
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

A hybrid threat model for smart systems
Fulvio Valenza∗, Erisa Karafili∗†, Rodrigo Vieira Steiner, Emil C. Lupu

Abstract—Cyber-physical systems and their smart components have a pervasive presence in all our daily activities. Unfortunately,
identifying the potential threats and issues in these systems and selecting enough protection is challenging given that such
environments combine human, physical and cyber aspects to the system design and implementation. Current threat models and
analysis do not take into consideration all three aspects of the analyzed system, how they can introduce new vulnerabilities or
protection measures to each other. In this work, we introduce a novel threat model for cyber-physical systems that combines the cyber,
physical, and human aspects. Our model represents the system’s components relations and security properties by taking into
consideration these three aspects. Together with the threat model we also propose a threat analysis method that allows understanding
the security state of the system’s components. The threat model and the threat analysis have been implemented into an automatic tool,
called TAMELESS, that automatically analyzes threats to the system, verifies its security properties, and generates a graphical
representation, useful for security architects to identify the proper prevention/mitigation solutions. We show and prove the use of our
threat model and analysis with three cases studies from different sectors.

Index Terms—Threat Analysis, Cybersecurity modelling, Threat model, Cyber-Physical systems

✦

1 INTRODUCTION

Nowadays, novel paradigms and technologies such as the
Internet of Things (IoT) and Edge Computing pervade all
aspects of the physical world [1]. Cyber-physical systems are
ubiquitously present in our everyday life, their devices and
environments are “intelligent”, interconnected, dynamic,
and flexible. By “intelligent” we mean that such systems
are capable of sensing and actuation on the physical envi-
ronment and comprise digital elements capable of making
actuation decisions in response to the sensed information
alone or by communicating with others. Such systems are
commonly referred to as “smart” as in “smart-toys”, “smart-
cars”, or “smart-buildings”.

The opportunities offered by such smart systems come
with their own security challenges. Determining the poten-
tial threats in these smart systems and providing an adequate
amount of protection is more challenging than in traditional
computer systems for a variety of reasons that include low
computational power, inadequate software quality but also
more importantly the fact that such environments combine
human, physical and digital (cyber) aspects to the system
design and implementation. In these scenarios, the attack
surface is broader and extends beyond the realm of the
”cyber” domain to the physical and human aspects of the
system.

• ∗These authors contributed equally to this work. † Corresponding author.
F. Valenza is with the Dipartimento di Automatica e Informatica, Po-
litecnico di Torino, 10129 Turin, Italy (e-mail:fulvio.valenza@polito.it).
E. Karafili is with the School of Electronics and Computer Sci-
ence, University of Southampton, Southampton, SO17 1BJ, United
Kingdom (e-mail:e.karafili@soton.ac.uk) R.V. Steiner and E. Lupu are
with the Department of Computing, Imperial College London, London
SW7 2AZ, United Kingdom. (email:r.vieira-steiner14@imperial.ac.uk,
e.c.lupu@imperial.ac.uk). This work was supported in part by the UK
EPSRC [grant no. EP/N023242/1, EP/S035362/1] and the European
Commission [MSCA-IF grant no. 746667 and Cyberkit4SME grant no.
883188].This work was also supported by the Netgroup at the Politecnico
di Torino, particularly by prof. Riccardo Sisto.

As shown in [2], cyber and physical attacks evolve as
fast as the deployment of smart systems and are outpacing
efforts to stop them. Such systems are deployed in a physical
environment, and in addition to being reachable through
their interconnections, they are also physically available to
an attacker that can, for example, connect to the hardware
interfaces of the device. Finally, these devices interact in
several ways with human users. Thus, systems comprising
of IoT devices are vulnerable to attacks that exploit their
physical, human, and cyber vulnerabilities, as well as to
attacks that combine exploits of these vulnerabilities in
any order. For instance, unauthorised physical access to a
wind turbine allows an attacker to generate a cyber-attack
on the wind farm control network [3]. Whilst a number of
methodologies perform threat modelling for cyber-attacks
[4], [5], [6], [7], [8], [9], they usually do not take into account
attacks on the physical or human aspects of the system and
cannot represent the propagation of attacks across the cyber-
physical, human-physical, or human-cyber interfaces.

Current threat models and analysis mainly consider
only one component amongst the human, cyber or physical
aspects of the analysed system (e.g., [4], [5], [6], [7]), or,
occasionally, two of them e.g., the human and cyber aspects
in [8], [9]. There is a lack of analyses that consider all three
components and how they can introduce new vulnerabilities
or protection measures to each other, as well as their inter-
actions. Furthermore, there is a need to develop efficient
preventive and mitigating actions that use holistic analysis
of the threats and for the construction of threat models for
systems that include all three aspects.

This work aims to take the first steps towards a method-
ology for performing an exhaustive threat analysis, taking
into consideration cyber, physical, and human aspects, as
well as the relations between them. Specifically, we will
use the term “hybrid systems” to emphasise that we refer to
systems in which we take into account their human, phys-
ical and cyber perspectives and “hybrid attacks” to refer to

Emil Lupu
“© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

multi-step attacks that can combine attack steps exploiting
human, physical, or cyber vulnerabilities in combination.
The security analysis of such systems cannot be done from
one perspective alone but must consider the physical con-
text of the system, its cyber resources and connections, and
the humans that use or operate it [10]. Threat models for
hybrid systems must be able to represent attack scenarios
that exploit the interplay between the human, physical, and
cyber aspects of the system. For example, attacks such as
those conducted on ATM machines, e.g., jackpot, skimmer,
shimmer, cash-out attacks [11], [12], [13], [14]. The “jackpot”
attack, for example, exploits the vulnerability of the physical
components and by cutting a small hole next to the PIN
pad an attacker can insert a cable connected to a laptop and
command the ATM to dispense all the money. Other attacks
exploit human vulnerabilities, e.g., by bribing employees
to sell customer data or provide sufficient information to
conduct successful phishing attacks on the clients.

Hybrid attacks are not specific to the financial sector but
also affect other sectors. For example, in the energy sector,
researchers have shown that with little effort an attacker
can compromise a whole windmill farm network starting by
simply breaking a physical lock [3], [15]. Further steps of this
attack exploit cyber vulnerabilities such as easy access, lack
of encryption in communications, poor default passwords,
and insecure remote management interfaces.

The physical security of a system, its cybersecurity, and
human security are traditionally considered separately and
by different teams inside an organization. In hybrid systems
the cyber, physical, and human aspects can be leveraged in
combination as part of the same attack. They also typically
help protect each other and must be leveraged together to
mitigate and respond to threats. For example, human or
digital surveillance can be used to monitor a physical space.

Yet at the moment, there is no notation and no frame-
work to represent threats that propagate across the physical,
human, and digital aspects of a system. For this, it is not
sufficient to just combine the different aspects/components
of the system, any framework must also represent the re-
lationships between them, their inter-dependencies and the
compositional nature of systems.

The main aim of our work is to design a threat mod-
elling approach that takes into account the human, cy-
ber, and physical aspects of hybrid systems, their inter-
dependencies, and that can analyse their weaknesses and
help reason about remediation. We propose the first threat
model that permits to describe and derive the security state
of smart systems’ entities, their relations, and properties.
The model permits to describe and analyse the system as
part of its physical and human environment rather than in
isolation from it. The main contributions are as follows:

• We propose a novel hybrid threat model that can repre-
sent the relations and security properties of the system’s
components by taking into consideration their cyber,
physical, and human aspects.

• We introduce a threat analysis method equipped with a
set of derivation rules that permits to understand the
properties of the system’s components and the overall
security state.

Th
re
at Protect

Human

Physical
Cyber

Fig. 1. The main components of a hybrid system threat model

• We provide a tool1 that represents the security proper-
ties and relations of the system’s components. This tool
automatically analyzes the threats to the system and
can automatically generate a corresponding graphical
representation.

The paper is structured as follows. In Section 2, we
introduce the main motivation for this work by means of a
case study from smart buildings and provide an overview of
the proposed solution together with some practical consid-
erations. In Section 3, we introduce our novel threat model
with its components, relations, and properties. In Section 4,
we present the rules that permit to gather the facts behind
the attack graphs, evaluated during the threat analysis of
the system. In Section 5, we present the application of our
threat model in three different case studies taken from the
smart building scenario and a Wind Farm scenario. Finally,
in Section 6, we discuss the related work, and in Section 7
we draw the main conclusions and discuss directions for
future work.

2 PROBLEM STATEMENT AND APPROACH

Our main goal is to identify and construct a threat model
for hybrid threats to cyber-physical systems that combine
cyber, physical, and human aspects (i.e., a hybrid system)
and can be attacked on each one of these aspects or in
combination. We consider as a system component, any part
of the system considered in the threat analysis (e.g., the lock
of door X, the user with the ID Y, the phishing mail Z). Some
components can have more than one nature, and we will
explicitly identify their nature during the threat analysis.

To represent hybrid threats it is necessary to represent
the relations between the different aspects of the system:
the physical, cyber, and human. Of particular importance
are how each one of these aspects can introduce a threat to
the other, i.e., does compromising one aspect compromise
the other? and how they can protect each other, i.e., can one
aspect help to protect the other? Broadly, these relations can
be represented, as shown in Fig. 1, where different com-
ponents of various nature can protect or introduce/spread
vulnerabilities to other components of the system, also of
different nature. Note that Fig. 1 only intends to show
that the human, physical, and cyber elements can threaten
each other or can be used to protect each other. This is not
necessarily a one-to-one relation and the components may
be used in combination.

1. https://github.com/FulvioValenza/TAMELESS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

A vulnerable physical aspect of a component can
threaten the security of a cyber component of the hybrid
system. For example, having physical access to a room,
where it is possible to connect (unauthenticated) to the
wired network, would enable the attacker to compromise
the software/network components of the system. Similarly,
having physical access to a sensor can enable an attacker
to perturb what the sensor is measuring. Similarly, compro-
mising the human aspects of a system can also compromise
its security, e.g., deceiving the user to reveal access details or
stealing access keys (both are well known examples). With
the increased use of actuators that can affect the physical
aspects, compromising the cyber aspects of a system also
enables a physical compromise. An obvious example is a
digital lock, or the control system, to open the door to a
protected area of a building.

These components can also protect each other. A human
can inspect and monitor the physical security, e.g., of an
area, a smart building, or a device. A physically secure
enclosure can protect both human and digital components -
this is why computers or servers are often stored in a secure
location. Finally, we increasingly use the digital capability
to monitor the security of both physical spaces, and the
behaviour of humans, e.g., to protect from insider threats.

Our model allows to represent these relations between
the human, physical and digital components of the system
and to reason about them. In particular, it allows to reason
about the propagation of attacks across the different parts
of the system and to formulate protective and preventive
measures to increase robustness to attacks that combine
physical, cyber or human actions, whose relative balance
depends on the system and the context of use.

We illustrate our approach through an example that
we will use throughout the remainder of this paper. We
consider the case of a smart building that may be subject
to attacks combining physical attack steps (such as breaking
a door, a window, or picking a lock), cyber-attack steps
(compromising the network, digital locks, or the Building
Management System) and human attack steps (such as steal-
ing a pass, or losing a key). Our building comprises three
different locations: the hall, the office area and the rooftop,
as shown in Fig. 2. It is equipped with IoT devices and
sensors, like smart cameras, temperature sensors, etc. There
is a monitoring system on the hall (entrance) where the
camera images are controlled by a human (guard) to prevent
unauthorised access to the building. Moreover, part of the
rooms on the office floor have locks on their doors to prevent
unauthorised access. Although this example provides only a
small scale illustration of our model and method, scalability
aspects to larger systems are considered in Section 2.2 and 6.

2.1 Scenario

We consider the scenario shown in Fig. 3, which is part of the
office floor shown in Fig. 2. We are concerned, in particular,
about unauthorized access to a safe box, denoted by sbox
and located in a particular room on the office floor. The
safe box is used by the employees to store cash, company
check books and confidential documents. It is physically
protected through a digital lock requiring an access code
(Password), which is set by an employee physically working

Fig. 2. Example of the smart building used in our case study

in that room. Physical security measures protect the room
where the safe box is located: the room can only be accessed
through a locked door. The key to open the door is based on
an RFID card and provided solely to authorised employees
(including the employee working in that room). Thus, to
access the safe box an attacker needs to both access the room
and to know the Password required to open the safe. For the
purpose of keeping the example simple, we assume that a
physical attack on the safe box is not practical.

For the sake of the example let us assume that the
password for the safebox is stored in the employee on
duty machine. Therefore, access to the employee’s computer
(e.g., through phishing) will eventually lead to finding the
password. The RFID cards required to open the door can
be read and cloned at a moderate distance (e.g., several feet
away), leading to the possibility for an attacker to create a
duplicate key.

To access the contents of the safe it is necessary to:
exploit human vulnerabilities (e.g., with a phishing attack)
to lead to a compromise of the digital environment, which
enables exploiting further digital vulnerabilities to access
the employee’s machine to obtain the password. An attack
would also require cloning the RFID card and using this to
access the room where the safe is located, before using the
password to open the safe. The scenario was only conceived
to illustrate how the different relations can be represented
in our model and how the model can be analysed for threats
across the different aspects of the system. However, many
modern systems exhibit similar characteristics.

Fig. 3. A threat model for the unauthorised safe box access

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

To create a comprehensive threat model, our approach
allows to represent the properties of the system’s compo-
nents. This includes security properties such as vulnerability
or detectability as well as functional properties such as device
malfunction or recoverability.

2.2 TAMELESS
We propose a threat analysis model that can derive the cur-
rent security state of the system and its components, given
as input information about the system’s components and
their security properties. We have implemented the model
and threat analysis as an automated tool called Threat &
Attack ModEL Smart System (TAMELESS) that is made
available with this paper2, and which relies on an XSB
Prolog interpreter3.

As shown in Fig 4, the input for TAMELESS comprises
the specification of the system to be analysed (i.e., the
system’s components and threats), the relations between
the components, as well as between the components and
the threats and the various (security) assumptions. The
user (e.g., a security architect) can then perform the threat
analysis by querying TAMELESS to display a set of pre-
defined security properties of the system’s components (see
Section 3.2). Specifically, in our model, the security prop-
erties represent how the security state of the components
can change4. This allows to determine whether the com-
ponents’ expected states differ from the derived ones (i.e.,
a consistency check). This aspect is important because each
smart system has distinct features and differs from others.
In some systems, it is fundamental that specific components
should not be compromised, while in others that specific
components work properly, or is important to know if it
is possible to detect an attack, restore or fix the system’s
status. TAMELESS allows users to have a comprehensive
view of the system’s security and its risks across the human,
physical, and cyber aspects. The complexity of the system,
the propagation of threats across different relationships be-
tween components, and the number of possible attack paths
make it impossible to conduct this analysis manually for
systems larger than a toy example.

TAMELESS provides a graphical representation of the
attack propagation. This allows users to add new protection
and monitoring components. Users can then run the tool
again together with the updated information to compute
the revised threat model. This iteration can be repeated
until the user is satisfied that the threat model is acceptable.
The impact of mitigations on the threat model can also be
determined and visualised.

TAMELESS can also help security architects consider
the economical aspects of ensuring the security of the sys-
tem if a cost is associated with each protection solution. This
allows to compare the costs of mitigation approaches, for
example the relative cost and guarantees of digital or human
monitoring of physical spaces.

We focus here on the representation of the relations
between the threats to the physical, cyber and human

2. https://github.com/FulvioValenza/TAMELESS
3. A dialect of Prolog developed by the Stony Brook University [16]

(http://xsb.sourceforge.net/index.html).
4. We use the term property instead of state, as it represents the ability

to change state, not the state itself.

TAMELESS

System
description

Response

Security
Architect/Officer

Queries

AG

1
2 3

Fig. 4. TAMELESS’s architecture and workflow

aspects of the system and how they combine with the
structural relations between the system components, as this
is a fundamental aspect omitted in studies to date. Several
other aspects, in particular extending TAMELESS with
techniques for risk management and countermeasures are
left for future work. More specifically:

1) We focus here on a static analysis of the system.
When the system changes, the analysis needs to be run
again. It is however, possible to extend TAMELESS
with monitored conditions that detect such changes and
trigger a re-evaluation of the analysis.

2) We focus on a deterministic analysis where relations
and derived facts are either true or not. TAMELESS
generates a logical attack graph [5]. Existing work on
attack graph analysis has shown how it is possible to
extend attack graphs with probabilistic information to
reason about risk and countermeasures. For example,
it is possible to express the probability of success of
each vulnerability exploit and use Bayesian Analysis to
reason about risk, both statically and dynamically as
shown in [17]. Other approaches, such as [18] express
this probability as a Time to Compromise (TTC). Then,
assuming a certain frequency distribution of attacks
it is possible to conduct a similar risk analysis and
examine the impact of countermeasures in terms of risk
reduction. In this case, the output of the analysis is
not a probability of compromise of certain components
but rather a time to compromise through the different
attack paths. Further approaches have considered how
to associate the attack progression through the system
to its impact on the system model (e.g. [19]). It is then
possible to conduct a cost based analysis to identify
the most cost effective countermeasures or to evaluate
the cost effectiveness of different mitigating strategies.
We leave the combination of TAMELESS with such
techniques for future work.

3) We do not consider temporal aspects and temporal
events in the current analysis. Whilst, in principle, it
would be possible to extend the model to reason about
temporal properties and temporal relations e.g. using
Event Calculus and/or Situation Calculus [20], this

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

would require further in-depth studies.

In summary, the threat model we constructed is generic
and can be used to analyse the hybrid threats to smart
systems, such as: smart buildings, homes, industrial con-
trol systems, windmill farms, ATM machines, or financial
transactions. Once the system components are provided
together with their properties and relations, TAMELESS
can automatically analyse them, and graphically display the
possible threats and how they were derived. Furthermore,
TAMELESS helps the architects and identify countermea-
sures to the threats, as it provides a set of possible entities
that can be used to prevent or mitigate the threat. The
provided entities could be entities that: protect, monitor,
detect, restore, repair, or replicate.

3 HYBRID THREAT MODEL

We introduce, in this section, the proposed threat model
that comprises the security properties a hybrid system, the
relations between components and threats, and the relations
between the system components themselves.

3.1 System’s Components

Our threat model comprises various entities that can be
human, cyber, or physical.

Definition 1. An entity is a system or system component that
can be of a cyber, physical, or human nature5. We denote
with E = {A,B,C, · · · } the set of all system entities.

Definition 2. A threat is one or a sequence of actions
that directly or indirectly changes a property that can
alter the security state of an entity. We denote with
T = {T, T1, T2, · · · } the set of all threats.

We denote as F the set of all formulas that can be expressed
by the grammar below:

ϕ ::= true | false | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ |
p(A) | ¬p(A) | r(A,A) | r ′(A,A,A)

where ϕ ∈ F , A ∈ E , p ∈ P and r , r ′ ∈ R. P denotes the
set of all security properties and R the set of all relations.
The connectors ∧,∨,→, (,) and ¬ are the standard ones.
This language permits to define a set of rules to derive the
different security properties.

3.2 Security Properties of the Entities

The properties of the entities can be either explicitly as-
sumed to be true or can be derived to be true by applying
the rules. We distinguish between basic properties describing
primary security knowledge abount the components and
auxiliary properties describing the states of an entity, when
it is compromised or malfunctioning due to a threat.

5. In some cases, the same entity might have more than one nature.

3.2.1 Basic Properties
We denote with PB the set of all basic properties, where:

PB = {Comp,Malfun,Vul}.

Compromised Comp(A, T): entity A has been compromised
by threat T ;

Malfunctioned Malfun(A): entity A is malfunctioning and
one or more of its functionalities are not working as
expected and/or there are any performance issues for
A., e.g., a server expected to be running is down;

Vulnerable Vul(A, T): A has a known vulnerability which
makes it vulnerable to threat T .

For simplicity we write Comp(A) when there exists at least
one threat T for which A is compromised (Comp(A, T)),
and ¬Comp(A) when no such threat T ∈ T exists.

3.2.2 Auxiliary Properties
We denote by PA the set of all auxiliary properties , where:

PA = {Det,Rest,Fix}.

Detected Det(A, T): describes that it has been detected that
entity A has been compromised by threat T , e.g., a
physical or digital unauthorised access has been de-
tected.

Restored Rest(A): describes that Control over A is restored,
usually after A has been compromised, e.g., a room has
been secured again, or the system has been cleansed,
patched and restored.

Fixed Fix(A): describes that the functionality of A is repaired,
usually after A malfunctioned (Malfun), e.g., the lock of
a door is repaired, or the antivirus has been updated.

We distinguish between the Rest and Fix properties to
differentiate between the security and functional properties
of a system. Rest is applied after an entity has been com-
promised (Comp) and a malicious user had control over
the entity. Fix concerns the functionality of an entity, and is
applied when an entity was malfunctioning (Malfun). Thus,
an entity can be restored but still malfunction or be fixed
but still compromised.

3.2.3 Assumed and derived properties
We distinguish between assumed or derived properties. As-
sumed properties (prefixed with α) are part of the secu-
rity assumptions, denote initial knowledge and need to
be explicitly declared. Derived properties (prefixed κ) are
obtained by applying the derivation rules to the known
properties. The set of assumed properties is:

Pα = {αComp, αMalfun, αVul}.

Derived properties indicate security properties that may/can
become true (κ), as a malicious user exploits vulnerabilities.
The set of all derived properties is:

Pκ = {κComp, κMalfun, κVul, κDet, κRest, κFix}.

3.3 Relations
The entities in our system have different relations with each
other as well as different relations to the threats. For simplicity,
we consider binary and ternary relations; further relation types
can easily be added if needed.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

3.3.1 Relations between entities

R represents the set of all relations between system entities.
These include structural relations (containment, interconnec-
tion) as well monitoring and control relations influencing how
entities can respond to threats.

{Contain,Control,Connect,Depend,Check,Replicate} ∈ R

Contain Contain(A,B): means that A contains B, and repre-
sents how the system is composed, e.g., a room contains
a server, or a server A contains data B. This permits to
represent the structure of the system, and from it how the
attack could propagate.

Control Control(A,B): means that A controls B, e.g., a person
controls the use of their identification badge, or a controller
controls the sensors.

Connect Connect(A,B,C): means that A connects B to C. In
other words, A can reach C via B, e.g., the door connects
the room with the hall, or network A connects server B
with server C. Moreover, it important to note that the
Connect relation is unidirectional.

Depend Depend(A,B): the functionality of A depends on that
provided by B. In brief, A works only if B works. For
example, the air conditioning depends on its outside fan,
or the web server depends on the data base. The depend
relation is used for example when identifying the spread
of the vulnerabilities or the protective measures.

Check Check(A,B): means A checks that B is functioning
normally and thus detects malfunctions.

Replicate Replicate(A,B): A is a replica of B. The availability
of a replica makes it possible to fix an entity.

3.3.2 Relations between entities and threats

Relations between entities and threats permit to represent
which entities are vulnerable to a particular threat, identify
which other entities are vulnerable or how entities can protect
each other. The set of relations is presented below.

{Protect,Monitor, Spread,PotentiallyVul} ∈ R

Protect Protect(A,B, T): A protects B from threat T , e.g., a
lock protects the door from unauthorised access, or fire-
walls protect systems from unauthorised traffic. Protect
means that entity A is able to protect entity B from a threat
T . If an entity is vulnerable and not protected, then it can
be compromised.

Monitor Monitor(A,B, T): A monitors B from threat T , e.g.,
an intrusion detection system monitors the system against
cyber-attacks, or a camera monitors the room against
thieves. This expresses that attacks can be detected, even if
they can not be prevented. Thus, if T can compromise B,
then Monitor(A,B, T) describes that A can detect that B
is compromised by T . Note that, if A monitors B for threat
T , this does not mean that A protects B from T . Although
both the Check and Monitor relations monitor the target
system, Check refers to the functionality of the systems,
whereas Monitor refers to its security.

Spread Spread(A, T): A can propagate threat T , e.g., a phish-
ing email used to spread a malware, or an IoT device
enable an attack to spread to other devices. This property
connects a device with the threats it can propagate.

Potentially Vulnerable PotentiallyVul(A, T): A can be vulner-
able to threat T , e.g., a user can be vulnerable to phishing.
This property is used to model that an entity can become
vulnerable to threat T in certain circumstances, e.g., when
it malfunctions.

3.4 High-level properties
Having defined the properties and the relationships needed
we now introduce some high-level properties (PH) that can
be expressed in terms of lower level primitives. These enable
users to understand more easily a system’s security state, e.g.,
if an entity is defended or monitored from a threat. They also
permit to represent the overall state of an entity including
its components, dependencies, and connections. We introduce
below the definitions of these high-level properties; Table 1
gives their formal definitions in terms of the lower level
primitives.

PH = {Val,Def, Safe,Mon,Che,Rep}.

Valid Val(A): A is valid when it has not been compromised
and is not malfunctioning. An entity is not valid when it
has either been compromised or it is malfunctioning.

Defended Def(A, T): A is defended from threat T when an
entity B exists that protects A from T and B is valid. On
the contrary, an entity is not defended from T when no such
B exists, or it exists but is not valid.

Safe Safe(A, T): A is safe with respect to T when A is not
vulnerable to T or can be defended from T . A is not safe
from T when it is vulnerable and not defendable from T .

Monitored Mon(A, T): A is monitored for threat T , when an
entity B exits that monitors A with respect to threat T and
B is valid. Entity A is not monitored when no such entity B
exists, or it exists but is not valid.

Checked Che(A): A is checked, when an entity B checks the
functionality of A and B is valid. Entity A is not checked
when no such entity B exists, or it exists but is not valid.

Replicated Rep(A): A is replicated, when at least one entity
B that replicates A exists and B is valid. Entity A is not
replicated when no such B exists that replicates A, or it
exists but is not valid.

4 THREAT ANALYSIS

In this section, we first introduce the derivation rules used
for our threat analysis. These rules apply to the relations and
properties initially known to derive the new security properties
that reflect the system’s state and/or can be used to protect
it. Through the derivation rules, we derive which entities can
become vulnerable, compromised, and/or malfunction. We can
also identify if any existing mechanisms can detect that an
entity is compromised and whether it is possible to restore it.

We then describe how the derived security properties, help
to construct the attack graph for our system, which graphically
represents the results of the threat analysis and the attack paths
through the system.

4.1 Derivation Rules
We first describe a set of basic derivation rules, followed by
specific derivation rules to determine when an entity is com-
promised, malfunctioning, vulnerable, restorable, or fixed. As
mentioned in Section 3.2, derived properties indicate security
properties that may/can become true. This means that in our
approach, we detect some security properties that may not oc-
cur (e.g., malfunctioning, or a vulnerability is never exploited).

4.1.1 Basic derivation rules
Basic derivation rules state that if a property is assumed
true, then naturally it can be derived to be true (Rules 1-3).
Furthermore, these rules express the transitivity of relations
such as Replicate and Depend. Note that Contain(A,B) and
Control(A,B) are not transitive when applied to the human,
cyber, and physical aspects of a system.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Val(A) := ¬Comp(A) ∧ ¬Malfun(A) ¬Val(A) := Comp(A) ∨Malfun(A)

Def(A, T) := ∃B. Protect(B,A, T) ∧Val(B) ¬Def(A, T) := ∄B. Protect(B,A, T) ∨ (∀B.Protect(B,A, T) ∧ ¬Val(B))

Safe(A, T) := ¬Vul(A, T) ∨Def(A, T) ¬Safe(A, T) := Vul(A, T) ∧ ¬Def(A, T)

Mon(A, T) := ∃B. Monitor(B,A, T) ∧Val(B) ¬Mon(A, T) := ∄B. Monitor(B,A, T) ∨ (∀B Monitor(B,A, T) ∧ ¬Val(B))

Che(A) := ∃B. Check(B,A) ∧Val(B) ¬Che(A) := ∄B. Check(B,A) ∨ (∀B Check(B,A) ∧ ¬Val(B))

Rep(A) := ∃B. Replicate(B,A) ∧Val(B) ¬Rep(A) := ∄B. Replicate(B,A) ∨ (∀B. Replicate(B,A) ∧ ¬Val(B))

TABLE 1
High-level properties definitions

αComp(A, T) � κComp(A, T)

αVul(A, T) � κVul(A, T)

αMalfun(A) � κMalfun(A)

Replicate(A,B) ∧ Replicate(B,C) � Replicate(A,C)

Depend(A,B) ∧Depend(B,C) � Depend(A,C)

(1)
(2)
(3)
(4)
(5)

4.1.2 Derivation rules for compromised
We now introduce the derivation rules to reason about how
threats can compromise different entities and propagate across
the system.
Rule 6: A can be compromised by threat T when A is not safe
from T and an entity B, which controls A, can be compromised
and spread threat T .

Control(B,A) ∧ κComp(B) ∧ Spread(B, T)∧
¬Safe(A, T) � κComp(A, T) (6)

Rule 7: A can be compromised by threat T when A is not
safe from T , and A is connected to B through C, B can be
compromised and spreads T , and either C can be compromised
or C is not protected against T .

Connect(C,B,A) ∧ κComp(B) ∧ Spread(B, T)∧
¬Safe(A, T) ∧ (κComp(C) ∨ ¬Def(C, T))

� κComp(A, T)

(7)

Rule 8: A can be compromised by threat T when A is not safe
from T , and either A contains B or is contained in B, and B
can be compromised and spread T .

(Contain(B,A) ∨ Contain(A,B)) ∧ κComp(B)

∧ Spread(B, T) ∧ ¬Safe(A, T) � κComp(A, T) (8)

Example
We illustrate the use of these rules in the scenario introduced
in Section 2.1. The employee (E) controls their PC, where the
password to open the safe is stored. The employee can access
emails (including phishing emails phishEm with a malicious
attachment) on a server (server) that connects the employee
with the emails.

Control(E, PC) Connect(PhishAttack,E, PhishEmail)
Contain(PC,D)

The employee is assumed vulnerable to phishing attacks, de-
noted by phishAt, the PC is assumed vulnerable to malware
(malw) and the password (Pw) is assumed vulnerable to being
stolen, denoted by stealInfo. There are no protective measures
P in place, against these threats.

αVul(E,phishAt) ∄P. Protect(P,E, phishAt)
αVul(PC,malw) ∄P. Protect(P, PC,malw)
αVul(Pw, stealInfo) ∄P. Protect(P,Pw, stealInfo)

Furthermore, the phishing attack (phishAt) can be spread via
emails, the employee can accidentally spread the malware code
(e.g., as an attachment) and the PC can “spread” the steal
information threat, as access to the PC, entails access to the
information stored in it.

Spread(phishEm, phishAt) Spread(E,malw)
Spread(PC, stealInfo)

Using the high-level properties, we derive that the employee
(E), the PC, and password are not defended and not safe, while
the server is not defended (as below).

¬Def(Pw, stealInfo) = ∄P. Protect(P,Pw, stealInfo)
¬Def(PC,malw) = ∄P. Protect(P, PC,malware)
¬Def(E,phishAt) = ∄P. Protect(P,E, phishAt)
¬Def(server,phishAt) = ∄P. Protect(P, server, phishAt)
¬Safe(Pw, stealInfo) = αVul(Pw, stealInfo) ∧ ¬Def(Pw, stealInfo)
¬Safe(PC,malw) = αVul(PC,malw) ∧ ¬Def(PC,malw)
¬Safe(E, phishAt) = αVul(E, phishAt) ∧ ¬Def(E, phishAt)

Using Rule 7 in conjunction with the above, we derive that the
employee can be compromised by a phishing attack.

Connect(server, phishEm,E) ∧ κComp(phishEm)∧
Spread(phishEm, phishAt) ∧ ¬Safe(E, phishAt)∧
¬Def(server, phishAt) � κComp(E,phishAt)

Similarly, using Rule 6, we derive that the employee’s PC can
also be compromised.

Control(E, PC) ∧ κComp(E) ∧ Spread(E,malw)∧
¬Safe(PC,malw) � κComp(PC,malw)

Finally, using Rule 8 we derive that the password can be
compromised.

Contain(PC,Pw) ∧ κComp(PC) ∧ Spread(PC, stealInfo)∧
¬Safe(Pw, stealInfo) � κComp(Pw, stealInfo)

Thus, the employee’s password can be compromised by ex-
ploiting the system’s human and cyber vulnerabilities in con-
junction with each other.

4.1.3 Derivation rules for malfunctioned

Rule 9 specifies that an entity A, compromised by threat T can
malfunction. Rule 10 specifies that A can malfunction when A
depends on B and B malfunctions.

κComp(A, T) � κMalfun(A)

Depend(A,B) ∧ κMalfun(B) � κMalfun(A)

(9)
(10)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Example

Let us assume a physical server (physical entity) that hosts
a website (cyber entity). The functionality of the web-
site strictly depends on the functionality of its server:
Depend(website, server).

If the server can be physically compromised through threat
T , we can derive that it can malfunction by using Rule 9, as
shown below.

κComp(server, T) � κMalfun(server)

Given the dependency between the website and its server, we
can derive that the website can also malfunction by applying
Rule 10.

Depend(website, server) ∧ κMalfun(server) � κMalfun(website)

4.1.4 Derivation rule for vulnerabilities

When A malfunctions, and A is potentially vulnerable to threat
T , then A can be vulnerable to T , Rule 11.

κMalfun(A) ∧ PotentiallyVul(A, T) � κVul(A, T) (11)

For example, a broken lock can become vulnerable to being
open by unauthorised users.

κMalfun(lock) ∧ PotentiallyVul(lock, breakOpen)

� κVul(lock, breakOpen)

4.1.5 Derivation rule for detecting threats

Rule 12 states that when A can be compromised by threat T
and A is monitored for threat T by some entity that is not
compromised (see TABLE 1), then T can be detected for A.

κComp(A, T) ∧Mon(A, T) � κDet(A, T) (12)

For example, if a system is monitored for intrusions (e.g., with
an IDS), then the intrusions can be detected.

κComp(system, intrusion) ∧Mon(system, intrusion)

� κDet(system, intrusion)

4.1.6 Derivation rule for restoring services

Rule 13 states that when threat T can be detected for A and A
has been replicated, then A can be restored.

κDet(A, T) ∧ Rep(A) � κRest(A) (13)

Restoring from backup stands as an immediate example.

κDet(system, intrusion) ∧ Rep(system) � κRest(system)

4.1.7 Derivation rule for fixed

Rule 14 states that when A can malfunction and is checked (i.e.,
its malfunction can be detected) then A can be fixed.

κMalfun(A) ∧ Che(A) � κFix(A) (14)

For example, if the air conditioning (AC) malfunctions, and it
is detected, then the AC can be fixed.

κMalfun(AC) ∧ Che(AC) � κFix(AC)

4.2 Application of the threat analysis
The rules introduced above are used automatically to derive
new (security) properties for the system’s entities. Specifically,
given the initial relations and properties, the threat analysis will
derive new security properties, which together with answers to
other queries will be used to output the threat analysis model.
To perform the analysis a security architect must choose the
right level of abstraction and the trustworthiness assumptions.
For example, if all the security mechanisms are assumed not
vulnerable and not potentially vulnerable (as we did for brevity
in the following examples), then TAMELESS will identify only
a subset of possible attacks. Conversely, the security architect
assumes all security mechanisms as vulnerable (e.g., adopting
an approach similar to zero-trust), then TAMELESS computes
all known attacks that can be performed. In this last case, the
size of the resulting graph can be considerable. TAMELESS
is flexible and scalable enough to support analysis at different
levels of abstraction and with different assumptions.

To simplify the work of the security architect, TAMELESS
outputs a graphical representation of security properties, their
derivations, and threats in the format akin to a generalised
attack graph.

4.2.1 Attack graphs
The derivation rules allow us to compute the basic and aux-
iliary properties (i.e., can be compromised, malfunction, vul-
nerable, detected, restored, and fixed). This also enables us
to construct an attack graph [21] for a target in our system
and its properties that we want to verify. For example, we
can build the attack graph to compromise a web server or to
a door malfunction. This graph offers a graphical and simple
representation of the result of the threat analysis.

Attack graphs are a powerful tool for security assessment
by analysing network vulnerabilities and the paths attackers
can use to compromise system resources. They permit a priori
analysis of the possible avenues an attacker can exploit to com-
promise the system. When coupled with probabilistic informa-
tion about the likelihood of success of each attack step, Bayesian
inference can be used to derive measures of risk i.e., probability
that parts of the system can be compromised. The analysis can
be conducted statically, a priori, but also dynamically during an
attack. For example, when system elements are compromised,
this can be taken into account and the new probabilities of
compromise can be calculated [22],[17]. The new probabilities
of compromise can be used to choose countermeasures [23] and
can also be combined with system models and cost models for
resilience analysis as shown in [19]. However, our focus here
is on the analysis and the generation of the graph for hybrid
systems and we leave such extensions for further work.

TAMELESS does not only represent the threat information
and the generated attack paths but also the application of
the derivation rules, as shown in Fig. 5. Nodes represent the
assumed and derived properties of the entities, the dashed
edges represent the relationships between entities, and the solid
red edges represent connections created by application of the
derivation rules. In the next section, we show the graphs for
two different case studies taken from our scenario described in
Section 2.1.

5 CASE STUDY EVALUATION
In this section, we apply our analysis to two use-cases taken
from the smart building scenario introduced in Section 2.1 and
one use case from a critical infrastructure system. We describe
in detail the first scenario and, for brevity, provide only the
significant steps for the remaining two. TAMELESS is able to
analyse the given information automatically. It provides users
with the derived security properties as well as a graphical
representation of the security properties and relations derived.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

κComp(A, T2)

αComp(A, T2)

κMalfun(A)

αMalfun(A)

κMalfun(B)

∧ ∧

Val(E)

κFix(A)

∧Val(C)

κDet(A, T2)

∧Val(D) κRest(A)

κVul(A, T1) αVul(A, T1)

κComp(A, T1) ∧

¬Def(A, T1)

κComp(F)

rule
1

rule 2

rule
3 ru

le
10

rule 9

rule
12

rule 13

rule 11

rule 14

rule 6, 7, 8

rule
9

Control ∧ Spread(T1)

CheDepend

Monitor(T2)

Replicate

Fig. 5. Part of a Generated Attack Graph from our Threat Analysis

5.1 Unauthorized Safe Box Access
We continue with the Safe box example introduced in Sec-
tion 2.1 and the example in section 4.1.2. Using TAMELESS,
we will show how the attacker can access the safe box including
all the steps of the successful attack. We will explain in detail
how the security properties of the various entities change. This
detailed analysis is performed by TAMELESS, automatically
and the result is provided as a list of answers to users’ queries
and a graphical representation, see Fig. 6.

The contents of the safe box are protected through a com-
bination that requires a password. The safe box is located
in a room that can be accessed through a door, which can
be open only with an RFID card. Using the results of the
example in section 4.1.2, we know that the password can be
compromised as it can be stolen through a phishing attack:
κComp(Pw, stealInfo). However, the attacker Att, still needs to
physically access the safe to use the password and the room is
protected from unauthorised access by the door lock, denoted
by lock.

We also know that the door lock can also be compromised,
by following the steps shown in the graph generated by our
threat model, shown in Fig. 6. More specifically, the door lock
is controlled by its RFID card (denoted as key) and is vulnerable
to unauthorised users controlling the card or making a copy of
it (unAuthUser). As no other protection measures are in place to
defend the door lock, such as a human guard, the door lock is
not safe from being opened by an unauthorised user. We show
below the relations and security properties for these entities.

Control(key, lock), αVul(lock, unAuthUser),
¬Def(lock,unAuthUser), ∄P. Protect(P, lock, unAuthUser),
¬Safe(lock, unAuthUser)

The RFID card is assumed to be vulnerable to being physically
copied (denoted as copy), and there are no protection measures
in place to prevent this. Therefore, using the high-level property
definition for Safe, we can state that the RFID card is not safe
with respect to the threat of being copied (copy). Any user can
open the door, using the card, thus, if the card is compromised,
then it can spread the unAuthUser threat.

Vul(key, copy), ¬Def(key, copy),
¬Safe(key, copy), Spread(key, unAuthUser)

The attacker Att has malicious purposes, and thus, can be con-
sidered compromised, (κComp(Att)), and they have informa-
tion about the RFID card (e.g., employees having the card6). The

6. This information is useful for the attacker to then copy the RFID
card even by staying at a distance from the employee and the card.

κComp(Att)

αComp(Att)

Val(CardInfo)

∧

∧αVul(key, copy) κComp(key, copy)

∧αVul(lock,unAuthUser) κComp(lock,unAuthUser)

∧

¬Def(room,unAuthAccess)

∧

∧ κComp(sbox,unAuthAccess)

¬Def(sbox,unAuthAccess)αVul(sbox,unAuthAccess)

∧κComp(Password,derivInfo).

Connect

Control
Protect(unAuthAccess)

Connect

Protect(unAuthAccess)

Fig. 6. Attack Graph for the Safe Box Scenario

CardInfo connects the attacker to the RFID card. Furthermore,
once the attacker has this information, we can consider the card
information to be compromised (κComp(CardInfo)). Consid-
ering the high-level property about the RFID card described
above (the RFID card is not safe to the copy attack) and that
the attacker can spread the copy attack, TAMELESS derives
(using Rule 7) that the RFID card can be compromised by the
copy card threat, as shown below.

Connect(CardInfo,Att, key) ∧ κComp(Att)∧
Spread(Att, copy) ∧ ¬Safe(key, copy)∧
κComp(CardInfo) � κComp(key, copy)

Then, as the card can be compromised (i.e., copied), we derive
using Rule 6 that the door lock can be compromised by copying
the card. In detail, we know that the lock is controlled by the
RFID card and is not safe to the unAuthUser threat and that
the RFID card can spread this threat. Thus, as the card can be
compromised, we derive that the lock can also be compromised,
as shown below.

Control(key, lock) ∧ κComp(key, copy)∧
Spread(key, unAuthUser) ∧ ¬Safe(lock, unAuthUser)

� κComp(lock, unAuthUser)

If the lock is compromised, it is no longer valid (see high-
level property definitions) and the room the door leads to is
no longer defended from unauthorized access (unAuthAccess):

Protect(lock, room, unAuthAccess), ¬Val(lock),
¬Def(room, unAuthAccess)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

From the example in section 4.1.2, we know that the password
(Pw) can be compromised as it can be stolen through a phishing
attack: κComp(Pw, stealInfo). Thus, we can derive the Pw to
not be valid (¬Val(Pw)), following the high-level property
definition (¬Val(Pw) = Comp(Pw)).
As the Pw was protecting the sbox from unauthorised accesses
but is no longer valid, and there is no other way to protect the
safe box, then we can derive that it is not defendable.

¬Def(sbox, unAuthAccess) =

Protect(Pw, sbox, unAuthAccess) ∧ ¬Val(Pw)

From the definition of ¬Safe we can derive that sbox is not safe
as shown below.

¬Safe(sbox, unAuthAccess) =

Vul(sbox,unAuthAccess) ∧ ¬Def(sbox, unAuthAccess)

We know that the room connects the attacker to the safe box and
that the attacker can spread the unauthorised access. Further-
more, we derived that the safe box is not safe to unauthorised
access and the room is not defendable. We thus derive from
the information above by applying Rule 7 that the safe box can
be compromised through an authorised access, as the attacker
can physically access the room7, by compromising its protection
measures, and they can insert the password of the safe box.

Connect(room,Att, sbox) ∧ κComp(Att)∧
Spread(Att, unAuthAccess) ∧ ¬Safe(sbox,unAuthAccess)∧
¬Def(room, unAuthAccess) � κComp(sbox, unAuthAccess)

To summarise, in order to compromise the safe box, the attacker
needs to exploit the vulnerabilities of the human component
of the system, i.e., the employee’s vulnerability to phishing
attacks, the vulnerabilities of the cyber component, i.e., the
employee’s PC, and the vulnerabilities of the physical compo-
nent, i.e., the RFID card of the door lock. As shown in this
example, thanks to the use of our threat analysis the security
architect is able to understand which part of their system can
be compromised by exploiting a sequence of vulnerabilities
belonging to different components of the system. As clearly
seen in this example, without considering the human element
in the threat model, the threat landscape is limited and the
analysis is not exhaustive.

Moreover, due to the representation of the graph, the ar-
chitect is able to choose the best place where to put in place
a new security mechanism (i.e., protection and/or monitor
component) to interrupt the attack propagation or to prevent
the occurrence of the attack. For example, it is possible to avoid
the compromise of the safe box in several ways: (i) by installing
an anti-phishing system on the email server; (ii) using a door
lock where entry cards cannot be copied; (iii) add a guard in the
room or (iv) adding a camera in the room. Clearly each solu-
tion has its advantages and disadvantages. However, through
TAMELESS, the security architect has a holistic view on how
to provide the security of a system, and they can consider each
solution based on effectiveness, logistic, economical, and ethical
aspects.

5.2 Compromise a Web Server
We now consider a second scenario where the attacker needs to
exploit the vulnerabilities of different components of our smart
building to compromise a particular entity.
This case study takes place in two different rooms, as shown in
Fig. 7. We consider a web server, denoted by server, located in
one of the rooms, which is protected from unauthorised access,
denoted by unAuthAccess, through biometric authentication,

7. For simplicity, we ignore that the attacker needs to physically get
to the room, e.g., by entering the building.

Air

servers

fanbox Internet

Fig. 7. A threat model for compromising a Web Server

bioMAuth. An air conditioning unit, denoted by AC, is located
in the same room. The server functionality depends on the
functionality of the AC, because if the AC is not working,
then the server overheats and shuts down or can be damaged.
The server hosts a particular website, and is protected against
cyber-attacks on the website (Safe(server, cyberAttack)). The
functionality of the website depends on the functionality of
the web server. The server is connected to the internet. The
functionality of the AC depends on the functionality of its fan-
box, denoted by fan, located on the terrace of the building. We
introduce below the main properties of this scenario.

Contain(server,website), Depend(website, server),

Contain(room, server), Contain(room,AC),

Depend(AC, fan), Depend(server,AC),

Connect(path,Att, fan), Connect(path2,Att, room),

αVul(fan,PhysAtt), αVul(AC,PhysAtt), αComp(Att),

αVul(server, cyberAttack), αVul(website, cyberAttack),

Spread(Att,PhysAtt), Protect(bioMAuth, room, unAuthAccess),

Safe(server, cyberAttack), Safe(bioMAuth, falsification)

A malicious attacker is not able to compromise the website
or the web server using a cyber-attack, e.g, DoS, or malware, or
by compromising cyber components related to them, as there are
protection measures in place that are assumed not vulnerable.
The attacker is also not able to compromise any human compo-
nent, as the access to the room is restricted to a small group
of trusted people. Furthermore, the attacker is also not able
to access the room, thus, they cannot compromise the server
physically or take physical control over it.

Let us now analyse the given properties and relations for
this case study. The AC unit is driven by an external fan-box. As
this is placed outside, the box is vulnerable to physical attacks.
Therefore, we can derive that it is not defendable and not safe
with respect to physical attacks.

¬Def(fan,PhysAtt),¬Safe(fan,PhysAtt),¬Def(path,PhysAtt)

This is automatically derived by Rule 7 as shown below.

Connect(path,Att, fan) ∧ κComp(Att)∧
¬Safe(fan,PhysAtt) ∧ Spread(Att,PhysAtt)∧
¬Def(path,PhysAtt) � κComp(fan,PhysAtt)

We can further derive that the fan-box can malfunction given
that it can be compromised; rule 9 states that if an entity is
compromised, then it can malfunction.

κComp(fan,PhysAtt) � κMalfun(fan)

As the functionality of the AC depends on the functionality of
its fan-box, we can derive that if the fan-box malfunctions the
AC can also malfunction, using rule 10.

κMalfun(fan) ∧Depend(AC, fan) � κMalfun(AC)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

κComp(Att)

αComp(Att)

∧

Val(path2)

∧

Def(room,unAuthAccess)

Val(bioMAuth)

∧

∧

Val(path)

αVul(fan,PhysAtt) κComp(fan,PhysAtt) κMalfun(fan)

∧

κMalfun(AC)∧κMalfun(server)∧κMalfun(website)

Connect

Protect(unAuthAccess)

Connect

Depend

DependDepend

Fig. 8. Attack Graph for the Web Server Scenario

As the functionality of the server depends on the AC, we
can further derive that the server can malfunction if the air
conditioning malfunctions using rule 10.

κMalfun(AC) ∧Depend(server,AC) � κMalfun(server)

As the functionality of the website depends on its server, we
can derive that the website can malfunction, as shown also in
Example 4.1.3.

κMalfun(server) ∧Depend(website, server) � κMalfun(website)

Thus, in this case, the attacker can compromise the functionality
of a digital component of the system (the website) by perform-
ing a physical attack on a physical component, that at first sight is
not directly connected with the website. In particular, as shown
in (Fig. 8), the attacker does not need to physically access the
server room but can create a cascading malfunction between
the different components leveraging the fact that they depend
on each other. This use case shows users that there is no need to
add more protection to the room, the server, or the employee,
but better physical security to the space outside e.g., the terrace
and the fan-box.

5.3 Attack on a Wind Farm
We now show a representation in our model of an attack on
a wind farm, first presented and realised in [3], [15]. In this
case, the attacker is able to physically access the wind turbine
by physically breaking the lock on the wind turbine door. Once
the attacker accesses the wind turbine, they place a Rasberry Pi
into the network switch, thus, enabling remote digital access.
The network switch is connected through the network with the
Wind Farm Control Network (WFCN). Thus, the device newly
plugged in can now access the WFCN that has no protection
measures on the inside network. Several attacks can now occur,
e.g., implanting malware in the WFCN, obtaining information,
network configuration, protocols, as well as, the disruption of
the Wind Farm operation (that brings economical losses) and
damage to key physical components given the architecture of
the Wind Turbine and the Wind Farm.

In our model, it is possible to see that the Wind Turbine
(WT) is potentially vulnerable to physical unauthorised access
(unAuthAccess) as it is protected against this attack by a
lock, which is vulnerable to be physically broken (physBreak).
Given that the lock is not protected against this type of attack
we can state that it is not defended and not safe against this attack.

αVul(WT, unAuthAccess), Protect(lock,WT, unAuthAccess),
¬Def(lock,physBreak)

Given the above information, we can derive that the lock is
compromised by the attacker (Att) through a physical attack. As
the attacker can now physically get to the Wind Turbine, which

is usually located in remote areas and with no surveillance and
thus not defended.

Connect(path,Att, lock) ∧ αComp(Att)∧
Spread(Att, physBreak) ∧ ¬Safe(lock,physBreak)∧
¬Def(path,physBreak) � Comp(lock, physBreak)

Once the lock has been compromised, the attacker can physi-
cally access the Wind Turbine.

Connect(lock,Att,WT) ∧ Comp(Att)∧
Spread(Att, unAuthAccess) ∧ Comp(lock)∧
¬Safe(WT,unAuthAccess) � Comp(WT, unAuthAccess)

Subsequently, the attacker by having physical access, can con-
nect the malicious Rasberry Pi in the network switch located
inside the Wind Tower.

Contain(WT, switch) ∧ κComp(WT)∧
¬Safe(switch, unAuthAccess) ∧ Spread(WT, unAuthAccess)

� Comp(switch, unAuthAccess)

The Rasberry Pi can then attack the Wind Farm Control Net-
work e.g., through a malware program (malw)8.

Connect(network, switch,WFCN) ∧ κComp(switch)∧
Spread(switch,malw) ∧ ¬Safe(WFCN,)∧
¬Def(network,malw) � Comp(WFCN,malw)

An analysis of this example also shows possible mitigations
that can be deployed including: (i) putting a physical guard
or a camera to monitor the entrance to the wind turbines; (ii)
improving the quality of the lock; (iii) protecting the internal
network from internal attacks e.g., using a 0-trust strategy.

Once again, this case study shows, like the previous ones,
the importance of a complete view of the physical, cyber,
and human interaction. In particular, it shows the interactions
between human-physical and human-cyber, that are not con-
sidered exhaustively by the existing threat models.

6 RELATED WORK
The work presented here relates to a number of different
research studies ranging from threat modelling and analysis,
to formal specifications of smart systems. Specifically, we focus
on the closest related approaches that seek to analyse the
security properties in cyber-physical and smart systems and
the existing studies that focus on attack graph generation from
threat modelling and analysis.

Generally, a significant amount of effort has been devoted in
the literature to the development of threat models and analysis.
A recent survey of existing threat models and threat analysis
for other application domains is provided in [24].

6.1 Threat analysis of cyber-physical systems
In recent years, threat analysis for cyber-physical and smart
systems is becoming a popular topic in cybersecurity. Some of
the most promising results are shown in [9], [25], [26], [27],
where the authors present novel threat models but none of
these studies models together the system’s cyber, physical and
human aspects together.

Tsigkanos et al. [25], [26] described an approach for topology
aware adaptive security for cyber-physical systems, focusing on
the interplay between cyber and physical spaces characterising
the operational environment. Even though this work shares
some ideas with our paper, their goal is different: they aim

8. The network and the other components might be protected from
external malware from outside components, but the internal network is
considered trusted and thus, no protective measures are in place.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

to identify potential violations of security requirements (specu-
lative threat analysis), whilst we aim to identify the untrusted
elements of our system.

Lemaire et al. [9] presented a tool that automates in a formal
way the threat analysis of ICS (Industrial Control Systems).
Using a knowledge-based system, the tool extracts vulnera-
bilities both at the component and system level. When the
vulnerabilities are extracted, the security security architects can
adapt the system to mitigate or remove them.

Oladimeji et al. [27] proposed a goal-oriented approach
for analysing cyber threats. The approach provides support
for guiding the threat analysis process using the notions of
negative soft goals for detecting cyber threats and identifying
solutions for threat mitigation.

Akella et al. [28] defined a formal method to detect threats in
confidential communications. The proposed approach detects
threats by analysing the interactions between physical systems
with the cyber components. Sensitive information about a phys-
ical component can be inferred through behaviour observation
about the related cyber components.

Rocchetto and Tippenhauer [29] survey the different at-
tacker models and profiles proposed in the literature with a
focus on Cyber-Physical Systems and Industrial Control Sys-
tems, in particular. They define taxonomy and identify several
attacker profiles (e.g., basic use, cybercriminal, hacktivist, a
nation-state) based on measures of the attributes defined in
the taxonomy. Their framework does not appear to consider
the type of hybrid attacks we consider here, i.e. combining
physical and cyber attack steps as part of the same attack,
and their framework could be extended to account for this.
However, they consider two relevant attack dimensions: the
Aim-Physical/Aim-Virtual dimension, which represents whether
the attacker’s objective is a physical or a virtual component, and
the Distance of the attacker concerning the target. The semantics
of the former is not entirely clear as in a CPS/ICS context, the
attacker may seek to cause physical damage by employing only
cyber attack steps. This is different from the hybrid attacks we
consider. With respect to the latter, the physical attack steps we
consider require a level of physical proximity.

Finally, in [6] the authors constructed a model for threat
analysis on Virtualized Systems called FATHoM. We took in-
spiration from this work’s formal description of the system
components relations and security properties. In our work we
extend, change and enrich this model, by adding more types of
relationships, security properties, derivation rules and defining
an attack graph representation, in order to properly model
and detect hybrid threats in smart systems. In particular, our
framework represents entities that can be of cyber, physical,
or human nature, while FATHoM is constructed to analyse the
threat models for Virtualized (Cloud) Systems. Given the triple
nature of our cyber-physical and smart systems, we include
properties and relations that cannot hold in Virtualized Sys-
tems. Furthermore, our model represents also the functionality
property of the system’s entities.

6.2 Threat Detection via Attack Graphs
Several studies [5], [8], [30], [31], [32], [33] have investigated the
generation of attack graphs from the threat model and analysis
of the system. These studies use the generated attack graphs to
detect and show threats relations and possible mitigations, in a
graphical representation. To the best of our knowledge, we list
and present below the more relevant studies.

MulVAL (Multihost, multistage Vulnerability Analysis) is
a framework for modelling and analyzing the interaction of
software bugs with system and network configurations. As
it uses First Order Logic, it is able to automatically infer
system vulnerability and derives the attack graphs with the
probability that an adversary could successfully conduct an
attack. MulVAL’s language and infer system was extended

in several works and by several research groups. The most
significant improvements are reported in [34], [35]. In this work
we use MulVAL for the automatic graph generation provided
the inputs from our hybrid threat model.

In [8], the authors proposed an attack graph generation tool
that builds upon MulVAL. In their representation, a node in the
graph is a logical statement, i.e., representing some aspect and
propriety of the network. While, the edges of the graph, specify
the causality relations between network configurations and an
attacker’s potential privileges. The attack graph, in this way,
illustrates snapshots of attack steps and causes of the attacks
(“how and why the attack can happen”).

In [30], the authors presented methodologies that starting
from the information of the MulVAL model are able to: (i)
automatically identify portions of an attack graph that do not
help a user to understand the core security problems and so can
be trimmed, and (ii) automatically group similar attack steps as
virtual nodes in a model of the network topology, to increase
the understandability of the data.

In [31], the authors proposed a static analysis approach
where attack trees are automatically inferred from a process
algebraic specification. In their algebraic specification, they
identify an attack as a set of channels that an adversary has
to know in order to attain a given location in the system.

P2CySeMoL (Predictive, Probabilistic Cyber Security Mod-
elling Language) [32] provides an attack graph tool that can
be used to estimate the likelihood that professional penetration
testers are able to accomplish different attacks on enterprise
architectures within time(s) designated by a user. The proposed
tool automatically generates attack graphs from a CySeMoL
specification. P2CySeMoL as well as CySeMol combine attack
graphs and system models through the use of a language
that is not flexible. In order to introduce flexibility, the Meta
Attack Language (MAL) was introduced in [36] that is a domain
specific language for probabilistic threat modelling and attack
simulations. Starting from the MAL language, powerLang [37]
was proposed to create and evaluate a MAL-based domain-
specific languages for the representation and simulation of
cyber-attacks for the power domain (i.e., power grids, energy
providers, and other critical infrastructure).

Finally, in [33] the attack graphs are generated using an
ontology and SWIRL (Semantic Web Rule Language) rules to
express cause-consequence relationships of all known attack
scenarios.

The main difference between the existing approaches with
our work is that these studies do not consider simultaneously
the physical, cyber, and human aspects. Moreover, in the ap-
proaches proposed by Mulval, P2CySeML and MAL a user or
an item has only a static role. Furthermore, no relationships
between the system’s components are considered, as well as
aspects like monitoring. Except for the works based on MulVAL
no logical inference is applied to the attack graph analysis.

7 CONCLUSION
In this work, we propose a novel hybrid threat model and
analysis that permits us to describe and derive the security
state of smart systems. Our approach includes in its reasoning
the cyber, physical, and human aspects as well as relations
between them and the relationships between the architectural
components of the system. To the best of our knowledge, this
is the first threat model that describes and analyses threats for
smart hybrid systems, where the system’s components can be
of cyber, physical, and/or human nature.

The novel threat model introduced is able to represent the
various relations between the components of the system, their
security properties, and their relations with the possible threats.
We analyse the different aspects and properties of the system’s
components that are not simply considered as possible sources
of threat, but also considering their defensive and preventive

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

capabilities. An important aspect is the analysis of the human
aspects of some components both in terms of their vulnerabili-
ties but also in their role of protecting the physical and digital
aspects of the system.

Our model and analysis are implemented in a Prolog based
tool called TAMELESS. We tested TAMELESS in several sce-
narios of which two smart systems and a critical infrastructure
attack example were presented in this paper. We provided in
detail the threat analysis steps performed by our threat model
for one of the scenarios and an overview for the other two. Our
tool automatically generates attack graphs that can be used by
the security analyst/system administrator to understand the
current state of the system and its components. In particular,
the threats and vulnerabilities of the system and system’s
components are identified. The result of the tool can be used
also to identify the most-effective countermeasures, as the user
given the current state of the system can decide to make some
appropriate changes to it. Before making the changes in the real
system, the user can simulate the state of the system with the
changes using TAMELESS and decide if they are appropriate
or not.

An interesting direction for future work is the automatic ex-
traction of the relations and security properties of the system’s
components. While in this work, we provided them to the threat
model, many could be extracted automatically from system
designs, physical plans, Building Information Models etc.. We
see the smart building scenario as a good starting point, as the
increased use of Building Information Modelling readily makes
available not only the physical plans of the building but also
its interconnections with the digital aspects of the system and
the building management systems. Industrial systems such as
in Industry 4.0 or industrial processes are also good candidates
where the design documents include much of the information
needed to automatically extract the model. Another interesting
automation aspect that we aim to address is the integration
with existing vulnerability databases (e.g., CVEs) to further
automate the creation of the model.

The relations, security properties, and rules used by our
threat model are static and have binary values. By associating
stochastic information with the different properties and vulner-
abilities it is possible to reason about risk management both
statically at design time or during an attack, as is done in
several studies on attack graphs. In the future, we also aim
to investigate how TAMELESS can be extended to dynamic
systems where new components can join or leave the system
and where it is possible to reason about temporal properties.

Finally, we aim to enrich the expressiveness and reason-
ing capabilities of our model by adding time constraints and
probabilistic assumptions on the relations and rules, in order to
model more complex systems, such as resilient components or
devices able to auto-repair.

REFERENCES

[1] S. K. Khaitan and J. D. McCalley, “Design techniques and appli-
cations of cyberphysical systems: A survey,” IEEE Systems Journal,
vol. 9, no. 2, pp. 350–365, 2015.

[2] Verizon, “Data Breach Investigations Report,” 2019.
[3] J. Staggs, D. F. Ferraiolo, and S. Shenoi, “Wind farm security: attack

surface, targets, scenarios and mitigation,” IJCIP, vol. 17, pp. 3–14,
2017.

[4] D. Sgandurra and E. Lupu, “Evolution of attacks, threat models,
and solutions for virtualized systems,” ACM Comput. Surv.,
vol. 48, no. 3, pp. 46:1–46:38, Feb. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2856126

[5] X. Ou, S. Govindavajhala, and A. W. Appel, “Mulval: A logic-
based network security analyzer.” in USENIX security symposium,
vol. 8. Baltimore, MD, 2005, pp. 113–128.

[6] D. Sgandurra, E. Karafili, and E. Lupu, “Formalizing threat models
for virtualized systems,” in Data and Applications Security and
Privacy XXX, S. Ranise and V. Swarup, Eds. Cham: Springer
International Publishing, 2016, pp. 251–267.

[7] H. Holm, T. Sommestad, M. Ekstedt, and L. Nordström, “Cysemol:
A tool for cyber security analysis of enterprises,” in 22nd Interna-
tional Conference and Exhibition on Electricity Distribution (CIRED
2013), June 2013, pp. 1–4.

[8] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach
to attack graph generation,” in Proceedings of the 13th ACM
Conference on Computer and Communications Security, ser. CCS ’06.
New York, NY, USA: ACM, 2006, pp. 336–345. [Online]. Available:
http://doi.acm.org/10.1145/1180405.1180446

[9] L. Lemaire, J. Vossaert, J. Jansen, and V. Naessens, “Extracting
vulnerabilities in industrial control systems using a knowledge-
based system,” in Proceedings of the 3rd International Symposium for
ICS & SCADA Cyber Security Research, ser. ICS-CSR ’15. Swindon,
UK: BCS Learning & Development Ltd., 2015, pp. 1–10. [Online].
Available: https://doi.org/10.14236/ewic/ICS2015.1

[10] Y. Mathov, N. Agmon, A. Shabtai, R. Puzis, N. O. Tippenhauer,
and Y. Elovici, “Challenges for security assessment of enterprises
in the iot era,” arXiv preprint arXiv:1906.10922, 2019.

[11] ENISA, “ATM cash-out attacks,”
https://www.enisa.europa.eu/publications/info-notes/atm-
cash-out-attacks, 2018.

[12] T. J. Horan, “Double-Digit ATM Compromise Growth Con-
tinues in US,” https://www.fico.com/blogs/double-digit-atm-
compromise-growth-continues-us, 2017.

[13] EAST, “ATM Physical Attacks in Europe on the increase,”
https://www.association-secure-transactions.eu/atm-physical-
attacks-in-europe-on-the-increase/, 2019.

[14] N. Scaife, C. Peeters, and P. Traynor, “Fear the reaper: Charac-
terization and fast detection of card skimmers,” in 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018., 2018, pp. 1–14.

[15] J. Staggs, “Adventures in attacking wind farm control networks,”
2017.

[16] T. Swift and D. s. Warren, “Xsb: Extending prolog with tabled
logic programming,” Theory Pract. Log. Program., vol. 12, no. 1-2,
pp. 157–187, Jan. 2012.

[17] L. Muñoz González, D. Sgandurra, A. Paudice, and E. C. Lupu,
“Efficient attack graph analysis through approximate inference,”
ACM Trans. Priv. Secur., vol. 20, no. 3, jul 2017. [Online]. Available:
https://doi.org/10.1145/3105760

[18] M. Ekstedt, P. Johnson, R. Lagerström, D. Gorton, J. Nydrén, and
K. Shahzad, “Securi cad by foreseeti: A cad tool for enterprise
cyber security management,” in 2015 IEEE 19th International Enter-
prise Distributed Object Computing Workshop, 2015, pp. 152–155.

[19] J. Soikkeli, G. Casale, L. Munoz-Gonzalez, and E. C. Lupu, “Re-
dundancy planning for cost efficient resilience to cyber attacks,”
IEEE Transactions on Dependable and Secure Computing, pp. 1–1,
2022.

[20] R. A. Kowalski and F. Sadri, “Reconciling the event calculus with
the situation calculus,” J. Log. Program., vol. 31, pp. 39–58, 1997.

[21] H. S. Lallie, K. Debattista, and J. Bal, “A review of attack graph
and attack tree visual syntax in cyber security,” Computer Science
Review, vol. 35, p. 100219, 2020.

[22] L. Muñoz-González, D. Sgandurra, M. Barrère, and E. C. Lupu,
“Exact inference techniques for the analysis of bayesian attack
graphs,” IEEE Transactions on Dependable and Secure Computing,
vol. 16, no. 2, pp. 231–244, March 2019.

[23] M. Barrère and E. C. Lupu, “Naggen: A network attack graph
generation tool — ieee cns 17 poster,” in 2017 IEEE Conference on
Communications and Network Security (CNS), 2017, pp. 378–379.

[24] W. Xiong and R. Lagerström, “Threat modeling – a systematic
literature review,” Computers Security, vol. 84, pp. 53–69, 2019.

[25] C. Tsigkanos, L. Pasquale, C. Ghezzi, and B. Nuseibeh, “Ariadne:
Topology aware adaptive security for cyber-physical systems,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 2, May 2015.

[26] ——, “On the interplay between cyber and physical spaces for
adaptive security,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 3, pp. 466–480, May 2018.

[27] E. A. Oladimeji, “Security threat modeling and analysis: A goal-
oriented approach,” 2006.

[28] R. Akella, H. Tang, and B. M. McMillin, “Analysis of information
flow security in cyber-physical systems,” International Journal of
Critical Infrastructure Protection, vol. 3, no. 3, pp. 157 – 173, 2010.

[29] M. Rocchetto and N. O. Tippenhauer, “On attacker models and
profiles for cyber-physical systems,” in ESORICS (2), ser. Lecture
Notes in Computer Science, vol. 9879. Springer, 2016, pp. 427–449.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[30] J. Homer, A. Varikuti, X. Ou, and M. A. McQueen, “Improving
attack graph visualization through data reduction and attack
grouping,” in Visualization for Computer Security, J. R. Goodall,
G. Conti, and K.-L. Ma, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 68–79.

[31] R. Vigo, F. Nielson, and H. R. Nielson, “Automated generation
of attack trees,” in 2014 IEEE 27th Computer Security Foundations
Symposium, July 2014, pp. 337–350.

[32] H. Holm, K. Shahzad, M. Buschle, and M. Ekstedt, “P2CySeMoL:
Predictive, probabilistic cyber security modeling language,” IEEE
Transactions on Dependable and Secure Computing, vol. 12, no. 6, pp.
626–639, Nov 2015.

[33] S. Wu, Y. Zhang, and X. Chen, “Security assessment of dynamic
networks with an approach of integrating semantic reasoning
and attack graphs,” in 2018 IEEE 4th International Conference on
Computer and Communications (ICCC), Dec 2018, pp. 1166–1174.

[34] E. Bacic, M. Froh, and G. Henderson, “Mulval extensions for
dynamic asset protection,” Cinnabar Networks INC Ottawa (On-
tario), Tech. Rep., 2006.

[35] C. Wang, K. Li, Y. Tian, and X. He, “Network risk assessment
based on improved mulval framework and hmm,” in Security and
Privacy in New Computing Environments, J. Li, Z. Liu, and H. Peng,
Eds. Cham: Springer International Publishing, 2019, pp. 298–307.

[36] P. Johnson, R. Lagerström, and M. Ekstedt, “A meta
language for threat modeling and attack simulations,”
ser. ARES 2018. ACM, 2018. [Online]. Available:
https://doi.org/10.1145/3230833.3232799

[37] S. Hacks, S. Katsikeas, E. Ling, R. Lagerström, and M. Ekstedt,
“powerLang: a robabilistic attack simulation language for the
power domain,” Energy Informatics, vol. 3, no. 1, pp. 1–17, 2020.

Fulvio Valenza received the M.Sc. (summa cum
laude) and Ph.D. (summa cum laude) degrees
in computer engineering from the Politecnico di
Torino, Turin, Italy, in 2013 and 2017, respec-
tively. His research interests include network
security policies. He is currently an Assistant
Professor with the Politecnico di Torino, where
he works on orchestration and management
of network security functions in the context of
SDN/NFV-based networks.

Erisa Karafili is a Lecturer (Assistant Professor)
in Cybersecurity at the University of Southamp-
ton, where she is currently working on cyber-
attacks investigation and attribution. Her main
research areas are Formal Methods applied to
Security and Privacy problems, Data Sharing in
Cloud Environments, Data Access Control, Ar-
gumentation and Knowledge Representation for
Cyber Security.

Rodrigo Vieira Steiner is a computer scientist
with over 10 years of experience working both
in industry and academia. He received his BSc
and MSc degrees from the Federal University
of Santa Catarina and his PhD from Imperial
College London. He is interested and has been
involved in the research and development of op-
erating systems, embedded systems, computer
networks, wireless sensor networks, internet of
things, and cybersecurity.

Emil C. Lupu is Professor of Computer Systems
in the Department of Computing, Imperial Col-
lege London where he leads the Resilient Infor-
mation Systems Security Group. His research
activities focus on the resilience of systems to
adversarial threats and means to enable their
safe operation even when parts of the systems
have been compromised.

