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We formulate a measure that quantifies chirality in single electron ionization triggered in atoms,
which are achiral systems. We do so in the context of Ar driven by a new type of optical fields
that consists of two non-collinear laser beams giving rise to chirality that varies in space across
the focus of the beams. Our computations account for realistic experimental conditions. To define
this measure of chirality, we first find the sign of the electron final momentum scalar triple product
px · (py × pz) and multiply it with the probability for an electron to ionize with certain values of
the momentum components. Then, we integrate over all values of px, py, pz. We show this to be a
robust measure of chirality in electron ionization triggered by chiral electric fields.

I. INTRODUCTION

Ultrafast phenomena in chiral molecules triggered by
intense, infrared laser pulses are at the forefront of laser-
matter interactions [1–5]. While ultrafast chiral processes
can be studied using high harmonic generation (HHG)
[1, 6–10], the underlying recollision mechanism entails
that a stronger chiral response comes at the expense of
a greatly suppressed high harmonic signal [1]. Hence,
photoelectron spectroscopy is a promising route to a ro-
bust signal from molecules driven by intense chiral fields
[2, 3, 5, 11–13]. However, the sensitivity of chiral pho-
toelectron spectroscopy also struggles with the fact that
laser wavelengths are several orders of magnitude larger
than the dimensions of molecules, i.e. the chiralities of
the optical field and the molecule are incommensurate.

Recently, Ayuso et al. proposed a new type of optical
field which is chiral on the atomic scale [6] and thereby
holds the potential for unprecedented chiral sensitivity.
The chiral field is synthesized by combining two orthog-
onally polarized two-color laser fields in a non-collinear
geometry as illustrated in Fig. 1. The non-collinear ge-
ometry creates an intensity and ellipticity grating, and
thereby causes the chirality of the laser field to spatially
vary across the focus. Thus, it is a fundamental challenge
for experiments to decipher the signatures of chirality in
the photoelectron spectra from these new laser fields.

Here, we provide a roadmap on how to analyze ex-
perimental photoelectron spectra produced from chiral
light. To do so, we perform semi-classical simulations
of strong-field ionization and take into account the focal
volume distribution of the degree of light chirality. To un-
derstand chiral electron ionization, we model photoion-
ization of ground state atoms. The latter have spherical
symmetry and are intrinsically achiral systems. Thus,
the chiral response of the escaping electron that is im-
printed on the ionization spectra arises solely from the
dynamics triggered by the electric field of the laser.

To analyze the resulting photoelectron spectra we iden-

FIG. 1. Schematic plot of two non-collinear laser beams, each
consisting of ω-2ω orthogonally polarized linear fields; ω is po-
larized on the x-y plane and 2ω along the z-axis. Both beams
propagate towards the atom in the focus region (red-shaded
ellipse). The resultant electric field has chirality (square in-
set) that changes along the x-axis in the focus region.

tify a measure that quantifies chirality in electron ioniza-
tion dynamics ensuing from an atom strongly-driven by
a chiral electric field. We construct this measure using
the probability P(px,py,pz) for an electron to ionize with
certain values of the momentum components px, py and
pz. Next, we multiply this probability by the sign of
the momentum scalar triple product px · (py × pz). In-
tegrating over the whole range of the components of the
momentum, we obtain the following measure of chirality

X =

∫∫∫
sign(px · (py × pz))P(px,py,pz)dpxdpydpz.

(1)

As expected, we find that when performing a cyclic per-
mutation of px, py and pz in Eq. (1) the measures of chi-
rality obtained are equivalent. In what follows, we show
that X is a robust measure of chiral electron ionization.



2

II. METHOD

We demonstrate that X measures handedness of elec-
tron ionization in the context of Ar atoms driven by two
non-collinear laser beams, see Fig. 1. Beams 1, 2 prop-
agate on the x-y plane with wavevectors k1, k2 forming
an angle α with the y-axis

k1 = k sin(α)x̂ + k cos(α)ŷ

k2 = −k sin(α)x̂ + k cos(α)ŷ,
(2)

where k = 2π/λ. The electric field of each beam consists
of two orthogonally polarized ω and 2ω laser fields. The
ω field is polarized along the x-y plane and the 2ω along
the z-axis, while the 2ω field has smaller intensity.

The resultant electric field is given by [6]

E(r, t) = 2E0 exp

[
−
(
t

τ

)2
]

(Exx̂ + Eyŷ + Ezẑ) , (3)

where

Ex/y = exp

[
−
(
ρ

w0

)2
]

fx/y(x) cos [g(y, t)]

Ez = exp

[
−
(

2ρ

w0

)2
]

fz(x) cos [h(y, t)] ,

(4)

and

fx(x) = cos(α) cos

[
k sin(α)x+

φω2 − φω1
2

]
fy(x) = sin(α) sin

[
k sin(α)x+

φω2 − φω1
2

]
fz(x) = r0 cos

[
2k sin(α)x+ (φ2ω2 − φ2ω1 )

]
g(y, t) = k cos(α)y − ωt− φω2 + φω1

2

h(y, t) = 2k cos(α)y − 2ωt− (φ2ω2 + φ2ω1 ).

(5)

We note that τ = 25 fs and τ
√

2 ln(2) is the full
width at half maximum of the pulse duration in inten-
sity, while E0 is the field strength corresponding to inten-
sity 5× 1013 W/cm2. Also, ρ is the radial distance to the
propagation axis of each laser beam. Since α is small, 5◦,
it follows that ρ ≈

√
x2 + z2. Moreover, w0 = 8.49 µm is

the beam waist of the ω laser field, and r20 is the intensity
ratio of 1/100 of the 2ω versus the ω field. Finally, the
wavelength λ of the ω field is taken equal to 800 nm.

It was previously shown [6] that the resultant electric
field is globally chiral if the relative phases of the ω and
2ω laser fields in beams 1 and 2, i.e. φ2ω1 −φω1 and φ2ω2 −
φω2 , satisfy the following condition(

φ2ω1 − φω1
)
−
(
φ2ω2 − φω2

)
=
π

2
+ nπ,with n ∈Z, (6)

while the resultant electric field is globally achiral when(
φ2ω1 − φω1

)
−
(
φ2ω2 − φω2

)
= nπ,with n ∈Z. (7)

We compute X for Ar driven by one of six different re-
sultant electric fields corresponding to six different syn-
thetic pulses. For simplicity, we refer to each resultant
electric field of a synthetic pulse as electric field. Each of
the six fields, cases 1-6, corresponds to a different com-
bination of φ2ω1 − φω1 and φ2ω2 − φω2 for beams 1 and 2,
respectively, see Fig. 2(a). Using Eq. (6) and Eq. (7), we
select four globally chiral fields, cases 1,2,4,5, and two
globally achiral fields, cases 3, 6, see Fig. 2. In Fig. 2(b),
we show that the electric fields which are globally chiral
maintain the same handedness along the x-axis in the fo-
cus region. That is, Ey/Ex and Ez, while keeping y,z,t
constant, change sign at the same points in space x. As a
result, electric fields 1 and 4 have the same (+) chirality
and electric fields 2 and 5 have the same (-) chirality, see
Fig. 2(b). Hence, the pairs of electric fields (1,2) and (4,5)
have opposite chirality. For the globally achiral fields,
cases 3 and 6, we find that Ey/Ex and Ez change sign at
different points in space x, Fig. 2(b). Hence, the chirality
of electric fields 3 and 6 flips sign along the x-axis in the
focus region, i.e. there is no overall chirality.

A robust measure of chirality X should have opposite
sign for chiral fields of opposite chirality. In this work,
the results are presented using the coordinate system de-
fined by the x axis, which is the axis where the electric
fields exhibit handedness, and the y axis, which is the
propagation axis. In this reference frame, we find that
the X computed from the electron momentum distribu-
tion ensuing from each electric field of cases 1-6 has op-
posite values for opposite chirality fields (1,2) and (4,5),
while it is zero for achiral fields 3 and 6. We find that
another measure of chirality can be obtained when X is
computed using the difference of the normalized electron
momenta distributions obtained from two electric fields.
Here, we refer to this measure as Xd. For instance, con-
sidering cases 1-3, we find that Xd computed using chiral
field 1 and achiral field 3 has opposite sign from Xd com-
puted using the opposite chirality field 2 and achiral field
3. Hence, the results presented in this work hold true for
this natural reference frame we employ in this work. Such
natural frames have been employed in previous studies
of circular dichroism or of magnetic field effects on dou-
ble ionization due to recollision. In this latter cases, the
propagation axis is an axis that plays a pivotal role in
identifying asymmetries in ionization observables [14].

We treat single electron ionization of driven Ar by em-
ploying a three-dimensional (3D) semi-classical model.
The only approximation is the initial state. One electron
tunnel-ionizes through the field-lowered Coulomb-barrier
at time t0. To compute the tunnel-ionization rate, we em-
ploy the quantum mechanical Ammosov-Delone-Krainov
formula [15, 16]. Using this rate, we select t0 in the time
interval [-2τ ,2τ ]. We use parabolic coordinates to obtain
the exit point of the tunneling electron along the laser-
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FIG. 2. (a) Schematic plots of six combinations of two non-collinear beams; (b) change of sign of Ey/Ex (black) and Ez (blue)
along the x axis in the focus region, at y=z=0, t=T/50. For each case, above beams 1 and 2, we denote φ2ω

1 −φω
1 and φ2ω

2 −φω
2

from left to right.

field direction [17]. We set the electron momentum along
the laser field equal to zero, while we obtain the trans-
verse momentum by a Gaussian distribution [15, 16]. The
microcanonical distribution is employed to describe the
initial state of the initially bound electron [18].

Next, we specify at the tunnel-ionization time t0 the
initial conditions for both electrons. Using the three-
body Hamiltonian of the two electrons with the nucleus
kept fixed, we propagate classically in time the position
and momentum of each electron. All Coulomb forces and
the interaction of each electron with the electric field in
Eq. (3) are fully accounted for with no approximation.
To account for the Coulomb singularity, we employ reg-
ularized coordinates [19]. Here, we use atomic units.

Previous successes of this model include identifying the
mechanism underlying the fingerlike structure in the cor-
related electron momenta for He driven by 800 nm laser
fields [20], see also [21–23]. Moreover, we investigated the
direct versus the delayed pathway of non-sequential dou-
ble ionization for He driven by a 400 nm, long duration
laser pulse and achieved excellent agreement with fully
ab-initio quantum mechanical calculations [24]. Also, for
low intensities, we have identified a novel mechanism of
double ionization, namely, slingshot non-sequential dou-
ble ionization [25]. In addition, for several observables of
non-sequential double ionization, our results have good
agreement with experimental results for Ar when driven
by near-single-cycle laser pulses at 800 nm [26].

Next, we describe how we obtain the electron ioniza-
tion spectra of Ar for each of the six synthetic pulses
(cases 1-6). For simplicity, for each case, we set φω2 = 0.
Since only the differences φ2ω1 − φω1 and φ2ω2 − φω2 are
important, there is no loss of generality. Moreover, for
each of the six synthetic pulses, we simulate realistic con-
ditions in a COLTRIMS or VMI experiment where Ar
atoms are at different positions along the x-axis in the
focus region. To do so, we select 101 equally spaced val-
ues of the phase φω1 in the interval [0,2π). That is, we
perform our calculations for each position of the nucleus,
i.e. each phase φω1 . For each φω1 , we register the sin-
gle ionization events and obtain the electron ionization

spectra. Next, we average over all φω1 values and obtain
the electron spectra P(px,py,pz) using at least 107 singly
ionizing trajectories. For each synthetic pulse, cases 1-6,
the resulting electron spectra are normalized to one.

III. RESULTS

First, we illustrate the measure of chirality X that is
computed separately for each electric field in cases 1-3.
To do so, we plot in Fig. 3 the probability distribution
P(px,py,pz) for an electron to singly ionize with both
momentum px and the product pypz for the globally chi-
ral fields 1, 2 and the globally achiral field 3. In each
quadrant, we assign the sign resulting from the scalar
triple product px · (py × pz). We multiply this sign by
the distribution P(px,py,pz) and sum up over all four
quadrants to obtain X , defined in Eq. (1). We find X to
be equal to 1.8× 10−2,−1.9× 10−2,−0.1× 10−2 for elec-
tric fields 1,2, 3, respectively. Indeed, a close inspection
of Fig. 3 for case 1 reveals that the probability distribu-
tion of the electron momentum px and pypz has two lobes
with one corresponding to px > 0 and shifted towards
positive values of pypz and another one corresponding
to px < 0 and shifted towards negative values of pypz.

FIG. 3. Probability distribution P(px, py, pz) for the electron
to ionize with both momentum px and the product pypz, for
electric fields 1,2,3, respectively. The sign in each quadrant
corresponds to the sign of px · (py × pz) in this quadrant.
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FIG. 4. Probability distribution Pm,n(px, py, pz). The m,n
indexes are 1,2 for Case 1-Case 2, 1,3 for Case 1-Case 3, 2,3 for
Case 2-Case 3, 4,5 for Case 4-Case 5, 4,6 for Case 4-Case 6 and
5,6 for Case 5-Case 6. The sign in each quadrant corresponds
to the sign of px · (py × pz) in this quadrant.

For case 2, the two lobes are reflected with respect to
the pypz, consistent with the opposite chirality of fields
1 and 2. Hence, the probability distribution has larger
values for case 1 at the first and third quadrants, where
px · (py × pz) has a + sign, while for case 2 at the second
and fourth quadrants, where px · (py × pz) has a - sign.
It follows that X has a positive (negative) value when Ar
is driven by synthetic pulse 1 (2). Also, |X | is roughly
the same for cases 1 and 2. The small offset is due to
the statistical error introduced in our computations from
the restricted number of single ionization events. This is
also supported by X being equal to −0.1× 10−2, instead
of zero, when Ar is driven by the achiral field 3.

Next, we illustrate the measure of chirality Xd that is
computed using the difference of the normalized electron
momenta distributions of two electric fields

Xd =

∫∫∫
sign(px · (py × pz))P

m,n(px,py,pz)dpxdpydpz,

Pm,n(px,py,pz) = Pm(px,py,pz)− Pn(px,py,pz),

(8)

and Pm/Pn is the probability distribution P(px,py,pz)
obtained for each of the electric fields 1-6, i.e. m=1-6
and n=1-6. In Figs. 4(a1)-4(a3), we plot the probability
distribution Pm,n(px,py,pz) for the pair of opposite chi-
rality electric fields (1,2), i.e. Case 1 - Case 2 [Fig. 4(a1)],
and for the pairs of chiral-achiral electric fields (1,3) and
(2,3), i.e. Case 1 - Case 3 [Fig. 4(a2)] and Case 2 -

Case 3 [Fig. 4(a3)]. In each quadrant, we assign the sign
resulting from the scalar triple product px · (py × pz).
The yellow (blue) color denotes positive (negative) val-
ues of Pm,n(px,py,pz), corresponding to the electron be-
ing more (less) probable to ionize with both momentum
px and the product pypz due to pulse m rather than pulse
n. Next, in each quadrant, we multiply the positive or
negative values of the distribution (yellow/blue) with the
± sign of px · (py × pz) and finally sum up. It easily fol-
lows that the measure of chirality Xd is larger and pos-
itive (3.7× 10−2) for the pair of opposite chirality fields
(1,2), see Fig. 4(a1). Also, Xd is positive (1.9×10−2) for
the pair of electric fields (1,3) and negative (−1.8×10−2)
for the pair (2,3). Indeed, a close inspection of Fig. 4(a2)
and Fig. 4(a3) shows that the probability distribution for
Case 1 - Case 3 has mainly two spots in the third (yellow)
and fourth (blue) quadrants while it is reflected with re-
spect to the pypz axis for Case 2 - Case 3. We note that
1.9×10−2−1.8×10−2 is roughly zero, since pulses 1 and
2 have opposite chirality. Similar results are obtained
when considering the chiral fields 4,5 and achiral field 6,
see Figs. 4(b1)-4(b3).

IV. CONCLUSIONS

In conclusion, we identify a measure of chirality in elec-
tron ionization triggered in atoms driven by synthetic
pulses. These pulses can create electric fields which are
globally chiral or achiral along the focus region. We
define this measure by multiplying the sign of the elec-
tron final momentum scalar triple product px · (py × pz)
with the probability for an electron to ionize with cer-
tain values of the electron momentum components. Fi-
nally, we integrate over all values of the electron mo-
mentum components. This robust measure of chirality
is demonstrated using the most appropriate reference
frame. Choosing such frames has been a common prac-
tice in previous studies of circular dichroism and mag-
netic field effects.
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