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ABSTRACT 

 Satellite imaging performance can degrade due to optical aberrations. To 

maximize a satellite’s imaging output over its useful lifespan, deep learning presents a 

cost-effective alternative to traditional adaptive optics for deblurring satellite images. 

This is because deep learning is essentially a post-processing technique that relies on 

algorithms and a large dataset. This research focuses on applying deep learning 

algorithms based on the UNET Convolutional Neural Network, which is widely used in 

the bio-medical imaging field, to deblur optically aberrated satellite imagery. The 

XVIEW dataset, which is composed of images taken by the Worldview-3 satellite, is 

used. The XVIEW images are then simulated with optical aberrations (defocus and 

spherical) using Zernike polynomials. The blurred images are subsequently deblurred 

with UNET and UNET variants (UNET++ and UNET3+) before final performance 

evaluation with various image quality metrics. The results showed that (1) UNET 

algorithms can effectively deblur optically aberrated satellite images, and (2) UNET3+ 

modified with additional convolutional layers (deep-UNET3+) provided the best 

deblurring performance. Based on the positive results, this thesis recommends that the 

UNET algorithm be applied on actual field cases of optically aberrated satellite imagery 

and be further developed to perform better even on super-resolution applications. 
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I. INTRODUCTION 

High resolution electro-optical (EO) satellite imaging in the visible light spectrum, 

is important for commercial and military applications of earth observation. However, 

maximum ground sample distance (GSD) resolution is limited by the physics of diffraction 

and consequently is a function of the imager’s aperture size (the larger the size, the higher 

the resolution). In addition, the diffraction-limited imaging performance of a satellite can 

be further degraded by optical aberrations such as defocus and spherical aberrations, which 

distort the image quality. Optical aberrations can be caused by pre-launch factors such as 

imperfect optics and design flaws, and/or post-launch factors such as degradation of optics 

and misalignment of optical system components during operations in the space 

environment. The result of optical aberrations on satellite imaging is image blurring. 

Once a satellite is in operations, there are two main computer vision post-processing 

approaches to restoring raw blurred images caused by optical aberrations: (1) conventional 

physics-driven approach with image optimization routines, and (2) data-driven approach 

using Artificial Intelligence (AI) to predict image using a technique called deep learning 

[1]. The premise of deep learning is that given a dataset that is adequately representative 

of the problem (blurred image) and solution (clean image), an optimized deep neural 

network that has been trained with relevant data can quickly restore a new blurred image 

in real time, which can be more efficient than traditional image-by-image optimization 

methods [2]. High potential use cases of deep learning in restoring optically aberrated 

blurred imagery can be described in the following scenarios: (1) enhancement - using clean 

imageries from other satellites with similar GSD resolution but better optical performance 

and (2) sustainment - using previously clean imageries from the same degraded satellite.  

As higher resolution imaging satellites require high optical performance (maximum 

of 30 nm root mean square [RMS]) to counter the effects of optical aberrations, this can 

significantly increase the project cost, schedule, and risk. This issue is most pertinent with 

wide aperture telescope exceeding 3m, thus requiring segmented and deployable mirrors, 

which necessitates complex hardware such as adaptive optics to correct optical aberrations. 



2 

As articulated, the potential of deep learning to restore satellite imagery with optical 

aberrations presents an opportunity to reduce satellite cost by relaxing optical performance 

requirements. 

A. RESEARCH PURPOSE 

The main purpose of this thesis is to investigate the deblurring performance of deep 

learning as an end-to-end solution in restoring the optically aberrated high-resolution 

Worldview-3 Satellite imagery. Specifically, a popular deep learning convolutional neural 

network (CNN) architecture known as UNET will be evaluated. UNET, first applied in 

biomedical imaging for semantic segmentation [3], has also found recent success in various 

deblurring applications employing variants of UNET [4–6]. 

B. RESEARCH OBJECTIVES 

There are three main research objectives. The first objective is to evaluate the 

deblurring performances for the common defocus and spherical aberrations, both 

respectively and in combination. The second objective is to evaluate the performances of 

UNET and state-of-the-art UNET variants, namely UNET++ [7] and UNET3+ [8] for 

deblurring of high-resolution satellite imagery. The third objective is to evaluate the 

performances of UNET and UNET variants with various quantitative image quality 

metrices (IQM) as well as qualitative visual inspection. 

C. THESIS ORGANIZATION 

Chapter II provides the technical background of (1) fundamentals of optical 

imaging and computer vision; (2) effects of defocus and spherical aberrations; (3) 

modelling of optical aberrations with Zernike polynomials; (4) fundamentals of machine 

learning (ML), deep learning, and CNN; and (5) a review of UNET. Chapter III details the 

simulation of blurred imagery as well as the modeling and implementation of UNET and 

UNET variants for image deblurring. Chapter IV provides the detailed results and analysis 

of the deblurring performances of UNET and UNET variants. Chapter V summarizes the 
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thesis research objectives and corresponding findings and insights, as well as propose 

future works to improve UNET deblurring performance. 
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II. TECHNICAL BACKGROUND 

This chapter provides the technical background for the following: (1) limitation of 

EO systems and computer vision sensing, (2) effects of optical aberrations on satellite 

imaging, (3) modelling of optical aberrations, (4) image deblurring with deep learning, and 

(5) broad review of UNET and UNET variants.  

A. ELECTRO OPTICAL SATELLITE IMAGING SYSTEM 

1. Diffraction Limitation of Optical Systems 

For simplicity of explanation, consider a satellite imaging system which uses a 

refracting telescope with curved lens to direct light to a focal plane where the light photons 

are captured. When light passes through the lens, a circular aperture, the phenomenon 

known as diffraction occurs, which is the bending of light’s wavefront. The result is  

the distribution of light intensity, forming an airy disk pattern of light on the focal plane, 

with a series of maxima and minima as shown in the red image intensity Sinc function in 

Figure 1, representing the wave-like nature of light. 

 
Figure 1. Diffraction Airy Pattern for Circular Aperture.  

Source: [9]. 

The first maxima, denoted in black, represents the peak light intensity, while the 

first minima, denoted in white, indicates the boundary of the first wave as well as the 
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angular resolution (∆𝜃𝜃) of the camera lens and can be described by the Rayleigh criteria 

formula for circular aperture. The Rayleigh criteria implies that the resolution of an 

imaging system is limited by wavelength of light (𝜆𝜆) and the size (diameter) of the lens 

aperture   

 

To obtain the diffraction limited GSD resolution (X) of a satellite imaging system, 

multiply the angular resolution (𝜃𝜃) by the range (R) from the lens to the target (see  

Figure 2). The GSD resolution indicates how well the imaging sensor can discriminate two 

objects that are X distance apart, the smaller the GSD resolution, the better it can detect 

smaller targets. 

 

Figure 2. GSD Resolution X as Described by Rayleigh Criteria. Source: [9]. 

2. Computer Vision Image Sensing 

Computer vision is essentially the field of making machines see. While the human 

eye is a versatile vision capability, it is typically not good at quantitative tasks, such as 

taking measurements, something the machine can be made to excel in. This section 

describes briefly how computers interpret images from an imaging sensor. Light photons, 
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reflecting off a target, pass through the telescope aperture and are collected on the camera 

focal plane, which is an array of pixels. When light photons interact with the camera focal 

plane made of semi-conductors, electrons are released. The movement of electrons create 

currents that can be measured, allowing the light intensity of each pixel on the focal plane 

to be determined. The Analog measurement for each pixel is converted digitally to a 

number value and stored by the computer in typical data sizes of 8 bits, thus storing values 

between 0 to 255. Essentially, a panchromatic image as interpreted by a computer is simply 

a matrix of number values as in Figure 3, representing the intensity of light between 0 

(black) and 255 (white). A color image has three channels (red, green, and blue [RGB]) for 

each pixel. 

 

Figure 3. Image as a Matrix of Numbers. 
Source: [10]. 

B. EFFECTS OF OPTICAL ABERRATIONS ON SATELLITE IMAGING 

Further reducing the diffraction limited GSD resolution of EO systems are optical 

aberrations. Technically, optical aberrations occur when light reflected from a point source 

of the target do not converge perfectly at the same point on the image focal plane, where 

light photons are collected. Two specific optical aberrations for the purpose of this thesis 

are discussed, namely, (1) defocus aberration and (2) spherical aberration. 
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1. Defocus Aberration 

The defocus aberration occurs when there is a wavefront error and the image 

formed deviates longitudinally away from the ideal gaussian image point (best focal point). 

The result is a diminished intensity at the first central maxima of the image intensity Sinc 

function, with the energy spreading to the adjacent wave maximas or intensity rings. The 

larger the wavefront error, the lower the central maxima intensity and the bigger the 

defocus ring, resulting in more severe blurring, as seen in Figure 4. 

 
Figure 4. Defocus Error vis-à-vis Wavefront Error. 

Source: [11]. 

2. Spherical Aberration 

The spherical aberration occurs when multiple wave front errors result in multiple 

image points being formed around the ideal gaussian image point. This can occur when 

light refract at varying degrees along the lens in a way that leads to multiple converging 

points around the gaussian point, as seen in Figure 5. The result is multiple image intensity 

Sinc functions being formed with diminished central maxima intensity due to the energy 

spread across focal points, causing a blurring more severe than defocus. 
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Figure 5. Spherical Aberration. 

Source: [12]. 

C. MODELING OF OPTICAL ABERRATIONS WITH ZERNIKE 
POLYNOMIAL 

Mathematically, the light wavefront errors (W) of the above-mentioned defocus 

and spherical aberrations can be modelled with the ZERNIKE polynomial, which has 

orthogonal functions that can effectively describe the light wavefront in a circular aperture. 

The ZERNIKE polynomial for defocus and spherical aberrations can also be expressed in 

the cartesian coordinate for efficient computation, as visualized in Figure 6. 

 

Figure 6. Zernike Polynomial for Defocus and Spherical Aberrations. 
Source: [13]. 
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However, to accurately describe the gaussian (normal) distribution of light waves 

in a blur circle, also known as the point spread function (PSF), ℎ, a Fourier transform 𝐹𝐹 is 

applied to the wavefront error 𝑊𝑊. 

 

 To generate a blur image, 𝑔𝑔, from a clean image, 𝑓𝑓, convolve the PSF, ℎ, with 𝑓𝑓. 

 

D. COMPUTER VISION DEBLURRING WITH DEEP LEARNING 

Traditionally, computer vision tasks have been undertaken by so-called expert 

systems, which models images based on physical laws, a highly specialized and 

application-specific enterprise that has difficulty in scaling for complex applications such 

as self-driving cars. For deblurring, one key problem is that it is an ill-constructed problem 

as the blurred kernel PSF is often unknown. As such, one typical method for deblurring is 

with the blind deconvolution algorithm, which requires an initial input of estimated noise 

or blurred kernel PSF and then further iterated to obtain the ideal result, which can be time 

consuming and presents several limitations [14].  

In recent years, ML, which models images based on a data-driven approach, has 

been gaining traction due to advancements in computing power, storage capacity, and 

algorithms. ML is a subset of AI which allows a computer software to derive a model from 

training data (see Figure 7). The model, having undergone model training with data, can 

perform various computer tasks such as object classification, semantic segmentation, 

deblurring and super-resolution. For example, a blurred image can be fed into the trained 

model as an input data and be rapidly output as a deblurred image, also known as model 

inference (see Figure 7), thus having the advantage of speed over traditional methods such 

as the blind deconvolution algorithm. This advantage of ML makes it ideal for near real-

time applications that makes it suitable for military and civil operations which require time-

critical responses such as in military strike and humanitarian rescue missions.  
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Figure 7. ML Process and Model Inference. 
Source: [1]. 

However, the implicit challenge in ML is the training data, where an issue known 

as over-fitting can arise if the model can only perform well for a narrow set of new data 

that closely resemble the training data. In contrast, a good model has a quality known as 

generalization, where the model can perform well for a broad set of new data with similar 

characteristics as the training data.  

Deep learning is the state-of-the-art technology of ML which utilizes deep neural 

networks that have more than one hidden layer (see Figure 8).  

 

Figure 8. Deep Neural Network. 
Source: [1]. 
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A deep neural network comprises neural nodes that are interconnected, with each 

connection represented by a different weight (𝑊𝑊). Preceding nodes are taken in as inputs 

(𝑋𝑋) for each node and multiplied by the respective weight values, and with the addition of 

a bias (b), produces the weighted sum of the inputs 𝜈𝜈 [1].  

 

To obtain the final output (𝑌𝑌) of a node, an activation function (𝜑𝜑) is applied to the 

weighted sum of inputs (𝜈𝜈) [1].  

 

To maximize the performance of ML, this thesis adopts a ML type known as 

supervised ML (see Figure 9), where the training data comprises blurred images (input) as 

well as the pristine/original sharp images (correct output).  

 

Figure 9. Supervised ML. 
Source: [1]. 

The output (Y) obtained from the input is compared with the correct output (d) to 

obtain an error (e), which is then back propagated through the neural network to adjust the 

weights of the neural network via a learning rule. This process is typically repeated until 

the error reaches an accepted tolerance. Therefore, it can be understood that a trained model 

is essentially a deep neural network with adjusted weight values. 
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For computer vision, the deep learning architecture used is known as CNN.  

The main architectural design of a CNN is the use of an image feature extraction network 

which produces various feature maps via convolution (image filter function) and pooling 

(data reduction function) operations, as opposed to the traditional method of having expert 

designed feature extractors (see Figure 10) [1]. 

 
Figure 10. Architecture of Convolutional Neural Network. 

Source: [1]. 

E. REVIEW OF UNET  

UNET is essentially a type of CNN with an encoder-decoder architecture (see 

Figure 11), first developed in the field of bio-medical imaging for semantic segmentation. 

UNET is used to better segment out the cell of interest from the surrounding cells, which 

can be challenging due to low contrast and clustering of cells [3]. 

 
Figure 11. General Architecture of UNET 
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The key innovation of the original UNET lies in the skip connections between the 

encoder-decoder nodes at the same stages, where the higher resolution features from the 

encoder nodes are combined with the better pixel-localized features from the decoder 

nodes, resulting in more precise image segmentation [3]. Further innovations in the scale 

of skip connections, in particular the supervision of the first stage encoder node on other 

nodes, further advanced the UNET architecture, namely with UNET++ [7] and UNET3+ 

[8] (see Figure 12 for summary), which are also applied in the bio-medical imaging fields. 

 

Figure 12. Summary of UNET and Two Main UNET Variants. 
Source: [8]. 

In the UNET3+ research, UNET3+ not only outperformed UNET++ in the selected 

datasets (liver and spleen) based on an IQM (i.e., dice similarity coefficient), but also had 

the advantage of being faster due to it having lesser parameters [8].  

Due to its effectiveness and simplicity, UNET variants have also been applied 

successfully in applications such as deblurring of satellite images affected by atmospheric 

turbulence, notably in [4], where adding additional convolutional layers (also known as 

convolutional autoencoder [CAE]) to UNET at both the encoder beginning and decoder 

end yielded better performance (see Figure 13). 
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Figure 13. UNET with Deep Convolutional Autoencoder Architecture. 
Source: [4]. 
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III. STUDY APPROACH AND SETUP 

This chapter describes the study approach and setup, which includes (1) the 

generation of clear images, (2) modeling and simulation of blurred images, 

(3) implementation of UNET and UNET variants, and (4) performance evaluation methods. 

A. EQUIPMENT SETUP 

This study utilizes the MATLAB software for data generation and evaluation, the 

setup of the UNET CNNs, and deep learning implementation (model training and model 

inference). To enable the model training of the large dataset as well as the UNET CNNs, 

the hardware utilized is the NVIDIA DGX station which has four Tesla V100 GPUs. 

B. CLEAR DATA GENERATION 

The dataset selected for this research is the open-source XVIEW dataset, which 

comprises satellite images taken by the Worldview-3 Satellite, at a GSD resolution of 

1.24m. There is a total of 1,129 RGB colored images, at varying dimensions of ~3000 by 

~2000 pixels.  

1. Clear Data Generation 

It is necessary to have a large number of data to generate better results for deep 

learning. In addition, the pixel dimensions must be uniform and small to allow for efficient 

training with the equipment setup. As such, the XVIEW images are first cropped to typical 

dimensions of 512 by 512 pixels to retain sufficient scene information, generating a total 

of 35,701 images from the original 1,129 images. These images are then resized to 

dimensions of 256 by 256 pixels for optimal computation, at the expense of losing some 

pixel information. 

2. Dataset Ratio 

For optimal deep learning implementation, the dataset, which comprises clear and 

blurred image pairs, is split into three separate segments, each with distinct images: 
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(1) training, (2) testing, and (3) validation. This ensures that the trained model is tested and 

validated on images it has not seen before. The training and validation datasets are used 

during the training process and the testing dataset is used with the trained model for model 

performance evaluation. For this study, the percentage ratio used for training, testing, and 

validation are ~75%, ~12.5%, and ~12.5%, respectively (see Table 1). 

Table 1. Dataset Ratio 

Training Testing Validation 

26,542 images (~75%) 4,580 images (~12.5%) 4,579 images (~12.5%) 

 

C. BLURRED DATA GENERATION 

For this study, the blurred images are modelled with Zernike polynomials as 

detailed in Chapter II and simulated with MATLAB. Table 2 summarizes the defocus and 

spherical aberrations that are generated with various factor types and values. A fixed factor 

would mean that the entire dataset is uniformly blurred with the same factor value whereas 

a mixed factor type would mean that the dataset is randomly blurred with varying values. 

The higher the factor value, the greater the optical aberration. 

Table 2. Blurred Dataset Generation Summary 

Aberration Type Factor Type and Values 

Defocus Fixed (value of 1) 

Defocus Random (values between 0 to 1.1) 

Spherical Fixed (value of 1) 

Mix Defocus and Spherical Fixed (value of 1) 
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D. UNET SETUP AND TRAINING PARAMETERS 

Table 3 summarizes the UNET architectures that are tested in this study. For this 

study, the general architectures of the UNET and various UNET variants are adopted with 

the key training parameters as detailed in Table 4. Notably, Deep-UNET3+ is created for 

this thesis study by combining UNET3+ with additional convolutional layers as in the deep 

UNET CAE. These UNET CNN variants are designed and implemented in MATLAB’s 

deep learning designer application. Note that as this is a deblurring problem, the output 

layer would be a regression layer. 

Table 3. Summary of UNET Architectures 

UNET Architectures 

UNET 

UNET++ 

UNET3+ 

Deep-UNET3+ 

Table 4. Summary of Key UNET Training Parameters 

Parameter Type Parameter Detail 

UNET Stages Two Stages 

Optimizer ADAM @ 0.001 

Max Epoch 10 

Mini-Batch Size 16 

Padding  Yes 

Dropout Layer Yes 

Loss Function Mean Squared Error 
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E. IMAGE QUALITY METRICS 

The deblurred images are obtained by inferencing the testing dataset with the 

trained UNET models. The deblurring performance are mainly evaluated quantitatively 

with three main image quality metrics (IQMs) (see Table 5) commonly used in this area of 

research [15], as well as qualitatively with human vision for additional verification. 

Table 5. Summary of IQMs 

Image Quality Metric (IQM) 

Mean Squared Error (MSE) Measurement 

Peak Signal to Noise Ratio (PSNR) 

Structural Similarity (SSIM) Index 

 

1. Mean Square Error Measurement 

The MSE measures the difference of the pixel values between the clear and blurred 

images: 

 

where 𝑥𝑥 and 𝑦𝑦 are 𝑖𝑖 -th samples of the clear and blurred images respectively and 𝑁𝑁 is the 

total number of image samples [15]. The formula penalizes greater differences between the 

clear and blurred images. A lower value indicates higher similarity between the clear and 

blurred images. This measurement is chosen as it is mathematically simple and because the 

regression layer’s loss function is also based on MSE. However, the limitation is that the 

MSE measurement may not be accurate in representing human-perceived quality 

measurements [16]. 
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2. Peak Signal-to-Noise Ratio 

The PSNR measurement is a derivative of the MSE measurement and traditionally 

a highly popular image quality metric:  

 

where 255 represents the maximum value of an eight-bit pixel [15]. Therefore, the formula 

further penalizes higher MSE. A higher value indicates better image quality. However, like 

the MSE measurement, it suffers from inaccuracies related to representing human 

perceived quality measurements. 

3. Structural Similarity Index 

The SSIM index is a human vision system based framework that seeks to provide 

a good approximation to human perceived image distortion [15]: 

 

where {𝜇𝜇𝑥𝑥,𝜎𝜎𝑥𝑥} and {𝜇𝜇𝑦𝑦,𝜎𝜎𝑦𝑦} refer to the mean intensity and standard deviation of the clear 

image x and blurred image y respectively while 𝜇𝜇𝑥𝑥𝑦𝑦 is the mean intensity of image x and 

blurred image y i.e., their cross correlation, and 𝐶𝐶1 and 𝐶𝐶2 are constants to ensure the 

denominator will not be too close to zero [15]. Conceptually, the SSIM is closer to human’s 

perception of image quality by considering the entire image structure. A value closer to 1 

indicates higher image similarity. 

4. Slanted Edge Modulation Transfer Function  

Where appropriate, depending on the availability of suitable image samples, the 

main IQMs in Table 5 are supplemented with the slanted edge modulation transfer function 

(MTF) to describe image quality with contrast and resolution. The MTF is a method that 

measures the ability of an imager to transfer the object modulus (contrast) to the detector 

at a given spatial frequency (resolution) [17]. It defines how well an imager can resolve the 

target contrast at a given resolution [18]. In general, an image’s modulation decreases (from 
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modulation value of 1) with increasing spatial frequency until the image’s limiting 

resolution is reached, the spatial frequency where the modulation value is zero. The slanted 

edge MTF based on the ISO standard 12233 is a commonly used technique to approximate 

a digital imager’s MTF using the edge spread function (ESF)/edge profile (b) of a knife-

edge/line-pair image (a) (see Figure 14).  

 
Figure 14. Edge Spread Function/Edge Profile of Knife-Edge Image. 

Source: [18]. 

Subsequently, the line spread function (LSF) is obtained from the derivative of the 

ESF. Finally, the MTF is obtained by applying the fast Fourier transform (FFT) on the LSF. 

See Figure 15 for process to obtain MTF from ESF. 

 
Figure 15. Process to Obtain MTF. 

Source: [19]. 
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IV. STUDY RESULTS AND ANALYSIS 

This chapter describes the study results and analysis for the various blurred test 

cases of the dataset as described in Table 2 using the UNET architectures in Table 3. 

Overall, the IQMs and visual results show that the UNET architecture is effective in 

deblurring the optically aberrated images. In addition, deep-UNET3+ provided the best 

performance amongst the UNET architectures. 

A. OPTICAL ABERRATION: FIXED DEFOCUS  

For the training dataset using a fixed defocus factor of 1, Table 6 summarizes the 

deblurring performance as quantified by the various IQMs. UNET3+ and UNET provided 

much better performance than UNET++ across all 3 key metrics. However, while UNET3+ 

performed the best under the MSE measurement, UNET performed the best under the 

PSNR measurement. In this case, it is reasonable to give more weight to the MSE 

measurement given that the loss function used during training is the MSE. 

Table 6. Summary of IQM for Defocus Factor of 1 using Various UNETs 

UNET Variant Training Time MSE PSNR SSIM 

UNET ~5 hours 1.047e+03 20.63 0.68 

UNET++ ~7 hours 1.489e+03 19.25 0.63 

UNET3+ ~10 hours 1.0393e+03 20.57 0.68 

 

Figure 16 shows the visual results of deblurring with the various UNET 

architectures for the three selected images. These visual results are consistent with the IQM 

results. It can be observed from the first image that there is a clear improvement in 

resolution (runway line pairs and numerical markings are resolved) after deblurring, with 

UNET3+ appearing to provide the best results. Notably, UNET++ appeared to perform 

worse than UNET for this test case. In the second and third images, deblurring managed to 
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resolve object details that were lost during blurring. Specifically, vehicles absent in the 

blurred images were now visible in the images deblurred by UNET3+.  

 

 
Figure 16. Visual Results for Fixed Defocus using Various UNETs 

As an example to quantify the improvement of resolution as observed in Figure 16, 

the slanted edge MTF technique is applied on a sample knife-edge image from the XVIEW 

dataset (see Figure 17). 

 

Figure 17. Image Sample for Slanted Edge MTF 
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Figure 18 shows the slanted edge MTF results based on Nyquist frequency (spatial 

frequency corresponding to 0.5 cycles per pixel) for the pristine/original image, blurred 

image (defocus aberration), and deblurred image (using trained UNET3+). As observed, 

the limiting resolution of the blurred image decreases significantly (from 0.5 cycles per 

pixel to 0.3 cycles per pixel) as compared to the pristine image. However, the limiting 

resolution of the deblurred image is restored back to 0.5 cycles per pixel. In addition, the 

deblurred image also has slightly higher contrast values at the various spatial frequencies 

when compared to the blurred image, indicating higher image quality. As such, the slanted 

edge MTF results are consistent with the visual results in Figure 17. 

 

Figure 18. Slanted Edge MTF Results for Defocus Aberration 

B. OPTICAL ABERRATION: RANDOM DEFOCUS FACTOR 

For the training dataset using random defocus factors ranging from 0 to 1.1, only 

the best performing UNET3+ CNN based on results from Section A. is used for training. 

The testing dataset comprises two blurred datasets using fixed and random defocus factors. 

Table 7 summarizes the results for the training dataset of random defocus factors on 

different testing datasets, as well as provides a comparison versus the training dataset of 

fixed defocus factor. Notably, the UNET3+ trained on the mixed defocus factor also 
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performed better on the testing dataset that had the mixed defocus factor, suggesting that a 

CNN trained on a generalized dataset would also perform better on a generalized testing 

dataset. 

Table 7. Comparison of IQM for Fixed vs. Random Defocus using UNET3+ 

Training Data Testing Data MSE PSNR SSIM 

Fixed Factor Fixed Factor 1.04e+03 20.57 0.684 

Random Factor 
Fixed Factor 1.57e+03 19.40 0.643 

Random Factor 711 21.98 0.688 

 

As observed in Figure 19, when tested on a defocus with a fixed factor, while there 

is an improvement from the deblurring, the CNN trained on the mixed defocus factor did 

not perform as well when compared to the CNN trained specifically on the test data, as 

expected due to the differences in the weight adjustments during model training.  

 

Figure 19. Visual Comparison for Random Defocus using UNET3+ 
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C. OPTICAL ABERRATION: FIXED SPHERICAL 

For the training dataset using the fixed spherical factor of 1, other than the best-

performing UNET3+, Deep-UNET3+ is also trained for better deconstruction and 

construction of the image. Table 8 summarizes the deblurring performance as quantified 

by the various IQMs. Notably, Deep-UNET3+ slightly out-performed UNET3+.  

Table 8. Comparison of IQM for Spherical Factor of 1 using UNET3+ and 
Deep-UNET3+ with Defocus Factor of 1 using UNET3+ 

Aberration UNET Variant Training Time MSE PSNR SSIM 

Defocus UNET3+ ~10 hours 1.0393e+03 20.57 0.68 

Spherical 
UNET3+ ~10 hours 919 20.94 0.677 

Deep-UNET3+ ~12 hours 711 21.98 0.688 

 

Figure 20 shows the visual results of deblurring with UNET3+ and Deep-UNET3+. 

Consistent with the IQM results, Deep-UNET3+ provided better visual performance than 

UNET3+. However, even though the IQM results of the UNET3+ CNN trained using the 

spherical aberration are better than for the UNET3+ CNN trained using defocus aberration, 

the visual performance of the UNET3+ CNN trained using the spherical defocus (which is 

a more complex optical aberration than defocus), as observed from the runway line pair 

and numerical marking, is worse. This suggest that the IQMs alone may be inaccurate in 

determining image quality. 
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Figure 20. Visual Comparison of Fixed Defocus vs. Spherical with UNET3+ and 
Deep-UNET3+ 

D. OPTICAL ABERRATION: MIX OF DEFOCUS AND SPHERICAL 

For the training dataset using a mix of defocus and spherical optical aberrations of 

factor 1, Deep-UNET3+ is used because it provided the best performance based on the 

results in Section C. Table 6 summarizes the deblurring performance as quantified by the 

various IQMs using various testing datasets. The IQM results are relatively good across 

the testing dataset using (1) fixed defocus factor of 1 only, (2) fixed spherical factor of 1 

only, and (3) a mixture of defocus and spherical factor of 1.  

Table 9. Summary of IQM for Mixture of Defocus and Spherical with 
Deep-UNET3+ 

Training Data Testing Data MSE PSNR SSIM 

Defocus and 
Spherical 

Defocus 898 21.20 0.656 

Spherical 944 21.10 0.655 

Mixed 919 21.15 0.656 
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Figures 21 and 22 show the visual performance of the test cases as summarized in 

Table 9. In addition, even though the Deep-UNET3+ CNN is trained on the dataset using 

mixed defocus and spherical aberrations, it appears that its visual performance is 

comparable to the Deep-UNET3+ trained on the dedicated training dataset using spherical 

aberrations. This suggest that there is potential for a UNET trained on a broad-based optical 

aberration to be effective. 

 

Figure 21. Visual of Mixed Training Dataset using Deep-UNET3+ 

 

Figure 22. Visual Comparison of Spherical vs. Mixed Training Dataset using 
Deep-UNET3+ 
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V. CONCLUSION 

This chapter provides key insights from this thesis, highlights its limitations, and 

recommends future work. In summary, this thesis has two main contributions: (1) 

demonstrating that UNET can be used for deblurring optically aberrated satellite imagery, 

and (2) developing Deep-UNET3+, which combines UNET3+ and deep UNET CAE, and 

demonstrating that it achieved the best deblurring performance. 

A. UNET IS USEFUL FOR DEBLURRING OPTICALLY ABERRATED 
SATELLITE IMAGERY 

As shown by the results in Chapter IV, UNET can deblur satellite images with the 

defocus and spherical aberrations, demonstrating improved spatial resolution and resolving 

small objects that are not visible when blurred. In addition, UNET can provide relatively 

good performance even when the training dataset uses mixed optical aberrations of defocus 

and spherical, as well as varying factors of aberrations such as for the defocus optical 

aberration. This outcome means that when the cause of blur is unknown, a UNET trained 

on a sufficiently large and representative dataset comprising of multiple optical aberrations 

and varying factors could be useful as a preliminary method.  

B. DEEP-UNET3+ PROVIDES THE BEST DEBLURRING PERFORMANCE 

UNET and two variants (UNET++ and UNET3+) are tested in this thesis, and 

amongst these, UNET3+ provides the best performance which is consistent with the results 

when they are applied on bio-medical images for semantic segmentation [8]. In addition, 

UNET3+ is modified with additional convolutional layers as per deep UNET CAE to 

obtain Deep-UNET3+, which outperformed UNET3+ when tested. This result validates 

the concept that additional convolutional layers enhance the image deconstruction prior to 

the UNET encoder and image construction after the UNET decoder [4].  
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C. POTENTIAL UNET APPLICATIONS 

Deblurring of satellite images with UNET can be used to sustain existing satellite 

capabilities that have degraded over time, since we will have images pre and post 

degradation, which can be used for the training of UNET. In addition, the improvement of 

spatial resolution by UNET indicates that UNET can be potentially used for super-

resolution applications as well, where images from a higher-resolution satellite can be used 

to enhance the image from a lower-resolution satellite. 

D. KEY LIMITATIONS AND SOURCES OF ERROR 

One key limitation of this thesis arises from the equipment setup and therefore the 

computational resources available, which limit the image dimensions and depth of the 

UNET CNN employed. As such, errors can result from information lost during image pre-

processing with the resizing of the image and less information being extracted from the 

image with a shallower UNET CNN. 

Another limitation is in the use of IQMs. As seen in Chapter IV, different IQMs 

produce different results and may not all be consistent in indicating superior performance 

of one UNET variant over another. As such, MTF and visual results are needed for 

additional comparison and validation. The effectiveness of IQM is also tied to the loss 

function, which explains why MSE seemed to be the best indicator of performance. 

E. RECOMMENDATIONS FOR THE WAY FORWARD 

There are several key areas that can be explored to further the research and 

performance of deblurring satellite imagery with UNET. One, other optical aberrations 

with higher factors of aberrations can be tested to expand the envelope of UNET’s 

application; two, improving deblurring performance with deeper UNET layers; three, 

testing different hyper-parameters such as loss functions, e.g., focal loss; four, combining 

UNET with other deep learning algorithms such as Generative Adversarial Networks 

(GAN) to improve the robustness of the training process; and five, use of other evaluation  
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metric such as the slanted edge MTF and use of object detection neural networks to validate 

deblurring performance. In addition, research can be conducted with UNET on actual 

operational datasets and on super-resolution problems as well as with infrared and radar 

images. 
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