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A B S T R A C T   

Contact tracing, where exposed individuals are followed up to break ongoing transmission chains, is a key pillar 
of outbreak response for infectious disease outbreaks. Unfortunately, these systems are not fully effective, and 
infections can still go undetected as people may not remember all their contacts or contacts may not be traced 
successfully. A large proportion of undetected infections suggests poor contact tracing and surveillance systems, 
which could be a potential area of improvement for a disease response. In this paper, we present a method for 
estimating the proportion of infections that are not detected during an outbreak. Our method uses next gener
ation matrices that are parameterized by linked contact tracing data and case line-lists. We validate the method 
using simulated data from an individual-based model and then investigate two case studies: the proportion of 
undetected infections in the SARS-CoV-2 outbreak in New Zealand during 2020 and the Ebola epidemic in 
Guinea during 2014. We estimate that only 5.26% of SARS-CoV-2 infections were not detected in New Zealand 
during 2020 (95% credible interval: 0.243 – 16.0%) if 80% of contacts were under active surveillance but 
depending on assumptions about the ratio of contacts not under active surveillance versus contacts under active 
surveillance 39.0% or 37.7% of Ebola infections were not detected in Guinea (95% credible intervals: 1.69 – 
87.0% or 1.70 – 80.9%).   

1. Introduction 

There are many non-pharmaceutical interventions for controlling 
infectious disease epidemics. Some control measures, such as case 
isolation and safe and dignified burials avoid secondary infections but 
others, such as contact tracing, avoid tertiary infections. Measures, 
which avoid secondary infections, are most effective when tertiary in
fections are also avoided and all (or nearly all) infections are identified 
so that interventions can be targeted (Salathé et al., 2020). If contact 
tracing is implemented well, contacts of known cases can take pre
cautions to reduce onward transmission by limiting their contacts and 
isolating quickly on symptom onset (Saurabh and Prateek, 2017; Lópaz 
et al., 2015; Smith et al., 2015). However, if many infections are not 
detected, outbreaks can grow rapidly as undetected infections usually 
infect more people than detected cases (Li et al., 2020). 

Infections or deaths may not be reported for a variety of reasons 
(Gamado et al., 2014). Poor availability of tests at the start of an 
outbreak of an emerging pathogen, such as SARS-CoV-2, may mean that 
those with symptoms cannot be diagnosed (Adalja et al., 2020). 
Asymptomatic individuals may also not know they are infected unless 
tested for other reasons, such as through contact tracing (Lavezzo et al., 
2020). Undetected infections are not unique to SARS-CoV-2 and 
under-reporting is common in Ebola outbreaks due to barriers to 
accessing health care and limited hospital capacity (Dalziel et al., 2018). 
Many patients may not seek health care due to mistrust and if they die, 
may be buried without notification, leading again to those cases being 
missed from official lists (Enserink, 2014). 

Infectious disease analysis and modelling are important tools for 
managing epidemics and can help provide quantitative evidence and 
situational awareness to public health responses (Rivers et al., 2019). 
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The importance of such analyses has been highlighted by the response to 
the COVID-19 pandemic, which has been, to a large extent, informed by 
epidemic modelling e.g. (Enserink and Kupferschmidt, 2020; Flaxman 
et al., 2020; Ferguson N.M., Laydon D., Nedjati-Gilani, 2020). However, 
these models often require robust case data to make accurate trans
mission predictions. Over time attempts have been made to account for 
under-reporting in models. Some models assume perfect reporting (Xia 
et al., 2015; Heesterbeek and Dietz, 1996), however, this can lead to an 
underestimation of the infection rate (Gamado et al., 2014). Other 
methods assume a constant under-reporting rate (Meltzer et al., 2014), 
use data augmentation techniques (Gamado et al., 2014) or rely on more 
complex models to merge multiple data streams through evidence syn
thesis (Knock et al., 2021). More recently, many models have switched 
to using death data, which was believed to be more reliable than case 
data, because it is more likely consistent over time and between coun
tries (Flaxman et al., 2020). This is especially important for methods 
which are robust to constant under-reporting. 

We propose using a quasi-Bayesian next generation matrix (NGM) 
approach in this paper to estimate the proportion of infections that are 
not detected in an outbreak. This method is not disease specific, is simple 
to implement from contact tracing and surveillance data and can be 
repeated throughout the outbreak to provide time varying estimates. We 
investigate the suitability of our method using simulated data and pre
sent two applications of our method: the SARS-CoV-2 outbreak in New 
Zealand (NZ) in 2020 and the Ebola epidemic in Guinea in 2014. 

2. Methods 

NGMs are often used to calculate the basic reproduction number (the 
average number of secondary infections generated by a primary infec
tion in a large fully susceptible population), R0, from a finite number of 
discrete categories that are based on epidemiologically relevant traits in 
the population, such as infected individuals at different stages of infec
tion (e.g. exposed and infectious) or with different characteristics (e.g. 
age) e.g. (Baguelin et al., 2013). The NGM is a matrix which quantifies 
the number of secondary infections generated in each category by an 
infected individual in a given category. R0 is defined as the dominant 
eigenvalue of this matrix (Diekmann et al., 1990; Diekmann et al., 
2010). They have also been used by Grantz et al. (Grantz et al., 2021) to 
evaluate contact tracing systems. Similarly, here we stratify infected 
individuals using information about their contact tracing status and 
whether they were being followed up at the time of symptom onset to 
assign infection pathways and construct our NGM. We identify three 
types of infections: i) infections that are not detected (ND), ii) infections 
(or cases) that are detected but not under active surveillance (NAS), and 
(iii) infections (or cases) that are detected and under active surveillance 
(AS). 

Contact follow-up or surveillance might take different forms for 
different diseases; for Ebola, a contact under active surveillance would 
be undergoing in-person follow-up for 21 days after their last interaction 
with the case (WHO, 2015), whereas for SARS-CoV-2 in some settings, a 
contact under active surveillance may be notified by contact tracers, or 
through a mobile phone application, and asked to self-isolate for up to 
10 days (NHS, 2020; Verrall, 2020). 

2.1. Formulation of the NGM 

For contact tracing to be fully effective, the parent (or primary) case 
needs to be diagnosed and, if positive, all their contacts placed under 
active surveillance. The parent case therefore needs to know and 
remember everyone they have been in close contact with whilst they 
have been infectious and for these contacts to be contacted. Despite a 
contact being recalled and reported, they may not be under active sur
veillance if they cannot be identified due to missing or incorrect contact 
details or evasion from contact tracers. We assume in our model that: i) 
infections that are not detected and those cases detected but not under 

active surveillance have the same effective reproduction number (R) and 
therefore on average, infect the same number of secondary cases; and ii) 
AS have a lower effective reproduction number (scaled by α) because 
they are rapidly isolated after the onset of symptoms. We define ϕ as the 
proportion of infected contacts recalled and reported, γ as the proportion 
of contacts actively under surveillance, and π as the proportion of cases 
detected or “re-captured” by community surveillance for example by 
routine testing. 

We identify 12 pathways through which individuals can become 
infected (Fig. 1). These pathways are described as follows:   

1. A case that was detected (with probability π), who was infected 
by an infection that was not detected and was therefore not under 
active surveillance.  

2. An infection that was not detected (with probability 1-π), who 
was infected by an infection that was not detected and was 
therefore not under active surveillance.  

3. A case that was detected (with probability π), who was infected 
by a case that was detected but not under surveillance, was 
correctly recalled as a contact (with probability ϕ) and was under 
active surveillance (with probability γ).  

4. A case that was detected (with probability π), who was infected 
by a case that was detected but that was not under surveillance, 
was correctly recalled as a contact (with probability ϕ) but was 
not under surveillance (with probability 1- γ).  

5. An infection that was not detected (with probability 1-π), who 
was infected by a case that was detected but not under surveil
lance, was correctly recalled (with probability ϕ) but was not 
under surveillance (with probability 1- γ).  

6. A case that was detected (with probability π) case, who was 
infected by a case that was detected but not under surveillance, 
that was not recalled (probability 1-ϕ).  

7. An infection that was not detected (with probability 1-π) case, 
who was infected by a case that was detected but not under 
surveillance, that was not recalled (probability 1-ϕ).  

8. A case that was detected (with probability π), who was infected 
by a case that was detected and under surveillance, was correctly 
recalled (with probability ϕ) and was under surveillance (with 
probability γ).  

9. A case that was detected (with probability π) case, who was 
infected by a case that was detected and under surveillance, was 
correctly recalled (with probability ϕ) but was not under sur
veillance (with probability 1- γ).  

10. An infection that was not detected (with probability 1-π), who 
was infected by a case that was detected and under surveillance, 
was correctly recalled (with probability ϕ) but was not under 
surveillance (with probability 1- γ).  

11. A case that was detected (with probability π), who was infected 
by a case that was detected and under surveillance, that was not 
recalled (with probability 1-ϕ).  

12. An infection that was not detected (with probability 1-π) case, 
who was infected by a case that was detected and under sur
veillance, that was not recalled (with probability 1-ϕ). 

Seven of our twelve pathways result in detected cases. The cases from 
pathways 3, 4, 8, and 9 are individuals on contact lists who are detected 
as cases whereas, the cases from pathways 1, 6, and 11 are de novo cases 
that are not on any contact tracing list, but which are detected via other 
routes such as attending a health care unit. The cases from pathways 3 
and 8 are contacts who were under surveillance at the time of symptom 
onset, while those from pathways 4 and 9 were not under surveillance at 
onset. The infections resulting from the pathways 2, 5, 7, 10 and 12 are 
not detected by the surveillance system. We use the notation FX to 
denote the expected number of infections stemming from pathway X, for 
example F1 equals Rπ.. 
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If Zn = [NDn,NASn,ASn]
T is a vector of the number of each type of 

case for generation n, the dynamics of the model is given by: 

Zn+1 = AZn (1)  

where А is our NGM that represent the potential transitions from one 
generation of cases to the next 

A = R

⎡

⎣
1 − π (1 − π)(1 − γϕ) α(1 − π)(1 − γϕ)

π π(1 − γϕ) απ(1 − γϕ)
0 γϕ αγϕ

⎤

⎦ (2) 

From the eigenvalues of this NGM, we can calculate the proportion of 
each of the three types of infections (ND, NAS and AS), see Supple
mentary Information (SI) A. In the limit as n goes to infinity, an equi
librium is reached and the proportion of cases that are not detected, μND, 
can be calculated as:   

As shown in the calculation in the SIA and illustrated in Fig. S1, 
convergence to this equilibrium value is fast. A different equivalent 
formulation where four different types of cases are considered is shown 
in SIB. Here the NAS cases are broken down into not under active sur
veillance cases that are contacts, NASC, and those that are not,NASNC. 

2.2. Linking our model to contact tracing and surveillance system data 

Cases are often recorded in line-lists during disease outbreaks, where 
dates of testing, symptom onset and hospitalization are recorded 

alongside information about the age and sex of the patient. When case 
lists are linked to contact lists, we can derive two ratios with which we 
parameterize our NGM. We define r1 as the ratio of cases who were 
contacts but not under surveillance versus the cases who were contacts 
and under surveillance and r2 as the ratio of de novo cases (cases that 
were not known contacts) versus detected cases that were contacts and 
under surveillance. 

Following the pathways in Fig. 1, we expand r1 (the ratio of cases 
who were contacts but not under surveillance versus the cases who were 

contacts and under surveillance) as
[

F4+F9
F3+F8

]
. At the equilibrium of the 

surveillance process (SIA), we have NDn = μNDCn, NASn = μNASCn and 
ASn = μASCn, where Cn = NDn +NASn +ASn is the total number of cases 
at generation n, μNAS is the proportion of cases not under active sur
veillance and μAS is the proportion of cases under active surveillance. 
Therefore, 

r1 =
Rϕπ(1 − γ)μNASCn + αRϕπ(1 − γ)μASCn

RϕγμNASCn + αRϕγμASCn

=
(1 − γ)π

γ

(4) 

We re-write this as 

γ =
π

r1 + π (5)  

We also expand r2 (the ratio of de novo cases versus detected cases that 

were contacts and under surveillance) as 
[

F1+F6+F11
F3+F8

]
. Therefore, 

Fig. 1. Potential pathways for a three-state model of Ebola 
surveillance (ND, AS, NAS). R is the effective reproduction 
number, α is the scaling of the reproduction number due to 
active surveillance (rapid isolation upon symptom onset), ϕ 
is the proportion of infected contacts recalled and reported 
by a case, γ is the proportion of contacts actively under 
surveillance, and π is the proportion of cases detected or 
“re-captured” by community surveillance. We assume that 
all cases under active surveillance are detected. The col
oring and shape of the end points of the paths are described 
as follows: red circle - any case that was not detected (so 
cannot be under active surveillance), purple circle - an 
eventually detected case that was not under active sur
veillance at the time of symptom onset (e.g. a contact of an 
earlier case lost to follow-up or who refused follow-up), 
purple square: a detected case that was under active sur
veillance at the time of symptom onset (e.g. a contact of a 
previously detected case, correctly recalled and reported, 
and under surveillance).   

μND = lim
n→∞

NDn

NDn + NASn + ASn

=

( − 1 + π)
(

1 + α( − 2 + γϕ) − πγϕ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−2π(1 + α(−2 + γϕ))γϕ + π2γ2ϕ2 + (−1 + αγϕ)2
√ )

2(α − 1)

(3)   
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r2 =
Rπ(μNDCn + (1 − ϕ)μNASCn + α(1 − ϕ)μASCn )

R(ϕγμNASCn + αϕγμASCn)
=

π(β + (1 − ϕ) )
ϕγ

,

(6)  

where β =
μND

μNAS+αμAS
. This can be rewritten as 

μND = ν(μNAS +αμAS), ν =
r2ϕγ

π − 1+ϕ (7) 

Fig. 2 illustrates the dependencies between these two ratios and the 
parameters in our model in a directed acyclic graph where the green 
nodes are our data, blue nodes are model parameters and white nodes 
are calculated parameters. 

In addition to Eqs. (5) and (7), we also have three more relationships 
that we can use: the proportions of each type of case (μND, μNAS and μAS) 
that are found using the leading eigenvector of the NGM (see SIA). We 
therefore have five equations and seven unknown parameters (π, α, ϕ, γ, 
μND, μNAS, μAS). If we fix two parameters, we can then estimate the other 
parameters. We choose here to fix α since this could be estimated from 
additional data such as genetic data and π since that can be informed by 
information about the contract tracing system through Eq. (5). 

2.3. Application to the estimation of the proportion of infections 
that were not detected. 

We estimated the proportion of infections that are not detected using 
a quasi-Bayesian framework for each scenario. For each run of each 
scenario, we sampled 10,000 values from [0,1]2 uniformly for (π, α), 
which is comparable to assuming a uniform prior distribution, and 
computed the other parameters (γ,ϕ, μND) if a solution was viable. We 
note that there is no solution for some values of (π, α), (see SIC, Fig. S5). 
Our credible intervals (CrI) reflect the values between which 95% of our 
viable samples lie. 

Simulated data. We investigate the suitability of our method using an 
individual-based model developed using NetLogo (Center for connected 
learning and computer-based modeling. NetLogo, 1999. http//ccl. 
northwestern.edu/NetLogo/) (see SID) for 3 scenarios:  

1) Contact tracing similar to SARS-CoV-2 example in New Zealand 
(NZ);  

2) Contract tracing similar to Ebola in Guinea;  
3) Contact tracing similar to Ebola in Guinea and then improves to 

match the SARS-CoV-2 example in NZ after 500 days. 

For each scenario, we simulated 1000 runs and sampled each run 
10,000 times. Here we assumed prior knowledge about the values of π 
and α so uniformly sampled between 0.2 above and below the true 
values of π and α (see SID for parameter value). We compared the 
probability that the true parameters in each of our scenarios lie within 
the 95% CrI estimates. We consider two time periods for scenario 3, 
before and after the parameter change. 

We also undertook a sensitivity analysis to investigate relaxing our 
assumption on α, where we compared the estimated values of missing 
cases when we varied the reduction in the scaling for a NAS case. This 
enabled us to evaluate the performance of the model if the NAS group 
did for example isolate. We compared the probability that the true value 
of the proportion of infections that were not detected lies within our 
95% CrI for scenario one with values of α for NAS cases of 0.6 and 0.8 
and 1.0 (initial scenario one). We again ran 1000 simulations of each 
and assumed the parameter were equal to the SARS-CoV-2 scenario. 

SARS-CoV-2 in New Zealand 2020. Well performing contact tracing 
systems have been partially credited for the success of NZ’s response to 
the SARS-CoV-2 epidemic in 2020 (Baker et al., 2020; Jefferies et al., 
2020; James, 2020). NZ’s Ministry of Health reported 570 locally ac
quired cases up until 14th December 2020 that had an epidemiological 
link to a previous case and 90 cases without an epidemiological link 
(New Zealand Ministry of Health, 2020). We assume that 80% of con
tacts were under active surveillance before diagnosis, since 80% was 
determined as the minimum requirement for the NZ system (Verrall, 
2020). Therefore, we estimate 456 cases were under active surveillance 
and 114 cases were not. This makes r1 = 0.25 and r2 = 0.20.. 

Ebola in Guinea 2014 We use data from Dixon et al. (Dixon et al., 
2014), which present contact tracing outcomes from two prefectures in 
Guinea between the 20th September and 31st December 2014. The 
authors found that only 45 cases out of 152 were registered as contacts 
of known cases across Kindia and Faranah prefectures. 

Since there is little published data, we consider two scenarios based 
on different assumptions about r1 (ratio of contacts not under active 
surveillance versus contacts under active surveillance).  

1) We assume r1 is equal to 0.2 (five times as many contacts under 
active surveillance than not under active surveillance, or 5 out of 6 
contacts are under active surveillance). This is based on data from 
Liberia in 2014 and 2015 where, during the same epidemic as 
Guinea, 27,936 contacts were not under active surveillance, whereas 
167,419 were (Swanson et al., 2018). Since we know the total 

Fig. 2. Directed acyclic graph showing the functional re
lationships of the surveillance model and the ratios 
observed in the surveillance. The blue nodes represent the 
parameters of the model that we want to infer (π is the 
proportion of cases detected or “re-captured” by commu
nity surveillance; γ is the proportion of contacts actively 
under surveillance; ϕ is the proportion of infected con
tacts recalled and reported by a case and α is the scaling 
of reproduction number due to active surveillance (rapid 
isolation upon symptom onset)). The green terminal nodes 
are the potentially observable data (r1 is the ratio of cases 
who were contacts but not under surveillance versus the 
cases who were contacts and under surveillance; and r2 as 
the ratio of de novo cases versus detected cases that were 
contacts and under surveillance. The white nodes are our 
calculated terms (μND is the proportion of cases that are not 
detected; and ν relates the proportion of not detected cases 
to the other two types of cases). The arrows show the di
rection of the dependence.   
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number of cases on the contact tracing list, 45, and assume r1 = 0.2, 
we estimate the number of contacts under active surveillance to be 
38 (denominator of r2). The number of people not on the contact list 
for the two regions was 107 (numerator of r2). Therefore, r2 is equal 
to 2.85.  

2) We assume r1 is equal to 0.5 (twice as many contacts under active 
surveillance than not under active surveillance or two thirds of 
contacts are under active surveillance) to illustrate the impact of a 
slightly worse surveillance system. Since we know the total number 
of cases on the contact tracing list, 45, and assume r1 = 0.5, we es
timate the number of contacts under active surveillance to be 30 
(denominator of r2). Therefore, r2 is equal to 3.57. 

We again estimated the proportion of infections that are not detected 
using our quasi-Bayesian framework for both case studies and took 
100,000 samples for each case study, sampling π and α between 0 and 1. 
For the SARS-CoV-2 example we also sampled 100,000 values for (γ,α) to 
investigate the impact of placing a prior distribution over different pa
rameters. Here we sampled α uniformly between 0 and 1, but between 
0 and 1/(r1 +1) for γ due Eq. (5). All code necessary to implement the 
analysis is included open source in the “MissingCases” R package on 
GitHub (Unwin, H.J.T., Baguelin M. MissingCases, 2020. doi: 
https://github.com/mrc-ide/MissingCases. Accessed 15 Dec 2020). 

3. Results 

3.1. Simulated data 

We find that in our three scenarios, the true proportion of infections 
that are not detected always lie within the uncertainty intervals of the 
NGM estimates even in scenario 3 where our parameters are not con
stant (Fig. 3, Table S2). However, not all parameters perform consis
tently well as shown in Table S2, where γ only lies within the interval 
75.4% of the time in scenario 1 and ϕ only 24.6% of the time in scenario 
2. We found that performance remained similar if we reduced alpha for 
NAS cases (Table S3). 

3.2. SARS-CoV-2 in New Zealand 2020 

We estimate that only 5.26% (95% CrI: 0.245–16.0%) of cases were 
not detected during this wave of the SARS-CoV-2 pandemic in NZ (see  
Table 1 for all parameter estimates) assuming surveillance targets were 
met, which would correspond to a well-functioning and rigorous contact 
tracing and surveillance system in NZ. In Fig. 4, we find that this esti
mate comes from a feasible parameter space that is focused along the 
right-hand side of the parameter space, where the proportion of cases 

detected in the community (π) is high. However, we do not learn any
thing about the scaling in transmission for traced cases so the uncer
tainty intervals in the proportion of not detected infections account for 
this. Similar results were obtained when a prior distribution was applied 
over γ instead of π (Table S4). 

Fig. 3. Comparison of NGM estimate of proportion of infections not detected against simulated proportion for 3 scenarios. The error bars parallel to the x-axis depict 
the 95% CrIs from the NGM estimates. Fig. 3A shows a scenario with contact tracing like SARS-CoV-2 in NZ, Fig. 3B shows a scenario with contact tracing like Ebola 
from Guinea and Fig. 3C shows a scenario in which contact tracing starts like the Ebola scenario and improves to be like the SARS-CoV-2 scenario. The colors in 
Fig. 3C refer to the two different time periods considered (worse contact tracing: days 100–500, better contact tracing days 500–900) in our scenarios. 

Table 1 
Estimates of the parameters for SARS-CoV-2 in New Zealand.  

Parameter Description Median estimates (95% 
CrI) 

π Proportion of cases detected in the 
community 

84.8% (61.9, 99.2) 

α Scaling of the reproduction number for 
traced cases 

50.2% (4.28, 98.3) 

ϕ Proportion of infected contacts recalled 91.9% (86.6, 99.5) 
γ Proportion of contacts under active 

surveillance 
77.2% (71.2, 79.9) 

μND Proportion of infections not detected 5.26% (0.243, 16.0)  

Fig. 4. Region of the parameter space compatible with the observed data from 
New Zealand. Values of π and α are sampled uniformly from [0, 1]2. The col
oured area show our feasible samples with the colour indicating the proportion 
of not detected infections. 
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3.3. Ebola in Guinea 2014 

We estimate that the proportion of Ebola cases that were not detected 
in Guinea was 39.0% (95% CrI: 1.69–87.0%) or 37.7% (95% CrI 1.70 – 
80.9%) for our two scenarios where r1 = 0.2 and r1 = 0.5 respectively 
(Fig. 5). The corresponding model parameter estimates for both sce
narios are given in Table 2 and we note wide uncertainty due to our 
uninformative prior distributions on π and α. The only parameter that 
differs substantially between our scenario is the proportion of contacts 
under active surveillance, which is directly impacted by the ratio of 
contacts not under active surveillance versus contacts under active 
surveillance. We find that we do not learn much about the feasible 
values of α and π for these scenarios but as proportions of cases detected 
in the community fall, the proportion of not detected infections 
increases. 

4. Discussion 

Contact tracing is an important control mechanism for infectious 
disease outbreaks. However, its efficiency depends on detecting as many 
cases as possible. We show in this paper that NGMs can be easily used to 
estimate the proportion of cases that were not detected in simulated 
examples and two different disease outbreaks. Our method requires 

much less data to parameterize our model that other methods, such as 
capture re-capture (Enserink, 2014), which is an alternative method 
suggested for estimating under-reporting and is highly data intensive. 
This means that it is feasible to repeat this analysis in near real time as 
the epidemic unfolds. As highlighted by our example, the data required 
for this analysis may not be available publicly and we suggest that 
people involved in contract systems recognise the benefit of this analysis 
and routinely link contact tracing data with line lists to parameterise r1 
and r2. 

During the West African Ebola epidemic, the WHO acknowledged 
that their reported case and death figures “vastly underestimate(d)” the 
true magnitude of the epidemic (WHO, 2014). We find that our esti
mates for the proportion of cases not detected in Guinea (39.0% (95% 
CrI: 1.69–87.0%) or 37.7% (95% CrI 1.70 – 80.9%) for our two scenarios 
where r1 = 0.2 and r1 = 0.5 respectively) are in line with values in the 
literature for neighbouring countries. Dalziel et al. (Dalziel et al., 2018) 
suggested reporting rates in Sierra Leone of 68% (32% under reporting) 
in the Western Area Urban on 20 October 2014 using burial data. 
However, higher under reporting has also been estimated: the US Cen
ters for Disease Control and Prevention (Centers for Disease Control and 
Prevention (CDC), 2020) estimated a 40% reporting rate (60% 
under-reporting) from Ebola treatment unit bed data and Gignoux et al. 
(Gignoux et al., 2015) estimated a 33% (67% under-reporting) from a 
capture and recapture study in Liberia between June and August 2014. 
We acknowledge that parameters are likely to change during an 
outbreak, so repeated analysis may give a better understanding of per
formance over a given time. 

Our estimates of the proportion of cases that were not detected 
during the SARS-Cov-2 outbreak in NZ of 5.26% (95% CrI 0.243–16.0%) 
is in-line with the good health care facilities and the low community 
transmission of SARS-CoV-2 in NZ (New Zealand Ministry of Health, 
2020), but we did not find any estimates in literature to compare our 
estimates to. 

A benefit of this method is that we do not just estimate the proportion 
of cases that were not detected but also other useful quantities that are 
important for managing a response such as the proportion of infected 
contacts recalled and under surveillance. The wide CrI, especially in 
second and third simulated data scenarios and the Ebola case study, 
come from the uniform sample of (π,α). This is a limitation of the 
method but could be improved with better understanding of the per
formance of the routine surveillance (π) and changes in transmissibility 

Fig. 5. Region of the parameter space compatible with the observed data for the two scenarios in Guinea. Values of π and α are sampled uniformly from [0, 1]2. The 
coloured area show our feasible samples with the colour indicating the proportion of not detected infections. 

Table 2 
Estimates of the parameters for Ebola in Guinea.    

Median estimates (95% CrI) 

Parameter Description Scenario 1 
(r1 = 0.2) 

Scenario 2 
(r1 = 0.5) 

r2 Ratio of de novo cases versus 
detected cases that were contacts 
and under surveillance 

2.85 3.57 

π Proportion of cases detected in the 
community 

54.0% (10.1, 
97.8) 

57.03% 
(16.0, 97.9) 

α Scaling of the reproduction number 
for traced cases 

49.8% (2.51, 
97.4) 

49.7% (2.54, 
97.6) 

ϕ Proportion of infected contacts 
recalled 

35.7% (29.8, 
83.1) 

38.6% (29.9, 
89.1) 

γ Proportion of contacts under active 
surveillance 

73.0% (33.6, 
83.0) 

53.3% (24.2, 
66.2) 

μND Proportion of infections not detected 39.0% (1.69, 
87.0) 

37.7% (1.70, 
80.9)  
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due to contact tracing status (α), which would narrow the region in the 
parameter space. A second limitation is our assumption on α that only 
detected cases under active surveillance have a reduced transmissibility. 
In this simple framework, it is not possible to relax this assumption; 
however if additional information such as genetic or behavioral data 
was available, we believe this could be used to form a prior distribution 
on this parameter and potentially allow users to further vary the number 
of people NAS and ND individuals infect or improve the accuracy of 
some of the other parameter estimates. As we see in our sensitivity 
analysis, this does not impact our estimation of the proportion of in
fections that were not detected but potentially other parameters. A third 
limitation is that we do not account for differing times to locate contacts 
within each group, which would further vary the number of cases each 
case goes on to infect. A fourth limitation is that this method may not be 
suitable for every outbreak due to delays in classifying cases and the 
large numbers of individuals involved. 

We believe this method highlights important lessons for responding 
to the ongoing SARS-CoV-2 pandemic and the unfortunate inevitability 
of future infectious disease outbreaks. By simply linking the case line- 
lists and contact tracing lists, we can use the very general method 
from our “MissingCases” package (Unwin, 2020) to assess 
under-reporting throughout an epidemic. This would help outbreak re
sponses, especially during the early and late phases, target resources and 
quantify how effective their surveillance systems were. As Figs. 4 and 5 
suggest, decreasing the scaling in reproduction number for traced cases 
(α) results in a lower proportion of unknown cases, which have higher 
transmissibility. This can be obtained by using non-pharmaceutical in
terventions such as isolating pre-symptomatic contacts. Additionally, 
improving surveillance systems through higher resource allocation and 
the aid of digital solutions so that higher proportions of cases are 
detected in the community (π), more contacts are recalled (ϕ) and more 
are placed under active surveillance (γ) will also reduce the proportion 
of not detected cases and thus lower transmission. Finally, these esti
mates can be used to improve the accuracy of other models, such as for 
the time varying reproduction number, which are key tools for the 
outbreak response themselves. 
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