
Modus: A Datalog Dialect for Building Container Images
Chris Tomy∗

University College London
United Kingdom

chris.tomy.19@ucl.ac.uk

Tingmao Wang∗
University College London

United Kingdom
tingmao.wang.19@ucl.ac.uk

Earl T. Barr
University College London

United Kingdom
e.barr@ucl.ac.uk

Sergey Mechtaev
University College London

United Kingdom
s.mechtaev@ucl.ac.uk

ABSTRACT
Containers help share and deploy software by packaging it with all
its dependencies. Tools, like Docker or Kubernetes, spawn contain-
ers from images as specified by a build system’s language, such as
Dockerfile. A build system takes many parameters to build an im-
age, including OS and application versions. These build parameters
can interact: setting one can restrict another. Dockerfile lacks sup-
port for reifying and constraining these interactions, thus forcing
developers to write a build script per workflow. As a result, develop-
ers have resorted to creating ad hoc solutions such as templates or
domain-specific frameworks that harm performance and complicate
maintenance because they are verbose and mix languages.

To address this problem, we introduce Modus, a Datalog dialect
for building container images. Modus’ key insight is that container
definitions naturally map to proof trees of Horn clauses. In these
trees, container configurations correspond to logical facts, build
instructions correspond to logic rules, and the build tree is computed
as the minimal proof of the Datalog query specifying the target
image. Modus relies on Datalog’s expressivity to specify complex
workflows with concision and facilitate automatic parallelisation.

We evaluated Modus by porting build systems of 6 popular
Docker Hub images to Modus. Modus reduced the code size by
20.1% compared to the used ad hoc solutions, while imposing a
negligible performance overhead, preserving the original image
size and image efficiency. We also provide a detailed analysis of
porting OpenJDK image build system to Modus.

CCS CONCEPTS
• Theory of computation → Constraint and logic program-
ming; • Software and its engineering → Virtual machines;
Domain specific languages.

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3549133

KEYWORDS
Container, Build system, Docker, Datalog
ACM Reference Format:
Chris Tomy, Tingmao Wang, Earl T. Barr, and Sergey Mechtaev. 2022.
Modus: A Datalog Dialect for Building Container Images. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE ’22), November
14–18, 2022, Singapore, Singapore. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3540250.3549133

1 INTRODUCTION
Software sharing and deployment are hard because they impose the
necessity of managing versions, dependencies, and execution envi-
ronments. Containers, such as Docker containers [28], can package
software with all its dependencies, simplifying sharing and deploy-
ment without considerable performance overhead. Containers are
widely used in cloud computing [30], continuous integration/deliv-
ery [28], and reproducible research [12]. Containers are spawned
from images, filesystem snapshots accompanied by configuration
files. Images consist of layers that store changes to the underlying
filesystem, such as file additions, modifications and deletions, that
are combined in runtime using a union mount filesystem.

Container images are constructed by executing instructions writ-
ten in a build system’s language, the most popular of which is
Dockerfile [4]. Dockerfiles describe a sequence of instructions, or a
directed acyclic graph (DAG) of instructions in the case of multi-
stage builds [3], that run shell commands, copy local files or files
from other images into the constructed image, or set image proper-
ties defined in the OCI specification such as the working directory.
The layered design of container images enables software reuse in
the form of building images on top of other images. Public container
registries, such as Docker Hub [2], store more than 500 000 public
image repositories comprising over 2 million layers [41].

Since most software is configurable and evolving, container im-
ages are intrinsically parameterised. Image parameters include soft-
ware versions, configuration parameters, and compilation flags. For
example, the official image python:3.9.6-alpine3.13 is parame-
terised with the version 3.9.6 of Python interpreter, as well the name
and the version of the Linux distribution, Alpine 3.13. These param-
eters can, and often do, depend on and interact with each other and
these interactions determine how images are built. For example,
installing an older version of Python on a newer Linux distribution
may require executing extra instructions to add appropriate soft-
ware repositories. Dockerfiles do not express dependencies between

https://doi.org/10.1145/3540250.3549133
https://doi.org/10.1145/3540250.3549133

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Chris Tomy, Tingmao Wang, Earl T. Barr, Sergey Mechtaev

parameters and the build logic. For example, Dockerfile specifies
build parameters only as global variables that are used as arguments
for build instructions, but does not permit using parameter values
to control the sequence of executed instructions.

Dockerfile’s lack of expressiveness forces developers to create
ad hoc solutions specific to their domains. In this paper, we consider
the problem of packaging popular software into containers. Open-
JDK [9], the most popular implementation of Java, is distributed in
multiple versions that are updated independently, with different
sets of features enabled, and is built for different platforms. Because
of the limitations of Dockerfiles, the official OpenJDK Docker im-
ages [24] use a templating approach that generates Dockerfile via a
combination of shell scripts and templates written in awk [11] and
jq [7]. The reliance on ad hoc solutions, such as awk/jq templates
causes maintenance problems. First, developers must learn multiple
languages or frameworks to maintain the build definitions. Second,
such build definitions are verbose.

To address the limitations of Dockerfiles, we propose Modus,
a logic programming language for building container images. Its
key insight is that an image build can be reduced to the problem of
solving a set of Horn clauses, logical formulas in the form f(x1, ...,x𝑛
) :- g(y1, ...,y𝑚), ...,h(z1, ...,z𝑙). In Modus, images and layers are
represented as logical facts, e.g. the image python:3.9.6-alpine3
.13 is represented as python("3.9.6","alpine","3.13"). Build
instructions correspond to logic rules; the build DAG is computed
as the minimal proof of the fact representing the target image from
truthful facts representing existing images. Expressing build rules
as Horn clauses leads to concise build definitions, allows users to
define the same build workflows as defined in ad hoc Dockerfile
templates, and enables automatic build parallelisation.

Horn clauses admit various semantics. Modus is a dialect of
Datalog [17], a specific kind of Horn clauses, in which the com-
putation of minimal proofs is decidable. When designing Modus,
we judiciously chose a set of Datalog extensions that better model
the domain of container builds. Broadly, these extensions fall into
four categories. First, we extended Datalog with operators that im-
plement container-related operations and domain-specific builtin
predicates. Second, string manipulations, such as variable expan-
sion, are crucial for defining container builds. However, a naïve
addition of string manipulations to Datalog makes it undecidable.
To address this problem, we adapted stratified construction [13] to
tractably support string operations. Third, Dockerfiles allow users
to specify arbitrary parameters when launching a target’s build.
In Modus, the target is specified as a goal of a Datalog program,
however the standard Datalog requires that all constants used in
the goal are explicitly defined in the Datalog program. This require-
ment is impractical because of the large or even unknown number
of possible configuration options in complex builds. To address
this usability limitation, we implemented an approach that permits
passing arbitrary build parameters through the goal of a Datalog
program without compromising the program’s safety.

To evaluate Modus, we ported build systems of 6 popular Docker
Hub projects from Dockerfile templates into Modusfiles. Modus
captured all Linux build scenarios, while reducing the code size by
20.1% with a negligible performance overhead. We also provide a
detailed analysis of porting OpenJDK build system into Modus.

The contributions of this work are the following:

• We propose a novel application of Datalog, the definition of
container image builds, where images and layers are repre-
sented as facts, build instruction as clauses, and build trees
are minimal proofs of facts representing target images;

• We design and implement Modus, a dialect of Datalog for
container build definitions with a set of judiciously chosen
Datalog extensions;

• Our evaluation of Modus on popular Docker Hub images
shows that it concisely expresses build scenarios for real-
world software with negligible overhead.

Modus is released at https://modus-continens.com. All code,
scripts and data necessary to reproduce this work are available at
https://zenodo.org/record/7088613.

2 OVERVIEW
Modus formalises a container build as a query to a deductive data-
base. This helps to define build instructions in a more concise and
intuitive way than using Dockerfiles, the most widely used ap-
proach. This section explains Dockerfile’s lack of expressiveness,
and the disadvantages of this problem’s popular workaround, the
templating approach. It also shows how Modus expresses container
image builds in Datalog, and how it reduces code size and build
time when packaging real world projects.

2.1 Inexpressivity of Dockerfiles
Assume we would like to package an application compiled with
GCC and GNU Make. A typical Dockerfile follows:

FROM gcc:bullseye AS bullseye_dev_release

COPY . /app/

RUN cd /app/ && make

It defines a build stage called bullseye_dev_release that repre-
sents a container image. This image is built on top of a public image
gcc:bullseye with GCC installed on Debian Bullseye, by copying
app’s source into the container via COPY, then compiling it with RUN.
These instructions add filesystem layers on top of gcc:bullseye.

During development, it is typical to build a debug target of an
application since it provides additional information about failures.
Assume that the command make debug compiles a debug target of
our application. There are two approaches to add a debug target
into Dockerfile that we refer to as the duplication approach and the
scripting approach. The duplication approach copies the code of
bullseye_dev_release to create the stage bullseye_dev_debug
and replaces make with make debug. The scripting approach in-
vokes an embedded shell script that processes a Dockerfile argu-
ment controlling the target:

FROM gcc:bullseye AS bullseye_dev_combined

ARG TARGET

COPY . /app/

RUN if ["$TARGET" = "debug"] ; then \

cd /app/ && make debug ; \

else \

cd /app/ && make ; fi

In this example, the shell script dynamically chooses the command
to execute based on the value of the variable TARGET.

Although the second approach might appear to be superior since
it avoids duplication, it has several disadvantages. First, it cannot

https://modus-continens.com
https://zenodo.org/record/7088613

Modus: A Datalog Dialect for Building Container Images ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

app(base , "dev", target) :-

dev_image(base),

copy (".", "/app/"),

make(target).

dev_image (" alpine ") :-

from(" alpine "),

run("apk add gcc make").

dev_image (" bullseye ") :- from("gcc:bullseye ").

app(base , "prod", "release ") :-

prod_image(base),

app(base , "dev", "release ")::copy ("/app", "/app").

prod_image (" alpine ") :- from(" alpine ").

prod_image (" bullseye ") :- from(" debian:bullseye -slim").

make("debug") :- run("cd /app/ && make debug").

make(" release ") :- run("cd /app/ && make").

Figure 1: Modusfile defining the image app parameterised
with base image, build mode, and compilation target.

be applied to any instructions other than RUN, since other instruc-
tions, such as COPY, cannot be expressed as shell scripts. Second,
using embedded scripts makes re-building images slower because
of ineffective caching: the build system has to invalidate all cached
layers following an ARG command if the value of ARG changes, even
if the commands executed and the data copied do not change. Fi-
nally, embedded scripts interfere with layer management: they may
enforce a particular placement of RUNs inducing a granularity of
layers that does not coincide with one intended by the developer.

Software is often packaged for different base Linux distributions.
Adding another base, say, Alpine, may require executing additional
commands, e.g. installing GCC and GNU Make with apk add gcc
make. Considering the disadvantages of the scripting approach,

we resort to the duplication approach and add two build stages:
FROM alpine AS alpine_dev_release

RUN apk add gcc make

COPY . /app/

RUN cd /app/ && make

and alpine_dev_debug defined in a similar fashion.
The images *_dev_* are not designed for production since they

contain redundant files such as the installed compiler and build
system. Redundant files increase both image size and attack sur-
face [1, 36]. A solution to this problem is multi-stage builds [3], i.e.
copying the compiled program into a slim image from an auxiliary
container using the COPY --from command, to build a production
mode as shown below for Debian slim:
FROM debian:bullseye -slim AS bullseye_prod_release

COPY --from=bullseye_dev_release /app/ /app/

When building bullseye_prod_release, Docker constructs and
executes a build directed acyclic graph (build DAG) in Figure 2a.

Since Alpine and Debian use different implementations of the
C standard library (libc), binaries cannot be copied across them,
which introduces a dependency between the base of the production
image, e.g. debian:bullseye-slim, and the stage used for compi-
lation, e.g. bullseye_dev_release. Dockerfile cannot express this
dependency, which forces us to duplicate bullseye_prod_release

COPY --from=bullseye_dev_release /app/ /app/

FROM debian:bullseye-slim

RUN cd /app/ && make

FROM gcc:11-bullseye

COPY . /app/

“bullseye_prod_release” image

“bullseye_dev_release” image

(a) Build DAG for the target bullseye_prod_release.
app(“bullseye”, “prod”, “release”)

prod_image(“bullseye”)

from(“debian:bullseye-slim”)

(

app(“bullseye”, “prod”, “release”)

dev_image(“bullseye”)

from(“gcc:bullseye”)

copy(“.”, “/app/”)

make(“release”)

run(“cd /app/ && make”)

)::copy(“/app/”, “/app/”)

(b) Proof tree for the goal app("bullseye", "prod", "release")

Figure 2: Build DAG and corresponding proof tree.

to create a stage alpine_prod_release that copies binaries from
alpine_dev_release into the base image alpine.

In summary, Dockerfile’s lack of expressiveness forced us to
create four duplicates of the development stages and two duplicates
of the production stages, which is a code smell [35].

2.2 Build Instructions as Datalog Rules
The key intuition of Modus is that build instructions can be repre-
sented as a set of particular Horn clauses, formulas in the form
img(x1, ...,x𝑚) :- img𝑏𝑎𝑠𝑒 (y1, ...,y𝑘), l1(t1, ...,tℎ), ..., l𝑛 (z1, ...,z𝑔)

that can be interpreted as “the image img is constructed from the
base image img𝑏𝑎𝑠𝑒 by adding the layers l1 , ..., l𝑛”.

Figure 1 shows a programwritten in our implementation of Horn
clauses, a Datalog dialect Modus, that concisely expresses all build
scenarios from Section 2.1. In this example, the image predicate app(
base, mode, target) represents the target image. This predicate
is defined using two rules, for the development mode "dev" and
for the production mode "prod". The rule for the development
mode selects the base image using the image predicate dev_image,
copies the files into the container using the builtin predicate copy,
and builds the program using the layer predicate make. The make
predicate is a layer predicate, because it is defined using the builtin
layer predicate run. The rule for the production mode copies bi-
naries from the development image using the operator ::copy. In
Modus, operators are not part of the logical inference. Instead, they
implement container-specific functionality such as copying files
between containers or setting image properties.

Compared to the Dockerfile (Section 2.1), theModusfile (Figure 1)
involves no code duplication — each instruction, such as copying
files to the container or running compilation, appears exactly once.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Chris Tomy, Tingmao Wang, Earl T. Barr, Sergey Mechtaev

{{

if is_alpine then (

-}}

FROM alpine :{{ alpine_version }}

RUN apk add --no-cache java -cacerts

ENV JAVA_HOME /opt/openjdk -{{ env.version }}

{{

) elif is_oracle then (

-}}

FROM oraclelinux :{{ oracle_version }}-slim

RUN set -eux; \

{{ if oracle_version == "7" then (-}}

yum install -y \

{{) else (-}}

microdnf install \

{{) end -}}

Figure 3: A fragment of Dockerfile template for OpenJDK.

To build an image from a Modusfile, the user has to specify a
goal. For example, the goal app("bullseye","prod","release")
would build a production image of the app on Debian Bullseye. The
build DAG for this image is computed as a minimal proof of the
fact representing the goal from facts representing existing images.
Figure 2a shows such tree computed for app("bullseye","prod
","release"). Notice that, modulo auxiliary predicates make and
prod_image, this proof tree contains exactly the instructions from
the build DAG of the image bullseye_prod_release in Figure 2a.

Modus can build multiple images at once, in parallel. For example,
if the user specifies the goal app(base,"prod","release"), where
base is a variable, Modus automatically deduces that it needs to
build the images app("bullseye","prod","release") and app
("alpine","prod","release"), and builds them in parallel.

2.3 Code Size and Build Efficiency
The lack of Dockerfile’s expressiveness described in Section 2.1 has
motivated developers to adapt an alternative solution, to generate
Dockerfiles from templates, which we refer to as the templating
approach. As of March 2022, 17 out of 25 most popular projects in
Docker Hub [2] use the templating approach.

We illustrate the templating approach using the build system for
the widely-used official OpenJDK images. OpenJDK uses a combina-
tion of several string processing tools, jq for the JSON processing
and gawk for advanced string processing [11], to define Dockerfile
templates, from which it generates 40 Dockerfile instances for dif-
ferent OpenJDK configurations. Each configuration is identified by
the tuple of the Java version, the Java type (JDK or JRE), and the
base Linux distribution, e.g. ("8", "jdk", "oraclelinux7").

Each OpenJDK configuration requires executing a different set of
instructions to build an image. The instructions are selected based
on configuration parameters in a Dockerfile template, a fragment
of which is shown in Figure 3. This template mixes three languages:
{{ and -}} are handled by a gawk script, expressions such as if
oracle_version == "7" then are from jq’s query language, and
RUN and FROM instructions are from Dockerfile’s syntax.

base_image(MAJOR_VERSION , VARIANT , JAVA_HOME , ...) :-

(

is_alpine(VARIANT , ALPINE_VERSION),

from(f"alpine:${ALPINE_VERSION }"),

...

;

is_oracle(VARIANT , ORACLE_VERSION),

oracle_commands(INSTALLER , CLEANER ,

ORACLE_VERSION),

from(f"oraclelinux:${ORACLE_VERSION}-slim"),

...

openjdk_setup(MAJOR_VERSION , VERSION , ...) :-

openjdk_config(MAJOR_VERSION , VERSION , ...),

base_image(MAJOR_VERSION , VARIANT , ...),

(

run(BASE_SETUP_COMMAND),

locale(VARIANT , LANG),

(a) A fragment of Modusfile for building OpenJDK.
openjdk_setup(“8”, “8u322”, “jdk”, . . .)

openjdk_config(“8”, “8u322”, “jdk”, . . .)

(

base_image(“8”, “oraclelinux7”, . . .)

is_oracle(“oraclelinux7”, “7”)

oracle_commands(“yum install -y”, . . .)

from(“oraclelinux:7-slim”)

)::append_path(“/usr/java/openjdk-8/bin”)

. . .

(

run(“set -eux; yum install -y gzip . . . ”)

locale(“oraclelinux7”, “en_US.UTF-8”)

. . .

(b) A proof tree fragment for openjdk("8", "jdk", "oraclelinux7")

Figure 4: A build DAG and the corresponding proof tree.

The templating approach as used by OpenJDK has several disad-
vantages. First, it complicates maintenance, since it requires sup-
porting an ad hoc templating frameworks that mix several lan-
guages. Second, string processing tools are inefficient, and Docker-
file generation can take a noticable portion of the build time. Finally,
string processing scripts are error-prone and hard to debug.

Modus concisely describes OpenJDK’s build scenarios without
using external tools. OpenJDK images are represented via image
predicate openjdk(MAJOR_VERSION, JAVA_TYPE, VARIANT). Fig-
ure 4a shows a fragment of Modusfile corresponding to the template
in Figure 3. It shows that Modus enables abstraction, since it al-
lows extracting reusable parts of the build logic, such as selecting
the base image via the predicate base_image. When launching a
build, Modus generates proof trees for the specified goals. Figure 4b
shows a fragment of the proof tree for the goal openjdk("8", "jdk
", "oraclelinux7"). This proof tree corresponds to the concrete
Dockerfile generated by the template, and builds an identical image.

Using Modus enabled us to reduce the code size of OpenJDK
container build system by 47.6% and reduce build time by 40.6%
compared to the templating approach. Our case study on OpenJDK
images is described in more details in Section 6.

Modus: A Datalog Dialect for Building Container Images ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

3 BACKGROUND
Modus is a Datalog dialect specialised for container builds via a set
of extensions. It uses BuildKit [8] to build images from proof trees.

3.1 Datalog
ADatalog program consists of a finite set of rules and facts. Rules are
Horn clauses in the form L0:-L1, ...,L𝑛 , where each L𝑖 is a literal p(
t1, ...,t𝑛) such that p is a predicate symbol and t𝑖 are terms. A term
is either a constant or a variable. We denote variables and predicate
symbols using alphanumeric strings with optional underscores, e.g.
foo_bar, and constants using quoted strings, e.g. "foobar". The
left side of a clause is its head; the right-hand side is its body.

Datalog imposes structural restrictions on its rules. First, each
predicate symbol has to be applied to the same number of argu-
ments, which defines its arity. Second, each Datalog program has
to satisfy the following safety conditions that ensure the set of all
facts that can be derived from a Datalog program is finite:

Definition 3.1 (Safety Conditions). The following structural con-
straints should hold: (1) each fact is ground (has no variables) and
(2) a variable that occurs in the rule’s head must occur in its body.

Variables that occur in the head of a rule and also in the body of the
same rule are called grounded. Variables that occur only in the head
of a rule but not in the body are called non-grounded. A ground
substitution \ ≜ {𝑥1/𝑐1, ..., 𝑥𝑛/𝑐𝑛} is a mapping from variables to
constants. We denote an application of the substitution \ to the
term t as t\ , and to the literal L as L\ .

In the proof-theoretic interpretation of Datalog, the meaning
of a program is defined as the set of all facts that can be inferred
from the program. For a given rule L0 :- L1, ..., L𝑛 and a set of
ground facts F1, ..., F𝑛 , we say that F0 can be inferred in one step
from F1, ..., F𝑛 if there is a substitution \ such that for any 𝑖 ∈ 0..𝑛,
F𝑖 = L𝑖\ . We refer to this as elementary production principle (EPP).
A ground fact 𝐹 can be inferred from a program 𝑃 if either 𝐹 ∈ 𝑃

or 𝐹 can be inferred by applying EPP a finite number of times. The
sequence of applications of EPP used to infer a fact 𝐹 from 𝑃 forms
a proof of 𝐹 from 𝑃 . A proof can be represented using a proof tree.

Definition 3.2 (Proof Tree). For a given Datalog program 𝑃 and a
ground fact 𝐹 , a proof tree of 𝐹 from 𝑃 is the tree (𝐹, 𝑅, \, {𝑡1, ..., 𝑡𝑛})
such that 𝑛 = 0 iff 𝐹 ∈ 𝑃 , otherwise 𝑅 ≜ L0 :- L1, ..., L𝑛 is a rule
from 𝑃 , 𝐹 = L0\ , and 𝑡𝑖 are proof trees of L𝑖\ .

Consider a Datalog program defining graph reachability:

reach(n, n) :- node(n).

reach(n1, n2) :- arc(n1, n3), reach(n3, n2).

and truthful facts: node("1"), node("2"), node("3"), arc("1","2")
and arc("2","3"). Then, a proof tree of the fact reach("1","3")
can be visualised as follows:

reach(“1, “3”)

arc(“1”, “2”)

reach(“2”, “3”)

arc(“2”, “3”)

reach(“3”, “3”)

node(“3”)

Datalog allows specifying a goal to select a subset of its outputs
that are subsumed by the goal. For example, the fact f("a","a")
is subsumed by the goal f(x,x), but f("a","b") is not.

3.2 Container Images and Dockerfiles
Containers, a form of OS-level virtualisation, are spawned from
images, filesystem snapshots accompanied by configuration files.
Let F be a set of all filesystems, trees of files with their contents.
Filesystems are defined recursively, that is a subtree of a filesystem
𝐹 under the path 𝑝 denoted as subtree(F, p) is also a filesystem. Fhost
is the filesystem of the host OS. Container images, as standardised
by The Open Container Initiative (OCI) [21] have layered design.
A layer is typically stored as a delta for two filesystems, but to
abstract over filesystem implementations we define a layer 𝐿 non-
constructively as a pair of filesystems (𝐹1, 𝐹2). A container image
𝐼 ≜ [𝐿1, ..., 𝐿𝑛] is a stack of layers such that for each 𝑖 , if 𝐿𝑖 =

(𝐹1, 𝐹2) and 𝐿𝑖+1 = (𝐹3, 𝐹4), then 𝐹2 = 𝐹3. We denote the set of all
images as I. We assume that images can be referenced by their
identifiers using the function image_by_ref : ID → 𝐼 . The runtime
semantics of images is a function [[. . .]] : I → F that is usually
computed dynamically using a union mount filesystem, such as
OverlayFS [15]. To abstract away irrelevant implementation details,
we define this semantics as simply the top filesystem on the stack,
that is [[𝐼]] ≜ snd (peek(𝐼)).

Two common operations performed on images are run and copy.
The operation run :Scripts→I→I takes a script 𝑠 and an image 𝐼 ,
executes 𝑠 on the filesystem [[𝐼]] resulting in a new filesystem 𝐹 , and
returns an image that is obtained by appending the layer ([[𝐼]], 𝐹)
to 𝐼 . The operation copy :!F ×Paths→I→I takes a filesystem 𝐹 , a
path 𝑝 and an image 𝐼 , and returns an image obtained by adding
the layer containing 𝐹 under the path 𝑝 on top of 𝐼 .

Dockerfile is a widely-used format for specifying container im-
age builds. Dockerfiles define build stages, each of which con-
sists of a single FROM id instruction specifying the base image
𝐼base ≜ image_by_ref (id), followed by a sequence of 𝑛 instructions.
Each 𝑖-th instruction corresponds to a function 𝑓𝑖 : I→I. If this
instruction is RUN script, then 𝑓𝑖 ≜ run(script). If this instruction is
COPY src dst, then 𝑓𝑖 ≜ copy(subtree(Fhost , src), dst). The seman-
tics of the build stage is the image (𝑓𝑛 ◦ ... ◦ 𝑓1) (𝐼base). Dockerfiles
also support instructions that set image properties such as WORKDIR
that sets the current working directory, but such instructions do
not create new layers.

4 THE MODUS LANGUAGE
This section introduces the syntax and semantics of Modus, de-
scribes and motivates Datalog’s extensions of that it implements.

4.1 Syntax & Semantics
Modus’ syntax is based on Datalog’s syntax given in Section 3.1.
Modus extends this syntax via the notion of predicate kind. Modus
has three kinds of predicates: image predicates, layer predicates, and
logic predicates. Image predicates correspond to container images.
An image predicate is either the built-in predicate from that refers
to an existing image by name or it is defined in a rule

i1(x1, ...,x𝑚) :- i2(y1, ...,y𝑘), l1(t1, ...,tℎ), ..., l𝑛 (z1, ...,z𝑔)

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Chris Tomy, Tingmao Wang, Earl T. Barr, Sergey Mechtaev

build_image(𝐹, _, _, {𝑡1, ..., 𝑡𝑛}) =
if 𝑛 = 0 then

match 𝐹 with
| from(id) → image_by_ref (id)

else
let 𝐼base = build_image(𝑡1) in
let 𝑓𝑖 = build_layer (𝑡𝑖) for 𝑖 ∈ [2, 𝑛] in
(𝑓𝑛 ◦ ... ◦ 𝑓2) (𝐼𝑏𝑎𝑠𝑒)

build_layer (𝐹, _, _, {𝑡1, ..., 𝑡𝑛}) =
if 𝑛 = 0 then

match 𝐹 with
| run(s) → run(𝑠)
| copy(src, dest) → copy(subtree(Fhost , src), dest)

else
let 𝑓𝑖 = build_layer (𝑡𝑖) for 𝑖 ∈ [1, 𝑛] in
𝑓𝑛 ◦ ... ◦ 𝑓1

Figure 5: Building images from proof trees.

where i1 and i2 are image predicates, and l𝑖 are zero or more
layer predicates. Layer predicates describe image layers. A layer
predicate is either run and copy or a predicate defined in a rule
l1(x1, ...,x𝑚) :- l2(t1, ...,tℎ), ..., l𝑛 (z1, ...,z𝑔)

where l𝑖 are layer predicates. Logic predicates are predicates that do
not represent any container-related entities; they define build logic.
Logic predicate can be defined through other logic predicates, and
can appear in any part of rules’ bodies. For example, the program
in Figure 1 defines image predicates app, dev_image, prod_image
and a layer predicate make.

The semantics of a Modus program is a mapping from goals to
sets of images. For a given program 𝑃 and a goal𝐺 , Modus computes
all facts that can be inferred from 𝑃 and are subsumed by 𝐺 , then
constructs a proof tree for each fact. A fact corresponds to the built
image, and its proof tree is the recipe to build the image. Since
there can be multiple proof trees for a given fact, we choose the
minimal tree w.r.t. the number of layers, as it naturally optimises the
resulting image size and build time. Multiple minimal proofs may
exist. For example, the program f :- p. f :- q. p. q. provides
multiples way to derive the goal f. In this case, Modus picks one
deterministically based on an implementation-defined ordering.

Given a proof tree (𝐹, 𝑅, \, {𝑡1, ..., 𝑡𝑛}), Modus builds an image
that can be defined using the function build_image : ProofTrees →
I given in Figure 5. This function implements a top-down proof tree
traversal, which visits tree nodes from left to right, converts them
to the layer building functions, and then applies the composition
of these functions to the base image. Note that this algorithm as-
sumes that the proof tree is stripped of logic predicates. An efficient
implementation of build_image is discussed in Section 4.3.

4.2 Extensions
Implementations of Datalog often contain domain-specific exten-
sions, e.g. to facilitate implementation of program analysers [26].
Modus is the first Datalog implementation designed for container

image builds, and we judiciously chose a set of extension to help
modeling this new domain.

4.2.1 Built-in Predicates and Operators. To facilitate definition of
image builds, we introduced a library of built-in predicates. Apart
from the predicates from, run, and copy described above, we intro-
duce predicates for defining conditions on the input parameters.
Notably, the semver_* predicates define software version compari-
son as per the SemVer specification [10]. For example, the following
fact is true: semver_lt("1.0.3","1.1.0"), where lt means <.

The key difficulty of adding built-in predicates to Datalog is that
built-in predicates such as semver_lt are infinite relations, which
require special handling to retain Datalog’s decidability. We used
the standard approach [16] to support built-in predicates: we defer
the evaluation of a built-in predicate until all arguments of this
predicate are bound to constants.

Some container-specific operations are inconvenient to express
using predicates. For example, in multi-stage builds [3], files are
copied from a temporary image to the current image. Since images
are identified with literals, an operation expressing multi-stage
build would need to take a literal as an argument. However, Datalog
does not permit applying predicates to literals. To address this, we
introduce operators that use the syntax literal::operator(t

1,...,t𝑛). A notable example of an operator is ::copy that is
needed to implement multi-stage builds. Formally, the semantics
of ::copy are defined by adding the following rule in the match
statement of the function build_layer in Figure 5:

| literal::copy(src, dest) →
copy(subtree([[build_image(literal, _, _, ∅)]], src), dest)

An example usage of ::copy is given in Section 2.2.

4.2.2 StringManipulation & Stratified Construction. Stringmanipu-
lations are often used in container builds systems to parse/construct
configuration options. String manipulations are enabled in Modus
via the built-in predicate string_concat(A, B, C) that states that
𝐶 is the concatenation of 𝐴 and 𝐵. Modus also introduces Python-
like formatted strings that are defined through string_concat. For
example, foo(f"a${x}") is equivalent to string_concat("a",
x, y), foo(y), where y is a fresh variable.

A naïve incorporation of string_concat(A, B, C) into Data-
log makes it possible to generate strings of arbitrary length, making
evaluating Datalog programs intractable. To address this problem,
we adapted stratified construction [13] to forbid Modus programs
that involve recursive predicates that depend on arguments of
string_concat, in the spirit of stratified negation [16]. As a result,
each Modus program can apply string_concat only up to a pre-
defined number of times, which is independent of the input. This
limitation did not impose any obstacles when porting realistic build
systems presented in Section 5.

4.2.3 Non-grounded Variables. Datalog’s safety conditions (Defini-
tion 3.1) require that each variable that occurs in the rule’s head
must occur in its body. When using built-in predicates, this variable
should also be an argument of a non-built-in predicate in the body.
This condition can be naturally satisfied in Datalog’s traditional ap-
plications such as program analysis, where all constants are present

Modus: A Datalog Dialect for Building Container Images ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

in the database. In contrast, this restriction in inconvenient for
container builds as the following example demonstrates:

app(cflags) :-

from("gcc:latest "),

copy (".", "."),

run(f"gcc ${cflags} test.c -o test").

The variable cflags is not grounded, as it only appears as an ar-
gument of a built-in predicate, so this is an invalid Datalog pro-
gram. Dockerfiles allow users to specify arbitrary parameters when
launching a target’s build, such as the -g flag. However, GCC ac-
cepts a large number of flags, so it would impractical to list all
accepted flags in the Modus program. Instead, it would be natural
to allow users to use this program to build the goal app("-g"),
since the argument of run can then be inferred from the goal.

To enable such usage scenarios, we relaxed the safety conditions
by allowing user-defined predicates with non-grounded variables.
At the same time, we introduced the new restriction that, during
evaluation, we defer the evaluation of these predicates until all of
their arguments are bound to constants, following the handling of
built-in predicates in Section 4.2.1. Doing so enabled us to support
the usage scenario above without sacrificing Datalog’s safety.

4.3 Implementation
To generate proof trees for a given goal, we implemented a custom,
top-down Datalog solver based on SLD resolution [16] that 1) sup-
ports our library of built-in predicates described in Section 4.2.1,
2) handles non-grounded variables in a non-standard way as ex-
plained in Section 4.2.3, and 3) generates proofs that minimise the
number of layers required to build a given image.

To build images from proof trees, Modus uses BuildKit [8] as
the backend. BuildKit provides an intermediate representation LLB,
which is described by BuildKit’s developers as “LLB is to Dockerfile
what LLVM IR is to C”. LLB is a DAG, where a node either refers
to existing image, or corresponds to run or copy operation. To
implement the function build_image, Modus translates the proof
tree into LLB and executes it with BuildKit. This approach has
several advantages. First, BuildKit automatically parallelises the
build. Second, it provides automatic caching, i.e. it tracks changes
to the filesystem and shell commands, and only re-builds layers
and images that are affected by these changes.

Currently, BuildKit does not support build graphs with multiple
output. To overcome this problem, when building multiple images,
we construct a dummy image and attach the target images as chil-
dren to this dummy image. Although this workaround enables us to
build multiple images in parallel, BuildKit’s API does not currently
give us direct access these child images after they are built. Instead,
we must redundantly call the build system. This cost is especially
noticeable, since these calls can only start after all builds are fin-
ished, preventing Modus from maximally exploiting parallelism.
We refer to this redundant step as exporting. This step is not an
essential part of Modus’ build process, but a workaround over the
current limitations of BuildKit’s API.

Table 1: Corpus Descriptive Statistics.

Project Templating Method Outputs

Ubuntu bash 6
Redis sed + awk 9
Nginx sed 8
NodeJS sed + awk 32
MySQL awk + jq 4
Traefik envsubst 4

5 EVALUATION ON DOCKER HUB IMAGES
We now show that, for a corpus of six popular Docker projects,
Modus reduces the overall size of code used to build images by an
average of 20.1%, with a negligible performance overhead.

To build our corpus, we considered images as ranked by Docker
Hub “Suggested” filter, which closely follows downloads, and se-
lected the first six which used different sequences of commands for
templating. Under this rule, selecting MySQL filtered out Python
and PostgreSQL. We also intended to rule out projects that either
do not use parameters in their tags or build only one container
image, as the focus of Modus is on parameterised builds, but we did
not need to employ this filter. We have no reason to believe that
this selection process introduces bias with respect to the object of
our study — namely, builds conditioned on parameters. Using pop-
ular examples is common practice in empirical work. Any project
considering Modus would do so to adopt Modus’ feature set pre-
cisely because Modus promises to help them speed or ease the
maintenance of their build.

Porting each project to Modus requires understanding the exist-
ing build and, in turn, substantial manual effort. The six projects
we selected collectively cover an interesting subdomain of the con-
tainer build system space. Table 1 summarises our corpus.

5.1 Modus’ Code Reduction
We now quantify and compare the size of the build systems of our
corpus to their Modus ports. Our key finding is that Modus reduces
build code size by 20.1%, on average, over our corpus in lines of code,
by reducing repetition and avoiding scripting.Wemeasure code size
after normalising the code by stripping comments, whitespace, and
“stop words”, i.e. the Cooked2 normalisation described in Section 6.2.

Table 2 shows our code reduction results, calculated in two ways.
Table 2a only counts the Dockerfile templates, not scripts that
use them to generate Dockerfiles, in the Templating columns and
only Modusfiles in the Modus columns. To the counts in Table 2a,
Table 2b adds the sizes of all templates and scripts used to build
the images in the Templating columns, and any scripts needed to
generate version lists (but not templating) in the Modus columns.
We present both tables because the definition of build code is not
well established. One view is that a build system consists only of
the Dockerfile and Modufiles. Another view is that a build system
includes all the version fetching and templating scripts. Further
complicating matters is the fact that some of these scripts may
additionally perform tasks unrelated to building their project. Thus,
we present these two tables to establish lower and upper bounds
on the true size of each project’s build system.

https://github.com/tianon/docker-brew-ubuntu-core
https://github.com/docker-library/redis
https://github.com/nginxinc/docker-nginx
https://github.com/nodejs/docker-node
https://github.com/docker-library/mysql
https://github.com/traefik/traefik-library-image.git

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Chris Tomy, Tingmao Wang, Earl T. Barr, Sergey Mechtaev

In Table 2a, the Ubuntu project does not use templates, but a bash
script that prints its Dockerfiles, so we did not report its template
sizes. The Nginx project’s templating script contains most of its
build logic, written in bash, and it simply writes results into its
templates. The script manipulates strings and constructs sets of
packages to install, inserted into the Dockerfile in the form of a
space-separated string that get passed to apt. Porting this logic
into a Modusfile substantially reduces the build code needed from
169 lines of bash script to 58 lines of Modusfile (ignoring docker
build instructions in either case). This accounts for the swing in
the results for Nginx across Table 2a and Table 2b.

Modus reduces build system code size by 20.1% on average in
lines and 21.5% reduction in words.

Modus owes this result to its expressivity. In Section 6, we use a
case study to illustrate how it achieves these savings in detail.

5.2 Modus Build Time
We now compare our corpus’ build systems to their Modus ports.
These experiments were performed on AWS’ c5.2xlarge, which, at
the time of writing, had 8 CPUs, 16 GiB RAM, 10 Gbps bandwidth,
and an SSD disk with 8000 IOPS. We used Modus v0.1.11 to build
our Modusfile, and used the BuildKit mode of docker build and
GNU parallel [38] to build our corpus’ Dockerfiles. Some projects
build images for platforms other than x86_64, but we only ran our
tests on a x86_64 VM, not for other architectures. Despite this,
our Modusfiles include code to build other architectures, when a
project in our corpus does, to ensure a fair code size comparison.
We exclude the redundant export step discussed in Section 4.3 from
our results, since it is a workaround for BuildKit API limitations.
Exporting averages 4.78 s across our corpus.When BuildKit exposes
an appropriate API, this overhead will disappear.

Table 3 shows our results. Each of the ` column is an average of
64 runs. The CI columns is the 95% confidence interval for the true
average. In both table, we did not include time taken to pull base
images, e.g. alpine or debian, because (1) Docker Hub request
limits meant that we could not do a fresh pull for each run; and 2)
the time taken to pull images depends on network conditions and
CPU speed (for extraction), two problems Modus does not address.

Modus increases average total build times by 0.6%, showing
that Modus reduces build code size with negligible overhead.

Modus’ implementation is not yet optimised, but still it achieves
this negligible overhead. Even including the low and input-independent
overhead of the BuildKit workaround (Section 4.3), developers can
safely adopt Modus today to take advantage of its concision.

5.3 Validating Modus-Built Images
Since our Modusfiles are direct translation of our corpus’ existing
build systems, we expect Modus images to closely match the Dock-
erfile images in terms of image size, and also space efficiency, which
is measured with a well-known Docker image analyzer known as
dive [22]. The space efficiency score is a heuristic that penalises
wasted space. Roughly, it is the sum of the size of all visible files in
the final image over the total image size. Our results shows that,
on average, our image efficiency score is 0.15% higher than the

awk

1

2 3

4

script
jq

CD/CI
build

Dockerfile
templates

40 imagesUpdate
script

40
Dockerfilesjq query

Docker’s OpenJDK build system

versions.jsonSource URLs

Figure 6: DOBS build steps to produce OpenJDK images.

Dockerfile counterpart. In the worse case, our efficiency score is
not more than 0.05% lower. The average difference in image size
is 1.01MiB (0.4%) and the maximum difference is 3.96MiB (3.6%).
We also ran simple smoke tests that runs the entry executable with
flags to print its version on each image produced: all Modus images
passed this test.

6 CASE STUDY: OPENJDK
We conducted a case study to detail how we port build systems
to Modus and to explain how Modus’ expressivity allows it to
define build systems with concision. We chose to study the official
image packaging for OpenJDK because 1) Docker maintains it and
2) it outputs 40 images [24], at the time of writing, which is above
32.1, the average number of images produced by the top five (by
GitHub stars) build systemsmaintained by Docker. We first describe
OpenJDK’s current build system and how we manually ported it,
while taking care to produce an equivalent Modus build. The Modus
port is concise, using 47.6% fewer words than OpenJDK’s official
build, and fast, achieving a total build-time speedup of 40.6%.

6.1 Porting OpenJDK’s Build to Modus
The existing OpenJDK packaging uses a templating approach to
handle parameter interactions. Figure 6 presents the workflow of
Docker’s OpenJDK build system (DOBS). The build system accepts
two inputs: Dockerfile templates and OpenJDK source URLs. Step
1 updates the version data by checking known sources of OpenJDK
and generates the file versions.json. In step 2, awk, an advanced
string processing tool [11], processes the Dockerfile templates, gen-
erating an appropriate jq [7] expression according to the code
within template delimiters '{{' and '}}'. In step 3, jq generates
Dockerfile instances by applying the expression constructed at step
2 to versions.json (in step 3). A CI service performs step 4, taking
the Dockerfiles from step 3 and building 40 OCI images.

To port a build system toModus, one needs to identify its parame-
ters, re-encode into Modus’ data format and translate its conditional
logic into rules. We ported the subset of DOBS that generates Linux
images. Examining DOBS’ source, we learned that the directory
structure1 containing DOBS’ Dockerfiles encodes the parameters
that DOBS uses to identify an image: major application version, Java
type, and base image variant. These triples, in turn, index DOBS’
JSON versions file [24] where we found the additional parameters
needed to build the image2: full version, AMD64 binary URL, and
ARM64 binary URL. Modus’ primary data format is a set of Modus
facts, which are essentially tuples. We manually inspected both the

1For example, consider https://github.com/docker-library/openjdk/tree/master/19/jdk/
alpine3.14.
2We omit parameters that do not relate to the image build itself, such as checksums.

https://github.com/docker-library/openjdk/tree/master/19/jdk/alpine3.14
https://github.com/docker-library/openjdk/tree/master/19/jdk/alpine3.14

Modus: A Datalog Dialect for Building Container Images ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 2: Normalised code size for our corpus (Table 1).

(a) Modusfile and Dockerfile templates only.

Templating Modus

Project CR Words Bytes CR Words Bytes

mysql 162 600 6398 176 (+08.6%) 586 (-02.3%) 7041 (+10.1%)
nginx 170 668 6155 209 (+22.9%) 786 (+17.7%) 8168 (+32.7%)
node 202 843 8080 165 (-18.3%) 584 (-30.7%) 6480 (-19.8%)
redis 161 645 6232 161 (+00.0%) 590 (-08.5%) 6187 (-00.7%)
traefik 72 194 2993 52 (-27.8%) 142 (-26.8%) 2335 (-22.0%)
ubuntu n/a 61 (n/a) 191 (n/a) 2553 (n/a)

(b) Including version fetching (for both) and templating scripts.

Templating Modus

Project CR Words Bytes CR Words Bytes

mysql 318 1081 11022 316 (-00.6%) 1012 (-06.4%) 11357 (+03.0%)
nginx 292 907 9069 209 (-28.4%) 786 (-13.3%) 8168 (-09.9%)
node 664 2134 19122 569 (-14.3%) 1683 (-21.1%) 15414 (-19.4%)
redis 244 952 8577 207 (-15.2%) 773 (-18.8%) 7657 (-10.7%)
traefik 105 302 3938 52 (-50.5%) 142 (-53.0%) 2335 (-40.7%)
ubuntu 78 254 2533 69 (-11.5%) 212 (-16.5%) 2688 (+06.1%)

Table 3: Build time for each project in our corpus (Table 1).

(a) modus build and parallel docker build only.

Project Dockerfiles (s) Modus (s)

` CI ` CI

mysql 66.57 66.02–67.12 68.34 68.10–68.57
nginx 23.08 23.04–23.12 26.45 26.40–26.51
node 108.95 108.51–109.39 83.30 82.26–84.33
redis 199.85 199.77–199.94 202.19 199.77–204.61
traefik 9.02 8.73–9.32 8.91 8.43–9.38
ubuntu 7.86 7.81–7.91 12.25 12.16–12.34

(b) Including version fetching (for both) and templating scripts.

Project Dockerfiles (s) Modus (s)

` CI ` CI

mysql 69.52 68.96–70.07 69.67 69.42–69.92
nginx 23.15 23.11–23.18 26.45 26.40–26.51
node 109.99 109.55–110.44 88.20 87.14–89.25
redis 200.87 200.71–201.04 203.35 200.92–205.78
traefik 9.06 8.76–9.35 8.91 8.43–9.38
ubuntu 11.23 11.12–11.34 12.28 12.19–12.37

existing JSON version data [24] and templated Dockerfile [24] to
learn how to convert the JSON data into Modus facts. For simplic-
ity, each fact that we generate for our build system includes all of
the parameters. We manually examined each conditional block in
DOBS and wrote an equivalent Modus rule.

To ensure correctness of our port, after each implementation
of a Modus rule, we built images that correspond to those new
branches of logic and used dive [22] to compare the operations
performed in each layer with the corresponding DOBS image. We
contend that this development process established a close mapping
between our linux.Modusfile and their Dockerfile-linux.template; the
interested reader can build and examine the relevant artefacts using
https://zenodo.org/record/7088613 to confirm.

A simple metric that can act as a heuristic for correctness is the
difference in image size, so we set up a CI that computes this for every
OpenJDK image we build. The average difference in size is 0.38MB.
For comparison, the largest OpenJDK image is currently 675MB3.
We spot-checked five uniformly chosen images by tarballing the
filesystems and then running pkgdiff [31] on them to determine
whether these differences are data or executables. All the differences
we inspected were in data, like log files.

6.2 Modus Concisely Builds OpenJDK
Modus’ expressivity makes it more concise than Docker’s OpenJDK
build system (DOBS). We quantify its concision, show that this
concision and readability comes for free: the efficiency of the images
that Modus builds match those produced by DOBS.

3This is openjdk:19-jdk-bullseye [24].

Table 4: Modus builds OpenJDK images with 47.6% less
words.

Templating Modus

Variant CR Words Bytes CR Words Bytes

Raw 549 2209 16109 267 (-51.4%) 869 (-60.7%) 10389 (-35.5%)
Cooked1 441 1556 10626 246 (-44.2%) 750 (-51.8%) 9607 (-9.6%)
Cooked2 403 1326 9642 244 (-39.5%) 695 (-47.6%) 7645 (-20.7%)

Table 4 displays the statistics of raw, unedited files, as well as
two variants, Cooked1 and Cooked24. Cooked1 removes comments
and empty lines to de-emphasise formatting conventions. Cooked2
removes further tokens that are analogous to stop words, like de-
limiters. In particular, we remove templating delimiters such as }},
and we replace whitespace chains defined by [\t]\+ with a single
space to balance out different indentation choices. As with white-
space, we remove these tokens in an effort to make the comparison
more fair and centered on tokens with more semantic content.

On OpenJDK, Modus achieves a reduction of 47.6% words and
20.7% bytes, using the Cooked2 code normalisation.

These size reductions provide evidence that Modus can make
build systems more maintainable. Much of Modus’ concision is a re-
sult of its constructs and built-in operators to handle conditionally
selecting instructions. In addition to concision, Modus constructs
enhance readability.With templating, readability often breaks down
when using nested conditional syntax like in the DOBS templated
4The script that implements these variants can be found here, https://zenodo.org/
record/7088613 at openjdk-images-case-study/benchmark-scripts/code_size.sh

https://zenodo.org/record/7088613
https://zenodo.org/record/7088613
https://zenodo.org/record/7088613

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Chris Tomy, Tingmao Wang, Earl T. Barr, Sergey Mechtaev

Table 5: Average build time results for OpenJDK images over
10 runs. `𝑡 is the average time to perform template process-
ing to construct parameter-specific Dockerfiles.

Approach ` (s) ` + `𝑡 (s)

OpenJDK
Dockerfiles

Sequential 516.3 637.4
Parallel 119.8 240.9

Manual Optim. 276.7 397.8

Modus Total 143.1 143.1
Exporting 18.0 N/A

Dockerfile (Figure 3). In this case, it is often tricky to work out
scopes. Such cases force developers to skim through an entire tem-
plated Dockerfile to understand its behaviour. The use of a rule,
such as in Figure 4a, explicitly restricts the scope of variables and
nested expressions provide a convenient yet readable alternative to
the nested conditionals found in DOBS’ templated Dockerfile. In
this way, Modus lends itself to more readable and reusable code.

Another Modus feature that promotes concision is its ::merge
operator. Applied to a group of literals, e.g. (l1,l2)::merge, this
operator squashes all run and copy commands into a single com-
mand during build DAG construction, which results in a single layer
built. We used dive [22] (Section 6.1) to estimate the efficiency of
an image. DOBS’ images achieve image efficiency (above 95%), but
at a cost to their readability and separability. To avoid recording
redundant modifications in the layer diffs and bloating the image
size, nearly a half of the DOBS Dockerfile is a single RUN layer [24].
Using ::merge as in our linux.Modusfile 5, meant that we did
not need to pack operations into a single command. We extracted
the steps of the build into logical rules and merged them, resulting
in the following efficiency scores:

• DOBS OpenJDK images: average efficiency of 98.8%.
• Modus OpenJDK images: average efficiency of 98.9%.

Modus’ ::merge operator does not affect build time, but opti-
mises image size. From the code quality point of view, it facilitates
the best of both worlds: the readability of separating code sections
without the inefficiency of more layers recording more diffs.

6.3 Modus Quickly Builds OpenJDK
This section compares the build time of Docker’s Official build sys-
tem (DOBS) with our port using Modus. It shows that Modus scales
to builds that output a large number of images. We used the same
experiment setup as in Section 5.2, with docker-library/openjdk and
modus-continens/openjdk-images-case-study revisions as found
in https://zenodo.org/record/7088613. DOBS uses separate GitHub
CI/CD workflows [24] to build the image, while in our experiment
we (again) used GNU Parallel to build all Dockerfiles at once.

Table 5 presents the results. We included the build time with
and without template processing since this can vary with differ-
ent template engines. DOBS performs some duplicate copying of
binaries. The manual optimisation approach is our attempt to opti-
mise DOBS to fix this problem using Docker’s builder pattern [3],

5Found at lines 246–252 of openjdk-images-case-study/linux.Modusfile, in our repro-
duction package, https://zenodo.org/record/7088613.

where a shell script separately builds and copies binaries 6. The
exporting step in the final row of Table 5 is a subset of the time
required to perform the image builds that could be reduced with
future optimizations. We performed 𝑛 = 10 runs of each approach
and computed the sample mean. Template processing (steps 2 and
3 in Figure 6) was run separately with 𝑛 = 10 runs leading to a
sample mean of `𝑡 = 121.1𝑠 . Since template processing is necessary
to output images, Modus outperforms every DOBS approach when
accounting for template processing time. Specifically, Modus’s total
build time is lower than the expected total time with templating,
` + `𝑡 , as 143.1𝑠 is less than Sequential (637.4𝑠), Parallel (240.9𝑠),
and our Manual Optimization (397.8𝑠).

Modus achieves a 40.6% speed-up over OpenJDK’s official
build system, when including Dockerfile generation.

This impressive speed-up runs counter to the results reported
in Section 5, where we report a negligible slow-down. This speed-
up is partly a result of Modus being able to quickly perform SLD
resolution (Section 3), so it avoids slow template processing. DOBS’
template processing is notably slow; this is due to their awk script
(step 2 of Figure 6) relying on inefficient user-defined functions [25].
In fact, `𝑡 > `𝑝 where `𝑝 is the mean time to solely build the images
in parallel so DOBS’ template processing setup is a significant factor
in their total build time. Furthermore, the expected time without the
exporting step performed by Modus is 143.1− 18.0 = 125.1 seconds,
which indicates potential for Modus to outperform even step 4
(Figure 6) in isolation. The results for our manual optimization
from Table 5 suggest that this copying incurs a further penalty
that outweighs any benefit from avoiding the extra network calls
fetching duplicate binaries. This motivates the use of a system like
Modus over shell scripts or ad hoc optimizations.

7 RELATEDWORK
Works relevant to Modus include container build systems, build
systems based on logic programming, and Datalog implementations
and extensions.

Container Build Systems. The most popular container build sys-
tem, which is distributed with Docker, uses Dockerfiles [4] as the
build definition language. In Dockerfile, build parameters must ei-
ther be hard-coded or set as global variables; users have limited
ability to describe how interactions of these parameters affect the
build workflow. This leads to substantial code duplication. As a
result, developers resort to developing ad hoc Dockerfile templat-
ing frameworks, as in Official OpenJDK images [24] maintained by
Docker. These frameworks are cumbersome, as they typically mix
several string processing languages, and still verbose. Earthly [5]
extends Dockerfiles with additional constructs. Since its conditional
statements are evaluated during the build process, the branches
taken are not known in advance and therefore Earthly does not
automatically parallelise builds with such conditional instructions.
Buildah [20] embeds build instructions into a shell script and there-
fore it does not parallelise builds, since shell scripts, as Turing-
complete programs, cannot be automatically parallelised. Nix [19]
and Guix [6, 18] are functional package managers that can also be
6Found at openjdk-images-case-study/openjdk/build.sh in our reproduction package,
https://zenodo.org/record/7088613.

https://zenodo.org/record/7088613
https://zenodo.org/record/7088613
https://zenodo.org/record/7088613

Modus: A Datalog Dialect for Building Container Images ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

used to build containers. In order to package software with Nix or
Guix, all dependencies must also be packaged by these managers.
Compared to these systems, Modus substantially reduced the code
size, enables automatic build parallelisation due to its static build
DAG construction with Datalog, and is package manager agnostic.

Build Systems Based on Logic Programming. Biomake [23] and
Prom [27] are build systems [29] based on Prolog [14]. They both
extend the capabilities of make [37] and therefore are 1) designed to
model file dependencies, 2) Turing complete, i.e. allow expressing
non-terminating computations, and 3) non-declarative, i.e. the suc-
cess of evaluation depends on the order of literals in clause bodies.
Modus is designed to model a new domain of container images,
which differ from a traditional filesystem by their layered design
(Section 3.2). Since Modus is a Datalog dialect, it is 1) not Turing-
complete, which guarantees that computations of the build DAG
for each target terminate, and 2) declarative, which allows the de-
veloper to arbitrarily order image layers without being constrained
by the Horn clause evaluation strategy.

Datalog Implementations and Extensions. Although Datalog is a
precisely defined fragment of Horn clauses, its numerous imple-
mentations [26, 32–34] implement different sets of non-standard
features, called extensions, that are chosen to better model the ap-
plication domains. To the best of our knowledge, our work is the
first that applies Datalog, and logic programming in general, to the
domain of container image builds. Modus, as many other Datalog
implementation, supports built-in predicates. Although we used
the standard approach [16] to support them, the set of predicates is
different. Specifically, Modus implements container-related predi-
cates, such as from and run (Section 4). As explained in Section 4.2.3,
Modus allows using rules with non-grounded variables. DES [33]
also allows rules with non-grounded variables, but, since it is imple-
mented in Prolog, the semantics of such rules is different. DES may
return literals with uninitialised variables as outputs. In Modus, all
variables must be initialised, since all build parameters must be con-
crete to build an image. Thus, we implemented a custom approach
for handling non-grounded variables, discussed in Section 4.2.3.
Most Datalog implementations are designed as query languages,
so their semantics is defined via the facts they infer. In contrast,
Modus’ semantics is defined via proof trees, and it searches not for
arbitrary, but minimal, proof trees. Previously, minimal proof trees
were used to assist in debugging Datalog programs [40]. Modus
implements advanced support for string manipulation using the
predicate string_concat and adapts stratified construction [13] to
ensure the tractability of solving string constraints. Although strat-
ified construction limits the number of concatenation applications
during evaluation, this restriction can potentially be lifted by, for
example, implementing a generalized sequence transducer [13].

8 CONCLUSION
This paper introduces Modus, a novel application of logic program-
ming to building container images. The key intuition of Modus
is that proofs of Horn clauses naturally map to container image
builds and therefore Horn clauses, more specifically a decidable
fragment of Horn clauses called Datalog, is a suitable formalism
for container image build definitions. When designing Modus, we

identified several Datalog’s extensions, including domain-specific
built-in predicates and operators, non-grounded variables, and ad-
vanced string manipulations, that facilitate image build definitions.
An evaluation on popular Docker Hub projects revealed that Modus
substantially reduced the code size of container image build sys-
tems while introducing only a negligible performance overhead,
preserved the original image size and image efficiency.

9 DATA AVAILABILITY STATEMENT
Modus is released at https://modus-continens.com. All code, scripts
and data necessary to reproduce this work are available in a reusable
artifact [39].

REFERENCES
[1] 2021. Best practices for scanning images. https://docs.docker.com/develop/scan-

images/. Accessed: 2022-03-17.
[2] 2021. The Docker Hub. https://hub.docker.com/. Accessed: 2021-08-19.
[3] 2021. Docker Multi-stage Build. https://docs.docker.com/develop/develop-

images/multistage-build/. Accessed: 2021-08-19.
[4] 2021. The Dockerfile Reference. https://docs.docker.com/engine/reference/

builder/. Accessed: 2021-08-19.
[5] 2021. The Earthly build system. https://earthly.dev/. Accessed: 2021-08-19.
[6] 2021. The GNU Guix package manager. https://guix.gnu.org/. Accessed: 2021-

08-19.
[7] 2021. JQ command-line JSON processor. https://stedolan.github.io/jq/. Accessed:

2021-08-19.
[8] 2021. moby/buildkit: Concurrent, cache-efficient, and Dockerfile-agnostic builder

toolkit. https://github.com/moby/buildkit. Accessed: 2021-11-18.
[9] 2021. The OpenJDK implementation of Java. https://openjdk.java.net/. Accessed:

2021-08-19.
[10] 2021. SemVer specification. https://semver.org/. Accessed: 2022-03-17.
[11] Alfred V Aho, Brian W Kernighan, and Peter J Weinberger. 1979. Awk—a pattern

scanning and processing language. Software: Practice and Experience 9, 4 (1979),
267–279.

[12] Carl Boettiger. 2015. An introduction to Docker for reproducible research. ACM
SIGOPS Operating Systems Review 49, 1 (2015), 71–79.

[13] Anthony Bonner and Giansalvatore Mecca. 1998. Sequences, datalog, and trans-
ducers. J. Comput. System Sci. 57, 3 (1998), 234–259.

[14] Ivan Bratko. 2001. Prolog programming for artificial intelligence. Pearson educa-
tion.

[15] Neil Brown and collaborators. 2021. The OverlayFS filesystem. https://www.
kernel.org/doc/html/latest/filesystems/overlayfs.html. Accessed: 2021-08-19.

[16] Stefano Ceri, Georg Gottlob, and Letizia Tanca. 2012. Logic programming and
databases. Springer Science & Business Media.

[17] Stefano Ceri, Georg Gottlob, Letizia Tanca, et al. 1989. What you always wanted
to know about Datalog(and never dared to ask). IEEE transactions on knowledge
and data engineering 1, 1 (1989), 146–166.

[18] Ludovic Courtès. 2013. Functional package management with guix. arXiv preprint
arXiv:1305.4584 (2013).

[19] Eelco Dolstra and Andres Löh. 2008. NixOS: A purely functional Linux dis-
tribution. In Proceedings of the 13th ACM SIGPLAN international conference on
Functional programming. 367–378.

[20] Open Repository for Container Tools. 2021. The Buildah build system. https:
//buildah.io/. Accessed: 2021-08-19.

[21] The Linux Foundation. 2021. Open Container Initiative. https://opencontainers.
org/. Accessed: 2021-08-19.

[22] Alex Goodman and collaborators. 2021. Dive, a tool for exploring each layer in
an image. https://github.com/wagoodman/dive. Accessed: 2022-03-04.

[23] Ian H Holmes and Christopher J Mungall. 2017. BioMake: a GNU make-
compatible utility for declarative workflow management. Bioinformatics 33,
21 (2017), 3502–3504.

[24] Docker Official Images. 2021. Docker Official Image packaging for Java. https:
//github.com/docker-library/openjdk. Accessed: 2021-08-19.

[25] Docker Official Images. 2021. jq-template.awk. https://github.com/docker-
library/bashbrew/blob/b2cbaa3678ffbce7c0d90be5a518c1ec068011b5/scripts/jq-
template.awk. Accessed: 2022-02-25.

[26] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On synthesis
of program analyzers. In International Conference on Computer Aided Verification.
Springer, 422–430.

[27] Thilo Kielmann. 1991. PROM: A flexible, PROLOG-based make tool. Technical
Report. Citeseer.

https://modus-continens.com
https://docs.docker.com/develop/scan-images/
https://docs.docker.com/develop/scan-images/
https://hub.docker.com/
https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://earthly.dev/
https://guix.gnu.org/
https://stedolan.github.io/jq/
https://github.com/moby/buildkit
https://openjdk.java.net/
https://semver.org/
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
https://buildah.io/
https://buildah.io/
https://opencontainers.org/
https://opencontainers.org/
https://github.com/wagoodman/dive
https://github.com/docker-library/openjdk
https://github.com/docker-library/openjdk
https://github.com/docker-library/bashbrew/blob/b2cbaa3678ffbce7c0d90be5a518c1ec068011b5/scripts/jq-template.awk
https://github.com/docker-library/bashbrew/blob/b2cbaa3678ffbce7c0d90be5a518c1ec068011b5/scripts/jq-template.awk
https://github.com/docker-library/bashbrew/blob/b2cbaa3678ffbce7c0d90be5a518c1ec068011b5/scripts/jq-template.awk

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Chris Tomy, Tingmao Wang, Earl T. Barr, Sergey Mechtaev

[28] Dirk Merkel et al. 2014. Docker: lightweight linux containers for consistent
development and deployment. Linux journal 2014, 239 (2014), 2.

[29] Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2018. Build systems à la
carte. Proceedings of the ACM on Programming Languages 2, ICFP (2018), 1–29.

[30] Claus Pahl, Antonio Brogi, Jacopo Soldani, and Pooyan Jamshidi. 2017. Cloud
container technologies: a state-of-the-art review. IEEE Transactions on Cloud
Computing 7, 3 (2017), 677–692.

[31] Andrey Ponomarenko. 2021. pkgdiff. https://lvc.github.io/pkgdiff/. Accessed:
2022-03-16.

[32] Leonid Ryzhyk and Mihai Budiu. 2019. Differential Datalog. Datalog 2 (2019),
4–5.

[33] Fernando Sáenz-Pérez. 2011. DES: A deductive database system. Electronic notes
in theoretical computer science 271 (2011), 63–78.

[34] Jiwon Seo, Stephen Guo, and Monica S Lam. 2013. SociaLite: Datalog extensions
for efficient social network analysis. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE). IEEE, 278–289.

[35] Abdullah Sheneamer and Jugal Kalita. 2016. A survey of software clone detection
techniques. International Journal of Computer Applications 137, 10 (2016), 1–21.

[36] Rui Shu, Xiaohui Gu, and William Enck. 2017. A study of security vulnerabilities
on docker hub. In Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy. 269–280.

[37] Richard M Stallman and Roland McGrath. 1991. GNU Make-A Program for
Directing Recompilation. (1991).

[38] Ole Tange et al. 2011. Gnu parallel — the command-line power tool. The USENIX
Magazine 36 (2011), 42–47.

[39] Chris Tomy, Tingmao Wang, Earl Barr, and Sergey Mechtaev. 2022. Modus: A
Datalog Dialect for Building Container Images. (Sep 2022). https://doi.org/10.
5281/zenodo.7088613

[40] David Zhao, Pavle Subotić, and Bernhard Scholz. 2020. Debugging large-scale
datalog: A scalable provenance evaluation strategy. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 42, 2 (2020), 1–35.

[41] Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Amit S Warke, Mohamed Mohamed, and Ali R Butt. 2019.
Large-scale analysis of the docker hub dataset. In 2019 IEEE International Confer-
ence on Cluster Computing (CLUSTER). IEEE, 1–10.

https://lvc.github.io/pkgdiff/
https://doi.org/10.5281/zenodo.7088613
https://doi.org/10.5281/zenodo.7088613

	Abstract
	1 Introduction
	2 Overview
	2.1 Inexpressivity of Dockerfiles
	2.2 Build Instructions as Datalog Rules
	2.3 Code Size and Build Efficiency

	3 Background
	3.1 Datalog
	3.2 Container Images and Dockerfiles

	4 The Modus Language
	4.1 Syntax & Semantics
	4.2 Extensions
	4.3 Implementation

	5 Evaluation on Docker Hub Images
	5.1 Modus' Code Reduction
	5.2 Modus Build Time
	5.3 Validating Modus-Built Images

	6 Case Study: OpenJDK
	6.1 Porting OpenJDK's Build to Modus
	6.2 Modus Concisely Builds OpenJDK
	6.3 Modus Quickly Builds OpenJDK

	7 Related Work
	8 Conclusion
	9 Data Availability Statement
	References

