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A B S T R A C T   

Climate change is impacting marine seascapes against a backdrop of multiple anthropogenic stressors. These 
current impacts are projected to increase in the future with increasing warming, acidification, oxygen loss, and 
sea level rise. Marine Protected Areas (MPAs) have been established to protect features in the ocean, traditionally 
with a focus to reduce fishing pressures and infrastructure placements. These MPAs are static in nature and are 
rarely considering climate change; therefore, their potential adaptation effectiveness as local adaptation mea
sures for conservation in response to climate change are not clear. Here we discuss the challenges to Marine 
Protected Areas as conservation tools and for adaptation to climate change threats. We use two case studies from 
the UK to ask how climate change resilience could be included in MPA management to future-proof these 
conservation measures. We conclude that the resilience of MPAs to climate change would be better supported 
when adaptive management measures and an ecosystem-based approaches are adopted. We emphasise the need 
to increase the recognition in the primary legislation of MPAs and the monitoring of sites to better understand 
climate change as it becomes more pronounced, and impacts emerge.   

1. Introduction 

Climate change is impacting species in the ocean, their geographical 
ranges, and phenology, and thereby altering food webs and other species 
interaction [1–7]. CO2 is directly affecting the environment by causing 
ocean acidification, and indirectly via warming, changes in stratifica
tion, altered weather patterns, sea level rise and changes in ocean 
salinity and oxygen levels [8–13]. The impacts are projected to amplify 
as climate change becomes more pronounced [3, 6]. By 2100, global 
mean sea surface temperature is projected to rise between 0.08-2.89◦C 
and sea surface pH between 0.08 and 0.37 units in response to SSP1-2.6 
and SSP5-8.5 respectively [3]. Direct impacts of climate change on 
marine ecosystems include organism and habitat migration following 
temperature envelopes [14,15], shifts in ecosystem composition 
following the establishment of newly arrived species [8,3], difficulties in 
forming and maintaining calcium-based structures due to ocean acidi
fication [16,17], and increased metabolic stress due to combined ocean 

acidification and warming [18,19]. In temperate environments, these 
environmental changes are expected to lead to migration, shifts in spe
cies composition, and losses of foundation species. In tropical commu
nities, species will reach adaptation limits, resulting in unavoidable 
impacts and risks such as biodiversity loss and extirpation [20]. While 
risks differ amongst species and regionally, even in temperate regions 
such as the European Seas impacts of marine heat waves are now getting 
recorded [21]. 

The impact of climate change, especially in coastal systems, interacts 
with non-climatic drivers, increasing vulnerability to climate change 
and potentially weakening ecosystem resilience [22]. Resilience is 
broadly defined as the ability of a system to recover following stress or 
disturbance, applied to individuals, populations, and communities [23]. 
Resilience is comprised of resistance, recovery, and reorganization for 
example the response to and recovery from extreme events such as 
marine heatwaves [24–26]. In the current debate, resilience focusses on 
the health of the ecosystem itself, rather than individual components 
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within it [1]. Secondary stressors include coastal development, nutrient 
runoff from terrestrial sources, fishing, invasive species, pollution, ma
rine infrastructure projects, and anthropogenic noise (Fig. 1) [1,27,28]. 

For example, ocean acidification is projected to increase the stress 
benthic organisms like polychaetes experience by decreasing their 
fecundity, which is exacerbated when polychaetes are exposed to metal 
pollution [29]. Fishing practices like trawling can destroy shellfish 
spawning habitat or damage the organisms [30], resulting in the local 
loss of populations or habitat features. Protecting the ocean ecosystems 
and the services they provide to people is the focus on the United Na
tions “Decade of Ocean Science and Ecosystem Restoration” to further 
support the sustainable development goal 14 to “conserve and sustain
able[ly] use the oceans, seas, and marine resources for sustainable 
development”. 

Marine protected areas (MPAs) are a well-established management 
approach, set up to protect seascapes, habitats, and species. The term 
MPA describes an area of the marine environment with restriction on 
detrimental human activities. MPAs, as they reduce secondary stressors, 
are assumed to increase resilience to climate change [31–33] and are 
considered to be one of the most effective tools adaptation tools for 
marine ecosystems facing environmental change [32,34,35]. Evidence 
from coral reefs suggests MPAs with high levels of protection can 
decrease the time ecological communities need to recover from distur
bance events like bleaching because they are subjected to fewer stressors 
compared to unprotected surrounding habitat [36]. Direct ecological 
benefits from high levels of protection include protecting spawning 
stocks or nursery habitats for important species, increasing size of in
dividuals, population size and organism biomass which enhances 
reproductive capacity in an area, enhanced biodiversity and ecosystem 
structural complexity, and the creation or maintenance of refugia hab
itats [27,37,38]. The direct benefits from protection can result in indi
rect benefits including biological spill over seeding surrounding 
environments, reducing coastal flooding and erosion, carbon storage 
and water filtration, cultural service and promoting social capital among 
stakeholders [3,27,28,39]. Properly established and fully protected 
MPAs can also have knock-on ecosystem impacts as documented in 
tropical regions where protecting fish species has resulted in increased 
coral cover and structural variability [40]. 

Marine ecosystems also contribute to adaptation and mitigation from 
climate change [32,41]. Trawling practices globally contributes an 
equivalent amount of carbon emissions to the ocean atmosphere systems 
as the aviation industry [32] and protection from sediment disturbance 
can therefore prevent the release of carbon stored in marine sediment 
and organisms and support carbon capture and storage [32,42]. 
Widening the focus of mitigation from terrestrial forests to marine 
ecosystems has the potential to engage local communities, provide 
livelihoods and benefit biodiversity [43]. 

Coastal ecosystems like saltmarshes, kelp forests, and seagrass beds 
not only offer CO2 storage, but also, coastal protection that safeguards 
coastal communities [41,44]. The restauration of coastal wetlands for 
example benefits climate mitigation, supports the ambition to limit 
warming below 2◦C, and provides benefits for biodiversity, water, and 
air quality [45]. Healthy seagrass beds can increase the pH of the sur
rounding environment during daytime through photosynthesis [46], 
therefore offering partial respite for calcifying organisms impacted by 
ocean acidification at current day levels. These functions are jointly 
termed nature-based solutions [47] or ecosystem-based adaptation [48]. 
The IUCN defines Nature-based Solutions as “Actions to protect, sus
tainably manage and restore natural or modified ecosystems, providing 
human well-being and biodiversity benefits” [49]. The blue economy 
(the sustainable use of ocean resources preserving ocean ecosystems 
while promoting growth and improving livelihoods) [50], and 
Nature-based Solutions [43,45] therefore provide interconnections for 
UK MPAs but also challenges for justice and governance. 

MPAs though vary in relation to the level of protection: they range 
from highly protected marine areas to areas where most sustainable uses 
of marine resources are allowed [51]. An activity removal has many 
direct and indirect benefits [27], though these vary depending on the 
target feature of an MPA, the degree of protection it offers and the extent 
to which it is complemented by other conservation measures such as 
fishery closures, integrated coastal zone management and marine spatial 
planning [21,32,52,53]. Other marine ecosystem management methods 
that are advocated to increase marine ecosystems resilience to climate 
change, like decreased fishing pressure, more sustainable fishing prac
tices, and preventing seabed mining, operate in concert with MPA ob
jectives [54]. 

Distribution changes amongst marine organisms are consistent with 
changes in marine temperature and larger than those for terrestrial 
ecosystems [55,56] creating an urgency to develop effective adaptation 
options. While in tropical seas species are expected to reach their ther
mal limits, in cold regions warming enables the establishment of warm 
water species that outcompete cold water species. While high levels of 
protection show clear benefits for marine ecosystems, MPAs and other 
spatial planning and management approaches have not until now been 
designed to consider ecological response to climate change [52,57,58] 
such as the shifts in ecosystem composition, structure and function 
already seen today and projected to increase in the future [3,8,59]. 

1.1. The challenges to marine protected areas as conservation and 
adaptation tools 

To fulfil the vision of protection of marine ecosystems, MPAs need to 
protect critical ecosystem and biodiversity and not become ‘paper parks’ 
stopping at designation without implementation and management [60]. 
A paper park is defined as protected area that exists within legislation 
but offers no real protection to aid conservation objectives. Of the global 
MPAs, 69% are only partially protected with unclear ecological and 
social benefits [61,62]. While an increasing area is designated in Europe, 
many MPAs lack a management plan, which permit activities that 
represent threats, or are insufficiently resourced to enforce existing re
strictions [60,63]. The most widespread threats are maritime traffic and 
fishing [60]. Conservation targets are typically centred around returning 
an environmental system to a baseline condition, but there is increasing 
recognition that this approach is unfeasible given a lack of information 
on these baseline conditions and the projected future pressures of 
climate change [8,14,20]. 

Within the existing MPAs, moving from conservation to resilience to 
climate change [1,20,36,64] is not supported by a clear understanding 
of the implications for of climate-smart management [35,65]. Many 
European MPAs have a feature-based approach where protection is 
linked to the presence of a particular habitat or species (feature) [66]. 
The success and durability of the MPA is therefore against the ability to 
protect the specific conservation feature for example, via increases in the 

Fig. 1. A systematic diagram of an MPA and selected stressors it faces 
increasing its vulnerability to climate change such as coastal development, 
human recreation, nutrient inputs and siltation from rivers, trawling, infra
structure placement e.g. energy projects, and invasive species. 
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abundance of the feature e.g., an increase in scallop numbers in response 
to a dredging ban. Such a features-based approach is risky in the context 
of climate change as organisms will migrate out of the MPA which is 
defined by their presence and abundance can change for example in 
response to increased CO2 in seawater [2,35,67]. In this context, a small 
MPA outside a larger network might lose it status and not be able to fulfil 
its function. 

Targeted action to adaptation conservation practice include zoning 
around and networks of protected areas to facilitate migration as they 
can facilitate interactions over larger regions, across ecosystems and 
stressors. Such larger areas not only increase the area and reduce frag
mentation but also increase heterogeneity by including climate refugia 
where stressors such as warming will be lower than the regional average 
[68]. Linkages between sites facilitate migration to track niches for the 
different developmental stages [69] while recruitment from different 
sites can seed areas with local extinctions [70]. Larger areas also support 
and encompass a larger taxonomic, phylogenetic, and functional di
versity and redundancy increasing ability to sustain shocks [68]. Given 
range changes in response to migration, transboundary management of 
protection will become increasingly important [14]. Therefore, net
works of highly protected MPAs have been advocated as the most 
promising mechanism for supporting climate change resilience for ma
rine biodiversity by providing mechanisms aiming to protect habitats, 
diversity, and wood webs [1]. 

While networks of MPAs exist, climate adaptive management of 
these has not been a priority. For example, in the UK a network of MPAs 
covering large portions of the maritime area has been designated 
(Fig. 2). 

In the following examples, we explore how to better build climate 
change resilience into MPAs that did not focus on climate change at their 
inception. Using the UK as a model, we will discuss real-world chal
lenges as seen by stakeholders responsible for protecting these systems 
through cases studies discussing the practice, the readiness for 

adaptation and the changes which need to be made. 

1.2. Main legal frameworks for protecting UK marine environments 

The first UK MPA was created through voluntary agreements be
tween conservationists and local fishers at Lundy [71]. The UK MPAs 
comprises Sites of Special Scientific Interest (SSSIs), Ramsar sites, Ma
rine Conservation Zones (MCZs), Special Areas of Conservation (SACs), 
Special Protected Areas (SPAs), Nature Conservation MPAs for Scotland, 
created under an umbrella of legal frameworks, at different operational 
levels [72], from domestic to European to international legislation. 
These diverse types of designation were brought together under a single 
UK ‘network’ by section 123 of the Marine and Coastal Access Act 2009 
and section 79 of the Marine (Scotland) Act 2010. 

The UK has recently completed the network of MPAs within its 
Exclusive Economic Zone (EEZ) with ~38% of UK waters have been 
designated within 374 MPAs, aggregated by 47% protected inshore 
waters and 36% offshore waters [73]. While progress has been made in 
terms of quantitative MPA coverage, it is less clear if MPAs offer effec
tive protection to the UK marine environment [74]. As marine conser
vation is a devolved matter, each UK administration (England, Northern 
Ireland, Scotland, and Wales) has developed its own legislation [58]. 
Climate change is only specifically mentioned by three pieces of legis
lation relating to marine conservation (Climate Change Act (2008), 
Climate Change (Scotland) Act 2009, and Marine (Scotland) Act 
(2010)), though general provisions for conservation in other legislation 
can be interpreted to apply to climate change [72]. In Scotland, the 
underlying marine conservation legislation specifically mentions 
climate change considerations in the designation of sites. The 
features-based approach adopted in Scotland though does not suffi
ciently account for climate change as it lacks wider ecosystem processes 
and sites are considered in isolation [75]. 

Fig. 2. The UK MPA Network. Scottish Marine Protected Areas data from Scottish Natural Heritage, MCZ data from Natural England, SAC and SPA data from JNCC. 
UK Continental Shelf Limit, EEZ, and Territorial Limit from Admiralty Maritime Data Solutions 
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1.3. The climate change challenges to UK MPAs 

Between 1984 – 2014, seawater pH decreased at a rate of 0.0035 pH 
units per year in the North Sea and English Channel [76], and the seas 
around the UK warmed by up to 0.24◦C per decade [77]. Future 
warming by 2.3C is expected by 2100 under SSP5-8.5 [21] and sea level 
rise 8-115 cm by 2100 relative to 1981-2000 averages [78]. 

Consequently, poleward shifts of the leading and trailing range edges 
of both benthic and pelagic species have been recorded, with many 
changes occurring in the biogeographic transition zone between cooler 
boreal and warmer Lusitanian waters that bisects the UK [55,79,80]. 
Large parts, approximately 1000 km, of the UK shoreline are rocky 
littoral and sublittoral habitats. Many rocky intertidal species of both 
boreal and lusitanian evolutionary origins have their leading or trailing 
distributional range edges on the UK coastline [55]. Driven by temper
ature, some of the fastest impacts of climate changes for any species in 
any natural system are recorded in the leading or trailing ranges edges in 
UK regional seas [55,81]. Species specific distribution changes [81,82] 
and adaptation to local conditions modulates the response; for example, 
the abundance of the important ecosystem forming kelp is declining in 
southern UK regions but is increasing in species of kelp and wrack in 
northern and central regions [83]. 

Changes in the regional distribution and composition of biogenic 
habitat forming species like kelp or wrack will alter the distribution of 
associated organisms like epiphytic seaweed or molluscs [82]. Model
ling predicts that the theoretical niche for the horse mussel Modiolus 
modiolus (an OSPAR priority habitat) will disappear from UK MPA areas 
by 2100 to be replaced by seagrass (Zostera spp.) or the European flat 
oyster (Ostrea edulis) [84]. For coralline algae, a protected habitat 
former, the projected niche changes for temperature and those for car
bonate chemistry are moving in diametrically different directions [2] 
impacting their skeletal growth [17,85], structural integrity degrading 
biodiversity hotspots [16]. 

Climate change has facilitated the invasion and establishment of new 
species of macroalgae in the intertidal ecosystems of the UK over the 
past half century. The invasive brown alga Sargassum muticum has 
expanded in rocky intertidal habitats around the UK coastline since it 
was first introduced in the 1970s due to the wider ecological tolerance 
than many native species of algae [55,86,87]. The warm-temperate 
benthic habitat forming kelp species Laminaria ochroleuca has colon
ised sites in the southwestern English Channel where it now co-exists, 
and competes, with L. hyperborea. This change impacts dependant 
faunal assemblages [88]. The red alga Agarophyton vermiculophyllum is a 
more recent arrival [89] with implications for ecosystem management 
[90]. 

Here, we are reflecting the challenges in in two case studies to 
highlight issues that practitioners face to ensure protected area effec
tiveness. We discuss the establishment of non-native taxa in the Pen Llŷn 
a’r Sarnau and the socio-ecological system Falmouth Harbour that 
adaptation and management of conservation are place and context 
dependent. Using these case studies, we show existing regulatory chal
lenges within the context of climate change and discuss actions within 
their context that support climate change adaptation and management. 

2. Case study 1: establishment of non-native taxa in the Pen Llŷn 
a’r Sarnau SAC 

Globally, baseline assessment of ecology is missing, challenging 
assess of arrival and losses of species and damages to ecosystems to date 
and potential future success of conservation. Newly arriving species can 
pose threads to local taxa and ecosystems. There are indications that 
some invasive taxa are favoured by climate change over native species 
[91–93]. The drivers of invasions success are challenging to identify but 
human activities in general alter distribution though climate change, 
bridge natural dispersal barriers though relocation and open opportu
nities beyond natural distributions [94]. Monitoring and surveillance of 

sites is rare, e.g., with the long-term monitoring time series MarClim in 
England and Wales [55]. This monitoring though is fundamental in 
addressing migration of established species due to climate change but 
also arrival of non-native taxa. 

Here we focus on one example of the practice of responding to 
changes in species distribution due to invasion and expansion of habitats 
in north Wales at Pen Llŷn a’r Sarnau Special Area of Conservation (SAC) 
(Fig. 3a). The SAC is an estuary protected under Annex I habitat of the 
Habitats Directive (Council Directive 92/43/EEC). Here, the Annex 1 
habitat consists of three macro-tidal estuaries in Cardigan Bay: the 
Dwyryd / Glaslyn, Mawddach and Dyfi estuaries (4,525 ha). The estu
aries also contain Annex I mudflats and sandflats not covered by sea 
water at low tide, Salicornia and other annuals colonising mud and sand 
and Atlantic salt meadows [95]. 

In July 2017, the invasive non-native alga Agarophyton vermic
ulophyllum (Fig. 3b) was recorded in the northern-most estuary, the 
Dwyryd. The species is a GB Non-native Species Secretariat (NNSS) alert 
species, high status surveillance species under the Marine Strategy 
Framework Directive (MSFD) and a marine INNS contingency species in 
Wales [96,97]. A. vermiculophyllum likely originates from Japan [89] 
and has been documented to increase the mortality of native algae it 
competes with for habitat space [98]. Furthermore, future warming is 
suggested to have minimal impacts on A. vermiculophyllum while 
increasing the mortality of native algae [99]. Rapid growth of the algal 
thalli is projected to result in changes to and loss of biodiversity because 
of anoxia in saltmarsh pools and changes in recruitment and sustained 
populations of invertebrate infauna in sediments that are smothered by 
the algal thalli. 

A. vermiculophyllum was typically found in depositional or less tide- 
exposed locations within the estuary [89]. By May 2018, 
A. vermiculophyllum thalli filled the pools along a 1.7 km stretch of 
saltmarsh, causing extensive anoxia beneath the bleached algae. While 
the algae were embedded in the sediment of the pools, they were not 
actively growing. In 2019 A. vermiculophyllum expanded to the Mawd
dach estuary in the same SAC and further ad-hoc observations were 
confirmed in the Malltraeth estuary, 34 kilometres to the north (102 km 
by sea). These estuaries have no known active shellfisheries or any other 
possible pathway for its introduction from the next nearest known lo
cations in Northern Ireland or southern England [89], meaning its 
establishment mechanism is unknown. 

The extensive coverage by the alga may result in substantial areas of 
the Annex 1 habitats being affected in SACs in Wales, including changes 
in substratum and shore height, changes in shellfish (cockle) and other 
invertebrate infauna and epifauna of the sediment habitats and reducing 
access to sediment feeding areas for waders. The Welsh coastline is 
important for both tourism and fisheries, which are dependent on sus
taining the wider ecosystem [100]. 

Several MPAs in Wales now record A. vermiculophyllum, a feature 
absent during their creation, changing the baseline ecology. The limited 
capacity to fully map the extent of the A. vermiculophyllum across all 
estuary features results in an incomplete picture of distribution and 
spread in mid and north Wales. Therefore, management opportunities to 
limit the rapid and unpredictable establishment are not available. 
Continued surveillance and reporting by Natural Resource Wales 
(NRW), on an ad-hoc basis will continue into the foreseeable future with 
no effective management methods identified. 

While the example of Case Study 1 is not likely caused by climate 
change, the establishment of novel species will be repeated in other 
MPAs due to climate change highlighting the importance of this man
agement challenge and our current inability to address the risk. Not only 
will this impact the local biodiversity but also wider habitat function due 
to the resulting anoxia [89]. While little can be done once species like 
algae have established in an area it is important to increase the capacity 
to survey sites to aid our understanding of how site conditions are 
changing due to species introductions or range shifts. A European 
Maritime and Fisheries (EMFF) funded project managed by Natural 
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Resources Wales is developing a biosecurity plan for the Pen Llŷn a’r 
Sarnau SAC, which includes investigating pathways of introduction and 
spread of INNS [101,102]. 

3. Case study 2: the socio-ecological system Falmouth harbour 

The Fal and Helford SAC (Fig. 4a) primary conservation feature is a 
maerl bed [103] near Falmouth harbour. Maerl formed by coralline 
algae provide a habitat for other species (Fig. 4b), such as fish larvae and 
scallops. The protection removed the impact of dredging for scallops 
fishing on the maerl [104]. 

In 2004, proposals were put forward to deepen the channel to Fal
mouth Harbour to improve ship access to the Falmouth Marina to sup
port local communities and their livelihoods. The port is a large 
employer, adding up to £90m to the local economy [105]. An environ
mental impact assessment was conducted by Royal Haskoning as the 
development of the harbour involved dredging inside the Fal and Hel
ford SAC with potential impacts on the MPA’s maerl bed (Natural 
[103]). Such assessment of the potential impacts on the site’s protected 
features is mandatory in accordance with the Marine Works (Environ
mental Impact Assessment) Regulations 2007. 

The Marine Management Organisation (MMO) as the relevant 
licensing body considered key impacts of the port development, 
including hydrodynamic and sedimentary changes decreasing sediment 
quality, water quality contamination from tributyltin, and loss of maerl 
and benthic communities [106]. Port development work has the po
tential to smother the maerl bed via resuspending sediment from the 
seabed into the water column, burying both the habitat and associated 
species [106]. The removal of secondary stressors like siltation of the 
maerl bed is critical to limiting the stress this habitat will undergo in 
response to increasing ocean acidification [107]. 

The Port of Falmouth Development initiative applied to create a 
deeper channel by removing 700,000 cubic meters of sediment, con
structing a new berthing area and relocation of the dredged maerl 
substrate to the east of the navigation channel, close to the MPA. The 
ecological risks suggested were loss of the 3D matrix of the maerl bed, 
deepening the habitat beyond the light needs of the species, increase of 
turbidity, and increased erosion of the habitat [103]. The concerns 
about the scale of the impact were shared by stakeholders [108,109]. 

In 2013, the MMO decided that the application could not proceed as 
the integrity of the SAC could not be guaranteed due to potential 
ecological impacts and feasibility of the planned measures [110]. A 
maerl relocation trial was performed to alleviate the concerns, which 
included benthic sampling of the proposed trial sites, dredge and re-lay 
of dead and live maerl communities in six sites, resampling for impact 
assessment and turbidity monitoring which were conducted in 2013 
[111]. The study concluded that this proposal is technically feasible, a 
finding disputed by an Independent Scientific advisory Panel (ISAP) 
[112]. The applicability of the assessment was challenged as the 
research focused on dead maerl matrixes [113] and not the live species. 
The case study shows that the MMO deliberated the port development 
against the integrity of the SAC and ensured the protection of the con
servation feature of the MPA, after a lengthy consultation period. 

The MMO will face future balancing between ecological and human 
needs for example when adapting to increasing sea level with coastal 
infrastructure threatening coastal MPAs. Decisions about their imple
mentation of adaption and mitigation measures has the potential to 
increase the tension between conservation, energy production, fisheries, 
infrastructure and protecting our seascapes [21]. Future placements of 
climate mitigation infrastructure such as wind energy or tidal energy 
will pose further challenges, as these infrastructures can change the local 
hydrology, are steppingstones for invasive species and their construction 

Fig. 3. Case study 1 location, A - Pen Llŷn a’r Sarnau SAC, B - non-native alga Agarophyton vermiculophyllum  
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creates a change of that habitat [21]. 
Derogations, i.e., exemptions from a law, both in Article 6 of the 

Habitats directive and in the Habitats Regulations enable different 
routes for essential management of the site such as Ministerial Stop 
Orders. This untested route could be used in relation to necessary actions 
to keep a site in optimum condition due to changes arising from climate 
change. 

4. Moving towards a climate resilient MPA network for the UK 

The feasibility and effectiveness of reducing climate change impacts 
on marine ecosystems depends on institutional, socio-economic, and 
cultural, technological, environmental, and physical boundary condi
tions (Singh et al., 2020). Governmental commitments through the 30 ×
30 pledge and the 25 Year Environmental Plan to safeguard the UK 
marine environment suggest a clear political will to protect seascapes. 
MPAs though, defined by specific features, are challenged by the 
autonomous adaptation of species to climate change. As species will 
migrate in response to climate change, static MPAs will not be able to 
effectively protect individual features. For example coastal wetlands are 
threatened by sea level rise in the absence of ability to move inland. 
While data for the UK is missing, drowning of wetlands in the Dutch 
North Sea are expected in response to warmonger above 1.75◦C [114]. 
The above examples show the challenges of MPAs to protect the species 
which were the basis of the designation. The disappearance of 
M. modiolus, a conservation feature in UK MPAs, would end the re
striction of bottom contact activities such as dredging, thereby threat
ening wider ecosystem health. But MPAs can allow the short- or 
medium-term disappearance of species and retain protection while 
new features establish themselves, thus allowing the marine ecosystem 
to change into an alternative state [65]. 

Furthermore, less than half of UK MPAs have a management plan 
[115]. A management plan in this context is a formal written document 
specifying how a protected area is to be managed, ensuring the rules are 
known to all and what goals the MPA aims to accomplish. Current 
management plans mostly aim to maintain the status quo of their 
respective ecosystems, despite recognition that these were already 
highly degraded environments [116]. Management plans are funda
mental to the success of protected areas. For example, trawling (one of 
the most environmentally destructive fishing practices) is higher inside 
European MPAs than outside partially because of inappropriate man
agement [117]. This trawling has been suggested to have an ecological 
economic footprint of - £200 million over the past 25 years on just one 
site, the Dogger Bank MPA [118] though a government consultation 
proposes to ban bottom trawling from several MPAs, including Dogger 
Bank [119]. 

The current approach which focusses on keeping species conserved 
in a specific place should be replaced by an ecosystem-based manage
ment approach. Moving from a protection of the target feature to a 
protection of the total niche, the area itself and its potential new habitat 
in response to climate change would enable larger ecological processes 
[65]. To ensure representativity across the UK MPAs, JNCC have 
completed an assessment of the network, which identifies features that 
are under-represented [115]. The move to viewing MPAs as a collective 
network and not individual sites needs to be further embedded to ensure 
preparedness of climate change impacts on UK marine ecosystems. As 
migration occurs, species of conservation interest will transition be
tween MPAs resulting in developmental changes to habitats [14]. The 
current locations of leading and trailing range edges are mostly located 
outside of MPAs, preventing management measures to reduce 
non-climatic impacts on these species. 

Fig. 4. Case study 2 location, A – Fal and Helford SAC, B – a maerl bed (photo credit: Elaine Azzopardi, Tritonia Scientific Ltd  
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5. Steps towards climate smart conservation and climate 
adaptive management 

We emphasise that solutions are place dependent drawing on their 
local technical and economic feasibility, institutions, governance 
ecological constraints and social acceptability. Here, we use the UK’s 
MPA network with its specificity to discuss approaches to future proof 
the marine environment from risks of climate change. 

The UK MPA network coverage has achieved high levels of species 
and habitats representation [120] which provides foundations for a 
climate resilient future of the coastal ecosystems. While designation is 
ambitious, a clear gap exists between the level of protection offered to 
MPAs compared with what the scientific consensus outlines as necessary 
to safeguard marine ecosystems and promote sustainability and resil
ience [121]. Greater accountability is needed to ensure decisionmakers 
deliver on their commitments. 

Higher levels of protection as showing in the UK [122,123,124] and 
supported by a wealth of studies globally hold the greatest potential for 
protecting the marine environment [1,36,64]. High levels of protection 
for MPAs have been shown to increase organism biomass inside reserves 
[125], increased organism reproductive outputs and growth rates [126], 
and improve a site’s biodiversity [127]. Such high level of protection 
and associated management is rare though in UK MPAs and globally 
([63,128]; Roberts et al., 2020) with lack of management planning and 
implementation or inappropriate activities being permitted being re
ported. While many MPAs limit but not exclude activities in the MPA, 
currently only three highly protected marine areas exist around the UK, 
out of 356 MPAs, covering 21.07km2 (0.0024% of the UKs EEZ) [115, 
129] though several more are proposedly to be trailed starting 2022 
[130]. What constitutes effective management is contextually depen
dant on each MPA, but many activities are ecologically incompatible 
such as trawling in areas set up to conserve benthic organisms. Effective 
management is seen by some synonymously with no-take MPAs (e.g., 
[131]) and increasing the number of no-take MPAs enhancing the cur
rent protected areas. However, even MPAs designated as no-take do not 
provide noticeable conservation benefits if people do not engage in its 
protection, local people are not engaged in their protection, and a clear 
management structure is lacking [132]. Protected areas must incorpo
rate local knowledge [133], account for diverse and changing values of 
actors, promote equitable participation in decision making, and have 
efficient knowledge exchange between parties [58,134,135]. 

Within the context of climate change, adaptive management which 
refines management measures over time as scientific and cultural un
derstanding changes is fundamental [136]. As new knowledge is 
generated, adaptive management uses the knowledge around protected 
areas and the features within them to modify MPA guidelines. Adaptive 
management requires the involvement of local stakeholders, scientists, 
and government officials cooperating in equitable forums [8,14,48, 
137]. In the UK between 85-95% of investigated MPAs had climate 
change pressures acting on conservation features including temperature 
increase, ocean acidification, sea level rise, and increased storminess 
[47]. Despite impacts being recorded, the information was not dissem
inated to the owners of MPAs, and subsequently not fed into manage
ment. A closer information flow between those assessing climate change 
impacts and stakeholder responsible for MPA management is funda
mental to the success of adaptive management [134]. 

5.1. Legal framework for climate resilient UK MPAs 

Most underlying legislation for UK marine conservation was not 
written with climate change in mind [72] but designed to manage 
existing human activities. The Habitats Directive aimed to ensure 
ecologically representative systems were protected increasing the 
coverage geographically and ecologically, although the number of ma
rine species and habitats is not as wide as terrestrial counterparts [138]. 
DEFRA [139] produced guidance on the requirement to assess the 

impacts of anthropogenic actions preventing the landward shift of 
habitats responding to sea level rise, termed coastal squeeze, on SACs 
and SPAs to avoid loss of habitats [140]. Legislation assesses impacts of 
actions on individual locations; therefore, the lack of a direct link to the 
action which causes climate change limits the ability of the agencies to 
act. This problem is enhanced by the different frameworks and in
stitutions protecting marine ecosystems [141], as overlapping organ
isational operational remits are common in the UK. For example, both 
the Marine Management Organisation and Environment Agency have 
operational scope for marine planning, monitoring, and fisheries man
agement [142]. An effective protection of marine ecosystems, therefore, 
is dependent on established operational ownership of specific problems 
such as trawling [117]. 

Climate change and associated biodiversity loss is at the forefront of 
conservation thinking challenging legislation around designation, the 
area protected, and the flexibility in modifying these over the coming 
decades. Including climate change into UK marine conservation relevant 
legislation will depend on MPA design processes to account for the 
future risks of climate change [143], and consideration of existing sites 
and how they may respond to climate change [1]. Ecosystem-based 
management recognises the value in protecting ecological space that 
enables marine features to move throughout the UK MPA network akin 
to other international examples such as the Great Barrier Reef Marine 
Park in Australia, using the MPA as an ecological anchor point for pre
sent and future organism assemblages [65]. An integration of the aspects 
of marine ecosystems like hydrological, climatic, ecological, and 
geomorphological dimensions is the first step in considering wider 
environment in decision making [144]. An ecosystem-based manage
ment approach would allow the establishment of species and habitats in 
new areas [145]. Protecting ecological space enables MPAs to be used as 
steppingstones, with appropriate zoning, generating corridors for 
ecological transitions for example into climate refugia though it cannot 
avoid local extinction due to lack of suitable alternative viable habitat in 
alternative locations (e.g., a lack of suitable marine substrate for benthic 
organism) [68]. 

The other question arising is how long it is worth continuing pro
tection given ongoing deterioration in response to climate change. In 
Case Study 2, the primary conservation feature (maerl) prevented the 
deepening of Falmouth Harbour but the future of the maerl bed is in 
question, due to ocean acidification weakening calcifying structures 
[16]. However, the wider geomorphological components of the MPA, e. 
g., the structure of the dead maerl bed, will persevere as will some of the 
associated ecosystem. If in the future the maerl bed deteriorates, pro
tection of the MPA against development could not be based on the 
preservation of the feature. The dead structure though will still provide 
some biodiversity support and the lack of its protection would amplify 
the stress. Protecting the ecosystem itself, not a specific feature within it, 
grants the wider seascape the best chance to cope with climate change. 

Enabling flexibility in the principal conservation feature of an MPA 
would enable it to protect future habitat, a key component of increasing 
protected area climate change resilience [145]. Such an approach would 
enable to respond to wider environmental change such as flexible MPA 
boundaries of MPAs accounting for changes in local environmental 
conditions [75]. Change of site boundaries under current legal frame
works are complex and time-consuming hindering adaptation to 
organismal adaptation. Another option could be to repurpose MPAs, 
changing the conservation focus from one feature to a new one should it 
establish itself in response to climate change caused migration (e.g., 
[14]). For Scottish MPAs there is evidence that stakeholders are willing 
to repurpose MPAs in response to climate driven ecological change, like 
changing the conservation focus to another marine feature to preserve 
existing protection arrangements agreed by stakeholders and practi
tioners [75]. 
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5.2. Regular monitoring of protected areas 

The final question is about the balance between conservation, pro
tection, and restoration. Climate change is happening against a back
drop of other anthropogenic impacts like overfishing and coastal 
development. UK seascapes have been modified heavily over the cen
turies by human impacts impacting the ecological baseline of UK marine 
ecosystems [146,147]. Conservation to preserve an old ecosystem will 
be questionable as it is snapshot in time and not resilient to projected 
environmental changes [1,10]. 

Highly protected marine areas are important to understand how a 
site responds to climate change without human inputs. Reference sites to 
detect the state of the system without human interference were proposed 
in several MPAs at the time of designation of MCZs [148] completely 
banning human activities. These sites were omitted from the final 
roll-out of MCZs in England [149]. Demonstrating that MPAs are 
contributing to resilience is difficult and depends on long-term moni
toring to understand how the underlying biological community is 
changing over time and how it is responding to management practices. 
The UK combines some of the longest biological datasets through the 
continuous plankton records [150] and MarClim [55], translation of 
research findings via for example the MCCIPP report cards [151] and 
national climate projections (Lowe 2008, [78]). These high-resolution 
data can guide conservation strategies, supported by ground-truthing 
data. Otherwise, the success of MPAs is hard to determine as not only 
baseline assessments are missing but also quantification of the effec
tiveness of MPAs against their predetermined goals. To determine 
whether MPAs are delivering benefits monitoring of sites is needed to 
understand what impact the MPA is having on the seascape, and on 
target and non-target features. Rare studies show lags between estab
lishment of the MPA and a change in the ecosystem health [152]. 
Currently, there is little recognition of MPAs and carbon ecosystem 
services which the lack of its inclusion in MPA management ([153]; 
Roberts et al. 2020) despite positive benefits between adaptation and 
mitigation in terrestrial forest and peat systems [154]. A financial 
reward of these ecosystem services and their protection could provide 
incentives and facilitate protection. 

These above-mentioned changes to governance and management 
cannot wait until impacts of climate change, such as moving species, 
rising sea levels, and changing river fluxes have been quantified to 
accurately determine the size of the risk. A need for certainty about the 
potential size of the challenge posed by climate change will hinder ac
tion which would increase resilience of ecosystems. Warming, deoxy
genation, sea level rise and acidification trends are projected to 
accelerate [6], all against a backdrop of continual infrastructure devel
opment [12,155] and human adaptation and mitigation needs [68]. 
Effectively protected MPAs limit the pressures that organisms and 
habitats face from climate change by removing additional disturbances, 
preventing detrimental synergistic impacts [35,64] and cover regions to 
facilitate autonomous biological adaptation [20] and speed up recovery 
from disturbance [36]. 
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NBS Impacts and Implications 

Environmental concerns 

The impact of climate change, especially in coastal systems, interacts 
with non-climatic drivers, increasing vulnerability to climate change 
and potentially weakening ecosystem resilience. Marine protected areas 
(MPAs) are set up to protect seascapes, habitats, and species but have 
not been designed to consider ecological response to climate change. 

Economic concerns 

Decisions about MPA implementation has the potential to increase 
the tension between conservation, economic consideration energy pro
duction, fisheries, infrastructure and protecting our seascapes. Protec
tion can result in economic benefits via reducing coastal flooding and 
erosion or supporting carbon mitigation. 

Social concerns 

The feasibility and effectiveness of reducing climate change impacts 
on marine ecosystems depends on institutional, socio-economic, and 
cultural, technological, environmental, and physical boundary condi
tions. The blue economy and nature-based solutions can address societal 
challenges, while providing biodiversity benefits. 
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Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, (Editors), in: IPCC Special 
Report on the Ocean and Cryosphere in a Changing Climate, 2019, Cambridge 
University Press, 2019, https://doi.org/10.1017/9781009157964.007. DOI. 

[9] D. Breitburg, L.A. Levin, A. Oschlies, M. Grégoire, F.P. Chavez, D.J. Conley, 
V. Garçon, D. Gilbert, D. Gutiérrez, K. Isensee, G.S. Jacinto, Declining oxygen in 
the global ocean and coastal waters, Science 359 (6371) (2018) eaam7240. 

G. Hoppit et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0007
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0007
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0007
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0007
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0018
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0018
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0018
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0018
https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_Chapter03.pdf
https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_Chapter03.pdf
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0061
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0061
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0061
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0082
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0082
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0082
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0127
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0127
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0127
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0127
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0164
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0164
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0164
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0164
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0164
https://doi.org/10.1017/9781009157964.007
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0017
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0017
http://refhub.elsevier.com/S2772-4115(22)00022-2/sbref0017


Nature-Based Solutions 2 (2022) 100030

9

[10] J.P. Gattuso, A. Magnan, R. Billé, W.W. Cheung, E.L. Howes, F. Joos, 
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E. Liwenga, S. Lluch-Cota, S. Löschke, S. Lucatello, Y. Luo, B. Mackey, 
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