
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-09

ANALYSIS OF MARKOV CHAIN MONTE CARLO
METHODS IN MULTI-INDENTURE INVENTORY OPTIMIZATION

Alleman, Adam M.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/71040

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

ANALYSIS OF MARKOV CHAIN MONTE CARLO
METHODS IN MULTI-INDENTURE INVENTORY

OPTIMIZATION

by

Adam M. Alleman

September 2022

Co-Advisors: Ruriko Yoshida
 Jefferson Huang
Second Reader: Javier Salmeron-Medrano

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2022 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
ANALYSIS OF MARKOV CHAIN MONTE CARLO METHODS IN
MULTI-INDENTURE INVENTORY OPTIMIZATION

 5. FUNDING NUMBERS

 6. AUTHOR(S) Adam M. Alleman

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
NAVSUP WSS, Philadelphia, PA 19130

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 U.S. Navy aircraft are required to meet minimum operational availability targets, while minimizing
spare parts procurement costs. The current optimization model written by Salmeron and Buss, uses marginal
analysis, as described by Sherbrooke, to determine optimal sparing policies for this highly complex
multi-indenture model. The literature lacks alternative optimization methodologies for such a problem, so
we propose an alternative approach utilizing simulated annealing (SA), a Markov Chain Monte Carlo
algorithm. We present three SA approaches tested in three case studies of varying size and complexity. Our
initial findings show that in very simple problems, SA is easily capable of outperforming marginal analysis;
however, problems with more complexity have large optimality gaps. This is likely because the SA Markov
chain is unable to effectively explore the multi-indenture structure of the problem. We implement a method
to account for this structure that intelligently builds initial feasible solutions using an epsilon-greedy
approach to marginal analysis. This approach produces better results than NAVARM in more than half of
the trials on problems of moderate complexity. We also implement a novel method for calculating
operational availability that may allow full scale problems to be optimized more efficiently.

 14. SUBJECT TERMS
Markov Chain Monte Carlo, MCMC, Metropolis-Hastings, simulated annealing, stock level
optimization, multi-indenture optimization, readiness based sparing, sparing policy,
NAVARM, aviation

 15. NUMBER OF
PAGES
 95
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

ANALYSIS OF MARKOV CHAIN MONTE CARLO METHODS IN
MULTI-INDENTURE INVENTORY OPTIMIZATION

Adam M. Alleman
Lieutenant Commander, United States Navy

BSCE, Citadel, Military College of South Carolina, 2011

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 2022

Approved by: Ruriko Yoshida
 Co-Advisor

 Jefferson Huang
 Co-Advisor

 Javier Salmeron-Medrano
 Second Reader

 W. Matthew Carlyle
 Chair, Department of Operations Research

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 U.S. Navy aircraft are required to meet minimum operational availability targets,

while minimizing spare parts procurement costs. The current optimization model written

by Salmeron and Buss, uses marginal analysis, as described by Sherbrooke, to determine

optimal sparing policies for this highly complex multi-indenture model. The literature

lacks alternative optimization methodologies for such a problem, so we propose an

alternative approach utilizing simulated annealing (SA), a Markov Chain Monte Carlo

algorithm. We present three SA approaches tested in three case studies of varying size

and complexity. Our initial findings show that in very simple problems, SA is easily

capable of outperforming marginal analysis; however, problems with more complexity

have large optimality gaps. This is likely because the SA Markov chain is unable to

effectively explore the multi-indenture structure of the problem. We implement a method

to account for this structure that intelligently builds initial feasible solutions using an

epsilon-greedy approach to marginal analysis. This approach produces better results than

NAVARM in more than half of the trials on problems of moderate complexity. We also

implement a novel method for calculating operational availability that may allow full

scale problems to be optimized more efficiently.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Problem Statement. 3

1.2 Purpose of the Study . 4

1.3 Research Questions . 4

1.4 Research Approach . 5

1.5 Significance to the Field . 6

1.6 Thesis Structure . 6

2 Background and Literature Review 9
2.1 The Naval Aviation Maintenance Cycle 9

2.2 Multiple Indenture . 10

2.3 VARI-METRIC Model . 12

2.4 Readiness Based Sparing . 13

2.5 NAVARM . 16

2.6 Markov Chain Monte Carlo . 23

3 Methodology 29
3.1 Data Flow . 29

3.2 Problem Scaling. 31

3.3 NAVARM Simulated Annealing Model 43

4 Results and Analysis 51
4.1 Toy Problem . 51

4.2 Full Scale CVN RBS Problem 55

4.3 Small RBS Site . 58

4.4 CVN Problem Revisited . 63

5 Summary and Future Work 65

vii

5.1 Incumbent Validation. 65

5.2 Simulated Annealing as an Optimization Method. 66

5.3 Epsilon-Greedy Approach to Policy Initialization 67

5.4 Future Research . 67

5.5 Conclusion . 69

List of References 71

Initial Distribution List 73

viii

List of Figures

Figure 2.1 Naval Aviation Repair Cycle . 10

Figure 2.2 Example indenture structure . 11

Figure 2.3 United States Navy (USN) Navy Implementation of RBS 14

Figure 3.1 RBS Data Flow . 30

Figure 3.2 Naval Aviation RBSModel (NAVARM) Simulated AnnealingModel

(NSAM) Mode-corrected Weibull Approximation 36

Figure 3.3 Simple Problem Structure . 38

Figure 3.4 Readiness Markov Chain . 39

Figure 3.5 Infinitesimal generator matrix 40

Figure 3.6 NSAM Vanilla . 44

Figure 3.7 NSAM Chocolate . 47

Figure 3.8 NSAM Strawberry . 49

Figure 4.1 Histogram of NSAM Results for Toy Problem 55

Figure 4.2 Plot of NSAM Vanilla Cost Over Time for CVN Problem 56

Figure 4.3 Plot of NSAM Vanilla Cost Over Time for Small RBS Problem . 59

Figure 4.4 Plot of NSAM Chocolate Cost Over Time for Small RBS Problem 60

Figure 4.5 Chocolate Pre-Feasible Policy Progression 61

Figure 4.6 Strawberry Pre-Feasible Policy Progression 62

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

Table 2.1 𝐴𝑜 Goals (in %) by type/model/series (TMS) 15

Table 4.1 NSAM Input Parameter Importance 52

Table 4.2 Toy Problem Parameters . 54

Table 4.3 Difference in Part Type Selection Between NSAM and NAVARM . 57

Table 4.4 Outcome of NSAM Strawberry Experimentation on the Small RBS

Problem . 63

Table 4.5 Outcome of NSAM Strawberry Experimentation on CVN Problem 64

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

AVCAL

CBO

CDF

CNA

CNO

CTMC

CVN

DoD

DoN

EBO

FMC

IMF

LHA

MALS

MALSP

MC

MCAS

MCMC

aviation consolidated allowance list

Congressional Budget Office cumulative

density function

Center for Naval Analysis

Chief of Naval Operations

continuous time Markov chain

aircraft carrier

Department of Defense

Department of the Navy

expected backorder

fully mission capable

intermediate maintenance facility

amphibious assault ship

Marine Aviation Logistics Squadron

Marine aviation logistics support package

mission capable

Marine Corps Air Station

Markov Chain Monte Carlo

xiii

METRIC Multi-Echelon Technique for Recoverable Item

MILSPEC military specification

NAS Naval Air Station

NAVARM Naval Aviation RBS Model

NAVSUP Naval Supply Systems Command

NMC non-mission capable

NSAM NAVARM Simulated Annealing Model

NSN national stock number

NSS Naval Sustainment System

OPNAV Office of the Chief of Naval Operations (CNO)

P2P Performance to Plan

PMC partially mission capable

RBS readiness based sparing

SASS supplemental aviation supply support

SHORCAL shore-based consolidated allowance list

SRA shop replaceable assembly

TMS type/model/series

USN United States Navy

VBA Visual Basic for Applications

VTMR variance-to-mean ratio

WRA weapons replaceable assembly

WS weapon system

WSS Naval Supply Systems Command (NAVSUP) Weapon System Support

xiv

Executive Summary

Keeping the fleet of U.S. Naval aircraft ready for combat rests in the balance of precise

preventative and corrective maintenance requirements, personnel management and the op-

timal distribution of required spare parts. In 2018, responding to undesirably low readiness

levels amongst fleet aircraft, Secretary of Defense James Mattis ordered that the Navy’s

fleet of F/A-18 Hornets and Super Hornets obtain and maintain an 80% level of operational

availability, 𝐴𝑜. This metric of readiness is a composite measure of the total proportion of

time these aircraft are capable of performing at least one mission set it has been assigned. In

2022, Commander Naval Air Forces adopted this readiness goal for all fleet aircraft (Katz

2022). There has been a plethora of effort expended in the optimization of maintenance

timelines and personnel management that have led to significant readiness improvements.

Among these has been a concerted effort by NAVSUP Weapon System Support (WSS) to

improve the optimization of the RBS model that is used to outfit spare parts allowances to

Naval Aviation sites across the enterprise.

Naval Aviation inventory optimization uses a multi-indenture model where each weapon

system (WS)’s 𝐴𝑜 is modeled as the product of the 𝐴𝑜 of each of its top level part types,

called a weapons replaceable assembly (WRA). The 𝐴𝑜 for each WRA is a function of the

number of expected backorders (EBOs) of the parts sub-indentured to it as a result of a

given stocking policy. This structure creates a classically intractable optimization problem

where the optimal cost stocking policy must be generated by a recursive and iterative

methodology of selecting allowances for each part type. The Navy’s current optimization

model, NAVARM, authored by Salmeron and Buss (2021), utilizes a methodology proposed

by Sherbrooke (2004) calledmarginal analysis to build optimal sparing policies. This creates

a "shopping list" of greedy decisions where the allowances of part types are increased one-

by-one until a feasible solution is found.

The results of our research serve as a validation of the suitability of the marginal analysis

approach for solving the RBS optimization problem. However, given the immense size and

complexity of the decision space created by a problem with potentially tens of thousands of

decision variables that are all inter-dependent, the probability of any particular optimization

method finding the true global optimum such a problem is very small. We take this to

xv

mean that, while local optima determined by marginal analysis are possibly near-optimal,

there could be many feasible solutions that can be found that improve the solution while

remaining feasible.

Our approach to the RBS problem is a method based on the work of Metropolis et al. (1953)

that came to be known asMarkovChainMonte Carlo (MCMC). Thismethod, further refined

by Kirkpatrick et al. (1983) to a system now called simulated annealing, randomly selects

stocking policies based on previously accepted feasible policies in an iterative fashion,

where the probability of accepting any new decision is a function of the costs of the currently

accepted solution and randomly generated neighbor solution, as well as the feasibility of the

neighbor solution. This simulated annealing approach allows for a "cooling" process that

provides for wide exploration of the decision space in the early portions of each run and for

deeper exploitation of better regions of the feasible decision space in the later portions of

the run. Our simulated annealing algorithm, NSAM, of which we propose three versions, is

evaluated on three different multi-indenture problems of increasing complexity. As a result

of the intractability of determining the global optimal solution for all but the most simple of

such problems, we compare our results to the incumbent algorithm’s, NAVARM, solutions.

Our results first demonstrate that an MCMC approach is able to outperform NAVARM’s

marginal analysis approach on the simplest problem set; however, as the problem’s com-

plexity increases, a significant optimality gap becomes apparent that a simple simulated

annealing algorithm is unable to overcome. Our research shows that this gap is a result of

the random selection of part types that a simpleMCMCmethod performs when changing al-

lowances for the next neighbor policy to accept or reject. Our work indicates multi-indenture

structure tends to favor the addition of expensive high level parts, i.e. WRAs, as these parts

reduce EBO the most (thereby increasing 𝐴𝑜); therefore, it becomes very unlikely that a

basic MCMC method will select the correct subset of a WRA’s sub-indentured parts to

increase allowance for if the parent WRA’s allowance is decreased.

This complexity leads us to the creation of two more versions of the NSAM model that

leverage what we know of the multi-indenture structure of the RBS problem. Our final

approach leverages an epsilon-greedy approach to marginal analysis that creates initial fea-

sible solutions by using the same methodology already resident in the NAVARM algorithm

with a minute level of stochasticity introduced. We show that this approach creates solutions

xvi

that are both better than simple marginal analysis and solutions that can be improved by

simulated annealing to also be closer to global optimal than those produced by NAVARM’s

base marginal analysis approach alone.

While we are able to prove improvement upon NAVARM sub-optimal solutions using the

most basic toy RBS problem and a very basic real-world RBS problem, we find that com-

putation times for full scale RBS problems such as those required for the outfitting of CVN

air wings, are beyond reasonable with results that are mixed under the best circumstances.

To address this, we also propose a new methodology to calculating 𝐴𝑜 that, by using matrix

operations versus iterative loops, leverages the architecture of today’s graphics processing

units to determine the availability of any given weapon system as a vector of the limit-

ing probabilities of a continuous time Markov chain (CTMC). We have not validated this

approach to 𝐴𝑜 calculation, however we provide methodology for its implementation as a

recommendation for future research to accompany and increase the efficiency of the use of

MCMC optimization methods.

Based on this work, we confidently recommend simulated annealing as a method to refine

locally optimal solutions to small scale RBS problems determined via other means, such

as marginal analysis or an epsilon-greedy approach. Furthermore, we are confident that

once calculation of 𝐴𝑜 is further optimized this methodology will be readily adapted to the

refinement of any multi-indenture inventory optimization model.

List of References
Katz J (2022) Navy air boss has new aircraft readiness targets to hit. Breaking Defense,

URL https://breakingdefense.com/2022/02/navy-air-boss-has-new-aircraft-readiness-

rate-north-stars-to-follow/.

Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science
220(4598):671–680.

Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state

calculations by fast computing machines. The Journal of Chemical Physics
21(6):671–680.

xvii

Salmeron J, Buss A (2021) Project deliverable: Naval aviation readiness-based sparing

model – release 2.6. Naval Postgraduate School, Monterey, CA, provided by J.

Salmeron with approval from NAVSUP-WSS Philadelphia.

Sherbrooke C (2004) Optimal Inventory Modeling of Systems, Multi-Echelon Techniques,
Second Edition (Kluwer Academic Publishers, Boston).

xviii

Acknowledgments

I would like to first thank my grandfather and my grandmother for giving me the tools I

needed to make it this far in life and find some modicum of success along the way, I miss

you every day. I would also like to thank my mother and my father for their support and

encouragement though-out my career and my time here at NPS.

I would also like to thank my other half, Crystal for her non-stop cheerleading, encourage-

ment and advice. You have helped keep me sane and put up with way more of my frustrated

moments than anyone should ever have to. Thank you so much for being there, even when

that meant us sitting quietly for endless hours working on our own operations research

homework while putting up with our beautifully annoying kitties (Buttons and Little, I

thank you too). I love you and I thank you from the bottom of my heart.

I would be remiss if I did not mention the awesome folks in my cohort, our jokes are our

own and they should probably never see the light of day. Thanks guys for all the friendship,

great times and the endless commiseration.

To the folks at NAVSUP WSS, thank you so much for your time and energies in making

this work possible. In particular I would like to thank Dan Martinez and Karla Eastburg

for staying interested in my project and being my open line of communication at WSS, you

guys are great!

Last and certainly not least, I thank the fantastic faculty and staff of the NPS Operations

Research Department. Specifically my advisors, Dr. Yoshida and Dr. Huang, you guys were

the best sounding board a grad student could ask for! Thank you so much for your guidance,

patience and especially for reigning me in when I wanted to bite off more than I could chew.

To my second reader, Dr. Salmeron, your classroom instruction was my initial inspiration

for this work. I cannot thank you enough for keeping your door open for me and readily

answering my frequent questions or simply chatting about the topic du jour.

Thank you everyone, I certainly could never have done any of this without your help!

xix

THIS PAGE INTENTIONALLY LEFT BLANK

xx

CHAPTER 1:
Introduction

In fiscal year 2022, the Naval Aviation enterprise is projected to spend $2.82B on pro-

curement or repair of aviation related equipment (Department of the Navy 2021). This

money effectively drives the readiness of fleet aircraft, so it is crucial that every last ounce

of effectiveness is squeezed from the dollars that are spent. In 2018 Secretary of Defense

James Mattis issued a memorandum that required the Navy’s fleet of F/A-18 Hornets and

Super Hornets must meet a minimum 𝐴𝑜 target of 80%mission capable by the end of Fiscal

Year 2019 (Mehta 2018). Following this example in 2022, Commander Naval Air Forces

has adopted the same readiness goal for all fleet aircraft (Katz 2022). In order to meet this

goal, the Navy has been working on an all angles approach that incorporates all elements

of the logistics apparatus ranging from maintenance procedures and manning requirements

to increases in funding used for sustainment.

Much effort has gone into modernizing maintenance practices under Office of the Chief of

Naval Operations (CNO) (OPNAV) directed programs such as Performance to Plan (P2P)

and Naval Sustainment System (NSS). A press release from OPNAV (2020) indicated that

the F/A-18 availability goal had been reached using data driven solutions that include the use

of machine-learning models "for determining the monthly number of mission capable jets

per squadron by incorporating manning-training-equipment datasets." With such success

evinced by employing advanced data analytics on the maintenance side of the enterprise, it

becomes a natural progression to attempt to do the same for the supply chain side.

Today, readiness is measured in terms of operational availability (𝐴𝑜). In rough terms 𝐴𝑜 is

the fraction of time an aircraft (and by extension a fleet of aircraft) is capable of executing

an assigned mission. This is determined by dividing the amount of time an aircraft is

mission capable by the entire time horizon considered. There are some differences in

how this is calculated at the congressional level and within the Department of Defense

(DoD) (Congressional Budget Office 2022), which has led to some disagreement on what

constitutes readiness. The Congressional Budget Office (CBO) measures readiness across

all aircraft in the Navy’s inventory, Department of the Navy (DoN) reports readiness based

1

on aircraft actually assigned to operational squadrons (Katz 2022). The effect of this is that

any aircraft in storage or in depot maintenance counts against overall readiness as measured

by the CBO through a reduction in the numerator of the above-described 𝐴𝑜 calculation.

By comparison, the numerator would remain unchanged in the DoN calculation.

Regardless of how it is calculated, the numerator of the 𝐴𝑜 equation is dependent on the

amount of time spent in maintenance while the denominator is simply the cumulative time

considered regardless of aircraft status. An aircraft can be placed in a maintenance status

for periodic preventive maintenance and for corrective maintenance. As mentioned above,

P2P and NSS have already addressed and made significant improvements in maintenance

processes themselves. That means that there is potentially room for improving elements of

the logistics process that impact the number of times an aircraft ends up in the maintenance

cycle. It is in this vein that we initially attempted a machine learning approach to the spare

parts allowance optimization problem.

The Naval Aviation spare parts inventory optimization problem is one of unique complexity.

It can bemodeled as amulti-indenture problem that spans different aircraft, hereafter referred

to as weapon system (WS). The term "multi-indenture" implies parent-child relationships,

where a given part is actually an assembly consisting of multiple sub-assemblies in a

tree-like structure of sub-indenture where the most complex assembly, called a weapons

replaceable assembly (WRA), is at the top of a hierarchy of sub-assemblies, shop replaceable

assembly (SRA). These WRAs can themselves be comprised of sub-indentured SRAs. To

make things more complicated, a WRA or SRA on one weapon system has no guarantee

of having the same sub-indenture structure as any other instance of that part type on the

aircraft.

Our initial efforts to utilize reinforcement learning, in particular Q-learning, to approach the

problem quickly led us to conclude that it is inappropriate for our multi-indenture inventory

optimization problem. The very basis of an inventory optimization problem presumes that

a stocking policy is set first and its effectiveness, as measured by 𝐴𝑜, is analyzed after the

fact either by real world observation, calculation of theoretical expectation or by advanced

simulations over long time horizons. Agent based approaches make little sense in this

context as the solution is the result of a single decision and not a sequence thereof. The

problem is that of selecting one solution within a decision space comprised of potentially

2

tens of thousands of decision variables. Seeing the problem though this lens brought us

to the idea of using a Markov Chain Monte Carlo (MCMC) approach as first proposed by

Metropolis (Metropolis et al. 1953).

1.1 Problem Statement
The problem of multi-indenture inventory optimization is approached in detail in Sher-

brooke’s Optimal Inventory Modeling of Systems 2004. One of the important solution

heuristics for this problem is a process he calls marginal analysis. It is on this text that

Salmeron and Buss based the “greedy heuristic” that works at the heart of their optimiza-

tion model (Salmeron and Buss 2021) called Naval Aviation readiness based sparing (RBS)

Model (NAVARM). Naval Supply Systems Command (NAVSUP) Weapon System Sup-

port (WSS) uses NAVARM to optimize aviation spare parts allowances at single site lo-

cations. These sites range from afloat inventory points such as aircraft carrier (CVN) and

amphibious assault ships (LHAs) to large ashore sites at Naval Air Stations (NASs) and

Marine Corps Air Stations (MCASs).

The current NAVARM model is accredited by OPNAV and provides exceptional allowance

optimization. However, given the complexity of the decision space and the methodology

underpinning marginal analysis, there is no guarantee that NAVARM solutions are globally

optimal. In fact, the opposite is almost assuredly true though NAVARM solutions have been

proven to be adequate to justify the obligation of tens of millions in taxpayer dollars that for

which they call.

The complexity of the Naval Aviation allowancing problem extends beyond the multitude

of decision variables representing the quantity of spares for each part type in a WS’s

aviation consolidated allowance list (AVCAL). As a multi-indenture problem that shares

common parts across platforms at differing levels of indenture, with differing sub-indenture

structures, the problem structure implies an intractably large quantity of potential solutions.

NAVARM’s marginal analysis approach is exceptionally well suited for this problem type,

but its results have not yet been challenged by methodologies made possible by large scale

parallel computing offered by today’s supercomputing clusters. Our research seeks to bridge

this gap by proposing the use of MCMC as an optimization method for the multi-indenture

inventory problem.

3

1.2 Purpose of the Study
The focus of our study is on developing an alternative approach to solving the highly com-

plex multi-indenture inventory optimization problem. By formulating an MCMC algorithm

and coding in a computational language for ingesting site data and producing alterna-

tive stocking policies, we hope to provide a basis for analyzing the effectiveness of both

the incumbent model, NAVARM, and our new MCMC-based model we have named the

NAVARM Simulated Annealing Model (NSAM). Improvement upon or confirmation of the

optimality offered by NAVARM’s marginal analysis approach is the underlying motivation

for which this research.

1.3 Research Questions

1.3.1 Conceptual Questions
Is an MCMC algorithm capable of providing solutions that approximate a given site’s

globally cost-optimal stocking policy? If so, are these solutions attainable in a reasonable

amount of time? If MCMC methods are not effective, is there an underlying structure that

can be identified as being prohibitive to success? In most cases, on a long enough timeline,

an algorithmwhich randomly explores the entire solution space will find a globally optimum

solution since the state space is finite. However, the computational time required for systems

as complex as we approach is prohibitively expensive. Therefore, a locally optimal solution

must be settled upon that is reached using stopping conditions that allow the algorithm to

terminate within a time frame that is reasonable in light of the user’s needs.

1.3.2 Thesis Questions
In a multi-indenture inventory optimization problem, can an MCMC algorithm perform

as well or better than the marginal analysis approach used in NAVARM? Measures of

effectiveness necessarily include the following:

1. Quality as measured by objective function value, or total cost of the output policy,

2. Quality as measured by slack remaining in problem 𝐴𝑜 constraints,

3. Performance as measured by computational resources required to arrive at a solution.

4

1.4 Research Approach
This study was undertaken in a multi-stage approach that allowed for iterative creation and

refinement of the NSAM algorithm. In its three final versions, NSAM, which was developed

in Java (Oracle 2014), utilized key components from NAVARM to both ingest configuration

data and calculate 𝐴𝑜 that were configured for multithreaded operation to be able to run

many instances in parallel. This design allows us to set up experiments to tweak NSAM’s

parameters to determine what parameters were effective in achieving better solutions vs.

those which offered little more than a trap for valuable computing resources.

NSAMbegan life as a simple simulated annealing algorithmcoded in Javawhere a handful of

parts were created that contributed a deterministic “amount of 𝐴𝑜” which closely resembled

a typical knapsack type problem. 𝐴𝑜 constraint conditions were measured as a simple sum

of each part’s assigned 𝐴𝑜 contribution multiplied by the quantity of that part selected for

the stocking policy. Results of this algorithm were compared to results where the same parts

were fed into an optimization program coded using Python Pyomo, Bynum et al. (2021) and

Hart et al. (2011), using the Gurobi solver (Gurobi Optimization, LLC 2022). Once output

from NSAM matched the Gurobi solution, development moved to the next stage.

The next stage transitioned the calculation of 𝐴𝑜 to that of a limiting distribution for a

continuous time Markov Chain. The structure of this problem was limited to two WRAs

each with two SRA part types. This limitation was made to ease the computation of each

WRA’s vector of limiting probabilities; though the addition of more complex structure

is possible, we do not discuss it at length. It should be noted that this treatment of the

𝐴𝑜 calculation is a departure from the literature and merits further investigation as an

alternative to Sherbrooke’s equations (Sherbrooke 2004). Such a method offers the potential

for computational resource optimization by approaching the problemusing high dimensional

matrices for which graphics processing units and tensor processing units are architecturally

optimized.

With this framework, through which we could treat 𝐴𝑜 as a stochastic variable, we were

able to move on to the final stages of NSAM’s development followed by experimentation

and analysis presented in this thesis.

5

1.5 Significance to the Field
Currently, there does not appear to be any attempts to optimize a multi-indenture inventory

problem using MCMC methods such as the ones presented in this thesis. The goal of this

research is to provide the following:

1. Determine whether an MCMC-based methodology can improve on the current prac-

tice of using marginal analysis.

2. Determine impediments that the underlying structure of such a problem could pose

for future work in the field.

3. Provide a novel methodology for computing 𝐴𝑜 that can reduce resource requirements

in future full scale implementations.

4. Develop a baseline algorithm for use in the field that can be improved upon in the

future that does not require extensive tailoring in order to employ different measures

of readiness.

1.6 Thesis Structure
We begin in Chapter 2 by presenting the current state of the art. We first discuss the Naval

AviationMaintenance cycle to provide adequate context for theRBSproblem. Following this

are brief overviews of the literature supporting the current optimization model, NAVARM,

including a discussion of the VARI-METRIC model. We conclude Chapter 2 with details

on the functionality of NAVARM and simulated annealing generally.

Chapter 3 introduces the NSAM algorithm, beginning with how the data is sourced, pro-

cessed and routed through the algorithm. We then present three versions of NSAM and

how they were scaled from the most basic possible form to the final versions. Each version

of NSAM behaves differently as distinct approaches to the RBS problem, so we provide

detailed looks into each of the three algorithms.

Chapter 4 discusses the results of experimentation with the three NSAM versions. This

discussion is broken into three parts, where NSAM’s efficacy is analyzed against three

problems of increasing complexity. As the development of NSAM is very iterative, so too

are the lessons learned at each of the three levels of complexity.

We conclude with a summary of our findings. Also discussed are limitations on the scope of

6

our work and the applicability of our findings. Finally we offer recommendations for future

work.

7

THIS PAGE INTENTIONALLY LEFT BLANK

8

CHAPTER 2:
Background and Literature Review

The Naval Aviation enterprise models resupply of spare parts using a single-site1 , multi-

indenture, VARI-METRIC model (Slay 1980). In this model, failures of individual parts

are assumed to occur according to a Poisson Process but the aggregate expected failures

of large assemblies of parts are modeled using the negative binomial distribution. This

model is used in the wider context of RBS to target desired 𝐴𝑜 goals using the NAVARM

algorithm to generate near-optimal stocking policies2 using marginal analysis (Gross, as

cited by Sherbrooke (2004 30).

2.1 The Naval Aviation Maintenance Cycle
A basic understanding of repairable parts recovery and resupply within the Naval Aviation

enterprise is critical to developing intuition needed to understand the inventory optimization

methodologies we discuss in this thesis.

The cycle starts when a part fails and requires repair. The inoperable part is removed

from the aircraft3 by squadron maintainers and turned in to the intermediate maintenance

facility (IMF) where it is inducted into the repair cycle. At this a point, a determination is

made whether the part can be repaired at the IMF or if it must be sent off for depot repair. If a

spare part is in stock at the local supply department, it is immediately given to the squadron

maintainers to return the aircraft to operation. If a spare is not available, a backorder is

created. Backorders can be filled by completing the repair of the originally broken part

or another identical part that was already inducted into the repair cycle. Conversely, if it

is determined that the part is beyond capable maintenance at the IMF and the part is not

carried in stock or is carried but there are not currently any spares on hand, then a requisition

is created to fill the backorder. In any case, if a replacement part is issued from stock, the

1A “site” refers to a single aircraft carrier CVN, NAS or Marine Aviation Logistics Squadron (MALS)

where it can be assumed that all aircraft stationed at that site service all maintenance requirements.

2Stocking policies are vectors of integer values corresponding to the quantity of spare parts for a paired

vector of part types.

3This process also applies to ground support equipment and test equipment, though the allowancing process

is generally treated differently.

9

stock level deficiency must be corrected either by receiving a replacement requisition from

the Naval stock system or by repair of the original part and return to supply. A simplified

graphical representation of this process is provided in Figure 2.1:

Figure 2.1. The Naval Aviation Repair Cycle: Green and red represent initial
and final termini respectively, Purple indicates squadron actions, Yellow in-
dicates Supply Department actions, Blue indicates IMF actions.

2.2 Multiple Indenture
Sherbrooke (2004) describes the principal concept of a multiple indenture model as an

“engineering parts hierarchy” where there is a parent-child structure between the parts that

comprise a WS. For ease of understanding and to reflect the lexicon used by Salmeron and

Buss in NAVARM (2021), we must make a distinction between a part type and an instance

of a part. The Navy uses national stock numbers (NSNs) to identify a part that meets a

particular military specification (MILSPEC) . We will refer to any part that has the same

NSN as a “part type”. On a particular WS, there can be many different instances where

10

the same part type is used in different locations; we refer to these individual instances of a

particular part type as a “candidate.”

In Navy parlance, the candidates at the highest level of indenture are called WRAs. Sub-

indentured, or child candidates to theseWRAs, called SRAs have sub-indentured candidates,

SSRAs, that in turn have sub-indentured candidates, SSSRAs, and so on to a typical

maximum of 5 levels of sub-indenture. A simplistic example of this structure is shown in

Figure 2.2.

Figure 2.2. Example multiple-indenture structure with three WRA (A, E, C).

As seen in Figure 2.2, not all candidates have children or parents and not all candidates

of the same part type (part type E in Figure 2.2 for example) have the same sub-indenture

structure. The differences in sub-indenture structure between candidates of the same part

type arise from physical characteristics of the WS involved. For instance, a certain type of

hydraulic pump assembly may be completely accessible on the port side of an aircraft, but

11

due to the installation location of a communications antenna of on the starboard side, only

certain sub-assemblies of the pump on that side may be removed without removal of the

entire pump.

Generally speaking, candidates that are sub-indentured are less complex and, consequently,

less costly than their parent candidate. This means that it is usually most advantageous to

repair a downed aircraft by replacing the candidate at the lowest possible level of indenture.

This is not universally true as there are instances where knowledge of the system by

maintenance personnel or availability of spare parts may stipulate the need to replace the

faulty part by replacing the parent assembly or even entire WRAs in some mission critical

applications.

These facts are central to the RBS problem as WS availability hinges on the availability of

all the componentWRAs. Similarly, a complexWRAmay have many SRAs, each with their

own SSRAs and so on. Each of these sub-indentured parts all have their own unique failure

rates that contribute to the overall failure rate of the WRA. Calculation of availability rates

rely in a “rolling-up” of expected backorders (EBOs) through the indenture structure which

is further explained in the next section.

2.3 VARI-METRIC Model
At the system level, the problem of optimizing a stocking policy requires the modelling

of the failures of each WRA over some time horizon. WRAs can fail because of a failure

of any of its sub-indentured candidates so any such model must necessarily consider the

failure distribution of each of that WRA’s component SRAs. The VARI-METRIC model,

developed by F. Michael Slay (1980) and improved by Graves (1985) is an improvement

on the Multi-Echelon Technique for Recoverable Item (METRIC) model developed by

Sherbrooke (1966). It is described in detail in Sherbrooke’s textbook (2004).WhileMETRIC

was developed as a system-basedmodel formultiple sites and echelons of supply, Sherbrooke

(1971) later showed that the same principles of METRIC are applicable to single site, multi-

indenture problems such as the RBS problem.

One problem with the METRIC model is that it does not take variance into account. Rather,

it relies on the number of EBOs over the given time horizon based on observed mean

12

demand, mean repair time and the mean number of units in repair. As might be expected,

this method was found to regularly underestimate the number of stockouts, leading to an

underestimation of the number of spare parts required, leading to increased WS downtime

while awaiting receipt of additional units.

In VARI-METRIC, Slay, Graves and Sherbrooke demonstrate that “a probability distribu-

tion whose mean and variance agree with the values for the pipeline will do a lot better than

the Poisson” (Sherbrooke 2004). This statement underpins the choice to use the negative-

binomial distribution in calculating EBOs, a departure from the Poisson Process used in

the METRIC model. Graves (1985) sampled 2304 problem instances and in 227 (11.5%)

of cases, the METRIC approximation resulted in an incorrect stocking policy compared to

just 18 (0.9%) incorrect decisions made using VARI-METRIC’s negative binomial approx-

imation4. This is better than a tenfold improvement and provides an adequate basis for its

use in the RBS problem described in the next section.

2.4 Readiness Based Sparing

2.4.1 Background
In 2011, the CNO issued OPNAV instruction 4442.5A dictating that, “RBS is to be ap-

plied to both aviation and maritime allowance package development, AVCALs, shore-based

consolidated allowance lists (SHORCALs), all Marine aviation logistics support pack-

ages (MALSPs),” and then goes on to direct the use of 𝐴𝑜 as the primary readiness metric,

citing OPNAV instruction 3000.12A:, “resource sponsors will establish readiness thresholds

in terms of 𝐴𝑜 . . .” The Center for Naval Analysis (CNA) first began the process of looking

into the use of 𝐴𝑜 as the primary readiness metric in 1980 and continued to study and devise

implementation strategies until 1987, when the first full scale effort was made by OPNAV

to prototype the use of RBS in the DDG-52 program. This initial implementation process

was studied and described in detail by Burdick (1991); his illustration of the development

timeline is provided in Figure 2.3:

4It should be noted that of the 18 incorrect decisions made with the VARI-METRIC approximation,

two decisions were wrong in the conservative direction (more stock recommended than needed). No such

conservative error was noted using the METRIC approximation.

13

Figure 2.3. Timeline for the study, implementation and policy execution of
RBS in the United States Navy (USN).
Source: Burdick (1991).

2.4.2 Readiness Goals, Mission Capable vs Fully Mission Capable
The critical element of the RBS problem is that it looks at an individual type/model/series

(TMS) aircraft and takes as input the desired 𝐴𝑜. An optimization algorithm can then use

a system level approach such as VARI-METRIC, to determine the expected number of

backorders for a given stocking policy which is then used to calculate the expected 𝐴𝑜 for

14

that TMS.

The hitch in the problem from a policy perspective is what constitutes “operationally

available.” OPNAV defines two different metrics for this: mission capable (MC) and fully

mission capable (FMC). According COMNAVAIRFORINST 4790.2D, a MC aircraft is one

that “can perform at least one of its missions.” The FMC definition is more nuanced, though

generally speaking an FMC aircraft is capable of performing all missions for which it was

designed. OPNAV stated goals for all aircraft as shown in Table 2.1:

Table 2.1. 𝐴𝑜 Goals by TMS. Adapted from OPNAVINST 4442.5a (2011).

STANDARD DEPLOYED

T/M/S MC GOAL FMC GOAL MC GOAL FMC GOAL

ALL 73 56 78 61

Maintenance planners use TMS specific matrices to determine if a particular equipment

failure will result in the maintainers placing the aircraft in a reduced status. To be more

specific, an aircraft can be placed in partially mission capable (PMC) status if it is still

capable of performing at least one of its missions but not all of them, or in non-mission

capable (NMC) status where it is unable to perform any mission.

The difficulty with this system from a pedagogical standpoint is that VARI-METRIC does

not care about any in-between status: the system is either functional or not. The MC goal

is not considered as there is no current theory to calculate EBOs that apply to one material

status (e.g. NMC) and not another (e.g. PMC). Therefore, the current RBS algorithm,

described in the following section assumes any component failure results in an NMC

aircraft, which conveniently meets the OPNAV requirement that “all [supplemental aviation

supply support (SASS)] SASS products will be built to the deployed FMC goal."

15

2.4.3 The RBS Problem
We discussed the RBS problem has at length by this point, but we have not described it

in explicit terms. We can formulate this problem as an optimization problem where the

objective function is cost of the stocking policy (𝐶). We have constraints for this problem

in the form of required minimum operational availability (𝐴𝑜 (𝑤)) values for each weapon
system (𝑤). Using notation from Salmeron and Buss (2021), we have:

min
𝑆

𝐶 =
∑
𝑖∈𝐼

𝑐𝑖𝑠𝑖

s.t. 𝐴𝑜 (𝑤, 𝑆) ≥ 𝐴𝑜 (𝑤) ∀𝑤 ∈ 𝑊

𝑠𝑖 ≤ 𝑠𝑖 ≤ 𝑠𝑖 ∀𝑖 ∈ 𝐼

(2.1)

where:

𝑐𝑖 Unit price of part type 𝑖 [Dollars]

𝑆 Set of stock levels for all parts types

𝐼 Set of all part types for 𝑖 ∈ 𝐼

𝑠𝑖 Decision variables, stock level for part type 𝑖 for 𝑖 ∈ 𝐼

𝐴𝑜 (𝑤, 𝑆) Operational Availability for WS 𝑤 given stocking policy 𝑆

𝑠𝑖 Minimum stock value for part 𝑖, set by policy

𝑠𝑖 Maximum stock value for part 𝑖, set by policy.

2.5 NAVARM
The current algorithm by which the RBS problem is solved, developed by Salmeron and

Buss (2021), is called NAVARM. It was originally developed in 2017 and borrows from

Sherbrooke’s explanation of the VARI-METRIC model (2004) to calculate EBOs which is

then used to calculate 𝐴𝑜 using other data provided in site-specific candidate files.

These files are prepared by WSS and provide information needed to construct the indenture

structure for each WS, part type data such as demand, and site data such as the quantity and

𝐴𝑜 goal for each type of WS at the site.

16

2.5.1 Expected Backorders
For the RBS problem, we assume a continuous review inventory system operating under

an (𝑠𝑖, 𝑠𝑖 − 1) policy, where 𝑠𝑖 is target stock level, also called the reordering objective, and

𝑠𝑖 − 1 represents the reorder point. This means that every time a part fails, a due-in (𝐷𝐼)

is created that is either satisfied by issuing stock or else a backorder is created. Since the

reorder point is 𝑠𝑖 − 1, each time a part is issued from stock, a reorder is placed immediately

to resolve the stock deficiency. The reason for using an (𝑠𝑖, 𝑠𝑖 −1) system is that this models

the reality of how parts are ordered in the Fleet

The basic equation for calculating backorders is found in Sherbrooke Chapter 2 (2004) and

it is the basis for all computations of EBOs in this thesis:

𝐸𝐵𝑂 (𝑆) = 𝑃𝑟{𝐷𝐼 = 𝑠 + 1} + 2 · 𝑃𝑟{𝐷𝐼 = 𝑠 + 2} + 3 · 𝑃𝑟{𝐷𝐼 = 𝑠 + 3} + . . .

=
∞∑

𝑥=𝑠+1
(𝑥 − 𝑠)𝑃𝑟{𝐷𝐼 = 𝑥}.

(2.2)

Under VARI-METRIC, the number of due-ins at any given time is distributed according to

a negative binomial distribution where:

𝑃𝑟{𝐷𝐼 = 𝑥} =
(
𝑎 + 𝑥 − 1

𝑥

)
𝑏𝑥 (1 − 𝑏)𝑎 𝑥 = 1, 2, 3, . . . (2.3)

Sherbrooke (2004) shows that the parameters 𝑎 and 𝑏 in (2.3) can be written in terms of the

mean (𝜇) and the variance-to-mean ratio (VTMR) (𝑉) such that:

𝑎 =
𝜇

𝑉 − 1
𝑏 =

𝑉 − 1

𝑉
. (2.4)

In the RBS problem, when calculating the EBO for a particular part type, 𝜇 is taken to be

the expected “pipeline” (𝑝𝑝) for that part type. Pipeline denotes the quantity of a part type

that is either in repair or on order through the supply system. The calculation for pipeline is

17

simply the demand (𝑚) over the time horizon multiplied by the length of the time horizon5.

For both NAVARM and our work discussed later we use the following computation for

pipeline, as presented by Salmeron and Buss (2021), split into its two components, resupply

(2.5) and repair (2.6):

𝑝𝑝𝑟𝑒𝑠𝑢𝑝𝑝𝑙𝑦 =
𝑞𝑝𝑎𝑤𝑝 · 𝑚𝑟 𝑓𝑝 · 𝑤 𝑓 ℎ𝑟𝑠𝑤𝑝 (ℎ𝑝𝑜𝑠𝑡𝑝 + 𝑤𝑑𝑡𝑃)

90
, (2.5)

𝑝𝑝𝑟𝑒𝑝𝑎𝑖𝑟 =
𝑞𝑝𝑎𝑤𝑝 · 𝑟 𝑝 𝑓𝑝 · 𝑤 𝑓 ℎ𝑟𝑠𝑤𝑝 · 𝑖𝑚𝑎𝑟 𝑝𝑡𝑝

90
, (2.6)

where:

5The time horizon used in the RBS problem is one quarter, 90 days, measured in hours (2160 hours).

18

𝑃 Set of all part types, for 𝑝 ∈ 𝑃

𝑊 Set of all WS types, for 𝑤 ∈ 𝑊

𝑝𝑝𝑟𝑒𝑝𝑎𝑖𝑟 Expected pipeline for part type 𝑝 due to failures resulting in IMF repair[units

of the part]

𝑝𝑝𝑟𝑒𝑠𝑢𝑝𝑝𝑙𝑦 Expected pipeline for part type 𝑝 due to failures resulting complete replace-

ment of part through stock system [units of the part]

𝑞𝑝𝑎𝑤𝑝 Quantity per application (number of candidates of part type 𝑝 onWS 𝑤) [units

of the part]

𝑤 𝑓 ℎ𝑟𝑠𝑤𝑝 Wartime flying hours in a quarter for WS 𝑤 that part 𝑝 belongs to [hours]

𝑚𝑟 𝑓𝑝 Maintenance replacement factor (number of failures per flying hour that are

not repairable by the IMF) [failures/hour]

ℎ𝑝𝑜𝑠𝑡𝑝 High priority order and shipping time [days/failure]

𝑤𝑑𝑡𝑝 Wholesale delay time [days/failure]

𝑟 𝑝 𝑓𝑝 Rotable pool factor (number of failures per flying hour that are repaired at the

site) [failures/hour]

𝑖𝑚𝑎𝑟 𝑝𝑡𝑝 IMF repair time [days/failure]

90 Used to convert 𝑤 𝑓 ℎ𝑟𝑠 to a daily quantity since 𝑖𝑚𝑎𝑟 𝑝𝑡, ℎ𝑝𝑜𝑠𝑡 and 𝑤𝑑𝑡 are

given in terms of days.

Once the two components are calculated, they are added together to calculate the total

pipeline for the part type:

𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑟𝑒𝑠𝑢𝑝𝑝𝑙𝑦 + 𝑝𝑝𝑝𝑟𝑒𝑝𝑎𝑖𝑟 . (2.7)

where:

𝑝𝑝𝑝 Expected pipeline for part type 𝑝 [units of the part].

Equations (2.2) through (2.7) allow us to calculate the number of EBOs for a single part

type with a given stocking policy. RBS requires the calculation of EBOs for many part types

in a multi-indenture structure, which is generally a challenging problem. For instance, see

19

the problem shown in 2.2, we will refer to the various candidates by their part types in this

figure in the following explanation. In this structure the number of EBOs for WRA A is the

sum of the EBOs for D and E, and for E the number of EBOs is the sum of H and I but also

J and Q fromWRA C . In this way, the stocking policy for part types J and Q influence the

EBO calculation for a WRA (A) that they are not sub-indentured under.

NAVARM deals with this chain of influence structure by building a list of all sub-indentured

part types for each part type. The following pseudo code from the NAVARM project

documentation (Salmeron and Buss 2021) outlines the basic methodology used to resolve

the EBO calculation problem for all part types:

Algorithm 1 NAVARM EBO Rollup Process

1: Input: Set of all candidates (𝑃), set of all part types (𝐼)
2: while ∃𝑝 ∈ 𝑃 | 𝐸𝐵𝑂𝑝 = 0 do
3: if 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑜𝑙𝑣𝑒𝑑𝑝 := false then
4: if 𝐸𝐵𝑂𝑝′ > 0 ∀𝑝′ ∈ 𝑃𝑐ℎ𝑖𝑙𝑑

𝑝 := true then
5: set 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑜𝑙𝑣𝑒𝑑𝑝 := true;

6: end if
7: end if
8: if 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑜𝑙𝑣𝑒𝑑𝑝 := true then
9: if 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑜𝑙𝑣𝑒𝑑𝑝′ := true ∀𝑝′ ∈ 𝑃𝑖𝑝 then
10: set 𝐶𝑜𝑚𝑚𝑜𝑛𝑆𝑜𝑙𝑣𝑒𝑑𝑝 :=true;

11: end if
12: end if
13: if 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑜𝑙𝑣𝑒𝑑𝑝 = true ∧𝐶𝑜𝑚𝑚𝑜𝑛𝑆𝑜𝑙𝑣𝑒𝑑𝑝 then
14: solve 𝐸𝐵𝑂𝑝

15: end if
16: end while
17: Output: EBO for all 𝑝 ∈ 𝑃

where:

20

𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑜𝑙𝑣𝑒𝑑𝑝 Boolean that is true once all candidates sub-indentured to candidate 𝑝

have had their EBO calculated

𝐶𝑜𝑚𝑚𝑜𝑛𝑆𝑜𝑙𝑣𝑒𝑑𝑝 Boolean that is true once all candidates of the same part type as candidate

𝑝 have had their sub-indentured candidate EBO calculated

𝐸𝐵𝑂𝑝 Expected backorders for candidate 𝑝

𝑃𝑖𝑝 The set of all candidates of part type 𝑖 common to candidate 𝑝.

The calculation of each individual candidate’s EBO uses Equation (2.2) however, Salmeron

and Buss use Sherbrooke’s METRIC or VARI-METRIC methodology on a case-by-case

basis. The number of failures for all candidates are initially modeled using a mean (𝑥𝑝)

equal to the pipeline for that candidate, calculated using Equation (2.7), and a variance

(𝜎2
𝑝) also equal to the pipeline for that candidate. Since 𝑥𝑝 = 𝜎2

𝑝 at the beginning of the

process, the EBO for all candidates at the lowest level of indenture, leaf nodes, are calculated

using METRIC theory: Poisson distributed failures. Once all leaf nodes are calculated, their

expected failures are added to that of their parent candidates’ part type in the indenture

structure. When this “roll-up” process starts, the ratio of variance to mean (𝑉𝑇 𝑀𝑅) is no

longer going to be 1:1. For this reason EBOs are calculated by METRIC theory if 𝑉𝑇 𝑀𝑅𝑖

part type 𝑖 is ≤ 1 and by VARI-METRIC theory (negative binomial distributed failures)

otherwise.

2.5.2 Operational Availability
The primary constraint in theRBSproblem is to ensure that 𝐴𝑜 meets somedesiredminimum

value for each TMS in the problem. With the EBOs for each candidate now available, the

calculation of 𝐴𝑜 is straightforward. The availability of each WRA for a given TMS is

assumed to contribute equally to the overall availability for that TMS (Salmeron and Buss

2021):

𝐴𝑜 (𝑤, 𝑆) =
∏

𝑝∈𝑃𝑊𝑅𝐴
𝑤

𝐴𝑊𝑅𝐴
𝑜 (𝑝, 𝑆), (2.8)

21

where:

𝐴𝑜 (𝑤, 𝑆) Operational Availability for WS 𝑤 given stocking policy 𝑆

𝑃𝑊𝑅𝐴
𝑤 Subset of candidates in 𝑃 that are WRAs on WS 𝑤

𝐴𝑊𝑅𝐴
𝑜 (𝑝, 𝑆) Operational Availability for WRA 𝑝 given stocking policy 𝑆.

In order to calculate the availability of each WRA, 𝐴𝑊𝑅𝐴
𝑜 (𝑝, 𝑆), on a given weapon system,

we must first calculate the expected number of times the WRA will need to be removed

(𝑅𝑒𝑚𝑜𝑣𝑎𝑙𝑠𝑝) due to a failure:

𝑅𝑒𝑚𝑜𝑣𝑎𝑙𝑠𝑝 = 𝑞𝑝𝑎𝑝 · 𝑤 𝑓 ℎ𝑟𝑠𝑤𝑝 (𝑚𝑟 𝑓𝑝 + 𝑟 𝑝 𝑓𝑝). (2.9)

We can then calculate availability for WRA 𝑝 using the NAVARM approximation:

𝐴𝑊𝑅𝐴
𝑜 (𝑝, 𝑆) ≈ 1

1 + (
1

2160
𝑅𝑒𝑚𝑜𝑣𝑎𝑙𝑠𝑝 · 𝑀𝑇𝑇𝑅𝑤𝑝 + 𝐸𝐵𝑂 (𝑝, 𝑆))/𝑁𝑤𝑝

, (2.10)

where:

𝑀𝑇𝑇𝑅𝑤𝑝 Mean time to repair a failure on candidate 𝑝’s WS 𝑤 [hours]

𝑁𝑤𝑝 Number of candidate 𝑝’s WS at the site [unitless]

𝐸𝐵𝑂 (𝑝, 𝑆) Expected back orders for candidate 𝑝 given stocking policy 𝑆

2160 Number of hours in a quarter, used to reduce 𝑅𝑒𝑚𝑜𝑣𝑎𝑙𝑠𝑝 which is given in

[failures/quarter], to [failures/hour].

The methodology used in NAVARM to calculate EBOs and 𝐴𝑜 is used in our MCMC

algorithm to the extent that the same Java code base is directly incorporated, with permission

of WSS as well as Salmeron and Buss (2021), into the code base for our model.

2.5.3 Marginal Analysis
NAVARM’s primary optimization methodology is also borrowed from Sherbrooke (2004)

and leverages a heuristic called marginal analysis. This family of heuristics, sometimes

called greedy heuristics are defined by Rardin (2019) as “electing the next variable to fix

22

and its value does the least damage to feasibility and most helps the objective function based

on what has already been fixed in the current partial solution.”

To accomplish this, Salmeron and Buss create a “shopping list,” as Sherbrooke calls it

(2004), by first calculating the current EBOs given a minimum stocking policy (setting

𝑆𝑖 := 𝑆𝑖), and the resulting 𝐴𝑜 for the weapon system under consideration6. NAVARM

then calculates the change in EBO and consequently the change in 𝐴𝑜 for successive unit

increases from 𝑆𝑖 to 𝑆𝑖 for each part type 𝑖 ∈ 𝐼. The change in 𝐴𝑜 is divided by the unit

cost of the part , Salmeron and Buss refer to the result as a “greedy ratio”. The “shopping

list,” another term used in the NAVARM literature, is built using all greedy ratios from all

part types and NAVARM selects parts from the top of the shopping list and continues down

until 𝐴𝑜 is met. A more thorough description of this process used by Salmeron and Buss is

provided in their NAVARM project documentation and an intuition for marginal analysis as

it applies in this setting is found in Sherbrooke Chapter 2 (2004).

2.6 Markov Chain Monte Carlo

2.6.1 The problem with high dimensions
Rardin (2019) describes greedy heuristic algorithms thusly “Much more commonly, they

risk suffering from looking only at local information. . . a decision that appears good. . . will

actually end up forcing the search into a very poor part of the feasible space.” There are

numerous examples of greedy heuristics in the literature that produce less than optimal

solutions to problems through the entire complexity continuum. That is not to say that

NAVARM with its greedy heuristic approach produces necessarily poor solutions; rather

it means that we can be confident that the solutions created by NAVARM, while compute

resource efficient, are near-optimal at best. With this in mind, we consider other possible

methodologies that have been shown to produce near-optimal solutions.

One such method is Monte-Carlo simulation. One could easily conjecture what the result of

such an exploratory random approach might have considering the scale of the RBS problem.

6NAVARM randomly assigns the order in which WS TMS are considered. The number times it selects a

different permutation of this order is set by the user and the best objective function value for each is tracked

between permutations and compared after the last to determine the best option.

23

Many sites considered have upwards of 3,500 part types. Even if there were only 2 possible

stock levels to consider, a low estimation, the quantity of different policies that must be

evaluated is roughly 4 · 101023. Obviously, this implies that, even given all the computing
power in the world, one would need an intractably large amount of time even if computing

in parallel on a super-computing cluster to examine enough of the decision space to have

a decent level of confidence that the best stocking policy found is anywhere near globally

optimal.

Another option might be to use a hill climbing method where the algorithm starts at some

maximum position, set 𝑆0𝑖 := 𝑆𝑖, and let the algorithm find its way to some minimum value

by iteratively sampling all “neighbor” states for a given state and “moving” to the best,

feasible neighbor. Rardin (2019) describes this method in detail in chapter 3 of his book.

The major problem with a purely exploitive procedure, is that the problem is constrained by

𝐴𝑜 goals. As we show in later chapters, there are myriad local optima due to the complex

geometry of the feasible region where a given state, or stocking policy, provides adequate

𝐴𝑜 for all WS. A purely exploitive hill climbing algorithm will invariably find its way to

the “bottom” of some local optima and get “stuck”. The only hope for an algorithm like

this to succeed would be to stochastically select many feasible starting policies and run

many iterations of the hill climbing algorithm, comparing the values of all local optima and

choosing the best.

What is proposed is an algorithm that can efficiently sample values from the incredibly

complex decision space and move around to explore various regions while also being

capable of exploiting regions of increased potential. Ideal candidates for such an algorithm

belong a family of algorithms called Markov Chain Monte Carlo (MCMC). First proposed

by Metropolis (1953), the refinements needed for our purposes were made by Hastings

(1970) that allow us to have an algorithm that can combine the exploratory nature of Monte

Carlo simulation and the exploitive nature of a hill climbing algorithm.

The basic principle of the Metropolis-Hastings algorithm is that it moves from state to state

in the decision space in a Markov Chain fashion. Hastings describes a method for sampling

an ℎ-dimensional distribution by changing one to many elements of the ℎ-dimensional

vector. In our application we are not dealing with a probability distribution, but a simpler

scenario of optimization in higher dimensions. The principle of using rejection sampling

24

in the MCMC context is what leads us to the optimization algorithm chosen for this thesis

research. Using Hastings’s method for determining neighbor points he proposed in 1970,

and using Metropolis’s acceptance criteria, we have the following Metropolis-Hastings

formulation:

Algorithm 2Metropolis-Hastings applied to the RBS problem

1: Input: initial stocking policy (𝑆0), set of all part types (𝐼), desired distribution for 𝜉,
and desired number of steps (𝑘𝑚𝑎𝑥)

2: 𝑘 ← 0

3: while 𝑘 ≤ 𝑘𝑚𝑎𝑥 do
4: for 𝑖 ∈ 𝐼 do ⊲ Generate random neighbor candidate 𝑆′

5: 𝑠′𝑖 = 𝑠𝑖 + 𝜉
6: end for
7: Calculate probability of acceptance: 𝑃𝑎 = min

[
1, 𝐶𝑜𝑠𝑡 |𝑆′

𝐶𝑜𝑠𝑡 |𝑆𝑘

]
8: Generate 𝑅 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1)
9: if 𝑅 ≤ 𝑃𝐴 then
10: Set 𝑆𝑘+1 := 𝑆′

11: else
12: Set 𝑆𝑘+1 := 𝑆𝑘

13: end if
14: 𝑘 = 𝑘 + 1
15: end while
16:

17: Output: 𝑆𝑘𝑚𝑎𝑥

where:

𝜉 Random integer from some desired distribution

𝑆𝑘 Stocking policy at step 𝑘 , for 𝑠𝑖𝑘 ∈ 𝑆𝑘

𝑠𝑖𝑘 Stock level for part type 𝑖 at step 𝑘 for 𝑖 ∈ 𝐼

𝑆′ Neighbor candidate stocking policy, 𝑠′𝑖 ∈ 𝑆‘ ∀𝑖 ∈ 𝐼.

2.6.2 Simulated Annealing
Kirkpatrick et al. (1983) first proposed using ideas from the natural process of annealing

for the optimization of systems as “an adaptive form of the divide and conquer approach.”

This algorithm is designed to mimic the physical process of annealing. Annealing is the

25

process of controlled cooling that a heated metal must go through to ensure that internal

stresses are dissipated, resulting in a more robust material. The mathematical analog uses

the Metropolis-Hastings process but changes the acceptance probability to be a function

of another parameter: temperature 𝑇 . Using the formulation from Saloman, Sibani and

Frost (2002) with Hastings’s method for determining neighbor points he proposed in 1970,

and using Metropolis’s acceptance criteria, we have the following Metropolis-Hastings

formulation:

Algorithm 3 Simulated Annealing applied to the RBS problem
1: Input: initial stocking policy (𝑆0), set of all part types (𝐼), desired distribution for 𝜉,

initial and minimum temperatures (𝑡0, 𝑡𝑚𝑖𝑛), and desired cooling schedule (𝑓 (𝑡))
2: 𝑡 ← 𝑡0
3: while 𝑡 ≥ 𝑡𝑚𝑖𝑛 do
4: Calculate current temp: 𝑡′ = 𝑓 (𝑡)
5: for 𝑖 ∈ 𝐼 do ⊲ Generate random neighbor candidate 𝑆′

6: 𝑠′𝑖𝑡 = 𝑠𝑖𝑡 + 𝜉
7: end for
8: Calculate Δ𝐸 = (𝐶𝑜𝑠𝑡 |𝑆′) − (𝐶𝑜𝑠𝑡 |𝑆𝑇)
9: Calculate probability of acceptance: 𝑃𝑎 = min

[
1, exp

(
Δ𝐸
𝑇

)]
10: Generate 𝑅 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1)
11: if 𝑅 ≤ 𝑃𝐴 then
12: Set 𝑆𝑡 ′ := 𝑆′

13: else
14: Set 𝑆𝑡 ′ := 𝑆𝑡

15: end if
16: 𝑡 = 𝑡′

17: end while
18:

19: Output: 𝑆𝑡

where:

𝑓 (𝑡) Desired cooling schedule for the algorithm.

𝑆𝑡 Stocking policy at temperature 𝑡, for 𝑠𝑖𝑡 ∈ 𝑆𝑡

𝑠𝑖𝑡 Stock level for part type 𝑖 at temperature 𝑡 for 𝑖 ∈ 𝐼.

This algorithm allows for a significant amount of freedom to:

26

1. Select the desired move class (𝜉), and even tailor the selection criteria based on any

number of desired algorithm parameters or state variables.

2. Control the cooling schedule (𝑓 (𝑡)) and even re-heat based on desired criteria.
3. Set selection and acceptance criteria as tailored to the problem structure as desired.

27

THIS PAGE INTENTIONALLY LEFT BLANK

28

CHAPTER 3:
Methodology

The MCMC algorithms presented at the end of Chapter 2 are straightforward and concise,

however the RBS problem is anything but concise. The RBS constraints, stated in (2.1),

mean that any MCMC algorithm must account for feasibility of every point considered.

While a simulated annealing algorithm is relatively simple to write, the bulk of the effort

for this project has been to resolve how to manage the complexity of the 𝐴𝑜 constraint. In

order to adequately frame the processes designed to meet this challenge, we first discuss the

data and the basic flow from input to output.

3.1 Data Flow
The data for the aviation RBS problem is generated in the fleet and collected, cleaned,

collated and maintained by NAVSUP WSS in Philadelphia, Pennsylvania. This data is then

parsed into site specific database files, called candidate files. While a candidate file has

much more data than is used in the RBS problem, the data used can be separated into

several categories:

1. Site related data

• Enumeration of the various TMS

• Repair capability

2. WS data

• Flying hours

• 𝐴𝑜 Goal

• Repair time

3. Indenture structure

• WRA / SRA indenture level

• Parent candidates and part types

4. Part data

• Cost

• Failure rates

29

• Requisition lead times

• Repair data

The data, once compiled into the candidate file can be passed to various applications.

Figure 3.1. Macro view of the flow of data from source input to output of
solution.

In order to use this data in an optimization algorithm, there is a significant amount of pre-

processing is required . Reading the data from the database file is the first step in this process

and requires the interfacing software to query many tables to obtain the required data. This

data must be read and organized in local memory in such a way that it can be efficiently

accessed when building the indenture structure. Objects must be created for each TMS,

part type, and candidate. These objects are then given attributes that allow the indenture

structure to be interpretable whether considering a single candidate, a whole part type or

an entire WS.

Since NAVARM (Salmeron and Buss 2021) already performs these data collating and

indenture building functions, it was desirable to obtain the codebase and leverage this

30

functionality. The Java codebase, obtained from WSS with permission of Salmeron and

Buss, was selected over its Visual Basic for Applications (VBA) version due to the more

robust development environment that is available with Java as compared to VBA. Once all

unnecessary code was removed from what was needed to produce the required structure,

we were able to start scaling the problem.

3.2 Problem Scaling
In scaling the NSAM algorithm, we divide the development into three phases:

• Phase 1: A simple, knapsack-type, constant 𝐴𝑜

• Phase 2: A problem with multiple WRA, limiting probability derived 𝐴𝑜

• Phase 3: Multi-indenture RBS Problems

By following this strategy, we see patterns emerge at smaller scale and less complexity that

allow for design choices to be made in an iterative approach. Each step offers a chance to

explore the RBS problem structure from different angles, and produced a robust application

that is exceptionally modular and capable.

3.2.1 Knapsack-type, constant 𝐴𝑜

In this entry-level problem, the goal is to create a simple simulated annealing algorithm in

the Java environment. At this early stage, avoiding the need to bring in the complexities

that come with RBS allow a focus on proficiency with the language and building blocks

required for any similar algorithm. The following assumptions are made for this step of the

process:

• Each part in the problem contributes a constant 𝐴𝑜 and cost. This bears some definition

since it is a departure from the intuition of the actual RBS problem discussed in

Chapter 2. In the classic knapsack problem, every item to be put into the bag has

a given size and weight, while the bag has a known size capacity. Likewise in this

iteration we consider parts with known cost and a specified contribution to the overall

𝐴𝑜. This is not unlike the concept behind Salmeron and Buss’s (2021) greedy ratio

however, there is no EBO calculation so the 𝐴𝑜 value is completely arbitrary.

31

• There is no indenture structure. Unlike the RBS problem, the introductory level of

our algorithm does not consider the inherent “engineering parts hierarchy” (Sher-

brooke 2004) of a multi-indenture problem. This is done to accommodate the 𝐴𝑜

simplification described above.

• Minimum stocking quantities for all part types is set to zero: 𝑆𝑖 = 0 ∀ 𝑖 ∈ 𝐼

• Maximum stock levels are all determined stochastically based on assigned cost

This iteration of our algorithm randomly generates 𝑛 parts and assigns each of them a unique

random number that is used to create realistically proportioned approximations of:

• Cost

• 𝐴𝑜 Contribution

• Maximum stock level

Dealing with Feasibility
To optimize this problem structure we first must select initial system temperature and a

cooling schedule. It becomes clear at this point that we must address the prime complexity

of approaching the RBS problem with this family of algorithms: What do we do when a step

is found to be infeasible? In other words, is 𝐴𝑜 for 𝑆′ less than the minimum 𝐴𝑜 acceptable

for the problem? In this iteration, it was determined that the most efficient way to deal with

it was to include another term when calculating the acceptance probability: Δ𝐴𝑜, the change

in 𝐴𝑜 from the current policy, 𝑆, to the neighbor policy, 𝑆′. Starting at step 8 in Algorithm
3 where the change in energy, Δ𝐸 , is calculated we amend as follows:

32

Algorithm 4 Calculation of 𝑃𝑎 for the knapsack-type treatment of the RBS Problem

1: Input: 𝑆′,𝑆, 𝐴𝑜 |𝑆′
2: Calculate Δ𝐸 = (𝐶𝑜𝑠𝑡 |𝑆′) − (𝐶𝑜𝑠𝑡 |𝑆𝑇)
3: Assign Boolean control variables:

4: if Δ𝐸 ≥ 0 then ⊲ We want to reward reduced cost

5: 𝐸𝑏𝑜𝑜𝑙 = 0

6: else
7: 𝐸𝑏𝑜𝑜𝑙 = 1

8: end if
9: if (𝐴𝑜 |𝑆′) ≤ 𝐴𝑜 then ⊲ We want to reward feasible 𝐴𝑜

10: 𝐴𝑏𝑜𝑜𝑙 = 0

11: else
12: 𝐴𝑏𝑜𝑜𝑙 = 1

13: end if
14: Calculate probability of acceptance,𝑃𝑎

15: 𝑃𝑎 = min
[
1, 𝐸𝑏𝑜𝑜𝑙 · exp

(
Δ𝐸
𝑇

)
+ 𝐴𝑏𝑜𝑜𝑙 · exp

(
Δ𝐴𝑜

𝑇

)]
16: Output: 𝑃𝑎

This treatment of the Cost - 𝐴𝑜 trade-off resembles a Lagrangian Relaxation and in fact an-

other variable, the Lagrangemultiplier, could very easily be added to relax 𝐴𝑜’s contribution

to the acceptance probability calculation.

Temperature Limits
We have described a method to account for 𝐴𝑜 that rewards feasible 𝐴𝑜 with increased

probability of acceptance, and vice versa, however it was also decided to allow the algorithm

to enter the infeasible region for a set number of states. This allows the annealing algorithm to

potentially find otherwise unreachable states while not letting it wander endlessly through

infeasible space and eventually get stuck when the temperature gets too low to allow

infeasible moves with any realistic probability7. We do this with logic that stores in memory

7With this simulated annealing method, there is theoretically never a probability of zero for any state

transition regardless of cost or feasibility; however, given the limits of computational precision, below a

certain probability (different based on the machine or code) it is effectively a zero probability.

33

the last feasible solution while counting the number of states until reaching the maximum

number of allowable infeasible steps. If no feasible solution is found, then the algorithm

reverts back to the last feasible solution and continues. If a feasible solution is found then

the it is accepted using the same acceptance logic described in Algorithm 4.

Next we must select our initial temperature, 𝑇0 and final temperature 𝑇𝑚𝑖𝑛. At this stage in

development we set an arbitrarily high 𝑇0 and an arbitrarily low 𝑇𝑚𝑖𝑛, but we will come back

to a discussion of selecting 𝑇0 in 3.3.

Cooling Schedule
The other temperature related decision to be made is in selection of a cooling schedule.

This is how the system changes temperature from 𝑇0 to 𝑇𝑚𝑖𝑛. There is much literature on

schedule selection, however at this point in the process, we elect for a simple linear cooling

rate where the next temperature is calculated as the product of the current temperature and

some constant very near 1.

Move class
Lastly we develop the mechanism by which neighbor states are selected, the Move class. To

build each neighbor state, 𝑆′, the Move class must randomly select a new value for every

part type in the policy. There are a few considerations that must be made when devising a

methodology for this:

• Scale. Factors such as failure rate, unit of issue, and cost require that each part type be
considered individually when drawing its next move from a distribution. For instance,

a site may require dozens of a particular valve cap, but seldom will require more than

a handful of a particular circuit card, so moves for these two parts must be drawn

from a distribution scaled individually.

• Shape.While itmay be desirable to have a symmetric distribution such as theGaussian

that absolves us of the need to decide on a shape, such a distribution prevents us from

being able to "shepherd" the algorithm one way if desired.

These considerations lead us very naturally to a Weibull distribution with a scale parameter

34

(𝛼) based on total demand for the part type and a shape parameter (𝛾) based on user input8.

However, since this distribution is continuous,we approximate it by using a ceiling function9.

Consideration must be given to a third parameter, location (𝜇), when choosing this Weibull

approximation since without some correction, all values selected from the distribution will

be positive. To solve this, we devise a correction that always shifts the distribution such that

the mode of the distribution is always approximately zero. Our approximation is:

𝑓 (𝑥) =
⌈
𝛾

𝛼
(𝑥 − 𝜇

𝛼
) (𝛾−1) exp(−(𝑥 − 𝜇

𝛼
)𝛾)

⌉
, (3.1)

with the mode correction equation:

𝜇 = −𝛼 ∗ (𝛾 − 1

𝛾

) 1
𝛾 , (3.2)

where:

𝑓 (𝑥) Mode corrected Weibull approximation

𝛼 Scale parameter set by user

𝛾 Shape parameter taken to be the square root of the part type’s demand over

time horizon

𝜇 Location Parameter as calculated.

Using the inverse transform method, we are able to generate pseudo-random numbers from

our distribution. Example output from just such a simulation is provided in Figure 3.2.

8Consideration was given to making these parameters temperature dependent, however this was never

implemented due to time constraints

9Ceiling is used versus simple rounding. Since not all part types are chosen, as discussed later, we want

to ensure part types that are chosen actually "move". The use of the ceiling function prevents a value of zero

from being selected.

35

Figure 3.2. Plots of simulated values for both a Weibull distribution with
shape parameter of 1.6 and scale of

√
150, and the NSAM Mode-corrected

Weibull Approximation with the same parameters. Corresponding density
functions are overlaid in red.

With this Move class we can tailor the shape and scale as needed for each part type and keep

the most common changes close to zero. It is not always desirable for the distribution to be

right tailed as it had been described so far. The other utility of the Weibull discussed was

that we could use it to "shepherd" the algorithm in some particular direction. While there

can be other reasons this would be done, the particular instance used in our methodology

is predicated on the assumption that near-global optima for the RBS problem will have no

slack in the availability constraints. As such, shepherding the algorithm to stay space near

to the feasible boundary may be desirable. To accomplish this, we add a Boolean multiplier,

𝜏 to line 6 of our simulated annealing algorithm (Algorithm 3 from Chapter 2), such that:

36

𝑠′𝑖 = 𝑠𝑖 + 𝜏 · 𝜉 ∀𝑖 ∈ 𝐼, (3.3)

where:

𝜉 Random integer simulated using NSAM Mode-corrected

Weibull Approximation

𝜏 Shepherding variable to control whether the distribution is

left (-1) or right tailed (1) based on feasibility.

This effectively reflects the NSAM distribution across the line 𝑥 = 0 which allows us

to control which direction the algorithm tends towards. If a more symmetric distribution

is desired, the shape parameter can be increased (𝛾 = 3.5 produces a near symmetric

distribution) and as the distribution becomes more symmetric, the effects of 𝜏 are negated.

Performance
Before adding stochasticity and other layers of complexity, we validate functionality at this

point. At this level of complexity, both objective function and constraints are linear with

integer variables so we are able to test in Python Pyomo, Bynum et al. (2021) and Hart et al.

(2011), using the Gurobi solver (Gurobi Optimization, LLC 2022). Using several iterations

with various quantities randomly generated part types, we were able to show that the NSAM

solution matched the Pyomo solution each time. This is the only opportunity we were able

to truly validate performance with certainty. As we add more complexity, our testing is only

performed by comparing results with NAVARM.

3.2.2 Simple indenture, limiting probability derived 𝐴𝑜

At this step we add stochastic part failures and a very rudimentary indenture structure.

Additionally we no longer assume given values for maximum stock levels but calculate

them using a Poisson Distribution such that:

37

min
𝑆

𝑆𝑖 ∀𝑖 ∈ 𝐼

s.t. 𝐹 (𝑆𝑖) ≥ 0.9 ∀𝑖 ∈ 𝐼

𝑠𝑖 ≥ 𝑠𝑖 ∀𝑖 ∈ 𝐼,

(3.4)

where:

𝐹 (𝑥) The cumulative density function (CDF) of a Poisson distribution with rate

parameter equal to the pipeline, 𝑃𝑃𝑖, calculated using (2.7).

Limiting Distribution Method for Calculating 𝐴0

At this level of complexity, we only consider a system with two WS, each with two WRA

arranged as shown in 3.3

Figure 3.3. A simple problem with two WS each with two WRA where one
WRA is common to both WS.

With such a simple system, it is possible to devise an analogous birth-death process that uses

the properties of continuous time Markov chains (CTMCs) to determine 𝐴0. We already

know that 𝐴0 is the proportion of time that a WS is capable of executing missions. In the

RBS setting, this is equivalent to the proportion of time that all parts are functional. Since

we assume there is no repair down time if a failed part has a replacement on hand, and that

inter-failure time is exponentially distributed, we can build a Markov chain to represent the

state space of possible states visited by one of the WS in our small sample problem if the

stocking objective (𝑠𝑖) for both part types on the WS is two (𝑠𝐴 = 𝑠𝑏 = 2):

38

Figure 3.4. Markov Chain representing the possible WS readiness states. The
numeric quantities reflect the quantity of parts on hand, ready for issue, of
the indicated type. In this example, 𝑠𝐴 = 𝑠𝑏 = 2 meaning only the WS will
go down if both parts are issued and the last part issued fails on the WS.

The readiness of bothWS in our small problem represented by Figure 3.3 can be represented

with similar CTMCs to Figure 3.4. Since we assume parts fail independently, we can

represent the quantity on-hand for each part as its own CTMC where the state variable (𝜌𝑖)

is defined on the interval 0, 1, . . . , 𝑠𝑖 + 𝑞𝑡𝑦𝑤𝑠𝑖 where 𝑞𝑡𝑦𝑤𝑠𝑖 is the number of WS at the site

that use part type 𝑖.

To obtain the rates for the part type 𝑖’s infinitesimal generator matrix (𝑄𝑖) we consider the

rate of failure (𝜆𝑖) to be the number of removals in a day for a given part (𝑟𝑒𝑚𝑜𝑣𝑎𝑙𝑠𝑝). We

calculate this using the result given by (2.9), which returns values in units of removals per

quarter, and dividing by 90 (the number of days in a quarter). The rate of failure remains

constant until there are no more ready for issue parts and WS begin to go down since

we assume a downed aircraft cannot generate additional part failures. Once the number of

functioning WS starts to drop, the rate drops in a linear fashion until there are no more

functioning WS and the 𝜆 is zero.

39

Calculating repair and replace rates (𝜇𝑖) takes a little more work and another assumption.

For this CTMC model to be valid, we must assume that parts are repaired or replaced with

inter-arrival times that are also exponentially distributed. Since 𝜇𝑖 is the resultant rate of

two separate processes, IMF repair and supply system requisitions, we use the following

equation to calculate 𝜇:

1

(ℎ𝑝𝑜𝑠𝑡𝑖 + 𝑤𝑑𝑡𝑖) · 𝑚𝑟 𝑓𝑖
𝑚𝑟 𝑓𝑖+𝑟 𝑝 𝑓𝑖

+ 𝑖𝑚𝑎𝑟 𝑝𝑡𝑖 · 𝑟 𝑝 𝑓𝑖
𝑚𝑟 𝑓𝑖+𝑟 𝑝 𝑓𝑖

. (3.5)

The denominator is a calculation of the expected repair or replace time. We must assume

each failure is a probabilistic combination of the probability that the failure can be repaired

at the IMF, 𝑟 𝑝 𝑓𝑖/𝑚𝑟 𝑓𝑖 + 𝑟 𝑝 𝑓𝑖, which takes 𝑖𝑚𝑎𝑟 𝑝𝑡𝑖 days, and the probability that the failure

must be replaced from the Navy stock system, 𝑚𝑟 𝑓𝑖/𝑚𝑟 𝑓𝑖 + 𝑟 𝑝 𝑓𝑖 which takes ℎ𝑝𝑜𝑠𝑡𝑖 + 𝑤𝑑𝑡𝑖

days. Since this calculation results in an expected time, to obtain the rate, 𝜇, we simply take

the reciprocal of the expected time (since we have already assumed exponentially distributed

inter arrival times). The resulting infinitesimal generator matrix has the form:

Figure 3.5. Infinitesimal generator matrix for part 𝑖.

With this matrix created, we can use the equations described by Ross (Ross 1997) 10 to

produce a vector of the limiting probabilities for part type 𝑖, 𝐿𝑖. Since we are measuring

availability, we assume 100% availability in any state where 𝜌 ≥ 𝑠𝑖, but we must correct

for reductions in 𝑞𝑡𝑦𝑤𝑠𝑖 as 𝜌 increases. A general equation to calculate 𝐴𝑜 from 𝐿𝑖 for a

problem with one level of indenture such as we have at this point:

10Using equation (6.20) from section 6.5

40

𝐴𝑜 (𝑖, 𝑆) =
𝑠
𝑝
𝑖 +𝑞𝑡𝑦𝑤𝑠𝑖∑

𝜌=0

𝐿𝑖
𝜌

min[𝑞𝑡𝑦𝑤𝑠𝑖 , 𝜌]
𝑞𝑡𝑦𝑤𝑠

, (3.6)

where:

𝐴𝑜 (𝑖, 𝑆) Operational availability of part type 𝑖 given stocking policy 𝑆

𝑃𝑊𝑅𝐴
𝑤 Subset of candidates in 𝑃 that are WRAs on WS 𝑤

𝐿𝑖
𝜌 The limiting probability of state 𝜌 for part type 𝑖

𝑞𝑡𝑦𝑤𝑠𝑖 Quantity of WS that use part type 𝑖.

Once 𝐴𝑜 is calculated for all part types, we multiply all together as in (2.8) since there we are

only considering one level of indenture at this point. Thismethod for calculating 𝐴𝑜 produces

works quickly at the scale we need; however, as the problem ramps up in complexity, more

and more matrix operations will need to be completed. A possible method to calculate

availability using this methodology at full RBS problem scale is proposed in Algorithm 5.

41

Algorithm 5 Calculation of 𝐴𝑜 using Limiting Probabilities

1: Input: Baseline 𝐴𝑖
𝑜 for all part types using 3.6, indenture structure

2: 𝐴𝑜𝑆𝑜𝑙𝑣𝑒𝑑𝑝 = FALSE ∀𝑝 ∈ 𝑃

3: while ∃𝑝 ∈ 𝑃 | 𝐴𝑜𝑆𝑜𝑙𝑣𝑒𝑑𝑝 = FALSE do
4: if then𝑃𝑐ℎ𝑖𝑙𝑑

𝑝 = ∅
5: set 𝐴

𝑝
𝑜 := 𝐴𝑜

𝑖
𝑝

6: set 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑜𝑙𝑣𝑒𝑑𝑝 := true;

7: set 𝐴𝑜𝑆𝑜𝑙𝑣𝑒𝑑𝑝 := true;

8: end if
9: if 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑜𝑙𝑣𝑒𝑑𝑝 := false then
10: if 𝐴𝑜𝑆𝑜𝑙𝑣𝑒𝑑𝑝 = true ∀𝑝′ ∈ 𝑃𝑐ℎ𝑖𝑙𝑑

𝑝 := true then
11: set 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑜𝑙𝑣𝑒𝑑𝑝 := true;

12: end if
13: end if
14: if 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑜𝑙𝑣𝑒𝑑𝑝 := true then
15: set 𝐴

𝑝
𝑜 := 𝐴𝑜

𝑖
𝑝 ·

∏
𝑝′∈𝑃𝑐ℎ𝑖𝑙𝑑

𝑝
𝐴

𝑝′
𝑜 ;

16: set 𝐴𝑜𝑆𝑜𝑙𝑣𝑒𝑑𝑝 := true;

17: end if
18: end while
19: Output: Vector of 𝐴𝑜 by WS

where:

𝐴𝑖
𝑜 Baseline operational availability for part type 𝑖 calculated using 3.6

𝐴
𝑝
𝑜 Operational availability for candidate 𝑝

𝐴𝑜
𝑖
𝑝 Baseline operational availability for candidate 𝑝’s part type

𝑃𝑐ℎ𝑖𝑙𝑑
𝑝 Subset of all candidates for candidate 𝑝

𝐴𝑜𝑆𝑜𝑙𝑣𝑒𝑑𝑝 Boolean that is 1 once the 𝐴𝑜 has been calculated for candidate 𝑝

𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑆𝑜𝑙𝑣𝑒𝑑𝑝 Boolean that is 1 once 𝐴𝑜 has been calculated for all 𝑝′ ∈ 𝑃𝑐ℎ𝑖𝑙𝑑
𝑝 .

While the need for manymatrix operations may taxmost CPU’s, modern graphic processing

units have architecture purpose built for these kinds of operations and would likely reduce

42

time required to process a full scale RBS problem.

Run-time
Using this method, with three WRAs parts, we are able to run 100 MCMC chains of 1600

steps, in series, in under 30 seconds using an Intel Core I9-9900k. It is not known how adding

complexity such as more levels of indenture will impact run times, however complexity of

the current algorithm is O(𝑛) and implementations of Algorithm 5 are likely to be on the

order of O(𝑛2).

3.3 NAVARM Simulated Annealing Model
With the basis of our simulated annealing model in place, we move to the full scale RBS

problem. The obvious change is the addition of multiple layers of indenture under multiple

WS. To address this challenge we elect to use multiple classes fromNAVARM’s codebase to

lighten the development load. There are three versions of this final algorithm, affectionately

named Vanilla, Chocolate and Strawberry. The algorithms developed in the preceding

sections are carried forward in these versions with the exception of the 𝐴𝑜 calculation which

is discussed in the following section.

3.3.1 Vanilla
Vanilla is the first attempt to optimize full scale RBS problem. Named for its elementary

approach to simulated annealing,Vanilla is a bare bones simulated annealing algorithm taken

directly from the Saloman et al 2002 chapter labeled "Bare-Bones Simulated Annealing."

Our only deviation from the base simulated annealing algorithm is that we carry forward

the invisibility logic discussed previously.

43

Figure 3.6. Flow chart for NSAM Vanilla. Items in blue are processes per-
formed using code taken directly from NAVARM Java.

Initialization Module
Vanilla takes two input files. First is a JSON 11 file containing all desired NSAM input

parameters. The second input is the candidate file supplied by WSS. Once read, the data

is used to create the elements of the indenture structure necessary to calculate 𝐴𝑜 for each

WS. Based input from the JSON file, an initial stocking policy is built that can be any of

the following:

11JavaScript Object Notation, commonly used to pass large quantities of parameters into Java applications

44

• Maximum allowance. This option sets the allowance for all part types to their maxi-

mum, 𝑠𝑖. Maximums can be set manually for a part type in the configuration file, but

more commonly it is determined by calculating the value of the 0.99 quantile of a

Poisson distribution representing number of failures12.

• Minimum allowance. Sets the allowance for all part types to their minimum, 𝑠𝑖. As

with max values minimums can be set manually, but again it is more commonly

determined by calculating the value of the 0.5 quantile of a Poisson distribution13.

• RandomAllowance. Randomly assigns a value, between theminimum andmaximum,

to each part type in the policy.

The initial 𝐴𝑜 is then calculated and all required variables are initialized.

Cooling Module
Once initialized, the algorithm generates, evaluates and accepts (or rejects) policies accord-

ing to a user defined cooling schedule. At each temperature, NSAM generates 𝑘 policies to

be evaluated. Typical values for 𝑘 from the literature range from 10 to 100 to get an adequate

assessment of the "neighborhood" before reducing the temperature.

Our methodology for selecting 𝑇0 came from Saloman et al. 2002 who proposed a simple

sampling method to determine the scale of possible Δ𝐸 values for the problem given other

algorithm which are discussed later. Taking this and using the standard equation for 𝑃𝑎 from

Algorithm 3, we set a desired acceptance probability to begin the algorithm. White (1984)

recommends values of 𝑇0 that allow for high variability in the beginning.

We experiment using different values for𝑇0 as well as different values for 𝑘 ,𝑇𝑚𝑖𝑛, number of

steps, and various cooling schedules. results of this experimentation are further discussed

in the next chapter.

In practice, the cooling module takes as an input the desired number of temperature states.

This is then passed through the cooling schedule function to determine the next value for

temperature. For discussion, we simplify this concept to the idea of using a minimum

temperature, versus using a counter for the total number of transitions. This is a generally

120.99 is a typical value. This is a setting that can be changed in the candidate file

13Again, this is a typical setting that can be changed

45

practiced method in the literature and it allows for control over how rapidly the algorithm

steps through the temperature profile defined by the cooling schedule.

Move class Module
For every 𝑘 at every 𝑡, the Move class module creates a neighbor policy (𝑆′) based on the
currently accepted policy (𝑆). To do this, 𝑚 part types are selected from 𝑆 (𝑚 is defined by

the user), then applies the Mode Corrected Weibull approximation, 3.1 through 3.3 where

the shape parameter is defined by the user and the scale parameter is calculated as the square

root of 𝑠𝑖.

𝑆′ is then evaluated to determine the cost, 𝐸′, and 𝐴𝑜 for each WS. Finally a determination

is made to label 𝑆′ as feasible or infeasible, and Δ𝐸 is calculated by comparing to the cost,

𝐸 , of 𝑆.

Infeasible Solutions Module
If 𝑆′ is infeasible, it is not rejected immediately. NSAM counts the number of infeasible

solutions that have been generated before accepting or rejecting. The decision to place

this counter before accepting a solution was arbitrary; it is likely better to count only

those infeasible policies that are accepted. As long as this counter is less than some user

defined maximum value, 𝑖𝑛 𝑓 < 𝑖𝑛 𝑓max, the solution will be labeled as an allowed infeasible

solution. Once 𝑖𝑛 𝑓 = 𝑖𝑛 𝑓max then the algorithm resets to last solution that was determined

to be feasible, 𝑆 𝑓 𝑒𝑎𝑠.

Solution Acceptance Module
Feasible and allowed infeasible solutions are accepted or rejected using the basic simulated

annealing logic from Algorithm 3. If a solution is rejected the algorithm returns directly

to the cooling module to begin the next iteration. If it is accepted then the current policy

is updated, 𝑆′ = 𝑆. Additionally, if the solution is feasible, the newly updated solution is

compared to the current best policy: if 𝐸 < 𝐸∗ where 𝐸∗ is cost of the current best solution,
then 𝑆∗ is updated.

46

3.3.2 NSAM Chocolate
Aswewill discuss in detail in Chapter 4, results from experimentationwith Vanilla indicated

that the structure of the RBS problem works against basic annealing methods. Chocolate is

proposed to exploit what we know about the problem itself. The primary issue for Vanilla

is that letting the algorithm select parts completely at random means that complex and

expensive WRAs and SRAs with sub-indentured parts will be selected and removed from

the policy. When this happens, it follows that an increase in EBO will occur, and an many

cases the removal of even one of these parts from the policy will result in an infeasible

solution.

Figure 3.7. Flow chart for NSAM Chocolate.

Chocolate seeks to fix this by completely swapping out Vanilla’s Move class module for

one that prioritizes parts with less complexity in two ways:

• Selection. When selecting parts for 𝑆′, a counter is implemented that imposes a hard
limit on sub-indentured parts. This counter is reset immediately before building 𝑆′.

47

Once this limit has been reached, every time a part type with children is selected,

it is put back in the pile and a new part type is selected. This repeats until the

requisite quantity of part types have been selected for change in the given step,

𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑥 .

• Sub-indentured part boosting. If a part type is selected and its quantity is reduced,

𝑠′𝑖 < 𝑠𝑖, then the algorithm will take a number, 𝑟, of the part types that are sub-

indentured, 𝑖𝑠𝑟𝑎 to the originally selected part type 𝑖 and increase their stocking

quantities within 𝑆′. In our algorithm, 𝑟 is taken to be a random uniformly distributed

integer between 0 and the total number of indentured parts to part type 𝑖.

With this added logic, it was noted that when building initial policies from minimum

values, the algorithm would get "stuck" when the parent part counter would reach its limit

and addition of simple, non-parent type parts would reach the maximum stock limits for

those parts. To correct this, logic is implemented that monitors the change in cost, Δ𝐸 , from

step to step and triggers Boolean variable, labeled 𝑠𝑡𝑢𝑐𝑘 in 3.7, when Δ𝐸 falls below a

user defined proportion of the current cost for a set number of steps. Once triggered, this

Boolean causes the algorithm to skip the parent part logic and allow parent part types to be

selected even if the parent part counter has reached its limit.

3.3.3 NSAM Strawberry
The final iteration of NSAM, version Strawberry, was created when patterns in Chocolate’s

initial solution building were analyzed. With some exception, which will be discussed in

Chapter 4, to this point in the development process, the efficacy of marginal analysis in the

RBS application has been supported by our results. In both the base annealing algorithm,

Vanilla, and the boosted, Chocolate, algorithms there is still a large gap between NAVARM

and NSAM solutions.

Strawberry borrows heavily from NAVARM, using all the modules needed to perform

marginal analysis by creating the greedy ratios discussed in Chapter 2. The underlying

principle behind this version is an epsilon-greedy approach to building the initial policy

from where the simulated annealing algorithm can depart. Epsilon-greedy has roots in

reinforcement learning, however we simply use it to find a starting solution that is random,

but in the same neighborhood as the NAVARM solution. For this we return the Move

48

class to its vanilla form and slightly amend the initialization module, other modules remain

unchanged in this version.

Figure 3.8. Flow chart for NSAM Strawberry.

Strawberry requires starting from minimum values, 𝑠𝑖 = 𝑠𝑖∀𝑖 ∈ 𝐼. Then, using NAVARM’s

methodology, greedy ratios are calculated for all values of all part types and then sorted

from highest to lowest, 𝐺. We then generate a uniform random variable on the interval

[0, 1], 𝑅, and if that value is less than the user defined value for 𝜖 , we take the first greedy

ratio off the top of the list, 𝐺, and increase this part type’s value by 1. 𝐴𝑜 is calculated at

this point and if feasible this initial solution is passed to the simulated annealing portion of

the algorithm; if not, greedy ratios are re-calculated and the cycle repeats until the solution

is feasible.

The version of Strawberry we have described so far was primarily designed for use with

a single WS problem (this problem is further discussed in the next chapter). The most

advanced version of our attempt to leverage epsilon-greedy policy building incorporated

logic that allowed for multiple WS types to allow for full scale testing. The problem created

by our approach so far and introducing multiple WS is the calculation of greedy ratios.

With one WS there is no concern for the order in which WS are considered; however, with

multiple WS we must apply logic to determine this order. As in NAVARM, the order in

49

which WS are considered when calculating these ratios plays a large part in the order in

which parts are added to a policy when using marginal analysis. This is because addition of

part types, even when shared between multiple WS types, lead to different changes in EBO

for each WS so the order parts selected to add will not be the same.

The logic we devise for this version of our algorithm evaluates 𝐴𝑜 for all WS every time

a part is added to the initial policy and recalculates greedy ratios at any point where the

difference between 𝐴𝑜 of the current primary WS14 and that of the WS with the lowest 𝐴𝑜

reaches a set limit. For our experimentation we set this to 0.03. In addition to evaluating at

this set point, the same evaluation is performed any time a Metropolis move is made (when

𝑅 > 𝜖).

14What is meant by "primary WS" is the WS that is considered first when the current set of greedy ratios

were calculated

50

CHAPTER 4:
Results and Analysis

Experimentation was performed using each iteration of the NSAM algorithm. The purpose

behind this experimentation was to try and tune the input parameters needed for simulated

annealing. Each run was compared to a NAVARM solution, although there are various

settings within NAVARM that can be used to refine and polish solutions, unless otherwise

noted, results obtained from NAVARM are unrefined and unpolished. Generally speaking,

NAVARM’s marginal analysis performed significantly better than NSAM in all but a few

cases that will be presented. This chapter will discuss results of testing in three separate

cases:

• "Toy" Problem. A simple problem with two WS, each with identical indenture struc-

tures consisting of three levels of indenture and only 14 part types.

• Small RBS site with one type ofWSwithmultipleWRAs and three levels of indenture

and 741 part types.

• Full Scale RBS problem. Complex CVN site with seven different WS and 4,804 part

types across 4 levels of indenture.

4.1 Toy Problem
This problem is the only one that we are able to consistently demonstrate that an MCMC

approach offers promise in improving upon the incumbent method, NAVARM, which uses

marginal analysis. For this problem, the only algorithm used in testing was NSAM Vanilla

since the other two, Chocolate and Strawberry, were designed specifically to deal with

complex indenture structure that simply does not exist in the toy problem.

4.1.1 Parameter Tuning
In tuning our model to optimize performance for this problem, we use a factorial experiment

with a few values selected for each of the following NSAM parameters:

• Move class Weibull approximation shape parameter 1.2, 3, 6

51

• Number of interstate transitions, 𝐾 5, 10, 15, 20

• Number of part types to change in each transition 5, 10, 15, 20

• Cooling Schedule Additive Linear, Additive Exponential, Additive Trigonometric

• Initial temperature, 𝑇0 250,000, 500,000, 750,000

• Total number of states in the cooling schedule 500, 1000, 2000

By using a sample of 30 random initial policies, 𝑆0, we are able to make a reasonable

estimate of performance in practice when it would be expected that many parallel iterations

of NSAM would run from random starting points in the decision space. Only a handful,

three to five, of values were selected for each of these parameters to get a general sense for

their impact on the output. A more thorough sensitivity analysis of the input parameters

using principles of rigorous experiment design to determine optimal inputs was beyond the

scope of this work due to time limitations; however, it stands to reason that improvements

on either run-time and objective function optimality would be evinced with such efforts.

The resulting 3,888 design points, each with 30 trials, was completed using 120 CPU cores

in parallel in roughly 4 hours.

Table 4.1. Analysis of input parameters into NSAM Vanilla, a basic simulated
annealing algorithm, applied to the to the toy problem.

Parameter Importance

Weibull Shape 0.220

Number of Temperature Steps 0.205

Number of Inter-step Transitions 0.041

Cooling Schedule 0.005

Number of Part Types Changed 0.512

Max number of Infeasible Steps 0.008

Initial Temperature 0.091

Importance values in Table 4.1 were determined by using the output from the input param-

eters that drive improvements in performance are:

1. The number of part types,𝑖 , selected to change when generating each neighbor policy.

2. The shape parameter of the distribution used to select how much to change 𝑠𝑖 for each

52

part type 𝑖 selected.

3. The number of interstate transitions at each temperature state.

These importance figures were determined by taking the experiment output and building

a random forest model (𝑅2 = 0.99) with 10,000 trees, sampling four of the seven variable

parameters for each random tree with an observation sampling rate of 𝑛 = 10. With these

figures we make the following observations which lead to assumptions for future testing:

1. Cooling schedule selection and the infeasible step limit do not make a significant

enough contribution to improving optimality to be considered variable in further

testing of NSAM. We set a nominal value for the infeasible steps to 20 and use the

additive linear cooling schedule in future testing.

2. Interstate transitions (𝑘), number of part types changed (𝑐𝑜𝑢𝑛𝑡𝑆𝑖), and total number of

algorithm temperature steps all tend to improve solution quality as they are increased;

for future testing, we use a nominal value of 20 inter-step transitions to explore while

keeping the number of part type changes15 to a constant of 15. The values of 𝑘 and

𝑐𝑜𝑢𝑛𝑡𝑆𝑖 most significantly contribute to run-times andwemaximize their values under

given time and resource constraints though in most cases we resort to 2000 transitions

and 15 part types respectively.

3. The selectedWeibull shape parameter has a significant impact on solution quality. The

use of distributions that are skewed left or right based on criteria discussed in Chapter

3 resulted in markedly worse performance than near symmetrical distributions that

result from shape parameters above three. For all future testing, shape parameters are

set sufficiently high enough to result in near symmetrical distributions.

4.1.2 Results
Given the fast run times of the toy problem, we are able to run a significant number of trials

to determine efficacy of NSAM Vanilla in this use case. To determine optimal values for

each parameter, a linear regression model was constructed using all main effects and second

degree interactions (𝑅2 = 0.81) from the experiment trials. The following parameters are

15While not immediately intuitive, selecting 15 parts out of a set of 14 parts does not necessarily mean that

all 14 part types will be changed. In our implementation, part types are picked with replacement, therefore it

can be shown that with 15 random selections, the expected number of unique part types selected is less than

10.

53

set for further analysis:

Table 4.2. Values for each of the seven NSAM Vanilla parameters selected
for efficacy analysis.

Parameter Definition Value

𝑐𝑜𝑢𝑛𝑡𝑆𝑖 Number of Part Types Changed 15

𝜆 Weibull Shape 6.0

𝑛 Number of Temperature Steps 2,000

𝑡0 Initial Temperature 500,000

𝑘 Number of Inter-step Transitions 20

𝑖𝑛 𝑓𝑚𝑎𝑥 Max number of Infeasible Steps 20

𝑔(𝑡) Cooling Schedule Additive exponential

With these values over 10,000 trials on the toy problem, NSAM results in an improved

solution over NAVARM approximately 88% of the time with an average improvement of

around 5%. The global optimum is not known and a brute force algorithm would take an

impractically long amount of time, therefore there is noway to gauge the overall performance

of either algorithm other than to compare their outputs.

54

Figure 4.1. Frequency histogram for all results returned by 10,000 trials of
NSAM applied to the toy problem. The blue vertical line represents the best
feasible value returned via NAVARM’s greedy heuristic approach.

Using Figure 4.1 we see that the scale upon which NSAM improves on the NAVARM

solution is not large.While NAVARM’s solution value lies more than one standard deviation

(𝜎2 = 4,713) above NSAM’s mean output of $521,013, even the absolute minimum NSAM

solution, $506,714 is only an improvement of about 5%.

4.2 Full Scale CVN RBS Problem
While it may seem out of order, it is most efficient to discuss results of testing NSAM

on the full scale RBS problem at this point. The reason for this is that due to the order

in which data was made available, our development process actually began with the full

scale problem. With this problem, we note interesting behavior with the NSAM algorithm

that indicates underlying structure that any MCMC algorithm must contend with when

optimizing a multi-indenture problem of this scale16.

16Seven WS and 4,804 part types across 4 levels of indenture

55

When we first apply NSAM to this full scale problem using our bare bones simulated

annealing model, Vanilla, there is a significant optimality gap between various NSAM

iterations and results obtained through NAVARM’s marginal analysis approach.

Figure 4.2. The plot on the left is a detail plot of NSAM’s first 100 steps
for five different trials (represented by the blue, green, orange, black and
red points) of the CVN problem when started from all MAX values (𝑠𝑖 =
𝑠𝑖∀𝑖 ∈ 𝐼). The plot on the left shows the full lifetime of NSAM when started
from all zero allowances (𝑠𝑖 = 0∀𝑖 ∈ 𝐼). The blue horizontal line is set
at $265,000,000 on both plots for scale reference. The red horizontal line
represents the NAVARM solution to the problem. For both examples the same
parameters are used as in Table 4.2 with the exception of 𝑐𝑜𝑢𝑛𝑡𝑆𝑖 = 500 and
𝑡0 = 50, 000, 000.

Figure 4.2 demonstrates the difficulty with the problem structure that exists at this level of

complexity. While the Figure 4.2 shows only NSAM starts at ZERO and MAX settings,

starting policies selected at random behave in much the same way, what follows is a

generalized summary of NSAM’s behavior for various starting conditions:

1. Starting policies with cost greater than $300M: NSAM quickly selects policies that

reduce cost until policy cost reaches the vicinity of $300M. After a period of explo-

56

ration, the cost functions asymptotically approach a value of approximately $265M.

2. Starting policies that are infeasible: These are typically those with cost less than

$265M, however the same behavior is typically exhibited no matter the initial cost

if the policy is infeasible. NSAM quickly selects policies with more parts until

reaching a feasible solution. This typically happens close to $350M. After a period

of exploration, the cost functions asymptotically approach a value of approximately

$265M.

3. Though not shown in Figure 4.2, when the initial starting police starts between

approximately $265 and $300M, and is feasible, NSAM explores while staying close

to the $265M line.

The value $265 has no special significance other than the behavior describes above. What

we do know is that there are feasible solutions available at significantly reduced cost, vis-

a-vis NAVARM at around $88M. In theory, the problem is ergodic; that is to say that given

process by which new policies are selected, all possible states should be accessible by all

other possible states. Since ergodicity is extremely difficult to prove on a problem of this

scale, we proceed on the assumption that it is.

An exploration of how the two algorithms, NAVARM and NSAM, select parts shows us a

possible explanation for this brick wall effect:

Table 4.3. Quantities of SRAs and WRAs part types selected by NSAM and
NAVARM.

Part Type NSAM NAVARM

Count(Value) Count(Value)

WRA 1,206($234M) 1,165($74M)

SRA 1,959($46M) 2,548($14)

What is readily apparent in Table 4.3 is NAVARM is selecting a much wider variety of

SRA part types. On average, these are much less expensive than WRA part types. NSAM

is selecting a comparable variety of WRA part types however it is selecting WRAs that

are much more expensive ($194K average for NSAM versus $63K average for NAVARM)

while also selecting more of each part type (1.9 spares on average for NSAM vs. 1.5 for

57

NAVARM).

This behavior is assumed to occur as a consequence of the multi-indenture structure of the

problem. Since EBOs for any given WRA is a sum of the EBO of all its sub-indentured

parts, to maintain a constant number of EBO when NSAM selects a reduced quantity of

a given WRA, it must also select SRAs sub-indentured to that WRA and then increase

their quantity. Vanilla is a bare bones simulated annealing algorithm where part type and

quantity selection are random, so the probability of doing this is exceedingly small. For this

reason we attempt to apply logic discussed previously for NSAM Chocolate that is meant

to overcome this behavior. Due to its large scale, development of Chocolate was not tested

using this full scale problem.

4.3 Small RBS Site
For this problem, we are presented with a real-world site with a single WS type. This

WS comes with a full scale indenture structure that poses a large challenge for the base

simulated annealing model. It was not until testing began at this smaller scale that much of

the underlying problem structure was revealed that lead to improvements implemented in

Chocolate and Strawberry.

Initial experimentation using the Vanilla simulated annealing algorithm with this problem

indicates similar optimality gap to that found the full scale CVN problem. Use of this

problem allows for much more rapid testing due to its smaller scale.

58

Figure 4.3. Plot of a single trial of NSAM Vanilla applied to the small RBS
problem, starting with the first feasible policy. The blue horizontal line is
set at $50,000,000. The red horizontal line represents the NAVARM solution
to the problem, $17,601,000. Parameters are set as in Table 4.2 with the
exception of 𝑐𝑜𝑢𝑛𝑡𝑆𝑖 = 100 and 𝑡0 = 50, 000, 00.

4.3.1 Exploiting the Problem Structure
What we first propose to overcome thisWRA/SRA structural difficulty is NSAMChocolate.

This version, as described in Chapter 3, is designed to select sub-indentured SRAs and

increase their quantity any time a WRA is selected and its quantity decreased. Other

functionality of Chocolate is meant to limit the amount of more complex parts boost the

quantity of smaller, cheaper parts at the leaves of the indenture structure.

59

Figure 4.4. Plot of a single trial of NSAM Chocolate applied to the small
RBS problem. The blue horizontal line is again set at $50,000,000 and the
red horizontal line marks the NAVARM solution to the problem, $17,601,000.
Parameters are set as in Table 4.2 with the exception of 𝑐𝑜𝑢𝑛𝑡𝑆𝑖 = 100 and
𝑡0 = 5000000.

The outcome of this effort, displayed in Figure 4.4, is nomore successful at breaking through

the wall as the Vanilla approach. While our attempt to leverage the problem structure to

inform the model’s selection criteria is ineffective, this does not represent an exhaustive

effort and methodologies may exist that are able "break through" the $50M threshold.

Instead of trying to "break through" this threshold,we now focus on amethod to beginNSAM

with a better solution. We alter Chocolate’s logic in the pre-feasible solution building phase

to only select parts types without children and WRAs (the distinction is made as not all

WRAs have children). This pre-feasible phase is the period before NSAM begins selecting

Metropolis moves when the priority is to move from the infeasible region to a policy that is

feasible. A feasible solution must be found before NSAM can start as the acceptance criteria

requires a feasible incumbent solution with which to compare selected neighbor policies.

60

Figure 4.5. The top plot indicates WS 𝐴𝑜 as the initial policy is constructed
using Chocolate’s logic. The bottom stacked plot shows the individual and
total costs of parent and non-parent parts selected over the same period.

In Figure 4.5 we see steps where there is a significant jump in cost without an appreciable

increase in 𝐴𝑜. These points, such as at step 682, demonstrate very inefficient choices by the

algorithm that even the aggressive selection logic is unable to prevent. What is needed is a

method by which an initial stocking policy is constructed using the most efficient method

possible. This leads us to the final iteration of NSAM, Strawberry.

4.3.2 Epsilon Greedy Approach
The most efficient method currently available is the same method used by NAVARM to

construct its output policies. Marginal analysis, or NAVARM’s greedy heuristic, discussed

at length in Chapter 2, selects parts from a sorted list of greedy ratios. Our efforts so far

have validated the efficacy of this approach by the existence of the large optimality gaps

that separate NSAM solutions from NAVARM’s.

The epsilon greedy approach, discussed in the NSAM Strawberry section in Chapter 2,

61

induces a small (1 − 𝜖 where typical values of 𝜖 are greater than 0.9) randomness in the

selection process and recalculating greedy ratios to approach the initial feasible solution

from a slightly different position in the state space.

Figure 4.6. The top plot indicates WS 𝐴𝑜 as the initial policy is constructed
using Strawberry’s epsilon greedy approach. The bottom stacked plot shows
the individual and total costs of parent and non-parent parts selected over
the same period. For this trial, value of 0.001 was used for epsilon.

Comparing Figure 4.5 with Figure 4.6 there is a notable difference in how the policy is

constructed using the epsilon greedy approach. The trial that resulted in the policy illustrated

in Figure 4.6 used an epsilon value of 0.001. This particular run resulted in an initial feasible

solution value of $17,619,672.79, which is not an improvement over the NAVARM value of

$17,601,339.62. However, once the initial feasible solution was reached, the simple NSAM

Vanilla logic improved the solution to a value of $17,548,044.87 which improves on the

NAVARM solution.

62

Table 4.4. Pre and Post Feasible Solution Optimality by 𝜖 value.

𝜖 Quantity of Pre-Feasible

Trials < NAVARM SOL

Quantity of Post-Feasible

Trials < NAVARM SOL

Total

Trials

0.999 93 94 176

0.995 9 13 187

0.99 1 1 140

Σ 103 108 503

A total of 503 trials were conducted using three different values for epsilon. By far, the

smaller values of epsilon performed better. At 0.001, the expected number of non-greedy

actions taken in construction of the policy is less than 1 (since the policy is constructed in

under 1000 moves); however, even with that being the case, as evidenced in Table 4.4, the

initial solution produced with this value of epsilon improved on the NAVARM solution over

50% of the time though with typical improvements not exceeding 0.01% of total policy cost

but with multiple instances of policies that save tens of thousands of dollars.

Once constructed, however, across all values of epsilon, NSAM only improved 26 solutions

with all other solutions getting worse (meaning the initial solution was the best value found

in those runs). This does well to illustrate the highly complex nature of the state space in

the problem.

4.4 CVN Problem Revisited
While run times for NSAM at this scale are reasonable, about a minute per trial from start

to finish, run times are significantly higher at larger scale. This is due to the fact that many

more parts must be selected each step, as well as a significantly increased processing time

required to calculate greedy ratios and EBOs for a much larger problem. For that reason

only 70 trials are run on the CVN problem using NSAM Strawberry:

63

Table 4.5. Pre and Post Feasible Solution Optimality by 𝜖 value

𝜖 Quantity of Pre-Feasible

Trials < NAVARM SOL

Quantity of Post-Feasible

Trials < NAVARM SOL

Total

Trials

0.999 0 0 35

0.9998 0 0 35

Σ 0 0 70

While none of the trials managed to find a better solution than strict marginal analysis via

NAVARM, the solutions found were all between $100M and $125M (NAVARM solution

for the CVN problem is approximately $85M). This is a significant improvement over the

Vanilla approach which had typical optima not better than $265M. While this attempt did

not manage to improve on the incumbent algorithm, there is much potential for improvement

with so many parameters that need further analysis to provide optimal performance.

64

CHAPTER 5:
Summary and Future Work

Having thoroughly discussed our methodology and the underlying principles used therein,

we conclude with a summary of our findings. We begin with how our results validate the

efficacy and design of the incumbent algorithm used to optimize the RBS problem. We

then discuss the utility of simulated annealing in the same context and how our results

can be leveraged to improve solutions currently obtained by marginal analysis or with an

epsilon-greedy approach to marginal analysis. We conclude with our recommendations for

future work and some final thoughts on our research.

5.1 Incumbent Validation
The first conclusionwe draw from this work is a validation of themethodology underpinning

NAVARM. Given the performance of basic simulated annealing and in particular the large

optimality gap that emerges when the problem scales from our toy problem to the smallest

possible real world scenario, it is apparent that the best way to deal with assembling inex-

pensive, near-optimal solutions relies on cost efficient selection criteria. Marginal analysis

is predicated on making efficient selections, one step at a time, making it well suited for the

purpose of "evading" the wall of complexity that is responsible for the gap in the first place.

One note on NAVARM is that, as written, it only calculates greedy ratios once per iteration.

This is a deviation from the methodology described by Sherbrooke 2004 who describes a

method by which the EBOs are recalculated as parts are added to the policy. In experimen-

tation with NSAM Strawberry, we find that frequent recalculation of EBO is inexpensive

at smaller scale, but at large scales, such as the CVN problem, this recalculation done

thousands of times leads to very long run times when executed using NSAM software17.

17NSAM Strawberry creates NAVARM solutions when 𝜖 = 0 since the greedy action, being performed

100% of the time, is executing NAVARM’s sorted greedy ratio list

65

5.2 Simulated Annealing as an Optimization Method
Our success with NSAM’s base simulated annealing algorithm at the small and medium

scales provide evidence that under the right conditions, an MCMC method is capable of

outperforming marginal analysis, which is the current gold standard for multi-indenture

optimization. The problem then becomes setting the right conditions for the algorithm to

flourish. First, to define the conditions we must identify the bounds of the optimality gap

between the region of highest known quality (presumed to be in the vicinity of NAVARM

solutions) and the region the MCMC algorithm tends towards. In our CVN case, these

are the regions defined by policies where the cost function is in the vicinity of $85M and

$265M, respectively.

In order to be exploited, a method to initialize solutions in a promising region must be

devised. One such method, already used in practice by NAVARM is marginal analysis. By

inducing a small amount of randomness we have demonstrated that it is possible to initialize

solutions that are better than those found by marginal analysis on its own, however we have

also shown that it is possible to improve solutions initialized in this region to be better using

simulated annealing as well.

So while it may be possible to construct logic to eventually find a path from one region to

the other, as attempted unsuccessfully with NSAMChocolate, the most likely application of

simulated annealing is as a way to polish solutions generated using other algorithms. Using

parallel processing, many separate chains can be initialized from the same point or separate

points generated randomly, as with our epsilon greedy approach. We have demonstrated

that improved solutions can be found in a very reasonable time-frame on the small RBS

problem, however due time constraints on our research and limitations of our software we

have not yet applied simulated annealing to a large scale problem such as the CVN problem.

We have also demonstrated generalizability of the simulated annealing algorithm in this

setting. The iterative approach to our design used different approaches to calculating 𝐴𝑜

and making numerous other design choices that were changed in the process of scaling

the algorithm. However, no matter what changes were made, the cooling schedule - move

class - acceptance loop remained at the center of the optimization algorithm. Even if the

practitioner were to completely change the constraints or distributional assumptions, it could

be done simply and without impacting the primary mechanics of the algorithm. This makes

66

a strong case for simulated annealing as a generalizable tool for inventory optimization. For

example, it is conceivable that an organization may desire to measure readiness using some

other metric that could only be obtained using simulation. The output of the simulations

could be easily applied the constraints on the simulated annealing algorithm at each step as

feasibility is a separate module that merely informs the basic class – cooling – acceptance

loop.

5.3 Epsilon-Greedy Approach to Policy Initialization
The other significant finding resulting from this research is that introducing a small amount

of randomness into the marginal analysis algorithm, we are able to achieve better poli-

cies than with marginal analysis alone. Since this approach does not guarantee improved

solutions, practical application requires the marginal analysis solution, using NAVARM

or 𝜖 = 0, and many runs of an epsilon-greedy policy building algorithm such as NSAM

Strawberry. We have not yet confirmed this for the large CVN type problem due to time

constraints, so this should also be examined when considering future research.

5.4 Future Research

Input Parameter Optimization
In our experimentation, we use rather rudimentary methodology to determine optimal

input parameters for NSAM. It is expected that every problem will have variance in what

parameters yield the most optimal performance from the algorithm; however, an underlying

commonality exists between all problems in our research. Examples of this commonality

are:

• As the number of states increases, so does the optimality of the final output policies.

• The ideal number of part types changed each iteration is large in proportion to the

total number of different part types.

• The best performing initial starting temperatures are those that allow for expected

acceptance probabilities of around 0.9.

These are simply patterns noted in experimentation, however a more exhaustive approach

67

to optimizing these inputs for various problems is merited (and, if the results can be

generalized, all the better).

Move Class Improvement
The rudimentary Metropolis move used in NSAM is an apparent shortcoming of the algo-

rithm. Presumably, with the right move class design, the existence of the "brick wall" or

optimality gap we discover in the larger scale problems would not impede the progression

of policy selection. Other MCMC methods offer alternative approaches to the move class

that may be able to navigate the "brick wall." Another possibility is to refine the NSAM

chocolate approach to further limit the selection criteria or otherwise inform the algorithm

to guide it toward desired behavior.

In addition, linking many of the algorithm criteria to the temperature is another area of

possible improvement. Currently NSAM sets all parameters constant for the entirety of the

process. What is proposed is to change some of these as a function of temperature. For

instance, the number of part types changed each step starts large but as the system cools,

fewer part types are changed. This would allow for increased exploration in the early stages

and increased exploitation in the latter.

Apply Simulated Annealing to Selected Large Scale Initial Solutions
While validated in the toy and small RBS site problems, an unfortunate lack of time prevents

the scope of this research to test simulated annealing on the large scale CVN problem from

desired initial solutions. An analysis of performance at this scale is necessary to definitively

state that polishing already near-optimal solutions will yield improved solutions.

Limiting Probability 𝐴𝑜 Calculation
Given that the most expensive operation in the NSAM algorithm is the calculation of EBOs

(and consequently 𝐴𝑜 for each WS) that occurs at every step, it follows that optimizing this

calculation has obvious benefit. In Chapter 3we propose an alternativemethod of calculating

𝐴𝑜 using Markovian birth-death processes where the limiting probabilities are calculated

and used to estimate the proportion of time that aircraft are operational.While our use of this

method is transitory and only used at the smallest scales in our development process, there

68

is potential for this method to be useful in performance optimization. Given that the method

relies on many large matrix operations, use of graphics processing unit architecture could

provide large performance gains as measured by reduced resource requirements. An analysis

of output quality compared to the current 𝐴𝑜 calculation methodology is also necessary to

validate the methodology.

5.5 Conclusion
Sherbrooke’s marginal analysis approach for multi-indenture models was first utilized when

computing power was not ideal for an MCMC type approach for problems of this scale.

Therefore what was first envisioned for this project was to find an inventory optimization

method by which we could improve on the current practice by leveraging the availability of

today’s increased computational resources.We instead succeeded in validating Sherbrooke’s

approach as implemented by Salmeron and Buss in NAVARM. Given the promising appli-

cation of simulated annealing as a polishing algorithm for near-optimal solutions, and the

potential for improved solutions using an epsilon-greedy algorithm, we are confident that

this field will remain fertile ground for research for the foreseeable future.

69

THIS PAGE INTENTIONALLY LEFT BLANK

70

List of References

Burdick L (1991) Readiness based sparing (RBS): From concept exploration to full scale

development. Naval Engineers Journal 103(2):71–82.

Bynum ML, Hackebeil GA, Hart WE, Laird CD, Nicholson BL, Siirola JD, Watson JP,

Woodruff DL (2021) Pyomo–Optimization Modeling in python, volume 67 (Springer
Science & Business Media), third edition.

Congressional Budget Office (2022) Availability and use of aircraft in the air force and

navy. https://www.cbo.gov/system/files/2022-01/57433-aircraft.pdf.

Department of the Navy (2021) Department of the Navy fiscal year

(FY) 2022 Budget Estimates, Justification of Estimates may 2021.

https://www.secnav.navy.mil/fmc/fmb/Documents/22pres/OMN_Book.pdf.

Eckstein M (2020) Mission capable: How the navy harnessed its data to achieve 80 per-

cent fighter readiness. United States Navy, Office of the Chief of Naval Operations,

URL https://p2p.navy.mil/Media/News/Article/2164733/mission-capable-how-the-

navy-harnessed-its-data-to-achieve-80-fighter-readiness/.

Graves SC (1985) A multi-echelon inventory model for a repairable item with one-for-one

replenishment. Management science 31(10):1247–1256.

Gurobi Optimization, LLC (2022) Gurobi Optimizer Reference Manual. URL https:

//www.gurobi.com.

Hart WE, Watson JP, Woodruff DL (2011) Pyomo: modeling and solving mathematical

programs in python. Mathematical Programming Computation 3(3):219–260.

Hastings W (1970) Monte carlo sampling methods using markov chains and their applica-

tions. Biometrika 57(1):97–109.

Katz J (2022) Navy air boss has new aircraft readiness targets to hit. Breaking Defense,

URL https://breakingdefense.com/2022/02/navy-air-boss-has-new-aircraft-readiness-

rate-north-stars-to-follow/.

Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science
220(4598):671–680.

Mehta A (2018) Mattis orders fighter jet readiness to jump to 80 percent — in one year.

URL https://www.defensenews.com/air/2018/10/09/mattis-orders-fighter-jet-readiness-

to-jump-to-80-percent-in-one-year/.

71

Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state

calculations by fast computing machines. The Journal of Chemical Physics 21(6):671–
680.

Oracle (2014) Java™ platform, standard edition 8.

Rardin RL (2019) Optimization in Operations Research (Pearson), second edition.

Ross SM (1997) Introduction to Probability Models (San Diego, CA, USA: Academic
Press), sixth edition.

Salmeron J, Buss A (2021) Project deliverable: Naval aviation readiness-based spar-

ing model – release 2.6. Naval Postgraduate School, Monterey, CA, provided by J.

Salmeron with approval from NAVSUP-WSS Philadelphia.

Saloman P, Sibani P, Frost R (2002) Facts, Conjectures, and Improvements for Simulated
Annealing (Society for Industrial and Applied Mathematics).

Sherbrooke C (2004) Optimal Inventory Modeling of Systems, Multi-Echelon Techniques,
Second Edition (Kluwer Academic Publishers, Boston).

Sherbrooke CC (1966) METRIC: A Multi-Echelon Technique for Recoverable Item Con-

trol. Technical report, RAND Corp, Santa Monica CA.

Sherbrooke CC (1971) An evaluator for the number of operationally ready aircraft in a

multilevel supply system. Operations research 19(3):618–635.

Slay M (1980) VARI-METRIC: An Approach to Modeling Multi-echelon Resupply when
the Demand Process is Poisson with Gamma Prior. Working Paper.

White SR (1984) Concepts of scale in simulated annealing. AIP conference proceedings
(122):261–270.

72

Initial Distribution List

1. Defense Technical Information Center

Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School

Monterey, California

73

	22Sep_Alleman_Adam_First8
	22Sep_Alleman_Adam

