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Abstract: Noise annoyance has been often reported as one of the main adverse effects of noise ex-
posure on human health, and there is consensus that it relates to several factors going beyond the 
mere energy content of the signal. Research has historically focused on a limited set of sound sources 
(e.g., transport and industrial noise); only more recently is attention being given to more holistic 
aspects of urban acoustic environments and the role they play in the noise annoyance perceptual 
construct. This is the main approach promoted in soundscape studies, looking at both wanted and 
unwanted sounds. In this study, three specific aspects were investigated, namely: (1) the effect of 
different sound sources combinations, (2) the number of sound sources present in the soundscape, 
and (3) the presence of individual sound source, on noise annoyance perception. For this purpose, 
a large-scale online experiment was carried out with 1.2k+ participants, using 2.8k+ audio record-
ings of complex urban acoustic environments to investigate how they would influence the perceived 
noise annoyance. Results showed that: (1) the combinations of different sound sources were not 
important, compared, instead, to the number of sound sources identified in the soundscape record-
ing (regardless of sound sources type); (2) the annoyance ratings expressed a minimum when any 
two clearly distinguishable sound sources were present in a given urban soundscape; and (3) the 
presence (either in isolation or combination) of traffic-related sound sources increases noise annoy-
ance, while the presence (either in isolation or combination) of nature-related sound sources de-
creases noise annoyance. 

Keywords: sound source recognition; noise annoyance; sound perception; soundscape; urban  
environments 
 

1. Introduction 
The World Health Organization (WHO) reports environmental noise as the second 

most important cause of ill health in Europe, behind only air pollution [1]. It is a major 
public health issue that can lead to negative cardiovascular and metabolic effects, reduced 
cognitive performance in children and compromised mental health [2], as well as severe 
annoyance and sleep disturbance [3]. Long-term exposure to environmental noise is esti-
mated to cause 12k+ premature deaths and to contribute to 48k+ new cases of ischemic 
heart disease per year, in Europe alone [4]. The WHO estimates that 22 M people suffer 
chronic high annoyance, which is associated with specific outdoor sources of environ-
mental noise [3]. Exposure-response curves are indeed available in literature to estimate 
such effects (e.g., aircraft noise eliciting proportionally more annoyance than road traffic 
noise, which is in turn more annoying than railway noise, etc.) [5]. 
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Noise annoyance is often considered as the main effect of noise and understood as a 
“multi-faceted psychological concept, including behavioural, and evaluative aspects” [6]. 
Indeed, it is generally acknowledged that while noise annoyance partly relates to acoustic 
variables, the acoustic characteristics of the exposure do not necessarily play a major role 
in the formation of this perceptual construct. Therefore, scholars have started looking at 
different acoustic- and listeners-related factors, such as spectral features [7,8], the visibility 
of the sound source [9,10], interactions with other perceptual modalities (such as, visual 
perception [11], smell perception [12]), personality traits [13], psychological well-being 
[14] and so on. 

The ISO/TS 15666:2021 [15] defines annoyance (specifically “noise-induced annoy-
ance”) as “one person’s individual reaction to noise.” Such construct is analysed through 
socio-acoustic surveys based on questions with either verbal or numerical rating scales. 
Within the ISO/TS 15666 context, the noise annoyance scales refer to long-term exposures, 
typically in residential settings and for a specific sound source (i.e., “Thinking about the 
last (12 months or so) …”). On the other hand, soundscape studies also make use of the 
concept of annoyance/annoying when referring to individuals’ experience of a stimulus 
and tend to focus on more short-term and contextual reactions to a given acoustic envi-
ronment (see, e.g., [16,17]). 

Previous research has looked at models that predict the annoyance caused by com-
binations of noise sources, yet the sources of interest in such cases still refer to conven-
tional transportation noise (i.e., aircraft, road traffic, or railways) (e.g., [18]). Only more 
recently have researchers started looking at a broader range of sound sources that are 
more likely to be experienced in everyday life, how similar acoustic environments combi-
nations are to one another, and how these aspects contribute to noise annoyance formation 
(e.g., [19–21]). Along with developments in the definition of environmental sound source 
taxonomies [22–24], these studies have demonstrated the impact of the semantic meaning 
of sound sources on the affective perception of the soundscape. However, they have not 
yet explored how different combinations of sound sources (e.g., bird song AND water 
sounds AND traffic noise) can explain the perceptual impact differently than considering 
the sources individually. 

In conclusion, there is general consensus now on the fact that approaching noise an-
noyance as a one-dimensional problem in the urban realm—e.g., monitoring the “expo-
sure” in terms of noise levels, or focusing on the semantics of a limited set of sound 
sources, is not sufficient, and there is a need to look at the perception of environmental 
sounds from different perspectives (e.g., with bottom-up processing, stimulus-driven and 
source-oriented approaches) that will eventually improve how we manage soundscapes 
in cities [25,26], which is very much in line with the concept of soundscape studies that 
especially looks at changes between wanted and unwanted sound sources in different 
contexts [16, 27, 28]. 

Therefore, the aims of this paper are (a) investigating whether different combinations 
of sound sources in complex urban acoustic environments may result in different out-
comes in terms of noise annoyance (Research Question #1); (b) investigating whether the 
number of perceived sound sources, which in this study is defined as “soundscape com-
plexity”, influences noise annoyance (Research Question #2); (c) investigating whether 
there is an association between the presence of specific sound sources in an urban acoustic 
environment irrespective of the overall combination and an increase/decrease in noise an-
noyance (e.g., how the presence of bird tweets may increase/decrease the annoyance, re-
gardless of the other sources present) (Research Question #3). 

For this purpose, a large-scale online experiment was conducted using audio record-
ings from a large international database of complex urban soundscapes [29]. The main 
benefit of this database is that it represents realistic urban acoustic environments, as op-
posed to a large corpus of literature on noise annoyance that uses simpler signals/stimuli, 
hence potentially resulting in less ecologically valid results. 
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2. Materials and Methods 
2.1. Platform and Participants 

A remote active listening experiment was designed and hosted on Gorilla Experi-
ment Builder (www.gorilla.sc), a professional online platform used for studying complex 
behaviours [30]. The survey was distributed via Prolific (www.prolific.co) to a pool of pre-
registered participants, and data collected between 5 July 2021 and 23 July 2021 (the online 
data collection tool was kept active for as long as necessary to reach the target number of 
participants). 

The study was first advertised in Prolific. Before the main (active) listening experi-
ment on Gorilla, registered participants went through pre-experiment screening steps in 
which the researchers made sure that they met all the inclusion criteria of the study. The 
pre-screen steps were carried out in Prolific as soon as the participants signed up for the 
study. The participants were informed of the requirements including wearing head-
phones and sitting in a quiet room. They were provided with a brief description about the 
objectives of the study, what they were expected to do during the active listening experi-
ment, how much they would be paid on successful completion of the study, and system 
requirements (e.g., using google Chrome, and desktop computer). It was clarified to them 
that if they failed to meet the system requirements, they did not successfully finish the 
active listening experiment or they did not achieve a performance level above 70%, they 
would not be compensated. The main goal of the online experiment was collecting data 
from a relatively large pool of participants being exposed to a given set of complex urban 
acoustic environments (i.e., multi-source), on noise annoyance level and sound sources 
recognition. Furthermore, via pre-experiment screening, data collection aimed at individ-
uals representing certain demographics, i.e., 18- to 60-year-old, gender-balanced sample. 
The age range was decided to ensure hearing loss due to ageing was less likely to be pre-
sent in the sample, and in terms of hearing ability, the participants would be sufficiently 
homogenous [31]. Participants reported an absence of otologic or cognitive disorders, his-
tory of epilepsy, or index neurological event. It is noteworthy to mention that the adver-
tised study was not visible to the participants who did not meet the inclusion criteria (e.g., 
age and gender), which was provided by the participants when they had first registered 
in Prolific. Once the participants passed the pre-experiment screening (e.g., healthy hear-
ing and using headphones), they clicked on the provided link that directed them to the 
online active listening experiment hosted by Gorilla. 

With the growing need of developing reliable protocols for online listening experi-
ments, especially considering the constraints imposed on the laboratory settings for re-
searchers around the world during the COVID-19 pandemic, the methodological ap-
proach of the two platforms mentioned above is now generally accepted in the environ-
mental noise academic community, provided that a few quality checks (specified below) 
are put in place [32]. 

2.2. Auditory Stimuli 
The dataset of stimuli (audio recordings) included 2890 total recordings, sourced 

from the International Soundscape Database v0.5 (ISD) [29,33], which is a large dataset of 
urban acoustic environments recorded in different regions of the world. The original ISD 
recordings were collected along with in situ soundscape surveys to characterise the 
soundscapes of urban spaces in London and Venice, according to the SSID Protocol [33]. 
These data were collected by recruiting users of the public space to be assessed and asking 
them to complete a soundscape survey. While participants were completing this survey, 
a binaural recording of approximately 30 s was made to capture the exact sound environ-
ment to which the participant was exposed. In total, 13 public spaces were assessed (in-
cluding surveys) throughout 2019 and additional recordings were collected in the same 
locations during the 2020 COVID-19 lockdowns (not including the participant surveys) 
[34]. In total, this dataset includes 2519 recordings with a duration between 8 and 122 s. 
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For the purposes of this study, only the calibrated binaural recordings are used from the 
ISD, and not any additional information about the in situ participants, locations, or sound-
scape assessments. 

In order to standardise the length of recordings used in this study and expand the 
number of available recordings, the original recordings were split into 15-s chunks, result-
ing in 2890 recordings. This operation was performed using the pydub package (v0.25.1) 
in Python [35] where the full WAV file is loaded in, then 15-s chunks are extracted starting 
from the beginning of the recording (i.e., a 47-s-long original recording would result in 
three 15-s recordings, with the remainder 2 s discarded) and exported as MP3 files to be 
uploaded to the online survey platform. Some examples of Log spectrograms for the stim-
uli used in the experiment are shown in Figure 1. While it was not possible to control for 
the absolute sound pressure levels presented to participants in the online listening task, 
the relative loudness between the sound sources present across the pool of audio samples 
can be considered faithful to a typical acoustic environment experienced on-site. 

 
Figure 1. Log spectrograms of six examples from the set of stimuli used in the experiment. 

2.3. Experimental Procedure 
Since the accuracy of sound recognition and noise annoyance rating was the core 

target of the experiment, every effort was made so that participants qualified for the study 
and their equipment could deliver the sound stimuli properly. Hence, the online experi-
ment was designed to minimize possible study biases and environmental confounders 
(Figure 2). 
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Figure 2. Progression of the online experiment in the Gorilla platform: only participants providing 
consent and passing both browser sound and headphone checks (highlighted with the black vertical 
line labelled “Check” on left) would begin the active listening experiment. If the participants did 
not read the information sheet, would not consent, or failed the browser, volume calibration or 
Huggins Pitch (HP) headphones test, they were debriefed and directed to the end of the experiment 
(highlighted with the black vertical line on the right). 

2.3.1. Browser Sound Check and Volume Calibration 
Prior to the main tasks, the participants first read the information sheet and consent 

to participate in the study. Then, they were instructed to adjust their browser setting and 
playback volume in a few steps. The first step was done by playing five-second music 
sample, so the participants could confirm if their browser supports audio playback and if 
they heard the music piece, and if not, there were directed to another page, instructing 
them to change the browser configurations. If this browser check had failed, it would have 
led to rejection. Following the browser check, the participants were led to the volume cal-
ibration in which they were asked to set the volume of their headphones as high a level of 
their comfortable loudness level by increasing the volume from zero while a white noise 
sample was played back, previously matched at −11.06 dBFS (total Root Mean Square), 
corresponding to loud stimuli from the dataset. On the same page, the participants were 
asked to listen to a typical quiet audio sample from the dataset (−28.8 dBFS, total RMS) so 
to ensure they will be able to perceive all the samples. After confirming that they can ‘hear 
the sound clearly through their headphones’, they were strictly asked not to adjust their 
listening setup any further and were allowed to proceed to the next task. 

2.3.2. Huggins Pitch Test (HP) 
Once the browser settings were compatible for running the experiment and the vol-

ume was set to ensure participants’ comfort and sufficiently accurate playback levels, the 
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participants proceeded to the headphones check test, the dichotic Huggins Pitch test (HP), 
a validated test for online studies [36]. The HP consisted of one block, including six trials. 
Each trial includes three intervals of white noise, each 1-s long. The third interval con-
tained the HP stimulus. A centre frequency of 600 Hz was used, and the interval order 
varied randomly across the block and the participants. Once the participants passed the 
HP test, they proceeded to the main experiment. One thousand seven-hundred and 
twenty-three individuals were initially recruited. Since not all headphones can deliver the 
quality of sound and frequency range, N = 502 participants were excluded automatically 
from the study, including N = 485 participants who were rejected due to time limit (60 
min) and N = 17 participants who withdrew from the experiment voluntarily. 

2.3.3. Active Listening Tasks 
A total of N = 1221 participants successfully completed the experiment (Mage = 30.6, 

SDage = 10.2; Ethnicity: Asian 9.5%, Black 4.5%, Mixed 5.9%, Other 2.0%, White 78.1%—
Sex: F 45.7%, M 54.3%; demographic questions were optional, so data is reported for par-
ticipants who provided the information). The main experiment consisted of two tasks: 
sound recognition and annoyance rating initiated with the instruction and a practice block 
comprising five trials similar to the main experiment. During the active listening experi-
ment, participants listened to ten 15-s-long binaural recordings of urban environments 
and were instructed to select all the sound sources they could identify within the record-
ing by asking “Please choose the sounds you can hear (select all that apply)”. For the sound 
source recognition task, participants were provided with a list of 24 labels they could se-
lect from. This included 22 sources from a subset of sounds provided in the sound source 
taxonomy used by Salamon, Jacoby, and Bello [22]. The included sources were chosen 
from the taxonomy by comparing them to a preliminary source identification performed 
by the researchers while cleaning/preparing the recordings. Those sounds that had been 
identified in this preliminary round, as well as others which were considered likely to 
appear, were selected. The sound source labels included dog bark, screeching brakes, gen-
eral traffic, rail, bird tweet, aircraft, footsteps, music, rustling leaves, siren, car, construc-
tion, motorcycle, ventilation, shouting, speech, horn, laughter, children, bells, bus, and 
water. In addition, a “non-identifiable” option was added for those sources which listen-
ers could identify as a single source but was unsure what it was (selected for 8.7% of re-
cordings), and an option “other” for any sources which listeners could identify but which 
had not been provided in the list (selected for 13.5% of recordings). The layout of the 24 
sound source labels varied randomly across the participants. For each recording, they had 
30 s in total, including 15 s for sounds presentation/playback and 15 s for sound sources 
selection. For the annoyance rating task, participants were instructed to assess the noise 
annoyance they perceived for that stimulus on a discrete 10-point scale, ranging from 1 
(not at all) to 10 (extremely) by asking “How annoying is this sound?” (see: Figure 3). It 
should be noted that the definitions of “noise annoyance” may vary depending on context, 
discipline, applications, etc. Since the attribute used in this online experiment was “an-
noying” and because of the focus on sound, the variable will be referred here as “noise 
annoyance” or “annoyance”. For the sake of analysis and conclusions to be drawn, it 
should rather be interpreted as “relative annoyance”. For each participant, ten recordings 
were randomly presented out of the pool of 2890 excerpts, and the recordings were se-
lected such that each recording was presented at least to more than one participant. The 
experiment took approximately 15 min to complete, and the participants received a small 
compensation for their time (£1.88). 



Int. J. Environ. Res. Public Health 2022, 19, 14872 7 of 17 
 

 

 
Figure 3. The online paradigm: A standard block design was used which auditory stimuli were 
presented for 15 s, followed by 15 s for sound sources labelling; after the sound source recognition, 
the same stimulus was presented again for 15 s and followed by 15 s for the annoyance rating task. 

The recording stimuli used in the listening task and the response data are openly 
available on Zenodo (https://doi.org/10.5281/zenodo.7158057) [37]. 

3. Data Analysis 
In the original data, each recording was assessed by between two and four partici-

pants. Since each participant was answering independently, each recording is associated 
with several sets of recognised sound sources (either individual sources or combinations), 
as well as several annoyance scores. To collapse these into a single set of sound sources 
per recording, a “majority” approach was considered, i.e., if most participants assessing a 
given recording identified a source as being present in it, this source was considered to be 
effectively present. This resulted in a 2890 by 24 data frame (2890 recordings, each with 
up to 24 possible labels present). On average, each recording has 3.1 identified sound 
sources present. Regarding the annoyance scores, they were averaged within the group 
of participants assessing any given recording, to get a unique annoyance score for each 
recording. 

4. Results 
To address the three research questions of this study, the analysis of the results was 

carried out on different “layers”. Firstly, the dataset was approached as a whole and sub-
jected to association rule learning and clustering algorithms to investigate the effect of 
sources profiles and combinations. As a separate step, the recordings were sorted accord-
ing to the number of sound sources that participants had identified in them. This could be 
seen as a proxy for what in this study we consider to be the perceived “soundscape com-
plexity” of the acoustic environment, and noise annoyance as a function of this variable 
was then assessed accordingly. Finally, recordings were stratified as per whether they 
contained a specific sound source (i.e., one of the 24 possible labels), either alone or as part 
of a set of sources. 

4.1. Noise Annoyance as a Function of Sound Sources Combinations (Research Question #1) 
The first step of analysis consisted in clustering the dataset of responses for the iden-

tified sound sources for the sake of detecting groups of acoustic environments with similar 
profiles. The goal of this clustering analysis was to identify patterns in how sound sources 
appear together within an acoustic environment. Each recording was characterised by a 
set of 24 binary values indicating whether a source was present (1) or not (1). The Jaccard 
distance [38] was used to characterise the similarity or diversity of these sets for each re-
cording compared to every other recording, resulting in a 2890 by 2890 dissimilarity 
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matrix. Hierarchical agglomerative clustering analysis was then used. However, this path 
of investigation did not lead to any meaningful result, as the different sound sources pro-
files emerging from the cluster analysis did not result in statistically significant differences 
in terms of noise annoyance (i.e., annoyance scores did not vary significantly as a function 
of cluster membership). In addition, upon examining the clustering results, the research-
ers were unable to determine any useful conceptual model for describing the identified 
combinations of sound sources. 

Subsequently, instead of exploring all possible combinations of sound sources (which 
would be impractical), an approach based on “association rule learning” was used; this is 
a machine learning method derived from the marketing and product fields for analysing 
how products tend to appear together in purchase datasets [39]. In the context of this 
study this was aimed at identifying sets of sounds sources that are more likely to appear 
together in any labelled recording. However, when looking at the effect of being exposed 
to acoustic environments with specific sound sources recurring together on noise annoy-
ance, no meaningful differences could be observed. This can be clearly seen in Figure 4, 
where the distributions of noise annoyance scores are plotted for different groups of re-
cordings with recurring sound sources identified in them. The negative results of these 
approaches indicated that, contrary to one of the initial primary hypotheses, the particular 
combination of sound sources which co-occur are not useful for determining annoyance 
scores for a complex soundscape. 

 
Figure 4. Box plots of the Annoyance scores for the recordings as a function of sound source present 
(including the “other” and “non-identifiable” labels) and sources likely to be present together in the 
same recording as per the association rule algorithm. 

4.2. Noise Annoyance as a Function of Soundscape Complexity (Research Question #2) 
Since the range of number of identified sources (i.e., labels assigned by participants) 

per recording varied between 0 and 8 in the dataset, the sample was organised into a set 
of nine mutually exclusive sub-sets with increasing soundscape complexity. When plot-
ting distributions of annoyance scores according to soundscape complexity, as shown in 
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Figure 5, an interesting pattern emerged: mean noise annoyance was minimized for N = 2 
sound sources identified, with scores increasing when soundscape complexity was head-
ing towards either N = 0 or N = 8 sound sources identified (however, the N = 8 sound 
sources group only included two datapoints, and was therefore removed from Figure 5 
for clarity; the mean annoyance scores for those is M = 5.0). A one-way ANOVA was then 
conducted to determine if the noise annoyance was significantly affected by the sound-
scape complexity dimension. The Annoyance score was statistically significantly different 
between different groups, F(8, 2881) = 15.354, p < 0.001. Post hoc tests (Bonferroni) revealed 
that such outcome was mostly driven by differences between the N = 2 sources group and 
the N = 4, 5, 6, 7 sources groups, which can be observed again in Figure 5. A second-degree 
polynomial regression was fit to indicate the relationship between the number of sound 
sources (i.e., soundscape complexity) to the reported annoyance scores, and is shown in 
Figure 5. 

 
Figure 5. Box plots of the Annoyance scores as a function of the number of sound sources present 
in the recording (identified by participants), box width represents relative sample size; the N = 8 
sound sources group only included two datapoints, and was therefore dismissed (the mean annoy-
ance scores for those is M = 5.0). 

4.3. Noise Annoyance as a Function of Individual Sound SOURCES presence (Research 
Question #3) 

As an additional layer of analysis, it was decided to look at the presence of specific 
sound sources as a possible factor of influence on the perceived noise annoyance assessed 
by participants. Distributions of mean annoyance scores as a function of whether a source 
was identified in a recording, either on its own or in combination with any other source, 
were plotted, as shown in Figure 6. It can be clearly seen that there is some variety across 
sources, with the presence of traffic-related sources being generally associated with higher 
annoyance scores, as opposed to nature-related and backgrounded sound sources, where 
annoyance is lower. 
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Figure 6. Box plots of the Annoyance scores as a function of sound source presence, either on its 
own (“single”) or in combination with other sources (“any”), including the “other” and “non-iden-
tifiable” labels; box width represents relative sample size. 

To confirm this pattern, a set of independent-samples t-tests was run for each of the 
24 labels (sound sources) of the active listening experiment to determine if there were 
differences in annoyance scores between the conditions when the sound source was pre-
sent (either on its own or in combination with other sources) in the recording (“Yes”), and 
when it was not (“No”). An alternative Welch t-test was considered whenever the as-
sumption of homogeneity of variances was violated. 

Table 1 shows that basically most comparisons resulted to be different in a statisti-
cally significant way, except for the labels Bells, Dog bark, Water, Ventilation. For the 
sound sources: Aircraft, Bus, Car, Children, Construction, General traffic, Horn, Laughter, 
Motorcycle, Music, Rail, Screeching breaks, Shouting, Siren, Speech, and Water, the noise 
annoyance increased when the source was present, compared to when it was not. Con-
versely, for the sound sources: Bird tweet, Footsteps, Non-identifiable, Other, and Rus-
tling leaves, the noise annoyance scores decreased when the source was present compared 
to when it was not. 

Table 1. Descriptive statistics for the annoyance scores for each sound source and t-tests for each 
sound source between the groups when the source is present and when it is not. 

   Annoyance Scores t-Test for Equality of Means 

Source Present N Mean Std. Deviation Std. Error Mean t df 
Sig. 

Mean Difference 
(2-Tailed) 

Aircraft 
Yes 118 3.71 1.61 0.15 2.533 124.41 0.013 0.38 
No 2772 3.33 1.38 0.03     

Bells 
Yes 54 3.44 1.20 0.16 0.489 2888.00 0.625 1 0.09 
No 2836 3.35 1.40 0.03     

Bird tweet 
Yes 932 2.71 1.16 0.04 −19.034 2168.24 0.000 −0.94 
No 1958 3.65 1.39 0.03     

Bus 
Yes 83 4.31 1.42 0.16 6.423 2888.00 0.000 0.99 
No 2807 3.32 1.38 0.03     

Car 
Yes 330 3.73 1.35 0.07 5.318 2888.00 0.000 0.43 
No 2560 3.30 1.39 0.03     

Children Yes 356 3.78 1.41 0.07 6.254 2888.00 0.000 0.49 
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No 2534 3.29 1.38 0.03     

Construction 
Yes 270 4.02 1.57 0.10 7.528 311.48 0.000 0.75 
No 2620 3.28 1.35 0.03     

Dog bark 
Yes 33 3.34 1.35 0.24 −0.016 2888.00 0.9871 0.00 
No 2857 3.35 1.39 0.03     

Footsteps 
Yes 1118 3.18 1.26 0.04 −5.221 2620.68 0.000 −0.27 
No 1772 3.45 1.46 0.03     

General traffic 
Yes 1166 3.63 1.34 0.04 9.037 2888.00 0.000 0.47 
No 1724 3.16 1.40 0.03     

Horn 
Yes 76 3.94 1.36 0.16 3.802 2888.00 0.000 0.61 
No 2814 3.33 1.39 0.03     

Laughter 
Yes 358 3.56 1.37 0.07 3.109 2888.00 0.002 0.24 
No 2532 3.32 1.39 0.03     

Motorcycle 
Yes 169 4.17 1.41 0.11 8.028 2888.00 0.000 0.88 
No 2721 3.30 1.38 0.03     

Music 
Yes 222 4.01 1.33 0.09 7.437 2888.00 0.000 0.72 
No 2668 3.29 1.38 0.03     

Non-identifiable 
Yes 251 3.11 1.43 0.09 −2.818 2888.00 0.005 −0.26 
No 2639 3.37 1.39 0.03     

Other 
Yes 391 3.21 1.29 0.07 −2.256 544.31 0.024 −0.16 
No 2499 3.37 1.41 0.03     

Rail 
Yes 77 3.70 1.26 0.14 2.237 2888.00 0.025 0.36 
No 2813 3.34 1.39 0.03     

Rustling leaves 
Yes 106 2.85 1.40 0.14 −3.749 2888.00 0.000 −0.52 
No 2784 3.37 1.39 0.03     

Screeching brakes 
Yes 52 3.98 1.32 0.18 3.295 2888.00 0.001 0.64 
No 2838 3.34 1.39 0.03     

Shouting 
Yes 199 4.21 1.45 0.10 9.139 2888.00 0.000 0.92 
No 2691 3.28 1.37 0.03     

Siren 
Yes 95 3.72 1.38 0.14 2.661 2888.00 0.008 0.39 
No 2795 3.33 1.39 0.03     

Speech 
Yes 1949 3.43 1.35 0.03 4.431 1741.72 0.000 0.25 
No 941 3.18 1.46 0.05     

Ventilation 
Yes 146 3.32 1.31 0.11 −0.265 2888.00 0.791 1 −0.03 
No 2744 3.35 1.40 0.03     

Water 
Yes 344 3.51 1.53 0.08 2.190 421.05 0.029 0.19 
No 2546 3.32 1.37 0.03     

1 Differences for these sound sources are not statistically significant (p > 0.05); all other differences 
are. 

5. Discussion 
Although past studies have advanced our understanding of the effect of distinct 

sound sources on noise annoyance perception, to the best of our knowledge, the results 
were hampered by some limitations. Previous studies have either focused on conventional 
noises such as road traffic noise or single-sourced noises like aircraft noise [40,41], hinder-
ing the ecological validity of the sounds and sound sources combinations in the context 
of urban areas. To address this limitation, we utilized a large sound dataset, recorded from 
several locations with multiple source noises such as cars, construction, rail and so on. In 
addition, existing studies applied small sample sizes or focused participant groups like 
students [42], whereas in the current study we recruited many participants representing 
both sex, different age groups, and ethnicity. Most studies to this date have drawn con-
clusions based on the sounds that were influenced by undesirable environmental stimuli 
such as visual stimuli [43]. Given that other sensory modalities (e.g., visual stimuli) may 
confound the noise annoyance perception [10,44], we isolated the sound stimuli to 
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minimize the effects of other modalities by adopting a controlled online active listening 
experiment. 

5.1. Effect of Sound Sources Combinations (Research Question #1) 
Previous studies have advanced our understanding of the effect of specific sound 

sources on noise annoyance perception [45–48]. One of the hypotheses of this study was 
that combinations of different sound sources would affect differently the noise annoyance 
scores returned by participants. The thought was that, for instance, while traffic noise is 
known to be annoying, this effect would change depending on the other sources present. 
Likewise, that although bird sounds decrease annoyance, perhaps they are most effective 
when paired with another positive sound such as footsteps. However, our results have 
indicated this is not the case, and the positive or negative semantic effect of a sound is 
most important on its own, independent of the other sources present. This was observed 
despite testing different associations strategies for the sound sources profiles. Hence, the 
focus was shifted towards other potentially important aspects of the complex urban 
acoustic environments. 

5.2. Effect of Number of Sound Sources, or “Soundscape Complexity” (Research Question #2) 
Another main goal of this investigation was testing whether the number of identified 

sound sources in an urban acoustic environment may play a role in the noise annoyance 
assessment by people, which was broadly defined as soundscape complexity. The concept 
of “complexity” is not new in soundscape studies, but it has so far been used mostly in 
acoustic ecology and ecoacoustic applications [49]; here, it is interpreted from a human 
listener’s perspective. When listening to a soundscape, the listeners may perceive a single 
dominant sound source, they may perceive multiple overlapping, coincident, or related 
sound sources, or they may be unable to perceive any identifiable sounds at all. An inter-
esting pattern emerged, showing a relatively high average noise annoyance score with 0 
sources identified, dropping for 1 and 2 sources identified, to increase again towards 8 
sound sources identified. This seems to suggest that fewer clearly distinguishable sound 
sources in a given soundscape may be preferrable (and less annoying) than either no 
sources (i.e., monotonous/uneventful soundscape) or too many sources (i.e., chaotic 
soundscape). This finding seems to be in line with Schafer’s theory of hi-fi soundscapes 
being more pleasant than lo-fi, blurred soundscapes [50]; thus, hi-fi soundscapes would 
correspond to lower soundscape complexity and lo-fi soundscapes would correspond to 
higher soundscape complexity, either due to many overlapping identifiable sources, or so 
much noise that no single source is identifiable. Furthermore, this is also aligned with the 
information load theory for soundscape studies previously proposed by Axelsson. Infor-
mation Load was hypothesized to be one of the main dimensions underlying soundscape 
experience and assessment [51], relating to the interaction between soundscape complex-
ity and the individuals’ ability to comprehend and process information. The assumption 
is that a lower information load (i.e., lower soundscape complexity) will be perceived as 
an unpleasant/monotonous/uneventful soundscape; a moderate information load (e.g., a 
quiet natural soundscape) will be perceived as pleasant; a slightly above moderate infor-
mation load (e.g., an eventful soundscape with some moderate violation of personal ex-
pectation, pleasantly surprising) will be perceived as exciting; while a very high infor-
mation load (e.g., a chaotic soundscape, overwhelming to process) will be perceived as 
annoying. 

Something else to consider in the context of the sound sources recognition task is 
that, despite having been given up to 24 labels to choose from, the maximum number of 
sources ever identified by participants in any given audio recording was eight. This is 
somehow an interesting empirical confirmation of the protocol of Method B of the ISO/TS 
12913-2:2018, methods for data collection, where the protocol instructs participants of a 
soundwalk to “…list sound sources you noticed in descending order, starting with the most no-
ticeable sound source. Any number of listed sound sources is possible, but limited to 8” [52]. To 
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the best of our knowledge, the choice for a maximum of eight source was not justified in 
the ISO document, but our findings may support the hypothesis that 7–8 sources is the 
operational maximum of sources that participants can holistically pay attention to in a 
listening task. 

5.3. Effect of Specific Sound Sources (Research Question #3) 
Following the outputs of the previous steps of analysis, a more in-depth analysis of 

the presence/absence of single sound sources in the soundscape recordings also revealed 
further details. This was driven by the proposition that some specific sound sources 
would be more likely to be associated with higher annoyance. For instance, Gille and col-
leagues [53], in their survey in residential sites exposed to different sound sources and 
source combinations, observed that annoyance ratings for “total annoyance” were the 
highest any sound source combination that would include including aircraft noise, even 
when the sound level of the second source (e.g., road traffic) was higher that aircraft noise. 

As expected, when sound sources related to road traffic (but also transport and in-
dustry more generally) were present, noise annoyance was significantly higher (e.g., Air-
craft, Bus, Car, General traffic, Horn, Motorcycle, Rail, Screeching breaks, Siren); although 
the presence of some unexpected sources, like Children, Laughter, Music, or Water, was 
also found to be associated with increased annoyance. This reinforces the concept that 
sources should not be treated in isolation but as part of a complex sound environment. 
Looking at the associations between presence of sound sources and decreased noise an-
noyance instead, the relevant labels were: Bird tweet, Footsteps, Non-identifiable, Other, 
and Rustling leaves; hence, the types of sound sources that would likely be found in a 
quiet natural soundscape/context. Likewise, findings confirm the potential that pleasant 
natural sounds have in reducing stress and offering opportunities for restoration [54]. In-
terestingly, when a non-identifiable sound source was identified in the recordings, annoy-
ance scores were lower. A possible explanation for this is that participants may have per-
ceived these non-identifiable, backgrounded/distant sources as an indicator of some “ur-
ban buzz” and lively context—considering that data collection took place during the 
COVID-19 pandemic, when most people had had some experience of lockdown and re-
striction in social interactions, one could hypothesize that sources relating to human ac-
tivity may have been interpreted as a much-desired “normalcy” [55–57]. Yet, it is worth 
noting that, considering the pool of labels used in the experiment, the ones associated with 
decreased annoyance represent a much smaller proportion of it. This suggests that acous-
tic environments should be carefully designed as the opportunities for adding positively 
perceived sounds to urban soundscapes are not abundant. 

6. Conclusions 
In this study, a large-scale online active listening experiment was carried out with 

1.2k+ participants and 2.8k+ audio recordings of complex urban acoustic environments to 
investigate how the complexity of the soundscape—in terms of presence, number and 
combination of different sound sources would affect the perceived noise annoyance. The 
main conclusions of this study are: 
• Combinations of sound sources in soundscape recordings is less important than the 

actual number of sound sources identified in the acoustic environment (which in this 
study we defined as “soundscape complexity”). 

• A combination of any two clearly distinguishable sound sources (low soundscape 
complexity) in a given urban soundscape appears to minimize the perceived noise 
annoyance, which is higher instead, when the number of sources either increases or 
decreases. 

• The presence of sound sources related to road traffic in a soundscape is associated 
with higher noise annoyance, while the presence of natural sound sources is associ-
ated with lower noise annoyance (even when road traffic noise is present). 
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For future studies, it will be important to focus attention on models for annoyance 
that consider sound sources with relatively higher “ecological frequency” [58]—i.e., that 
are more likely to be experienced by average persons during everyday life in urban con-
texts. 

It is worth pointing out that scientific debate around the multi-faceted concept of 
noise annoyance, is quite broad and diverse. It should be acknowledged that in the context 
of this study the reader may notice some slight deviations from the framework provided 
by -inter alia- international standards for surveying noise annoyance (e.g., [15,59–61]). Of 
course, the formation of noise annoyance should be mostly looked at in context and in a 
holistic way, but that even within the limits of a semi-controlled experiment like the one 
conducted in this study (i.e., where the focus is on listening), building around the concept 
of “annoyance” would be most useful to explore some basic principles of sound sources 
combinations perception by users. The definition of noise annoyance provided by Guski 
et al. [6] appears to be broad/inclusive enough to cover such methodological approaches. 

Many annoyance-focused laboratory studies have experimental designs similar to 
the ones adopted in this study and use wording to seek responses on annoyance ratings 
that sometimes are deliberately adapted from ISO/TS 15666 (which is broadly accepted, 
even if ISO/TS 15666 refers to long-term residential exposure) or phrase the question on 
“annoyance” in similar ways to the protocol in this study [62,63]. Different approaches—
i.e., either the community noise and disturbance approach underlying the ISO/TS 
15666:2021, or the soundscape approach underlying the ISO/TS 12913-2:2018—that deal 
with the perceptual construct of “annoyance” should be considered valid and useful. In-
deed, the international community seems now to be putting effort to bridge the gap be-
tween these theoretical stances, which is also reflected in the ISO/TC 43/SC 1 (Noise) re-
cently establishing its Working Group 68 to develop the ISO/AWI TS 16755-1 (Acoustics—
Non-acoustic factors—Part 1: Definition and conceptual framework). This will hopefully 
lead to further research on the noise annoyance construct and a better understanding of 
this complex concept. 
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