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Abstract— For model-free deep reinforcement learning of
quadruped locomotion, the initialization of robot configurations
is crucial for data efficiency and robustness. This work focuses
on algorithmic improvements of data efficiency and robustness
simultaneously through automatic discovery of initial states,
which is achieved by our proposed K-Access algorithm based
on accessibility metrics. Specifically, we formulated accessibility
metrics to measure the difficulty of transitions between two
arbitrary states, and proposed a novel K-Access algorithm for
state-space clustering that automatically discovers the centroids
of the static-pose clusters based on the accessibility metrics.
By using the discovered centroidal static poses as the initial
states, we can improve data efficiency by reducing redundant
explorations, and enhance the robustness by more effective
explorations from the centroids to sampled poses. Focusing
on fall recovery as a very hard set of locomotion skills, we
validated our method extensively using an 8-DoF quadrupedal
robot Bittle. Compared to the baselines, the learning curve
of our method converges much faster, requiring only 60% of
training episodes. With our method, the robot can successfully
recover to standing poses within 3 seconds in 99.4% of the test
cases. Moreover, the method can generalize to other difficult
skills successfully, such as backflipping.

I. INTRODUCTION

Among robot locomotion skills, trotting and some other
tasks are easy in terms of exploration, while fall recovery
is difficult due to many possible robot states. The ability to
recover from a fall is critical for legged robots to improve
their robustness against potential failures.

For fall recovery, manually-designed joint trajectories [1]
are laborious, and their robustness in different environments
is not guaranteed. Optimization-based [2] methods require
a significant amount of time to obtain a feasible solution
since dynamic models and complex contact situations need
to be considered [3]. Therefore, optimization approaches are
difficult to achieve real-time fall recovery. To overcome the
limitations of these methods, model-free deep reinforcement
learning (DRL) methods [4] serve as a promising alternative
for generating diverse locomotion behaviors, such as fall
recovery.

However, learning fall recovery via DRL suffers from
hard exploration, i.e., to explore in domains with sparse,
delayed, or deceptive rewards, and redundant exploration,
i.e., certain regions of the state space being too frequently
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Fig. 1. Levels of redundant explorations and hard exploration across
different initial state distributions. Higher redundancy means lower diversity
of exploration. Our proposed automatic discovery of initial states via
clustering is more data efficient.

visited while training because of skewed data collection.
Both hard exploration and redundant exploration can affect
the data efficiency and learning performance. Initial state
distribution is one of the key factors that affect the efficiency
of exploration. Figure 1 illustrates some cases of initial state
distributions regarding their levels of redundant exploration
and hard exploration. To increase the data efficiency, both re-
dundant exploration and hard exploration should be reduced.

Currently, there are 3 common ways to design initial state
distributions for learning fall recovery via DRL: 1) initializa-
tion from demonstrations [5], 2) initialization from random
distributions [6], and 3) initialization from predefined poses
[4]. For initialization from demonstrations, the performance
is limited to the demonstrated examples. For initialization
from random distributions, it is not data efficient [6] be-
cause of the redundant exploration. Also, corner cases may
suffer from insufficient exploration because of skewed data
collection. As a result, the diversity of exploration cannot be
guaranteed. For initialization from predefined poses, states
that lack intuition or heuristics are very likely to be missed,
and the generalization can be a problem despite high data
efficiency.

In this work, we aim to automatically discover initial states
that can help achieve high robustness while still being data
efficient. We propose to achieve this by clustering the static
poses of the robot and applying centroids as initial states.

A. Related Work

Regarding DRL, model-free DRL has been a commonly-
used method for fall recovery and other locomotion tasks
[7] [8]. In contrast to model-based methods such as model
predictive control [9] [10], trajectory optimization [11] [12]
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Fig. 2. An erroneous case of using Euclidean distance metric. The distance
between a backward leaning stance and a forward leaning stance should be
smaller than that between a forward leaning stance and a lying pose.

and Bayesian optimization [13], model-free methods do
not require explicit knowledge of complex dynamics, and
support fast online computation without mathematical opti-
mization. The most popular model-free DRL algorithms for
robot locomotion are the proximal policy optimization (PPO)
algorithm [14] and the soft actor-critic (SAC) algorithm [15].
Besides, the training of DRL can be greatly expedited by
GPU-based parallelization [16].

Regarding clustering, common clustering methods have
successful applications in RL, such as value function ap-
proximation [17], but they fail to achieve ideal clustering of
diverse robot states. For centroid-based methods such as K-
Means [18] and density-based methods such as DBSCAN
[19], the problem is the metric for clustering, which will
be discussed later. For pattern-based methods [20], state
transitions of the robot can be regarded as edges in a directed
graph. However, the existing methods could not achieve the
desired clustering effect of robot states as well, which will
be discussed in I-B.

Regarding the metric, we usually adopt the Euclidean
distance assuming that all dimensions are orthogonal, i.e.,
the coordinates are based on the unit orthogonal basis, and
that the distances are undirected, i.e., ∥x− y∥2 = ∥y− x∥2.
However, both the orthogonality and the undirected distances
are problematic for robot poses. For the state space of static
poses, we tend to use the combination of the normalized
gravity vector and the joint positions [4], and these feature
dimensions are not orthogonal. Also, it is difficult to deter-
mine the scale of the features. A failure case of the Euclidean
distance is shown in Fig. 2. The undirected distances are also
inapplicable because the robot’s transitions are directed. For
instance, it is easy to fall from a standing pose to a lying
pose, but difficult to recover from a lying pose to a standing
pose.

There are also some metric learning methods, but they are
time-consuming and difficult to obtain values for each start-
end pose pair. In [21], the distance metric is approximated
for state-space rapidly-exploring random trees (RRTs) [22],
but it is impractical to construct an RRT for each pose. In
[23], the metric is learned during the training process, but
we do not want to learn the metric for a certain DRL model
before clustering.

B. Motivation and Our Contribution

In this paper, we aim to find the initial states that can help
reduce hard exploration and redundant exploration during the
training process to learn robust fall recovery efficiently. To
ensure robustness, the initial states need to cover as much of
the state space as possible. We expect the centroids of the
static-pose clusters to serve as the ideal initial states.

In terms of the metric for clustering, we propose the
accessibility metric in II-A to overcome the shortcomings
of the Euclidean distance mentioned in I-A.

For pattern-based clustering, we tried the directed Louvain
method [24], the Infomap method [25], and the spectral
clustering method [26]. The directed Louvain method failed
because it cannot properly distinguish the direction of the
edges (state transitions in this paper) [27]. The Infomap
method failed because unreachable states could exist in the
same cluster, which means that the model was expected to
explore states that can hardly be reached from the initial
states. The spectral clustering method failed because the
number of clusters was too small, which indicates low
robustness. To obtain the ideal clustering effect, we propose
a new accessibility-based clustering method called K-Access
in II-C.

Our contributions in this paper include:
• An accessibility metric to quantify the level of dif-

ficulties for a robot to transition from one physical
state/configuration to another;

• A K-Access algorithm based on the accessibility metric,
for state-space clustering, which is adapted from the K-
Means++ algorithm;

• A pipeline of automatically discovering feasible initial
states, based on their inter-connected transitions, for ef-
ficient learning of robot fall recovery and other tasks.
With our proposed method, the data efficiency of DRL

models can be greatly improved by avoiding repeated and
redundant explorations, and the robustness can be greatly
enhanced because of the wide range of searched states and
their explored inter-connections.

II. METHODOLOGY

In this section, the concept of accessibility is firstly
introduced in II-A. The criteria of good initial state distribu-
tions are discussed in II-B, and the K-Access algorithm is
presented in II-C. In II-D, the DRL is applied to the learning
of fall recovery, and the entire pipeline is shown in Fig. 5.
We also provide generic principles to apply our proposed
method to other tasks in II-E.

A. Accessibility

To model the difficulty of transitions from one state
to another, we propose the accessibility metric. Figure 3
demonstrates the concept of accessibility. Consider an initial
state s0 in the state space S. There is a region R⊆ S that can
be easily and effectively explored from s0, and this region
can be mathematically defined as

R = {s|s ∈ S, t(s0,s)< t0}, (1)
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Fig. 3. An illustration of accessibility. The accessibility value corresponds
to the difficulty of a state being explored from the initial state.

where t(s0,s) is the minimal time cost (in seconds) of the
transition from s0 to s, and t0 is a positive value. R is called
the effective exploration region of s0.

Consider another two states s1 ∈ R and s2 /∈ R. We can say
that the accessibility from s0 to s1 is high, and it is easy to
explore s1 from s0. In contrast, the accessibility from s0 to
s2 is low, and it is difficult to explore s2 from s0.

Mathematically, we define the accessibility from si ∈ S to
s j ∈ S as

access(si,s j) = e−t(si,s j). (2)

In practice, it is difficult to get the minimal time cost t(si,s j),
and we approximate it by the response time of direct PD
control that changes the joint positions from si to those of
s j. The response time is infinity if the final state is not s j.
The range of accessibility is

access(si,s j) ∈ [0,1] . (3)

If the accessibility is zero, s j is unreachable from si. If the
accessibility is one, si = s j.

B. What Makes Good Initial States

With the concept of accessibility, we can evaluate whether
a distribution of initial states is good for the DRL exploration.
Figure 4 shows different cases of initial state distributions.
For data efficiency, redundant exploration and hard explo-
ration are detrimental. For robustness, the effective explo-
ration regions should cover as much state space as possible.
For the trade-off between data efficiency and robustness, we
need to select the initial states and their effective exploration
regions with sufficient coverage but minimal redundancy.

To ensure enough coverage, we propose to randomly
sample a wide range of static poses. Then we cluster the
sampled poses to reduce the redundancy. We expect that
the centroids of the obtained clusters can make good initial
states. Their effective exploration regions should cover most
of the state space, and there should be little overlapping.

Based on the discussion above, we can evaluate whether
the obtained clusters are good. If the inter-cluster accessibil-
ity is too high, there is much overlapping since the centroids
can be too close to each other, and the data efficiency is
decreased due to redundant exploration. If the intra-cluster
accessibility is too low, the coverage is low since many
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Fig. 4. Different cases of initial state distributions. The target state is what
the agent is expected to achieve during exploration. It represents certain
states for certain tasks (see II-E). Too much overlapping of the effective
exploration regions results in redundant exploration and decreased data
efficiency. For easy exploration and robustness, high coverage of the regions
is required. Randomized initialization corresponds to case I, and we expect
the auto-discovered initial states are similar to case IV.

samples are not in the effective exploration region of their
centroids, and there can be poses that are difficult to explore
from the centroids. Hence, for good clustering results, the
inter-cluster accessibility should be low, and the intra-cluster
accessibility should be high.

C. K-Access Algorithm

Based on the accessibility metric proposed in II-A, we
refer to the K-means++ algorithm [28] and propose the K-
Access clustering method. The algorithm is presented in
Algorithm 1. The inputs are the number of clusters k and the
accessibility matrix A for the sampled states s0,s1, . . . ,sn−1 ∈
S. The shape of A is (n,n), and A[i, j] is the accessibility from
si to s j (i, j ∈ {0, . . . ,n− 1}). The outputs are the indices
of the centroids cIndex = (c0, . . . ,ck−1) and the centroids of
each state’s cluster assignment = (a0, . . . ,an−1).

Similar to the K-Means++ algorithm, the first step of K-
Access algorithm is to initialize the centroids, and then we
repeat the assignment step and the update step until the
assignments no longer change, as described below.
1) Initialization of centroids: The first centroid is randomly

selected (line 2), and each new centroid is the sample
which is the furthest from the already selected centroids
(line 3-6).

2) Assignment of samples to clusters: Each sample state
is assigned to the cluster of which the centroid has the
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Fig. 5. Pipeline of the proposed method. First, static poses are randomly sampled. Second, the estimated accessibility values are obtained via simulation.
Third, the proposed K-Access algorithm selects and discovers the optimal initial states. Finally, the DRL agent learns fall recovery through exploration
based on the discovered initial states.

Algorithm 1 K-Access(k,A)
1: cIndex← zeros(k); ◁ indices of centroids
2: cIndex[0]← randInt(0,k);
3: for i = 1 to k−1 do
4: CAccess←

i−1
∑
j=0

(A [cIndex[ j], :]+A [:,cIndex[ j]]);

5: cIndex[i]← argmin
j

CAccess[ j]; ◁ initialize cIndex

6: end for
7: assignment[i]← argmax

c∈cIndex
A[c, i],∀i < n, i ∈ N;

8: preassign← zeros(n); ◁ previous assignment
9: while preassign ̸= assignment do

10: preassign← assignment;
11: cIndex[i]← argmax

j s.t. a j=ci

min
al=ci

A[ j, l],∀i < k, i ∈ N;

12: assignment[i]← argmax
c∈cIndex

A[c, i],∀i < n, i ∈ N;

13: end while
14: return cIndex,assignment

highest accessibility to this state (line 7,12). Note that we
only consider the accessibility of single direction here.

3) Update of the choice of centroids: The new centroid has
the maximal neighborhood accessibility, and the neigh-
borhood accessibility of one state is represented by the
minimal accessibility value from the state to its neighbors
in the same cluster (line 11). To ensure robustness, we do
not take the average, which differs from K-Means++.

Finally, the K-Access algorithm can converge to a result
that prefers high intra-cluster accessibility and low inter-
cluster accessibility. To determine the number of clusters, we
propose an index based on the discussions in II-B that good
clustering results should have high intra-cluster accessibility
and low inter-cluster accessibility. The index I is defined as

I = log(Aintra)− log(Ainter)−α · |Λ|, (4)

where Aintra is the intra-cluster accessibility array of size k,
Ainter is the inter-cluster accessibility of size (k,k), and α · |Λ|
is the regularization term. The clustering results are better if
the index is larger, and the inter/intra-cluster metrics are also
defined in a different way from K-Means++. To be specific,

in our implementation,

Aintra[i] = min
a j=ci

A[ci, j],∀i < k, (5)

Ainter[i, j] =

{
mean

al=ci
A[al ,c j],∀i ̸= j,

1,∀i = j,
(6)

where i < k, i ∈ N, j < k, j ∈ N,

Λ =
{

ci | i < k, i ∈ N, |{ j | a j = ci, j < n, j ∈ N}|= 1
}
, (7)

and α is a real value (recommended value: 1). We penalize
the number of one-sample clusters because such clusters can
hardly be hit and they may exist because of extreme coinci-
dences. In most cases, one-sample clusters are also accessible
from other clusters. Therefore, one-sample clusters should
be rare or non-existent, otherwise the training process may
suffer from unnecessary or redundant experiences.

In Fig. 5, the K-Access algorithm is applied in (c), after
the static poses are sampled in (a) and the accessibility values
are estimated in (b).

D. Fall Recovery Learning

Our DRL framework is shown in Fig. 6. The state space
consists of the orientation (represented by the normalized
gravity vector), the angular velocity of the body, and the joint
positions. Here we adopt the positional control according
to [29]. The outputs of the policy network are the target
joint positions which update at 25 Hz. The PD controllers
generate torques based on the target joint positions and the
measured joint positions at 300 Hz. The SAC algorithm is
applied for learning. In our implementation, we use the 8-
DoF quadrupedal robot Bittle [30] and the PyBullet [31]
simulation environment.

The Bittle is equipped with an IMU on its body. The
angular velocity can be directly accessed from the IMU. The
orientation is represented as the gravity vector in the body
frame which is normalized to be of length 1. The gravity
vector can be computed using the IMU measurements.

The reward function is the sum of reward terms in Table
I. The jump regularization term aims to penalize the robot
for actions (e.g., backflipping) to adjust the orientation in
the air, and the action difference term serves to reduce
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TABLE I
REWARD TERMS FOR DRL.

Symbols
h body height
gori normalized gravity vector
Ω body angular velocity
τ vector of joint torques
ω vector of joint velocity
cb 0 if the body touches the ground, otherwise 1
cf 0.3×the number of feet that touch the ground
hf vector of the distances from four feet to the ground
ds the shortest distance from the robot to the ground
p vector of the measured joint positions
pt vector of the target joint positions
·̂ target value

Reward Terms
Height 0.667×RBF(h, ĥ,−2000)
Orientation 0.333×RBF(gori, [0,0,−1]T ,−5)
Angular velocity 0.067×RBF(Ω,0,−0.05)
Joint torques 0.067×RBF(τ,0,−5)
Joint velocity 0.067×RBF(ω,0,−0.05)
Contact 0.067× cb +0.033× cf
Foot lift 0.067×RBF(hf,0,−100)
Jump regularization 0.033×RBF(ds,0,−100)
Action difference 0.033×RBF(pt, p,−1)

unrealistic large movements. We assign larger weights to the
reward terms related to body height and orientation since we
characterize a standing pose mainly by the body height and
the orientation for the fall recovery task. The radial basis
function (RBF) applied in these terms is defined as:

RBF(x,y,α) = exp
(

α · ∥x− y∥2
2

)
. (8)

The learning process is the last stage (d) of the pipeline
in Fig. 5, where we apply the centroids in (c) as the initial
states for DRL of quadruped fall recovery.

E. Learning Other Tasks

The proposed method is not limited to fall recovery
learning. In III-E, we also validated our method in back-
flip learning. The generic principles to apply the proposed
method are:
1) Perform clustering in a subspace with feasible and nec-

essary dimensions;

2) Ensure that the target state has the maximum state value
V (s) in the subspace;

3) Estimate the accessibility values with time-accuracy
trade-off.

The first principle is about how we define the subspace
for clustering. The clustering methods tend to suffer in
high-dimensional spaces, and some dimensions, such as
velocities, are not suitable for estimating the accessibility
values. Therefore, we should only do clustering in a subspace
with feasible dimensions. Also, since the clustering results
correspond to the initial states for learning, the subspace must
include the necessary dimensions for initialization.

The second principle is about the reward function and the
target state. In fall recovery, the target state can be defined
as the standing pose. In other tasks such as backflipping, the
target state can refer to a good starting pose that can get the
maximum episode reward in the future.

The third principle is about the estimation of accessibility
values. In fall recovery, we apply the response time of PD
control. However, such heuristic estimation can only work for
static poses, and there can be errors in some cases, e.g., when
large torques make the robot fly. Also, more complicated and
high-level controllers can be necessary for other scenarios.
In such cases, a trade-off between complexity and estimation
accuracy needs to be considered.

III. IMPLEMENTATION AND RESULTS

A. Sampling Static Poses

In the PyBullet environment, we randomly initialized
the Bittle robot with roll angle φ ∼ U(−π,π), pitch angle
θ ∼ U(−π

2 ,
π

2 ), yaw angle ψ = 0, and joint positions p ∼
U(− 5

6 π, 5
6 π). Self-collision cases were abandoned.

The robot was dropped from 0.35 m above the ground. If
the robot was stationary within 2 seconds (with negligible
velocity, angular velocity, and distance to the ground), we
recorded the final joint positions, the final roll angle, the final
pitch angle, and the body height. We assume the ground to
be flat for sampling.

With 12× multiprocessing, we sampled 2.4k static poses
within an hour on an ordinary desktop machine.

B. Estimating Accessibility Values

To estimate the accessibility from static pose A to static
pose B, we initialized the robot with static pose A. Then
we sent a command to the PD controllers with the joint
positions of B as the target positions. If the robot entered
static equilibrium within 3 seconds, we checked whether
the state of robot was close to the state of B. If these two
states were close enough, we recorded the time cost t and
the estimated accessibility from A to B was e−t . Otherwise,
we set the accessibility from A to B to be 10−8 instead of
zero because all the sampled static poses are assumed to be
accessible.

We randomly selected 1k samples from the sampled static
poses. With 12× multiprocessing, we obtained the 1M ac-
cessibility values for the 1k×1k accessibility matrix within
20 hours on an ordinary desktop machine.
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Fig. 8. Visualization of the inter-cluster accessibility of top-20 clusters.
Inter-cluster accessibility values above 0.15 are highlighted, and those values
below 0.05 are omitted here for clarity.

C. Clustering

We applied the proposed K-Access algorithm to the 1k×1k
accessibility matrix obtained in III-B. The α value for the
index is 1. To determine the number of clusters k, we tried
different k values and obtained the maximum index value
when k = 43. The number of samples in each of the 43
clusters is shown in Fig. 7, indicating that the static poses
of the robot are subjected to a long-tail distribution.

Figure 8 visualizes the inter-cluster accessibility of top-20
clusters via chord diagram, which can also contribute to pose
taxonomy analysis [32] [33]. Different clusters correspond
to different contact cases, and the inter-cluster accessibility
corresponds to the difficulty of transitions.

D. Deep Reinforcement Learning

We applied six kinds of initial state distributions:

1) Centroids of the obtained 43 clusters by K-Access (ab-
breviated to KA);

2) Centroids of the obtained 33 clusters by K-Means++
based on the generalized Dunn’s index ν43 [34] (abbre-
viated to KM);
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Fig. 9. Learning curves of fall recovery for different initial state distri-
butions. The proposed method shows the highest data efficiency. There are
300 steps per episode, the discount factor is 0.987, the target smoothing
coefficient is 0.001, and the learning rate is 3e-4. Averaged over 3 random
seeds, with ±1 SD. in shadow.

(a) K-Access (b) K-Means++ (c) Weighted K-Means++

Fig. 10. Visualization of the obtained clusters for overlapping and coverage.
The red points are the target standing pose. The blue points are the centroids
of top 20 clusters for (a)-(b), and all of the 14 clusters for (c). The
positions of the centroids follow a spring layout based on the inter-cluster
accessibility values. The average accessibility values from the centroids to
their neighbors, representing the expected burden of exploring the centroids,
determine the radii of the circles. The K-Access centroids generate better
initial states according to Fig. 4.

3) Centroids of the obtained 14 clusters by weighted K-
Means++ based on ν43 (abbreviated to WKM, gravity
vector weighted by 2);

4) Nine initial poses applied in [4] (abbreviated to 9-Pose);
5) One lying pose (abbreviated to 1-Pose);
6) Random static poses (abbreviated to RND).

We demonstrate the proposed method can greatly improve
the data efficiency, based on the learning curves using the
same test samples shown in Fig. 9, which shows consistent
results with Fig. 1. The centroids of KA, KM, and WKM
are also visualized in Fig. 10 to validate our hypothesis in
II.

Since the learning from different initial states can also be
considered as different sub-tasks of varying difficulty, we
also tried to combine the distributions with Teacher-Student
Curriculum Learning (TSCL) [35]. The learning curves on
the same test samples are shown in Fig. 11, and the TSCL
can improve the efficiency under most of the random seeds.

For robustness, agents of the best seeds were tested on
another 500 static poses. There are 75 steps (3 seconds) per
episode during the test, and the criterion of success is that
the reward at 3 s is larger than 1.2. The performance scores
are presented in Table II. It can be seen that the proposed
method can be used to learn robust fall recovery policies
with 25% fewer steps than other distributions. Test runs are
shown in the video attachment. Snapshots are in Fig. 13(a).
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TABLE II
PERFORMANCE ON THE TEST POSES

Initial
States

Training
Episodes

Episode Reward Success Rate
in 3 s (%)Mean SD.

KA 1200 81.93 11.84 99.4
KM 1600 74.84 20.14 91.8

WKM 1600 79.04 18.20 94.4
9-Pose 1600 73.35 17.01 91.6
1-Pose 1600 73.09 17.75 92.6
RND 1600 79.97 17.32 94.6

KA-TSCL 1200 84.70 13.38 98.6
KM-TSCL 1200 75.55 16.97 95.2

WKM-TSCL 1200 77.11 15.65 95.4
9-Pose-TSCL 1200 77.01 18.07 93.8

E. Backflip Learning

We applied our proposed method to learn backflipping and
the learning curves using the same test samples are in Fig.
12. Here we only clustered the static poses with roll angle
less than 60deg. Test runs are detailed in the paper’s video,
see snapshots in Fig. 13(b).

IV. DISCUSSION

Although extra computation is required to estimate ac-
cessibility values before clustering, the proposed method
can achieve high data efficiency for learning. Based on this
learning-free metric, the centroids are only computed once,
and they can boost the training process regardless of the
design choices of DRL algorithms, hyperparameters, and
reward functions. For a larger size of the accessibility matrix,
one time-efficient way is to numerically fit the accessibility
values with a small training batch of which the ground truth
is obtained via simulation.

The K-Access algorithm performs better than the existing
clustering methods because: 1) the direction of transitions
is taken into consideration; 2) the neighbors in one cluster
are all easy to explore from the centroid; 3) the number of
clusters can be assigned and determined by the index value.
The extension to backflipping also shows that, intermediate
and unstable poses can be better explored with our method.

The visualization of inter-cluster accessibility also indi-
cates that the patterns can be heuristic for learning fall
recovery motions. Moreover, such patterns can also help
design strategies for optimization-based methods [36].

For robustness over a large range of initial states, there
are also other methods, such as region of attraction (RoA)
expansion [37] [38]. In [37], the learning process is also
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Fig. 12. Learning curves of backflipping for different initial state distri-
butions. Averaged over 3 random seeds, with ±1 SD. in shadow.

expedited by adaptive sampling, but the technique is based
on the simplified representation of RoA that is difficult to
implement in a high-dimensional nonlinear state space. It
is also hard to combine the RoA expansion with the DRL
process, since the DRL policy does not explicitly bridge the
intermediate states as in [38]. However, the RoA expansion
can be applied after the learning process to improve the
robustness, and the robustness during the DRL process within
finite steps can reduce the time cost and complexity of the
subsequent RoA expansion.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose to automatically discover initial
states for DRL of locomotion skills via the accessibility
metric and the K-Access clustering algorithm. With the
centroids of the obtained clusters as the initial states, the data
efficiency of fall recovery learning can be greatly improved,
and the robustness can be maintained. Our method can also
be generalized to other tasks, such as backflipping.

Compared to the Euclidean distance metric, the pro-
posed accessibility metric does not suffer from the non-
orthogonality of the feature space and the undirected dis-
tances. Therefore, it can model the difficulty of transitions
from one state to another much better.

Compared to random initialization, our method is more
data efficient, as shown by our results in Fig. 9 and Fig.
12. Compared to the manually predefined initialization, our
method is more robust, as benchmarked in Table II. TSCL
does not improve the robustness since it focuses on the
efficiency, and it does not work when all of the sub-tasks
are hard in backflip learning.

Future work will focus on the general application of the
clustering method. We will continue working on the possible
extensions to other locomotion tasks that can benefit from the
proposed method, and do hardware validation on other robot
platforms, e.g., 12-DoF quadrupedal robots. We will also try
other methods for better accessibility estimation, e.g., neural
networks.
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