
1Scientific Data |           (2022) 9:645  | https://doi.org/10.1038/s41597-022-01744-1

www.nature.com/scientificdata

MicroLib: A library of 3D 
microstructures generated from  
2D micrographs using SliceGAN
Steve Kench    ✉, Isaac Squires   , Amir Dahari    & Samuel J. Cooper   

3D microstructural datasets are commonly used to define the geometrical domains used in finite 
element modelling. This has proven a useful tool for understanding how complex material systems 
behave under applied stresses, temperatures and chemical conditions. However, 3D imaging of 
materials is challenging for a number of reasons, including limited field of view, low resolution 
and difficult sample preparation. Recently, a machine learning method, SliceGAN, was developed 
to statistically generate 3D microstructural datasets of arbitrary size using a single 2D input slice 
as training data. In this paper, we present the results from applying SliceGAN to 87 different 
microstructures, ranging from biological materials to high-strength steels. To demonstrate the accuracy 
of the synthetic volumes created by SliceGAN, we compare three microstructural properties between 
the 2D training data and 3D generations, which show good agreement. This new microstructure library 
both provides valuable 3D microstructures that can be used in models, and also demonstrates the broad 
applicability of the SliceGAN algorithm.

Background
Understanding the influence of a material’s microstructure on its performance has led to significant advance-
ments in the field of material science1–3. Computational methods have played an important role in this suc-
cess. For example, finite element analysis can capture complex stress fields during mechanical deformation of 
structural materials4,5, and electro-chemical modelling can help to explain rate limiting factors during battery 
discharge6,7. These simulations allow high-throughput exploration of a systems performance under a range of 
conditions8,9. In many fields, this has enabled massive acceleration of the materials optimisation process com-
pared to experiments alone, and with significantly reduced cost. Importantly, 3D datasets are crucial for many 
applications where 2D datasets cannot be used to determine key material properties. For example, mechanical 
deformation, crack propagation and tortuosity are three material characteristics that behave fundamentally dif-
ferently in 3D compared to 2D.

The fidelity of the 3D microstructural datasets commonly required for physical modelling will influence the 
simulations reliability. Unfortunately, to the authors knowledge, there are no 3D material databases, with most 
data instead scattered across the literature. This is likely due to the high cost and technical experience required 
for 3D imaging techniques, which inhibits free sharing of data. Furthermore, where there is data available, it 
is commonly of limited resolution and field of view due to the intrinsic 3D imaging constraints of techniques 
such as focussed ion beam scanning electron microscopy and x-ray tomography10. In comparison, diverse, high 
resolution 2D micrographs are abundantly available online due to the prevalence of 2D imaging techniques such 
as light microscopy and scanning electron microscopy. DoITPoMS is one excellent micrograph repository with 
a broad range of alloys, ceramics, bio-materials and more11. UHCSDB is a similar repository, focused solely on 
high carbon steels12. ASM International has a collection of 4100 micrographs, though access costs a $250 yearly 
subscription13.

In this paper, we aim to address the disparity between the availability of 2D micrographs compared to 3D. A 
number of previous approaches have been developed to address this problem through dimensionality expan-
sion, which commonly entails statistical generation of 3D micrographs using statistics from a 2D training image. 
These are typically physic based and require the extraction of particular metrics from the training data for 
comparison. For example, sphere packing models using 2D particle size distributions14, poly-crystalline grain 
growth algorithms15, and data fusion approaches16.
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In this work, we use SliceGAN, a recently developed convolutional machine learning algorithm for dimen-
sionality expansion17. A typical GAN uses two convolutional networks (generator and discriminator) to learn 
to mimic dataset distributions. The generator synthesises fake examples, and the discriminator identifies dif-
ferences between these fake samples and the true training data distribution. Through iterative learning, the 
discriminator informs the generator how to make increasingly realistic samples that match the real training 
data. Importantly, in a typical set-up, the dimensionality of the generated images and the training data match. 
To facilitate different dimensionalities, SliceGAN uses a simple modification; a 3D generator network produces 
a sample volume, then a 2D discriminator checks the fidelity of one slice at a time, where the 2D dimensionality 
of the slice now matches the 2D dimensionality of the training images. The algorithm is described in full in the 
original manuscript17. SliceGAN is particularly well suited to the task at hand due to a number of key features. 
First, broad applicability means that the same algorithm and hyper-parameters can be used for a very diverse set 
of microstructures, as demonstrated in this dataset. Second, high speed training (typically 3 hrs on an RTX6000 
GPU) and generation (<3 seconds for a 5003 voxel volume) enables the synthesis of hundreds of large samples 
for statistical experiments, as well as the generation of volumes far larger than it is currently possible to obtain 
directly through imaging (>20003 voxel). Third, complete automation of the 2D to 3D algorithm is possible 
with no user defined inputs, such as statistical features, being required. This combination of strengths makes 
SliceGAN an excellent candidate for building the first large scale 3D microstructural database from existing 
open-source 2D data.

The benefits of this database are twofold. First, we provide a diverse 3D microstructural dataset which can 
be used by the material science community for modelling purposes. Crucially, users are not limited to the single 
example cube we provide, as each data entry also has an associated trained generator neural network (45 Mb in 
size) available to download. This can be used to synthesise arbitrary size datasets by cloning the SliceGAN repo 
and running the relevant scripts (see methods). The second important function of this database is as a demon-
stration to the material science community of the strengths of SliceGAN. The entries we provide are diverse in 
their nature, and contained in an easily searchable website. Interested researchers can thus use this website to 
check whether SliceGAN works on materials in their research field, and see examples of generated outputs. This 
encourages the submission of more entries to the database, and the further use of SliceGAN in the field of com-
putational materials. The key data processing steps and datasets are presented in Fig. 1.

Methods
As shown in Fig. 1, the database construction required several distinct steps. First, a subset of micrographs 
were selected using a set of exclusion criteria. A number of simple pre-processing operations were then applied 
to ensure suitability for the SliceGAN workflow. An automated in-painting method was used to remove scale 
bars from the micrographs; compared to a cropping approach, this saves crucial data in an already extremely 
data-scarce setting. Finally, the resulting micrographs are used to train SliceGAN generators, each of which was 
used to generate an example 3203 cubic volume. Each of these steps can be reproduced by cloning the https://
github.com/tldr-group/microlibMicroLib repository and running main.py in the relevant modes, as described 
in the repository README.

DoITPoMS

• Composition
• Technique
• Contributor
• Description

• Name
• Image
• Keyword
• Category

The original collection of 818 
open source micrographs, with a 

selection of labels of which we 
collect the following:

2D dataset

 

A subset of 87 images 
appropriate for SliceGAN, with 

scalebars inpainted and 
segmentation applied. As well as 

DoITPoMS labels, we add the 
voxel size in microns and labels 

for the original scale bar location 
and colour for reproducibility.

Exclusion criteria
87 of the 818 micrographs pass 

the exclusion criteria, the 
remainder are discarded 

Image Processing
• Segmentation
• Scale bar identification
• Cropping and rotation
• Voxel size calculation 
 

Inpainting
79 of the 87micrographs, 

including 4 grayscale, have their 
scale bars inpainted

3D dataset

SliceGAN
Train using sliceGAN for 3 hours 

on an RTX6000, with a new 
training run for each micrograph. 

A single example cube is then 
generated, saved and raytraced 

at 360 degree rotations to render 
an animation of the resulting 

microstructures

We provide one example 3D tif 
cube per entry. Also provided are 

the trained generators, which 
can be used to synthesise new 

and unique volumes of any size, 
period structures and more, as 

described in the original 
sliceGAN manuscript

Fig. 1  Starting from the DoITPoMS dataset, 4 key processing steps are used to generate the final 3D dataset, 
with an intermediate 2D cleaned and labelled dataset also available for download.
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Exclusion criteria.  DoITPoMS includes 818 diverse micrographs which can easily be downloaded directly 
from their website. However, not all are suitable for SliceGAN, which has a number of limitations. As such, the 
following exclusion criteria are applied to leave 87 feasible microstructures:

	 1.	 Microstructure isotropy–SliceGAN can be used for some anisotropic microstructures, but this mode 
requires multiple perpendicular micrographs which are not available from DoITPoMS.

	 2.	 Feature Representativity–SliceGAN relies on feature statistics to generate realistic 3D volumes. Thus, a 
micrograph containing, for example, a single crystalline grain, is insufficient for the reconstruction of a 3D 
crystalline microstructure.
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Fig. 2  A selection of representative microstructures are shown, where each row depicts a micrograph, as well 
as each key stage of data processing required followed by the final 3D volume. Note the red masked scale bars in 
column 2 have been thickened by 1 pixel in each direction after thresholding of column 1. This ensures that all 
of the scale bar is in-painted, as edges are sometimes missed due to pixelization.
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	 3.	 Even exposure–if parts of the micrograph are brighter than others, this creates significant issues in the final 
3D volume, as the algorithm assumes homogeneity.

	 4.	 Uniqueness–In some cases there are several replicas of a similar microstructure; Different regions of the 
same material are always excluded, whilst where there are multiple magnifications, the max and min mag 
are used to capture different size features.

	 5.	 Image quality–Some micrographs are of too low quality to be worth reconstructing.

Image processing.  This subsection of images were cropped to remove any borders or non-data regions, such 
as magnification information underneath the micrograph. Furthermore, of the 87 micrographs, 78 were identified 
as appropriate for segmentation as they contained easily distinguishable phases. Segmented images are preferable as 
most material simulation techniques require n-phase datasets such that phase properties can be assigned to a voxel. 
A simple thresholding process was applied to give n-phase micrographs, which are also better for the SliceGAN 
training process due to their simplicity. The remaining 9 micrographs were processed as grayscale images. Finally, 

Fig. 3  42 of the 87 microstructures are depicted, selected based on their uniqueness rating. Each volume is 3203 
voxels.
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of the 87 microstructures, 79 had scale bars partially covering the micrograph. In these cases, the colour and loca-
tion of the scale bar is identified and stored as an annotation to allow in-painting as described in the next section.

Scale bar inpainting.  Leaving scale bars in the training data images would result in SliceGAN producing 
unrealistic features in the generated 3D volume, as it would interpret these objects as microstructural features. 
The simplest alternative is to entirely crop the region of the micrographs that contain the scale bar; however, this 
would result in a mean loss of 21% of the training data (when then scale bar and label only actually conceal 1.4% 
of the image on average). The quality of the final reconstructions could be significantly reduced due to a less rep-
resentative and diverse distribution of features, which can lead to over-fitting and non-realistic microstructures. 
To avoid this scenario, we used a machine learning based in-painting technique to remove the scale bars, while 
leaving all surrounding data untouched18. The locations of the scale bars are identified using a simple gui which 
allows the user to select the scale bar colour and adjust a threshold until a sufficiently accurate mask is defined. 
A GAN is then trained to in-paint the masked image, as described in source. The resulting homogeneous micro-
structure is saved in the intermediate 2D dataset.

SliceGAN 3D reconstruction.  Each microstructure is trained on randomly initialised SliceGAN networks 
for 5000 generator iterations, each with batch size 32, which takes less than 3 hours per entry using an RTX6000 
GPU and x CPU. Hyper-parameters are kept consistent with the original SliceGAN paper. The resulting trained 
generators are saved and then used to synthesise a 320 voxel cube, which takes less than 3 seconds. Figure 2 
depicts the outputs at each step for a selection of microstructures.

Data Record
The full dataset can be accessed at zenodo (https://doi.org/10.5281/zenodo.711855919). The dataset is com-
pressed into a single zip file, which contains one sub-folder for each of the 87 entries selected from DoITPoMs. 
Sub-folder names are derived from the DoITPoMS microstructure ID. Each contains media files (.png,.gif,.mp4) 
that illustrate the steps taken to generate the data and display examples of resulting microstructures. They also 
contain trained models and a parameters file (.pt,.data) to allow users to synthesise new volumes.

As well as this set of sub-folders, the root directory also contains an annotations file, data_anns.json. This 
json contains web-scraped descriptors of each microstructure (with the exception of data_type, which was 
defined during this study). The full directory tree and brief descriptions of each file are given below.

https://doi.org/10.1038/s41597-022-01744-1
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Besides zenodo, we have also created https://microlilb.iomicrolib.io, a website where users can visualise 
microstructures and search through the microlib database using keywords and filters. Individual media and 
model files can also be directly downloaded. The web app also provides an easy to use https://microlilb.io/apiAPI 
which the user can query using the same search functionality as the website, allowing for programmatic access to 
the same data and metadata provided by the frontend. Figure 3 shows a selection of the 3D tifs available, though 
readers are encouraged to view the MicroLib website for the best visualisation experience.

Technical Validation
Unlike some machine learning methods, such as auto-encoders, GANs do not attempt to exactly recreate images 
from the training set. Instead, they capture the underlying probability distribution of the training data and syn-
thesise samples with the same distribution of features. This means that there is no ground truth against which 
the generated outputs can be compared. Thus, to quantify the accuracy of the generated 3D volumes compared 
to their original 2D training data, we calculate and compare a number of statistical material properties. These 
tests are only performed on the 78 n-phase materials, as the properties cannot be calculated for grayscale images. 
First, volume fraction (vf), which is simply the proportion of the voxels assigned to a particular phase. As shown 
in Fig. 4a), the 3D agrees well with the 2D training data; the mean percentage error, calculated as −vf(2D) vf(3D)

vf(2D)
, 

is 4.7%. Figure 4b) shows a similar comparison for normalised surface area density, which is calculated as the 
proportion of voxel faces touching both phase 1 and phase 2. The mean percentage error is 4.3%.

As well as these simple metrics, we also can compare the two-point correlation function (2PC) of the training 
data and generated volumes. The 2PC gives the probability of finding the same phase pixel at a given pixel sepa-
ration distance, as describe in more detail in the original SliceGAN paper17. Figure 4c,d each show the 2PC of 8 
randomly selected microstructure entries. In general, the curves are very similar for 2D and 3D.

Although the majority of samples show excellent agreement between 2D and 3D,there are a number of out-
liers, in particular for volume fraction. 5 samples (tags 1, 60, 372, 612, 782) show a volume fraction error greater 
than 5% (Supplementary Fig. S1 shows three of these microstructures, which exemplify the key failure modes to 
be discussed below). Notably, sample 60 is also the outlier in the surface area density plot. To explore the nature 

Fig. 4  Property comparison for 2D training data vs 3D generated volumes. Plots are ordered by increasing 
value in the 2D dataset (volume fraction and surface area for (a) and (b) respectively. Plots (b) and (c) show the 
two-point correlation function for four randomly selected microstructures each. Within each plot, only lines of 
the same colour should be compared as they are from the same material.
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of this error, three repeats were run on the microstructure to test whether the generator would reproduce the 
observed behaviour. The new generators gave the same metrics to within 1%. This implies that in this particular 
use case, well trained generators produce higher volume fractions in 3D than in 2D.

Observing the microstructure itself gives some indication of why this might occur. Sample 60 consists mostly 
of ovals with a few circles, all of similar sizes. Under the assumption of isotropy, we can ask what 3D structure 
we expect SliceGAN to generate, and indeed we quickly conclude there is no feasible isotropic 3D volume that 
can be made where all 2D slices contain only these features. Crucially, we are missing smaller ovals or circles that 
would be present at the edges of spherical or ellipsoidal features. SliceGAN is thus forced to compromise between 
accurately reproducing volume fraction versus the exact feature distribution, as both are not possible. Sample 
782 suffers from the same problem, whilst sample 1 and 372 have large non-representative features which lead 
to a similar scenario. Finally, sample 612 is simply poorly segmented. This demonstrates that poor agreement of 
metrics is one indicator that a non-representative, anisotropic or low quality 2D microstructure has been used 
to train SliceGAN, which is potentially useful in catching cases where the exclusion criteria were insufficient. 
However, it is worth noting that unrealistic features might still occur even when volume fractions and two-point 
correlations match the 2D dataset well. As such, great care should be taken when using these results, and where 
possible, users of SliceGAN should always compare 2D and 3D statistics for properties relevant to the simula-
tions they are conducting.

Code availability
All code for generating the datasets, including image scraping, preprocessing, inpainting and SliceGAN, can be 
accessed openly at the MicroLib github repository, https://github.com/tldr-group/microlib, which includes in-
depth instruction to ensure reproducibility.
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