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Abstract  
 
Biological catalysts are increasingly used in industry in high-throughput screening for 
drug discovery or for the biocatalytic synthesis of active pharmaceutical 
intermediates (APIs). Their activity is dependent on high-dimensionality 
physiochemical processes which are affected by numerous potentially interacting 
factors such as temperature, pH, substrates, solvents, salinity, and so on. To generate 
accurate models that map the performance of such systems, it is critical to developing 
effective experimental and analytical frameworks. However, investigating numerous 
factors of interest can become unfeasible for conventional manual experimentation 
which can be time-consuming and prone to human error.  
 
In this thesis, an effective framework for the execution and analysis of high-
dimensionality experiments that implement a Design of Experiments (DoE) 
methodology was created. DoE applies a statistical framework to the simultaneous 
investigation of multiple factors of interest. To convert the DoE design into a 
physically executable experiment, the Synthace Life Sciences R&D cloud platform was 
used where experimental conditions were translated into liquid handling instructions 
and executed on multiple automated devices. The framework was exemplified by 
quantifying the activity of an industrially relevant biocatalyst, the CV2025 ω-
transaminase enzyme from Chromobacterium violaceum, for the conversion of S-
methylbenzylamine (MBA) and pyruvate into acetophenone and sodium alanine.  
 
The automation and analysis of high-dimensionality experiments for screening of the 
CV2025 TAm biocatalytic reaction were carried out in three sequential stages. In the 
first stage, the basic process of Synthace-driven automated DoE execution was 
demonstrated by executing traditional DoE studies. This comprised of a screening 
study that investigated the impact of nine factors of interest, after which an 
optimisation study was conducted by taking forward five factors of interest using two 
automated devices to optimise assay conditions further. In total, 480 experimental 
conditions were executed and analysed to generate mathematical models that 
identified an optimum. Robust assay conditions were identified which increased 
enzyme activity >3-fold over the starting conditions. In the second stage, non-
biological considerations that impact absorbance-based assay performance were 
systematically investigated. These considerations were critical to ensuring reliable 
and precise data generation from future high-dimensionality experiments and 
include confirming spectrophotometer settings, selecting microplate type and 
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reaction volume, testing device precision, and managing evaporation as a function of 
time.  
 
The final stage of the work involved development of a framework for the 
implementation of a modern type of DoE design called a space-filling design (SFD). 
SFDs sample factors of interest at numerous settings and can provide a fine-grained 
characterisation of high-dimensional systems in a single experimental run. However, 
they are rarely used in biological research due to a large number of experiments 
required and their demanding, highly variable pipetting requirements. The 
established framework enabled the execution and analysis of an automated end-to-
end SFD where 3,456 experimental conditions were prepared to investigate a 12-
dimensional space characterising CV2025 TAm activity. Factors of interest included 
temperature, pH, buffering agent types, enzyme stability, co-factor, substrate, salt, 
and solvent concentrations. MATLAB scripts were developed to calculate important 
biocatalysis metrics of product yield and initial rate which were then used to build 
mathematical models that were physically validated to confirm successful model 
prediction. The implementation of the framework provided greater insight into 
numerous factors influencing CV2025 TAm activity in more dimensions than what 
was previously reported in the literature and to our knowledge is the first large-scale 
study that employs a SFD for assay characterisation. 
 
The developed framework is generic in nature and represents a powerful tool for 
rapid one-step characterisation of high-dimensionality systems. Industrial 
implementation of the framework could help reduce the time and costs involved in 
the development of high throughput screens and biocatalytic reaction optimisation.  
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Impact Statement  
 
In the pharmaceutical discovery and development of new medicines, significant 
interest has been shown towards the increasing use of automation and digitisation 
of experimental workflows. This thesis combines the capabilities of the Synthace Life 
Sciences R&D Cloud Platform and existing laboratory automation solutions to 
demonstrate the automated execution and analysis of high-dimensionality 
experiments, specifically using a statistical Design of Experiments (DoE) 
methodology. The model system used for this work was the bioconversion of S-MBA 
and Pyruvate to Acetophenone and Sodium Alanine catalysed by the industrially 
relevant CV2025 ω-transaminase enzyme from Chromobacterium violaceum. 
 
The research described in the thesis shows that automated DoE execution can be 
carried out without manually generating complex device-specific protocols. This was 
exemplified by using a number of commercially available laboratory liquid handling 
platforms for iterative DoE studies. A traditional DoE campaign, comprising of 
scoping, screening, and optimisation studies was executed using automation to 
identify robust CV2025 ω-transaminase bioconversion conditions that can be used 
for high-throughput screening. This further expanded into the development of a 
generalizable framework for the automation and analysis of a space-filling DoE (SFD) 
design that can be used for rapid assay characterization. This was exemplified by 
characterizing a 12-dimensional assay space in one four-day experiment. The large 
quantity of data generated was processed using MATLAB scripts to generate 
important bioprocessing responses of yield and the initial rate which were then used 
to build meaningful mathematical models.  
 
Overall, the research presented in this thesis demonstrates a new framework that 
can be used to reduce the time and effort spent characterizing and optimising 
enzymatic bioconversions in both academic and industrial laboratories. The 
approaches described are generic and can be applied to a range of end-user 
applications including assay development, cell-free protein synthesis, and drug 
discovery. In collaboration with the sponsoring company, this work has already been 
applied by end-users of the Synthace platform for developing biological and cellular 
assays.  
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1 Introduction 
 
This thesis focuses on the study of the automated execution and analysis of high-

dimensionality experiments that follow a Design of Experiments (DoE) methodology. 

This approach was used to investigate and optimise the activity of an industrially 

relevant enzyme, the CV2025 ω-transaminase from Chromobacterium violaceum, 

useful for the stereoselective amination of pharmaceutical intermediates. 

Automated experiments were designed and implemented using the Synthace R&D 

Cloud Platform, JMP (SAS Institute, USA) was used for DoE design generation, 

analysis, and visualisation of results, and the data processing pipeline involved 

MATLAB (MathWorks, USA) for automated processing of the raw absorbance data. 

This chapter provides background information on each of these aspects and reviews 

relevant literature before presenting the thesis aim and objectives. 

 
1.1 Design of Experiments methodology for high-dimensionality 

experiments 

 

1.1.1 The DoE approach 
 

Biological systems and processes are inherently complex. They function by balancing 

the effect of a myriad potentially interacting variables within a dynamic 

physicochemical space. Understanding these systems in turn requires the application 

of sophisticated experimental methods and data analysis approaches. Despite this 

known complexity, most biological research is still typically executed using a One 

Factor at a Time (OFAT) approach (Anderson and Whitcomb, 2007; Fellermann et al., 

2019). Here, the impact of one variable of interest (also known as a factor) on a 

process is investigated first while all other factor settings are held constant. The first 

factor is then fixed at the best performing setting before moving onto evaluate the 

impact of a second factor (Figure 1.1 A & B). Consequently, the effect of factor 

interactions, that are characteristic of biological processes, are lost as factors are 
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explored in isolation to one another (Erbach et al., 2004; Lendrem et al., 2015). 

Despite the significant limitation of OFAT experimentation, its use remains 

ubiquitous due to its straight-forward and intuitive implementation and the fact that 

it is commonly taught as the standard scientific method (Lendrem et al., 2016). 

 

Limitations of the OFAT approach can be overcome by using DoE approaches. DoE 

represents a suite of methods that apply a statistical framework to experimental 

design, execution, and analysis. DoE methodology enables the investigation of 

multiple factors that impact a process in parallel (as explained in Figure 1.1). 

Experiments that use this approach are often called ‘designed experiments’. 

Statistical DoE was first developed by Sir Ronald Fisher who used it to determine the 

effect of different types of fertilisers, volume of water and type of hybrid crop used 

to differentiate their effects on maximising crop production (Fisher, 1926). It has 

been further developed over the last century (Ronald A. Fisher, 1935; Box and Wilson, 

1951; Elfving, 1952) and is now considered one of the most powerful tools for process 

characterisation and optimisation (Farooq et al., 2016; Sadowski, Grant and Fell, 

2016). It is also widely used across a variety of industries, including manufacturing, 

finance, food, and aviation (Antony, 2014a; Midilli and Parshutin, 2019; Singh and 

Rathi, 2019). 
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Figure 1.1. Comparison of OFAT and DoE approaches. 
The figure shows the design space explored, and the location of optima found for both methods when 3 factors are investigated across 2 levels (-1 
and +1 represent low and high levels, respectively). (1A) The OFAT approach investigates one factor in isolation with linear experimentation. The 
circled data point from Experiment 1 shows the optimal value that is concluded from experimental investigation of Factor 1. This value for Factor 1 
is then carried forward to Experiment 2 where an optimal value is chosen for Factor 2 and so on. A total of 14 experiments are required to draw 
these conclusions. (1B) The research space explored for the three factors independently represented. Here, each factor is tested linearly with no 
parallel factor interactions. The red arrow indicates the researcher’s perception of where the optimum might lie which is determined after the three 
experiments are performed. (1C) The multifactorial DoE approach varies Factors 1, 2 and 3 in parallel, covering a larger design space in only 9 
experimental runs. Experimentation including the centre point, the midpoint of all the factors, allows curvature to be evaluated using data 
visualisation tools that are used in combination with the multifactorial approach to experimental design. (1D) The higher optimum that is found by 
performing a multifactorial DoE experiment is shown. Here, varying values for all three factors are incorporated into the experiment design in 
parallel. This method tests a wider design space allowing the researcher to understand how Factors 1, 2 and 3 interact with each other at both levels.
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1.1.2 DoE terminology 
 

In DoE terminology, a ‘factor’ is a variable of interest that is intentionally controlled 

to assess its impact on the performance of a process. Individual settings termed 

‘levels’ are used to examine factors. Temperature is a factor that is sampled at three 

levels, for example, if temperature is investigated at 25, 35, and 45 °C. Factors are 

typically grouped into two types: categorical and continuous. Factors are categorical 

when there is no relationship between different levels, for example, buffer type, salt 

type, growth medium, bioreactor type etc. Factors are continuous when their levels 

are intrinsically linked, for example, temperature, pH, salt concentration etc. When a 

collection of factors at different levels is modified simultaneously in a designed 

experiment, the experimental space they cover is referred to as the 'design space'. 

Each factor accounts for one dimension of the design space. The DoE design uses 

factors and their levels as inputs to generate a set of algorithmically specified 

treatments, each of which is referred to as a ‘run’ or ‘run condition’. The collection 

of runs is represented in a DoE design table with each row containing run specific 

factor settings. These settings are used as instructions to execute the design which 

generates data that is used to calculate a ‘response’. Responses are metrics defined 

by the researcher to evaluate the process under investigation e.g., yield or rate. They 

are utilized to generate mathematical models to describe the relationship between 

the factors and response. The term ‘DoE’ is sometimes colloquially used when 

discussing an experiment that uses a DoE approach.  

 

1.1.3 Statistical principles underpinning DoE  
 

To ensure that robust mathematical models are generated, a designed experiment 

incorporates three underpinning statistical principles to account for biological and 

technical noise. These are: randomisation, replication and blocking (Anderson and 

Whitcomb, 2007; Montgomery, 2013; Antony, 2014b). Runs are executed in a 

random order. This ensures all the responses and errors are independent of each 

other. Replication of runs is performed either by including the entire experiment or 
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just selective runs e.g., the design centre point. This ensures that both an accurate 

estimation of the factor and factor interactions, and the experimental error, are 

captured. A designed experiment may often need to be ‘blocked’ according to a 

limiting factor. Blocks are created by separating the design into smaller groups of 

randomised runs to ensure that all factor effects can be appropriately estimated. For 

example, a DoE may need to be blocked by days, raw materials, or equipment 

availability. Overall, these fundamentals are used to account for technical error and 

biological noise and lead to more precise estimation of factor effects.  

 

1.1.4 Scale of DoE designs 
 

Due to the complexity of biological systems, it is easy to list multiple factors (k) over 

a number of levels (x) that might affect a process where xk represents a ‘full factorial’ 

experiment as it investigates all possible combinations of factors and levels. For 

example, a full factorial experiment testing 5, 6 or 7 factors across 3 levels each would 

require 35 (243), 36 (729), and 37 (2,187) experimental runs, respectively. Depending 

on the resources and time available, execution of these large experiments could be 

feasible. However, a full factorial experiment with 10, 15 or 20 factors would require 

310 (59,049), 315 (14,348,907), and 320 (3,486,784,401) experimental runs 

respectively, to cover the entire design space. This number of runs is both 

unnecessary and unfeasible to implement in practice. Consequently, full factorial 

designs are not typically executed. Instead, the size of a full factorial design is 

significantly reduced by assuming that higher-order interactions, typically third order 

and above are unexpected and unimportant. These designs are called fractional 

factorial designs; they typically focus on main effects and two-factor interactions 

(Anderson and Whitcomb, 2007). 

 

Selecting too small a run number may lead to ‘confounding’. This is the term used 

when the influence of one factor cannot be differentiated from that of another. To 

avoid this, a summary statistic called ‘design resolution’ is used to understand if the 

total run number is sufficient to identify main effects and interactions; this can be 
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used to select an appropriate design (Montgomery, 2013; Onyeogaziri and 

Papaneophytou, 2019).  

 

Using fractional factorial designs ensures that the design space is sampled in a sparse 

and unbiased manner. DoE studies are most effectively performed in an iterative 

manner (Coleman and Montgomery, 1993; Nabifar et al., 2010), with each iteration 

narrowing in on the optimum (Figure 1.2). Typically, less experiments are required to 

optimise a system using DoE compared to OFAT methods which in turn reduces cost 

and time (Figure 1.1). 

 

 
Figure 1.2. Illustration of iterative DoE experimentation. 
Dots represent experimental run conditions. (1) Factors of interest are first tested to identify 
suitable factor levels for screening typically using an OFAT approach. (2) Selections of factors 
are screened typically using a fractional factorial design to efficiently explore the design 
space. (3) An optimization DoE design, such as a response surface design is applied to a 
smaller subset of significant factors to identify an optimum region. Permutations of this 
process may be required depending on the system being explored, e.g., screening can take 
place directly if sufficient prior knowledge of the system is available. Alternatively, a number 
of DoE screening designs may be required before optimisation.  
 

1.1.5 Application of DoE in biological research and barriers to entry 
 

The impact of DoE on biological research is most significant within industrial 

pharmaceutical research and development. Here DoE is an integral part of the 

statistical toolbox (reviewed in (Rathore, 2009; Mercier et al., 2014; Politis et al., 

2017)(Wasalathanthri et al., 2021)). Regulatory bodies (such as the US Food and Drug 
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Administration (FDA) and the European Medicines Agency (EMA)) increasingly 

recommend pharmaceuticals to be manufactured by processes that follow a Quality 

by Design (QbD) framework which encompasses a body of practices geared toward a 

systematic understanding of the products and processes to mitigate risk and 

minimise variability (Montgomery, 2012). It recognises that “quality cannot be tested 

into products, i.e., quality should be built in by design” (Rathore, 2009). To meet 

manufacturing standards consistently, DoE is used to systematically determine the 

bounds of the design space within which the manufacturing process must occur. 

These guidelines are outlined in the International Conference on Harmonisation (ICH) 

guidelines, ICH Q8 (R2) Pharmaceutical Development (ICH Q8 (R2), 2014).  

 

In contrast, within basic biological research, DoE is used infrequently, and its 

acceptance has been slow. However, some examples of its use can be found in a 

range of biological fields including academic drug discovery (Tye, 2004), synthetic 

biology (Gilman et al., 2020), mass spectrometry (Hecht, Oberg and Muddiman, 

2016), liposome development (Jain, Hurkat and Jain, 2019), recombinant protein 

production (Uhoraningoga et al., 2018), metabolomics (Jacyna, Kordalewska and 

Markuszewski, 2019), microfluidics (Sun, Lin and Barron, 2011), fermentation and 

bioreactor optimisation (Adinarayana and Ellaiah, 2002; Islam et al., 2007; Fricke et 

al., 2013), and cell therapy bioprocessing (Acosta-Martinez et al., 2010).  

 

The infrequent use of DoE is typically attributed to the lack of formal statistical 

training, where researchers are completely unaware of DoE methodology (Santos, 

Rato and Reis, 2019). Novice users are also faced with an initial learning curve which 

can be challenging and a barrier to adoption. To help overcome this, a number of 

commercial software packages have been designed to guide users through DoE 

design and analysis. These include JMP (SAS Institute, USA) Design Expert (Stat-Ease 

Inc., USA), Minitab (Minitab, LLC, USA), and Modde® (Sartorious, Germany) (Tye, 

2004). The requirement of defining suitable factors and levels of interest a priori can 

also pose a challenge if sufficient expert knowledge is unavailable (Cambray, 

Guimaraes and Arkin, 2018). Additionally, manual pipetting that is required to 
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prepare experiments in a randomised order can be unintuitive and error-prone 

despite extensive upfront planning and organisation. These perceived barriers can 

thus make DoE an unattractive framework for researchers to follow (Erbach et al., 

2004; Farooq et al., 2016). 

 

Automation of DoE execution, using commercially available liquid handling 

technologies, represents a promising approach to making DoE more accessible. 

Currently available liquid handling solutions are described in Section 1.2. 
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1.2 Automated liquid handling solutions for biological 

experimentation  

1.2.1 Automated liquid handling devices  
 

Even though automated devices and liquid handling robots have been available for 

decades (Pauwels et al., 1995), the majority of biological research is still performed 

manually using handheld pipettes (Baillargeon et al., 2019). In this section, currently 

available hardware, and software solutions for automating biological experiments 

will be described. The emphasis will be on commercially available liquid-handling 

platforms (‘liquid handlers’), the barriers to entry, and the software tools available to 

automate DoE execution. 

 

Liquid handlers are devices that are designed to automate routine pipetting actions. 

The most basic class of liquid handlers use Cartesian robotics; where pipetting heads 

aspirate, dispense and mix solutions by moving in XYZ planes (Kong et al., 2012). 

Device-specific control software is used to create an experimental protocol and 

monitor execution. Many liquid handlers of varying sizes and capabilities are 

commercially available. A subset of the most commonly used devices available today 

is listed in Table 1.1 together with an indication of their relative cost. 

 

By using liquid handlers, manual pipetting errors and user-to-user variability when 

handling microliter volumes can be replaced with consistency, accuracy, and 

increased experimental throughput (Nealon et al., 2005). Efficiency is increased as 

the researcher can focus on intellectual tasks due to the ‘walk-away’ time that is 

created when the liquid handler is in operation. Furthermore, experiments that 

would normally be difficult to execute by humans can be made accessible by the 

application of automation e.g., more frequent passaging of cultured cells (Hussain et 

al., 2013).  
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Table 1.1. Range of commercially available liquid handling platforms and their relative 
capital cost. 

 
* Very low cost: <£5K, Low cost: £20-30K, Medium cost: >£80K, High cost: £100-200K, Very 
high: >£230K. Categories based on 2021 UK prices. 
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Despite generally limited adoption in biological research, automation has become the 

default mode of operation within a few specific areas. The most predominant of 

these is in drug discovery, where small molecule libraries containing tens of 

thousands of compounds undergo high-throughput screening (HTS) against target 

assays to identify candidate therapeutics (Meyer et al., 2017; Schneider, 2018). HTS 

methods were developed alongside the wide adoption of standardised multi-well 

microplate formats that were compliant according to the Society of Biomolecular 

Sciences (SBS). Starting in the mid-1990s, 96- and 384-well plate formats were most 

widely used (Armstrong, 1999), however, over the past decades, high-density plate 

formats containing 1536 and 3456 microwells have gained popularity and have been 

used to execute many biological assays at a total volume of 1-2 µL, thus, making it 

possible to conduct up to 100,000 assays per day (Szymański, Markowicz and 

Mikiciuk-Olasik, 2012; Beal, Lu and Weiss, 2021; Landeta and Mejia-Santana, 2021).  

 

In the last two years, automation has played a significant role in the response to the 

SARS – CoV – 2 pandemic to meet the urgent need for hundreds of thousands of 

clinical diagnostic tests, which has, in turn, led to the execution of thousands of 

automated PCR/RT-PCR tests per day by reconfiguring commercially available liquid 

handlers (Crone et al., 2020; Macaulay, 2020; Sanders, 2020). Examples of automated 

experimentation are also scattered within other areas of biological research, 

including automated DNA synthesis (Kaplan, 1985), rapid mutant library generation 

(Quaglia et al., 2017), multi-part DNA construct assembly (Chao et al., 2017), and end-

to-end protein production (Bos et al., 2015). 

 

The above studies exemplify how automation can be used to perform tasks that 

would be challenging and time-consuming to attempt manually. Once the 

automation hardware is in place, there is then the need to consider how conventional 

lab processes are adapted for automation purposes and how the experimental 

protocol is programmed in the device control software. These aspects are considered 

in Section 1.2.2. 
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1.2.2 Generation of automation protocols 
 
Each of the liquid handling devices listed in Table 1.1. come with their own control 

software. This is used by the operator to create protocol instructions; a set of 

instructions is often referred to as a ‘script’. All the liquid-handling actions required 

to execute pipetting commands that make up a particular experiment are defined 

step-by-step within a script. Depending on the complexity of the automation device, 

the script may also contain instructions for other operations e.g., for the movement 

of plates around the deck of the robot or for the automated operation of integrated 

analytical devices such as plate readers or HPLCs. The complexity of each control 

software varies greatly. Some vendors have recognised the need to make intuitive 

and user-friendly Graphical User Interfaces (GUIs) e.g., the Freedom EVOware that 

controls the Tecan Evo Series liquid handling platforms (Männedorf, Switzerland) 

contains a drag-and-drop feature to easily add various actions such as aspirate, 

dispense, mix, etc. into a script.  

 

In contrast, some liquid handlers can only be used when customised instructions are 

created by the vendor (Pandya et al., 2010); this is the case for Hamilton Microlab 

STAR liquid handlers (Bonaduz, GR, Switzerland) that use a control software called 

Venus. Generating scripts using Venus has previously been called ‘daunting’ due to 

the programming skills required and often requires supporting secondary software 

to access the full functionality of the device (Fan, 2016; Meyer et al., 2017).  

 

Automated protocols require the researcher to become an expert user of the control 

software as they need to learn to specify not only the sequence of operations but 

also the underlying detail of how each operation is performed e.g., the specific 

location of each aspirate and dispense step, the volume and speed of each addition, 

how liquids are mixed, etc (Pandya et al., 2010). Even for a straightforward 

experiment, this can become tedious as it requires continuous iterative adjustment 

of the script (Naugler and Church, 2019; Christensen et al., 2021). It also limits the 

flexibility and potential of these devices and leaves automated protocols exposed to 

the same errors as manual protocols (Oritz et al., 2017). Consequently, automation 
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is generally used to execute a limited number of tasks and is primarily used to replace 

repetitive pipetting tasks by reusing one script repeatedly.  

 

When considering the automation of DoE designs, the complexity of the pipetting 

actions required to prepare multifactorial randomised runs can make current 

automated solutions difficult to use. Recent advances in the automation of DoE 

experimentation are discussed in Section 1.2.3.  
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1.2.3 Current solutions for automated DoE execution 
 

To automate DoE execution, some researchers have taken on the task of creating 

their own support software to enable them to perform DoE studies. An early example 

of this was the use of a Tecan Freedom EVO 200 liquid handler to carry out a DoE 

study that investigated lysozyme solubility with an aim to identify optimal ion 

strength and pH in a precipitation process design. To implement this DoE protocol, 

an intelligent architecture programmed in C# that enabled liquid handling and 

analytical device integration, was used in combination with the Tecan control 

software (Wu and Zhou, 2014). Similarly, to study enzyme kinetics, the R 

programming language has been used to develop software that integrates 

automated protocol execution on a Tecan Genesis RSP 159 liquid handler and 

subsequent data analysis (Bonowski et al., 2010). The Visual Basic programming 

language has also been used to import DoE design files into Tecan EVOware for 

optimising a ligand-binding assay (Tsoi, Patel and Shih, 2014). These examples 

illustrate that expert programming knowledge is generally required for automating 

DoE execution. Many labs may not have this skill set, time, or resources to develop 

such software tools for specific experiments. 

 

Increasingly, the equipment vendors themselves have been exploring solutions for 

automated DoE execution. This has been driven by end-user requirements and the 

increasing use of DoE in pharmaceutical development as described in Section 1.1.5. 

Beckman Coulter was an early pioneer of this approach with a software package 

called SAGIANTM Automated Assay Optimisation (AAO) (Erbach et al., 2004) that 

could be used for assay optimisation DOEs on the Biomek FX Laboratory Automation 

Workstation or the Beckman Coulter BioRAPTRTM Microfluidic Dispenser. The DoE 

design file has to first be imported from Design ExpertTM into AAO, the user must then 

specify parameters such as labware and device deck layouts. Once the DOE has been 

executed, the data can be collected and then exported using AAO (Taylor et al., 2000). 

Another company, SPT Labtech (Melbourn, UK) has used their dragonfly® discovery 

liquid handling platform to perform DoEs by expanding their file inputs to allow input 
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and conversion of DoE files created using the JMP software (SAS Institute). This 

platform accepts all microplate formats up to 1,536 well plates to allow for low 

volume and high-throughput assay development (Scott et al., 2018). 

 

The limitation of these examples is that they are both device-specific and experiment-

specific. They do, however, highlight the need for software solutions that can define 

biological protocols in a standardised high-level manner, translate them into 

instructions for automated devices and collect and analyse data as required 

(Bonowski et al., 2010). Approaches to tackle this bottleneck are described in Section 

1.2.4. 

 

1.2.4 Digitisation and automation of biological research and development 
 

The ease by which researchers can interface with robotic platforms, such as liquid 

handlers, is critical to automating biological research. This has led to the 

development of software tools that aim to digitise and automate different areas of 

biological research. A number of the most recent developments in this area are 

described below.  

 

Aquarium is an open-source, web-based application that aims to digitize manual 

benchtop experiments. It can be used for the integration of experiment design, 

inventory management, protocol execution, and data capture. Once experiments are 

prepared digitally, a researcher follows step-by-step instructions to manually execute 

biological workflows by leveraging existing equipment (Vrana et al., 2021). This has 

the advantage that existing labware can be leveraged to formalise the descriptions 

and execution of scientific workflows by researchers that may not have a high-level 

understanding of the protocol being performed, however, it is still limited to manual 

workflow execution and no experimental design and analysis done within the 

application.  
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Pr-Pr is an open-source biology-friendly high-level programming language that was 

developed with the aim to create standardised liquid-handling protocols. User-

defined protocol steps are compiled into low-level instructions for Tecan liquid 

handlers, microfluidic devices, and manual execution  (Linshiz et al., 2013, 2014). 

Future development of Pr-Pr could potentially enable the adoption of standardised 

automated protocols across various laboratories despite any differences in 

automation equipment they have available. However, building Pr-Pr translators for 

devices other than Tecan liquid handlers is currently limited to individuals in the 

scientific community with the necessary expertise and time. 

 

Many companies have also joined the effort to digitize biological research (Sadowski, 

Grant and Fell, 2016; Appleton et al., 2017; Whitehead et al., 2018). For example, 

Riffyn (riffyn.com) provides software for experiment planning and automated data 

collection and processing. Benchling (benchling.com) is a cloud platform that enables 

the centralisation of scientific data; its core function is an Electronic Lab Notebook 

(ELN) that can be used to track experiments, processes, and samples. It also consists 

of a molecular biology suite that has user-friendly tools for DNA construct assembly. 

Similarly, Teselagen (teselagen.com) focuses on DNA assembly design. Dotmatics 

(dotmatics.com) has a platform that has both ELN and data analysis capabilities. To 

bridge the gap between experiment design and automation, companies like Riffyn 

and Teselagen also have the functionality to create worklists; these are files that 

contain instructions for the Beckman Coulter Echo liquid handler control software, 

although they don’t directly communicate with the device at present (Crone et al., 

2020).  

 

Companies such as Emerald Cloud Labs (emeraldcoloudlab.com) and Strateos (known 

as Transcriptic prior to a merger in 2019, strateos.com) focus more heavily on 

automation as they provide a remote ‘cloud lab’ service that consists of integrated 

automated devices for end-to-end execution of common molecular biology protocols 

such as PCR and cloning. Clients outsource their experimentation to these companies 

and monitor progress online (Hayden, 2014). Strateos also contains a library of 
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predefined protocols that can be customised, validated, and queued up for execution 

directly by the clients (https://developers.strateos.com/docs).  

 

Finally, the Synthace Life Sciences R&D Cloud Platform (referred to as Synthace, 

synthace.com) can be used to design, perform, and analyse experiments (Sadowski, 

Grant and Fell, 2016). Synthace and SynthaceHub are two pieces of software that 

comprise the Synthace platform. Experiments, including DoE designs, can be 

designed, and confirmed in silico in the Synthace user-friendly interface. Once 

experiments are ready to be executed, they are directly sent to Synthace Hub, which 

is installed on a lab computer connected to the automated device. This is used to 

start automated execution, operating through the device-specific control software. 

Furthermore, Synthace is a device-agnostic platform that allows the same 

experiments to be run on a variety of devices. Synthace was the software platform 

selected for use in this work hence it is described in more detail in Section 1.3.  

 

1.3 Synthace Life Sciences R&D Cloud Platform 

 
The Synthace Life Sciences R&D Cloud Platform is one of the latest software packages 

that aims to seamlessly automate biological experimentation and analysis. Synthace 

allows users to define high-level experimental workflows which are encoded in a 

programming language derived from Google Go. Workflows are interpreted and 

optimized by the Synthace ‘planner’ and are then compiled into automated device-

specific liquid handling instructions using specific device drivers. Many automated 

devices are supported by Synthace, the majority of which are liquid handlers.  

 

Experiments are designed and executed over a series of pages within the Synthace 

graphical user interface (Figure 1.3). The first step of this process is the creation of a 

Synthace workflow using a page called the ‘Builder’. The Builder contains a canvas 

where a workflow is created, along with libraries of devices, plate types, tip types, 

and liquid handling policies.  

 

https://developers.strateos.com/docs
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The Builder is used to create a ‘workflow’, which is a user-defined digital protocol 

that contains high-level details of the automated experiment. A workflow is created 

by using pre-existing building blocks called ‘elements’. Each element is responsible 

for a specific function. Elements contain ‘input’ and ‘output’ parameters, inputs are 

user-defined descriptions of components required by the element to function, data 

generated from processing these inputs creates outputs. Typically, the outputs of one 

element can be joined to the input of another element. Thus, information can flow 

between elements which enable the creation of complex biological workflows which 

then get compiled to generate device-specific liquid-handling instructions.  

 

Crucially, once a workflow is prepared, it can be simulated to enable the user to check 

for errors. Here, Synthace uses high-level details within the workflow and translates 

them into a device-specific automated protocol. Transfer volumes, plate layouts, and 

device preparation instructions are automatically generated. A workflow that is 

successfully simulated is called a ‘simulation’. If a simulation fails, an error message 

guides the user to the element that caused the error; often this process can be 

iterative as manual errors, missing information or incorrect inputs are identified.  

The details of a simulation are accessed through a series of three pages collectively 

called ‘Simulation Details’; these include the ‘Overview’, ‘Setup’ and ‘Preview’ pages. 

The Overview page summarises the resources e.g., labware and reagents, required 

for the experiment. It also contains all the files created from that simulation. The 

Setup page shows the contents of each input and output plate required for the 

experiment. The reagents that need to be provided to the experiment are already 

organised in a pre-determined layout at required volumes, therefore, this 

information is used to prepare input plates prior to execution. The Preview page 

contains a visual representation of the automated experiment, it allows the user to 

step through every liquid-handling step one pipetting action at a time. As each step 

of the experiment can be visualised, this page is used to confirm that the automated 

experiment will operate as expected. It is also used to instruct the user on how to set 

up the deck of the automation platform being used i.e., where plates, reagent 

reservoirs, and tip boxes should be placed.  
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A simulation becomes an ‘execution’ when it is scheduled from the Simulation Details 

page. This process sends the execution to the pre-installed SynthaceHub software on 

the computer that controls the automated device (a manual instruction file upload is 

required for a few devices). Once the device is set up as previously shown in Synthace, 

the execution can be selected and run. A range of experiments, each of varying 

complexity can be automated as the same underlying process is followed each time.  

 

 
Figure 1.3. Flowchart outlining the process for automating an experiment using Synthace.  
Synthace specific pages are named in orange text. Green arrows show the process of creating 
an experimental workflow, generating a simulation and physical execution. Dashed black 
arrows show stages where reiteration of the workflow may be necessary.  
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1.4 Transaminases  

 

Due to the generic nature of Synthace, as described in Section 1.3, it can be used to 

automate virtually any type of biological experiment on a wide range of automated 

devices. To date, most of the applications include molecular biology protocols such 

as DNA assembly, qPCR (quantitative polymerase chain reaction), and ELISAs 

(enzyme-linked immunosorbent assay) (https://www.synthace.com/#protocols), this 

thesis will examine the application of Synthace-driven DoE approaches for 

biocatalytic reaction screening and optimisation. Specifically, it will focus on 

industrially relevant transaminase catalysed bioconversions and activity assays that 

can be used in enzyme improvement programs or to guide optimisation of larger-

scale bioreactor operations. 

 

1.4.1 Introduction to transaminases  
 
Transaminases (TAm) or aminotransferases are a class of enzymes that catalyse the 

transfer of an amino group from an amine donor to a ketone substrate (Brunhuber 

and Blanchard, 1994; Hyun and Davidson, 1995). They are dependent on the cofactor 

pyridoxal 5’- phosphate (PLP) to catalyse the reaction (Figure 1.4) (John, 1995). In 

vivo, transaminases catalyse the formation of amino acids by breaking down proteins 

(Braunstein. and Kritzman., 1937). 

 

 
Figure 1.4.  Schematic of a general mechanism of a TAm reaction showing the transfer of 
an amino group to a carbonyl group.  
 
Transaminases are classified into four groups (I – IV) based on their primary (Mehta, 

Hale and Christen, 1993; Sayer, Isupov and Littlechild, 2007). All groups are co-factor 

dependent. Groups I, III and IV are comprised of α-TAms and Group II is comprised of 

https://www.synthace.com/#protocols
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ω-TAMs (Mehta and Christen, 1994). The ω-TAMs have been studied more 

extensively and are considered the most important group of TAm as they can access 

a wider range of substrates that cannot be accessed by α-TAm groups and do not 

require the presence of an α-amino or α-keto acid (Shin and Kim, 1999; Koszelewski 

et al., 2010). Their significance within industry has grown over the last few decades 

due to their ability to synthesise amino acids and chiral amines (Stewart, 2001). 

 

1.4.2 Structure of transaminase  
 
Consequently, many ω-TAMs have been studied over the last two decades, early 

examples include Klebsiella pneumoniae, Bacillus thuringiensis JS64, and Vibrio 

fluvialis JS17 (Shin and Kim, 1997, 1998; Shin et al., 2003). In 2007, the ω-TAm enzyme 

from Chromobacterium violaceum called CV2025 was identified from PSI-BLAST 

searches by querying the Vibrio fluvialis JS17 TAm gene sequence and cloned into 

pET29a vector and expressed in E. coli BL21 cells (Kaulmann et al., 2007). It exhibited 

strong kinetic resolution due to high selectivity towards aromatic (S)-amines such as 

S-MBA and asymmetric synthesis in the forward direction, making it a promising 

catalyst for the preparation of enantiopure amines and amino alcohols (Chen, 

Berglund and Humble, 2018; Voss et al., 2018). CV2025 will be used as the model 

enzyme for the work done in this thesis. Figure 1.5 shows the ribbon structure of 

CV2025 which is a homodimer with a molecular mass of ~100 kDa (Humble et al., 

2012).  
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Figure 1.5. Ribbon structure of holo form TAm from Chromobacterium violaceum CV2025.  
A large domain (pink) and two smaller domains (grey and blue, respectively) are shown along 
with a linker (grey), and the active site is shown using a semi-transparent surface. Adapted 
from (Humble et al., 2012) 
 
1.4.3 Transaminase reaction mechanism 
 

Transaminases (TAm) catalyse the transfer of an amino group from an amine donor 

to a ketone substrate via a ping-pong bi-bi mechanism resulting in the synthesis of 

optically pure chiral amines (Bulos and Handler, 1965a; Kuramitsu et al., 1990a). In 

this mechanism, biocatalysis takes place in two half-reactions, in the first half, the 

amine donor binds to the TAm to transfer the amino group to PLP to form 

pyridoxamine 5-phosphate (PMP) and release the keto product. In the second half, 

the PMP-TAm complex transfers the amino group to the amine acceptor substrate 

which leads to PLP regeneration and the synthesis of the aminated compound.  

 

1.4.4 Industrial applications of transaminases 
 

Numerous TAms with broad substrate specificities have been identified ex vivo over 

the last few decades, which has increased their industrial popularity because they 
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can be used for the synthesis of amino acids and chiral amines, which are critical in 

the development of fine chemicals and pharmaceuticals, making TAms industrially 

appealing biocatalysts. (Satyawali et al., 2017; Kelly et al., 2020). TAms offer a 

sustainable green alternative to chemo catalytic methods and have been successfully 

incorporated into large-scale industrial synthesis (reviewed in (Kelly et al., 2020), 

(Kohls, Steffen-Munsberg and Höhne, 2014)). The production of Sitagliptin, an anti-

diabetic medication whose rhodium-catalysed synthesis was substituted with a TAm-

catalysed method, is the most notable example (Saville et al., 2010). This was a 

significant advancement over chemical synthesis, which requires toxic heavy metal 

catalysts and harsh conditions. 

 

The search for industrially capable TAms with high activity, thermostability, solvent 

stability, enantioselectivity, and other desirable properties has led to researchers 

using metagenomics and protein engineering methods to identify and develop a 

variety of TAms (Gupta, 1992; Deszcz et al., 2015; Leipold et al., 2019). In turn, 

efficient and cost-effective biocatalytic reaction screening methods that can evaluate 

the characteristics of TAms are required before they can be considered industrially 

suitable biocatalysts.  

 

1.4.5 High-throughput screening assays 
 

As the interest in TAms has increased, various high-throughput assays have been 

developed for investigating TAms that have suitable characteristics of industrial 

catalysts. High-throughput assays are more efficient than techniques such as HPLC 

(High-performance liquid chromatography), mass spectroscopy, and NMR (nuclear 

magnetic resonance) which can often be low-throughput, manual, and time-

consuming. Therefore, developing high-throughput assays that can be conducted in 

microtiter plates while maintaining sensitivity and robustness are needed for 

screening and characterising TAms.  
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In turn, many high throughput assays based on various principles have been 

developed with an aim to quickly evaluate important enzyme characteristics. These 

include enrichment methodology (Shin and Kim, 2001), pH sensor methods 

(Hopwood et al., 2011), spectrophotometric detection methods (Hwang and Kim, 

2004; Schätzle et al., 2009; Hopwood et al., 2011; Sehl et al., 2012), colorimetric 

detection methods (Baud et al., 2015) and conductometric methods (Ho, Robins and 

Bornscheuer, 2010). In this thesis, a spectrophotometric assay that quantifies the 

conversion of the amine donor, S-methylbenzylamine (S-MBA) and amine acceptor, 

Sodium Pyruvate into Sodium Alanine and Acetophenone will be used as the model 

system (Schätzle et al., 2009).  

 

While a range of high-throughput assays are now available, there is further scope for 

both improving biocatalysis screening conditions enzymes are subjected to while also 

improving the process of executing the assay by automating assay preparation. 

Additionally, optimising many non-biological considerations or ‘assay logistics’ that 

impact assay precision, such as ensuring appropriate labware, reaction volumes, 

automated devices, etc., can also be improved to create efficient and cost-effective 

frameworks for biocatalytic reaction screening.   
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1.5 Aim and objectives  
 

DoE approaches provide a powerful and efficient way to systematically investigate 

complex biological systems and have been extensively adopted within industrial QbD 

frameworks (Section 1.1.5) Its adoption in other biological research has been slow 

due to many perceived limitations, one of which is its manual nature of preparing run 

conditions. Executing a DoE study requires the preparation of randomised run 

conditions, which in turn requires highly variable and unintuitive pipetting steps, 

making the process of executing a DoE study complicated and error-prone (Section 

1.1.5). As a result, only a limited set of DoE designs are manually executed, whereas 

other modern design types that are suited to exploring high-dimensionality spaces 

are not currently used since they are beyond the scope of manual execution (Gilman 

et al., 2020).  

 

Automating DoE execution may seem like an ideal solution for executing DoE studies, 

however, this is largely unfeasible as current automation platforms are primarily used 

to conduct repetitive experiments where the same liquid-handling script can be 

prepared once and used repeatedly e.g., preparation of end-point assays. Often, 

specific programming skills and knowledge of device-specific control software are 

required to prepare liquid-handling scripts which limit the flexibility of automating 

various biological experiments, e.g., bioconversion reactions (Section 1.2.2). 

Currently, the lack of generic software tools that can interface with numerous liquid 

handlers and associated platforms and be applied to all types of biological 

experiments is still very limited. In this thesis, automated experimentation will be 

established using Synthace (Synthace Ltd) (Section 1.3) throughout. This has been 

chosen as it enables the automation of virtually any type of liquid-handling 

experiment across a range of automated devices.  

 

In this thesis, the activity of an ω-transaminase enzyme from Chromobacterium 

violaceum called CV2025 (Kaulmann et al., 2007) was screened using a 

spectrophotometric activity assay (Schätzle et al., 2009) (Section 1.4.5). It was used 
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as the model system to demonstrate the application of high-dimensionality 

experiments which could provide insight into significant factors and factor 

interactions and lead to thorough characterisation of the assay’s design space. It was 

selected over assays that require equipment such as HPLC, GC, and NMR as they can 

quickly generate large quantities of data and are capable of parallel measurements.  

 

Using a spectrophotometric assay is beneficial as large quantities of absorbance data 

can be generated from automated DoE studies to calculate many metrics that are 

necessary when understanding biocatalytic reaction screening such as reaction rate, 

yield, stability, etc. However, handling large quantities of data and calculating these 

metrics require data processing frameworks that can use absorbance data to 

automatically calculate the metrics of interest. This functionality is missing from most 

current packages and is essential to the automation and analysis of high-

dimensionality experiments.  

 

The overall aim of this thesis is to establish a framework for the automated execution 

and analysis of high-dimensionality experiments created using DoE methodology. 

Successful implementation of these approaches will provide generic frameworks that 

can be implemented in industry by groups focusing on biocatalytic reaction screening 

and assay development. 

 

The objectives necessary to achieve this aim are detailed below.  

 

• The first objective is to establish an automated protocol for a manual high-

throughput TAm activity assay. Experiments that follow DoE methodology will 

be conducted to identify fast and precise assay conditions by performing 

screening and optimisation DoE studies. All automated experiments will be 

defined and executed using Synthace. This work is described in Chapter 3.  

• The second objective is to refine the non-biological considerations that could 

impact automated high-throughput spectrophotometric assays. As many 

things can impact assay performance, this process was carried out to ensure 
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any future high-dimensionality experiments can be executed This work is 

described in Chapter 4.  

• The next objective is to integrate the methods established in Chapter 3 and 4 

in order to establish a generalised framework for the one-step 

characterisation of a large unfamiliar design space with automated execution 

and data analysis. A modern type of DoE design, called a space-filling design, 

that was previously out of reach for physical experimentation will be used to 

explore an unfamiliar 12-dimensional design space to gain further insight into 

the design space, MATLAB scripts were used to process absorbance data and 

automatically generate responses of initial rate and yield for model 

generation. This work is described in Chapter 5.  

• Lastly, the learnings from Chapter 5 will be critically evaluated in order to 

outline the key challenges and considerations that surround the commercial 

implementation of space-filling design preparation, execution, and analysis. 

This work is described in Chapter 6 and is a requirement for the award of a 

UCL Doctor of Engineering (EngD).  

 

Furthermore, Chapter 2 describes the materials and methods used to prepare, 

execute, and analyse all experiments. Chapter 7 discusses the main experimental 

findings and conclusions of this project and suggests ideas for future work.  
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2 Materials and Methods 
2.1 Materials  

 

2.1.1  Chemicals  

Deionised water was used throughout this work. Unless stated otherwise, materials 

were purchased from Sigma Aldrich, Dorset, UK and were of analytical grade or 

better. They were stored according to the manufacturer’s instructions. 

Kanamycin was prepared at a stock concentration of 50 µg/ml in water, sterilised by 

filtration through a 0.22 µm cellulose acetate syringe filter (VWR, Leicestershire, UK) 

and stored at -20 °C. It was thawed and used at a working concentration of 25 µg/ml 

to supplement all bacterial growth media. Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) was prepared at a stock concentration of 1 M in water, sterilised by filtration 

through a 0.22 µm syringe filter and stored at -20 °C. It was used at a working 

concentration of 1 mM to induce protein expression.  

Pyridoxal 5’-Phosphate (PLP) was prepared at a stock concentration of 10 mM in 

water. During preparation, the beaker was covered in aluminium foil as PLP is light 

sensitive and aliquots were stored at -20 °C in black micro centrifuge tubes. Tartrazine 

(Thermo Fisher Scientific, Leicestershire, UK) was prepared in water to a 

concentration of 1.6 mM and was stored at room temperature, away from bright 

light. Sodium chloride (NaCl) and Potassium chloride (KCL) (both Thermo Fisher 

Scientific, Leicestershire, UK) were prepared at a stock concentration of 2M, sterilized 

by autoclaving at 121 °C for 15 minutes, and stored at room temperature.  

Phosphate (pH 7.4), HEPES (pH 7.4) and TRIS-HCl (pH 9) buffers at a stock 

concentration of 1 M, and CHES buffers (Alfa Aesar, Lancashire, UK) at pH 9, 9.5 and 

10 at a stock concentration of 500 mM were purchased and stored according to the 

manufacturer’s instructions. 1 M solutions of Hydrochloric Acid (HCl) and Sodium 
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hydroxide (NaOH) were used to adjust buffer pH if required. S-methylbenzylamine 

(S-MBA) and Acetophenone were prepared fresh daily at specified concentrations. 

Sodium Pyruvate (“Pyruvate”) was purchased as a solution in water at a 

concentration of 100 mM. 

2.1.2 Bacterial cell strains  

 

Two plasmids with different versions of the CV2025 enzyme were used (Table 2.1). 

The first plasmid “pQR801” (Baud et al., 2015) was obtained from the UCL 

Department of Biochemical Engineering. The second plasmid 

“pJexpress401_110499” was obtained from a previous project executed at Synthace 

Ltd.  

 

Table 2.1 Characteristics of the two plasmids used during this work each containing a copy 

of the CV2025 transaminase enzyme. 

Plasmid  Characteristics 

pQR801 

(Baud et al., 2015) 
pET-29a(+), T7 promoter,  lacI, Kmr, encoding the 

CV2025 TAm gene from Chromobacterium violaceum 

DSM30191. 

pJexpress401_110499 pJexpress401 Cloning cassette, T5 promoter, lacI, KmR, 

codon optimised encoding the CV2025 TAm gene 

from Chromobacterium violaceum DSM30191.  

 

Table 2.2 Characteristics of cell E. coli host strains used during this work. 

Strain name Characteristics  

E. coli BL21 (DE3) F-, ompT, hsdSB (rB− mB−), λ(DE3 [lacI lacUV5 T7 gene 

1 Sam7 ∆nin5]) 

E. coli BL21 fhuA2 [Ion] ompT gal [dcm] ∆hsdS 

E. coli DH5α F- Φ80lacZΔM15 Δ(lacZYA-argF) 

U169 recA1 endA1 hsdR17 (rk-, mk+) phoA supE44 λ-thi-

1 gyrA96 relA1 
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pQR801 was purified from 10 ml of E. coli DH5α cell culture broth (New England 

Biolabs Inc) overnight culture using the QIAprep Spin Miniprep Kit (Hilden, Germany) 

following the manufacturer’s protocol with elution in deionised water. E. coli BL21 

(DE3) competent cells (New England Biolabs Inc.) were transformed using 1 µL of 

purified pQR801 by heat shock as per the manufacturer’s protocol.  

 

A glycerol stock for the pJexpress401_110499 in E. coli BL21 cells was used to make 

fresh glycerol stocks by growing overnight cultures. Glycerol stocks of both strains 

were made by mixing overnight cultures to 50% v/v with pure glycerol. All glycerol 

stocks were stored at -80 °C.  

 

2.1.3 Bacterial growth media  

 
Luaria Bertani (LB) Broth (Merck) and LB Agar (Merck) were prepared 

according to the manufacturer’s instructions. All media were sterilised by 

autoclaving at autoclave at 121 °C for 15 minutes and allowed to cool to room 

temperature before use. 

 
2.1.4 Automated devices and labware  
 
Two liquid handling devices, PIPETMAX® 268 (Gilson, Inc, Middleton, USA) and 

Hamilton Microlab STAR (Hamilton Company, Reno, NV) and one dispenser 

dragonfly®discovery (SPT Labtech, Melbourn, UK) were used for this project. A 

CLARIOstar Microplate Reader was used to generate all absorbance measurements 

(Section 2.4.1).  

 

In terms of plasticware, all microplates adhered to standard microplate dimensions 

as specified by the Society of Biomolecular Screening (SBS). For any mixtures that 

required absorbance measurement, UV-clear flat bottom 96- and 384-well plates (UV 

Star, Greiner Bio-One) were used throughout. Reagents required for automated 

experiments were housed in the following types of ‘input’ plates, their suitability was 
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manually selected based on their volume capacity; Hard-Shell® 96-well PCR plates 

(Capacity: 5 – 200 µL, Part no: HSS9901, Bio-Rad Laboratories Inc.), NuncTM 96-well 

Polypropylene Storage Microplates (Capacity: 10 – 450 µL, Part no: 249946, Thermo 

Fisher Scientific, Leicestershire, UK), 96-well deep well plate (Capacity: 420 µL – 2 ml 

(on the PipetMax) or 100 µL to 2 ml (on the Hamilton), Part no: 278743, Thermo 

Fisher Scientific, Leicestershire, UK), 12-Channel, Multi-well reservoirs (Capacity: 5 – 

15 ml, Part no: E2999-8412, StarLab, Hamburg, Germany).  

 

Microtiter plates in protocols executed using the PipetMax were placed on 18 mm 

risers (Model: SPL-2221A-HDW, Gilson, Inc, Middleton, USA). To control evaporation 

from the plates films was used. These included MicroAmpTM Optical Adhesive Film 

(Applied Biosystems®, Leicestershire, UK) and Aluminum Sealing Films (Starlab Ltd, 

Hamburg, Germany). Device specific pipette tips and syringes were used throughout.  

 

2.2 Bacterial growth and cell lysis  

 
2.2.1 CV2025 transaminase (TAm) expression  

 

Overnight cultures were prepared by inoculating 5 ml of LB broth containing 50 µg/ml 

of Kanamycin in 50 ml centrifuge tubes (Sigma-Aldrich, Dorset, UK). They were grown 

overnight at 37 °C, with orbital shaking at 250 RPM in a MaxQTM 6000 Incubated 

Stackable Shaker (Thermo Scientific). Overnight cultures were then used to 

subcultures fresh media at a ratio of 1:100 in sterile baffled Erlenmeyer flasks with a 

vented cap (Sigma-Aldrich, Dorset, UK) and incubated at the same settings as the 

overnight culture. Protein production was induced by adding IPTG at a final 

concentration of 1 mM when the optical density of the cell culture reached an OD600 

of 0.4-0.6 A.U.. Growth was then allowed to continue for a further 20 hours. Cultures 

were then transferred to 50 ml centrifuge tubes, with 10-20 ml per tube. Cells were 

harvested by centrifugation at 3000 RPM, at 12 °C for 20 minutes using a Sorvall 

Evolution RC (Thermo Scientific, Rotor: SLA-600TC) centrifuge. The supernatant was 

discarded, and the cell pellets were stored at -80 °C or lysed immediately.  
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2.2.2 Lysis buffer preparation  

 
Lysis buffer was prepared fresh from 1 M Phosphate buffer, pH 7.4, 50 mg/ml 

Lysosyme (Part no: 90082, Thermo Fisher Scientific, Leicestershire, UK), 10 mM PLP, 

10X BugBusterTM (Merck Millipore) stock solutions to 100 mM Phosphate buffer, 

0.2mg/ml Lysosyme, 1mM, 0.2 mM PLP and 1X BugBusterTM final concentrations. 1 

µL of Benzonase Nuclease was added per ml of BugBuster reagent used, to reduce 

the viscosity of the lysate by digesting nucleic acids.  

 

2.2.3 Clarified cell lysate preparation 
 

A cell pellet harvested from 10 ml of cell culture, produced as described in Section 

2.2.1, was resuspended in 3.125 ml of 100 mM Phosphate buffer, pH 7.4, and added 

to 23.4380 ml of lysis buffer. The cell lysis mixture was then statically incubated at 

room temperature for 20 minutes prior to centrifugation at 10,000 RPM using a 

Sorvall Evolution RC (Thermo Scientific, Rotor: SLA-600TC) to prepare clarified cell 

lysate, or ‘lysate’ is it is referred to from here on. Lysate was stored at -80 °C for up 

to six months and aliquots were thawed on ice when required.  

 

2.2.4 SDS-PAGE analysis for quantification of protein expression  

 

All reagents and equipment were purchased from Bio-Rad Laboratories Inc, unless 

stated otherwise. The quantity of protein in the lysate (Section 2.2.3) was measured 

on a Qbit using the Qbit Protein Assay Kit according to manufacturer’s instructions 

(Life Technologies). Sample concentrations were normalised to 0.4 µg/µL using water 

followed by addition to Laemmli sample buffer (2% SDS, 10% glycerol, 5% β-

meracaptoethanol, 63 mM Tris-HCl pH 6.8, bromophenol blue) and heated for 5 

minutes at 95 °C to denature the samples. Each gel lane was loaded with 4 µg of 

protein. 15 µL of the Precision Plus ProteinTM All Blue Prestained Protein Standard (10 

– 250 kDa) was used as the protein ladder. 
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SDS-PAGE (Sodium dodecyl sulphate – polyacrylamide gel electrophoresis) analysis 

was performed using a vertical Mini-PROTEAN Tetra Cell gel electrophoresis system 

which uses pre-cast 4-20 % v/v Bis-Tris gels (Bio-Rad Laboratories Inc). The gel tank 

was filled with 1X Tris Glycine SDS Buffer that was diluted from a stock concentration 

of 10X using deionised water. Gel electrophoresis was carried out for 15 minutes at 

240V. Gels were carefully removed from the casting according to manufacturer’s 

instructions and stained using InstantBlue® Coomassie Protein Stain (Abcam, 

Cambridge, UK) by gently shaking (200 revolutions/minute) for 30 minutes on an 

orbital shaker (Model: S05, Stuart Scientific, Staffordshire, UK). Gels were then 

separated from the plastic cast according to the manufacturer’s instructions, rinsed 

with water and placed on the rocking platform in water with two knotted tissues to 

absorb any remaining dye overnight prior to imaging.  

 

2.3 CV2025 TAm activity assays  

 

2.3.1 Colorimetric CV2025 TAm assay  

 

CV2025 TAm activity assays were performed both manually and in an automated 

fashion. Transamination reactions were prepared at a final volume of 200 µL in clear, 

flat-bottom 96-well plates (UV Star, Greiner Bio-One). 55 µL of CV2025 TAm clarified 

cell lysate was added to a solution containing a final concentration of 100 mM 

phosphate buffer (pH 7), 0.2 mM PLP, 25 mM of 2-(4-nitrophenyl) ethan-1-amine 

hydrochloride (the amine donor), 10 mM of Sodium pyruvate (amine acceptor) to 

begin the bioconversion. Reactions were incubated for up to 24 hours at 30 °C in a 

thermomixer (Thermomixer C, Eppendorf, Hamburg, Germany) at 500 RPM for the 

formation of the red precipitate. The reaction between the amine donor (2-(4-

nitrophenyl) ethan-1-amine) and its bioconverted aldehyde, followed by 

tautomerisation gives rise to a visible red precipitate (reaction mechanism can be 

found in Appendix A) Negative controls excluded the amine donor from the 

bioconversion mixture.  
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2.3.2 Acetophenone Spectrophotometric Assay (AP Assay) 

 
Acetophenone formation from CV2025 TAm bioconversions (Figure 3.1) was 

determined spectrophotometrically at 245 nm, unless started otherwise. Assays was 

prepared in 96- or 384- well UV clear microtiter plates (UV Star, Greiner Bio-One). 

When the assay was prepared at various pH values, the pH of specified buffers was 

adjusted and monitored with a calibrated pH probe (MP220 pH meter, Mettler 

Toledo, Leicester, UK) beforehand using acids and bases specified in Section 2.1.1.  

 

2.3.2.1 Original AP assay  
 
The original protocol was adapted from a protocol developed by Dr. Fiona Truscott 

based on the paper where this assay was first described (Schätzle et al., 2009). It was 

initially used to automate the AP assay and conduct scoping studies prior to the 

Screening DoE.  

 

Transamination reactions were prepared at a final volume of 200 µL. 55 µL of CV2025 

TAm lysate, prepared as described in Section 2.2.3, was used to initiate bioconversion 

by adding to a reaction mixture containing 2.5 mM S-MBA, 1 mM Sodium Pyruvate, 

0.2 mM PLP in 100 mM Phosphate Buffer at pH 7.4 at 30 °C. Change in absorbance 

was measured immediately after lysate addition.   

 

2.3.2.2 Improved AP assay 
 

Assay conditions defined in Section 2.3.2.1 were improved after executing the 

Screening DoE study (Section 3.2.5). The resulting analysis was used to identify the 

following improved reaction conditions; 5 mM of S-MBA and 5 mM of Pyruvate, 10 % 

v/v DMSO in 100 mM TRIS-HCl buffer at pH 9. These reaction conditions were 

prepared at specified volumes, transamination at 25 °C was initiated by a adding an 

appropriate quantity of lysate, after which, endpoint or time-course absorbance 



 
 

52 

measurements were recorded after a specified amount of time. These reaction 

conditions were used as a reference reaction in Chapters 4 and 5.  

 
2.4 Spectrophotometer settings and calibration 
 
2.4.1 Measurement settings 
 
A CLARIOstar Microplate Reader (BMG Labtech, Ortenberg, Germany) was used for 

all spectrophotometric measurements. Measurements were recorded after 22 

flashes of the light beam per well per measurement cycle, the plate was shaken for 

10 seconds at 500 RPM prior to measurement before each cycle. Here, a cycle refers 

to one full measurement of all specified wells a microtiter plate. A bidirectional, 

vertical left to right, top to bottom reading direction was used for all experiments. If 

the experiment required measurement at specific wavelengths, up to 8 discrete 

wavelengths were defined, otherwise, absorption spectra was measured in 

increments of 1 nm over a maximum range of 220 – 1000 nm.  

 

2.4.2 Determination of the linear range  
 
2.4.2.1 Calibration Curves 
 
Calibration curves were prepared by measuring the absorbance of various reagents 

at 245 nm using the CLARIOstar plate reader. All standard curves were generated 

using automated liquid handlers, manually prepared reagent stock solutions were 

used to generate up to eleven 2-fold serial dilutions in triplicate with no tip-reuse 

throughout. Spectral scans ranging from 220 – 1000 nm were measured for specific 

dilutions of the calibration curves to compare the absorption spectra of various AP 

assay components; examples of calibration curves and spectra are shown in Appendix 

B. 
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2.4.2.2 Calculation of absorbance as a function of reaction volume and product 
concentration  

 
The following equation was used to understand if the absorbance generated from 

acetophenone concentration curves prepared at various reaction volumes in both 96- 

and 384-well plates were comparable:   

 

Normalised VC (µL. mM. mm-2) = (V .C) / a     …………2.1 

 

where V = Volume (µL), C = Concentration (mM), a = area of the well base (mm2) 

 

The area was calculated from the manufacturer’s plate maps. 32.07 mm2 and 10.89 

mm2 were used as the area of the well base for 96- and 384- well plates, respectively. 

 

2.4.2.3 Calculation of maximum detectable Acetophenone concentration 
 
To identify the maximum concentration of Acetophenone that could be quantified 

within the linear range of the plate reader for various reaction volumes and plate 

types, the following equation was used: 

 

Max. detectable Acetophenone concentration (mM) = (Normalised VC x a)/V……..2.2 

 

where Normalised VC values are taken from Section 2.4.2.2, a = area of the well base 

(mm2), V = Volume (µL).  

 

2.4.3 Calculation of change in absorbance (𝚫𝚫Absorbance) 
 

𝚫𝚫Absorbance (Figure 2.1) was the response used to analyse the screening and 

optimisation DoE studies described in Chapter 3 and was calculated using the raw 

absorbance files with Excel.  

 

𝚫𝚫Absorbance calculated for the analysis of the screening DoE study used the first 

time point absorbance measurement as the blank value. As only end point 
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measurements were recorded for the optimisation DoE study, the blank value for 

each reaction was generated by preparing a separate set of reaction mixtures where 

lysate was excluded, these reactions were prepared using the same Synthace 

workflows as those that prepared actual runs.  

 

 
Figure 2.1. Schematic diagram showing an example of the measured change in absorbance 
over time and how 𝚫𝚫Absorbance was calculated. 
 
2.5 Liquid-handling precision testing  
 
2.5.1 Artel MVS Verification System 
 
A MVS Multichannel Verification System (Artel, Westbrook, ME) was used to evaluate 

liquid-handling precision by utilising a dual-dye, dual-wavelength volume 

measurement process. The ratio of the expected quantity of red dye (detected at 520 

nm) to that of a fixed concentration of the blue dye (detected at 730 nm) is used to 

determine the precision of dispensing the quantity of red dye. Baseline solution, 

dyes, diluent, and verification plates were all ordered from Artel, and the precision 

tests were conducted as dictated by the Artel software, which automatically 

generated instructions and a test report containing the results (Bradshaw et al., 

2005).  
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2.5.2 Tartrazine precision testing  
 
The liquid handling precision of the automation platforms was also quantified by 

preparing solutions at a fixed Tartrazine concentration of 0.1 mM. A tartrazine stock 

solution was prepared as previously described and was quantified by measuring 

absorbance at 425 nm.  

 
 
2.6 DoE software, design, and analysis  
 
2.6.1 Software 
 
The majority of the work described in this thesis followed a statistical DoE approach 

(Section 1.1). JMP Pro Software (Versions: 14, 15, and 16, SAS Institute, North 

Carolina, USA) were used was used for DoE design and analysis in Chapter 3 and 5. 

All figures that contain Actual by Predicted plots, Prediction Profilers and Effect 

Summary tables were created within JMP. Excel files (Microsoft Office) in the .xlsx 

format were used to import and export data in and out of JMP e.g., into the Synthace 

software (Section 2.7.1) used for generating liquid-handling instructions to execute 

automated DoE studies.  

 

2.6.2 Experimental designs  
 
The ‘custom design’ function in JMP was used to create both the design used for the 

initial Screening DoE (Section 3.2.5.1) and the subsequent Optimisation DoE studies 

(Section 3.2.6.3). The design was a type of fractional factorial design, selected to 

enable the prediction of all main effects and two factor interactions, and consisted 

of 186 runs. The D-optimality criterion (Goos, 2002) is used by default. Six midpoints 

were added manually after the design was generated, totalling 192 runs (Appendix C 

and Appendix D). 

 

The Optimisation DoE study used Response Surface Methodology (Anderson and 

Whitcomb, 2016) which automatically adds main effect, interactions, and quadratic 

terms up to second order for continuous factors, was selected. This adds the I-
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optimality criterion (Goos and Jones, 2011) by default. The design consisted of 48 

runs (Appendix E).   

 

The space-filling DoE design was created using the ‘Space Filling Design’ function 

under the Special Purpose section of the JMP software. Only one type of space-filling 

design called ‘Fast Flexible Filling’ (FFF) could accommodate the categorical factors 

included in the design (Joseph, Gul and Ba, 2015). It was used to generate a 138-run 

design (Appendix J). To ensure that runs using TRIS buffer had a pH 7, 8 or 9 and CHES 

buffer have a pH of 9 or 10, a script written in the JMP Scripting Language (JSL) was 

added to the Disallowed Combinations box prior to design generation.  

 

2.6.3 Stepwise regression model 
 
Stepwise regression models (Miller, 2002) were used to analyse all DoE studies in this 

thesis and were created using JMP’s Fit Model function. All single, two-factor and 

polynomial terms were provided to the model. P-value threshold with a lower and 

upper significance level of 0.1 and 0.25, respectively, in the mixed direction, was used 

to select the filtered model terms. Any effects with a p-value of > 0.05 were manually 

excluded from the model once the report was generated.   

 
2.6.4 Gaussian Process model  
 
Gaussian Process modelling (Jones and Johnson, 2009), housed under JMP’s 

Specialized Modelling was used to analyse the space-filling design data. The model 

was created after incorporating the nugget parameter was incorporated which 

introduces a ridge parameter that smooths over noisy regions of the design space 

(Erickson, Ankenman and Sanchez, 2018). The Gaussian correlation type was 

selected.  

 

The prediction formula and the jackknife predicted values were saved as columns on 

the data table. The former was used to calculate predicted values for validation 

experiments and the latter was used to create the actual by predicted plot which was 

used to check the goodness of model fit.  
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2.6.5 Artificial Neural Network model 
 
Neural Network modelling (Gotwalt, 2012), housed under JMP’s specialized 

modelling function was also used to analyse the space-filling design data. The random 

holdback validation method that divides 2/3 and 1/3 of the dataset into training and 

validation groups was used. The hidden layer structure consisted of a single layer with 

3 TanH notes to activate the model. Goodness of Fit was determined by the R2 values 

found in the model reports for both training and validation datasets.  

 
2.7 Automated execution and data processing  
 
2.7.1 Synthace software and workflow preparation  

 
Synthace software (Synthace Ltd, London, UK), as described in Section 1.3 was used 

to generate liquid-handling workflows and control the various liquid handling 

platforms (Section 1.1.4). DoE designs generated in JMP were imported into Synthace 

via .xlsx files as described in Section 1.3 and shown diagrammatically in Figure 3.6. A 

summary of the various Synthace elements used to create all experimental workflows 

for automated execution are listed in Table 2.3.  

 

Each element is further configured by instance parameters that need to be manually 

populated to generate device-specific liquid-handling instructions. Instance 

parameters are the ‘inputs’ needed by each element to perform its function, e.g., the 

‘Define Liquid’ element has an instance parameter called ‘Liquid Policy’ that is 

populated to determine how the liquid will be physically handled by the automated 

device. The instance parameters of the ‘Define Liquid’ element are shown in Figure 

2.2, another example can be found in Figure 3.11.  
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Table 2.3. Synthace elements used to create generate automated workflows. 

 
* Auto generate stock solutions element was used in combination with the Define Liquid Set 
element to define all input solutions needed for the space-filling DoE.  
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Figure 2.2. Example of instance parameters of a Synthace element. 
The ‘Define Liquid’ element (blue box) consists of various instance parameters (white panel) 
that are manually populated by the user to describe the inputs of element within a Synthace 
workflow. 
 
2.7.2 Data processing and calculation of responses 

 
As part of this research, automated approaches for processing the large quantity of 

absorbance data generated during the space-fill DoE study (Section 2.6.2) were 

developed as for analysis described in Chapter 5. 
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2.7.2.1 MATLAB Data processing pipeline  
 
During automated DoE execution, absorbance data indicating the change in 

absorbance at 245 nm with time in individual microwells was generated by the 

CLARIOstar plate reader and stored in .xlsx files. Figure 5.6 illustrates the type of data 

generated. 

 
The steps taken to calculate the two responses used to analyse the space-filling DoE 

data; yield (% conversion of starting substrate) and initial rate (∆A/s) responses from 

the raw time-course absorbance files are outlined in the flowchart Figure 2.3 (Further 

described in Section 2.7.2.2).  

 

MATLAB (MathWorks, MA, USA) was used to develop scripts for automated data 

processing. All functions and scripts that were developed can be found in the 

following link: 

https://drive.google.com/drive/folders/1PCW5q23IPNJY0xob3KljWNxE29XRYDjj?us

p=sharing.  

 

 
Figure 2.3. Schematic diagram of the data processing pipeline used to calculate responses.  
Manual (grey) and automated (blue, MATLAB) data processing steps followed for response 
generation and subsequent JMP analysis are listed in order of execution (arrow).  

https://drive.google.com/drive/folders/1PCW5q23IPNJY0xob3KljWNxE29XRYDjj?usp=sharing
https://drive.google.com/drive/folders/1PCW5q23IPNJY0xob3KljWNxE29XRYDjj?usp=sharing
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MATLAB scripts were used a set to calculate each response. As replicates are spread 

within and across plates, progress curves were first grouped to allow cumulative 

visualisation of each replicate run condition in the same subplot (Figure 5.6). A 

smoothing spline was fit to each reaction using the Shape Language Modelling (SLM) 

toolbox.  The Y-intercept of the spline fit was used as the blank value to blank correct 

each progress curve. This is described further in Figure 2.5. 

 

Reactions were also time corrected as each reaction in a 96-well was initiated and 

measured at slightly different time points than recorded in the raw absorbance file; 

this is a consequence of automation platform operation since only one reaction is 

kickstarted on a 96-well plate at a time and it took a period of time to transfer each 

plate to the plate reader for the first absorbance measurement. Figure 2.4 outlines 

the relationship between time and the order of lysate addition and one cycle of 

absorbance measurement within the CLARIOstar plate reader. The Dragonfly 

dispenser adds the final layer of reagents which is either lysate or substrates 

depending on the plate, which requires 40 or 90 seconds respectively and is executed 

in a snaking pattern going from right to left, top to bottom. All plates were then 

sealed with a MicroAmpTM Optical Adhesive Film and spun down (‘Short’ setting, 

Centrifuge 5430 R, Eppendorf, Stevenage, UK) for a few seconds to remove any 

bubbles and transferred to the spectrophotometer for measurement, adding a 

further ~60 seconds. Once the spectrophotometer starts taking OD measurements, 

2 minutes is required to measure and save absorbance data for all 96 wells. This was 

done bidirectionally, from top to bottom and left to right. Actual timepoints were 

calculated for each well based on these patterns to ensure that each measurement, 

and subsequent interpolation is associated with an accurate time point.  

 

Once blocking and time correction were accounted for, the MATLAB script calculated 

the responses (Section 2.7.2.2) required for JMP analysis (Sections 2.6.3, 2.6.4, 2.6.5).  

 

 

https://www.mathworks.com/matlabcentral/fileexchange/24443-slm-shape-language-modeling
https://www.mathworks.com/matlabcentral/fileexchange/24443-slm-shape-language-modeling


 
 

62 

 
Figure 2.4. Illustration of the relationship between the start of bioconversion reactions (by 
lysate addition) and optical density measurement as performed by the laboratory 
automation devices. 
The time and steps required from lysate addition to the first spectrophotometric 
measurement cycle is shown in (A), (B) and (C) with corresponding plate maps 
illustrating the order of dispensing and measurement using arrows.  
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2.7.2.2 Responses used to analyse space-filling DoE data  
 
 
The space-filling DoE data was analysed using two responses that were calculated 

from the MATLAB script outlined in Section 2.7.2.1. The two responses were yield (% 

conversion of starting substrate) and initial rate (∆A/s). Figure 2.5 summarise the 

approach taken to response calculation. 

 
The yield response was based on the blank-corrected increase in absorbance after a 

fixed time of 60 minutes of reaction within the plate reader (Figure 2.5 A). 

Absorbance values were converted to acetophenone concentration using a standard 

curve (Figure 2.5 B). The calculated acetophenone concentration was then divided by 

the starting pyruvate concentration to calculate the percentage of substrate 

conversion, which was used as the yield response for JMP analysis.  

 

The initial rate response was calculated by fitting a linear model to the first 4 minutes 

of absorbance (A) versus time (s) data which comprised of the first three recorded 

absorbance measurements; the slope of this linear fit is used as the initial rate 

response for JMP analysis and has the units of ∆A/s (Figure 2.5 C).  

 



 
 

64 

 
Figure 2.5. Visualisation of MATLAB response calculation from the OD versus time data 
from each microwell. 
(A) Schematic illustration of calculation of the absorbance value used to generate the Yield 
(%) response. The black dots represent microplate absorbance readings obtained for one set 
of bioconversion conditions. The dotted line shows the fitted spline curve as described in 
Section 2.7.2.1. The change in absorbance was then calculated by interpolating the fitted 
absorbance values at 60 minutes (x) from the spline curve, and subtracting the value from 
the Y-intercept, providing a blank-corrected ∆Absorbance value. (B) A typical calibration 
curve showing measured OD values (black circles) for known acetophenone concentrations 
and the fitted least squares linear regression model (solid line). The linear regression model 
was then used to convert absorbance measurements from (A) into acetophenone 
concentrations used to calculate yield (%). (C) Schematic illustration of fitting a linear model 
to the first 4 minutes of absorbance versus time data from each bioconversion to calculate 
the change in absorbance per second used as the initial rate (∆A/s) response.  
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3 Automating DoE execution with Synthace 
 
3.1  Introduction  
 

The physical execution of experimentation is a major bottleneck for DoE 

implementation. Randomization of runs removes much of the structure (or pattern) 

from the initial conditions of an experiment, making manual setup slow, tedious, and 

error prone (Tye, 2004). This is exacerbated when a large number of factors need to 

be evaluated or when replication is required to quantify noisy experimental systems, 

both of which amplify the run number (Antony, 2014). In general, manual DoE 

execution becomes unrealistic for designs that require more than tens of runs 

(Gilman et al., 2021).  

 

Automating DoE execution has the potential to overcome these challenges as 

described in Section 1.1.5. This is because automated devices can function without 

the need for structure or patterns typically required by scientists during manual run 

preparation. Current solutions for automating DoE execution, however, are limited 

either to specific devices or to specific applications that require significant 

programming expertise to generate scripts that can perform the liquid-handling 

actions required for DoE execution (Oritz et al., 2017) (Section 1.2.3). Software 

platforms like Synthace are currently being developed to enable scientists to easily 

interface with automated devices as described in Section 1.3. 

 

3.1.1 Aim and objectives 
 

The aim of this chapter is to demonstrate how Synthace can be used to automate the 

execution of standard, lower dimensionality, screening, and optimisation DoE 

studies. As described in Section 1.4.3, transaminase enzymes catalyse the synthesis 

of chiral amines from achiral substrates. The specific reaction studied will be the 

synthesis of sodium alanine from S-MBA (a widely used amine donor) and pyruvate 
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(a natural amine acceptor) by the CV2025 TAm (Figure 3.1). This reaction results in the 

production of acetophenone as a co-product which absorbs strongly at 245 nm 

(Schätzle et al., 2009). The reaction can thus be continuously monitored 

spectrophotometrically providing quantitative data on the reaction rate and degree 

of conversion. 

 

The specific objectives of this chapter are as follows:  
 

1. Establish methods for the reliable production and recovery of the CV2025 

TAm and replicate the published manual acetophenone assay. 

2. Evaluate the assay design space, based on the published literature, and 

undertake initial scoping studies to identify factors to be used in an 

automated screening DoE study for refinement of selected factors and 

ranges.  

3. Undertake an automated optimisation DoE study to characterise the 

improved design space and quantify the increases in the change in 

absorbance that can be achieved using standard I-optimal designs (Goos, 

Jones and Syafitri, 2000).  

 
The optimisation DoE was executed in triplicate to map the noise in the design space 

arising from uncontrollable biological sources or technical sources such as pipetting 

discrepancies (Gilman et al., 2021). It was also repeated using two automated devices 

(Section 2.1.4), a PipetMax liquid handler and a Dragonfly dispenser to compare the 

reproducibility of the response,  and understand the impact of device type on the 

process of automated DoE execution, and to exemplify the device-agnostic 

capabilities of Synthace. 
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Figure 3.1. Principle of the acetophenone assay for monitoring w-TAm activity. 
The amine donor and acceptor, S-MBA and sodium pyruvate are converted to acetophenone 
(AP) and sodium alanine by the pyridoxal phosphate (PLP) dependant CV2025 ω-
transaminase (Schätzle et al., 2009). Acetophenone product formation at 245 nm is used to 
monitor ω-transaminase activity. 
  



 
 

68 

3.2 Results  
 
3.2.1 Expression system selection 
 
Two different plasmids containing the CV2025 TAm gene were initially evaluated with 

the intention of selecting the genetic construct that would yield the greatest quantity 

of soluble enzyme for use throughout this thesis. The plasmids, 

pJexpress401_110499 and pQR801 both contained the CV2025 TAm gene from 

Chromobacterium violaceum DSM3019 (Section 2.1.2). The former contained a 

codon optimised CV2025 gene cloned into a pJexpress401 cloning cassette 

containing a T5 promoter and was expressed in E. coli BL21 cells. The latter used the 

wild type CV2025 gene cloned into pET-29a(+) vector with a T7 promoter and was 

expressed in E. coli BL21 and E. coli BL21 (DE3) cells. Both plasmids contained the 

IPTG (Isopropyl β-D-1-thiogalactopyranoside)-inducible LacI repressor gene which 

regulated the transcription of the CV2025 TAm gene and conferred Kanamycin 

resistance (Section 2.1.2) 

 

Each of the expression systems were cultivated overnight in shake flasks as described 

in Section 2.1.3. Soluble and insoluble protein fractions were then prepared and 

analysed by SDS-PAGE as shown in Figure 3.2. The pJexpress401_110499 plasmid was 

selected based on the results of SDS-PAGE analysis. While both enzymes expressed 

well, the results for the pJexpress401_110499 plasmid indicated a higher quantity of 

soluble protein in the soluble fraction. Clarified cell lysate from the 

pJexpress401_110499 plasmid, referred to as ‘CV2025 TAm’, from here on, was used 

to carry out all bioconversions for this project.  
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Figure 3.2. SDS-PAGE analysis of CV2025 ω-TAm expression in E. coli using two different 
plasmids (pJexpress401_110499 and pQR801). 
4 µg of total protein containing whole cell, soluble and insoluble fractions isolated from 
CV2025 TAm expression from two different plasmids are compared following identical 
growth and lysis steps (Section 2.2.4). CV2025 TAm enzyme production was confirmed from 
both expression strains by the presence of a ~47 kDa band (red arrow). The presence of a 
more intense band in the soluble fraction of pJexpress401_110499 indicates that more 
soluble CV2025 is produced by this strain, whereas a more intense band in the insoluble 
fraction and fainter band in the soluble fraction for strain pQR801 indicate less soluble 
CV2025 production.  
 
3.2.2 Assay selection 
 

Initially, two transaminase activity assays were tested, with the aim of selecting one 

as the model system for the research carried out in this project. The first was a 

qualitative colorimetric assay (Baud et al., 2015) where the reaction between the 

amine donor (2-(4-nitrophenyl) ethan-1-amine) and its bioconverted aldehyde, 

followed by tautomerisation gives rise to a visible red precipitate (Appendix A). The 

second was the AP assay described in Figure 3.1.  

 

The advantage of the Baud assay was that it gave a clear, colorimetric signal and it 

was initially investigated to see if a qualitative relationship between the amine donor 

(2-(4-nitrophenyl)ethan-1-amine) and the amount of red precipitate formed could be 

sufficient for future DoE study analysis. Unfortunately, this was not selected as the 

assay of choice as the AP assay gave a rapid and quantitative measure of the CV2025 
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TAm bioconversions from spectrophotometric measurements and had the potential 

of generating a greater number of responses from time-course or end-point 

measurements. Furthermore, transamination could be measured within 1 hour using 

the AP assay while the colorimetric assay required an overnight incubation. For these 

reasons, the AP assay was selected as the model system for the work done in this 

thesis.  

 

3.2.3 Confirming the accuracy of an automated AP assay 
 

The first step toward automating a whole DoE experiment was to automate the assay 

manual handling steps. To do so, a PipetMax liquid handler was used (Figure 3.3). 

 

 
Figure 3.3. A PipetMax liquid-handling device.  
This is a benchtop liquid-handling device with nine deck positions that can house pipetting 
tip boxes, waste, and microtiter plates. Liquids are transferred and mixed from one position 
to another using a single- or multi-channel pipette that use up to eight pipette tips. (Image 
taken from https://ie.gilson.com/system-pipetmax.html ). 
 

To generate the liquid handling instructions for the PipetMax liquid handler, a 

Synthace workflow was created (Figure 3.4 A). The list of accessible elements used to 

create Synthace workflows can be found in Section 2.7.1. This workflow was 

physically executed using the PipetMax liquid handler to prepare the AP assay 

reaction mixtures and kickstart bioconversions to generate automated progress 

curves. These were compared to progress curves generated from normal manual 

preparation (Figure 3.4 B). An average increase in absorbance of 0.37 and 0.31 units 

https://ie.gilson.com/system-pipetmax.html
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was observed at 245 nm over 60 minutes for both manual and automated AP assays, 

respectively. As both progress curves are largely comparable as they showed similar 

initial rates, however, the end-point absorbance of the manual assay was slightly 

greater than the automated version. It was concluded that automating the AP assay 

using the Synthace platform on the PipetMax liquid handler was as successful and 

reliable as the manual version as both versions gave similar reaction rates and overall 

conversion.  
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Figure 3.4. Synthace workflow and progress curves used for initial AP assay automation. 
(A) The Synthace workflow used to execute the automated AP assay. Synthace workflows are 
made by connecting Synthace elements (white boxes), each of which represents a core 
liquid-handling function (Section 2.7.1). In this workflow, the ‘Upload Mix Set Plan’ element 
was used to upload mixing instructions for the AP assay using an Excel spreadsheet that 
described the composition of a set of mixtures. The ‘Define Liquid Set’ element was used to 
define the input reagent stock solutions. This information was wired into the ‘Mix Set’ 
element which instructs the liquid handler to make the mixtures defined in the previous 
element using the reagents provided. In this case, mixing pyruvate, S-MBA, buffering agent, 
PLP and water together was followed by the addition of clarified cell lysate to trigger the 
conversion of pyruvate to acetophenone. (B) Comparison of automated and manual AP assay 
progress curves. The bioconversion of pyruvate to acetophenone by CV2025 was monitored 
by acetophenone absorbance at 245 nm every 2 minutes for 60 minutes (Section 2.4.1). Error 
bars represent one standard deviation from the mean (n=8 and n=3 for automated and 
manual assays, respectively).  
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3.2.4 Scoping studies for the screening DoE 
 

A DoE campaign typically starts with one or more scoping studies as described in 

Section 1.1.5. A scoping study is typically an OFAT experiment conducted to 

determine if a factor is important enough to be included in a DoE design and to 

identify levels at which that factor must be sampled (Coleman and Montgomery, 

1996; Politis et al., 2017a).  

 

For nine out of the 12 factors selected for screening, upper and lower levels were 

identified from literature mining. The finalised factor table can be found in Appendix 

C and Appendix D. However, it was not clear from the literature what the levels for 

PLP, DMSO, or buffer type should be. Therefore, scoping studies were performed to 

identify reasonable factor levels to include within the Screening DoE design. 

 
Scoping experiments were performed to test PLP concentration, DMSO 

concentration and buffering agent (Figure 3.5). Transaminases are PLP-dependent 

enzymes, and the effect of supplemental PLP on long-term enzyme stability has been 

previously reported (Shin et al., 2003; Kaulmann et al., 2007). However, the benefit 

of supplementing additional PLP into an assay that is measured immediately after 

bioconversion is initiated (when the lysate already contains 0.2 mM PLP) had not 

been demonstrated. Therefore, investigation of whether additional supplementation 

of 0.2 mM PLP into the reaction immediately prior to substrate addition was 

performed (Figure 3.5 B). Although reactions supplemented with 0.2 mM PLP showed 

a marginal but insignificant increase in absorbance, it was therefore excluded as a 

factor for the screening DoE study. Additionally, PLP significantly contributes to the 

baseline absorbance (Appendix B) reducing the dynamic range of the assay, which is 

undesirable. 

 

When the AP assay was first described, 0.25 % v/v DMSO was used in the 

bioconversion reaction (Schätzle et al., 2009) while other research has since tested 

CV2025 stability when stored in up to 50 % v/v DMSO (Chen et al., 2016). To identify 

suitable factor levels, 0-25 % v/v DMSO was tested (Figure 3.5 A). Measurements 
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from reactions that used >15 % v/v DMSO saturated the plate reader’s detector 

within 40 minutes, therefore, 0 and 10 % v/v were selected as factor levels as this 

ensured that the impact of DMSO could be investigated while staying within the 

physical limitations of the analytical equipment selected.  

 
The most common buffering agents cited in the literature for CV2025 bioconversions 

are Phosphate, HEPES, and Tris HCl. However, these publications provide 

contradictory findings on which buffering agent provided the fastest reaction rates 

(Bea et al., 2010; Chen, Berglund and Humble, 2018; Chen et al., 2018). To identify 

the most suitable buffering agent, a comparative study on the impact of Phosphate, 

HEPES and TRIS HCl buffering agents at pH 7.4 was conducted to understand if the 

agent alone rather than the pH has an impact on reaction progression (Figure 3.5 C). 

An average increase in absorbance of 0.25 was observed with HEPES buffer while an 

increase of 0.47 was observed for both Phosphate and TRIS HCl buffers. CV2025 

bioconversions are executed primarily between pH 7 – 9, therefore, TRIS HCl Buffer 

was selected for future work, as its pKa of ~8.1 makes it suitable for buffering within 

this range, unlike, HEPES and Phosphate Buffer, which have a pKa of 7.31 and 7.21, 

respectively. Additionally, inorganic phosphate was found to inhibit CV2025 activity 

by competing with PLP and blocking the phosphate group binding cup in the active 

site (Chen, Berglund and Humble, 2018). Therefore, it was decided that further 

studies using Phosphate based buffers would be avoided.  

 
In summary, PLP was removed as a factor of interest, TRIS HCl was selected as a 

suitable buffering agent and the lower and upper levels of DMSO concentration for 

screening the AP assay were identified from these OFAT scoping studies.  
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Figure 3.5. Results of AP assay scoping studies executed prior to the screening DoE. 
(A) The effect of DMSO on the AP assay was tested by varying DMSO concentrations between 
0-25% v/v to identify high and low DMSO factor settings. The figure plots raw data to 
highlight the increasing baseline absorbance from DMSO interference. (B) Effect of PLP 
supplementation on assay signal. The standard assay conditions were tested against 
reactions that contained an additional 0.2 mM PLP to identify if PLP should be included in the 
screening DoE. (C) Effect of buffer type on assay signal. Assays containing 100 mM of 
Phosphate, HEPES and TRIS HCl buffers at pH 7.4 were compared to select the best buffer 
type for future work. Assays were performed in triplicate as described in Section 2.3.2.1, and 
time-course absorbance data was generated every 2 minutes for 60 minutes. (A) and (C) 
show blank corrected data, where the blank reaction contained all reagents except for 
Sodium Pyruvate, the amine acceptor. (B) Error bars represent one standard deviation from 
the mean (n=3). 
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3.2.5 Screening DoE study 
 
Following factor selection and initial OFAT experimentation (Section 3.2.4), the first 

step of DoE application involves the use of screening designs (Section 1.1.4). The 

objective at this stage is to screen a group of factors of interest to identify active 

factors. Automated DoE execution of the screening design consists of three steps as 

shown in Figure 3.6: (a) DoE design generation (Section 3.2.5.1); (b) manual design 

manipulation (optional) (Section 3.2.5.2); and (c) in silico simulation and physical 

execution through Synthace (Section 3.2.5.3). Each step is described in more detail in 

the following sections. 
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Figure 3.6. Schematic overview of the automated DoE experiment conducted using a 
PipetMax liquid handler. 
(A) JMP is used to generate and evaluate the DoE design. (B) The design table was exported 
from JMP as an Excel file which was edited to ensure rapid lysate addition using multi-channel 
pipetting by grouping runs by column according to the lysate level. (C) The Synthace-driven 
DoE execution pipeline uses this modified design file as an input, which is parsed and used 
to parameterize the liquid-handling workflow. Upon successful in silico simulation, a physical 
experiment is scheduled where the instructions are sent directly to the selected device.  
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3.2.5.1 DoE design generation  
 
A screening DoE study was performed to identify any key factors or factor 

interactions and ultimately identify fast and precise assay conditions. A two-level 

fractional factorial design with a D-optimality (determinant) criterion consisting of 

186 run conditions (Appendix C and Appendix D) was chosen to test eight factors 

(Table 3.1). The D-optimal criteria is used to generate precise estimates of model 

effects, making it appropriate when identifying active factors, i.e., factors that 

significantly impact response values. The ranges for factors not tested in the scoping 

study (Section 3.2.4) were informed by literature and prior knowledge.  

 
Selected factors and ranges (Table 3.1) were used to generate the DoE design using 

JMP, a third-party software (Figure 3.6 A). A minimum of 93 runs was required to test 

all main effects and two-factor interactions, however, as this experiment was 

executed using automation, the typical challenges faced with manual execution, such 

as time-consuming, error-prone, and unintuitive pipetting were removed (Tye, 2004). 

Therefore, the run number was doubled to 186 runs by 93 runs. As biological systems 

can be inherently noisy, generating more data could lead to potentially developing a 

more precise model.  

 

Additionally, six replicates of a center point (also known as midpoint) run was also 

added to the design. A center point is a run where factor levels are fixed at the middle 

of all the low and high factor ranges. These runs are used to determine if curvature 

is present in the response and indicate if a relationship is linear or non-linear 

(Montgomery, 2013).  

 

Evaluation of the 192-run design showed that it was more orthogonal than the 93-

run design (Figure 3.7). This means that with the 192-run design, main effects and 

two-factor interactions can be estimated more independently compared to the 93-

run design (Politis et al., 2017b).  
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Table 3.1. Factors and levels chosen for the AP assay screening DoE study. 

 

 
Figure 3.7. Design evaluation of two screening DoE design options. 
Colour map on correlations plots of the actual design (192 runs) and the default design 
recommended by JMP (93 runs). Both X and Y axis contain variables (one pixel per variable) 
that are listed in the same order, they form a grid of correlations where each pixel represents 
the absolute correlation between any two variables which is shown using an intensity scale 
that ranges from 0-1 (blue to red). Values closer to 0 (blue) highlight the variables that are 
not highly correlated and can be estimated independently.   
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3.2.5.2 Manual design manipulation (optional step)  
 
Once an appropriate DoE design is selected, it can be exported as an Excel worksheet 

and parsed directly into a Synthace workflow. However, in some cases, these files 

need to be manually modified to streamline downstream liquid handling before being 

parsed by a Synthace workflow (Figure 3.6 B). The PipetMax contains a fixed pipetting 

head that can aspirate and dispense one fixed volume using either a single channel 

pipette or a multi-channel (8 channel) pipette. This means that lysate addition, to 

initiate bioconversion reactions, is performed one well at a time as runs are listed in 

random order in the design file. Adding lysate in this way is time-consuming and may 

fail to capture meaningful measurement of the initial reaction rate in many cases 

since reactions may occur before the plates are passed to the spectrophotometer.  

 

To speed up lysate addition and account for the operational characteristics of the 

PipetMax, the order of runs within the design file was adjusted to enable multi-

channel pipetting. The runs for each lysate level were grouped together and by 

making this change, lysate is added in 14 steps, instead of 96 (Figure 3.6 B). These 

design files were then uploaded to the Synthace workflow to generate liquid-

handling instructions.  

 

This step is considered optional as other liquid handlers are capable of variable 

multichannel pipetting, i.e., where each channel can aspirate and dispense different 

volumes. In this case, manual manipulation of the design file is not considered 

necessary. Additionally, devices such as non-contact dispensers do not require this 

step as the same dispensing tool (e.g., a syringe) is used to transfer one reagent 

throughout the microtiter plate. 

 
3.2.5.3 In silico simulation and physical execution with Synthace  
 
The first step of Synthace-driven DoE execution is the preparation of a liquid-handling 

workflow. This is done in the Builder (Figure 3.8). Synthace elements are connected, 

and further parameterized by the scientist and the resulting workflow is compiled to 

generate device-specific liquid-handling instructions (Section 1.3).  
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To ensure that lysate was added to reaction mixtures last, the reagents required to 

prepare reaction mixtures were separated into two stages, first that contained all 

reagents except the lysate, and second with just the lysate (Figure 3.8 B). To generate 

stage-specific liquid-handling instructions, the workflow was simulated twice, once 

for each specified stage.  

 

 
Figure 3.8. Synthace workflow for screening DoE Execution. 
Elements (white boxes) are connected to facilitate information transfer; element titles 
indicate their functionality; see Section 2.7.1 for element descriptions (B) The Run DOE 
element parameters allow separation of reagent addition into different stages. Lysate is 
separated into a different stage. Specifying the ‘StageToRun’ parameter generates a 
simulation that contains liquid-handling instructions for the specified stage.  
 

Upon successful workflow simulation, physical execution details can be accessed in 

three new pages; Overview, Setup, and Preview. The Overview page (Figure 3.9) 

summarizes all the files, labware, reagents, and devices associated with the 

workflow. The Setup page contains information on the contents of each plate needed 

or created by the protocol (Figure 3.10). This is primarily used to manually prepare 

the input plates when setting up the device.  

 

The Preview (Figure 3.11, center) page is used to visualize each step of the 

experiment. The slider can be used to step through the experiment one pipetting step 
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at a time. Each well can be selected to gather isolated information at any stage in the 

experiment (Figure 3.11 right). Thus, the preview can be used as the ‘debugging’ tool 

to confirm that all liquid handling instructions are producing the desired outcome. 

Once the execution details are confirmed in silico, the device can be set up for 

physical execution by following the layout in the Preview tab, and the plate layouts 

in Setup tab.  

 

 
Figure 3.9. Overview of the execution details of a successfully simulated DoE workflow. 
Synthace software automatically collates and summarizes experimental details to facilitate 
setup. This includes liquid layout information (left) and hardware and consumables (right). 
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Figure 3.10. Setup page of a simulated DoE workflow for a PipetMax liquid handler.  
Automatically generated layouts and contents of all the microtiter plates required by a 
simulation are shown. This page is typically used to prepare input plates for physical 
execution. 
 

 
Figure 3.11. Preview page of a simulated DoE workflow for a PipetMax liquid handler. 
 Experimental preview. Synthace’s preview screen allows you to step through a simulated 
experiment one pipetting action at a time and allows inspection of volume, timing, and 
location information. Well G5 is selected to show the information that can be gathered from 
each well location (black lines with volumes and panel on the right).  
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Once the details of in silico simulation are confirmed, it is ready for physical 

execution. To initiate the process of physical execution, the simulation is scheduled, 

this action sends the liquid handling instructions to the SynthaceHub on a computer 

that controls the PipetMax liquid handler. The deck is prepared by placing input, and 

output microtiter plate, along with pipetting tips, as described within the Preview 

and Setup pages. Physical execution is started using SynthaceHub.  

 
3.2.5.4 Analysis of the screening DoE study 
 
When operated successfully, the screening DoE study could be executed in one day. 

Runs at 25 and 37 °C both took approximately 2 hours to prepare using the PipetMax 

liquid handler. This was followed by 2 hours of time-course spectrophotometric 

measurement. A wide range of progress curves were generated, a subset of which 

can be seen in Figure 3.12, highlighting the variety of information that can be 

generated from just one DoE screening experiment.  
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Figure 3.12. Example AP assay progress curves from the screening DoE. 
The screening DoE consisted of 192 runs, with 96 runs at each of the two temperatures; (A) 
25 °C and (B) 37 °C. A subset of the progress curves generated are shown to highlight the 
wide range of responses generated. The full data table with responses can be found in 
Appendix C and Appendix D. 
 
𝚫𝚫Absorbance (Section 2.4.3) was the response used to analyse the screening DoE.  To 

understand the relationship between the eight factors and the response, a statistical 

model is built. A stepwise regression model was selected as it condenses the set of 

potential explanatory variables down to a subset of the most significant variables 

before making a model, thus ensuring that a parsimonious model is created. Main 

effects, two-factor interaction effects, and polynomial terms were provided in the 

model (Section 2.6.3). Here, an effect refers to the impact of a factor or factor 

interaction on the response and is calculated by a statistical significance test e.g., T-

test, F-test, Chi-square test etc.  

 
Once the model is created, it was further refined in two ways. Firstly, any effects that 

had a p-value > 0.05 were removed to minimize the number of model terms. 

Secondly, outliers detected by the studentized residuals generated in the model 

report, i.e., the data points that fell outside the 95% individual t distribution limits (n 
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= 5, not shown) were excluded. A new model was generated using responses from 

187 runs after accounting for these adjustments (Figure 3.13). The prediction formula 

for the model can be found in Appendix F. 

 

 
Figure 3.13. Stepwise regression modelling of the AP assay screening DoE response. 
(A) Actual by Predicted plot. Correlation between the measured and predicted 𝚫𝚫Absorbance 
generated from a stepwise regression model indicates the goodness of the model fit. A linear 
fit (red) of data points (black, n=187, excluding 5 outliers) is shown with a 95% confidence 
interval (shaded red) along with the mean response value (blue). (B) Effects Summary Report. 
Significant effects ranked by p-value for effects with <0.01 (blue line). (C) Prediction profiler 
shows model predictions fixed at factor settings that predict maximum 𝚫𝚫Absorbance. Cross-
sectional factor profiles (black) with 95% model confidence (shaded blue) and optimal factor 
conditions (red text and crosshairs) show maximum predicted 𝚫𝚫Absorbance with 95% 
confidence interval values (in brackets) when the desirability function (black, far right) is set 
to maximize 𝚫𝚫Absorbance. For DMSO and volume of clarified cell lysate, X represents the 
volume fraction (v/v).  
 
 
The stepwise regression model was found to be statistically significant, meaning that 

the relationship between factors and the response was not due to chance. This can 

be seen in the actual by predicted plot (Figure 3.13 A) which has an R2 of 0.93 showing 

that the predicted 𝚫𝚫Absorbance values correlated closely with the actual 

𝚫𝚫Absorbance values. Furthermore, a p-value of <0.0001 was generated from the F-
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test from the Analysis of Variance (ANOVA) report. Such a small p-value is evidence 

that at least one significant effect was detected.  

 
The most significant effects i.e., the factors and factor interactions that were found 

to be significant were identified by conducting an F-test and are listed within the 

Effect Summary (Figure 3.13 B) in ascending order of p-value. Of the 186 runs, 70 runs 

executed at pH 7 had almost no impact on 𝚫𝚫Absorbance and led to the identification 

of an inactive region of the design space. While this may seem undesirable, knowing 

where there are regions of little or no enzyme activity is important in navigating 

towards desirable assay conditions. However, this is contradictory to literature data 

where the AP assay is routinely executed between pH 7-8 (Rios-Solis et al., 2013; 

Gruber et al., 2017).  

 

Of the 8 factors tested, the effect of salt concentration had a p-value greater than 

0.05 and was excluded from the model. All other factors have significant linear effects 

on 𝚫𝚫Absorbance, with pH being the most influential effect. This can be seen in the 

steep factor profiles, as increasing the pH to pH 9 steadily increases 𝚫𝚫Absorbance and 

agrees with what was found in the literature (Schätzle et al., 2009a; Schell, 

Wohlgemuth and Ward, 2009). Higher levels of S-MBA, Sodium Pyruvate, the volume 

of clarified cell lysate, and temperature were also found to increase 𝚫𝚫Absorbance, 

however, this can be expected as increasing substrate and enzyme concentrations 

along with temperature typically increases enzyme activity (Schätzle et al., 2009b; 

Stepankova et al., 2013). Increased DMSO at 10% v/v was also found to increase 

𝚫𝚫Absorbance. The CV2025 TAm enzyme’s capacity to maintain activity at increasing 

DMSO concentrations has been previously reported (Chen et al., 2016; Leipold et al., 

2019). 

 

Furthermore, nine significant two-factor interactions with p-values under 0.05 were 

also observed. The top three are S-MBA and pH, S-MBA and Temperature, and S-MBA 

and DMSO (Figure 3.14). The interaction between S-MBA and pH and S-MBA and 

temperature can be explained using the reasoning that bioconversions at optimal 
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settings of pH and temperature accelerate the reaction rate, especially in the 

presence of excess S-MBA which strongly favours the forward reaction, resulting in 

maximising 𝚫𝚫Absorbance(Shin and Kim, 1998). Increasing 𝚫𝚫Absorbance due to 

increasing S-MBA and DMSO could be attributed to DMSO increasing S-MBA 

solubility, thus making it more available to the active site of the enzyme, in turn 

accelerating transamination (Meng et al., 2020). Some of the two-factor interactions 

identified were speculated to be artifacts of the model as they were difficult to 

explain scientifically and may not be real effects, for example, the interaction 

between S-MBA and the volume of clarified cell lysate or S-MBA and Pyruvate. 
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Figure 3.14. Predicted response surface plots for the AP assay showing significant two-
factor interactions. 
Significant two-factor interactions on the 𝚫𝚫Absorbance for: (A) pH and S-MBA, (B) S-MBA and 
Temperature, (C) S-MBA and DMSO. Black dots represent actual data points present above 
the response surface. Surfaces are calculated from the stepwise regression model of the 
screening DoE data (Section 2.6.3) and the prediction formula given in Appendix F. For DMSO, 
X represents the volume fraction (v/v). Factor settings and response data can be found in 
Appendix C and Appendix D. 
 

Based on the DoE results and the prediction formula of the stepwise regression 

model presented in Appendix F, the following conditions were predicted as the 

optimal conditions to maximise 𝚫𝚫Absorbance: 100 mM TRIS Buffer at pH 8.87 with 5 

mM of S-MBA and Pyruvate, 10 % v/v DMSO with 0.25X Lysate at 37 °C with a 
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predicted 𝚫𝚫Absorbance of 0.96 ± 0.05 units in 20 minutes. Some of the optima 

defined in these conditions e.g., for pH and temperature have also been previously 

reported (Shin and Kim, 2001; Schätzle et al., 2009b; Schell, Wohlgemuth and Ward, 

2009).  

 

3.2.5.5 Implications of the screening DoE study  
 
Improved reaction conditions that gave the greatest 𝚫𝚫Absorbance were predicted 

after executing and analysing the screening DoE study. In this section, some 

implications of these predictions on the next iteration of the DoE campaign are 

discussed.  

 

The scoping study, executed prior to the screening DoE study, to identify suitable 

DMSO concentrations (Figure 3.5 A) showed that DMSO concentrations greater than 

15 % v/v increase baseline absorbance and in turn saturated the plate reader 

detector. This result led to using 0 and 10% v/v DMSO as factor levels in the screening 

DoE design. However, analysis of the screening DoE study found the higher DMSO 

concentration of 10 % v/v gave rise to a greater 𝚫𝚫Absorbance indicating an 

improvement in TAm reaction rate (Figure 3.13). Furthermore, prior to the screening 

DoE, scoping studies were executed at pH 7.4, which was later identified as a non-

optimal pH, this could potentially explain the need to use up to 50 µL of clarified cell 

lysate for bioconversions, which also contributed to increasing baseline absorbance 

(Appendix B). As improved reaction conditions have been identified, the quantity of 

clarified cell lysate required for bioconversions might be reduced, this, in turn, would 

reduce the lysate contribution to baseline absorbance and allow investigating the 

impact of even greater DMSO concentrations on CV2025 activity. These implications 

were considered when planning the next DoE iteration.  

 
3.2.6 Optimisation DoE study 
 
As the analysis of the screening DoE study identified improved reaction conditions 

for CV2025 bioconversions (Section 3.2.5.5), a second DoE iteration was conducted 

to map a narrower region of the design space. This iteration aimed to optimise 
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reaction conditions within the new design space and accurately map the 

experimental noise of that space. An overview of the optimisation DoE can be found 

in Figure 3.19. To better understand the noise of the design space, every run was 

executed in triplicate to allow calculations of metrics such as standard deviation. The 

first step of this process was to validate the reaction conditions identified by the 

screening DoE study (Section 3.2.5.4).  

 

Initially, the optimisation DoE was to be executed using just the PipetMax liquid 

handler, however, another automated device, the Dragonfly dispenser became 

available at a later date. Therefore, the optimisation DoE was repeated using the 

Dragonfly dispenser. This was done to understand the effect of device type on the 

process of automated DoE execution and to test how reproducible results would be 

when the same experiment was executed using different devices three months apart. 

As the DoE design had not included device type in the original design, it was analysed 

separately to maintain the power of the design.  

 

3.2.6.1 Validating the screening DoE model 
 
Desirable reaction conditions identified from the screening DoE model (Section 

3.2.5.4) were physically validated, this experiment was also used to identify an 

appropriate quantity of clarified cell lysate that can be used for the optimisation DoE 

study (Figure 3.15). The reaction conditions identified by the screening DoE led to a 

significant increase in 𝚫𝚫Absorbance while simultaneously reducing the quantity of 

clarified cell lysate was required by the AP assay. Therefore, the quantity of clarified 

cell lysate that resulted in a 𝚫𝚫Absorbance of 1 unit was selected for the optimisation 

DoE study as this signal would neither be high enough to saturate the plate reader 

detector nor be too low that no signal is measured. The precise volumes were 

calculated from the linear fit shown in Figure 3.15. 
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Figure 3.15. Experimental confirmation of the AP assay screening DoE model and 
identification of the appropriate quantity of clarified cell lysate for a subsequent 
optimisation DoE study. 
Reaction conditions that predicted maximum 𝚫𝚫Absorbance from the screening DoE model 
(Section 2.3.2.2) were experimentally confirmed using both a PipetMax liquid handler (A) and 
the Dragonfly dispenser (B). 𝚫𝚫Absorbance after 20 minutes of measurement across a range 
of lysate volumes was plotted (dashed line) along with the line of best fit (solid line) that was 
used to determine appropriate clarified cell lysate volume. Error bars represent one standard 
deviation from the mean (n=3).  
 

3.2.6.2 Scoping study for identifying suitable DMSO levels 
 
Testing the improved reaction conditions generated from the screening DoE study 

identified that a lower quantity of clarified cell lysate (<1 µL compared to the 20 and 

50 µL investigated in the screening DoE study) was required to generate a greater 

𝚫𝚫Absorbance. Therefore, the contribution of clarified cell lysate on baseline 

absorbance was minimised allowing a further investigation of the impact of DMSO 

concentration on 𝚫𝚫Absorbance (previously explained in Section 3.2.5.5). Therefore, 

a scoping study was performed to identify the appropriate levels of testing DMSO in 

the optimisation DoE study.  

 

Increasing DMSO concentrations reduced 𝚫𝚫Absorbance while increasing baseline 

absorbance, in turn decreasing the dynamic range of the assay (Figure 3.16). Low and 

high factor levels 0 and 30 % v/v DMSO were chosen for the optimisation DoE study 

as it allows for further investigation of the impact of DMSO on CV2025 

bioconversions.  
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Figure 3.16. Scoping study to identify suitable DMSO concentration levels for the AP assay 
optimisation DoE. 
The impact of DMSO concentration on CV2025 activity was evaluated using improved 
conditions identified from the screening DoE. Experiments were prepared, in triplicate, as 
described in Section 2.3.2.2 and executed using the PipetMax liquid handler. Error bars 
represent one standard deviation from the mean (n=3).  
 
 
3.2.6.3 Optimisation DoE design  
 
Five factors were taken forward for the optimisation DoE study (Table 3.2), the 

overlapping design space between the screening DoE study and the optimisation DoE 

study are shown in Figure 3.17. to help visualise how the design space was narrowed 

down in this iternation. The factor levels were adjusted to narrow in on the optimal 

region found in the screening DoE study.  

 

Salt was removed as a factor of interest from this design, buffer concentration was 

also excluded and fixed at 100 mM as they both had a negligible impact on 

𝚫𝚫Absorbance. The volume of clarified cell lysate was removed as a factor of interest, 

instead, the quantity of clarified cell lysate that resulted in a 𝚫𝚫Absorbance of 1 unit 

was used (Figure 3.16). The pH range was narrowed down to pH 8 and 9, pH 7 was 

excluded as it contributed significantly to inactive run conditions found in the 

Screening DoE. Temperature was tested at 18 and 25 °C to mimic a wide range of 

what could be considered room temperature. This was done despite the screening 

DoE analysis indicating that higher temperatures of 37 °C contributed to higher signal, 

as reducing bioconversion cost at scale up is often the industrial driver for 
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optimisation, further optimise conditions at and around room temperature was done 

to try and exceed the signal seen at higher temperatures in the previous DoE 

iteration. DMSO was tested at 0 and 30 % v/v (Figure 3.16) as solvent stability is a key 

feature of many industrially relevant bioconversions, as co-solvents are frequently 

used to aid the dissolution of various components such as substrates and products.  

 

A design based on response surface methodology (RSM) with an I-optimality criterion 

was used to create a 48-run design using JMP (Appendix E). I-optimal criteria aims to 

reduce the average variance of prediction over the design space and places 

importance on the precise estimation of the response (Goos, Jones and Syafitri, 

2000). This design could be executed in 21 runs; however, this number was increased 

to 48 to gather more data as the process of automated execution would be the same 

for either design. The colour map on correlations comparing both designs (Figure 

3.18) shows that the 48-run design provides greater orthogonality for isolating main 

effects and two factor interactions. An overview of the optimisation DoE study can 

be found in Figure 3.19.  
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Table 3.2. Optimisation DoE study factors and levels. 

 
* Automatically generated by JMP. 
**DMSO is represented by the unit ‘X’ which represents the volume fraction (v/v) during 
Synthace workflow generation and JMP analysis.  
 

 
Figure 3.17: The overlap of design space covered between the screening and optimisation 
DoE studies for five factors. 
Overlapping factor levels between both studies are indicated in bold.  
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Figure 3.18. Evaluation of two Optimisation DoE design options.  
Colour map on correlations plots of the actual design (192 runs) and the default design 
recommended by JMP (93 runs). Both X and Y axis contain variables (one pixel per variable) 
that are listed in the same order, they form a grid of correlations where each pixel represents 
the absolute correlation between any two variables which is shown using an intensity scale 
that ranges from 0-1 (blue to red). Values closer to 0 (blue) highlight the variables that are 
not highly correlated and can be estimated independently. 
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Figure 3.19. AP assay optimisation DoE study overview and implementation. 
A 48-run RSM design (Section 2.6.1) was executed in triplicate. Reproducing the design 
provided data to assess the noise found within the design space while testing the design at 
two lysate volumes provide information on the dynamic range of the assay. This experiment 
was repeated on two devices: a PipetMax liquid handler and a Dragonfly dispenser to 
investigate how the device type impacts the process of automated DoE execution and 
analysis (Section 2.1.4).  
 
3.2.6.4 Automated DoE execution using two devices 
 
The process of generating liquid handling instructions for both devices is the same as 

previously outlined for the screening DoE study (Section 3.2.5.3). However, as the 

Dragonfly dispenser has 10 dispensing syringes and one output plate position the 

Synthace preview page changes to reflect this (Figure 3.20).  

 

The summarised statistics of the time required to execute the designed experiment 

and the accompanying execution details for both devices are summarised in Table 
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3.3 and Table 3.4. The Dragonfly dispenser is a rapid, non-contact dispenser that uses 

10 syringes to aspirate and dispense liquids using positive displacement. Using the 

PipetMax liquid handler was found to be ~37 times faster, additionally, to execute 

the design in triplicate once (144 runs) only 13 syringes and reservoirs, each, were 

needed to execute the whole design once compared to the 677 pipette tips (> 7 

boxes) and six microtiter plates required by the PipetMax liquid handler. 

 

 
Figure 3.20. Preview page of a simulated DoE workflow for a Dragonfly dispenser. 
Reagents in the Dragonfly dispenser’s reservoir tray (left) are transferred into the output 
microtiter plate (black lines with volumes). Well E6 is highlighted to show well contents on 
the right.   
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Table 3.3. Time required for automated execution of the AP assay optimization DoE. 

 
*Accounts for the time required to run all three workflows once (144 runs).  
 

Table 3.4. Summarized execution details for automated AP assay optimisation DoE 

execution. 

 
* The Dragonfly dispenser’s reagent tray holds 10 reservoirs where 10 standard reservoirs 
were used for plate preparation and 3 low-volume reservoirs were used for lysate addition 
to start the bioconversion.  
 

3.2.6.5 Analysis of optimisation DoE study 
 
The average 𝚫𝚫Absorbance calculated from three replicates (Appendix E) was used as 

the response to analyse the optimisation DoE study (Figure 3.21). The screening DoE 

study showed that the activity of the CV2025 enzyme could be measured within 20 

minutes, therefore, end-point measurements after 20-minute incubations in 

benchtop thermomixers were measured to further simplified the execution.  
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Figure 3.21. Comparison of 𝚫𝚫Absorbance generated from executing the AP assay 
optimisation DoE study using two devices.  
A 48-run design was executed in triplicate at two enzyme concentrations and on two devices, 
the PipetMax liquid handler and a Dragonfly dispenser (Appendix E). Runs were separated 
onto different plates using temperature as the blocking factor. 𝚫𝚫Absorbance was calculated 
as described in Section 2.4.3. Factor settings and response data can be found in Appendix E. 
Error bars represent one standard deviation from the mean (n=3).  
 
 
For the optimisation studies executed on both devices, stepwise regression models 

were significant as the actual 𝚫𝚫Absorbance closely correlated with predicted 

𝚫𝚫Absorbance values (Figure 3.22 A). Furthermore, a p-value of <0.0001 was 

generated from the F-test from the Analysis of Variance (ANOVA) report. High R2 

values and small p-value are evidence that at least one significant effect has been 

detected and that the response being analysed was not generated by chance. In 

general, R2 values were marginally higher when the Dragonfly dispenser was used for 

execution. The maximum predicted 𝚫𝚫Absorbance was 2.11 ± 0.28 using the PipetMax 

liquid handler and 2.31 ± 0.18 units using the Dragonfly dispenser. Both prediction 

formulas can be found in Appendix G.  

 
When the models were fixed to predict maximum 𝚫𝚫Absorbance, the underlying assay 

conditions were also similar between both models (Figure 3.22 B). Increasing pH and 

decreasing DMSO has the most significant influence on maximising the response; 

these were identified as the top two contributing factors in both models (Figure 3.23). 

Neither model found pyruvate concentration to have a significant impact and only 

the optimisation study, executed using the PipetMax liquid handler, found 
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temperature to also be insignificant. Significant quadratic effects were identified for 

DMSO, pH and temperature while no curvature was found with any of the factors.  

 

 
Figure 3.22. Stepwise regression modelling of the AP assay optimization DoE response 
generated using two devices at the high lysate level. 
(A) Actual by Predicted plot. Correlation between the measured and predicted 𝚫𝚫Absorbance 
generated from a stepwise regression model indicate the goodness of the model fit. A linear 
fit (red) of data points (n = 48) is shown with 95% confidence (shaded red) along with the 
mean response value (blue). (B) Prediction profiler shows model predictions fixed at factor 
settings that predict maximum 𝚫𝚫Absorbance. Cross-sectional factor profiles (black) with 95% 
model confidence (shaded blue) and optimal factor conditions (red text and crosshairs) show 
maximum predicted 𝚫𝚫Absorbance with 95% confidence interval values (in brackets) when 
the desirability function (black, far right) is set to maximize 𝚫𝚫Absorbance. For DMSO, X 
represents the volume fraction (v/v).  
 

 
Figure 3.23. Comparison of significant model effects generated from modelling the AP 
assay optimisation DoE response. 
Significant effects are grouped by device type and lysate level ranked by p-value for effects 
with p-values <0.01 (blue line). 
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The most significant two-factor interaction observed was between pH and DMSO, 

where increasing pH and decreasing DMSO concentrations maximised 𝚫𝚫Absorbance 

(Figure 3.24). Previously, the screening DoE study found that increasing DMSO 

concentration contributed to increasing 𝚫𝚫Absorbance required for bioconversion 

(Figure 3.13), however, increasing DMSO concentrations were found to decrease 

𝚫𝚫Absorbance consistently across both models of the optimisation DoE study. This is 

likely to be because the screening DoE study investigated CV2025 Tam activity 

between a shorter range of 0-10 % v/v, where the upper level may have aided S-MBA 

solubility, in turn increasing 𝚫𝚫Absorbance. However, the optimisation DoE study 

investigated the impact of DMSO across a much wider factor range of 0-30 % v/v, the 

upper end of the range may have possibly led to denaturing the enzyme and in turn 

reducing 𝚫𝚫Absorbance when investigated beyond 10% v/v as seen in the response 

surface in Figure 3.24. 

 

 
Figure 3.24. Response surface analysis of AP assay optimisation DoE results showing a 
significant two-factor interaction of pH with DMSO. 
Dots represent actual data points present above the response surface. Surfaces are 
calculated from the stepwise regression models of the optimization DoE data (Section 2.6.3) 
and the prediction formula given in Appendix G. DMSO is analysed in units of relative volume 
fraction (X). Factor settings and response data can be found in Appendix E.  
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3.2.6.6 Analysis of noise generated from the optimisation DoE study 
 

As one of the aims of the optimisation DoE was to characterise the noise of the AP 

assay each run was executed in triplicate. Standard deviation of 𝚫𝚫Absorbance was 

used as the response to map the design space using stepwise regression models (data 

not shown). However, the standard deviations calculated from all runs were 

negligible with the median standard deviation of 𝚫𝚫Absorbance of 0.0287 and 0.0288 

for the PipetMax liquid handler and the Dragonfly dispenser datasets, respectively. 

Therefore, they were not modelled further.  

 

However, one pattern contributing to increased standard deviations was observed in 

both datasets (Figure 3.25). For runs that needed 15 and 30 % v/v DMSO, a greater 

standard deviation was observed with the Dragonfly dispenser, with a mean standard 

deviation of 0.060, the same pattern was seen to a lesser extent using the PipetMax 

liquid handler, where the mean standard deviation was 0.053. One possible 

explanation for this might be that solvents are harder to handle due to low surface 

tension making aspiration and dispensing less precise than with aqueous reagents 

(Parshley, Bradshaw and Albert, 2014; Christensen et al., 2021) 
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Figure 3.25. Effect of device type and DMSO concentration on standard deviation of 
𝚫𝚫Absorbance measurements in the AP assay. 
Dots represent individual data points (n = 96, 48 per device). The median is indicated by the 
horizontal line within the box, whiskers indicate the lower and upper quartiles, any data 
points outside whiskers represent outliers. For DMSO, X represents the volume fraction (v/v).  
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3.3  Discussion  
 

In this chapter, the AP assay (Figure 3.1) was used as a model to explain the method 

of DoE execution with Synthace. Automating manual assay methodology, scoping 

studies, screening, and optimisation DoE studies were all part of the DoE campaign. 

They were carried out with the goal of establishing rapid and robust reaction 

conditions capable of generating a precise response. All automation was executed 

using a PipetMax liquid handler, while the optimisation DoE study was also repeated 

using the Dragonfly dispenser.  

 

The goal of identifying fast and robust reaction conditions were met as the analysis 

of the eight factors (Table 3.1) investigated in the screening DoE study identified 

reaction conditions that increased 𝚫𝚫Absorbance from ~0.1 units to ~ 0.9 units in 20 

minutes. This was further improved by taking five factors forward (Table 3.2) to the 

optimisation DoE study which doubled the 𝚫𝚫Absorbance to > 2 units within 20 

minutes of measurement.  

 

The screening DoE study provided the most insight into active factors (Figure 3.13) 

and two factor interactions (Figure 3.14). Optimal values for pH and temperature, 

along with the impact of DMSO on 𝚫𝚫Absorbance were identified. Significant two 

factor interactions involving temperature, substrate concentrations, DMSO were also 

identified. Many of the findings were in agreement with data found in the literature, 

which in turn increased the reliability of the statistical model (Figure 3.13 Appendix 

F) (Schätzle et al., 2009; Schell, Wohlgemuth and Ward, 2009; Rios-Solis et al., 2013; 

Gruber et al., 2017).  

 

Validating the improved run conditions predicted from the screening DoE model 

(Section 3.2.5.5) resulted in identifying that only <1 µL of clarified cell lysate was 

required to generate the expected 𝚫𝚫Absorbance (Figure 3.15), which is almost 50 fold 

lower than the 25 – 50 µL volumes being used previously. As pH was identified as the 

factor with the most significant effect, increasing the pH from 7.4 to 9, as identified 
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by the screening DoE might explain why a far lower quantity of clarified cell lysate. A 

known drawback of the AP assay is the reduced dynamic range due to the 

contribution of protein to initial absorbance measurements (Schätzle et al., 2009). 

Therefore, this finding consequently increased the dynamic range of the assay as it 

reduced the absorbance contribution of the lysate. This in turn enabled the 

investigation of increasing DMSO concentration up to 30 % v/v in the optimisation 

DoE study which would not have been possible previously as DMSO also increases 

the baseline absorbance (Section 3.2.6.2). 

 

Five factors were then taken forward in the optimisation DoE study (Section 3.2.6.3) 

to further characterise the improved design space identified by the screening DoE 

study. The optimisation DoE study was executed on two devices, the PipetMax liquid 

handler, and the Dragonfly dispenser. Statistical models for both devices generated 

collected were practically identical and predicted similar optimal reaction conditions 

(Figure 3.22). A pH optimum of ~9 continued to generate maximum 𝚫𝚫Absorbance, 

however, retrospectively, a wider pH range should have been investigated to confirm 

if the peak really was at pH 9. DMSO concentrations up to 30% v/v were investigated 

and were found to reduce 𝚫𝚫Absorbance. This is contradictory to what was observed 

in the screening DoE study where a greater 𝚫𝚫Absorbance was attributed to reactions 

with 10% DMSO instead of ones that contained no DMSO, with the reasoning that 

DMSO may have led to increased S-MBA solubility and consequently it’s availability 

(Figure 3.13). One possible reason for this effect could be that the optimisation DoE 

study was sampling high substrate concentrations while the screening DoE study 

sampled at 0.5 and 5 mM, making the effect of the lower level of S-MBA solubility by 

DMSO more apparent. Higher levels of both substrates led to increased 𝚫𝚫Absorbance 

which is typical of enzyme-catalysed reactions. These patterns remained consistent 

with those observed in the screening DoE study (Figure 3.13).  

 

The optimisation DoE study was executed in triplicate to map the noise of the design 

space and identify reaction conditions that maximise 𝚫𝚫Absorbance while minimising 

noise (Figure 3.19). However, very low standard deviations were calculated across all 
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runs, indicating that none of the five factors were significantly influencing standard 

deviation. However, reactions that contained 15 and 30 % v/v DMSO, resulted in a 

greater mean standard deviation (Figure 3.25). This was observed on both devices 

and could be attributed to the challenges associated with aspirating and dispensing 

DMSO due to its low surface tension. In the future, a liquid-handling precision test 

could be conducted to investigate device precision prior to executing automated DoE 

studies as it may result in falsely making conclusions about certain factors.  

 

Overall, the DoE campaign was successful as it identified fast and robust assay 

conditions. These settings are ideal for high-throughput screening as they can be 

executed at room temperature, requiring no incubator thus reducing operating costs, 

while generating end-point measurements after only 20 minutes. Furthermore, both 

statistical models could be used to predict reaction conditions for specific scenarios 

e.g., conditions that maximise 𝚫𝚫Absorbance at 37 °C, or at 30 % v/v DMSO. One 

potential use case for these conditions is the high-throughput screening of 

engineered libraries of CV2025 mutants. 

 
Automating the manual assay protocol into an automated workflow using Synthace 

was straightforward with automated bioconversions closely matching manual 

experiments (Figure 3.4), this provided confidence in the liquid-handling instructions 

that were generated from Synthace and led to the execution of scoping studies using 

automated workflows.  

 

DoE execution benefitted greatly from automation with Synthace. A total of 480 runs 

(192 from screening and 288 from optimisation DoE studies) were executed, each 

DoE iteration was executed in just one day. The same underlying Synthace DoE 

workflow was used throughout, despite device type, highlighting the device-agnostic 

nature of Synthace (Figure 3.8). Minimal upfront planning was required as input plate 

layouts and device deck layouts are determined by Synthace, in turn, the interaction 

with the device control software was limited to initiating liquid handling, this 

removed a major barrier of entry to automated DoE execution (Section 1.2.4). The 
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optimisation DoE study was executed on the PipetMax liquid handler and the 

Dragonfly dispenser three months apart using the same Synthace protocol and 

comparable models were generated from both datasets highlighting reproducibility 

from automating complex protocols. The impact of device type on the process of DoE 

execution was heightened as the Dragonfly dispenser required just 8.5 minutes to 

prepare microplates needed for the optimisation DoE study compared to the 

PipetMax liquid handler which required over 4.5 hours, which is 32 times greater 

(Table 3.3). Furthermore, less labware e.g., dispensing syringes and reservoirs were 

needed by the Dragonfly dispenser which reduces the quantity of plastic used, 

making certain device types a more environmentally friendly option. 

 

In Chapter 3, the combination of automation and Synthace for the execution of larger 

DoE designs was demonstrated. However, now that larger automated DoE studies 

can be executed, more sophisticated designs that were previously completely out of 

reach should be explored, instead of simply expanding traditional DoE designs, one 

example of such a design, called a space-filling design is explored in Chapter 5 for 

characterising a 12-dimensional design space of the AP assay. However, to execute 

more challenging design types, numerous important characteristics that impact high-

throughput spectrophotometric assay performance must be investigated and 

confirmed, this is further investigated in Chapter 4.  

  



 
 

109 

4 Refining assay logistics 
 
4.1  Introduction  

 

The conclusions from Chapter 3 showed that combining rapid automated liquid 

handling devices with Synthace-driven DoE implementation can push the boundaries 

of DoE execution away from using traditional DoE designs towards attempting the 

execution of large, high-dimensionality DoE designs that would have been previously 

out of reach. However, before executing these designs, many non-biological 

considerations that impact the performance, precision, execution, and cost of assay 

implementation must be investigated and confirmed. These considerations are 

termed ‘assay logistics’ in this thesis. These are important characteristics that are 

rarely emphasised in the academic literature but are critical to the successful 

implementation of high-throughput spectrometric assays.  

 

Spectrophotometric measurements form the basis of numerous enzymatic and drug 

screening assays (Acker and Auld, 2014) including the AP assay which is used as the 

model system in this work (Figure 3.1). A plate reader measures the quantity of 

ultraviolet (UV) or visible radiation absorbed by a substance of interest in solution at 

a specified wavelength (nm). Measurements are generated by the fundamental law 

of spectrophotometry, the Beer – Lambert’s Law (Bouguer, 1729; Lambert, 1760; 

Beer, 1852):   

 

  A = ε.c.l                   4.1 

 

which states that absorbance (A) is equal to the concentration (c) of the substance, 

the path length (l) travelled by the light, and the extinction coefficient (ε).  

 

Some of the logistics that impact spectrophotometric assays include determining the 

linear range of the plate reader, selecting suitable microplate types, reaction 
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volumes, optimal measurement wavelengths, measuring the precision of liquid 

handling devices, managing evaporation, and so on (Acker and Auld, 2014; Hentz and 

Knaide, 2014; Sancenon et al., 2015; Siguemoto and Gut, 2017).  

 

4.1.1 Aim and objectives 
 

The aim of this chapter was to systematically investigate a subset of assay logistics 

and decide on the most appropriate conditions that aid assay performance. The 

specific objectives of this chapter are as follows: 

 

1. Develop a flow chart of the assay logistics which outlines the key decisions 

that need to be taken 

2. Ensure that the flowchart is generalisable and can be used to investigate 

the impact of both 96- and 384-well microplates and, numerous 

automated devices to cover any future use cases. 
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4.2 Results  
  
4.2.1 Assay logistics flow chart and implementation considerations 
 

Figure 4.1 presents a flow chart describing the sequence of key decisions that need 

to be taken and the factors that need to be considered when executing high-

throughput spectrophotometric assays (Roskoski, 2014). This was done to ensure 

that a solid foundation is present for the automated execution of a 3,456 run, a 12-

dimensional space-filling-DoE study executed in Chapter 5, however, it can be used 

generically to define logistics that commonly need to be selected for the execution 

of high-throughput assays.  

 

The first decision was to confirm the linear range of the spectrophotometer as the 

AP assay is an absorption-based assay, i.e., the product, acetophenone, is directly 

measured based on its absorbance properties (Schätzle et al., 2009). Absorbance is 

directly proportional to pathlength (and therefore volume), and to concentration 

(Equation 4.1), therefore, a decision was made to determine the linear range of the 

spectrophotometer’s detector for a range of acetophenone concentration curves 

prepared at varying volumes in both 96- and 384-well plates first. Doing so would 

identify the linear range of the spectrophotometer for varying reaction volumes and 

allow comparison between plate types. Additionally, a wide range of 

spectrophotometers are available, all with varying dynamic ranges and methods to 

calculate absorbance. However, a pathlength of 1 cm is often used to standardise 

absorbance measurements. Therefore, confirming the precision of the 

spectrophotometer’s pathlength correction calculation and, if needed, developing 

methods for path length correction might be useful.  

 

Once the linear regime of the spectrophotometer is determined, reaction volume and 

plate type can be selected. Typically, absorption-based assays are executed by 

preparing a reaction vessel e.g., a cuvette, microplate, etc. that contains all reagents 

except one. The missing component is normally a small volume of the enzyme or a 
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substrate that is used to initiate the reaction. It is critical to ensure that all the 

reagents can be accommodated into the reaction volume, this decision is especially 

important as a wide range of reaction mixtures will need to be prepared for DoE 

studies as each run condition is composed of different factor levels.  

 

Following this, it is important to pre-determine an appropriate measurement format 

for the DoE study as this will directly impact the type of responses that can be 

calculated. Pre-determining responses are critical to collecting data in a format that 

is fit for purpose. Absorption-based assays can be measured continuously or after a 

specified incubation time, i.e., end-point assays. The former can be used to generate 

large quantities of data and capture responses to determine enzyme kinetic 

responses e.g., initial rate. End-point assays can be advantageous in terms of 

throughput; however, care should be taken to ensure that the time-point selected is 

within the window where the product formation is linear. 

 

As the foundation of absorption-based assays is to measure the product based on its 

absorbance properties, it is important to ensure that the wavelength used to monitor 

the reaction is one with the biggest difference between the product and the rest of 

the reagents. This ensures that the clearest signal is recorded.  

 

More generically, it is important to understand the advantages and the limitations of 

the automated devices being considered for DoE study execution with respect to 

precision, speed, and the range of dispensing volumes. Lastly, if reaction mixtures 

require incubation, it is important to seal the microtiter plates using plate films that 

minimise evaporation over the desired incubation period. Furthermore, for time-

course measurements, microtiter plates may be sealed during measurement to 

manage evaporation over time. Therefore, finding a plate film that will manage 

evaporation while minimising interference over the measurement wavelengths is 

required.  
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The following sections provide further details on the decisions to be made and 

provide experimental data obtained in order to make the most appropriate decisions 

for the AP assay used here
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Figure 4.1 Flowchart generated to aid in making decisions on key assay logistics. 
Individual logistic details and corresponding results are shown in yellow boxes, the subsequent decisions that need to be made are shown in grey 
boxes and the pros and cons of each option are shown in green boxes using “+” and”-” symbols, respectively. 
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4.2.2 Assay miniaturisation  
 
Miniaturisation is a key aspect of assay development, with high-throughput screening 

groups (HTS) leading the way on automated, miniaturised screening reactions to 

maximise hit selection while simultaneously minimising reagent cost and increasing 

throughput (Kricka, 1998). Reducing reaction volume is the first step in 

miniaturisation. Various reaction volumes are tested, and one volume is selected, 

however, the impact of the minimised volume on assay signal and performance may 

or may not be tested if that volume is already fit-for-purpose (Sancenon et al., 2015).  

 

All AP assays in Chapter 3 were executed at a reaction volume of 200 µL, as described 

in the original method (Schätzle et al., 2009a). This volume has been used as default 

in literature since it was first developed (Meng et al., 2020; Heckmann, Dominguez 

and Paradisi, 2021). To investigate whether miniaturisation and increased 

throughput can be achieved simultaneously, assay performance was investigated by 

reducing the reaction volume to 100 µL in both 96- and 384-well plates (Figure 4.2). 

 

In general, both progress (Figure 4.2 A and B) and standard curves (Figure 4.2 C) 

prepared at a 100 µL reaction volume in 384-well plates saturated the plate reader 

detector as the absorbance contribution of each reagent (Table 4.1) is greater in 384-

well plates than 96-well plates for the same reaction. In contrast, measurements 

recorded from 96-well plates stayed within the plate reader’s detection limit. Due to 

the well geometry of the narrow 384-well plates, the light beam from the plate reader 

must travel a greater vertical distance (path length) through a 100 µL solution in a 

384-well plate compared to a 96-well plate. As path length is directly proportional to 

absorbance, the higher path length of 384-well plate generates higher absorbances 

thus saturating the signal.  

 

This experiment showed that a systematic process is required when selecting a 

reaction volume. This process will be the topic of the next section (Section 4.2.3.) 
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Figure 4.2. Comparison of AP assay progress and calibration curves prepared in 96- and 
384-well plates.  
(A), (B) The effect of varying lysate volume on the bioconversion of pyruvate to 
acetophenone in 100 μL total volume reactions (Section 2.3.2.2) was monitored by 
measuring acetophenone absorbance at 245 nm for 60 minutes in both 96- (A) and 384-well 
plates (B). (C) Acetophenone calibration curves. Identical serial dilutions (Section 2.4.2.1) 
were prepared at a final volume of 100 μL in 96- and 384-well plates. Error bars represent 
one standard deviation from the mean (n=3).  
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Table 4.1. Absorbance measurements of individual AP assay components in a 100 µL 

reaction volume. 

 
 
4.2.3 Determining the dynamic range of the spectrophotometer  
 
The CLARIOstar Plus Microplate Reader (CLARIOstar plate reader) was used to 

monitor all reactions performed in this thesis and generate all absorbance 

measurements. According to the manufacturer, it has a dynamic range of 0 – 4 

arbitrary units (A.U.) (https://www.bmglabtech.com/clariostar-plus/).  

 

To start the process of miniaturization, the linear range of the plate reader was first 

confirmed. As the AP assay is based on the detection of acetophenone absorbance at 

245 nm, serial dilutions of acetophenone were prepared at a range of volumes in 

both 96- and 384-well plates. The volumes ranged from 70 µL to 320 µL for 96-well 

plates and 20 µL to 100 µL in 384-well plates as these covered the widest range of 

reaction volumes for both plate types.  

 

Comparing standard curves showed that increasing the volume decreases the 

concentration that can be detected within the linear range in both plate types which 

spans from 0 to ~2 units (A.U.) (Figure 4.3 A, B, and C). This can be observed in Figure 

4.3 A and B, as the measured absorbance of acetophenone goes beyond the linear 

range after ~2 units (A.U.) indicating that any absorbance detected between 2 and 

3.5 units is part of the non-linear range. No values were measured between 3.5 and 

https://www.bmglabtech.com/clariostar-plus/
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4 units, indicating that the actual dynamic range of the CLARIOstar was 0 – 3.5 units 

instead of up to 4 units as stated by the manufacturer.  

 

The plate type was found to have no impact on the linear range. This was confirmed 

by normalising the volume and concentrations of each serial dilution by the well area 

(Figure 4.3 C). Furthermore, lower reaction volumes allow the measurement of 

higher Acetophenone concentrations for both plate types (Figure 4.3 D). Therefore, 

selecting a lower reaction volume would allow the capture of reaction conditions that 

produce higher quantities of Acetophenone, which is beneficial for future biocatalytic 

reaction screening experiments (Chapter 5).  

 

In summary, this experiment confirmed the dynamic range of the plate reader and 

identified that a lower reaction volume must be selected to precisely detect greater 

acetophenone concentrations, with no preference for plate type.  
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Figure 4.3. Determination of the dynamic range of the plate reader. 
(A), (B) The effect of concentration and volume on absorbance in 96-well (A) and 384-well 
plates (B) is shown using a response surface plot. The surface was produced by preparing 
Acetophenone concentration curves at varying volumes as described in Section 2.4.2.2. Red 
to green shading represents increasing absorbance. The grids (black) indicate the maximum 
absorbance value of the linear regime. (C) Absorbance as a function of volume and 
concentration normalized by well area. Equations used to calculate the values on the X-axis 
are shown in Section 2.4.2.3.  
 
4.2.4 Path-length correction 
 
Path-length correction is a method of normalising absorbance values to the liquid 

path length of a standard square type cuvette of 1 cm. The overall dimensions of 

which are as follows: the external dimension of 1.25 x 1.25 cm, the height of 4.5 cm 

and, internal size of 1 x 1 cm. This is done to generate standardised absorbance 

measurements that can be used to compare data from different experiments and 

brands of plate readers (Roskoski, 2014).  
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Path-length correction calculations from raw absorbance measurements require a 

correction factor called the ‘K-factor’ (Figure 4.4 A) which is calculated by measuring 

the absorbance of the solution of interest at 977 nm and 900 nm in both a cuvette 

and a microplate. As water has an absorbance peak at 977 nm, the 900 nm 

measurement is used as the blank to eliminate the background absorbance of the 

plate and cuvette materials (Figure 4.4 D). The ratio of the blank corrected water peak 

of the microplate and the cuvette is the K-factor, which is then used to correct raw 

absorbance values (Lampinen et al., 2012).  

 

The CLARIOstar plate reader has an automatic setting to path-length correct 

absorbance values using the pre-set K-factor of water of 0.18. However, this feature 

was found to have many limitations. The K-factor of water can only be used for 

primarily aqueous solutions (Lampinen et al., 2012; Siguemoto and Gut, 2017). If it is 

used for reactions with a high protein or solvent content, as used here, in AP 

reactions, then inaccurate data can be generated. Therefore, K-factors for each 

solution of interest must be calculated so that factors that affect path length, such as 

reagent concentrations and meniscus shape, can be accounted for. The discrepancies 

between default path length values used by the CLARIOstar Plus 

(https://www.bmglabtech.com/path-length-correction/) and the actual path length 

values generated for AP are shown in Figure 4.4 E. 

 

https://www.bmglabtech.com/path-length-correction/
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Figure 4.4. Path-length correction methodology. 
(A) Equation to calculate the path length of a liquid in a microtiter plate. (B) Calculated K-
factor for Acetophenone at three different concentrations. One standard deviation (SD) from 
the mean was calculated (n=3). (C) CLARIOstar’s LVis plate showing the cuvette slot required 
to generate the A977 and A900 measurements for calculating (A). (D) Spectrum curves (895-
1000 nm) for Acetophenone at varying concentrations highlighting the ‘water peak’ at 977 
nm. (E) Comparison of default path-lengths generated by the CLARIOstar with path-length 
calculated using Acetophenone’s K-factor from (B) in relation to volume and plate type.  
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4.2.5 Plate type, and reaction volume selection  
 
Identifying the linear range of the plate reader and measuring the path-length for 

various reaction volumes, as presented in Sections 4.2.3 and 4.2.4, determined that 

using a 70 µL reaction volume in a 96-well plate and a 20 µL reaction volume in a 384-

well plate would have the same path length of 2.07 mm. Under these assay 

conditions, the resulting absorbance measurements should be identical according to 

theory. To confirm this, and to gather information to select a suitable plate type and 

reaction volume, AP assays were performed at these reaction volumes and with these 

plate types.  

 

Almost identical progress curves were generated (Figure 4.5) with an increase of 1.56 

and 1.73 A.U. after 60 minutes of bioconversion for reactions prepared in 96- and 

384-well plates respectively. This confirmed that the AP assay can be miniaturized 

from 200 µL to 70 µL in a 96-well plate successfully, and that experimental 

throughput can be further increased by 4-fold if a 20 µL reaction is prepared in a 384-

well plate. However, the average standard deviation of the 70 µL progress curve in 

the 96-well plate was 0.0257 units while an average standard deviation of 0.0454 

units was measured in the 20 µL progress curve in the 384-well plate indicating that 

384-well plates generate nosier measurements. A tradeoff between throughput and 

precise measurements must therefore be made when evaluating AP assay logistics 

for subsequent DoE studies (Chapter 5).  
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Figure 4.5. Comparison of AP assay progress curves in 96-well and 384-well microtiter 
plates. 
Progress curves generated in a 96-well plate at a final volume of 70 μL (A) were compared to 
those in 384-well plates at a final volume of 20 μL (B) since both reaction solutions have the 
same theoretical path length (Figure 4.4). The bioconversion of pyruvate to acetophenone 
was monitored by measuring acetophenone absorbance at 4 different wavelengths for 60 
minutes. Assays were prepared according to the reaction conditions described in Section 
2.3.2.2. Error bars represent one standard deviation from the mean (n=3). 
 
4.2.6 Selecting suitable measurement formats 
 
Successful implementation of a DoE approach requires a thorough understanding of 

which responses are best to investigate in order to test a particular hypothesis 

(Hecht, Oberg and Muddiman, 2016). When responses are not well thought out prior 

to execution, there is a risk of collecting insufficient data or using an incorrect data 

format. With absorbance measurements, data gathered can be continuous i.e., time-

course measurements or discontinuous i.e., end-point measurements (Acker and 

Auld, 2014).  
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Time-course data was selected as the preferred measurement format for DoE studies 

as regular measurement of assay signal provides more data points, and therefore 

more information about the assay. It is better suited to isolate responses important 

for bioprocessing responses such as initial rate and final reaction yield which would 

not be possible with an end-point measurement (Roskoski, 2014). Additionally, end-

point values can be interpolated from the progress curves at set time points if 

needed. 

 

The CLARIOstar plate reader scans a spectrum from 220 to 1000 nm for all selected 

wells and can record data for a maximum of 8 wavelengths for each well. 

Measurements showed that it requires 2 minutes to scan a full 96-well plate and 6 

minutes to scan a 384-well plate. Based on this, the 96-well plate was favoured 

despite the 4-fold reduction in throughput to produce a more detailed dataset to 

enable a thorough understanding of the design space being investigated.  

 
4.2.7 Identifying optimal measurement wavelength  
 

Typically, the wavelength used to measure spectrophotometric assays is the one that 

gives the largest difference between the background absorption of the assay solution 

and the product being measured (Roskoski, 2014). In literature, the transaminase AP 

assay is most commonly measured at 245 nm, as originally developed (Schätzle et al., 

2009a), however, the signal can be measured up to 290 nm to avoid background 

interference (Jouda et al., 2012; Chen et al., 2016). As DoE studies can investigate the 

impact of numerous reagents on reaction kinetics, it is important to confirm the best 

measurement wavelength that maximizes signal while minimizing the absorption of 

the assay solution.  

 

Consequently, the absorption spectra of all reagents that could be used to 

characterize the AP assay in Chapter 3 were measured (Figure 4.6). This included 

substrates, product, co-factor, enzyme, solvent, salts, and buffers (Section 3.2.4). As 

expected, acetophenone had a peak at 245 nm, however, at 249 the absorbance of 

other assay reagents such as DMSO, pyruvate, CHES buffer (pH 9.5, 125 mM), and 
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MBA was slightly lower. The baseline absorbance of a hypothetical assay solution was 

then calculated at both 245 nm and 249 nm. At 249 nm, the overall absorbance was 

0.37 units lower than the measurement at 245 nm (Figure 4.7 A). Absorbance 

measurements beyond 270 nm were past the shoulder of the acetophenone 

detection peak and would be less beneficial in detecting differences in signal 

between varying reaction conditions. 

 

However, if the AP assay is measured at a wavelength beyond 270 nm a higher 

concentration of acetophenone can be measured accurately (Figure 4.7 B); a 

maximum of 1.5 mM acetophenone can be detected at 245 and 249 nm while up to 

12.5 mM acetophenone can be detected at 270 and 280 nm. The latter provides a 

better opportunity to monitor the time course of reactions with higher acetophenone 

yields. 

 

As the CLARIOstar can record 8 wavelengths simultaneously, it was decided to 

measure reaction progress at wavelengths of 245, 249, 255, 270, 275, and 280 nm in 

case reaction conditions that saturate the detector at 245 and 249 nm are identified 

in future DoE studies (Chapter 5). This would ensure that no information about 

improved reactions would not be lost. Additionally, 900 and 977 nm wavelengths 

were also recorded for any future work that could be conducted on the topic of path-

length correction as they would enable K-factor calculations described in Section 

4.2.4.  
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Figure 4.6. Absorbance spectra of individual AP assay reagents.  
Spectrum profiles (220 – 285 nm) of reagents (70 μL, 96-well plate) that might be 
incorporated into DoE investigation of AP assay conditions are shown. The black vertical lines 
and corresponding red text indicate potential measurement wavelengths to capture 
acetophenone signal (purple). Reagents were prepared as described in Section 2.1.1. Error 
bars represent one standard deviation from the mean (n=3). 
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Figure 4.7. Total absorbance of AP assay reaction reagents and effect of measurement 
wavelength on Acetophenone concentration. 
(A) Comparison of the absorbance contribution of AP assay reagents with respect to 
measurement wavelengths. (B) Acetophenone concentration curves at varying AP assay 
measurement wavelengths. Concentration curves were prepared as described in Section 
Error! Reference source not found.. Error bars represent one standard deviation from the 
mean (n=3). 
 
4.2.8 Liquid-handling precision comparison of different devices  
 
Liquid-handling accuracy and precision is a prerequisite of successful automated 

experimentation. Precision refers to how close measured replicate values are to each 

other, while accuracy refers to how close measured values are to the true value. 

When preparing automated experiments, it is crucial that automated devices are 

properly calibrated to ensure that the resulting liquid-handling actions are 
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transferring and mixing liquid volumes that are both precise and accurate thus 

avoiding the generation of erroneous data (Hentz and Knaide, 2014). Therefore, 

Routine Quality Control (RQC) must be performed regularly to maintain device 

calibration (Albert, 2007).  

 

Two precision tests were conducted for the three automation devices used in this 

work comprising two liquid handling devices (Hamilton STAR and PipetMax), and one 

dispenser: (Dragonfly). These platforms were described in Section 2.1.4. 

 

The first test used the Artel MVS® Verification System, a ratiometric dual dye-based 

test that is used to quantify specified dispense volumes (Bradshaw et al., 2005). The 

precision of 1 µL dye addition to 199 µL of diluent was measured by using each 

channel or syringe to dispense 8 replicates (Figure 4.8). A 1 µL transfer was selected 

as it is in the lower end of the dispensing range for all three devices. The PipetMax 

and Hamilton STAR liquid handling devices have a dispense range of 1 – 1000 µL 

depending on tip type, while the Dragonfly dispenser can dispense between 0.2 µL – 

4 ml. For a 1 µL dispense, Coefficient of Variances (CV) of 8, 6, and 5% can be expected 

from the PipetMax liquid handler, Hamilton STAR and Dragonfly® discovery, 

respectively according to the manufacturers (SPT Labtech, no date; Hamilton, 2015; 

Gilson Inc., 2018)  

 

Based on the experimental results obtained here, the precision of the Hamilton STAR 

and the Dragonfly dispenser were closely matched. The Hamilton STAR was found to 

be the most precise, with an average CV of 2.90 %; 5 of the 8 channels had a CV of < 

3% and an overall CV of < 5 %. The Dragonfly dispenser closely matched the precision 

of the Hamilton STAR with an average CV of 3.43 % and maintained a CV of < 5 % 

across all syringes. The PipetMax liquid handler was most imprecise with the highest 

CV of 107.79 % for Channel 1, due to missed dispenses for 4 out of 8 replicates. Under 

dispensing was also observed for one replicate in both Channels 2, and 8. This showed 

that the device would need to be serviced or recalibrated before it can be used for 

any other experiments.  
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Figure 4.8. Liquid handling precision of the three automation platforms used in this study.  
All syringes and channels of the (A) Dragonfly dispenser, (B) Hamilton STAR, and (C) PipetMax 
liquid handlers were used to dispense 1 µL dye into 199 µL diluent to test dispensing precision 
using the Artel MVS System as described in Section 2.5.1. Dots represent detected volume; 
horizontal lines represent the median (n = 8). 
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As the Artel system is not commonly found in most laboratories due to its capital cost 

and specific function, a second precision test was designed using Tartrazine, an 

inexpensive yellow food dye, to test liquid handling precision (Jones, Clark and 

Clulow, 2003). The precision of preparing dilutions at a target concentration of 0.1 

mM for spectrophotometric detection at 425 nm using various sampling volumes in 

both 96-well and 384-well plates at a final volume of 70 and 20 µL, respectively, for 

all three devices was investigated (Table 4.2). The stock solution was prepared by 

setting up a 2-fold serial dilution first and sampled to produce the final stock 

concentration of 0.1 mM. This ensured that the precision of the serial dilution is 

decoupled from that of the liquid transfer steps used to prepare the final solution.  

 

Table 4.2. Transfer volumes used for tartrazine-based liquid-handling precision and 

accuracy test. 

 
 

Liquid handling policies (LHPs), i.e., instructions that control how a liquid is handled 

when transferred from one microwell (Appendix H) can be defined for both liquid 

handlers. Four such policies were selected based on variations in pre- and post- 

mixing steps for both liquid handlers to ensure that a range of LHPs can be 

investigated. However, no obvious differences were observed with any of the policies 

in any of the datasets. The Dragonfly dispenser contains only one hardcoded default 

liquid handling policy; therefore, the device was used as supplied by the 

manufacturer.  

 

Figure 4.9 summarizes the results of the tartrazine-based liquid handling precision 

and accuracy test performed across all three devices and both 96- and 384-well 
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microplates. Due to the larger liquid volumes required, preparation of the 96-well 

plates for all devices yielded both precise and accurate results for all liquid handling 

policies and dilution volumes as all absorbance was within the expected range of 0.5 

– 0.6 A.U. (Figure 4.9 A and C).  

 

However, more inconsistent results were found when lower dilution volumes were 

sampled in 384-well plates for both devices. With the PipetMax liquid handler, the 

dilutions get more precise when larger dispensing volumes are used, indicating that 

higher transfer volumes are preferred when using 384-well plates despite the 

manufacturer stating a minimum dispensing volume of 1 µL. 

 

More inconsistent results were found with the Hamilton STAR. The 1.25 µL dispenses 

were the most accurate and precise with recorded absorbances of ~ 0.5 A.U. or 

slightly lower, indicating slight under pipetting. The 5 µL transfers also largely 

clustered around the expected absorbance, however, each group had 2-3 outliers 

that indicated missed or under-dispensing. However, the majority of the 2.5 µL 

transfers had an absorbance of ~ 0.3 A.U. with only 1-3 data points generating 

expected absorbance. With the Hamilton STAR, two entities are required to execute 

a liquid handling action: the pipetting mode (such as a Liquid Handling Policy (LHP)) 

and a ‘liquid class’ which stores background parameter information e.g., aspiration 

and dispense rates. Standard liquid classes are provided by the manufacturer, 

however custom classes might need to be developed for certain liquids (Hamilton, 

2015). The data generated for the 384-well plate indicates that the underlying liquid 

class needs to be recalibrated before repeating the investigation of liquid handling 

precision and accuracy.  

 

Of the three devices evaluated, the Dragonfly dispenser was the most precise device 

at dispensing low volumes as all absorbance measurements were clustered around 

0.5 A.U. The variable nature of the results generated across the three devices 

highlights the importance of performing precision tests prior to experimentation and 

of ensuring the devices are appropriately serviced and maintained. Overall, the 
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Dragonfly dispenser performed the best across both accuracy and precision tests and 

with both plate types. Among the devices tested, it was also the only device capable 

of fast multi-reagent mixing over wide volume ranges. The combination of speed and 

easy instruction generation using Synthace makes it best suited for future DoE studies 

as will be described later in Chapter 5. 
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Figure 4.9. Box plots showing liquid-handling accuracy and precision of three liquid 
handling platforms with 96well- and 384-well plates.  
(A), (B) Precision of preparing 0.1 mM tartrazine in 70 μL in a 96-well plate (A) and in 20 μL 
in a 384-well plate (B). Precision of liquid transfers was tested by sampling 3 different stock 
solutions (Dilutions 1, 2 and 3) 8 times each (black dots) using 4 different liquid handling 
policies (Appendix H) for the Hamilton and PipetMax liquid handling devices. The absorbance 
of tartrazine in the final solution was measured at 425 nm for each sample. Data points that 
fall outside the whiskers are considered outliers. 
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4.2.9 Effect of plate film types on evaporation and absorbance measurements 
 
For any screening assay or enzyme reaction, it is important that evaporation is 

minimal over the duration of any measurements. Additionally, absorbance 

measurements need to be consistent across the whole plate without any “edge 

effects”, i.e., heightened evaporation that is typically observed at the boundary of 

the microtiter plate due to the plate film not being attached firmly throughout. 

Incubating an enzyme in the assay solution, in the absence of substrates that initiate 

a bioconversion, over a prolonged period is a method of testing enzyme stability 

under various bioconversion conditions (Bos et al., 2015). Consequently, two plate 

films; MicroAmpTM Optical Adhesive Film (Applied Biosystems®) and Aluminum 

Sealing Films (Starlab Ltd.) were investigated to identify one that is best fit for 

preventing evaporation during the AP reaction. 

 

Tartrazine (0.1 mM) was added to each well in both 96-well and 384-well plate 

formats at a final volume of 70 and 20 µL respectively. Absorbance at 245 nm was 

then recorded before and after a 24 incubation at 45 °C (Appendix I) to investigate if 

the absorbance measurement remained constant which would indicate no 

evaporation. The temperature was set to 45 °C which is the maximum temperature 

that can be set on the spectrophotometer and was selected as it represents the most 

extreme assay conditions that would be investigated in the future (Chapter 5). 

 

No edge effects were observed in all four plates between both plate films and 

microtiter plate types. However, the MicroAmp film was selected for future work as 

it performed ~3 fold better at minimizing evaporation than the Aluminum films for 

both plates (Table 4.3). The average reduction in absorbance was 0.0188 and 0.0072 

units for 96- and 384-well plates, respectively which indicates almost no detectable 

evaporation as the precision of the plate reader is 0.02 units.  
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Table 4.3. Effect of plate film on evaporation (% v/v) in 96-well and 384-well plate formats. 

 
 
To prevent evaporation while time-course measurements are taking place inside the 

plate reader, a sealing film that minimises both evaporation and interference with 

the absorbance measurements is required. As the MicroAmp films were found to be 

suitable at preventing evaporation over prolonged periods of time, its impact on 

absorbance measurements was also investigated.  

 

AP reaction progress curves were compared between unsealed plates and those 

sealed with MicroAmp films as shown in Figure 4.10. Largely identical progress curves 

were generated, with an increase of 1.044 and 1.151 A.U. calculated from reactions 

from unsealed and sealed plates respectively. Due to the addition of the MicroAmp 

plate film, the baseline absorbance increased slightly by 0.186 A.U. but this was not 

found to significantly reduce the dynamic range of the assay and was therefore 

deemed suitable for sealing microplates for absorbance measurements.  
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Figure 4.10. Comparison of AP reaction progress curves prepared in unsealed and sealed 
microtiter plates. 
Progress curves generated with and without the MicroAmp plate film were compared to 
identify the impact of an additional plate film on the baseline absorbance. Reactions were 
prepared as described in Section 2.3.2.2 in 96-well plates at a reaction volume of 70 µL using 
a PipetMax liquid handler. Error bars represent one standard deviation from the mean (n=3). 
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4.3 Discussion  
 

The aim of this chapter was to systematically investigate a subset of assay logistics 

and select optimised assay logistics for carrying out the AP assay for investigation of 

transaminase activity The intention was to establish a solid foundation for 

automated, high-dimensionality experiments to be conducted later in Chapter 5. 

 

The approach to optimizing assay logistics was conceptualized in a flowchart as 

shown in Figure 4.1. This was established based on knowledge gained from 

experiments conducted in Chapter 3 and literature based on the AP assay and 

automated high-throughput assay execution. Six different assay logistics were 

investigated, and the optimal setting was selected for each based on a set of decisions 

(Figure 4.1).  

 

The first step indicated in Figure 4.1 was to determine the linear range of the plate 

reader provided confidence in the quality of absorbance data being generated from 

the particular CLARIOstar plate reader used in this work. The linear range of the plate 

reader was found to be between 0-2 units A.U. (Figure 4.3) with a maximum limit of 

3.5 units for both 96-well and 384-well plates. Therefore, a linear model would need 

to be used for absorbance-based calculations for up to 2 units, however, a non-linear 

model may be required to distinguish between data points greater than 2 units. 

Absorbance measurements generated from both 96-well and 384- well plates of 

comparable path length were largely comparable, indicating that plate type did not 

further impact with generating absorbance data. However, only one brand of 

microplates (UV Star, Grenier-Bio) was compared, therefore, any new plate types 

would need further confirmation.  

 

Next, a method for path length correction using the CLARIOstar plate reader was 

outlined as path length corrected values are found routinely when discussing 

absorbance-based assays (Figure 4.4). The default path length setting of the 

CLARIOstar plate reader was found to be imprecise as the calculation used the path 
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length of water (0.18) to normalize absorbance data from every microwell, when, in 

reality, reaction mixture composition could vary vastly. However, path length 

correction using the method outlined in Figure 4.4 would be inefficient for DoE 

studies as every microwell contains a different reaction mixture, and in turn, has a 

different K-factor making K-factor calculations unfeasible. However, this method can 

be used in future use cases, for example, to normalise absorbance measurements for 

reaction conditions used in high-throughput screening.  

 

In Section 4.2.5, the logistic of selecting microplate type and reaction volume was 

investigated. The AP assay reaction volume was miniaturised from 200 µL, which was 

consistently used in the literature (Schätzle et al., 2009a; Meng et al., 2020; 

Heckmann, Dominguez and Paradisi, 2021), to 70 µL in a 96-well plate. This had the 

advantage of reducing reagent costs by almost 3-fold. Additionally, using a 384-well 

plate can further miniaturise the AP assay to a 20 µL reaction, as 20 µL in a 384-well 

plate and a 70 µL reaction in a 96-well plate both have the same path-length of 2.07 

mm (Figure 4.5). This would increase throughput by 4-fold and simultaneously reduce 

reagent cost by a further 3.5-fold. 

 

AP assays executed at these reduced volumes generated almost identical progress 

curves as indicated in Figure 4.5. However, a number of considerations favor the 

selection of 96-well plates for future work; the average standard deviation values of 

absorbance measured from 70 µL progress curve in a 96-well plate (0.02570) were 

half as much as that calculated from 20 µL progress curves in a 384-well plate (0.0454) 

(Figure 4.5). As the standard deviation generated from the 384-well plate is still very 

small, it would be appropriate to select the 20 µL reaction in a 384-well plate for 

future DoE studies. However, as DoE studies investigate unknown and potentially 

noisy design spaces, logistics that produce the most precise data were favored over 

throughput. Additionally, a larger reaction volume has more capacity to 

accommodate a greater number of reagents, this is particularly important in DoE 

studies where many reagents at varying volumes are used to prepare each 

experimental run condition and minimum dispense volumes are limited by the 
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capabilities of the automated device available. Furthermore, more data points can be 

generated from a 96-well plate as one measurement cycle takes 2 minutes for 96-

microwells compared to 6 minutes for 384-wells using the CLARIOstar plate reader 

(Section 4.2.6). Time-course absorbance data with more data points provide a richer 

dataset to generate responses for DoE analysis.  

 

It is also important to consider the logistic of selecting an appropriate measurement 

wavelength for absorbance measurements that capture the best assay signal (Section 

4.2.7). As shown in Figure 4.7, 245 nm is a suitable measurement wavelength to 

measure acetophenone signal but careful consideration of the absorbance 

contribution from other assay reagents such as substrates and DMSO helped identify 

249 nm as the wavelength that further decreases background interference (Figure 

4.6 and Figure 4.7.).  

 

Once the plate format and assay conditions were established, the next step was to 

investigate the performance of the automated liquid handling devices that would set 

up the assays. For these automated devices precision is critical as it provides 

confidence that the expected volume transfers and mixing are taking place. The 

liquid-handling precision of 3 devices: Hamilton STAR and PipetMax liquid handlers, 

and the Dragonfly dispensers were tested using two methods; using the Artel MVS 

Verification System and preparing Tartrazine solution for spectrophotometric 

detection (Figure 4.8 and Figure 4.9). Overall, the Dragonfly dispenser was found to 

be capable of precise dispensing for both tests with CVs staying within the 

manufacturer’s range. It was selected as the most suitable automated device for 

executing large DoE studies that require numerous variable pipetting actions. 

Additionally, the precision testing identified issues with both Hamilton and PipetMax 

liquid handlers in the Synthace lab and highlighted the importance of confirming 

liquid-handling precision, especially prior to executing any experiments that have a 

large quantity of liquid-handling instructions which could lead to the generation of 

noisy data. 
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Finally, the impact of plate film on evaporation over 24 hours at 45 °C was 

investigated as described in (Section 4.2.9). The MicroAmp plates were found to 

ensure consistent assay conditions could be maintained and absorbance readings 

could be recorded with minimal interference as they showed a negligible amount of 

evaporation with no edge effects for both 96-and 384-well plates (Table 4.3).  

 

In Chapter 5, a complex DoE study of 3,456 experimental runs will be defined and 

carried out in order to characterize the AP assay, using a space-filling design that 

would be out of reach for manual execution. The work presented in this chapter has 

confirmed the assay logistics applied to the ambitious large-scale DoE investigation. 
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5 Space-filling designs for biocatalytic reaction 
screening 

 
5.1  Introduction  
 
Space-filling designs (SFD) are a modern class of DoE design geared toward exploring 

complex, non-linear factor-response landscapes (Montgomery, 2013; Wu, 2015; 

Joseph, 2016). Unlike traditional DoE designs, which sample the design space at the 

boundaries defined by the low, high, and sometimes mid-point level of a factor range 

(Figure 5.1 A), a SFD samples throughout the factor ranges across numerous levels 

(Figure 5.1 B).  

 

 
Figure 5.1. Comparison of a traditional DoE design to a space-filling DoE design. 
The distribution of run conditions (dots) and the impact of those conditions on the response 
in relation to a single factor are compared between the two design types.  
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SFDs can provide many advantages over traditional DoE designs. Their ability to 

investigate wide factor profiles reduces the pressure to conduct numerous scoping 

studies, and theoretically, they can eliminate the need to conduct scoping studies 

completely. Furthermore, they can map large high-dimensional spaces in potentially 

just one experimental step providing a precise view of the physicochemical spaces 

that enzymes function in while generating more data than that from traditional DoE 

designs.  

 
However, traditional DoE designs are already minimally used in biology, due to 

various challenges surrounding laborious and error-prone physical execution along 

with the learning curve that comes with using statistical software (Section 1.1.5). 

Compared to traditional DoE designs, SFDs are significantly more complicated as they 

require high run numbers which need to be prepared using highly variable multi-

reagent sampling. For example, a reagent for a continuous factor e.g., substrate 

concentration, would have to be prepared at potentially more than one stock 

concentration, each of which would then be sampled to prepare varying final 

concentrations which enables uniform sampling of that factor range. These 

challenges are highlighted in the literature as there is only one known example of a 

100-run SFD study being employed to characterise enzyme activity where the 

researchers had to create bespoke software architecture to automate the execution 

of the experiment (Bonowski et al., 2010). Therefore, SFDs are near impossible to 

physically execute and are reserved for application with computer experiments that 

analyse a deterministic response (Kleijnen, 2005; Jones and Johnson, 2009).  

 

However, the work carried out in this thesis aims to bridge the gap of executing and 

analysing the execution of SFDs by employing the combination of a rapid dispenser 

such as the Dragonfly dispenser (as used in Section 3.2.6.4) and Synthace’s capability 

to generate liquid handling instruction files from a DoE design file (Section 3.2.5.1), 

potentially allows physical execution of a SFD.  
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5.1.1 Aim and objectives  
 
The aim of this chapter was to demonstrate how the complex, high-dimensional 

physiochemical environments that biocatalysts function within can be finely and 

rapidly characterised by implementing just one automated SFD study to develop 

precise mathematical models that help understand what factors and factor settings 

lead to desired enzymatic activity. The AP assay (Figure 3.1) was used as the model 

system to demonstrate this framework as it allows the investigation of numerous 

generic factors of interest e.g., substrates, co-factors, temperature, solvents etc 

while generating quantitative time-course absorbance data which can be used to 

generate useful biocatalytic responses for model generation. Specific findings from 

Chapter 3 are ignored here so that all potential factors would be tested as if nothing 

was known about the model system.  

 

The specific objectives of this chapter are as follows:  

 

• Develop a generalised automated framework for rapid assay characterisation 

with automated SFD execution and data analysis (Figure 5.2). 

• Execute a carefully controlled SFD experiment to characterise a large high-

dimensional design space that can capture bioprocessing metrics of yield and 

initial rate where the design included all the key variables of interest to an 

enzymatic assay. 

• To minimise or eliminate the time spent on scoping studies typically required 

prior to DoE execution to determine if a SFD can be executed as a one-step 

characterisation experiment. 

• To generate and physically validate models for yield and initial rate.  
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Figure 5.2. Framework for end-to-end automated execution and analysis of space-filling 
experiments. 
A design file generated by JMP (SAS Institute Inc) is parsed into the Synthace platform, where 
a DoE workflow is used to convert details of individual run conditions into liquid handling 
instructions for physical execution on the Dragonfly dispenser. Once each plate is prepared, 
time-course spectrophotometric measurements are recorded (CLARIOstar, BMG Labtech). 
Once all plates are measured, the absorbance files are used as inputs to custom-made 
MATLAB (MathWorks) scripts (Section 2.7.2.1) that process the data by grouping replicates, 
time-correction, black-correction, and response generation. The responses are then joined 
to the original design file for analysis and model generation using JMP.  
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5.2 Results 
 
5.2.1 Space-filling design details 
 
In this section, the process of choosing factors, executing any scoping studies, and 

determining the number of runs needed for the SFD are first described before moving 

on to implementation.  

 
5.2.1.1 Factor table and levels  
 
The first step in generating a design file for a SFD is to define all factors of interest 

and their respective ranges. As the aim was to characterise a large design space of 

the AP assay in just one experiment, 12 key factors that commonly impact enzyme 

activity were selected and varied across wide ranges (Table 5.1). The structure of this 

SFD is considered to be ‘generic’ in that it could be applied to many different classes 

and types of enzyme-catalysed reaction 

 

11 of the 12 factors were used to define the factor table that generated the design. 

These included factors such as substrate, enzyme, product, and co-factor (PLP) 

concentrations along with pH and temperature. Additionally, industrially important 

factors such as solvent (DMSO) concentration and salt concentration (both sodium 

chloride and potassium chloride) were also included as solvent and salt stability of an 

enzyme are characteristics that industrial biocatalysts are commonly optimised for 

(Stepankova et al., 2013). While, in reality, pH and temperature are continuous 

factors, they were treated as categoric factors for design generation as they are 

considered hard-to-change factors. For example, if pH was treated as a continuous 

factor, a large number of buffers at varying pHs would be required to facilitate the 

design. Similarly, temperature is used as a blocking factor to divide experiments by 

microplate, each of which is controlled at a specified temperature as dictated by the 

incubator. Therefore, both pH and temperature were described as categorical factors 

with specific levels in the factor table. To cover a reasonably wide pH range, two 

buffer types (TRIS and CHES) were used, which allowed spanning a pH range of 7 to 

10.  
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The 12th factor was ‘enzyme pre-incubation’ since understanding the stability of 

CV2025 TAm over time in different physiochemical environments was also of 

interest. This was investigated by incubating the CV2025 TAm lysate in the reaction 

mixture without substrates for 0, 8 and 24 hours, after which the substrates would 

be added to start the reaction. The enzyme pre-incubation factor was not included in 

the original design, instead, the design execution was replicated after three different 

enzyme pre-incubation time periods of 0, 8 and 24 hours so data could be captured 

for the same run conditions over time. However, to ensure that the effect of pre-

enzyme incubation was captured, it was added as a continuous factor during the 

subsequent generation of statistical models as described in Section 5.2.6 and 5.2.7.  

 

5.2.1.2 Scoping studies executed prior to confirming SFD design 
 

Typically, multiple scoping studies are required prior to executing traditional DoE 

designs as factors are only sampled at the levels stated, at the boundary of the design 

space (Coleman and Montgomery, 1996; Politis et al., 2017a). However, as a SFD 

samples the design space uniformly throughout, the amount of time and number of 

experiments required before executing the designed experiment was minimised.  

 

Only two scoping studies were executed prior to generating the factor table (Table 

5.1). Firstly, as every cycle of cell growth and lysis can vary, a scoping study that 

determined the range of lysate volumes used to vary enzyme concentration was 

executed (Figure 5.3). The reference reaction conditions generated from Chapter 3 

(Section 3.2.5.5) were used to determine that 1-3 µL of lysate would be sufficient to 

quantify CV2025 TAm activity while not saturating the plate reader detector (Section 

4.2.3). Secondly, to confirm that 50 mM was a suitable lower limit for buffer 

concentration to maintain the specified pH, a small number of reaction mixtures were 

prepared manually and tested with pH strips (data not shown) which confirmed that 

50 mM was an appropriate lower limit.  
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Table 5.1. Factors and levels for a generic space-filling DoE to investigate enzyme 
reaction kinetics.  
The specific application is exemplified in brackets for the TAM catalysed conversion 
of MBA and pyruvate to acetophenone and sodium alanine. 

 
*Executed as a categorical factor but modelled as a continuous factor. 
** pH modelled as a continuous factor; buffer type was excluded from analysis.  
+ The whole design was created using Factors 1-12 and was replicated at these enzyme pre-
incubation time points. 
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Figure 5.3. Scoping study to determine lysate volume. 
Endpoint, blank-corrected absorbance measurements after 60 minutes (dots) were 
calculated for a range of lysate volumes; dotted lines indicate the volume range selected for 
the design. Experiments were conducted, in triplicate, using the Dragonfly dispenser as 
described in Section 2.3.2.2. Error bars represent one standard deviation from the mean 
(n=3).  
 
5.2.1.3 Selecting a suitable run number  
 
The run number refers to the total number of individual run conditions that are 

defined in a DoE design table. JMP automatically assigns 10 runs per factor, however, 

it is up to the user to determine if this provides sufficient coverage of their design 

space (Montgomery, 2013). For the SFD, a 138-run design was chosen (Appendix J) 

which expands to 414 runs during analysis to include the data from the three sets of 

enzyme pre-incubations. This run number was selected with a goal of sampling the 

11-dimension design space outlined in Table 5.1 uniformly and, as minimally as 

possible. To determine an appropriate run number, two aspects were considered: 

 

• The run number must provide sufficient coverage of the design space. JMP’s 

Fast-Flexible Filling algorithm was used as it is the only option that accepts 

categorical inputs (Piepel et al., 2019). This algorithm clusters run conditions 

into subgroups of categorical factors first, continuous factors are then 

distributed within these clusters. Therefore, it was critical to ensure that all 

subgroups were represented in the design, if the run number is too small, 

some subgroups would have been ignored, which would be unfavourable as 
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gaps would be introduced into the design space. With 138 runs, 3-4 runs are 

present in each of the 30 subgroups (2 salts x 5 buffer pH’s x 3 temperatures).  

• As the total number of runs is blocked by temperature, each block must be of 

an easily executable size for the plate type selected. As a 96-well plate was 

selected for execution (Section 4.2.5), 138 run conditions can be divided into 

46 runs per temperature block. This is appropriate for the plate type selected, 

as a 96-well plate would accommodate 2 sets of replicates and 4 control 

reaction conditions.  

 

5.2.1.4 Visualising the space-filling DoE  
 
A scatterplot matrix Figure 5.4 is one of the easiest ways to view high-dimensional 

experiments as it shows the coverage of the design space with respect to the location 

of each run condition (Piepel et al., 2019). It gives an idea of how densely the space 

is sampled and if the selected run number needs to be adjusted further. The figure 

shows how the design points from the ranges of eleven factors are distributed with 

respect to every other factor and provides a clear visualisation of how the chosen 

design space will be sampled.  
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Figure 5.4. A scatterplot matrix of the 138-run space-filling DoE used to characterise 
a 11-dimensional space of the AP assay. 
Each dot represents one run condition (n=138). Each square shows how one factor on the X-
axis is related to another factor on the Y-axis for both continuous and categorical factors. 
 
5.2.2 Experiment structure and execution details  
 
To physically execute any DoE study successfully, the three fundamentals of DoE: 

randomisation, replication, and blocking, must be considered when structuring the 

experiment for execution (Anderson and Whitcomb, 2007; Montgomery, 2013; 

Antony, 2014b). Figure 5.5 provides an overview of the plate layout and experiment 

structure used while accounting for these fundamentals.  

 

Randomisation was achieved by maintaining the order of run conditions as generated 

by the design file. This was easily done with the dragonfly dispenser as it contains 10 

non-contact dispensing syringes, that can work in parallel while rapidly dispensing a 

range of volumes (1 µL – 4 mL) as required for each factor.  



 
 

152 

 

The SFD contained 432 individual runs (including controls). As this experiment aimed 

to characterise a large and unknown design space, each run was replicated 8 times 

to get an accurate understanding of noise in the event where noisier regions of the 

design space were encountered. This amounted to a total of 3,456 runs, which were 

prepared across thirty-six 96-well plates. The plate layout and experiment structure 

used are shown in Figure 5.5 A and C. An experiment of this scale was only possible 

as the dragonfly dispenser required just 6 minutes and 40 seconds to prepare each 

plate, totalling ~4 hours of liquid handling for >30,000 liquid handling actions.  

 

Blocking was dictated by the ‘hard-to-change’ temperature factor. Three Synthace 

workflows, one for each temperature were created (Section 2.6.2). Each workflow 

was then used to generate 4 instruction files, one for each executable layer (Figure 

5.5 B). Plates for each temperature were grouped for measurement.  

 

To further streamline experimental execution, reagent dispensing was done in layers 

(Figure 5.5 B) as it minimised time spent changing syringes, reservoirs, and handling 

the dragonfly dispenser software. This, therefore, reduced the possibility of making 

any software errors. By doing so, only 68 syringes (34 syringes per 4 replicates) were 

required to execute the whole experiment.  
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Figure 5.5. Overview of plate layout and SFD execution structure.  
(A) Plate layout used for the space-filling DoE. (B) Division of reagents into layers for 
execution. Each plate was prepared in 4 layers each requiring a Synthace-generated 
instruction file. While the experiment structure is generic, reagents specific to TAm catalysed 
conversion of pyruvate to acetophenone are stated in brackets. Layers 1 and 2 were 
dispensed into all plates first. Layers 3 and 4 were added next if that plate was to be 
measured with no enzyme pre-incubation. For plates investigating enzyme stability, Layer 4 
was added after Layer 1 and 2 and incubated for either 8 or 24 hours after which substrates 
from Layer 3 were added to kickstart the reaction. (C) Experiment structure followed for plate 
preparation and measurement. Two days were required to prepare and replicate the design 
four times. On Day 1, all 18 plates were prepared and plates 1-12 were measured. Plates 13-
18 were measured after a 24-hour incubation on Day 2. The arrow indicates the order of 
plate preparation and the numbers indicate the order of measurement.   
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5.2.3 Data processing and visualisation of responses used for model generation 
 
5.2.3.1 Progress curves 
 
The 36 absorbance files generated from the SFD were processed using MATLAB 

scripts that group, time-correct, and blank-correct the data prior to generating 

responses used for model generation in JMP Pro (flowchart can be found in Section 

2.7.2). Replicate time-course absorbance data were first grouped together, next, the 

data was time-corrected to ensure that every data point was linked into a precise 

time stamp. This was necessary because the absorbance files generated from the 

plate reader apply the same timestamp to all 96 microwells despite requiring two 

minutes to measure every well (detailed in Figure 2.4). This was followed by blank 

correction where the intercept of a spline fit of each progress curve was used as the 

blank value. This was necessary to calculate the absolute increase in absorbance over 

time which was then used to calculate the yield response.  

 

These scripts also create graphs to visualise the raw data. Figure 5.6 is an example of 

this visualisation. Progress curves from 24 selected run conditions indicate the 

diversity of reactions captured from one SFD and the type of data that the MATLAB 

code can deal with. 
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Figure 5.6. Examples of the range of progress curves generated from the space-filling DoE. 
Progress curves from all eight replicates generated from 24 run conditions measured at 35 °C with no enzyme pre-incubation are shown. The well 
name of the first replicate is used to identify each sub-plot that contains a legend that shows the well name and plate number for each progress 
curve. The figure was generated using the MATLAB script described in Section 2.7.2. 
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5.2.3.2 Calculation of yield and initial rate responses  
 
Yield and initial rate were the two responses calculated using the MATLAB script 

(detailed in Section 2.7.2), these responses were each used to generate statistical 

models in JMP Pro. Yield (%) was the percentage of starting substrate, pyruvate, that 

was converted to the product, acetophenone, after 60 minutes of bioconversion. It 

was calculated by converting the blank-corrected increase in absorbance into 

acetophenone concentration (Section 2.7.2.2). Initial rate was the immediate rate of 

the reaction, it was measured by calculating the slope of the progress curve from the 

first 5 minutes which quantifies the change in absorbance units per second (∆A/s). 

By time-correcting the absorbance data prior to response generation, it was ensured 

that the same time period was used to generate the initial rate response.  

 

The distribution of yield (Figure 5.7) and initial rate (Figure 5.8) responses are shown 

below. These values were used to generate various types of models in JMP Pro. The 

yield response ranged from -1.34 to 65.79 %, with a median value of 1.69%. The initial 

rate response ranged from -1.28x10-5 to 0.0006 ∆A/s, with a median value of 1.87x10-

5. This shows that while both responses are spread across a wide range, most of the 

data was centred around zero as the majority of reaction conditions were inactive or 

minimally active. This was not unexpected due to the wide sampling of the design 

space and provides useful information on optimal, sub-optimal and inactive areas of 

the design of design space.  
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Figure 5.7. Overview of the yield response used for model generation in JMP Pro for the 
TAm catalysed conversion of pyruvate to acetophenone. 
Each dot (n=414) represents the average yield value calculated from eight replicates.  
 

 
Figure 5.8. Overview of the initial rate response used for model generation in JMP Pro for 
the TAm catalysed conversion of pyruvate to acetophenone. 
Each dot (n=414) represents the average initial rate value calculated from eight replicates.   
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5.2.4 Excluding buffer type as a factor in model generation 
 

In order to capture the distribution of enzyme activity over spanning a reasonably 

wide pH range the use of two buffer types was required. This was easily described in 

the format of SFD design used in this framework and would be suitable for the 

investigation of most classes of enzyme reactions.  

 

Regarding analysis, buffer type can be viewed as a secondary factor as two buffer 

types, TRIS and CHES, were required to span the pH range of 7 to 10, where pH was 

the actual factor of interest. TRIS buffer has a pKa of ~8.1 while CHES Buffer has a pKa 

of ~9.3, this makes the former buffering agent suited to maintaining pH values 

ranging from 7.1 to 9.1 and the latter from 8.3 to 10.3. As buffer type was only 

present to control the pH, it was excluded from model generation. pH 9 is the only 

pH level that overlaps both buffer types, therefore, the responses generated from 

the subset of runs executed at pH 9 could be compared to identify if buffer type 

influences the responses by conducting a T-test.  

 

However, it was not possible to investigate this as TRIS buffer is temperature-

sensitive with its pH decreasing ~0.25 units with every 10°C increase (Figure 5.9 B). 

Therefore, the actual pH of reactions that use TRIS buffer across different 

temperatures is different to the originally intended pH value. Due to the temperature 

sensitivity of TRIS, only a small subgroup of runs executed at 25 °C and pH 9, could 

be compared. However, of the 54 runs present in this subgroup, 36 used CHES buffer 

while only 18 used TRIS buffer (Figure 5.9 A, top row). The reverse can be seen in the 

45 °C subset (Figure 5.9 A, bottom row). As there are twice as many runs that use 

CHES buffer compared to TRIS buffer, a wider range of responses is seen with the 

former (Figure 5.9 C & D). Due to these reasons, no further analysis was conducted 

on buffer type. However, physical validation of models generated for both responses 

was conducted at optimal conditions at pH 9 using both buffer types.  
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Figure 5.9. Impact of buffer type and pH on responses for the TAm catalysed 
conversion of pyruvate to acetophenone. 
(A) The distribution of runs (N = 414) when grouped by pH, buffer type and temperature. 
Both TRIS and CHES buffers only overlap at pH 9, however, the distribution of runs is uneven 
(green arrows) when grouped by temperature. (B) Impact of temperature on TRIS buffer. (C), 
(D) The spread of responses for runs executed at 25°C, pH 9 with respect to buffer type. Runs 
that were executed using CHES buffer generated a wider range of responses, however, due 
to the uneven distribution seen in (A), 36 runs used CHES buffer while only 18 runs used TRIS 
buffer. 
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5.2.5 Model generation 
 
Yield and Initial Rate responses were analysed separately. For both responses, three 

types of models were generated using JMP Pro. These included a Gaussian Process 

Model (GPM), an Artificial Neural Network (ANN) model and a Stepwise Regression 

Model (SRM). 

 

GPMs, also known as ‘kriging’ models, are the default choice for analysing SFDs (Sacks 

et al., 1989). They are non-parametric, while being parsimonious, meaning that they 

use the same number of parameters as the number of input factors, along with three 

other parameters: one for the mean, standard deviation, and a smoothing parameter 

that allows stochasticity of the response. Their flexibility via the process of spline 

interpolation can fit a wide variety of surfaces, making them a popular choice of 

model, especially when the underlying function is unknown (Rasmussen and 

Williams, 2006; Jones and Johnson, 2009; Erickson, Ankenman and Sanchez, 2018).  

 

ANNs are biologically inspired models that mimic how signals are transferred in the 

nervous system (Kleene, 2016). Like GPMs, they are also flexible model types ideal 

for capturing non-linear landscapes. They require the user to select an underlying 

architecture that defines the layers of nodes used to process data, from a large set of 

options. This makes them prone to overfitting and they are typically seen as a “black 

box” approach as this underlying architecture can easily become overcomplicated, 

while making it challenging to assess the contribution of each factor on the response 

(Hastie, Tibshirani and Friedman, 2001; Singleton et al., 2019).  

 

SRMs are a type of linear regression model commonly used to fit responses 

generated from traditional DoE designs (previously demonstrated in Chapter 3), 

therefore, it would be interesting to evaluate their effectivity when fitting SFD data 

(Burke, 2018). Like ANNs, SRMs also require the user to select an underlying 

architecture, where every model term is specified upfront. This includes the selection 

of quadratic, cubic or higher order terms making the underlying models complex 

while remaining rigid compared to ANNs and GPMs (Rasmussen and Williams, 2006).  
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For all models, the average response values were used. There are two main reasons 

for analysing the average response values compared to treating responses generated 

from each replicate as an individual response. First, minimal noise was observed for 

both responses, making the average a suitable representative response for each run 

(Models analysing standard deviation for both responses can be found in Appendix K 

which show that greater standard deviations are unsurprisingly associated with 

regions of higher signal). Secondly, replicated points can cause the underlying 

correlation matrix generated in the GPM to become singular, which can lead to 

drawing less meaningful conclusions from the overall model (Jones and Johnson, 

2009). 

 

All 12 factors (Table 5.1) were used as inputs to all models generated in the following 

sections. A JMP Pro table was created for each response from the output files of the 

MATLAB data processing script (Section 2.7.2). No runs were excluded from the 

analysis, therefore, a total of 414 runs were analysed for each of the models 

described in Section 5.2.6 and 5.2.7. 

 

5.2.6 Analysis of yield  
 
5.2.6.1 Gaussian Process Model for yield 
 
In this section, the procedure and outcome of fitting the yield response using a GPM 

is described and discussions comparing findings to literature are made in Section 5.3. 

First, a jackknife fit is used to get the predicted values of the model. Jackknifed values 

are generated by excluding each data point systematically one-by-one from the 

predicted model while retaining its correlation parameters (Kleijnen and Van Beers, 

2004). These values were in good agreement with the actual data as most of the data 

points lie on the 45° diagonal line with an R2 value of 0.875 (Figure 5.10 A). Second, 

the prediction profiler is used to show the effect of the modelled response on each 

factor. The GPM predicted a maximum yield of 79.6 ± 9.5 % (Figure 5.10 B). As the 

actual maximum yield generated from the SFD was 65.8 %, there is a possibility that 

the GPM is overfit. 
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According to the prediction profiler (Figure 5.10 B), and the report (Appendix L) 

generated from JMP Pro, pH causes the greatest variation in the response, 

accounting for 31% of response variation. It has a predicted optimum value of 9.1, 

with yields reducing to 30 % when the pH values are reduced to 8.5 or 10, this peak 

is seen in Figure 5.10 B.  

 

Two factor interactions between pH and pyruvate, pH and enzyme pre-incubation, 

and pH and DMSO concentration, were the strongest two-factor interactions 

identified. However, these interactions are potentially unrealistic and are created as 

an artefact in the model due to the strong effect rendered by the pH factor. Model 

parameter estimates for main effects and two factor interactions can be found in 

Appendix I.  

 

Of the other factors, pyruvate, MBA, enzyme pre-incubation, DMSO, and enzyme 

concentrations were ranked as having the strongest to weakest effect on yield 

respectively, causing a response variation of ~14 – 1.64%. Low pyruvate 

concentrations combined with high MBA concentrations led to a higher yield. The 

highest yield was obtained when the reactions were measured immediately after 

enzyme addition with no pre-incubation, which is expected as the enzyme has the 

least amount of time to degrade when biocatalysis is initiated immediately. 

Consequently, yield steadily decreased across 24 hours, where the enzyme was held 

in the reaction mixture; this can also be observed in the yield data overview in Figure 

5.7.  

 

High DMSO concentrations lead to lower yields, however, a maximum predicted yield 

of 56 % was predicted even with a DMSO concentration of 40 % v/v, suggesting that 

CV2025 is a solvent stable enzyme making it ideal for many industrial applications 

(Chen et al., 2016). The factors that had a negligible impact on yield were salt (and 

salt type), buffer concentration, PLP concentration, sodium alanine concentration 

and temperature. 
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In literature, storage of CV2025 in PLP and the addition of supplemental PLP have 

been shown to improve enzyme stability, this was observed as according to the 

prediction profiler, higher PLP concentration leads to a higher yield, and without 

supplemental PLP, the yield reduces by ~15% (Shin et al., 2003; Kaulmann et al., 

2007). It was expected that sodium alanine concentrations would minimally impact 

enzyme activity as the mechanistic model for CV2025 activity shows minimal 

inhibition from the product (Shin and Kim, 1998).  

 

Generally, increasing temperature increases enzyme activity, however, in this case, 

25 °C produced the maximum yields overall, with yields reducing by 20 % when the 

temperature was increased to 45 °C. This is contradictory to the results found in 

Chapter 3 which showed increased activity at 37 °C compared to 25 °C and to the 

paper that first described the AP assay which found an optimum of ~40 °C (Schätzle 

et al., 2009b). One potential reason for this effect could be the distribution of 

underlying run conditions within each temperature block within the design.  
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Figure 5.10. Gaussian process model predicting the yield response for the TAm catalysed 
conversion of pyruvate to acetophenone. 
(A) Actual by Predicted Plot. Data points (black, n = 414) were fit with a GPM where predicted 
values are determined using a jackknife validation method. Blue line represents a line of fit. 
(B) Prediction Profiler is fixed at factor settings that predict maximum average yield. Factors 
and desirability profiles (black) with 95% confidence intervals (shaded grey) and optimal 
factor settings (red text and crosshairs) show the maximum average yield (red text on Y-axis) 
with a 95% confidence interval (blue text) predicted by the GPM. For DMSO, X represents the 
volume fraction (v/v). The GPM was fit as described in Section 2.6.4.  
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5.2.6.2 Artificial Neural Net for Yield  
 
The ANN split the dataset into training and validation datasets, each containing 276 

(66.66%) and 138 (33.33%) of the runs, respectively. The actual by predicted plots 

showed good agreement, with R2 values of 0.86 and 0.61 for the training and 

validation datasets, respectively (Figure 5.11 A). However, the prediction profiler 

showed that the ANN had failed to recognise any of the patterns observed in the 

unanalysed data. For example, both the optimum values of pH and the effect of the 

no pre-enzyme incubation can be observed by simply plotting those factors against 

the response, however, these patterns were not recognised by the ANN, unlike the 

GPM. One potential reason for this could be that the splitting of the dataset into 

training and validation datasets could have led to gaps in the response landscape that 

was too challenging for the ANN architecture to capture indicating that a denser 

dataset would be required to use ANNs as a suitable model type. Furthermore, 

adding additional nodes and layers was not found to improve model fit (data not 

shown) and would have unnecessarily complicated the underlying model 

architecture.    
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Figure 5.11. Artificial neural network model predicting the yield response for the TAm 
catalysed conversion of pyruvate to acetophenone. 
(A) Actual by Predicted Plots. The dataset (n = 414) was divided into training (left, n = 276) 
and validation (right, n = 138) sets where data points (black) were fit with an ANN. Black line 
represents a line of fit. (B) Prediction Profiler fixed at factor settings that predict maximum 
average yield. Factors and desirability profiles (black) and optimal factor settings (red text 
and crosshairs) show the maximum average yield (red text on Y-axis) predicted by the GPM. 
For DMSO, X represents the volume fraction (v/v). The ANN was fit as described in Section 
2.6.5.  
 
5.2.6.3 Stepwise regression model for yield 
 
To fit a stepwise regression model, the yield response had first to be transformed as 

this model type assume the response is normally distributed. Therefore, a logit 

transformation was applied prior to model generation (Section 2.6.3).  
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The predicted data showed good agreement with the actual data as the model had 

an R2 value of 0.79 and a p-value of <0.0001 (Figure 5.12 A). However, an overinflated 

yield of ~100 ± 1.11x1010 % was predicted when factor conditions were set to 

maximum desirability. The underlying model was complex, with 63 model terms, 

which include quadratic and polynomial terms. It was also rigid as the non-linear 

landscape is only roughly captured. However, the factor settings and the shape of the 

factor profiles largely agree with those seen in the GPM in Section 5.2.6.1. For 

example, the overall patterns of the factor profiles from the SRM (Figure 5.12 B) for 

the enzyme, MBA, PLP, DMSO, salt, temperature, enzyme pre-incubation and salt 

type match closely with those in the GPM (Figure 5.10 B). With the SRM, increasing 

buffer concentration and sodium alanine concentration leads to higher yield, 

however, these factors have no impact on yield in the GPM. The pronounced peak of 

the pH factor is not seen with the SRM as that shape cannot be replicated unless 

higher-order terms are included in the model, however, an optimal value of 8.92 is 

identified, which closely matches the value from the GPM of 9.07.  
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Figure 5.12. Stepwise regression model predicting the yield response TAm catalysed 
conversion of pyruvate to acetophenone. 
(A) Actual by Predicted Plot. Logit transformed yield data points (black, n = 414) were fit with 
an SRM (red) with 95% confidence (shaded red) and a mean response value (blue line). (B) 
Prediction Profiler fixed at factor settings that predict maximum logit transformed yield. 
Factors and desirability profiles (black) with 95% confidence intervals (shaded grey/blue) and 
optimal factor settings (red text and crosshairs) show the maximum logit transformed yield 
(red text on Y-axis) with 95% confidence interval (blue text) predicted by the SRM. For DMSO, 
X represents the volume fraction (v/v). The SRM was fit as described in Section 2.6.3. 
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5.2.7 Analysis of Initial Rate  
 
5.2.7.1 Gaussian Process Model for initial rate 
 
Initial rate (∆A/s) was the second response analysed from the SFD data. Like the yield 

response, models from a GPM, ANN and a SRM were compared for initial rate. 

Discussions comparing findings to literature are made in Section 5.3. The predicted 

values generated from the jackknife fit had an R2 value of 0.567 (Figure 5.13 A). A 

maximum initial rate of 5.91x104 ± 9.1x105 ∆A/s was predicted, this is within the 

range of initial rate response generated from the SFD.  

 

According to the prediction profiler (Figure 5.13 B) and the model report (Appendix 

L), the factor that lends the highest variability to the response is pH, which was also 

observed with the yield response, with the initial rate dropping by ~89% when the 

pH was reduced by 0.5 units, either side of the optimal value of 8.7. This optimum 

value of pH has also been identified in the literature previously in Chapter 3 (Section 

3.2.6.5 ). The other factors that impact initial rate, from the strongest to the weakest 

are enzyme pre-incubation, DMSO, pyruvate, MBA, salt, and enzyme concentrations, 

and temperature. Initial Rate decreased by 30% when the enzyme was incubated in 

the reaction mixture for 8 hours and 50% when 40% v/v DMSO was used.  

 

In general, high enzyme and substrate concentrations that are typical of enzyme 

catalysed reactions, when combined with no enzyme pre-incubation lead to the 

fastest initial rate. PLP, buffer and sodium alanine had negligible impact on the 

response. However, in literature PLP has been shown to further stabilise CV2025 

activity over time. No significant information regarding the comparison of TRIS and 

CHES buffer has been noted previously and the kinetic model of TAm catalysed 

reactions converting pyruvate to acetophenone has shown no inhibition from sodium 

alanine.  
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Figure 5.13. Gaussian process model predicting the initial rate response TAm catalysed 
conversion of pyruvate to acetophenone. 
(A) Actual by Predicted Plot. Data points (black, n = 414) were fit with a GPM where predicted 
values are determined using a jackknife validation method. Blue line represents a line of fit. 
(B) Prediction Profiler fixed at factor settings that predict maximum average initial rate. 
Factors and desirability profiles (black) with 95% confidence intervals (shaded grey/blue) and 
optimal factor settings (red text and crosshairs) show the maximum average initial rate (red 
text on Y-axis) with a 95% confidence interval (blue text) predicted by the GPM. For DMSO, 
X represents the volume fraction (v/v). The GPM was fit as described in Section 2.6.4.    
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5.2.7.2 Artificial Neural Network model for initial rate  
 
Data points were split into training and validation datasets, each containing 276 

(66.66%) and 138 (33.33%) of the runs, respectively. The same split was used for the 

ANN analysing yield in Section 5.2.6.2. For both sets, the predicted values failed to 

predict beyond 0.0001 ∆A/s despite actual data points ranging up to 0.0006 ∆A/s. R2 

values of 0.10 and 0.12 were calculated for the training and validation datasets, 

respectively, indicating that the underlying model did not describe the data 

appropriately (Figure 5.14 A). Furthermore, the prediction profiler did not capture 

any patterns for individual factors, as it showed that none of the factors influenced 

the initial rate response (Figure 5.14 B). These issues were also encountered for the 

ANN describing yield in Section 5.2.6.2 and are likely caused by the same reasons 

detailed there.  
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Figure 5.14. Artificial neural network model predicting the initial rate response TAm 
catalysed conversion of pyruvate to acetophenone. 
(A) Actual by Predicted Plots. The dataset (n = 414) was divided into training (left, n = 276) 
and validation (right, n = 138) sets where data points (black) were fit with an ANN. Black line 
represents a line of fit. (B) Prediction Profiler fixed at factor settings that predict maximum 
average initial rate. Factors and desirability profiles (black) and optimal factor settings (red 
text and crosshairs) show the maximum average initial rate (red text on Y-axis) predicted by 
the GPM. For DMSO, X represents the volume fraction (v/v). The ANN was fit as described in 
Section 2.6.5.  
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5.2.7.3 Stepwise regression model for Initial Rate  
 
Initial Rate values were transformed using a logit transformation to generate 

normally distributed values for stepwise regression as described previously (Section 

2.6.3). The model includes quadratic and polynomial terms, along with all two factor 

interactions and required 53 model terms. The predicted values agree reasonably 

with the actual data as the model has an R2 value of 0.60 and a p-value of <0.0001. 

However, the maximum predicted initial rates are extremely underestimated at 

6.90x10-6 ± 6.75x10-6 ∆A/s (Figure 5.15), indicating that the model is not 

representative of the underlying dataset.  

 

However, this model can be broadly compared to the GPM in Figure 5.13 B, as the 

shape of the factor profiles, and the fixed factor settings show similarity for factors 

such as enzyme concentration, MBA, DMSO, temperature, pre-enzyme incubation, 

and pH. However, factor profiles and settings for factors such as pyruvate, PLP, 

sodium alanine, buffer concentration, salt concentration and type, did not show a 

high degree of similarity.  
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Figure 5.15. Stepwise regression model predicting the initial rate response TAm catalysed 
conversion of pyruvate to acetophenone. 
(A) Actual by Predicted Plot. Logit transformed initial rate data points (black, n = 414) were 
fit with an SRM (red) with 95% confidence (shaded red) and a mean response value (blue 
line). (B) Prediction Profiler fixed at factor settings that predict maximum logit transformed 
initial rate. Factors and desirability profiles (black) with 95% confidence intervals (shaded 
grey/blue) and optimal factor settings (red text and crosshairs) show the maximum logit 
transformed initial rate (red text on Y-axis) with 95% confidence interval (blue text) predicted 
by the SRM. For DMSO, X represents the volume fraction (v/v). The SRM was fit as described 
in Section 2.6.3. 
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5.2.1 Comparison of main effects 
 
The GPMs were used to compare factors that have the strongest to weakest impact 

on each response. Consequently, the main effect values from yield and initial rate 

models were compared to understand how different factors can influence each 

response (Figure 5.16). Here, the main effect is a parameter that indicates the total 

variation caused by each individual factor and is generated in the GPM model report, 

it can be used to understand which factors individually have the greatest impact on 

the response. Detailed model reports for each response can be found in Appendix L. 

 

In Figure 5.16, the blue to red shading indicates factors that have the strongest to 

weakest effects on the respective response values. As described in Sections 5.2.6.1 

and 5.2.7.1, pH was identified as having the strongest effect on both responses, 

however, this was followed by pyruvate, and MBA concentrations for yield, and in 

contrast, enzyme pre-incubation, and DMSO concentrations for initial rate. These 

differences highlight how one SFD can be used to screen and optimise for multiple 

responses thus enabling the identification of reaction conditions best suited to each 

response. For example, models generated in Sections 5.2.6.1 and 5.2.7.1 could be 

used to predict reaction conditions for various scenarios e.g., conditions that 

maximise yield at 30 % v/v DMSO.  
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Figure 5.16. Comparing strongest to weakest main effects on yield and initial rate TAm 
catalysed conversion of pyruvate to acetophenone. 
Blue to red colours show ranked model parameter estimates generated from respective yield 
and initial rate GPMs. Each column is coloured separately.  
 
 
5.2.2 Physical validation of GPMs for yield and initial rate responses 
 
One of the most important questions asked after generating models for yield and 

initial rate is if those models adequately represented reality (Jones and Johnson, 

2009). To answer this question, specific scenarios generated from the GPMs for both 

yield and initial rate were isolated for physical validation.  

 

The prediction profiler was fixed at 30 °C, a previously untested region of the design 

space and hence a good test of the predictive capability of the model. Different 

industrially important scenarios were then defined, generating corresponding factor 

settings. These settings were isolated from respective GPMs and converted to an 

input file that was parsed into a Synthace workflow. To keep the time for model 

validation minimal, only one 96-plate was prepared, however, it housed 3 replicates 

of 32 run conditions from across the whole design space and included 16 scenarios 

from the GPM predicting yield, and 15 scenarios from the GPM predicting initial rate 

and one control reaction. The scenarios selected for physical validation, along with 

their corresponding factor settings are found in Table 5.2.  
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Both responses were generated from these experimental runs of all scenarios and 

compared to the prediction formula generated by the models (Figure 5.17). Overall, 

the 31 actual responses were in good agreement with the predictions from both 

models. In general, yield was overpredicted by the GPM, as a cluster of 10 runs 

produced yield values ranging from 40 – 56 %, instead of the predicted range of 71 – 

77 %. The GPM for initial rate underpredicted the actual response. A cluster of 7 runs 

produced initial rates over twice as much as the predicted values, ranging from 

0.0013 – 0.0016 ∆A/s instead of the predicted 0.00052 – 0.00062 ∆A/s.  

 

The actual values were compared to predicted values for each response in Table 5.3. 

Comparing model predictions with physically generated responses. For yield, six out 

of 16 scenarios had actual values within the predicted range, however, the remaining 

scenarios had actual values ~12 – 39 % lower than the predictions. Actual values from 

seven scenarios (Scenario 3,4,7,9,10,12, and 13) contained DMSO ranging from 0 - 40 

% v/v were in good agreement with the predicted values, indicating that the GPM for 

yield is sufficiently reliable when predicting factor settings for individual factors.  

 

Actual initial rate values were found to be greater than predicted values. Only two 

out of 16 scenarios had actual values within the predicted range. In contrast, nine of 

the scenarios had initial rates that were approximately twice as fast as predicted. 

These poorer predictions could be attributed to the original model being generated 

from a dataset that contained a mostly inactive design space and could have been 

improved if a validation study in a known design space was performed or if a model 

generated from a more focused experiment mapping the active region was 

conducted prior to validation.  
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Table 5.2. Scenarios selected for physical validation of yield and initial rate.  
Each row contains the factor settings the model predicts will generate optimal response values for each scenario.  
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Figure 5.17. Correlation between SFD validation experiments and the original model 
prediction formula. 
Data points from the initial space-filling DoE (black, n = 414) are consolidated with initial run 
validation experiments (I, n = 15) and yield validation experiments (Y, n = 16). The prediction 
formula generated from GMPs for average yield (A) and initial rate (B) was used to evaluate 
responses from the validation experiment to interpret correlation. Original DoE data was 
taken from GPMs generated in Section 5.2.6.1and 5.2.7.1 while validation data was obtained 
by applying respective prediction formulas generated from those GPMs. 
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Table 5.3. Comparing model predictions with physically generated responses. 
Response generated from the reaction conditions outlined in Table 5.2 and 
experimental data shown in Figure 5.17. 

 
*Scenarios where actual response values are within range of predicted values. 
For each response, high to low response values are formatted using a blue to red colour scale. 
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5.3 Discussion 
 
The main aim of this chapter was to develop a generalised end-to-end automated 

framework for rapid characterisation and analysis of a high-dimensional design 

space. To exemplify this framework, a proof-of-concept experiment that applied a 

space-filling DoE design was used to explore and optimise the AP assay (Figure 3.1).  

 

Historically, SFDs have almost exclusively been used for deterministic computer 

experiments despite being well suited to biological experimentation due to their 

capability to explore complex, non-linear landscapes (Montgomery, 2013; Wu, 2015; 

Joseph, 2016). Much of the lack of SFD use can be attributed to the high execution 

effort and cost, which makes them near impossible to execute physically (Pronzato 

and Müller, 2012).  

 

In biological research, there is just one known study that employed a 20-run SFD to 

iteratively (100 runs in total) characterise the design space of three factors impacting 

the activity, and stability of the enzyme, pyruvate kinase. To do so, researchers 

developed a “robot lab assistant” using the R programming language to automatically 

translate experiment instructions into commands for a Tecan Genesis RSP 159 liquid 

handler for reaction preparation. Additional software was developed to 

communicate between the liquid handler and the Tecan Ultra II plate reader, where 

time course absorbance measurements were collected and processed (Bonowski et 

al., 2010). This study exemplifies the significant effort required to utilise specific 

automated devices for complex biological experimentation. In contrast, the work 

done in this chapter shows that straight-forward and efficient frameworks (Figure 

5.2) can be developed using Synthace to execute SFD studies that necessitate 

complex liquid handling. No bespoke programming was required to generate device 

instructions, furthermore, due to Synthace’s device-agnostic capabilities, liquid-

handling instructions could be generated for a collection of automated devices with 

ease. Thus, the framework developed in this chapter makes SFD studies more 

accessible to biological research than ever before.  

 



 
 

182 

SFDs could be more advantageous than executing traditional DoE designs. For 

example, one major disadvantage to executing traditional DoE studies (such as the 

examples described in Chapter 3) is that significant time can be spent identifying 

suitable levels to investigate factors of interest which are only avoided if context-

specific a priori process knowledge is available to researchers. Typically, OFAT 

experiments are executed to identify these levels to ensure that the appropriate 

design space is captured when sampled at those points (Coleman and Montgomery, 

1993; Whitehead et al., 2018). Often selecting factor levels is a major cause for 

concern as the risk of selecting an inappropriate factor range can lead to unusable 

data as the measured response can be either too small to detect or too large that it 

will “fall off a cliff” (Coleman and Montgomery, 1996; Onyeogaziri and 

Papaneophytou, 2019). Consequently, this trial-and-error process can take months 

and can lengthen the already challenging process of executing automated DoE 

(Section 1.2.4). However, in this chapter, OFAT experimentation was almost 

completely avoided except for one experiment that was required to confirm suitable 

lysate quantities (Figure 5.3). As the SFD sampled across wide factor ranges, no other 

scoping studies were required prior to executing the 3,456 run SFD which sampled a 

large 12-dimensional design space (Table 5.1).  

 

When performed successfully, this SFD could be physically executed in just four days, 

thus demonstrating that the framework developed in this chapter could be used to 

characterise unknown design spaces rapidly. However, it should be noted that 

skipping the execution of scoping studies may not be possible if precious reagents 

are required, as they may be wasted. Furthermore, eliminating scoping studies could 

in turn lead to characterising inactive design spaces. This was observed in the SFD 

conducted in this chapter as most of the experiment (75%) explored in the 12-

dimensional space was comprised of inactive regions (Figure 5.7 and Figure 5.8). 

However, this was not considered a disadvantage as it still provided knowledge about 

the AP assay and sufficient information was present to generate models for yield and 

initial rate. Furthermore, having knowledge of areas of the design space that are 

inactive is critical when selecting appropriate assay conditions that are suitable and 



 
 

183 

precise for many areas where biocatalytic reaction screening is used e.g., in 

therapeutic drug discovery.  

The 414-run SFD study was replicated 8 times, yielding 3,456 run conditions. Here, 

the aim was to execute a design with minimal coverage of the design space, to avoid 

executing excess runs, while gathering precise information on the noise of the design 

space by replicating run conditions eight times. In this case, generating precise 

measurements of the noise of the design space (i.e., the standard deviation of eight 

replicate runs) was prioritised over increasing the total run number and reducing the 

number of replicates thus creating a trade-off between denser sampling of the design 

space and replication.  

In reality, the standard deviations calculated were small (Appendix K). In retrospect, 

these results could have been generated with a 2-day experiment that included only 

4 replicates, halving physical execution time, and reducing labware and reducing 

costs by half. Alternatively, the run number could have been increased to generate a 

more information-rich dataset which would have been beneficial when fitting models 

such as ANNs that failed to capture expected factor profiles when the data set 

needed to be split into subsets of training and validation sets which created pockets 

of missing data within the design space (Section 5.2.6.2 and Section 5.5.2.7.2). If the 

design was executed with a higher number of runs, the design space could have been 

mapped more clearly while enabling the use of alternative model types. Therefore, 

in the future, increasing the run number would be beneficial.  

 

Generating precise response data for each of the 3,456 run conditions was done 

automatically using MATLAB scripts as described in Section 2.7.2. These used time-

course absorbance files as inputs and generated yield and initial rate of 

acetophenone production as outputs. Developing these scripts allowed sophisticated 

data processing automatically and was critical to the framework developed in this 

chapter. For example, absorbance data from replicate run conditions spread over 

different microplates (36 in total) were grouped, time-corrected, and blank-corrected 

automatically prior to any response calculation (Section 2.7.2.1). Typically, executing 
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any of these data processing manually using tools such as Excel would be completely 

unfeasible due to the large quantity of data generated across 36 files. However, 

developing and editing these scripts required programming skills, therefore, it may 

cause a bottleneck for the generalised implementation of this workflow. However, 

with basic programming skills, the existing MATLAB scripts could be adapted for 384-

well plates, calculate more responses and so on making the existing scripts more 

generalisable.  

 

Three types of statistical models were generated to analyse the SFD data. Gaussian 

Process Models (GPMs) were most suited to capturing the non-linear response 

landscapes (Figure 5.10 and Figure 5.13). This was expected as they are the default 

model choice for analysing SFD (Rasmussen & Williams, 2006). ANNs, despite 

potentially being a flexible model type, failed to capture both yield and initial rate 

responses. This was possibly due to gaps of information created when the dataset is 

split into the training and validation subsets (Figure 5.11 and Figure 5.14). The run 

number selected for the SFD study ensured minimal coverage of the design space 

(Section 5.2.1.3), which would in turn require the dataset to be analysed as a whole, 

therefore splitting the dataset into validation and training subsets would introduce 

gaps in the design space making the ANN model challenging to capture the response 

surface appropriately. For future applications, a larger run number, in turn creating a 

denser and more data-rich design, may be better suited for ANNs. Finally, the 

stepwise Regression Models (SRMs) required many model terms (63 and 53 for yield 

and initial rate, respectively) but were incapable of capturing the non-linearity of 

some factor profiles as the underlying architecture only contained flexibility rendered 

from a two-parameter fit (Section 2.6.3). However, the SRM models (Figure 5.12 and 

Figure 5.15) matched most patterns found by the GPMs (Figure 5.10 and Figure 5.13). 

This further increased the trust in the conclusions drawn from the GPMs.  

 

As SFDs allow fine-grain mapping of the design space, a wealth of information that 

characterised the AP assay and CV2025 TAm activity was generated with just one 

study. For example, pH 9 was found to be the optimal pH value for maximising both 
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yield and initial rate responses. This result agrees with the literature (Schätzle et al., 

2009; Schell, Wohlgemuth and Ward, 2009) and the findings of Chapter 3 (Figure 

3.13) which also identified pH 9 as the optimum and further expands on those 

findings by confirming the peak at pH 9 due to sampling across the range of 7 – 10 

units. However, these findings continue to be slightly contradictory to the literature 

as AP assays are routinely executed at pHs of 7 – 8 (Rios-Solis et al., 2013; Gruber et 

al., 2017). One potential reason for activity at low pH values could be the use of 

excess enzyme or substrates leading to some enzyme activity.  

 

Buffer concentrations, ranging from 50-200 mM, had little to no impact on either 

response, this is a beneficial finding as buffer concentrations up to 200 mM are 

routinely cited in the literature which can be significantly reduced, thus minimising 

reagent costs (Yun, Cho and Kim, 2004; Rios-Solis et al., 2015). Buffer type was 

excluded from analysis as described in Section 5.2.4, additionally, insufficient data 

was present to compare any differences between TRIS and CHES buffer at the 

overlapping pH setting. However, the impact of buffer type on TAm activity has been 

previously reported, especially between buffers such as HEPES and Phosphate buffer, 

therefore, in retrospect, a larger number of commonly used buffer types could have 

been included in the original design in an in-depth characterisation of buffer types 

across multiple pH values (Chen et al., 2018; Kaulmann et al., 2007). 

 

As CV2025 TAm is PLP dependent, its impact on TAm activity and stability has been 

an important point of interest. The SFD study found that both yield and initial rate 

responses were minimally impacted by PLP concentration when bioconversions were 

started with no enzyme pre-incubation (Figure 5.10 and Figure 5.13). However, after 

24 hours of enzyme pre-incubation, both yield and initial rate responses were 

maximised when incubated with a high PLP concentration, indicating that the 

presence of PLP helped maintain CV2025 TAm activity (data not shown, captured 

when pre-enzyme incubation was fixed at 24 hours using the prediction profilers 

shown in Figure 5.10 and Figure 5.13). This trend has been previously reported when 

CV2025 TAm has been incubated in HEPES and Phosphate buffer (Kaulmann et al., 
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2007; Chen, Berglund and Humble, 2018). PLP has also been previously reported to 

have an inhibitory effect over time, this was not observed during the SFD study, 

potentially as low PLP concentrations (maximum of 0.035 mM) were used unlike in 

literature where inhibitory effects were observed when concentrations of over 1 mM 

PLP were used to enhance enzyme stability (Shin et al., 2003; Yun et al., 2004).  

 

High concentrations of MBA were linked to maximising both yield and initial rate 

responses over 24 hours (Figure 5.10 and Figure 5.13) and also align with findings 

from Chapter 3 (Section 3.2.6.5). MBA concentrations of 5 mM have previously been 

reported to cause substrate inhibition in TAms from other organisms, however, this 

was not observed during the SFD study (Schell, Wohlgemuth and Ward, 2009), 

additionally, MBA toxicity has also been previously reported, however, this was also 

not observed in the SFD study but could potentially be observed at higher 

concentrations of MBA (Rios-Solis et al., 2015).  

 

The solvent stability of CV2025 TAm was investigated by preparing reactions that 

contained between 0 to 40 % v/v DMSO (Figure 5.10 and Figure 5.13). While both 

yield and initial rate responses generate the most desirable results in the absence of 

DMSO, yield and initial rate are only reduced by 30 and 50% respectively when 

subject to 40 % v/v DMSO. This was later confirmed by physical validation and agrees 

with the literature where CV2025 was found to be stable in 50 % v/v (Chen et al., 

2016). The results of the SFD also match the findings in Chapter 3 (Section 3.2.5.4) 

that show an increase in activity at 10 % v/v DMSO potentially due to the increased 

MBA solubility it renders and can be seen in both prediction profilers in Figure 5.10 

and Figure 5.13.  

A major advantage of executing one large space-filling DoE was the sampling of wide 

factor ranges which in turn led identification of optimal areas of the design space 

while enabling the visualisation of a high-dimensional design space, additionally, this 

knowledge can be used as a foundation for a wide-range of more focused iterative 

experiments e.g., iterative experiments focusing on optimising DMSO stability, 
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maximising initial rate etc. This can be advantageous over executing smaller iterative 

SFD studies or traditional DoE designs to arrive at the same findings as one large SFD 

generates a wealth of information immediately, while iteration campaigns consisting 

of smaller experiments can be expensive as a lot of resources can be required to 

design, execute, and analyse each iterative study. However, it is important to note 

some of the disadvantages of SFD, for example, there is a possibility that no active 

regions of the design space are identified, in which case, more focused scoping 

experiments may be required to identify alternative factor ranges. Additionally, while 

SFDs provide information on factor profiles and allow the visualisation of high-

dimensional spaces, they struggle to identify two- or three- factor interactions as 

easily as traditional DoE designs, therefore, if such interactions are expected, a 

traditional iterative DoE campaign or a DoE campaign that combines small SFD 

studies with more traditional DoE studies may be better suited than investing 

experimental bandwidth on conducting a large SFD study.  

Physical validation found that optimal yield was overestimated, while the optimal 

initial rate was underestimated. In general, both GPMs fail to capture the extrema of 

the response values accurately but provided reasonably good predictions overall 

(Figure 5.17 & Table 5.3). These experiments can be integrated into the original 

design to generate more accurate models. Retrospectively, conducting an iterative 

validation study that investigates a previously known design space before exploring 

an unknown design space would be preferred as it would confirm the accuracy of the 

models being validated first as it would be executed in the optimal known area of the 

design space.  

 

In conclusion, one SFD study was found to be sufficient to characterise a 12-

dimensional space on the AP assay and provided a wealth of information of the AP 

assay and CV2025 TAm activity as many trends that were found in existing literature 

were confirmed. The framework and data processing tools developed in this chapter 

can be adopted by biocatalysis and assay development groups to characterise and 
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even optimise the design space of enzymatic assays in a matter of weeks. In the 

following chapter, the industrial impact of using SFDs is considered. 
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6 Key considerations for the industrial 
implementation of space-filling designs† 

 
 
6.1  Introduction  

 
The work described in this thesis has led to the creation of a framework for executing 

and analysing space-filling designs (Figure 5.2). This culminated in a proof-of-concept 

experiment where it was shown that it was possible for an unfamiliar, high-

dimensional design space could be explored rapidly to generate models for important 

bioprocessing responses, such as reaction yield and initial rate (Section 5.2.3.2). This 

could then be physically validated by a further round of experimentation where it 

was shown that the created GPMs could provide sufficiently accurate predictions of 

bioconversion performance for various experimental conditions not specifically 

studied in the initial SFD. This framework makes space-filling designs accessible for 

physical execution for the first time and can greatly benefit research groups that are 

focused on optimising biocatalytic reactions and developing assays by reducing 

overall time and cost while generating information-rich datasets. 

 

6.1.1 Aim and objectives 
 
The aim of this chapter is to highlight the key requirements and considerations for 

the successful implementation of this framework within an industrial context. The 

specific objectives are to outline these considerations in three broad categories:  

 

1. DoE software considerations (Section 6.2). 

2. Synthace and automation platform considerations (Section 6.3). 

3. Data-processing considerations (Section 6.4). 

  

                                                       
† This chapter is included as part of the requirement for the award of a UCL EngD in Bioprocess 
Engineering and Bioprocess Leadership. 
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6.2 DoE software considerations  

 
Throughout this thesis, JMP Pro, a commercial third-party software, for design and 

model building was used (Section 2.6.1). It was particularly useful for the SFD study 

as it accommodated many considerations that were made for SFD design creation, 

visualisation, and analysis, and provided many important benefits. These included 

the following: 

 

• Design generation, visualisation, and analysis were all conducted within one 

software package. For example, the SFD tool can be used to generate a design, 

and once it is created, it can be visualised with functions such as the 

Scatterplot Matrix (Figure 5.4). Once the design is executed, a mathematical 

model can be generated using a variety of approaches (exemplified in Section 

5.2.6).  

• It has seven space-filling design options, including one option called Fast 

Flexible Filling (FFF) which accommodates categorical factors (Lekivetz and 

Jones, 2015). Categorical factors such as buffer type, salt type or device type 

are often investigated in biological research as they are common, therefore, 

SFD options that incorporate categorical inputs are critical to suitable design 

generation.  

• The DoE platform is flexible as it enables the user to specify run numbers and 

specify disallowed combinations, and linear constraints. For example, a 

disallowed combination was defined to split pH values according to buffering 

agent types in Chapter 5 (Section 2.6.1), also a very common trait in biological 

experiments.  

• It provides access to significant documentation, technical support, training, 

moderated user communities, and books, which are all invaluable resources 

for new users of SFDs (https://www.jmp.com/en_us/support/jmp-

documentation.html).  

• The DoE platform is well established and has been used in many industries for 

over 40 years.  
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The benefits and considerations listed above enable researchers that are new to 

space-filling designs to proceed to physical experimentation quickly. However, it may 

be undesirable for groups that are financially constrained as one license has an 

annual cost for commercial use in industry of £1,550 and £12,520 for JMP® and JMP 

Pro®, respectively (https://www.jmp.com/en_us/software/buy-jmp.html). 

Alternatively, another commercial software package, Stat-Ease® 360 (the Pro version 

of Design Expert®, Stat-Ease, Inc. costing $1,295/user) can also be used to create SFDs 

with categorical inputs as these capabilities were added in October 2021.   

 

Free, open-source programming languages such as Python and R can also be used to 

develop programs that can design and analyse SFDs. Often these programs are 

bespoke, however, both Python and R contain pre-existing packages that can be 

modified or used for implementing DoE designs and analysis (Erickson, Ankenman 

and Sanchez, 2018).  

 

It is important to note that the performance of GPMs varies between different 

packages. Previously, GPMs in R, JMP, Python, and MATLAB (note that MATLAB is 

also a commercial package) has been compared to highlight that significant 

differences can emerge from different packages, thus urging the user to be aware of 

their options when choosing modelling software (Schulz, Speekenbrink and Krause, 

2018).  

 

At present, SFDs are rarely used in biological research (Section 5.1), however, one 

research group has also developed a framework for computer-controlled 

experiments to study enzymatic assays. Bespoke R scripts were developed to control 

an automated device and plate reader, design five iterations of a 20-run space-filling 

DoE that contained 3 factors, and analysed the response by using a previously 

available Gaussian Random Process Regression function (Bonowski et al., 2010). This 

work exemplifies that significant specialist knowledge is required to develop the 

programming architecture required for SFD design generation and analysis 

https://www.jmp.com/en_us/software/buy-jmp.html
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frameworks, which may be unfeasible for many users likely due to the lack of expert 

knowledge and time. From an industrial standpoint, proceeding with commercial 

packages like JMP, which comprises of software that has been validated and 

improved across many years, provides the fastest route to implementation where the 

cost of the license fee can be rapidly recouped as part of customer projects.  
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6.3 Synthace and automation platform considerations 
 
Key aspects of the framework for implementing SFDs are process miniaturisation and 

automation to carry out physical experimentation in a reproducible and timely 

fashion (Section 4.2.1). In this work, the Dragonfly dispenser was used as the 

automation platform of choice and liquid handling instructions were generated from 

experimental workflows created using the Synthace platform. Decisions made in 

Synthace workflows, and the Dragonfly software directly impact the efficiency of the 

physical execution process, therefore, the device specifications must be at the 

forefront of all in silico considerations (Figure 6.1).  

 

For this work, the Dragonfly dispenser was chosen for SFD execution due to its ability 

to dispense variable volumes rapidly via non-contact dispensing, thus making the 

preparation of reaction mixtures incredibly fast (Section 5.2.2). The use of a non-

contact dispenser is recommended compared to using liquid handling devices that 

require liquid transfers from one location to another as they need to change pipetting 

tips with every transfer and would require significantly longer to prepare reaction 

mixtures. This would not be well suited to SFD preparation due to prolonged reaction 

mixture preparation time which in turn would leave all reagents exposed to 

evaporation. However, it must be noted that confirming device precision is critical 

prior to physical experimentation and there is a need for regular equipment 

calibration and validation to ensure device performance is maintained.  

 

Furthermore, for companies that wish to study new assay systems, numerous assay 

logistics that directly influence assay performance also need to be investigated prior 

to committing to a large-scale characterisation study such as a SFD to ensure that the 

best possible data is generated. These include non-biological considerations such as 

miniaturisation, selection of appropriate labware and reaction volumes, identifying 

suitable measurement wavelengths, confirming the linear regime of the 

spectrophotometer, confirming automated device precision, and accounting for 

methods to control evaporation etc., that can often be overlooked.  
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SFD studies can require numerous reagents, for example, the SFD study executed in 

Chapter 5 required 27 reagents in total (7 different reagents at different starting 

stock concentrations). However, the Dragonfly dispenser’s reservoir tray can only 

house up to 10 reagents, therefore the reagents need to be grouped into various 

stages. This specification can be incorporated into the Synthace workflow. Within the 

‘Run DoE’ element, the user can group the reagents required for the whole 

experiment into various experimental stages. Limiting each stage to 10 reagents 

ensures no manual grouping of reagents is required within the Dragonfly control 

software. As the same underlying workflow is used to generate all instruction files for 

all experimental blocks, reagents within each stage will be the same (Figure 6.1 A). 

 

Reagents can be grouped into stages based on their function. For example, stable 

reagents such as water, buffers, salt solutions, solvents, can be grouped and 

dispensed at once. However, reagents that need to be added at specific time 

intervals, such as substrates or enzyme, can be grouped separately. This ensures that 

complex reaction mixtures can be prepared fully before adding time-sensitive 

reagents (Figure 6.1 B).  

 

The Dragonfly dispenser control software allows the user to upload numerous 

instruction files at once, this ensures that all dispensing instructions can be accessed 

from one place. When instruction files are uploaded, reagents are allocated to 

random reservoir tray positions by the vendor’s software. Also, It is time-consuming 

and inefficient to prepare one plate at a time as syringes need to be initiated and 

removed between each stage to avoid cross-contamination. To make the plate 

preparation process efficient, a pre-determined layout can be used to organise 

reagents within reservoir tray positions for each stage (Figure 6.1 B). As all stages 

contain the same set of reagents, ensuring that they are in the same location across 

different instruction files ensures that the same syringe can be used to dispense the 

reagent from different instruction files. Stages containing non-time sensitive 

reagents can be dispensed at the start of the experiment. This organisation of reagent 

layouts streamlines SFD execution significantly.  
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In the SFD study executed in Chapter 5, Stages 1 and 2 were added to all 36 

microplates at the beginning of the experiment. Twenty syringes were used to 

dispense 20 reagents (out of 27 in total) in just 2 hours. Stage 3 and 4 (substrates and 

lysate, respectively) were added prior to a fixed incubation period or to kickstart 

biocatalysis periodically over the day (Figure 6.1 C). This method is efficient as it 

minimised interaction with the vendor’s software, which may lead to additional 

errors while simultaneously minimising the quantity of syringes required.  

 

By minimising human interaction with automated platforms, the reproducibility of 

experimentation increases as the devices being used are already calibrated 

appropriately. This will ensure reliable data generation, which is especially important 

due to the ongoing reproducibility crisis that is persistent in biological research 

(Begley and Ellis, 2012; Freedman, Cockburn and Simcoe, 2015)  

 

In summary, from an industrial standpoint using a platform such as Synthace provides 

a generic solution to automate a wide range of biological experiments across a range 

of automated devices, thus eliminating the need to learn device-specific control 

software. This would significantly reduce the time scientists spend learning new 

software and attempting to automate biological experimentation.   
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Figure 6.1.Software and automation considerations for streamlining SFD execution. 
Blue boxes highlight the considerations made at each stage. Coloured arrows show the flow of information leading to the creation of stage-specific 
instruction files
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6.4 Data-processing considerations  
 
High—dimensionality experiments can generate a large quantity of data making 

manual analysis using tools like Microsoft Excel unfeasible for accurate response 

generation. The data processing pipeline developed here using MATLAB can group 

replicates that are spread within and across microplates, and blank- and time-correct 

progress curves before generating responses (Section 2.7.2). This pipeline was 

specifically developed to process time-course absorbance data generated from the 

SFD study in Chapter 5, however, it can be useful for future applications once a few 

considerations are made.  

 

While significant time has been taken to generate the MATLAB code, debug it, and 

verify that the results being generated are correct, further validation would be 

required before it is considered for widespread use.  

 
The MATLAB data-processing scripts group replicates based on well location. The SFD 

study in Chapter 5 houses two sets of replicates on one 96-well plate. Each replicate 

was six columns apart, for example, wells A1 and A7, wells B4 and B10 etc. This 

pattern is identified across all plates and used to group each individual replicate 

reaction together. Therefore, the existing scripts can only be used for experiments 

that follow a similar layout. Modifications that require changing plate type, e.g., to a 

384-well plate, or increasing the number of replicates while following a similar layout 

require basic programming skills. However, identifying randomised replicate 

locations would require more in-depth specialist programming knowledge.  

 

A novelty of the data-processing pipe that is not commonly found in literature is that 

each reaction within a 96-well plate is time-corrected (Section 2.7.2.1 and 5.2.3.1). 

This was designed to correct for the time discrepancy that is introduced when 

reactions in a 96-well plate are started one by one, in a specific pattern and then 

measured inside a plate reader at set intervals, again, in a pre-defined pattern (Figure 

2.4). Time-correcting absorbance data ensures that a realistic time stamp is allocated 



 
 

198 

to each absorbance measurement which in turn ensures response precision and 

reduces confounding the impact of a time discrepancy with noise. However, the 

function developed to time-correct progress curves uses hard-coded time values and 

patterns for lysate addition and absorbance measurements; therefore, these time 

values and patterns may need to be altered for future use cases which would also 

require programming skills. 

 
Progress curves were blank corrected by subtracting the intercept value generated 

from a spline fit. Alternatively, a function that blank corrects data using measured 

absorbance values was also developed. Originally, using a ‘blank’ value generated 

from measuring the end-point absorbance of reaction mixtures that contained all 

reaction components apart from the lysate was intended. However, it was later found 

that lysate addition noticeably reduced the path length of the final reaction solution. 

This in turn meant that the blank absorbance value was greater than the first 

absorbance measurement, which when subtracted yielded a negative starting 

absorbance. Therefore, it was deemed more accurate to use the intercept of a spline 

fit. For future use cases, the impact of the enzyme of interest on the meniscus of the 

reaction solutions should be considered prior to analysis.  

 

Lastly, the yield response was calculated from a function that uses an acetophenone 

standard curve, alternative standards might need to be included in the scripts if 

different products are being measured. This is also the case if responses other than 

yield or initial rate are of interest.  

 

Overall, the considerations highlighted in this section would make the existing 

MATLAB scripts more generalisable, however, they would require basic programming 

skills for intended modifications as the pipeline is already developed and can be used 

by inexperienced MATLAB users. To implement these scripts within industry, further 

debugging and generalisation of data processing is required. Additionally, the 

security of the software, its storage on different systems and networks, and the 

process of data storage would need to be addressed.  
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In general, data processing software is likely to be bespoke to the specific application 

of each company. This specificity in turn requires the generation of specific software 

which can be a time-consuming process that must be validated on a case-by-case 

basis. Therefore, employing programming experts capable of producing, validating 

and modifying code is recommended. Alternatively, specific software companies that 

focus on data analysis and rapid code generation can be contracted to develop 

bespoke scripts to ensure that the gap between generating large quantities of data 

through high-dimensional studies and processing that data is minimised.  

 
6.5 Summary 
 
From an industrial perspective, the three categories of considerations outlined in this 

chapter should be carefully considered and understood prior to attempting the 

execution of high-dimensionality experiments as they capture the thought process 

and decision-making required for the generic use of the developed framework. The 

choice of DoE software directly impacts the process of design generation, 

visualisation and model generation; therefore, the choice of software and its 

advantages and limitations should be clearly understood for successful DoE 

implementation. The choice of software used to generate liquid handling instructions 

and the selection and preparation of automated devices is critical in ensuring that 

the barriers of automated experimentation are overcome (previously outline in 

Section 1.2.4). Finally, having a verified data processing pipeline in place can 

significantly reduce the time between experiment execution and analysis, ensuring 

that the data collected is comprehended as soon as feasible.  

 

Lastly, the final consideration is the need for the company manager to understand 

the benefits of automated experimentation and to act as a champion for change by 

promoting the implementation of automated high-dimensionality studies for rapid 

assay characterisation.  
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Having now considered the industrial implementation of the SFD experimental 

platform established in this thesis, Chapter 7 outlines the major conclusions arising 

from this research and presents suggestions for future work. 
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7 Conclusions and Future Work  
 

The main aim of this thesis was to create an effective framework for the automated 

execution and analysis of high-dimensionality experiments based upon DoE 

methodology. Creation of the framework relied upon integration of a number of key 

components as illustrated sequentially in Figure 3.6, Figure 4.1 and Figure 5.2. These 

included: statistical DoE software (for initial design generation and final data 

analysis), microtiter plate experimentation (for assay miniaturisation and precision), 

robotic liquid handling platforms (for assay automation and parallelisation), Synthace 

software (for efficient conversion of DoE designs into automated liquid handling 

protocols), a microplate reader (for time-course data generation), and a MATLAB 

script (for automated data processing). The framework was exemplified by using a 

CV2025 TAm activity assay, the AP assay, as the model system which measured the 

rate and extent of Acetophenone production spectrophotometrically at 245 nm 

(Figure 3.1).  

 

In Chapter 3, the use of JMP for DOE design generation and Synthace-driven DoE 

execution of traditional DoE screening and optimisation studies using a PipetMax 

liquid handler and a Dragonfly dispenser was exemplified (Figure 3.6 and Figure 3.19).  

Chapter 4 showed the systematic process of refining many non-biological assay 

logistics that are fundamental to miniaturised and automated assay performance 

(Figure 4.1). These considerations were incorporated into Chapter 5 where a 

framework for rapid assay characterisation was developed by automating the 

execution and analysis of a modern DoE design type, called a space-filling DoE design 

(Figure 5.2).  

 

7.1 Conclusions  
 
The main conclusions drawn from this thesis are divided into two main sections. The 

suitability of the AP assay as the model system and its impact on creating effective 

frameworks are outlined in Section 7.1.1, and the extensibility of the Synthace 
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platform when executing automated experiments is outlined in Section 7.1.2 The 

future work suggested for this project is detailed in Section 7.2.  

 

7.1.1 AP assay as a model system  
 

The AP assay was found to be a suitable model system for the experiments executed 

in this thesis. It quantified the activity of the PLP-dependent ω-transaminase, 

CV2025, which catalyses enzymatic amino group transfer by a ping-pong bi-bi 

mechanism (Bulos and Handler, 1965b; Kuramitsu et al., 1990b), which is more 

complex than catalysis of the more commonly used systems that implement 

Michaelis-Menten kinetics (Vasić-Rački, Findrik and Vrsalović Presečki, 2011). This 

complexity enabled the investigation of the impact of two substrates and two 

products on bioconversion kinetics. Furthermore, the AP assay model system also 

allowed the investigation of important generic factors that are critical to fully 

characterising novel biocatalysts. These include the impact of co-factors such as PLP, 

solvent stability due to the high solvent tolerance of the CV2025 TAm, product 

inhibition, the impact of various buffering agents and salts, the impact of 

bioconversions over a wide pH range, reaction temperatures, and the stability of 

CV2025 as a function of time (Table 3.1, Table 3.2 and Table 5.1). 

 

Additionally, the AP assay is an absorbance-based assay, which made it suitable for 

analysing DoE studies as the reaction progress could be easily monitored in real-time 

using a microplate reader. Generation of both endpoint and time-course absorbance 

data generated quantitative responses that were critical to generating all 

mathematical models in this thesis. Furthermore, important biocatalytic responses 

such as initial reaction rate and final yield (used in Chapter 5) were only possible to 

calculate due to the measurement of time-course absorbance generated from the AP 

assay and would not have been possible if a qualitative or endpoint, assay was used 

as a model system instead.  
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As the AP assay has been used previously in biological research, direct comparisons 

could be drawn between findings from DoE studies and those found in the literature. 

Analysis of DoE studies in both Chapters 3 and 5 generated findings that confirmed 

conclusions that were found in the literature based on more minimal data sets. The 

more extensive DoE studies reported here, for example, showed that the optimal pH 

value of ~ 9 units was identified in the Screening DoE (Section 3.2.5.4), however, the 

peak at pH 9 was confirmed in the SFD (Section 5.2.6.1 and 5.2.7.1) due to sampling 

over a wider range of 7 to 10. The majority of the experiments found in the literature 

were based on context-specific OFAT experiments (Shin and Kim, 1998; Shin et al., 

2003; Kaulmann et al., 2007; Schätzle et al., 2009; Bea et al., 2010; Chen et al., 2016; 

Chen, Berglund and Humble, 2018; Meng et al., 2020). However, the work done in 

this thesis not only identified the optimum factor levels but also provided insight into 

how each factor is influenced by all other factors. Furthermore, the work performed 

in this thesis has greatly enhanced the characterisation of the AP assay as 

mathematical models were generated from multi-factorial experiments which 

provide insight not only into the impact of individual factors and settings but more 

importantly gives insight into the factor interactions that exist (Section 3.3 and 5.3). 

 

Since replication of DoE studies comprising of high run numbers were executed, 

information-rich datasets that finely characterise the AP assay have been created. 

These datasets and corresponding mathematical models can be used to identify 

suitable reaction conditions for different industrially relevant use cases. For example, 

the findings from this thesis could be beneficial for transaminase catalysed reactions 

that are a part of cascade systems, where the products from transamination are 

reused as substrates for subsequent reactions as identifying suitable reaction 

solutions for such systems can often be difficult (Abaházi et al., 2018; Ferrandi and 

Monti, 2018).  

 

One significant limitation of this assay should be recognised. This was that 

Acetophenone, one of the products of the reaction, could not be used as a factor in 

any of the DoE designs as it is used to quantify CV2025 activity. This was a drawback 
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of the AP assay as acetophenone inhibition on the forward reaction has been 

previously described (Shin and Kim, 1998) and investigation of the substrate and 

product inhibition are key aspects of biocatalyst characterisation. Increasing initial 

concentrations of AP would have saturated the plate reader detector reducing the 

dynamic range of the assay (Figure 4.6). If necessary, this problem could be overcome 

by employing an alternative assay such as HPLC. 

 

The main conclusion from studying the CV2025 TAm catalysed bioconversion, 

however, is that due to the numerous components that are required by the AP assay, 

a detailed systematic framework to guide researchers in confirming various assay 

logistics that are often ignored or overlooked was developed in Chapter 4, this 

framework is generic enough to be applicable to a wide range of bioconversion 

reactions over a wide range of conditions.  

 

7.1.2 The extensibility of the Synthace platform and overcoming barriers to 
automated DoE execution  

 

To use automation effectively for the execution of biological experiments, expert 

knowledge of device-specific control software is often a prerequisite. Depending on 

the complexity of the device and the control software interface, it is common to 

define every single liquid handling action required by an experiment (Section 1.2.4) 

which also makes the approach prone to error. This cumbersome process is often 

seen as one of the biggest barriers to accessing automation to its full potential, even 

for the most straightforward biological experiments (Oritz et al., 2017). This barrier 

is further intensified when automating DoE studies due to their requirement for the 

preparation of numerous, highly-variable, randomised run conditions whose 

instructions are challenging to create using device-specific control software (Section 

1.2.3).  

 

In this thesis, the ways in which the Synthace software overcomes these barriers to 

enable the creation of effective protocols for automated experiments are 

demonstrated. It was the sole software used to flexibly generate liquid-handling 
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instructions for all automated experiments of varying complexity, from the 

preparation of standard curves to the execution of DoE studies comprising of 

thousands of run conditions. With Synthace, physical execution required limited 

interaction with the control software of the devices. As device-specific liquid handling 

instructions are automatically generated with successful workflow simulation, 

physical experiments executed with the PipetMax and Hamilton liquid handlers were 

started from SynthaceHub housed on the computer controlling the device (Figure 

1.3). The experiments executed using the Dragonfly dispenser required a manual 

upload of Synthace-generated instruction files with the control software used to 

organise the input reagents and initiate syringes prior to dispensing (Figure 5.5). 

Minimising the interaction with control software greatly reduced the occurrence of 

manual errors and makes the whole process of automated experimentation more 

user-friendly.  

 

The same underlying Synthace workflow was used to execute all DoE studies (Section 

3.2.5.3). By using a standardised workflow, DoE designs were translated into liquid 

handling instructions following the same steps for both the Pipetmax liquid handler 

and the Dragonfly dispenser. This overcomes the barrier of creating both device-

specific and experiment-specific protocols as the user simply needs to select the 

device needed for automated execution during workflow preparation. However, it is 

important to note that only a selection of automated devices is supported on the 

Synthace platform at the present time.  

 

The simplification of liquid-handling instruction generation via Synthace combined 

with the automated physical implementation led to the creation of a framework for 

rapid DoE execution. Traditional DoE designs, such as the screening and optimisation 

DoE studies executed in Chapter 3 prepared using the PipetMax liquid handler took 

just 4 and 7 hours, respectively (Table 3.3. Time required for automated execution of 

the AP assay optimization DoE.). This time was drastically minimised to minutes when 

the Dragonfly dispenser was used to replicate the process of executing the 

optimisation DoE study while yielding almost identical results (Section 3.2.5.3 and 
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Table 3.4). This work exemplifies that standardised liquid-handling instructions can 

not only be generated quickly using Synthace but that they are also trustworthy 

across various devices. 

 

Furthermore, as the process of generating liquid-handling instructions using 

Synthace is the same despite the underlying complexity of the DoE study, modern 

design types such as space-filling designs (Chapter 5) could be executed in a straight-

forward manner, in turn making DoE design types that were previously beyond the 

scope of physical execution just as accessible as any other automated experiment, 

this has previously never been demonstrated in the literature. This was exemplified 

in Chapter 5 where a DoE study using a SFD design finely characterised a 12-

dimensional design space of the AP assay by executing 3,456 run conditions in just 4 

days (Figure 5.4 and Figure 5.5). Due to the large quantity of data generated, 

sophisticated data processing scripts using MATLAB were necessary to generate 

responses (Section 2.7.2 and Section 5.2.3). These MATLAB scripts provided routines 

for automated data collection and processing and were essential in developing an 

end-to-end automated framework. Without them, the bottleneck and risk of error 

would have been shifted from automated execution to data processing and analysis 

and would have drastically increased the time and effort required to create and 

physically validate mathematical models for yield and initial rate (Figure 5.10, Figure 

5.13 and Figure 5.17). The future work that could be associated with this thesis is 

described in Section 7.2  

 
7.2 Future Work  
 

7.2.1 Reproduction of key experiments 
 

Prior to launching into new areas of future work, some of the experiments conducted 

in each chapter could be improved. In Chapter 3, iterative DoE studies could be 

repeated without the inflation of the total run number, this would minimise the 

number of experiments that needed to be prepared while generating examples of 

automated studies that use minimal, software-recommended designs. This would 
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provide a more realistic example of the automated version of a typical DoE pipeline. 

Repetition of iterative DoE studies across a range of automated devices would further 

increase the understanding of the process of automated DoE execution regarding the 

benefits and limitations of each device. It would also further confirm the device-

agnostic capabilities of the Synthace platform.  

 

In Chapter 4, a systematic investigation of various assay logistics was generated for 

96- and 384-well microplate formats, however, expanding to the use of 1,536 well 

microplates would be beneficial as the application of the work described in this thesis 

can be used in high-throughput screening and drug discovery where 1,536 well 

microplates are routinely used (Di and Kerns, 2006; Schneider, 2018). This would also 

highlight which devices are best suited to dispensing into 1,536 microplates.  

 

In Chapter 5, the aim of creating a one-step characterisation framework was 

prioritised. However, in retrospect, a more detailed framework could be developed 

by executing another DoE study that focused on the active area of the design space, 

thus moving into optimisation rather than just characterisation of the assay alone. 

The models generated from this study could be used to conduct a validation study 

that evaluated the model in a known region of the design space before validating an 

unknown region of the design space. This process would be more comprehensive and 

could potentially improve model prediction.  

 

7.2.2 Validation of the framework on additional assay systems  
 
The framework developed in Chapter 4 for selecting suitable assay logistics and the 

framework developed in Chapter 5 for implementing, analysing, and validating space-

filling designs were successfully exemplified by the AP assay. However, reusing those 

frameworks to characterise other assay systems, that are either less well-studied 

than CV2025 TAm or completely novel, would further highlight the applicability, 

advantages, and the generic nature of the framework described in this thesis. 
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If the developed framework is reused on a poorly characterised or unknown 

biocatalytic reaction, the methods described in this thesis can be further validated 

and improved. This would include the impact of a large one-step characterisation 

experiment, the suitability of the data processing pipeline, and the suitability of the 

Gaussian Process Model, along with the precision of model predictions. Overall, this 

would ensure that the framework is more generic and user-friendly to research 

groups focused on biocatalytic reaction screening, assay development, drug 

discovery, cell-free systems, etc.  

 

7.2.3 Broadening the suite of automated devices and labware 
 
As the DoE designs described in Chapter 3 were executed using liquid-handling 

devices, they could be repeated using other devices that are supported by Synthace, 

such as the Hamilton STAR or Tecan Freedom Evo (Tecan Group). Other dispensers 

such as the Mantis dispenser (Formulatrix), Echo acoustic liquid handler (Beckman 

Coulter), or Certus Flex (Gyger) could also be used. This would further confirm the 

device-agnostic capabilities of Synthace while identifying the advantages and 

disadvantages of using each device for automated DoE execution regarding the 

challenges surrounding device setup, interaction with control software, issues that 

lead to execution errors, points at which manual intervention is required, etc.  

 

For more complex high-dimensionality experiments such as SFDs, using a device such 

as the Echo acoustic liquid handler could provide insight into preparing experiments 

at much lower reaction volumes than was used in this thesis as it can transfer 

volumes as low as 2.5 nanolitres. Using this device could lead to preparing reaction 

mixtures at lower final volumes while mixing many reagents into each reaction, as 

required by the specific run condition. This could greatly minimise reagent costs. By 

using lower reaction volumes, throughput can be increased by using 384- and 1536-

well microplates for DoE studies. This would drastically reduce the time required to 

complete entire experiments. However, the assay logistics that surround response 

generation and signal precision would need to be confirmed prior to changing 

microplate formats. These experiments would make the execution of experiments 



 
 

209 

that use DoE methodology even more accessible than the frameworks created in this 

thesis.  

 

7.2.4 Expansion of the data processing pipeline 
 

The existing MATLAB data processing pipeline could be expanded to include 

additional features such as outlier detection. Currently, no data curation takes place 

within the existing data processing script. One example of data curation is the 

identification and removal of outliers. Outliers from noisy data are routinely present 

in biological research. Therefore, creating an addition to the scripts where potential 

outliers can be detected from a set of replicates would allow the researcher to curate 

the dataset and identify any patterns that may have led to the generation of noisy 

data. This would also impact the quality and predictive capability of the statistical 

model generated from data downstream. 

 

Furthermore, the set of scripts could be merged into one main script that can 

generate a set of responses, currently, only one response is generated per script. 

Currently, grouping replicates is dependent on a specific layout within a 96-well plate. 

Expanding this feature to group completely randomised run conditions across various 

plate types of different formats would increase the flexibility of the pipeline. As 

MATLAB is a commercial third-party software, converting data processing scripts to 

function in free, open-source programming languages such as R or Python would 

make them more user-friendly.  

 

By using such languages, various analysis packages for Gaussian Process Modelling 

can also be used to analyse the response generated. This could potentially reduce or 

eliminate the use of JMP, yet another commercial third-party software used to 

generate mathematical models. However, differing results significantly varying in 

precision have been previously reported when different GPM packages have been 

used to analyse the same dataset, therefore, any new packages selected would need 

to be physically validated to confirm model predictions (Erickson et al., 2018). 
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Furthermore, one of the most beneficial additions to the existing framework is the 

expansion of Synthace’s current data visualisation and analysis capabilities. The 

ability to link absorbance data, visualise it, generate and analyses responses all within 

Synthace would be greatly beneficial as it would conserve provenance and provide a 

no-code solution to sophisticated data processing and analysis, thus reducing and 

potentially removing the need to be proficient at programming languages.  

 

7.2.5 Understanding the power of space-filling designs and expanding on benefits 
of their physical execution 

 

By following the framework developed in this thesis, SFDs can be easily executed and 

analysed within a matter of weeks and have been found to be a beneficial tool for 

mapping high-dimensional design spaces. However, due to their inherent lack of 

replication within factor levels, they are less statistically powerful than traditional 

DoE designs (Santner et al, 2018), therefore, understanding the power of SFDs and 

gathering more information on suitable design strategies for physical execution in 

biological research is an exciting area of future work. For example, the SFD executed 

in Chapter 5 aimed to characterise a 12-dimensional space using a 414-run design 

replicated 8 times as the aim was to execute a design that minimally covered the 

design space while capturing the noise of unexplored spaces. By analysing the power 

of space-filling designs, the following questions could be answered. Could the dataset 

generated from this experiment be thinned down further while still maintaining the 

same model predictions? Is the dataset dense enough to predict missing data points? 

Does the model fit increase when responses are generated from a high number of 

replicated run conditions, if so, is there a point of diminishing returns? How many 

minimum run conditions are required to capture a factor effect? How many replicates 

are required to capture noise? These questions can be answered by creating analysis 

scripts that automatically build GPMs from different subsets of the datasets while 

including a varying number of replicates. Such analysis would be beneficial when 

conducting both exploratory or exploitative work of new biological systems and 

would greatly be beneficial in scenarios where it is not possible to invest resources 

to execute large experiments.  
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Overall, the work described in this thesis has demonstrated the potential of 

performing automated, high dimensionality DoE experiments to enable the rapid and 

detailed characterisation of biological reactions. 
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Appendices  
 
Appendix A 
 

 
Colorimetric assay for CV2025 ω-TAm lysate screening.  
(A) Colorimetric assay mechanism. (B) Colorimetric assay comparison of two CV2025 
TAm lysates. Assays were prepared manually and using automation and incubated 
prior to analysis as described in Section 2.3.1. Control reactions contained all 
reagents except for 2-(4-nitrophenyl) ethan-1-amine, the amine donor. 8 and 3 
replicates were prepared for assay reactions and negative controls, respectively.  
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Appendix B  
 

 
UV-visible absorption spectra and standard curves of AP assay reagents.  
Absorption spectra, from 220 – 270 nm for each reagent considered for the screening DoE 
and the measured product, Acetophenone. (B) Standard curves for PLP (top left), Lysate (top 
right), DMSO (bottom left) and Acetophenone (bottom right). Data was generated in 
triplicate at a final volume of 200 μL as described in Section 2.4.2.1.  
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Appendix C 
 
Screening DoE design and response (25 °C block).  

  
Appendix D 
Screening DoE design and response (37 °C block).  
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Appendix E 
Optimisation DoE design and response.  
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Appendix F 
 
Stepwise regression model prediction formula for predicting 𝚫𝚫Absorbance 
generated from the analysis of the screening DoE study.  
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Appendix G 
 
Stepwise regression model prediction formula for predicting 𝚫𝚫Absorbance 
generated from the analysis of the optimisation DoE study.  
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Appendix H 
 

Liquid handling policy  Definition  

Mega Mix  10 post-mixes of the sample being transferred. 
No tip reuse permitted. 

Need to Mix 3 pre-mixes and 3 post-mixes of the sample being 
transferred. No tip reuse permitted. 

Post Mix 3 post-mixes of the sample being transferred. No 
tip reuse permitted. 

Smart Mix 3 post-mixes of the sample being transferred. 
Volume is adjusted based upon the volume of 
liquid in the destination well. No tip reuse 
permitted. 
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Appendix I 
 

 
Impact of plate film type on evaporation observed in a 96-well plate. (A) Plate 
sealed with MicroAmp film. (B) Plate sealed with Aluminum film. Percentage of 
evaporation in each well after incubation of 70 μL of Tartrazine (0.1 mM) at 45 °C for 
24 hours is shown in each well location. Green to red shading indicates increasing 
evaporation.



 
 

233 

 

 
Impact of plate film type on evaporation observed in a 384-well plate. (A) Plate sealed with MicroAmp film. (B) Plate sealed with 
Aluminum film. Percentage of evaporation in each well after incubation of 20 μL of Tartrazine (0.1 mM) at 45 °C for 24 hours is shown 
in each well location. Green to red shading indicates increasing evaporation. 
Appendix J 
Space-filling DoE design file 
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Appendix K 

 
Gaussian process models for standard deviation of Yield (left) and Initial Rate (right). (A) Actual by Jacknife Predicted plot. Shows the correlation 
between actual with predicted data points (dots) (B) Prediction Profiler set to conditions that generate maximum standard deviation. Impact of 
standard deviations on factors is shown in each sub plot using profiles (black line) with 95% confidence intervals (shaded grey). Values in red (X-axis) 
show the each of the factor settings. Maximum standard deviation ± 95% confidence interval predicted is shown in red and blue text, respectively, 
on the Y-axis.   
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Appendix L 

 
Gaussian Process Model Reports for Yield and Initial Rate responses. Theta shows the model parameter estimates, Total Sensitivity is 
the sum of the main effect and all interactions. The Main Effect is the value for total variation caused by each factor. Main effects, and 
two-factor interactions are separately coloured from white to green to highlight smallest to biggest model parameter estimates. 
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