

Sandia National Labs on retaining an SE model’s meaning through transformation. The 

third and final related work described in this section is a software solution presented to the 

Naval D/SET community by the company SodiusWillert. 

1. NSWC Crane — Genesys to Cameo Conversion Process 

As of late 2021, NSWC Crane had led an effort to document the process of 

converting a model created in Genesys to a model in NoMagic Cameo System Modeler. 
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NSWC Crane developed a draft whitepaper to detail this process that was obtained as part 

of this research.  

NSWC Crane’s (Genesys to Cameo Conversion Process 2020) first step in 

converting Genesys to Cameo was to map element types and relationships from Genesys 

(the source tool) to the SysML language in Cameo System Modeler (the target tool). The 

mapping is a translation between the conceptual data models and ontologies of the two 

tools. This translation is one of the most significant steps since all subsequent modeling 

efforts will be predicated on this translation. NSWC Crane mapped common Genesys 

entities and relationships to SysML. However, NSWC Crane generalized (simplified) 

many Genesys elements to a generic block element in SysML, and over 50 Genesys 

relationships remained unmapped to a SysML counterpart.  

Once NSWC Crane (Genesys to Cameo Conversion Process 2020) established the 

mapping, they used the only available export file format for the full Genesys model, a 

*.gsnx file, which is unique to the Genesys tool. They then renamed the file as a *.zip file 

and decompressed it. This step enables viewing of the folder structure, which separates 

model data from schema data, each containing files in the extensible markup language 

(XML) format. The XML file format is both human- and machine-readable. 

The next step in NSWC Crane’s (Genesys to Cameo Conversion Process 2020) 

process was to parse the XML files and generate data for element creation. To do so, 

NSWC Crane extended Cameo System Modeler by developing a plugin in the Eclipse 

Integrated Development Environment that enabled Cameo to read Genesys data. NSWC 

then used structured query language (SQL) statements to create SysML elements and their 

related data, all based on the previously defined mappings.  

This conversion process elicits some valuable observations. First, omitting various 

element and relationship mappings implies that any originating data captured by those 

elements and relationships will have information lost during the conversion process. The 

target model will require further manual remediation to reestablish the applicable detail in 

SysML or remain incomplete. Second, an in-house development effort that yielded a 

Cameo plugin was the enabler for parsing the Genesys XML files. This plugin is 
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unavailable to the greater SE community; therefore, the SE community has yet to validate 

its scalable implementation. Until a plugin solution is available to the entire SE community, 

organizations with existing Genesys models must develop their own conversion methods. 

Finally, the white paper offers little-to-no documentation in validating the resultant model 

to assess informational consistency. The results focused on a user’s navigational views and 

not the model’s content, which leaves open the question “was something missed?” 

2. Sandia National Laboratories Demonstration 

In February 2021, Sandia National Laboratories (Carroll et al. 2021) published the 

report Retaining Systems Engineering Model Meaning Through Transformation. Sandia 

National Laboratories leveraged a similar yet different approach from NSWC Crane. 

Sandia’s goal was to develop a “proof of concept that the meaning of a system model can 

be retained during transformation,” which the authors assert is “the missing ingredient in 

effective systems model-to-model interoperability” (Carroll et al. 2021). Sandia’s (Carroll 

et al. 2021) approach followed these steps in converting from Genesys to MagicDraw: 

1. Developed a method for exporting and transforming an entire model from 
the GENESYS™ application into a file formatted according to the Resource 
Description Framework (RDF).  
2. Transformed a systems model of interest into an RDF file format structure 
and dropped the file into a location known by the target system/target import 
application, MagicDraw®.  
3. Mapped the RDF file classes from GENESYS™ to custom MagicDraw® 

profile elements. 
a. The RDF namespaces were leveraged to guarantee valid (complete) 
containment. 
b. Model package structure was constructed in parallel to profile class 
structure. 
c. Custom profile element types and standard profile stereotype superclass/
metaclass types were designated according to the GENESYS™ object type. 
i. Encapsulated in independent configuration data classes. 
ii. Maintained flexibility while identifying all added data. 
4. Redeveloped (refactor, expand, improve) an in-house developed 
MagicDraw® plugin used in previous projects. 
a. The RDF file was loaded to an in-memory ontology model, using an RDF 
library. 
b. Added traceability presenting views on the data for error checking. 
c. Added model post-processing (consistency checks/cleanup). 
d. Added prebuilt structure to process model instances. 
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Sandia’s approach relied heavily on resource description framework (RDF) files 

and an internally developed Genesys RDF translator created as part of prior Sandia (Carroll 

2019) research. The Genesys RDF translator’s function was “to translate (i.e., transform) 

a GENESYS™ project into an RDF graph” (Carroll et al. 2021). Their approach also relied 

on an RDF-to-MagicDraw plugin written in Java, another internally developed tool.  

The results of the Sandia demonstration and report detail how “the GENESYS™ 

model transformed into a MagicDraw® model did not produce an identically matching 

model.” However, Sandia (Carroll et al. 2021) reports that “100% of the GENESYS™ 

model data was transformed and… the model objects and relationship were transformed 

(retaining the meaning of the model).” One of the most significant observations made by 

the report states that “SE models can be integrated effectively when the underlying 

ontological structure of the model is maintained through transformation” (Carroll et al. 

2021).  

As with NSWC Crane, Sandia also utilized internally developed software tools. 

Thus, the same implications are associated with Sandia’s effort, as the implemented 

methodology is not usable or available to the wider SE community. This proof of concept 

also differs from the NSWC Crane effort in terms of validation. Sandia offers insight into 

validation efforts within their report and demonstrates successful translation between 

Genesys and MagicDraw. However, not all element and relationship types were present in 

the two models used by Sandia, so while Sandia transformed 100% of the original model, 

their method may potentially still have gaps.  

The most important observation regarding both efforts and successful translation 

and model interoperability is how retention of the semantic structure, and an understanding 

of the ontological differences and their implications, are key to successfully integrating SE 

models. 

3. SodiusWillert’s Publisher for Rhapsody 

 In August 2022, the company SodiusWillert presented their software solution, 

Publisher for Rhapsody, to the D/SET community via virtual presentation. Publisher for 

Rhapsody is a plugin for IBM’s Rhapsody modeling tool that facilitates model 
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transformation from Rhapsody to Ma gicDraw/Cameo using automated techniques. The 

plugin also logs individual element transformations and alerts the user to any conflicts 

during the transformation process and validates the completeness of the resultant model. 

The company reports successful use of their solution on models that contain upwards of 

900,000 elements and 7,000 diagrams, demonstrating the program’s scalability (Pilato 

2022).  

Although this solution transfers data between two tools already employing the same 

modeling language (SysML), its purpose of transferring model data from one tool to 

another without information loss is identical to the purpose of this thesis and demonstrates 

success in doing so. Based on this evidence, a similar software solution for the use-case 

examined by this thesis (i.e., going from Genesys to MSOSA), is theoretically feasible.  
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III. ANALYSIS OF CONVERSION 

This section presents the experimental setup and methodology used to conduct the 

research. The data found by using the methodology and the experimental setup then 

follows. 

A. METHODOLOGY 

1. Experimental Setup 

Table 2 shows the software tools used, their version, and notes on their 

configuration. 

Table 2. Applications Used in Experiment 

Application Properties to Note 
Genesys 5.0 Collaborative Edition Baseline Schema: Base Schema v50 

Base Set View: SysML 
Excel 2016 Add-ins: Genesys 5.0 Excel Connecter 

Enabled 
Magic System of Systems Architect 2021x Environment: SysML (Expert) 

 

The conversion experiment uses the Geospatial Library (GSL) sample model 

provided with the Genesys software. The GSL model is a Vitech-created system model 

used for demonstration and educational purposes. Vitech (“Genesys 2021 R2 Systems 

Engineering Guided Tour” 2021) defines the GSL model as a  “demonstration system [that] 

accepts requests for imagery information, determines the best way for the system to 

respond to the request, and then provides the request information to the requestor.”  

The experiment addresses three of the four SysML pillars: the structure 

(components), behavior (functions), and requirements pillars. The author’s experience with 

modeling at NAWCADLKE has been that most models only use these three pillars. 

Consequently, the fourth SysML pillar of parametrics was not in scope for the assessment. 

Parametrics are useful for model simulation and analysis, but are a degree deeper into an 

SoI’s structure that is not necessary for this initial assessment.  
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a. GSL Model Structure 

The GSL model has nine physical components, ninety-eight functions, thirty-five 

requirements, and additional entities such as states, test activities, test configurations, and 

use cases. The total number of entities amounts to 423 in the GSL model. Relationships 

among all entities in the GSL model total to 2,358. Accounting for relationship 

directionality (e.g., considering relationships such as traces to and traced from as one bi-

directional relationship), the GSL model consists of 1,304 relationships. Figure 7 shows 

the composition of the GSL model using the Project Explorer view in Genesys. 

 
Figure 7. GSL Model Composition 

Figure 8 shows the physical hierarchy of the GSL model with its larger system 

context. The GSL is composed of two subsystems: the Command Center and the 

Workstation. The GSL interacts with Customers, Collectors, and the Certification 

Authority, which are external to the GSL system. 
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Figure 8. GSL Physical Hierarchy Diagram 

Figure 9 shows the interfaces and links between each component via a physical 

block diagram, including the GSL’s connections to the Customer and Collectors. In SDL, 

an interface represents some form of connection to another component and includes one or 

more links. Links represent more detailed connections to other components and show 

transfer of items, such as energy, mass, money, or more commonly, information. For 

example, the Workstation has three interfaces that include five links: the Workstation 

interface to the Command Center includes the single GL Internal Link, the Workstation 

interface to the Customer includes two links for disapproval notification and product 

request, and the final Workstation interface to the Certification Authority includes two 

links for certification request and certification response.  
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Figure 9. GSL Physical Block Diagram of System Context 

b. GSL Model Behavior 

Figure 10 depicts some of the system’s behavior via a partial activity diagram, 

showing the various information items (represented by blue nodes) exchanged between the 

GSL and Certification Authority. For example, the GSL accepts and formats the request 

from the customer, provides the certification request to the Certification Authority, which 

then provides certification responses back to the GSL to check the certification response. 

The full activity diagram from the GSL sample model is available in APPENDIX A. 
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Figure 10. Partial GSL Activity Diagram  

c. GSL Requirements Diagrams 

Figure 11 depicts a requirements diagram of the GSL in Genesys and shows the 

“Continuous Support and Availability” requirement decomposition. A second 

requirements diagram depicts the “Specific Requirements” for the GSL in Genesys, and is 

available in APPENDIX B. 
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Figure 11. Partial GSL Requirements Diagram  

2. Research Methodology 

This research seeks to convert a system model from a source tool using one 

modeling language into a target tool using another modeling language. The research then 

assesses the converted model to determine and document informational inconsistencies and 

identify post-migration remediation efforts. When importing directly into a target tool 

proved infeasible, the data of the exported model from the source tool was examined as 

well. Figure 12 illustrates the analysis methodology as an Action Diagram created in SPEC 

Innovations’ Innoslate software. With the Naval IME on the horizon for many Navy 

commands, this thesis assesses two tools with this methodology: Vitech’s Genesys, 

predominantly used at NAWCADLKE and accessible to the author, and Dassault 

Systemes’ MSOSA, a tool similar to the tool employed by the Naval IME, Cameo Systems 

Modeler.  

 

 

 

 

 



29 

 
Figure 12. Research Methodology 

a. Activity 1 – Evaluate Export Formats in Source Tool 

Activity 1 in Figure 12 represents the initial evaluation of data export methods for 

the source tool. It is concerned with identifying the medium(s) available to the user for data 

transfer from the source tool. Its input is the selection of the source tool, and its output is a 

listing of file formats and plugins available to the user for data export in the source tool.  

b. Activity 2 – Evaluate Import Formats in Target Tool 

Like Activity 1, Activity 2 in Figure 12 represents the initial evaluation of data 

import methods for the target tool. It is concerned with identifying the medium(s) available 

to the user for data transfer to the target tool. Its input is the selection of the target tool, and 

its output is a listing of file formats and plugins available to the user for data import in the 

target tool.  

c. Activity 3 – Directly Importable? (OR Gate) 

Activity 3 in Figure 12 represents a decision based on the outputs of activities 1 and 

2, the export and import formats for either tool. Being directly importable implies a 

software solution is available to the user for data transfer directly from the source tool to 

the target tool and is provided by one or both tools (i.e., no need exists for intermediate 

software provided by a third party, such as a custom plugin). With this information, a “yes 
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or no” assessment may be made for advancement through the workflow. If yes, the 

workflow advances to Activity 4. If no, the workflow advances to Activity 6. 

d. Activity 4 – Export Model from Source Tool 

Activity 4 in Figure 12 represents the export of a model from the source tool due to 

a “yes” decision input from Activity 3. In this activity, the user exports the model from the 

source tool using the identified file format detailed by Activity 1. An importable model is 

the output of this activity. 

e. Activity 5 – Import Model Export into Target Tool 

Activity 5 in Figure 12 represents the import of a model into the target tool using 

the output from Activity 4, the exported model. The imported model in the target tool is 

the output of this activity. 

f. Activity 6 – Export Model Data from Source Tool 

Activity 6 in Figure 12 represents the export of model data from the source tool due 

to a “no” decision input from Activity 3. In this activity, the user exports model data into 

a human-readable file or collection of files. This file or collection of files is the output of 

Activity 6. 

g. Activity 7 – Assess Informational Content 

Activity 7 in Figure 12 represents the final assessment of the resultant model or 

model data. Dependent on the path, the imported model in the target tool or the exported 

model data from the source tool are the input. The activity’s output is the assessment 

results. 

B. EXPERIMENT EXECUTION AND OBSERVATIONS 

This section discusses the experiment and data this study collected using the 

methodology described in the previous section. Its organization aligns with Figure 12 and 

the three SysML pillars of interest to this research. Subsection 1 details the supported data 

formats for each of the two tools assessed, covering the initial evaluations of import and 
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export formats. Section 2 then supplies the data on tool interoperability, covering the 

“directly importable” assessment, the export the model and model data, and import of the 

model. It is followed by Chapter IV, which provides the results of the assessment.  

1. Supported File Formats by Tool 

MBSE tools do not support all file formats, nor will each tool necessarily support 

the same file formats. This section details the supported file formats for imports and exports 

in Genesys and MSOSA.  

a. Vitech Genesys File Formats 

Genesys can import Genesys and Core file formats (*.gsnx and *.xml, 

respectively). Many tools use the extensible markup language (XML) for data transfer, 

with Vitech’s tools being among them. However, the structure of XML files can vary from 

tool to tool. Vitech’s XML implementation structure appears to be unique, which limits 

importable XML files to those created by Vitech tools. Genesys exports models in a single 

format, a Genesys archive file (*.gsnx). Within this option, various selections are available 

to the user for the export of certain parts of the project, such as a project schema, a project 

template, or a full project backup.  

Genesys also supports the import and export of data to and from IBM’s Dynamic 

Object-Oriented Requirements System (DOORS) tool via the DOORS connector. 

However, the DOORS connector only imports and exports requirement elements. Genesys 

must be connected directly to the DOORS tool via this connector for its use (“Genesys 4.1 

DOORS Connector Guide” 2016).  

The tool also imports and exports data to and from Microsoft Excel via the Excel 

connector, a Vitech-created plugin for Microsoft Excel. Genesys requires Excel to be 

connected to Genesys to use the Excel connector, but in contrast to the DOORS connector, 

the Excel connector allows for a user to read the data before it is imported or after it is 

exported.  

Table 3 summarizes the import and export file formats supported by Genesys.  
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Table 3. Vitech Genesys Export/Import Formats 

Vitech Genesys 

Supported Import Formats File 
Extension Supported Export Formats File 

Extension 
Genesys Archive .gsnx Genesys Archive .gsnx 
Core Archive .xml *DOORS N/A 
*DOORS N/A **Excel File .xlsx 
**Excel File .xlsx     
*Via connector only, and limited only to requirement entities 

**Via connector only 

 

b. Observations from Genesys Supported File Formats 

The Vitech Genesys tool seems to only support file exchange formats for Vitech 

tools. The DOORS and Excel connectors are exceptions to this.  

The DOORS connector demonstrates limited capability. A user cannot view the 

output from DOORS prior to import into Genesys, or vice versa. Data transfer to or from 

DOORS must occur first before it is visible to the user in the target tool. Furthermore, the 

DOORS connector allows for entities of only one type: requirement because DOORS 

only captures requirements. 

The Excel connector is most useful when modifying existing entities in the 

Genesys model by exporting data into Excel, making necessary modifications, and 

importing the modified data back into the same Genesys model.  

The observation regarding Vitech file exchange formats is especially important in 

terms of interoperability with other models and modeling tools. Vitech seems to have 

designed Genesys with only the Genesys user in mind, not the greater SE community that 

may already have information captured in another vendor’s tool, or desire to interoperate 

with models captured in another vendor’s tool. If an organization has existing models 

created outside of a Vitech tool, it drastically reduces the appeal of Genesys to those 

organizations as existing models cannot be imported into Genesys and would need to be 

re-created. This presents a barrier in the adoption of Vitech’s Genesys. In the opposite 
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direction, it is also a significant limitation for organizations that have already adopted 

Genesys as it effectively confines those organizations to the tool and prohibits them 

interoperating with models generated outside of Genesys or Core.  

Genesys has an application programming interface (API) that follows standard 

Microsoft.NET framework practices (“Genesys 6.0 Getting Started with the Genesys 

API” 2018). The API requires elevated privileges beyond the basic user license. 

Organizations using the API would have to fund a programming project to review the 

GENSYS file format and then write the code to export and/or import the model data. This 

is obviously more difficult and costly than if Vitech provided data interchange 

capabilities from the onset.  

c. MSOSA File Formats 

MSOSA can import data in multiple file formats. This includes table-based file 

formats such as Microsoft Excel (*.xlsx) and comma-separated values (*.csv), as well as 

MSOSA native XML file formats and various XML metadata interchange (XMI) file 

formats (*.xmi). It contrasts with Genesys in that it provides greater support for data 

interchange from source tools other than itself, such as IBM’s Rhapsody and Rational 

Software Architect tools. 

MSOSA exports data in multiple file formats. Though not the same as the supported 

import file formats, MSOSA allows for the export of data in file formats such as ReqIF 

(*.reqif, *.reqifz), Eclipse modeling framework (EMF) Ecore (*.ecore, *.ecore.xmi), and 

various other XMI file formats. It also supports the import of dynamic model file formats 

such as functional mock-up units (FMU) (*.fmu) and Simulink (*.slx).  

The import and export file formats supported by MSOSA are summarized in  

Table 4 (“Magic Systems of Systems Architect 2021x User Manual” 2020).  
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Table 4. Dassault Systemes MSOSA Import/Export Formats 

Dassault Systemes MSOSA 

Supported Import Formats File 
Extension Supported Export Formats File 

Extension 
Excel .xlsx UML 2.5 XMI .xmi 

Comma-separated values .csv Requirements Interchange 
Format (ReqIF) 

.reqif, 

.reqifz 
UML 2.1/2.5 XMI .xmi SCXML .scxml 
MSOSA Native XML .xml Eclipse UML2 XMI  .xmi, .uml2 
MOF XMI .xmi Modelica .mo, .moe 
Requirements Interchange 
Format (ReqIF) 

.reqif, 

.reqifz Simulink .slx 

CA Erwin Data Modeler  .erwin XPDL .xpdl 

OWL Ontology  .owx, 
.owl, .rdf BPMN2 .bpmn 

Eclipse UML2 XMI  .xmi, 
.uml2     

FMU .fmu     
Simulink .slx     
Modelica .mo, .moe     
XPDL .xpdl     
**Enterprise Architect UML 
2.1 XMI 2.1 .xmi     

*System Architect DoDAF 
2.0 .xml     

*Rhapsody SysML .xml     
*Rational Software 
Architect .xml     

*Via plugin 
**Enterprise Architect does not export 100% standard UML 2.1 XMI, and this causes some data 
loss during the import 

(“Magic Systems of Systems Architect 2021x User Manual” 2020) 

 

d. Observations from MSOSA Supported File Formats 

Imports of table-based file formats require the implementation of what MSOSA 

terms a “mapping.” MSOSA requires the user to resolve any ontological differences 

between the heterogeneous modeling languages and/or schemas. A user may save a 
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mapping as a template; however, mappings are user-defined and MSOSA does not provide 

any predefined mappings. So, consistency is stressed when creating mappings to import 

tabular data. Figure 13 shows an example of the mapping function in MSOSA, where a 

user defines various parameters of the import, such as the import type, target scope, and 

data location in Excel. The “Nested Properties to Map” field identifies the element 

properties in MSOSA to map from data in Excel. In this example, MSOSA data elements 

(left) map from columns in an excel spreadsheet (right). 

 
Figure 13. MSOSA Excel/CSV Import Mapping Example. Source: “Magic 

Systems of Systems Architect 2021x User Manual” (2020). 
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2. Migration Attempts 

The experiments involved exports from Genesys (source tool) imported into 

MSOSA (target tool). This thesis then made a qualitative assessment of tool 

interoperability scenarios. 

a. Genesys to MSOSA Migration Attempt 

MSOSA cannot import .gsnx file formats, the export format of Genesys. 

Consequently, a direct import of a system model from the Genesys tool is infeasible. 

Following the research method presented in Figure 12, this thesis recorded the decision 

node for Activity 1.3 with Genesys “no,” bringing this specific attempt to Activity 1.6. 

Despite failing this activity since Genesys XML files could not be directly imported into 

MSOSA, various Genesys XML files were reviewed to understand Vitech’s 

implementation of XML constructs. 

This research followed the steps detailed in NSWC Crane’s Genesys to Cameo 

Conversion Process (2020), in which the .gsnx file can be renamed and decompressed as 

a .zip file, which enables viewing of the XML files that compose the .gsnx file. The .gsnx 

file consists of approximately 50 separate XML files that comprise the model’s project 

data, schema data, and project metadata, such as change history and user accounts.  

This research reviewed the XML files for three basic Genesys projects created for 

this thesis and one sample Genesys project: one with physical definition only, one with 

functional definition only, one with requirement definition only, and the sample GSL 

model provided by Vitech that contains all three constructs. Reviewing the multiple 

projects helped us understand Vitech’s organization of the XML files.  

The review revealed how Vitech implements XML to capture model data. Vitech 

uses two unique identification strings labeled “IdA” and “IdB” for each model element. 

Another data element, “EntityDefinitionID,” defines the model entity type using a pre-

defined library of entity names such as component, function, and interface. To manage 

relationships, Vitech uses “IdA” or “IdB,” as “SourceEntityID” and “TargetEntityID” to 

establish which entities are to be related and the directionality of that relationship. Vitech 

then creates relationships between the entities via a similar means as the entity definition, 
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by using a “RelationDefinitionID” from a predefined library of relationship definitions, 

such as decomposes, refines, and satisfies. Some examples of the XML files generated by 

Genesys that contain GSL model data, such as the Entities.xml and Relationships.xml files, 

are depicted in Figure 14 and Figure 15, respectively. Some common tags in these XML 

files include: IdA, IdB, and data.  

 
Figure 14. Genesys Entities.xml File Example from GSL Model 

 
Figure 15. Genesys Relationships.xml File Example from GSL Model 

Vitech captures the entity and relationship information with two of the many XML 

files within the .gsnx archive file, the “Entities.xml” file and the “Relationships.xml” file, 

respectively. The review of these XML files revealed that all project data is indeed captured 

and exported by the .gsnx archive file.  
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(1) Importing Model Structure into MSOSA 

MSOSA accepts data in a tabular format via Excel or CSV files (i.e., *.xlsx or *.csv, 

respectively) via the use of a mapping tool shown in Figure 13. Custom plugins created by 

Sandia and NSWC Crane were not available to the author. Therefore, the mapping tool, in 

conjunction with the Excel Connector, is the only available way to import Genesys data 

into MSOSA without use of the API. As such, this study utilized the MSOSA mapping tool 

and Excel method in attempt to convert the model over to MSOSA.  

When the Genesys’s Excel connector outputs data to Excel, the output contains 

column headers that contain data labels (e.g., element name, element number, performs, 

etc.), and the body of the spreadsheet contains the content (e.g., Satellite, C.2.1, Perform 

Satellite Functions). The Genesys Excel connector requires a user to define the output 

columns (representing entities, relationships, and attributes to export) during the process, 

as shown in Figure 16.  

 
Figure 16. Table Definition of Genesys-Excel Connector in Microsoft Excel 

for Component Export 
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Figure 16 shows a default table definition called “Components,” which defines 

what model information the tool will export. “Position” identifies the numbered column 

the data will export to in the Excel spreadsheet. The “Type” provides a drop-down menu 

of data types (e.g., relationship, entity attribute). The “Data / Definition” drop-down menu 

selections are dynamically generated lists of attributes or relationships, depending on the 

“Type” selection (e.g., “name” for entity attribute, or “specified by” for relationship). The 

“Based On” field represents what entity the tool is using to query data and is useful when 

acquiring second-order data. In the “Based On” field, “Data” denotes the tool will pull 

information directly from the entity, whereas a numerical value denotes the tool will pull 

information based on the information in another numbered row, identified by the numerical 

value. For example, row 4 is “Based On” row 3 in Figure 16, which means row 4 will 

gather the entity attribute “description” from the entities found by row 3. In other words, 

row 3 will gather data on targets that the entity is specified by, and row 4 will gather the 

“description” of each entity found by row 3. The remaining fields are for formatting of the 

exported spreadsheet. 

When using the mapping tool in MSOSA, one serious limitation becomes evident 

that severely inhibits tabular data as a scalable medium for information exchange between 

Genesys and MSOSA. This limitation occurs with how the mapping tool imports tabular 

data with a one-to-one mapping and obstructs complex data transfer. 

Figure 17 shows how Genesys will output the data for a single element, in this case 

the Geospatial Library component, using multiple rows in the spreadsheet. The Geospatial 

Library component performs multiple functions, which are listed in column E. Referring 

again to Figure 16, rows 5 and 6 represent columns E and F in Figure 17, respectively. 

Column F, the function description, is based on the data in column E, the functions that the 

component Geospatial Library perform, as reflected in Figure 16.  
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Figure 17. Partial Genesys Excel/CSV Export of GSL Model 

Figure 18 shows the mapping tool to get the Excel data into MSOSA. It shows that 

two columns from Excel are mapped to the properties of a block element. The Number 

column in Excel is mapped to the Element ID, and the component column in Excel is 

mapped to Name.  

 
Figure 18. MSOSA Excel/CSV Import Mapping from Genesys GSL 

Components Export 
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A problem occurs because in the spreadsheet (Figure 17) there are blanks cells in 

the Component column. MSOSA does not know these cells are supposed to a continuation 

of the previous component (i.e., Geospatial Library). Instead, MSOSA creates separate 

elements based on these rows with empty component name. See Figure 19 where all the 

blank cells in the Component column are created as blocks in MSOSA. 

 
Figure 19. Genesys GSL Components Imported into MSOSA (Before 

Remediation) 

This conversion error occurs whenever Excel data contains a Genesys element that 

has a one-to-many relationship with other elements and is imported into MSOSA. Genesys 

will output tabular data pertinent to a single entity on multiple rows if a one-to-many 
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relationship exists (e.g., the GSL performs multiple functions). Subsequently, MSOSA 

interprets this as separate entities in a one-to-one fashion, rather than multiple relationships 

to a single entity, and creates empty MSOSA entities during import. A user must therefore 

refine the Genesys export such that no blank cells are present before importing into 

MSOSA or delete MSOSA data after the import process. In this case, this study deleted the 

blank entities shown in Figure 19 after the import to yield Figure 20. 

 
Figure 20. Genesys GSL Components Imported into MSOSA (After 

Remediation) 

Figure 20 shows that using Excel for the conversion did not exchange any 

hierarchical information, which nested blocks in the containment view would illustrate. 

Instead, this method established all blocks at the same level. One would expect the System 

Context block to be composed of all other physical entities as it was in the original Genesys 

model. The MSOSA mapping tool is incapable of importing hierarchical relationships 

because MSOSA can import only one type of element at a time using the “Element Type” 

dropdown menu. Therefore, the user must first create both entities (source and target) 

before defining any relationship between those entities. This includes hierarchical 

relationships for functional and physical decompositions. In other words, you must create 

the entities that will be related before creating the relationship(s) among those entities. 

This study makes two observations regarding this limitation: (1) the import 

mapping tool must be run multiple times on multiple data sets to capture all of a model’s 
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information (even simple ones), and (2) the actual order of the import process is of 

importance; otherwise relationship information may be incorrectly omitted.  

To recreate the physical architecture of the MSOSA model such that it matches the 

Genesys model, this research made multiple attempts to import the physical relationships 

into MSOSA from Genesys using the Genesys-Excel connector and MSOSA Excel import 

function. This proved difficult because SysML represents the physical hierarchy via an 

entity property, whereas SDL uses a relationship to create hierarchy. For example, **** 

provide an example of how SysML does hierarchy. 

In the MSOSA Excel import function, there is no means to establish part properties 

for blocks already imported, MSOSA will simply create new blocks with these part 

properties that is not desired. To work around this, this study deviates from the ontological 

mapping provided by NWSC Crane’s Genesys to Cameo Conversion Process (2020), and 

the owner SysML property is mapped to the Genesys SDL relationship, built in. User 

manipulation in the MSOSA model, with this deviation, generates a physical hierarchy 

reflective of the source model in the model view, shown in Figure 21.  

 
Figure 21. Physical Hierarchy in MSOSA Model Containment View 
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The use of the owner SysML property does not create the required relationships for 

the block definition diagrams (BDDs).  

MSOSA is incapable of importing the physical architecture of a model from 

Genesys using the Genesys-Excel connector and MSOSA Excel import function alone. 

Instead, the user must go into MSOSA after importing the component elements and 

recreate the physical hierarchy by defining the owner property in the appropriate blocks. 

Then, using the “directed composition” selection within the MSOSA BDD successfully 

establishes the part properties and thereby creates the correct physical decomposition as 

shown in Figure 22, which matches Figure 9 from Genesys.  

 
Figure 22. Block Definition Diagram (BDD) of GSL in MSOSA 

(2) Importing Model Behavior into MSOSA 

This study also attempted to recreate the functional architecture of the GSL in 

MSOSA. Figure 23 depicts a custom table definition used to export GSL behavior data into 

MSOSA, including the function names, descriptions, allocation relationships, and 

decomposition relationships from Genesys.  
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Figure 23. Custom Table Definition of Genesys-Excel Connector in Microsoft 

Excel for Function Export 

Using the data generated in Figure 23, Figure 24 then depicts the mapping of that 

data into MSOSA. The element properties are the import fields to MSOSA, and the Excel/

CSV columns are the data from Genesys. The mapping abides by the conceptual mapping 

provided by NSWC Crane’s Genesys to Cameo Conversion Process (2020), creating 

CallBehaviorAction entities in MSOSA as equivalents for functions in Genesys.  
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Figure 24. MSOSA Excel/CSV Import Mapping from Genesys GSL 

Functions Export 

This successfully creates the Genesys functions as CallBehaviorActions in 

MSOSA, and correctly maps allocation relationships to their respective blocks 

(representing structure). This study observes two limitations during this import.  

The first limitation concerns data duplication and is like the limitation where 

MSOSA imports empty entities due to blank cells in the imported spreadsheet. In Genesys, 

if an entity has multiple relationships with other entities, then when exported into Excel, 

each of those relationships is a different row in the spreadsheet. When imported into 

MSOSA, MSOSA incorrectly interprets each row as a different entity and creates a 

separate block. Figure 25 shows the function “Accept Products” occurs five times because 

it was in five separate rows in the spreadsheet.  
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Figure 25. Example of Entity Duplication in MSOSA 

The second limitation this study observed is when transferring the behavior 

modeling data. This study was able to export and import function definitions, but it could 

not import the behavior modeling data associated with the functions, such as the inputs and 

outputs for each function. This is due to semantic and ontological differences between SDL 

and SysML combined with the one-to-one limitation of the Excel import method.  

SDL uses the function entity type for all behaviors within the system architecture 

domain. Functions output items that are themselves entities and are transferred via links 

between two components in SDL. Furthermore, the SDL entities of type item can be an 

input to, an output of, or a trigger of a function.  

In contrast, SysML defines two element types called actions and activities in which 

an activity is the higher level construct and can contain multiple actions, a lower-level 

construct (Delligatti 2014, 93). Furthermore, SysML employs the concept of tokens, which 

“are not model elements” and consist of two types: an object token, that represents an 

instance of matter, energy, or data that flows through an activity, and a control token that 

“simply indicates which action in an activity is currently enabled at a particular moment 
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during an execution of the activity” (Delligatti 2014, 71). Object nodes instantiate object 

tokens in SysML and are transferred via edges. There exist many other specialized types 

of nodes as well, which the edges can connect to, and edges themselves may also be 

specialized. SysML also employs activity input and output pins, which are object nodes as 

well but require less real estate on an activity diagram. 

When mapping to SysML per NSWC Crane’s Genesys to Cameo Conversion 

Process (2020), activity input and output pins as well as central buffer nodes were used. 

However, activity input and output pins are properties of activities and not individual 

entities themselves, with individual pins used for each block with a central buffer node 

between them. This does not align with the SDL ontology to capture behavior. These 

ontological differences, combined with the Excel import method’s one-to-one mapping 

limitation, demonstrated that there are no means to import behavior data into MSOSA from 

Genesys. Instead, model behavior must be recreated by the user within MSOSA. This limits 

the usefulness of Excel imports to only the import of functions from Genesys as it does not 

capture the actual dynamic behavior it represents.  

These two limitations imply that the import of behavior modeling data from 

Genesys to MSOSA via the Genesys-Excel connector and MSOSA mapping tool is feasible 

but insufficient.  

(3) Importing Model Requirements into MSOSA 

The MSOSA 2021x User Manual (2020) instructs users to manually include the 

additional columns “id” and “owner” when importing requirements via spreadsheets. The 

additional columns enable MSOSA to interpret the decomposition of those requirements. 

Consequently, after exporting requirements from Genesys, the Excel file is manipulated by 

adding those columns and the required data. Figure 26 provides an excerpt of the 

requirements spreadsheet after manipulation. The first requirement, “Continuous Support 

and Availability,” is the parent of the second and third requirements, “Continuous Support” 

and “Availability” as shown because the owner of these requirements is “1.” The fourth 

requirement, “Specific Requirements,” is the parent of the “Accept Requests from Certified 

Customers” requirement, and so on.  
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Figure 26. Modified GSL Requirements Table for MSOSA Import  

Using this method, this study successfully imported the requirements from Genesys 

into MSOSA. Figure 27 is a requirements diagram from MSOSA that demonstrates how 

the nested requirements imported correctly. Note that Figure 27 reflects the content 

contained in the original Genesys requirements diagram, Figure 11. 

 
Figure 27. GSL Requirements Diagram In MSOSA  
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This study also attempted to transfer any Genesys relationships between 

requirements and elements in the physical and functional architectures. Referring again to 

Figure 3, requirements are the basis of a function, and a function may be specified by 

requirements in Genesys. Components may also be specified by requirements. Per NSWC 

Crane’s Genesys to Cameo Conversion Process (2020), the SDL basis of and specified by 

relationships between requirements and functions are both mapped to the refine 

relationship between a CallBehaviorAction and requirement in SysML. Furthermore, the 

SDL relationships specifies/specified by between requirements and components map to the 

satisfy relationship between a blocks and requirements.  

Importing these relationships using a single Excel sheet, like Figure 28, yielded an 

issue where MSOSA incorrectly placed the refines/refined by relationship onto blocks, and 

incorrectly placed the satisfies/satisfied by relationship onto CallBehaviorActions.  

 
Figure 28. Genesys Requirement Relationships Export Table Definition (Too 

Rich)  
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This was due to the export from the Genesys Excel connector table definition and the 

MSOSA import function. The table definition captured all entities for each requirement 

where that requirement: was the basis of a function, specifies a function, and specifies a 

component. There were simply too many different types of relationships in the table for 

MSOSA to interpret correctly using a single set of import options. Instead, the user must 

constrain the output scope of the table definition. The GSL export was then obtained twice 

using these less-rich table definitions – once for relationships between requirements and 

functions (Figure 29), and again for relationships between requirements and components 

(Figure 30).  

 
Figure 29. Genesys Requirement Relationships Export Table Definition 

(Function Relationships)  

 

Figure 30. Genesys Requirement Relationships Export Table Definition 
(Component Relationships)  

This study then executed the MSOSA import three times using the two exported 

tables. The first two imports were for requirements that specify functions, and then for 

requirements that are the basis of functions. MSOSA requires this because. Requirements 

in Genesys may both specify a function and be the basis of a function, yet, the refines/

refined by is the only relationship both map to in MSOSA, per NSWC Crane’s Genesys to 

Cameo Conversion Process (2020). This translates to a mapping that is two-to-one. The 

MSOSA import tool does not allow for mappings that are not one-to-one, therefore it 

required two separate imports. The third import established the satisfies/satisfied by 
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relationship between requirements and blocks. These three steps correctly map 

requirements to refine CallBehaviorActions, and to be satisfied by blocks. 

(4) Summary 

To summarize the steps taken for importing data from Genesys into MSOSA via 

the Excel connector and MSOSA mapping tools, Figure 31 illustrates how this study was 

successful in transferring parts of the GSL model in three steps, aligned to each of the three 

SysML pillars: physical, functional, and requirements.  

 
Figure 31. Process Summary for Genesys Export and MSOSA Import via MS 

Excel  

Step 1 through Step 3 of Figure 31 focus on the physical aspects of the SoI. Step 1 

first exported only the SoI model components from Genesys into Excel using the Genesys 

Excel Connector tool. The table definition for exporting the components from Genesys may 

be a simplified version of Figure 16, as only the component names and numbers are mapped 

in Step 2 (an observation made in retrospect of the experiment).  
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Step 2 then used the Excel file generated in Step 1 to import the components into 

MSOSA. The import followed a mapping shown in Figure 18, where the components were 

created as blocks in MSOSA. Since Step 1 did not capture any relationship data from 

Genesys, this Step 2 did not include the import of any relationships among physical entities, 

such as the physical hierarchy of the model. It also created empty blocks within MSOSA 

due to the structure of the component Excel file from Step 1. Step 3 is required to establish 

the physical decomposition in MSOSA as well as to remove empty blocks.  

Step 3 removed the empty blocks by simply deleting the blank entities in MSOSA. 

After the deletion, there was still no hierarchical information in the model yet. To establish 

this, the owner SysML property was used to create parent-child relationships and generated 

the hierarchy of physical blocks. However, BDDs did not correctly generate yet and 

required further manual manipulation in MSOSA. To remedy this, the “directed 

composition” selection in the BDD was used to establish part properties and thereby 

successfully created physical decomposition in the BDD. 

Step 4 through Step 6 then focus on the functional characteristics of the SoI. Step 

4 exported only the functions via the Genesys Excel Connector, using a table definition 

like Figure 23. The entity and description properties, as well as the allocation and 

decomposition relationships, were exported from Genesys to create an importable Excel 

file for MSOSA for Step 5. 

Step 5 took the export from Step 4 and imported it into MSOSA, using a mapping 

reflective of Figure 24. The Genesys functions were mapped to MSOSA 

CallBehaviorAction elements. The Genesys “entity,” “description,” “decomposes target” 

relationship, and “allocated to” relationship mapped to the MSOSA properties “name,” 

“allocated to,” “owner,” and “documentation,” respectively. This created 

CallBehaviorAction entities in MSOSA with allocation relationships to the block entities 

established by Steps 1 through 3. However, due to the one-to-one interpretation of 

MSOSA’s mapping tool, CallBehaviorAction entities were duplicated and required manual 

user input to resolve, eliciting Step 6. 
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Step 6 removed the duplicated CallBehaviorActions created by Step 5 through 

simple deletion within MSOSA. However, prior to deleting each entity, their properties 

and relationships were recorded for future recreation. Once only unique 

CallBehaviorActions existed, the recorded properties and relationships that were deleted 

were recreated within MSOSA to bring about concordance and resolve the data duplication 

issue. 

Step 7 through Step 9 then focus on the requirements of the SoI. The MSOSA 

2021x User Manual (2020) details the steps to import requirements into MSOSA. The first 

step, Step 7, is to export the requirements from Genesys using a table definition that 

contains the requirement entity properties of “title,” “description,” and the “decomposes 

relationship.” Then, per the MSOSA 2021x User Manual (2020), Step 7 modifies the Excel 

file to include “owner” and “id” columns. The additional columns enable MSOSA to 

interpret the decomposition of the requirements. “Id” is used to enumerate the 

requirements, and “owner” is used to show the parent-child relationship (decomposition) 

of the requirements. Once this step is complete, the Excel file was ready to be imported 

into MSOSA via Step 8. 

Step 8 imported the requirements into MSOSA, also per the MSOSA 2021x User 

Manual (2020). The mapping between Genesys and MSOSA is one-to-one in this case, and 

therefore demonstrated no issues during the import process. However, no relationship 

information was captured during this step, warranting Step 9. 

Step 9 added the relationships for the requirements in MSOSA by constraining the 

scope of the Genesys export file and importing it multiple times. In Genesys, requirements 

are the basis of a function, and a function may be specified by requirements, and 

components may also be specified by requirements. Therefore, three separate imports were 

warranted due to the one-to-one constraint in the MSOSA import tool. The first two imports 

were for requirements that specify functions, and for requirements that are the basis of 

functions. The third import established the satisfies/satisfied by relationship between 

requirements and blocks. These three steps correctly mapped requirements as refining 

CallBehaviorActions and as being satisfied by blocks. 
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Overall, the import of elements alone from Genesys to MSOSA was trivial, but 

issues exist with the end-to-end conversion method. MSOSA creates superfluous model 

elements with no data or duplicates when using tabulated data as the import method. At the 

same time, the import process with tabulated data does not efficiently allow for the capture 

of relationships. A user must manually remediate structural, behavioral and requirement 

relationships after import process. Furthermore, the MSOSA mapping tool is the only 

means to resolve semantic and ontological disparities between the tools and requires a user 

to define it. In this experiment, the user-defined mappings were assumed to be accurate per 

NSWC Crane’s Genesys to Cameo Conversion Process (2020), which may not be accurate 

and would likely require further work to ensure both accuracy of the mappings and 

standardization across all users.  

This study demonstrated the successful transfer of parts of the Genesys GSL model 

into MSOSA, but the combined limitations between relationship transfer and ontological 

mappings result in the MSOSA Excel import method as an overall insufficient means for 

transferring Genesys model data into MSOSA. The Genesys Excel connector and MSOSA 

Excel import function with associated mappings is effective for transferring basic model 

entities but is inefficient in transferring a complex system model. This scalability issue is 

a dramatic obstacle in the pursuit of interoperable MBSE models, as nearly all systems that 

warrant a model will involve complexity. 
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IV. RESULTS AND CONCLUSIONS 

This chapter summarizes the results of this study and draws conclusions from those 

results. The organization of this chapter includes a section for the results and a section for 

the conclusions. 

A. RESULTS 

This study identified conversion methods available to a normal user, the limitations 

observed during the GSL model experiment from Genesys to MSOSA, and the assessment 

of informational content after the conversion process.  

This thesis was successful in replicating parts of the original Genesys GSL model 

in MSOSA, but it took a lot of user action to do the transfer and conversion. A review of 

the .xml files generated by Genesys showed that output model data is comprehensive and 

without omission. However, no simple means to transfer XML data into MSOSA exists. 

The Genesys Excel connector, in combination with the MSOSA Excel import option and 

its associated mapping tool, were the only means to transfer data from Genesys to MSOSA. 

All other supported file formats for data export and import between the tools were 

infeasible, making all other means to transfer data from Genesys to MSOSA also infeasible. 

The experimentation involving the GSL system model as a use-case revealed that there is 

exists limitations in data transfer between the two tools. Table 5 summarizes these 

limitations. 
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Table 5. Limitations Exchanging Data from Genesys to MSOSA Using the 
Genesys Excel Connector and MSOSA Mapping Tool 

Observation Limitation Description 
Data 
Duplication or 
Blank Data 

One-to-One 
Mapping 

Unable to correctly transfer data when there are one-
to-many relationships between elements. Either 
MSOSA creates multiple copies of the same element, 
or MSOSA creates blank entities. In either case, the 
user must go into the model and correct the mapping. 

Multiple 
Imports 
Required 

One-to-One 
Mapping 

Multiple imports are required and in a particular order 
in order to correctly transfer relationships between 
entities. 

Order of Import One-to-One 
Mapping 

The order of the import is of significance during the 
migration process. A user may incorrectly omit 
relationship information if both entities for any single 
relationship do not already exist in MSOSA. 

Importing 
Behavioral 
Modeling Data 

Ontological 
Differences 

There is a major modeling difference between how 
SDL and SysML model items and the interfaces 
between components to capture behavior. SDL 
defines item elements used as inputs/outputs/triggers, 
whereas SysML uses object and control flows, in 
addition to various combinations of object nodes, 
central buffer nodes, pins, etc. (each of which also 
have specialized types). The ontological mapping 
between SDL and SysML for system behavior 
therefore proved difficult to reproduce in MSOSA. 

Post Migration 
Remediation 

Inefficiency The overall process was inefficient and time 
intensive. As every level of the data exchange process 
required a degree of manual remediation in MSOSA, 
the primary advantage of the Excel method seems to 
be only in establishing new entities.  

 

The experiment revealed how Genesys and MSOSA have limited model data 

transfer capabilities through the Excel connector method. The Excel connector method 

facilities transfer of entities well but does not perform well in exchanging relationship 

information. The primary obstacle in the Excel method was the one-to-one interpretation 

implicit to the MSOSA mapping tool, as most models involving any degree of complexity 

will have one-to-many relationships. This effectively restricted the import method to the 

exchange of entities only. Imports of the physical and functional architectures were 

successful in MSOSA but required manual manipulation in the MSOSA tool after the 
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import process to be reflective of the original model. This would require a modeling effort 

or project to recreate a representative GSL model in MSOSA, which severely undercuts 

the value of this method. 

With these results and using the LCIM (Tolk and Muguira 2003), this thesis 

assesses the interoperability between Genesys and MSOSA at Level 0. Documentation 

exists independently for the two tools for exchange of data, but there does not exist 

documentation specific to the interface between the tools since one does not exist. Since 

the only feasible method identified by this thesis to transfer data is through Excel, and each 

tool handles this connection differently, there is no effective means for interoperability. 

Therefore, this thesis arrives at an LCIM Level of 0 for this use-case. 

B. CONCLUSIONS 

Various conclusions were drawn based on the data and results of this experiment. 

This experiment demonstrated that no simple means to transfer data from Genesys to 

MSOSA exists. Model content can be transferred, but the means of doing the transfer is 

such that it wouldn’t support, by any practical means, a digital thread in an enterprise such 

as the Navy. The only available data transfer method, as explored by this study, was 

essentially a “human-in-the-loop” approach using Excel as an intermediary. However, 

using the Excel connector to export model data from Genesys or import model data from a 

separate target tool demands meticulous management of the tabulated data during the 

import/export process to ensure correct ERA assignments. This can over-encumber a 

systems engineer and be time intensive depending on the complexity of the model.  

This experiment was successful in transferring 144 of 423 entities and 116 of 1,304 

relationships from Genesys to MSOSA. The simple GSL sample model contained less than 

2,000 entities and relationships and took the user approximately seven hours to adequately 

transfer only 17% of the original model’s overall contents. In the case of complex military 

systems, system models may have upwards of 10,000 entities and relationships, or more. 

Assuming similar user proficiency, extrapolating this time estimate for 100% coverage and 

five times more data would require a time commitment of roughly 200 hours. This also 

assumes that the ontological mapping between SDL and SysML is accurate and defined.  
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To perform its experiment, this study assumed that the ontological mapping created 

by NSWC Crane is accurate and appropriate. Since the ontological mappings are not 

standardized, modelers may continue to develop system models with ontological 

disagreements, even with a technical solution available to transfer data. To resolve 

ontological differences consistently, the Navy and Marine Corps must establish a standard 

ontology that tool vendors and users may adopt and implement.  

To support a digital thread with this study’s approach, the Navy would have to 

invest in developing automated programs for extracting, transferring, and loading model 

data so it can piece together models from various sources. The methodology this study 

presents could theoretically be automated in a fashion like IBM Cloud’s extract, transform, 

and load process, which “combines data from multiple data sources into a single, consistent 

data store that is loaded into a data warehouse or other target system,” (IBM Cloud 

Education 2020) however this approach can be brittle as changes in either the source or 

target tool can break the automated process. It is likely more efficient at the XML data 

level, like Sandia’s demonstration (Carroll et al. 2021), instead of using Excel as an 

intermediary and attempting to automate it. 

Until the community establishes a universally available technical Genesys-MSOSA 

solution and standard Navy and Marine Corps ontology, commands utilizing Genesys will 

continue to diverge from the Naval IME modeling path that their sister SYSCOMS are 

adopting. This conclusion may force Navy commands, such as NAWCADLKE, to 

continue modeling outside of the Naval IME and will hinder any future model federation 

goals. For these reasons, recommended future work includes the establishment of a SysML 

ontology for the Navy and Marine Corps to universally leverage and describe their systems, 

and the publication of a Genesys-MSOSA software solution that allows users to import 

XML data from Genesys to MSOSA. Since MSOSA was assumed to be synonymous with 

the Cameo Systems Modeler tool employed by the Naval IME, it is also recommended that 

the software solution be explored for specific use with Genesys and Cameo Systems 

Modeler.  
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