
An Encoder-decoder Architecture with Graph
Convolutional Networks for Abstractive

Summarization
QiAo Yuan∗; Pin Ni∗†; Junru Liu∗; Xiangzhi Tong∗; Hanzhe Lu∗; Gangmin Li∗; Steven Guan∗

∗ Research Lab for Knowledge and Wisdom, Xi’an Jiaotong-Liverpool University, China
†School of Computer Science, The University of Auckland, New Zealand

Abstract—We propose a single-document abstractive summa-
rization system that integrates token relation into a traditional
RNN-based encoder-decoder architecture. We employ pointer-
wise mutual information to represent the token relation and
adopt Graph Convolutional Networks (GCN) to extract token
representation or graph representation from the relation graph.
In our experiment on Gigaword, we consider importing two
kinds of structural information: token (node) representation
and graph representation. Also, we implement two kinds of
GCNS, a spectral-based one and a spatial-based one, to extract
structural information. The result shows that the spatial based
GCN-enhanced model with node representation outperforms the
classical RNN-based encoder-decoder model.

Index Terms—GCN, Text Summarization, Seq2Seq, Natural
Language Processing

I. INTRODUCTION

Text summarization, a classical task for natural language
processing systems, aims at generating concise and coherent
summaries covering salient information from source docu-
ments. Compared with extractive summarization, which se-
lects tokens or sentences from source documents, abstractive
summarization can generate novel words or phrases, requiring
machine learning models to have a deeper understanding of
semantics1.

RNN based sequence-to-sequence (Seq2Seq) model is a
classical paradigm for text summarization with a sequence
encoder to compress and distill the input sequences to a
context vector and a decoder that maps the context vector
and input to the output sequence [1]. Since the length of
context vector output by encoders is fixed, when addressing
long sequences, information loss is inevitable. it is difficult for
RNN based Seq2Seq models to grasp long-distance relation.
To address this problem, Bahdanau et al. [2] imported attention
mechanism into Seq2seq architectures, which assigns weights
to each encoder hidden states trying to store the most important
information into the context vector. Recently, many improve-
ments of this model focus on the adaption of the attention
mechanism. However, as pointed out by Jia and Liang [3],
although theoretically attention-based Seq2Seq models are ex-
pected to learn arbitrary long-distance dependency, they often
perform poorly when handling long texts and get distracted
by simple noise.

1The code can be found on https://github.com/Seven-Two/GCN-Seq2Seq-
for-Summarization

In this work, we attempt to maintain long-distance depen-
dency by importing Graph Convolutional Networks (GCN).
GCNs are proposed mainly to handle problems with high-
structured objects such as traffic forecasting [4] and social
recommendation [5], but they are also successfully applied in
fields with low-structural objects such as NLP. This article
is an attempt to import graph representation of sequences
containing structural information into Seq2Seq models.

Briefly, we propose two methods importing two kinds of
GCNs, spectral-based GCNS and spatial-based GCNS, into a
basic Seq2Seq architecture. We model graphs for each input
sequence, treat each token as a node, and employ pointer-
wise mutual information (PMI) as weights of edges. As for
the first method, the node representation output from the
GCNs is concatenated with token embedding as the input of
Seq2Seq models. For the other, we add a supernode connecting
each node. Throughout propagation, the supernode distills and
integrates information from each node and edge, thus can
be regarded as graph representation. Then we concatenate it
with the context vector output from the encoder and feed the
concatenated vector into the decoder.

II. RELATED WORK

Graph convolutional networks (GCNS) are designed to
extend convolution from Euclidean structures to non-Euclidean
structures. Generally, they learn a mapping function f , from
which a node xi is able to integrate itself and its neighbors to
generate a new representation of xi. Applications of convolu-
tion on graphs are often categorized as the spectral approaches
and spatial approaches [6, 7].

Spectral-based GCNs map the data from graph domain
to spectral domain with Fourier transform to get the vec-
torized representation of the graph, which is preferable for
convolution. Bruna [8] proposed the first generation GCN,
it simply treats the whole convolution filter as the training
parameters, laying a heavy burden on calculation. Defferrard
et al. presented a Chebyshev network [9] reducing the com-
putation complexity by importing a Chebyshev polynomial to
approximate the convolution filter as a k-order polynomial
form. Kipf et al. [10] further simplified the Chebyshev network
as a first-order approximation of spectral graph convolutions
by limiting the layer-wise convolution operation to K = 1 and
regulating the filter parameter.

Spectral-based GCNs are said to be transductive since the
trainable parameters rely on the Laplace matrix, which changes
as the graph structure changes. To extend GCNS to inductive
learning, spatial-based approaches, which define graph con-
volution on node’s spatial relation, are adopted. GraphSAGE
trains a set of aggregate functions that aggregate information
from a node’s neighbors to generate a new representation of
this node [11]. Graph Attention Network then imports attention
mechanism to assign weights of a node’s neighbors [12].

There are several applications of GCNs in text summariza-
tion. Yasunaga et al. [13] adopted GCN on sentence relation
graph to perform extractive multi-document summarization.
The GCN takes sentence representation output from RNNs
as node features. Fernandes [14] treats tokens, sentences, and
entities as nodes. The edges are categorized into three types:
next, in, and REF, respectively denoting a relation between
tokens, sentences, entities, token-sentences, and token-entities.
The token and sentence representation is obtained from RNNs,
then GCN is applied to this graph to obtain graph-level
information. In contrast, we regard tokens as nodes and employ
pointer-wise mutual information(PMI) as weights of edges.

III. METHODOLOGY

A. Graph Construction

Each token in the input sequence is treated as a node and
inspired by Yao et al. [15], pointer-wise mutual information
(PMI) is employed to denote the association strength between
two tokens. Specifically, the weighted adjacent matrix is
defined as:

A(i, j) =


PMI(i, j), i 6= j & PMI(i, j) > 0

1, i = j

0, i 6= j & PMI(i, j) < 0

(1)

PMI between two tokens i, j is defined as

PMI(i, j) = log
P (i, j)

P (i)P (j)
(2)

where P (i, j) denotes the possibility that token i and
tokenj appear in the same window and P (i) denotes the
possibility that token i appears in the whole sequence. They
are respectively defined as:

P (i, j) =
W (i, j)

W

P (i) =
W (i)

W

where W (i, j) denotes the occurrence frequency of windows
containing token i,j and W denotes the total number of
windows. A positive PMI indicates high semantic relation
between two tokens, whereas a negative value indicates the
opposite. Therefore, it is reasonable to add edges between
tokens with positive PMI value.

Theoretically, the PMI between two tokens represents the
information amount brought by one of the tokens or how
much the uncertainty is reduced given one of the tokens.

Each token in a pair of tokens would provide information to
deduce another token. The more associative two tokens are,
the more information one of the tokens provides. For instance,
’speed’ and ’up’ are known as associative since given the token
’speed’, people are likely to guess the other token is ’up’.
Shannon [16] imports the concept of entropy to quantify the
information amount. For a set of possibilities {p1, p2, .., pn},
the entropy H is defined as:

H = −
∑

pilogpi

For an event x, the entropy of it is:

h(x) = −logp(x)

It is easy to understand why information entropy is inversely
related to the possibility of an event. The less uncertain an
event is, the less information it contains. For instance, ‘the
sun rises from the east’ contains no new information since
everyone knows this fact. In our case, for two tokens i, j in
a sequence, to figure out what j is, the required information
amount is h(j). Given the token i, the required information
amount to deduce j is h(j|i). Therefore, PMI(i, j), the
information amount brought from i, can be acquired as:

PMI(i, j) = h(j)− h(j|i)

according to entropy’s definition we have

h(j) = −logp(j)

h(i|j) = −logp(j|i)

hence the equation can be written as

PMI(i, j) = logp(j|i)− logp(j)

according to conditional probability formula, we have

p(j|i) =
p(i, j)

p(i)

then the equation can be transformed as:

PMI(i, j) = log
p(i, j)

p(i)
− logp(j) = log

p(i, j)

p(i)p(j)

this is the origin of equation (2).

B. Spectral Graph Convolutional Network

A symmetric normalized Laplacian matrix, defined as L =
In − D−

1
2AD−

1
2 , is a mathematical representation of an

undirected graph. I is the identity matrix, Dii =
∑
j Aij and A

is the adjacent matrix. As a positive semidefinite matrix, L can
be decomposed as L = UΛUT where U = {U1, U2, ..., Un}
is an orthogonal matrix composed of column vectors as unit
eigenvectors and Λ = diag(λ1, λ2, ..., λn) is a diagonal
matrix composed of corresponding eigenvalues. Since the
Fourier basis e−ikx is an eigenfunction of Laplace Operator,
to perform Fourier transform on graphs, the Fourier basis can
be replaced with U (eigenvectors can be treated as a discrete
form of eigenfunction). Therefore, Fourier transform on graphs

(a) GCN+Seq2Seq with Node Representation (b) GCN+Seq2Seq with Graph Representation

Figure 1: Proposed Networks

is defined as f̂ = UT f , where f = {f1, f2, ..., f3} is a n-
dimensional vector consisting of node features. The inverse
Fourier transform on graphs is: f = Uf̂ . According to the
convolution theorem, the Fourier transform of the convolution
function is the product of the Fourier transform of the two
functions. Hence, the graph convolution with input x and a
filter g is defined as

Gg ∗ x = U(UT g � UTx)

where � denotes the element-wise product. If we define the
filter as gθ = UT g, the graph convolution can be simplified
as:

Ggθ ∗ x = UgθU
Tx (3)

all the spectral GCNNs follow this definition, the different
lines in how they manipulate and train the filter gθ. Bruna et
al. propose the first generation of spectral GCN which simply
treats gθ as the training parameter [8]. The propagation rule
is defined as:

y = σ(UgθU
Tx)

where y is the activated output. The complexity of this kind of
GCN is high due to the operation of spectral decomposition
to get U and great number of parameters in convolution ker-
nel(number of nodes). Chebyshev Spectral GCN is proposed
to alleviate this problem [9]. Since graph Fourier transform
is a function of eigenvalues, it defines gθ(Λ) as the k-order
polynominal form:

gθ′(Λ) ≈
K∑
k=0

θ′kΛk

Then the graph convolution is:

Ggθ′ ∗ x =

K∑
k=0

θ′kL
kx

Furthermore, a truncated expansion in terms of Chebyshev
polynomials Tk(x) up to kth order is imported to approximate
Lk:

gθ′(Λ) ≈
K∑
k=0

θ′kTk(Λ̃)

where Λ̃ = 2
λmax

Λ− In, λmax is the largest eigenvalue of L.
The Chebyshev polynomial is defined recursively as Tk(x) =
2xTk−1(x)−Tk−2(x) with T0(x) = 1, T1(x) = x. As a result,
the graph convolution is:

Ggθ′ ∗ x =

K∑
k=0

θ′kTk(L̃)x

And the propagation rule is:

y = σ(

K∑
k=0

θ′kTk(L̃)x)

As an improvement over spectral GCNNS, the ChebNet re-
duces the computation complexity since there is no need
performing spectral decomposition and Lk can be calculated
in advance. Also, it reduces the number of parameters in con-
volution kernel from n to k, thus realizing localization within
k-hop [6]. Kipf et al. propose a further simplification over
ChebNet [10]. Firstly they limit the layer-wise convolution
operation to K = 1. Although by limiting K, the network can
merely extract information from first-order neighbors, further
proximity extraction can be recovered by stacking multiple
layers. Furthermore, they approximate λ ≈ 2 since the model
will adapt to the scale change during training. As a result, the
graph convolution can be simplified as:

Ggθ′ ∗ x ≈ θ
′
0x+ θ′1(L− IN)x = θ′0x− θ′1D−

1
2AD−

1
2x

with two parameters θ′0 and θ′1. These parameters are con-
strained as θ = θ′0 = −θ′1 to alleviate overfitting and reduce
operations. This leave us with the follow expression:

gθ ∗ x ≈ θ(IN +D−
1
2AD−

1
2)x

Since the eigenvalues of IN + D−
1
2AD−

1
2 has range in

[0, 2] which can lead to exploding/vanishing gradients under
repeated opearation, a renormalization trick is performed as
IN + D−

1
2AD−

1
2 → D̃−

1
2 ÃD̃−

1
2 with Ã = A + IN and

D̃ii =
∑
j Ãij Then the propagation rule between layers is

defined as:

H l+1 = σ(D̃−
1
2 ÃD̃−

1
2H lW l) (4)

where H l denotes the activated matrix in lth layer(H0 =
x)and W l denotes the layer-specific trainable weight matrix.

C. Spatial Graph Convolutional Network

In this article, we employ graph attention network (GAT)
as the spatial GCN. The spectral GCNs aggregate neighbors
with fixed weights. Specifically, the weight between node i
and node j is 1√

DiiDjj
where Dii denotes the degree of

node i. GAT imports attention mechanism into the aggregation
process. It concatenates the features of two nodes and assigns
weights to the edge according to the similarity. The input is a
set of node features H = {h1, h2, h3, ..., hn}, and the output is
a set of node representationĤ = {ĥ1, ĥ2, ĥ3, ...ĥn} containing
structural information. Similar to spectral GCNs, the Laplace
matrix is used to represent the graph. GAT performs an
aggregation on the input as: H l+1 = Agg(L,H l) where H l

denotes the node representation in lth layer and L denotes
the Laplace matrix. Specifically, In each layer, each node
firstly experiences a linear transformation with a shared weight
matrix as:

eij = a(Whi,Whj)

where a is the shared attention matrix initialized as

aij =

{
rand(−1, 1), Lij > 0

0, Lij ≤ 0

eij is the attention score of node j to node i indicating the
importance of node j to node i. In this article, only the first-
order neighbors attend the attention mechanism. For a node i
with its neighbors j ∈ Ni where Ni is the first-order receptive
field of node i, the attention weight is defined as:

αij =
exp(LeakyReLu(a(Whi,Whj)))∑

k∈Ni exp(LeakyReLu(a(Whi,Whk)))

Having obtained the normalized attention weight, by aggre-
gating the neighbors’ features of each node, we can get the
new node representation of the whole graph. The aggregating
function is defined as:

ĥi = σ(
∑
j∈Ni

αijhi)

Similar with self-attention mechanism in Transformers, multi-
head attention is also applicable here to stabilize the learning
process.

D. GCN+Seq2Seq with Node Representation

This model constructs graphs for each input sequence and
gets the node representation of each token. Then the node
representation is concatenated with token vectors as the inputs
of the Seq2Seq structure. Figure 1-a illustrates the architecture
of this model.

To be clear, we name the adopted spectral GCN in this
article as KGCN. In detail, the input is a sequence X =
{x1, x2, .., xm} containing m tokens where xi denotes the ith
word in the sequence. The first layer is an embedding layer
that maps each token to a 300-dimensional vector ei ∈ R300.
Subsequently, these vector sequence {e1, e2, .., em} is input
into the GCN layer as node features. Each sequence is modeled
as a graph represented as an adjacent matrix A defined
above. We employ a two-layer GCN network since Kipf[10]
suggested that a network with two layers performs well. For
KGCN, the output N = {n1, n2, .., nm} is obtained as:

N = tanh(D−
1
2AD−

1
2ReLu(D−

1
2AD−

1
2XW0)W1) (5)

For GAT, the propagation rule is:

N = tanh(Agg(D−
1
2AD−

1
2 , elu(Agg(D−

1
2AD−

1
2 , X)))

(6)
where Agg represents the aggregation function defined in part
C. After that, the node representation N = {n1, n2, .., nm}
is concatenated with the token vectors as the input S =
{s1, s2, ..., sm}, defined as S = [E;N] , of Seq2Seq structure.
Both the encoder and decoder of Seq2Seq contain a two-layer
bidirectional GRU structure [17], their forward propagation
rules are similar. At time step t, each encoder or decoder unit
receives an input token and a last hidden state, then outputs a
hidden state to the next unit, defined as:

henct = Encoder(st, h
enc
t−1)

hdect = Decoder(ỹt, h
dec
t−1)

where ht denotes the hidden state and at time step t and
st, ỹt denote the encoder input and decoder input at time
step t respectively. As for the encoder, henc0 = 0, whereas
for the decoder, hdec0 = henclast. The operation in decoders
is a little more complex than that in encoders. The teacher
force mechanism is imported into the training process. During
testing, the current decoder output is treated as the input of the
next decoder unit. However, this is inefficient during training
because an unconverged model is likely to make mistakes,
thus affecting all the next units. Therefore, by importing
teacher force, the decoder is fed with labels to avoid error
accumulation. Since there is no support from labels in the
testing process, the model should not completely rely on the
labels. Typically, a teacher force ratio is imported defining
the possibility of using teacher force mode. Furthermore, the
beam search mechanism is also implemented in the decoder,
which caches several outputs with the lowest cost at each step
and selects the optimal combination finally. The output of the

decoder in each step is a possibility distribution of all tokens
and the model is trained to minimize the loss defined as:

loss = − 1

n

n∑
i

(yi)log(ỹi) (7)

where n denotes the vocabulary length, y denotes the labels
represented as one-hot encoding and ỹ denotes the decoder
output activated by Softmax function.

E. GCN+Seq2Seq with Graph Representation

As Figure 1-b demonstrates, the improvement of these
network lines in the incremental information extracted from
the graph structure. Inspired by Xu et al. [18], we add a node
to the graph modeled from input sequences, called supernode,
connecting all the other nodes with weights as 1. The feature
of this node is initialized as a zero matrix since the graph is
undirected, the supernode also transfers information to other
nodes, by setting it as a zero matrix, at least it will not affect
other nodes at the first layer. Also, this node has no self-loop
because it is meaningless to learn from a zero matrix. The
supernode is expected to distill and compress information from
all the nodes and edges from the graph by stacking two layers,
thus it can be treated as graph representation. By concatenating
the graph representation and the context vector, the decoder
can learn from both semantic and structural information.

To make the graph representation compatible with the
context vector, we set the output dimension of GCN layers
equal to the hidden layer dimension of the decoder and simply
stack the graph representation fourth vertically to make it
consistent with the dimension of the context vector.

IV. EXPERIMENT

A. Experiment Environment

Our experimental environment is as follows: CPU Intel
Xeon E5-2678 v3, RAM: Dual 2.50GHz, GPU: Dual Nvidia
GeForce GTX 1080 Ti.

B. Dataset Description

All the tests were run on the Gigaword dataset containing
3,993,608 items. Due to computation ability restriction, we
randomly select 100,000 items as training data, 10,000 items
as validation data, and 10,000 items as test data. Each item
contains an English Article and its title, the title can be treated
as the summary. As for the training data, the longest article
has 38 tokens and the longest title has 11 tokens.

C. Implementation

We adopted Glove-300 as the pre-trained word embedding
weight to get 300-dimensional word embedding. Both the
encoder and decoder contain a two-layer bidirectional GRU
structure whose hidden dimension is 512. The teacher force
ratio is 0.5 and to accelerate training, the beam search range
is set to 1, thus it is equivalent to greedy search. Both GCNs
have two layers with hidden dimensions as 512, in Seq2Seq
with node representation model, the output dimension is 300,
whereas, in Seq2Seq with graph representation model, the

output dimension is 256. The dropout is 0.5 and the PMI
window size is 3. We use mini-batch stochastic gradient
descent to minimize negative log-likelihood with batch size
as 16 and learning rate as 0.0001. We trained each model
until the validation loss has not decreased for three epochs.

D. Evaluation Criteria

We implemented ROUGE-1, ROUGE-2 and ROUGE-L [19]
to evaluate the quality of summary texts. ROUGE-1 and
ROUGE-2 follow the definition of ROUGE-N which denotes
an n-gram recall between a candidate summary and reference
summaries, defined as:

Rouge−N =

∑
S∈RefSum

∑
gramn∈S Countmatch(gramn)∑

S∈RefSum
∑
gramn∈S Count(gramn)

where RefSum denotes the reference summaries, n stands
for the length of the n-gram, Countmatch(gramn) denotes the
number of n-grams co-occurring in the candidate summary
and reference summaries. As for summary-level ROUGE-L,
it takes the union longest common sub-sequence matches
between the candidate summaries and candidate summaries.
Given a reference summary X of m words and a candidate
summary Y , the summary-level ROUGE-L can be computed
as:

ROUGE − L =
LCS(X,Y)

m

where LCS(X,Y) is the length of the longest common sub-
sequences between X and Y .

V. RESULTS AND DISCUSSION

The main results are presented in Table 1 and the valida-
tion loss during training is illustrated in figure 2. According
to the Table, generally, the scores are greatly lower than
most research since we only use 100,000 items as training
data. Specifically, according to the table, we note that node-
based GAT-enhanced model successfully outperforms the basic
RNN-based Seq2Seq model, whereas the other GCN-enhanced
models perform worse, especially the node-based KGCN-
enhanced model. In terms of the validation loss figure, the
node-based models reach a lower validation loss than the basic
Seq2Seq models while graph-based models stop converging
when the loss is still relatively high. It is counter-common
sense that the node-based KGCN-enhanced model reaches
low validation loss but performs worst in ROUGE evaluation.
The reason is that the training parameters of this kind of
spectral-based GCN is highly related with the Laplace matrix,
which represents the information of the whole graph. Any
change of the graph structure will cause the change of the
Laplace matrix, thus affecting the training parameters. There-
fore, spectral-based GCNs are merely suitable for transductive
tasks where the test data is exposed to the model during
the training process. From this perspective, the structural
information acquired from KGCN can be treated as noise.
Therefore, it is reasonable that graph-based KGCN-enhanced
model perform better than the node-based one which im-
ports more noise information. Regarding to the GAT-enhanced

model, since the node-based one outperforms the graph-based
one, it can be safe to conclude that the structural information
imported by GAT is meaningful. The graph representation
is simply concatenated with the context vector, the model
may not understand the representation well since they are
from different spaces. The node-based models are effective
because the model learns the node representation along with
token embedding through the encoder. However, in graph-
based models, the graph representation is directly fed into
the decoder so that the model cannot learn this representation
thoroughly.

Figure 2: Validation loss during training

TABLE I: ROUGE SCORE

ROUGE-1 ROUGE-2 ROUGE-L
S2S(GRU) 20.66 4.31 22.62
KGCN(node)+S2S(GRU) 9.39 1.03 10.02
KGCN(graph)+S2S(GRU) 19.33 3.72 21.25
GAT(node)+S2S(GRU) 20.74 4.56 23.02
GAT(graph)+S2S(GRU) 20.03 4.04 21.71

VI. CONCLUSION

In conclusion, to compensate for the weakness of conven-
tional encoder-decoder architecture in building long-distance
relationships, we presented two approaches combining two
kinds of Graph Convolutional Networks and Encoder-decoder
architectures to import additional structural information. Treat-
ing the traditional Seq2Seq model as the baseline, we com-
pared five models on the Gigaword dataset The result shows
that the node-based GAT-enhanced model outperforms the ba-
sic RNN-based Seq2Seq models, indicating GAT can be used
to import structural information into a RNN-based Seq2Seq
architecture.

In future work, the models will be trained on larger data
to get a more convincing result. Also, we will try to adopt
structural information with GCNs into more advanced models
such as pointer network and transformer, to further explore its
effectiveness.

ACKNOWLEDGMENT

This study is partially supported by the AI University
Research Centre (AI-URC) through the XJTLU Key Program
Special Fund (KSF-P-02) and KSF-A-17.

REFERENCES

[1] I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence
learning with neural networks, Advances in Neural Information
Processing Systems 27 (2014) 3104–3112.

[2] D. Bahdanau, K. H. Cho, Y. Bengio, Neural machine translation
by jointly learning to align and translate, in: 3rd International
Conference on Learning Representations, ICLR 2015, 2015.

[3] R. Jia, P. Liang, Adversarial examples for evaluating reading
comprehension systems, in: EMNLP, Association for Compu-
tational Linguistics, Copenhagen, Denmark, 2017, pp. 2021–
2031. doi:10.18653/v1/D17-1215.

[4] W. Chen, L. Chen, Y. Xie, W. Cao, Y. Gao, X. Feng,
Multi-range attentive bicomponent graph convolutional net-
work for traffic forecasting, AAAI 34 (2020) 3529–3536.
doi:10.1609/aaai.v34i04.5758.

[5] L. Wu, P. Sun, R. Hong, Y. Fu, X. Wang, M. Wang, Socialgcn:
An efficient graph convolutional network based model for social
recommendation, in: AAAI, 2019.

[6] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P. S. Yu, A com-
prehensive survey on graph neural networks, IEEE Transactions
on Neural Networks and Learning Systems 32 (2021) 4–24.

[7] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, M. Sun, Graph
neural networks: A review of methods and applications, ArXiv
abs/1812.08434 (2018).

[8] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks
and deep locally connected networks on graphs, in: 2nd Inter-
national Conference on Learning Representations, ICLR 2014,
2014.

[9] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional
neural networks on graphs with fast localized spectral filtering,
in: NIPS, 2016.

[10] T. Kipf, M. Welling, Semi-supervised classification with graph
convolutional networks, ArXiv abs/1609.02907 (2017).

[11] W. L. Hamilton, Z. Ying, J. Leskovec, Inductive representation
learning on large graphs, in: NIPS, 2017.

[12] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò,
Y. Bengio, Graph attention networks, ArXiv abs/1710.10903
(2018).

[13] M. Yasunaga, R. Zhang, K. Meelu, A. Pareek, K. Srinivasan,
D. R. Radev, Graph-based neural multi-document summariza-
tion, ArXiv abs/1706.06681 (2017).

[14] P. Fernandes, M. Allamanis, M. Brockschmidt, Structured neu-
ral summarization, in: International Conference on Learning
Representations, 2019.

[15] L. Yao, C. Mao, Y. Luo, Graph convolutional networks for text
classification, in: AAAI, 2019.

[16] C. E. Shannon, A mathematical theory of communication,
The Bell System Technical Journal 27 (3) (1948) 379–423.
doi:10.1002/j.1538-7305.1948.tb01338.x.

[17] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, Y. Bengio, Learning phrase repre-
sentations using RNN encoder–decoder for statistical machine
translation, in: EMNLP, Association for Computational Linguis-
tics, Doha, Qatar, 2014, pp. 1724–1734. doi:10.3115/v1/D14-
1179.

[18] K. Xu, L. Wu, Z. Wang, Y. Feng, V. Sheinin, Graph2seq: Graph
to sequence learning with attention-based neural networks,
ArXiv abs/1804.00823 (2018).

[19] C.-Y. Lin, ROUGE: A package for automatic evaluation of
summaries, in: Text Summarization Branches Out, Association
for Computational Linguistics, Barcelona, Spain, 2004, pp. 74–
81.

