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Abstract—Indoor positioning has been widely researched in
recent years due to its high demand for developing localization
services and its complexity in GPS-denied environments. How-
ever, the diversity of indoor spaces and temporal variation of local
conditions impose the need for building specific and periodic
calibrations at high cost for deployment and maintenance of
these localization systems. A robust positioning solution that
overcomes these challenges is yet to be available. Previous systems
achieve good performance when specializing their solution to the
unique characteristics of the deployment site. The drive is now
to automatically model these localization solutions on the sensor
data from each site with the least amount of effort. We propose
to accelerate the model adaptation to new deployment sites by
using transfer learning of a multimodal deep neural network
architecture. We demonstrate that the required training data is
drastically reduced compared to training the model from scratch,
while also boosting its accuracy, due to the additional knowledge
from pretraining on other sites. The resulting model is also
fault-tolerant, showing good performance in missing modalities
experiment. Our research opens the way toward scalable and
cost efficient localization systems.

Index Terms—AI-based Positioning, Multi-sensor Systems,
Multimodal Machine Learning, Transfer Learning

I. INTRODUCTION

The increasing adoption of wearable and mobile devices is
improving the way we interact with the world, owing to their
advanced sensing capability. The Global Positioning System
(GPS) on mobile devices has been widely used in various
outdoor scenarios to provide information and navigation for
our current geo-spatial digital world. However, the GPS is
unreliable inside buildings and underground due to GPS satel-
lite signals not reaching many such environments. Alternative
indoor locatization methods have been explored, relying on
the smartphone built-in sensors, such as WiFi received signal
strength, magnetic field intensity, and inertial sensors (e.g.,
accelerometer, gyroscope) [1]. Despite this effort, a reliable
and scalable indoor localization solution is not yet available.

Conventional engineering based localization solutions
mainly include Pedestrian Dead Reckoning (PDR) and WiFi
Fingerprinting [2]. Both of these approaches use custom meth-
ods with precise mathematical formulations for processing

the sensor signals that are specific to subsets of deployment
sites. However, these over-engineered solutions often perform
suboptimal when deployed to new scenarios. This is due to
condition changes away from the lab settings, and varying
sensor sensibility between the devices used when engineering
the solution and those used in deployment. All these aspects
contributes to low system robustness across deployments. As a
result, human intervention for periodic calibration is essential
for maintaining the accurate functioning of these systems,
which makes wide adoption currently unattainable.

In the age of big data, we believe that relying on data
for an end-to-end machine learning approach is the only
promising solution for robust indoor localization, instead of
conventional over-engineered solutions. Many Machine Learn-
ing (ML) based solutions have already been proposed for
indoor localization [3], however, these still hold a narrow
focus specialising only on a small set of deployment sites. We
consider that ML approaches should have the ability to carry
the learnt knowledge across multiple deployment sites for
increased robustness and fast deployment. This is achievable
by reducing the amount of training data that is required from
each new deployment site.

Inspired by the success of multimodal machine learning
in many modality-fusion tasks and the effectiveness of using
transfer learning to strengthen machine learning models [4],
in this work, we propose an end-to-end hybrid multimodal
architecture integrated with transferable sub-components. Our
Model Transferable Localisation system (MTLoc) is formed
of independent components operating on distinct smartphone
sensor data, joined by a final stage of knowledge fusion to
produce the location estimation.

We classify the sensor data into two types: the
infrastructure-free sensing modality (IMU data) and the
infrastructure-based modalities (magnetic and WiFi RSS
scans). For processing infrastructure-free samples, we pretrain
a Long Short-Term Memory (LSTM) model, IMU-LSTM, as a
feature extractor, part of the MTLoc architecture. This is then
refined using transfer learning. For extracting infrastructure-
based features, we construct another LSTM model, MAG-
LSTM, and a deep neural network (DNN) to extract multi-978-1-7281-6218-8/22/$31.00 © 2022 IEEE
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sensor features. All extracted modality-specific features are
then joined in a one-dimensional vector, followed by addi-
tional multi-layer perceptrons to produce the final location
estimation. The transferable component of the IMU-LSTM
is pretrained on the source site data (lab conditions). After
pretraining, we integrate this model in the MTLoc architecture
to bring the learnt infrastructure-free representations to the
target deployment.

For our evaluation, we collect two multimodal datasets from
two indoor scenarios. Both datasets contain time-sequential
IMU sensors and magnetic samples as well as WiFi Received
Signal Strength (RSS) fingerprints, along with ground truth
location annotations. We explore the impact of data volume
during the fine-tuning stage of our MTLoc by varying the
amount of training data available from the target domain
(deployment site). To evaluate the robustness of the fine-tuned
model we corrupt valid multi-sensor samples. In this process,
we find that the MTLoc can tolerate missing data of one
or more modalities from the target site, being bootstrapped
with just a small number of samples. MTLoc predicts the
trajectory with good fidelity, over 80% of the estimations
being within 3 meters of error. Benefiting from transferred
knowledge, MTLoc fine-tuned with a small amount of data
shows robustness compared to training the model entirely on
the target site data from scratch.

The contributions of this work are as follows:
• We introduce transfer learning to multimodal machine

learning based location estimation. The model shares
the knowledge learnt in the infrastructure-free modality
across deployment sites.

• We offer insights into the best options to fine tune the
multimodal neural network with a small amount of data
from a target deployment site. With less than a quarter of
the available training data for a new deployment site, the
model achieves a strong performance, median estimation
error being within 1.56 metres. This is actually better than
training from scratch on the full amount of data, without
transfer learning (2.39 metres median error).

• The method we propose here is also evaluated for ro-
bustness to noisy and missing modality data. We show
it can handle 40% of the modality variation. The model
is bootstrapped with a small amount of data to achieve a
prediction mean error of just 2.92 metres.

II. MOTIVATION AND RELATED WORK

Due to the poor reliability of GPS in indoor environments,
many solutions have been proposed for tracking subjects and
devices based on alternative signal sources such as WiFi
received signal strength (RSS), Bluetooth, magnetic field
and inertial movement unit (IMU). However, conventional
engineering-based solutions such as pedestrian dead reckoning
(PDR) and WiFi Fingerprinting are often designed with a
target building in mind. However, for deployment on new sites
and adapting to indoor environment changes requires costly re-
finement to cope with new environment characteristics, which
is prohibitive.

In recent years, machine learning based positioning sys-
tems have become a research hotspot pursuing data-driven
localization approaches for minimal human intervention and
deployment cost [5]. Current solutions mainly exploit single-
modality data (single sensor), which often depend on the in-
door infrastructures. For instance, a WiFi Fingerprinting based
positioning system fails to work when WiFi signals are absent.
Hence, the robustness of a single modality based localization
system is greatly impacted by deployment conditions.

Multimodal machine learning has been investigated in mul-
tiple modality tasks such as audio-visual speech recogni-
tion [6]. It has the advantage of modeling complementary
modalities and strengthening essential features that would
otherwise be hard to spot in single modality settings. Inspired
by the success of multimodal machine learning, we explored a
multimodal hybrid deep neural network for location tracking in
our previous work [7]. In that work we proposed a purely data-
driven end-to-end robust localization approach by utilising
multi-sensor inputs (IMU, magnetic and WiFi RSS data).

Fundamentally, each building has its unique radio and mag-
netic propagation characteristics, due to building materials,
furniture and occupancy. This unique fingerprinting allows
an association between signals and locations. However, some
characteristics are shared across multiple buildings and de-
ployment environments, which can be learned and transferred
across sites. Hence, in this work, we aim to answer the
following questions: i) How to construct an architecture that
is robust to deployment site variability? ii) How much effort
of data collection is reduced by using transfer learning and
fine-tuning? iii) How robust is our solution to sensor data
alteration at inference stage?

Transfer learning has been applied to many AI problems
with often good performance, such as migrating the learnt
vision recognition or natural language processing ability from
a large trained model to a new deployed model for processing
tasks in the target settings [8]. However, to date, this technical
solution has not been validated for accelerating the deployment
of localization systems. To address the aforementioned issues
of data scarcity in new deployments and reusing knowledge
across sites, we highlight transfer learning as a viable and
effective solution for creating robust localization systems with
reduced deployment cost.

A. Engineering-based Positioning

Engineering-based indoor positioning systems commonly
rely on two approaches, Pedestrian Dead Reckoning (PDR) [9]
and WiFi Fingerprinting [10], which work on a set of hand-
crafted formulations to identify the mobility frame including
step counting, orientation estimation and fingerprints matching
for localization [11]. Systems are usually designed to be
building-specific. When indoor environment characteristics
change or on new site deployment, system recalibration of the
model is needed to fit these new distribution of data, resulting
in additional tuning cost and lower efficiency.
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B. AI-based Positioning

Instead of engineering-based solutions, artificial intelligence
based positioning system shows its advantage in low deploy-
ment cost without requiring accurate mathematical equations,
though moving the focus to the quality and quantity of training
data itself [12]. For instance, HiMLoc integrates IMU sensors
with WiFi RSS samplings through prior observations of Gaus-
sian processes for direction estimation, distance estimation and
correlation, and detected human activity [2]. CamLoc [13] uses
computer vision to identify the tracking target, feet position
and pedestrian skeleton for obtaining the location.

C. Transfer Learning-based Positioning

To date, transfer learning based localization is largely un-
explored. There are a few examples based on single modality
positioning systems with transfer learning techniques. One
previous adoption of transfer learning is that of Pan et al. [14]
for WiFi-based positioning to address the challenge of WiFi
signal distribution variation, which changes across time and
devices. Another implementation is that of Werner et al. [15]
bringing transfer learning to a vision-based localization system
that assists positioning by migrating the image recognition
ability from deep convolutional neural networks to the system
for identifying indoor symbolic targets. These examples evalu-
ate the model performance under different working conditions
such as time variations and device variations under the settings
of the same building, but lack the evaluation of moving to new
buildings as deployment sites.

III. METHODOLOGY

A. Multimodal Neural Network

The architecture of our proposed multimodal transfer learn-
ing model, the MTLoc, is shown in figure 1. Here, the network
contains three parallel modality-specific sub components per-
forming feature extraction from each modality input. These
rely on LSTM networks, each operating on the IMU signal
and on the magnetic field samplings respectively, and a DNN
model extract features from WiFi fingerprints. All extracted
modality-specific features are then joined in a one-dimensional
vector, followed by additional multi-layer perceptrons to pro-
duce the joint location estimations.

Table I presents the structure of our MTLoc model. This
contains 295,810 trainable parameters.

TABLE I
MTLOC MODEL CONSTRUCTION AND PARAMETER SETTINGS

Layer Shape Trainable Param
Input Layer.1 (WiFi) 750 0
FC Layer.1 (WiFi) 128 96128
FC Layer.2 (WiFi) 128 16512
Input Layer.2 (IMU) 10*2 0
IMU-LSTM (Transfer) 128 67072
Input Layer.3 (MAG) 10*1 0
MAG-LSTM (MAG) 128 66560
Fusion Layer (W/I/M) 384 0
FC Layer.3 (Fusion) 128 49280
FC Layer.4 (Fusion) 2 258

Fig. 1. MTLoc Model Architecture

B. Transfer Learning

Figure 2 illustrates the procedures for implementing transfer
learning for a new deployment. By pretraining a model based
on the IMU dataset from the source scenario, we derive an
IMU-LSTM regression model. This sub network behaves as a
transferable component, which holds the learnt IMU sampling
features and representations from the previous scenario. When
deploying the multimodal network to the target scenario, the
trained IMU-LSTM sub network is transferred and integrated
into the multimodal network. Here, the IMU-LSTM compo-
nent is not trained further on new depoyment sites due to
the general nature of locomotion across sites. Its weights and
bias are frozen during the MTLoc model training process
to extract new IMU sampling inputs feature based on learnt
knowledge from the source site. The other two branches of
the MAG-LSTM and the WiFi-DNN sub networks are trained
from scratch to understand multimodal dataset representations
from the new deployment. All model parameters, except the
transferred model parameters, are updated during the gradient
descent to allow the whole model to fit on the new scenario.

C. Fine Tuning

To allow the new deployed model to better fit on the
characteristics of the new scenario, we implement fine tuning
of the pre-trained model. The IMU-LSTM component behaves
as a weights initializer which allows the model to update
its weights and bias based on the transferred parameters. By
setting the IMU-LSTM sub component parameter as trainable,
all model parameters are updating during the training process
based on the transferred knowledge.
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Fig. 2. Schematic representation of the components of our MTLoc, applying transfer learning and fine-tuning on the target data (deployment environment).

TABLE II
MULTIMODAL DATASET FORMAT

Infrastructure-free Infrastructure-based Label
Time Accelerator Gyroscope Magnetometer AP0 AP1 ... APn X Y

T0 a(0∼999) g(0∼999) m(0∼999) null -86 ... null X0 Y0
T1 a(999∼1999) g(999∼1999) m(999∼1999) null null ... null X1 Y1
T2 a(1999∼2999) g(1999∼2999) m(1999∼2999) -70 null ... -65 X2 Y2
... ... ... ... ... ... ... ... ... ...
Tn a(n∼n+999) g(n∼n+999) m(n∼n+999) null null ... null Xn Yn

IV. EXPERIMENTS

A. Data

For model training and evaluating, we use a multimodal
dataset collected from two indoor scenarios (source and target)
shown in Figure 3. Data from each scenario is collected by
different persons using the OnePlus 7 and HUAWEI P40
smartphone respectively. Both datasets contain time-sequential
IMU sensors and magnetic samplings as well as WiFi RSS
fingerprints collected when walking along corridors with the
ground truth location annotation. During the data collection
process, multiple variations are included to increase dataset
complexity and generalisation, including different time of
day, walking postures and speeds. In addition, we keep the
occasional short-term occurrence of WiFi hotspots to replicate
real situations.

Table II presents the samples distribution collected from
our two experiment sites. Specifically, the source scenario
dataset contains 24,450 inertial measurement units (IMU) and
magnetic sensor samples as well as a boosted number of WiFi
samples, to 25,541 accessed from 102 access points mounted
in the building. The target scenario dataset holds fewer WiFi
samples of 8,390 sensed from 750 access points, and the IMU
and magnetic sensors of 29,836 samples. As both datasets

TABLE III
MULTIMODAL DATASET STATISTICS

Dataset IMU Samples Mag Samples RSS Samples Access Points Time
Source Scenario 24,450 * (10 * 2) 24,450 * (10 * 1) 25,541 102 407 Mins
Target Scenario 29,836 * (10 * 2) 29,836 * (10 * 2) 8,390 750 497 Mins

collected from the two scenarios contain 14 rounds of data,
we split the whole dataset into an 8:5:1 ratio used for training,
validation and testing through all experiments.

Table III presents the datapoint format. Each timestep
(sample in one millisecond) contains time-sequential IMU and
magnetic samplings within one second time window and the
WiFi RSS scans at the current point. If there are no WiFi
updates at a certain timestep, we use a ’null’ value to represent
the missing value in the dataset. We record the ground truth
location when passing by certain landmark such as corners,
elevators and stairs during data collection, which are frequent
occurrences. All other location labels assigned to each timestep
are generated by linear interpolating with static samples at
precise locations to create the full labelled dataset.

We categorise multiple modalities into two types: the
infrastructure-free and the infrastructure-based modality.
Specifically, the infrastructure-free sampling indicates to the
samplings which have minimum variations caused by building-
specific settings. Such as the motion samplings (e,g. walking,
running, climbing stairs) captured by IMU sensors are less re-
lated to the building infrastructures but individual’s movement
gestures and behaviours. By contract, modalities including
the magnetic field and WiFi RSS samplings are more related
to geographical factors and physical forms of scenarios. For
instance, buildings located at different geographical locations
with different WiFi access points deployment strategies result
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(a) Source Scenario Trajectory (b) Target Scenario Trajectory

Fig. 3. Trajectories selected for gathering dataset from our two indoor evaluation scenarios.

in distinctive magnetic field samplings and WiFi Fingerprint
datasets, hence, regarded as the infrastructure-based modality.

The purpose of categorising the multimodal dataset is to
select which types of modalities are appropriate for imple-
menting transfer learning techniques. Here, we consider the
IMU samplings as the infrastructure-free modality for imple-
menting transfer learning while the magnetic and RSS scans
as the infrastructure-based modality that requires the network
to extract building-specific features from new deployment sites
from freshly collected on-site data.

B. Model Pre-training

Before performing transfer learning, we pretrain a transfer-
able model that learns the infrastructure-free modality repre-
sentations of human motion features (e.g., walking straightfor-
ward, turning around) captured by IMU sensors. We take the
same strategy of constructing an LSTM network, proposed
in [5]. Precisely, we construct an IMU-LSTM model that
contains an input layer taking IMU sensor data (timestep * 10
* 2). Here, timestep represents the time window of the LSTM.
In our situation, we consider time window of one second span.
We implement a downsampling strategy to select samples with
a period of 100 milliseconds. Hence, each datapoint capturing
one second time window is of the shape 10 samples multiplied
by 2 features (accelerator and gyroscope). A sliding window
with an overlapping of 900 ms is implemented to allow the
model to better learn the feature representations in between
each two sampling inputs. For instance, if the first timestamp
fed into the network starts from 0 to 999 ms, the next input
sample is from 99 to 1,099 ms instead of from 1,000 to 1,999
ms. The output is a 2-dimensional regression layer that predicts
the geo-spatial coordinates in x and y. We use the IMU dataset
gathered from the source scenario to pretrain the model. The
settings are illustrated in table IV.

C. Model Transfer

After pretraining, we extract the LSTM layer from the
model. This transferable component carries the IMU knowl-
edge learnt from the source scenario, behaving as a feature

TABLE IV
PRETRAIN NETWORK PARAMETER SETTINGS

Parameter Settings
Epoch 100
LSTM Layer 1 Layer
LSTM Hidden Units 128
LSTM Transferable Parameters 67072
Learning Rules RMSprop
Learning Rate 0.005

extractor for IMU samplings. This component is integrated
in our MTLoc architecture using transfer learning. The mul-
timodal network architecture contains the transferred IMU-
LSTM model for infrastructure-free IMU samples, a MAG-
LSTM and a DNN network for reading infrastructure-based
samples. All modality-specific features are then fused by con-
catenation to a one dimensional vector and fedforward through
a multi-layer perceptron for making the location estimation.

D. Model Fine-tuning

To specialize the model after transfer learning, we fine-
tune with a small amount of data collected from the new
deployment site. Here, we vary the amount of data required
for fine tuning to observe its impact. We take the parameters
of the IMU-LSTM component pretrained on the source site,
and set this sub network as trainable during the fine-tuning
process. We gradually increase the amount of training data
from 0% to 100% (total training sets include 8 rounds of data).
Figure 4 illustrates the comparison results. Here, the line of
0% represents the transferred model (train from scratch) with
freezing the IMU-LSTM weights and biases when feeding new
inputs from the target domain data, while the line of 100%
represents the transferred model with fine tuning based on the
whole training set from the target domain.

Table V presents the results in median error, mean error and
standard deviation obtained by the two training approaches,
training from scratch and with a varying amount of fine-tuning
data for transfer learning.

As expected, the model with transfer learning and fine-tuned
with 100% dataset of the target domain data outperforms all
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Fig. 4. Cumulative distribution function (CDF) plots showing the location prediction errors of models with different fractions of fine-tuning training data
collected from the target scenario. The 0.0% is equivalent to the transferred model without any site adaptation.

TABLE V
PREDICTION ERRORS WITH DIFFERENT FINE-TUNING RATIO.

Amount of fine-tuning ratio
Train from scratch 100% 87.5% 75% 62.5% 50% 37.5% 25% 12.5% 0%

Median Error 1.48 0.92 1.16 1.22 1.05 1.29 1.21 1.51 1.91 2.01
Mean 2.39 1.46 1.75 1.81 1.56 1.85 1.80 2.36 3.34 3.35
STD 2.77 1.63 2.07 1.92 1.82 1.96 2.17 3.70 4.75 5.09

other models. The model without fine tuning and the one
with 12.5% (1/8 rounds) fine-tuning rates have lower predic-
tion accuracy, compared to the model without implementing
transfer learning. The results indicate that the IMU-LSTM
component transfers the IMU representation learnt from the
source scenario to the target scenario. Despite data from the
new deployed scenarios being collected by different hardware
and variations, the new model still benefits from the transferred
information and keeps improving its inference accuracy by fine
tuning with increasing amount of data. Here, the model with
62.5% fine-tuned configuration offers an accurate performance
with minimum data demand, which only requires over half of
the dataset but outperforms the model trained with the full
dataset. It inherits the learnt knowledge of the infrastructure-
free IMU samplings from pretraining on other sites and needs
just a small amount of data for fine-tuning from the new
deployment site.

E. Modality Variability

Modality variability between the ones used to build compu-
tational models and those used by people during deployment
significantly affects the model’s inference accuracy and system
robustness. Reasons for this variability mainly include that i)
sensor malfunctions resulting in modality missing, ii) sensor
network variations due to acceptability and privacy concerns,
and iii) sensor hardware quality and user wearing preferences.
All these factors bring the modality variability and modality
missing challenges for transferring the model to new localiza-
tion scenarios, resulting in multisensory based systems losing
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Fig. 5. MTLoc component performance in varying amount of available
training data from the test set.

stability and robustness when a subset of the sensor networks
fails to operate.

To evaluate the impacts of modality variations on model
performance that what types and how dense the modalities are
more contributive and correlated to localization prediction, we
test the fine-tuned model without implementing the additional
human intervention or system recalibration. We randomly
remove the data points in the testing set to simulate the real-
time situations of modality missing and irregular samplings.
Specifically, we shelter each of the modality inputs from 0%
(keeping whole inputs) to 100% (removing entire inputs) to
the model during the online phase.
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Fig. 6. CDF Plots: Evaluating model robustness in missing data experiment by removing 40% of modality data in the target scenario.

We choose the model fine-tuned with 62.5% of data from
the deployment site. Figure 5 shows the performance of
this trained model under various modality missing situations.
By increasingly removing valid data from 40% to 100%,
the model’s prediction accuracy drops from an acceptable
precision of approximately 1.36 metres on average to over 2.88
metres median error. Estimation errors increase with valid data
being dropped gradually. When removing the same amount
from each modality, the absence of WiFi inputs has the most
significant drawbacks to the model robustness, followed by
the impact of magnetic field and IMU samplings. Hence, WiFi
modality, containing the building-specific representations, con-
tributes the most to localization estimation quality, while the
IMU samplings offer rough information about the movement.

F. Model Robustness

To evaluate our proposed fine-tuned model, we further
compare the fine-tuned model, the transferred model (with-
out fine-tuning), and the raw model (without implementing
transfer learning) under the same modality missing situation
of removing 40% of each modality input.

Table VI shows a numerical comparison between the trans-
ferred model without fine-tuning and the fine-tuned model un-
der the same situation that 40% of each modality input is being
wiped. We observe that the fine-tuned model outperforms the

TABLE VI
MODEL PREDICTION MEDIAN ERRORS WHEN 40% OF EACH MODALITY

BEING WIPED

Model Transferred Model Fine-tuned Model
Mag 2.01 1.22
IMU 1.81 1.40
WiFi 3.50 1.55

Average 2.44 1.39

transferred model with one-metre higher precision accuracy.
Figure 6 represents the comparison results. In general, fine-

tuned model outperforms all other models showing a robust
performance for localization. In figure 6(a), when removing
IMU sensor inputs, the fine-tuned model performs slightly
better than the transferred model. It indicates that the IMU
sampling representations are shared across scenarios and this

knowledge is learnt and transferred from source scenario to
target scenario through transfer learning. The new deployed
model learns the complementary multimodal features by fine-
tuning with the building-specific dataset to further improve
inference accuracy.

In figure 6(b), the absence of the magnetic inputs has similar
drawbacks to all models that transferred knowledge contributes
a little to the model’s prediction. It indicates that the magnetic
scans are relatively isolated from the other sensing informa-
tion. Even so, the fine-tuned model is still approximately 1
metre more accurate than the others. It is likely to explain
that with transferred knowledge of the IMU samplings, the
model boosted its ability to capture communicative features
from the multisensory dataset as the transferred model holds
not only the IMU features from the source scenario but also
the deployment scenarios.

In figure 6(c), the transferred model without fine tuning
shows an reduced performance compared to the raw model.
After fine tuning, the model outperforms the raw model
again. It indicates that the multimodal network makes location
estimations majorly based on the deep insights from the WiFi
and IMU features, instead of capturing the modality-specific
information from each feature extractor. Through fine-tuning,
the model re-captures the communicative representations of
the RSS and IMU samplings from the deployment scenario,
based on the precondition that the model has already held the
transferable IMU knowledge from source scenarios.

We observe that in our deployment scenario, the WiFi
modality contributes the most to the localization, followed by
the magnetic field samplings and the human motion IMU sam-
plings. However, this situation can be varied significantly from
scenario to scenario depending on the information utility of
each sensing modality. From a robust positioning perspective,
a model should be tolerant to different localization feature
representations by not only understanding modality-specific
features independently but also learning the joined features
comprehensively. We believe that the proposed multimodal
network can identify these complementary features automat-
ically and select the most discriminative fusion of sensor
features.
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V. CONCLUSION

In this work we leverage transfer learning for preparing
our indoor localization system built on a multimodal deep
neural network architecture (MTLoc) for deployment to new
sites. Our approach requires just a minute amount of training
data from the target spaces. The infrastructure-free component
of our model is pretrained on source sites and integrated
in the multimodal architecture. Then we fine-tune the model
with a small amount of data from the target deployment site.
Our MTLoc achieves an accuracy of 1.05 metres median
error. This outperforms the model trained from scratch on
data from the target site alone (trained with more data, but
without transfer learning). Furthermore, our model is fault-
tolerant, showing a robust performance when evaluated with
40% of modality data missing, still achieving a prediction
median error of 1.39 metres without any system recalibration.
Our system benefits from transfer learning with knowledge
brought from source sites to the target sites, which makes
our solution generalizable and scalable. This work takes our
community closer to fast deploying and easily maintainable
indoor localization systems.
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