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Abstract

In this article, we will introduce the realised semicovariance for Brownian semistationary (BSS)
rocesses, which is obtained from the decomposition of the realised covariance matrix into components
ased on the signs of the returns and study its in-fill asymptotic properties. More precisely, weak
onvergence in the space of càdlàg functions endowed with the Skorohod topology for the realised
emicovariance of a general Gaussian process with stationary increments is proved first. The proof is
ased on the Breuer–Major theorem and on a moment bound for sums of products of non-linearly
ransformed Gaussian vectors. Furthermore, we establish a corresponding stable convergence. Finally, a
entral limit theorem for the realised semicovariance of multivariate BSS processes is established. These
esults extend the limit theorems for the realised covariation to a result for non-linear functionals.

2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Realised semicovariance; Multivariate Brownian semistationary process; Central limit theory; Malliavin
calculus

1. Introduction

The idea of studying the realised semicovariance for Brownian semistationary processes is
nspired by the article [11], where the authors originally proposed the realised semicovariance,
hich is obtained from the decomposition of the realised covariance matrix into components
ased on the signs of the increments, and studied its in-fill asymptotic (which means that
he time step between observations goes to zero) properties for semimartingales. Intuitively,

statistic composed of positive increments and one composed of negative increments should
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carry distinct economic information, which has been studied and illustrated empirically in [11].
Furthermore, they proved that using semicovariances significantly improved volatility forecasts
for certain stock markets. Thus, we want to extend their work to an alternative, non-
semimartingale setting. Such more general settings are of interest in financial applications
when transaction costs and market microstructure noise are to be taken into account, see [19].
Hence we devote our attention to the Brownian semistationary (BSS) process, which was first
introduced in [10] and is not necessarily a semimartingale, and is interesting because of its
various applications, especially in turbulence [12], finance [19] and energy [5]. It is a novel
topic to study the in-fill asymptotic properties of realised semivariance/ semicovariance for a
BSS process since it includes the cases outside the semimartingale class. To present this idea,
we let a bivariate BSS process have the form

Y (i)
t =

∫ t

−∞

g(i)(t − s)σ (i)
s dW (i)

s , i = 1, 2.

uppose that we observe this process at a fixed frequency ( 1
n ) over a time interval [0, T ]; then

its realised semicovariance can be written as
[nt]∑
i=1

p(∆n
i Y (1))p(∆n

i Y (2)), ∀t ∈ [0, T ],

here ∆n
i Y ( j)

:= Y ( j)
i/n −Y ( j)

(i−1)/n, j = 1, 2, and p(x) = max{x, 0}. It simplifies to semivariance
n the univariate case for identical superscripts. In the realm of in-fill asymptotic properties
f realised semivariance/semicovariance, Barndorff-Nielsen et al. [9] first studied the realised
emivariance based on one univariate semimartingale model and have shown that the realised
emivariance has important predictive qualities for future market volatility. Jacod et al. [15]
ave established the in-fill asymptotic theory for a family of functions of increments for a
lass of Itô semimartingale. Based on the previous works, Bollerslev et al. [11] extend the
emivariances to a multivariate setting, i.e., realised semicovariance. The difficulty of our
ork comes from two parts: the first one is that the methods in the previously mentioned

eferences are based on semimartingale techniques which are impossible to apply to general
SS models; the second one is that when we extend the univariate case to the multivariate
ase, the complexity of the question is greatly increased. We will discuss these difficulties in
etail in the following sections.

There is a series of papers [6,7] that have studied the realised power variation for the
nivariate BSS process. However, they do not cover the present question because the function
f the increments we will work with for the univariate case is f (x) = x21{x≥0}, which is
ot an even function and makes a significant difference in the underlying theory. There are
nly very few existing results for the case of multivariate BSS processes. Granelli and Veraart
14], Passeggeri and Veraart [20] can be viewed as the starting point of using multivariate
SS processes in stochastic modelling, where they established the asymptotic properties of the

ealised covariance for multivariate BSS processes. Our work will extend the limit theorems
or the realised covariation to a version for the non-linear functionals.

This article is structured as follows. In Section 2.1, we first introduce the settings for
nivariate BSS processes and some general assumptions. The selected tools from Malliavin
alculus are reviewed in Section 2.2. We formulate our general assumptions in Section 2.3.
he key result, the central limit theorem for the realised semivariance of a univariate BSS
rocess, can be found in Section 2.4. Similar to the univariate case, we introduce the settings

or the multivariate case in Section 3.1 and state the key results in Section 3.2. We will discuss
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our current results and potential future works in Section 4. For ease of exposition, all proofs
will be postponed to Section 5.

2. Univariate case: Realised semivariance of a BSS process

We start with the univariate case by introducing the basic settings, mathematical tools
hich will be used, technical assumptions, and general procedure in proving in-fill asymptotic

heorems in this section.

.1. Setting

Let (Ω ,F ,Ft ,P) denote a complete, filtered probability space. We denote by [0, T ] a finite
time interval for some T > 0 and by B(R) the class of Borel subsets of R. A stochastic process
(X t )t∈R is Ft -adapted if X t ∈ Ft . We first introduce the Brownian measure.

Definition 2.1.1 (Brownian Measure). An Ft -adapted Brownian measure W : Ω × B(R) → R
s a Gaussian stochastic measure such that, if A ∈ B(R) with Leb(A) < ∞, then W (A) ∼

N (0, Leb(A)), where Leb(·) is the Lebesgue measure. Moreover, if A ⊆ [t,∞), then W (A) is
ndependent of Ft .

We will use W to denote a Brownian measure in this article. The Gaussian core which is
efined below is a Gaussian moving average process and is useful for our purposes.

efinition 2.1.2 (The Gaussian Core). A Gaussian process with stationary increments G is
efined as

G t =

∫ t

−∞

g(t − s)dWs, (1)

here g is a square-integrable deterministic function on R with g(t) = 0 for t ≤ 0, and W is
Brownian measure adapted to Ft . G is called the Gaussian core.

By introducing stochastic volatility to the Gaussian core, we will have a Brownian semis-
ationary process defined below.

efinition 2.1.3 (Brownian Semistationary Process). Let σ be a Ft -adapted càdlàg process,
nd assume that the function g is continuously differentiable on (0,∞), |g′

| is non-increasing
n (b,∞) for some b > 0 and g′

∈ L2((ϵ,∞)) for any ϵ > 0. Then we define our Brownian
emistationary process

X t =

∫ t

−∞

g(t − s)σsdWs . (2)

e also require
∫ t
−∞

g2(t − s)σ 2
s ds < ∞ a.s. to ensure that X t < ∞ a.s. for all t ≥ 0.

oreover, we assume that for any t > 0,

Ft =

∫
∞

1
(g′(s))2σ 2

t−sds < ∞, a.s. (3)

emark 2.1.1. The condition (3) is to control the moments of increments of the BSS process
y the moments of increments of the corresponding Gaussian core, see Lemma 1 in [7].
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Let f (x) = x21{x≥0}. The normalised upside realised semivariance is defined as

V (X, f )n
t =

1
n

[nt]∑
i=1

f
(
∆n

i X
τn

)
=

1
nτ 2

n

[nt]∑
i=1

(∆n
i X )21{∆n

i X≥0},

here ∆n
i X = X i

n
− X (i−1)

n
, and τ 2

n = R( 1
n ) with R(t) = E[|G t+s − Gs |

2], t ≥ 0. Similarly,
e define

V (G, f )n
t =

1
n

[nt]∑
i=1

f
(
∆n

i G
τn

)
=

1
nτ 2

n

[nt]∑
i=1

(∆n
i G)21{∆n

i G≥0},

here ∆n
i G = G i

n
− G (i−1)

n
.

2.2. Wiener-Itô chaos decomposition

Similar to most articles which studied the in-fill asymptotic properties of BSS processes,
our work heavily relies on the Wiener–Itô chaos decomposition, see the monograph by [17].
Here we briefly introduce some basic concepts and results which will be used in this paper.

Definition 2.2.1 (Isonormal Gaussian Processes). Fix a real separable Hilbert space H, with
inner product ⟨·, ·⟩H and norm ⟨·, ·⟩

1/2
H = ∥ · ∥H. We write Z = {Z (h) : h ∈ H} to indicate an

isonormal Gaussian process over H. This means that Z is a centred Gaussian family, defined
on probability space (Ω ,F , P) and such that E[Z (g)Z (h)] = ⟨g, h⟩H for every g, h ∈ H.

Proposition 2.2.1 (Proposition 2.1.1 in [17]). Given a real separable Hilbert space H, there
exists an isonormal Gaussian process over H.

According to our settings, we let H be the Hilbert space generated by the rescaled increments
of the Gaussian core:(

∆n
i G
τn

)
n≥1,1≤i≤[nT ]

equipped with the inner product ⟨X, Y ⟩H = E[XY ] for X, Y ∈ H. By Proposition 2.2.1,
we have an isonormal process Z over this Hilbert space H. For the rest of this paper, we will
assume that F is the σ -algebra generated by Z . Next, we introduce Hermite polynomials which
are an orthogonal basis of L2(R, γ ), the space of square-integrable functions on R with respect
o the standard Gaussian measure γ .

efinition 2.2.2 (Hermite Polynomials). Let p ≥ 0 be an integer. We define the pth Hermite
olynomial as H0 = 1 and Hp+1(x) = x Hp(x) − pHp−1(x), where we use the convention that

H−1(x) = 0.

The Wiener chaos plays a crucial role in L2(Ω ,F , P), which is analogous to that of the
ermite polynomials for L2(γ ), since any element of L2(Ω ,F , P) has a unique decomposition

n terms of the Wiener chaos expansion, which will be explained by the following Wiener–Itô
haos decomposition theorem.

efinition 2.2.3 (Wiener Chaos). For each n ≥ 0, we write Hn to denote the closed
inear subspace of L2(Ω ,F , P) generated by the random variables of type Hn(X (h)), h ∈

, ∥h∥ = 1. The space H is called the nth Wiener chaos of X .
H n
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Theorem 2.2.1 (Wiener–Itô Chaos Decomposition, Theorem 2.2.4 in [17]). One has that
L2(Ω ,F , P) =

⨁
∞

n=1 Hn . This means that every random variable F ∈ L2(Ω ,F , P) admits a
nique expansion of the type F = E[F] +

∑
∞

n=1 Fn , where Fn ∈ Hn and the series converges
n L2(Ω ,F , P).

Given an integer q ≥ 2, we denote by H⊗q and H⊙q , respectively, the qth tensor product
nd the qth symmetric tensor product of H.

efinition 2.2.4 (Contractions). Let g = g1 ⊗ · · · ⊗ gn ∈ H⊗n and h = h1 ⊗ · · · ⊗ hm ∈ H⊗m .
For any 0 ≤ p ≤ n ∧ m, we define the pth contraction g ⊗p h as the element of H⊗n+m−2p

:

g ⊗p h := ⟨g1, h1⟩H · · · ⟨gp, h p⟩Hgp+1 ⊗ · · · ⊗ gn ⊗ h p+1 ⊗ · · · ⊗ hm . We denote by g⊗̃ph its
symmetrisation. When n = m = p, we denote ⟨g, h⟩H⊗p := g ⊗p h = ⟨g1, h1⟩H · · · ⟨gp, h p⟩H
and ∥ · ∥H⊗p := ⟨·, ·⟩

1/2
H⊗p .

Multiple integrals in the Malliavin calculus setting will help us to establish a connection
between symmetric tensor products and Wiener chaos. For an integer p ≥ 1, we denote the
pth multiple integral by Ip : H⊙p

→ Hp the isometry from the symmetric tensor product
H⊙p to the pth Wiener chaos Hp, equipped with the norm

√
p!∥ · ∥H⊗p .

Theorem 2.2.2 (Theorem 2.7.7 in [17]). Let f ∈ H be such that ∥ f ∥H = 1. Then, for any
integer p ≥ 1, we have

Hp(Z ( f )) = Ip( f ⊗p). (4)

Multiple integrals of different orders are orthogonal.

Proposition 2.2.2 (Isometry Property of Integrals, Proposition 2.7.5 in [17]). Fix integers
1 ≤ q ≤ p, as well as f ∈ H⊙p and g ∈ H⊙q . We have

E[Ip( f )Iq (g)] =

{
p!⟨ f, g⟩H⊗p , if p = q,
0, otherwise.

(5)

The following theorem is the so-called fourth moment theorem which provides equivalent
conditions for the convergence of a multiple integral to the standard Gaussian distribution.

Theorem 2.2.3 (Fourth-moment Theorem, Theorem 5.2.7 in [17]). Let k ≥ 2, fn ∈ H⊙k for
ny n ∈ N, and suppose that

E[Ik( fn)2] = k!∥ fn∥
2
H⊗k

n→∞
−→ 1.

hen the following conditions are equivalent:
a) Ik( fn)

L
−→ N (0, 1), n → ∞,

b) E[Ik( fn)4] −→ 3, n → ∞,
c) ∥ fn ⊗r fn∥

2
H⊗2k−2r −→ 0 for 1 ≤ r ≤ k − 1, n → ∞.

Based on the condition (c) above and the orthogonality of Wiener chaos, we will have a
eneralised CLT for a sequence of random variables that admit Wiener chaos decomposition.

heorem 2.2.4. Suppose that for any n ∈ N, we have fk,n ∈ H⊙k, k ∈ N. If∑
∞ 2
(i) limm→∞ lim supn→∞ k=m k!∥ fk,n∥H⊗k = 0,
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(ii) k!∥ fk,n∥
2
H⊗k

n→∞
−→ σ 2

k for any k ∈ N, so that σ 2
:=
∑

∞

k=1 σ
2
k < ∞,

(iii) ∥ fk,n ⊗r fk,n∥
2
H⊗2k−2r

n→∞
−→ 0 for any 1 ≤ r ≤ k − 1 and k ≥ 2,

hen
∞∑

k=1

Ik( fk,n)
L

−→ N (0, σ 2), n → ∞.

And for multivariate case, we have the following theorem.

heorem 2.2.5 (Multivariate Central Limit Theorem, Theorem 5 in [6]). Let d ≥ 2 and Fk be
d-dimensional random vector Fn = (Y (1)

n , . . . , Y (d)
n )T for any n ∈ N, where the superscript

T denotes the transpose of a vector. Assume that Fn has a chaos representation

F (i)
n =

∞∑
m=1

Im( f (i)
m,n), i = 1, . . . , d,

with f (i)
m,n ∈ H⊙m . Suppose that the following conditions hold:

(i) For any i = 1, . . . , d we have limN→∞ lim supn→∞

∑
∞

m=N m!∥ f (i)
m,n∥

2
H⊗m = 0.

(ii) For any m ≥ 1, i, j = 1, . . . , d we have constants Σm
i j such that

lim
n→∞

E
[
Im( f (i)

m,n)Im( f ( j)
m,n)

]
= lim

n→∞
⟨ f (i)

m,n, f ( j)
m,n⟩H⊙m = Σm

i j ,

and the matrix Σm
= (Σm

i j )1≤i, j≤d is positive definite for all m.
(iii)

∑
∞

m=1 Σ
m

= Σ ∈ Rd×d .
(iv) For any m ≥ 1, i = 1, . . . , d and p = 1, . . . ,m − 1

lim
n→∞

∥ f (i)
m,n ⊗p f (i)

m,n∥
2
H⊗2(m−p) = 0.

Then we have

Fn
L

−→ Nd (0,Σ ), n → ∞.

2.3. Technical assumptions

The aim of this paper is to derive an asymptotic theory for the realised semivariance. To this
end, we need to make some technical assumptions. Generally, the assumptions for the central
limit theorem (CLT) should be stronger than those for the weak law of large numbers (WLLN)
and the proof of the CLT will be more difficult. For the sake of brevity, we will only focus on
the CLT in this article and will explain which assumptions can be relaxed in order to establish
the WLLN. Here we begin with some general assumptions.

Assumption 2.3.1. There exist slowly varying (at 0) functions L0(t) and L2(t) which are
ontinuous on (0,∞) such that

R(t) = t2α+1L0(t), (6)

nd

R′′(t) = t2α−1L (t), (7)
2
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where α ∈ (− 1
2 ,

1
2 ) \ {0}. Furthermore, there exist b ∈ (0, 1) such that

lim sup
x→0+

sup
y∈[x,xb]

⏐⏐⏐⏐ L2(y)
L0(x)

⏐⏐⏐⏐ < ∞. (8)

The above assumption helps us control the correlations rn( j) := E
[
∆n

1 G
τn

∆n
1+ j G

τn

]
and

rovides us with a dominant sequence as shown in the following lemma.

emma 2.3.1 (Theorem 4.1 in [14]). For any ϵ > 0 with ϵ < 1 − 2α, we can define

r ( j) = ( j − 1)2α+ϵ−1, j ≥ 2, r (0) = r (1) = 1.

nder the above assumption, there exists a natural number n0(ϵ) such that

|rn( j)| ≤ Cr ( j), j ≥ 0, (9)

or all n ≥ n0(ϵ). Then we can have a dominant sequence of rn( j) by letting r̄ ( j) = Cr ( j).
oreover, define ρα( j) =

1
2

(
( j − 1)2α+1

− 2 j2α+1
+ ( j + 1)2α+1

)
for j ≥ 1 and ρα(0) = 1, it

olds that

rn( j) → ρα( j), n → ∞. (10)

The next assumption will help us to have a unique limit when our functional converges.
ee [7, Remark 6] for details.

ssumption 2.3.2. Suppose that

lim
n→∞

πn((ϵ,∞)) = 0, ∀ϵ > 0,

here

πn(A) =

∫
A(g(x − 1/n) − g(x))2dx∫
∞

0 (g(x − 1/n) − g(x))2dx
, A ∈ B(R).

.4. The central limit theorem for the realised semivariance

In order to set up a central limit theorem for the realised semivariance of BSS processes, it
s crucial to prove the CLT for the realised semivariance of the Gaussian core first. Hence, we
ill adopt the following assumption.

ssumption 2.4.1. Given Assumption 2.3.1, the parameter α satisfies α ∈ (− 1
2 , 0).

Remark 2.4.1. The above assumption guarantees the summability of the dominant sequence
¯( j), i.e.,

∞∑
j=1

rn( j) ≤

∞∑
j=1

r̄ ( j) < ∞, ∀n ≥ 1. (11)

We will use D([0, T ]) to denote the space which is the set of all càdlàg functions from
[0, T ] to R and use the notation ‘

L
→’, ‘

st.
→’ for weak convergence and stable convergence,

respectively. Recall that a sequence of stochastic process {X (n)
} converges weakly to X , then

(n) st.

X → X if and only if for any bounded Borel function f and any F-measurable fixed variable
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Z , limn→∞ E[ f (X (n))Z ] = E[ f (X )Z ]. Given that the assumptions presented before hold, the
LT for the realised semivariance of the Gaussian core will be a special case of Theorem 1.1

n [16].

heorem 2.4.1. If Assumptions 2.3.1, 2.3.2 and 2.4.1 hold, then we have
√

n
(

V (G, f )n
t −

1
2

t
)

L
→
√
βBt , n → ∞,

where β :=
∑

∞

k=1 k!a2
k (1 + 2

∑
∞

i=1 ρα(i)k) < ∞, ak is the kth coefficient of the Hermite
expansion of function f , and B is a Brownian motion. The weak convergence holds in D([0, T ])
equipped with uniform topology.

Remark 2.4.2. We can also prove the above theorem by the usual procedure: 1. Prove the
convergence of finite-dimensional distributions by the Fourth Moment Theorem; 2. Prove the
tightness by the approach of Nourdin and Nualart [16].

So far, the viewpoint of our work is quite similar to the existing works of (multi-)power
variation for BSS processes in [6,7]. In these articles, the CLT has been established for V (G, H )
where G is the Gaussian core as we defined in Definition 2.1.2, and function H (x) := |x |

p
−µp

where µp = E[|Z |
p], Z ∼ N (0, 1). The main difference between our work and theirs comes

from the Hermite rank for different functions. Notice that the function ϕ(x) := f (x) −
1
2 =

x21{x≥0} −
1
2 has Hermite rank 1, whereas the Hermite rank of H (x) is 2. Such a difference

ill result in changes of the dependence structure between the Gaussian core and the limiting
rownian motion B. Since both the first-order multiple integral of the Hermite expansion of

V (G, f )n
t and the Gaussian core belong to the 1st Wiener chaos, V (G, f )n

t and the Gaussian
ore are no longer orthogonal. The following theorem establishes the asymptotic dependence
tructure between V (G, f )n

t and the Gaussian core.

heorem 2.4.2. Let Assumptions 2.3.1, 2.3.2 and 2.4.1 hold, then we have

(G t ,
√

n(V (G, f )n
t −

1
2

t))
L
→ (G t ,

√
βBt ),

here Bt is a Brownian motion independent of the process {G t −G0} and the weak convergence
olds in D([0, T ])2 equipped with the Skorohod topology.

Note that in our settings, we already denote the σ -algebra generated by the process {G t −G0}

y F , Theorem 2.4.2 is equivalent to the following stable convergence theorem by applying
ondition D′′ from Proposition 2 of Aldous and Eagleson [2].

heorem 2.4.3. Under Assumptions 2.3.1, 2.3.2 and 2.4.1, we have
√

n(V (G, f )n
t −

1
2

t)
st.
→
√
βBt , n → ∞, w.r.t. σ−algebra F .

After establishing the asymptotic theory for the Gaussian core, it remains to take the
stochastic volatility σt into consideration. We already assumed that the process σt is càdlàg,

hich is not sufficient for the CLT for the realised semivariance of BSS processes. Here we
ake two additional assumptions on the process σ , which are used in the related literature.

ssumption 2.4.2. The volatility process σt is non-negative, F-measurable, and η-Hölder
ontinuous.
209
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Assumption 2.4.3. We assume that η > 1
2 and there exists a constant λ < −1 such that for

any ϵn = O(n−κ ), κ ∈ (0, 1), we have

πn((ϵn,∞)) = O(nλ(1−κ)).

Under the above assumptions, the final theorem, the CLT for the realised semivariance of
BSS processes, can be proved by using the so-called blocking technique.

Theorem 2.4.4 (Central Limit Theorem). Let Assumptions 2.3.1, 2.3.2 and 2.4.1–2.4.3 hold.
Then we have

√
n
(

V (X, f )n
t −

1
2

∫ t

0
σ 2

s ds
)

L
→
√
β

∫ t

0
σ 2

s d Bs, n → ∞,

n the Skorokhod space D([0, T ]) where β =
∑

∞

k=1 k!a2
k (1 + 2

∑
∞

i=1 ρ(i)k) < ∞, B is a
Brownian motion independent of the volatility process σ .

Remark 2.4.3. Notice that the weak law of large numbers (WLLN) for V (X, f )n
t will be a

direct corollary of Theorem 2.4.4. For a WLLN, we only need Assumptions 2.3.1 and 2.3.2,
and all the other assumptions we have made in this section are not needed.

Remark 2.4.4. The above central limit theorem can be generalised to a class of functions g
consisting of the power function and indicator function I (x) = 1 or 1{x≥0} or 1{x≤0}. Since the
main focus of this paper is to develop CLT for semicovariances, and the univariate case can
be viewed as a special case of the multivariate one, we will discuss the generalisation for the
multivariate case in detail in the next section, see Theorem 3.2.4.

3. Multivariate case: realised semicovariance of a bivariate BSS process

3.1. Setting

The setup in the multivariate case will be a natural extension of the univariate case. We will
only focus on the bivariate case since higher dimensions do not require any essential changes
to the proof but result in a more complicated exposition.

Definition 3.1.1 (The Gaussian Cores). Let W (1) and W (2) be two Ft -adapted Brownian
measures and jointly Gaussian. g(1), g(2) are two deterministic functions with the same
properties in Definition 2.1.2. The Gaussian cores are defined as

G( j)
t =

∫ t

−∞

g( j)(t − s)dW ( j)
s , j = 1, 2. (12)

Moreover, we assume that W (1) and W (2) satisfy E[dW (1)
t dW (2)

t ] = ρdt , for ρ ∈ [−1, 1]. Then
it is possible to see that the bivariate Gaussian core (G(1)

t ,G(2)
t ) is a stationary Gaussian process

with stationary increments.

Definition 3.1.2 (Bivariate Brownian Semistationary Process). Let σ (1), σ (2) be Ft -adapted
càdlàg processes, and assume that the function g( j) is continuously differentiable on (0,∞),
|g( j)′

| is non-increasing on (b( j),∞) for some b( j) > 0 and g( j)′
∈ L2((ϵ,∞)) for any ϵ > 0,

j = 1, 2. Then we define the Brownian semistationary processes as

Y ( j)
t =

∫ t

g( j)(t − s)σ ( j)
s dW ( j)

s , j = 1, 2. (13)

−∞
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We also require
∫ t
−∞

g( j)2(t − s)σ ( j)2
s ds < ∞ a.s. to ensure that Y ( j)

t < ∞ a.s. for all t ≥ 0
and j = 1, 2. Moreover, we assume that for any t > 0,

F ( j)
t =

∫
∞

1
(g( j)′(s))2σ

( j)2
t−s ds < ∞, a.s., j = 1, 2. (14)

We denote

R(i, j)(t) = E[|G( j)
t − G(i)

0 |
2
], R( j)(t) = R( j, j)(t) and τ ( j)

n =

√
R( j)

(
1
n

)
,

i, j = 1, 2, n ≥ 1.

The cross-correlations are given by

r (n)
a,b( j − i) := E

[
∆n

i G(a)

τ
(a)
n

∆n
j G

(b)

τ
(b)
n

]
.

For function p(x) = max{x, 0} = x1{x≥0}, the realised semicovariance for Y is defined as

V (Y, p)n
t :=

1
n

[nt]∑
i=1

p
(
∆n

i Y (1)

τ
(1)
n

)
p
(
∆n

i Y (2)

τ
(2)
n

)
.

nalogously, the realised semicovariance for G is defined as

V (G, p)n
t :=

1
n

[nt]∑
i=1

p
(
∆n

i G(1)

τ
(1)
n

)
p
(
∆n

i G(2)

τ
(2)
n

)
.

ext, we introduce some notations for the bivariate setting. We consider Gaussian vectors

Xn
i := (Xn(1)

i , Xn(2)
i ) =

(
∆n

i G(1)

τ
(1)
n

,
∆n

i G(2)

τ
(2)
n

)
, i ∈ Z.

ince Xn(i)
j , i = 1, 2, j = 1, 2, . . . , [nt] can be regarded as a subset of an isonormal Gaussian

rocess {W (u) : u ∈ H} where H is a Hilbert space, we can always assume that

Xn( j)
k = W (un

k, j ) and ⟨un
k, j , un

k′, j ′⟩H = r (n)
j, j ′ (k

′
− k),

here j, j ′
∈ {1, 2}, k, k ′

∈ N, un
k, j , un

k′, j ′ ∈ H and r (n)
j, j ′ (k

′
− k) we already defined before.

ext, we define our bivariate function h : R2
→ R+

∪ {0} as

h(x, y) := xy1{x≥0}1{y≥0}.

he rescaled sums of the realised semicovariance can be defined as

Sn(t) :=
1

√
n

[nt]∑
k=1

(h(Xn
k ) − E[h(Xn

k )]), n ≥ 1. (15)

For simplicity, some results will be established only for the case t = 1, and we write Sn as a
shorthand for Sn(1).

By the Hermite expansion of the function h, we have

Sn =

∞∑
Im(gn

m), gn
m ∈ H⊙m, (16)
m=1
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where gn
m has the form

gn
m =

1
√

n

n∑
k=1

∑
t∈{1,2}m

bn
t un

k,t1
⊗ · · · ⊗ un

k,tm , (17)

here bn
t are certain coefficients such that t ↦→ bn

t is symmetric on {1, 2}
m .

For the multivariate case, we only focus on the central limit theorem of the realised
emicovariance. Thus we state here all of the assumptions we need. They can be viewed as the
nalogues of the assumptions for the univariate case.

For i, j ∈ {1, 2}, we write ρi, j = ρ for i ̸= j and ρi, j = 1 for i = j . Since

R(i, j)(t) = Ci, j + 2ρi, j

∫
∞

0
(g( j)(x) − g( j)(x + t))g(i)(x)dx, (18)

where Ci, j = ∥g(i)
∥

2
L2 +∥g( j)

∥
2
L2 −2ρi, j

∫
∞

0 g(i)(x)g( j)(x)dx , we can formulate our assumptions
as follows.

Assumption 3.1.1. There exist slowly varying (at 0) functions L (i, j)
0 (t) and L (i, j)

2 (t) which are
ontinuous on (0,∞) such that

R(i, j)(t) = Ci, j + ρi, j tδ
(i)

+δ( j)
+1L (i, j)

0 (t), i, j = 1, 2, (19)

nd

R(i, j)′′(t) = ρi, j tδ
(i)

+δ( j)
−1L (i, j)

2 (t), i, j = 1, 2, (20)

here δ(i), δ( j)
∈ (− 1

2 , 0). Furthermore, there exist b ∈ (0, 1) such that

lim sup
x→0+

sup
y∈[x,xb]

⏐⏐⏐⏐⏐ L (i, j)
2 (y)

L (i, j)
0 (x)

⏐⏐⏐⏐⏐ < ∞, i, j = 1, 2. (21)

ssumption 3.1.2. The volatility processes σ (i)
t are non-negative and η(i)-Hölder continuous

ith η(i)
∈ ( 1

2 , 1), i = 1, 2.

ssumption 3.1.3. There exists a constant λ < −1 such that for any ϵn = O(n−κ ), κ ∈ (0, 1),
e have

π (i)
n ((ϵn,∞)) = O(nλ(1−κ)), i = 1, 2,

here

π (i)
n (A) =

∫
A(g(i)(x − 1/n) − g(i)(x))2dx∫
∞

0 (g(i)(x − 1/n) − g(x))2dx
, A ∈ B(R).

.2. The central limit theorem for the realised semicovariance

As in the univariate case, the process

Sn(t) =
1

√
n

[nt]∑
k=1

(h(Xn
k ) − E[h(Xn

k )]), n ≥ 1,

converges in law to a scaled Brownian motion
√
βB in the space D([0, T ]).
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To this end, we still need two steps: (1) Prove convergence of the finite-dimensional
istributions; (2) Prove the tightness of the process.

The first step has already been done in [18], whose result contains our realised semicovari-
nce for the Gaussian cores as a special case. However, the tightness is more difficult to prove.
s we know, if we can prove that

∥Sn(t) − Sn(s)∥L p(Ω) ≤ c
(

[nt] − [ns]
n

) 1
2
, 0 ≤ s ≤ t ≤ T,

or some p > 2, the tightness will hold. Thanks to Lemma 1 in [3], we are able to control the
pth moment of the increment of the process Sn(t). More specifically, we have the following
esult.

emma 3.2.1 ([3], Lemma 1). If (X1, . . . , Xn) is a ϵ-standard Gaussian vector (ϵ-standard
eans that |EX (u)

t X (v)
s | < ϵ holds for any 1 ≤ u, v ≤ ν and t ̸= s), X t = (X (1)

t , . . . , X (ν)
t ) ∈

ν, ν ≥ 1, and f j,t,n ∈ L2(X), 1 ≤ j ≤ p, p ≥ 2, 1 ≤ t ≤ n. For given integers
≥ 1, 0 ≤ α ≤ p, n ≥ 1, define

Qn := max
1≤t≤n

∑
1≤s≤n,s ̸=t

max
1≤u,v≤ν

|EX (u)
t X (v)

s |
m
. (22)

ssume that f1,t.n, . . . , fα,t,n have a Hermite rank at least equal to m for any n ≥ 1, 1 ≤ t ≤ n,
nd that

ϵ <
1

νp − 1
.

hen ∑
′
|E[ f1,t1,n(X t1 ) · · · f p,tp,n(X tp )]| ≤ C(ϵ, p,m, α, ν)K n p−

α
2 Q

α
2
n , (23)

here
∑

′ is the sum over all different indices 1 ≤ ti ≤ n (1 ≤ i ≤ p), ti ̸= t j (i ̸= j), and

K =

p∏
j=1

max
1≤t≤n

∥ f j,t,n∥ with ∥ f j,t,n∥
2

= E[ f 2
j,t,n(X)].

Since our stationary vector is 2-dimensional, we let ν = 2. For a fixed n, define

fi,t j ,n(Xn
t j

) := h(Xn
t j

) − E[h(Xn
t j

)], (24)

here Xn
t j

= (Xn(1)
t j , Xn(2)

t j ) =

(
∆n

t j
G(1)

τ
(1)
n

,
∆n

t j
G(2)

τ
(2)
n

)
. Thus each fi,t j ,n has Hermite rank 1. When

p = 4 and α = p, the issue is that our Gaussian vector usually fails to be ϵ-standard with
ϵ < 1

7 . We can overcome this issue by using the so-called ‘decimation technique’, which was
introduced in [4]. Then we have the functional convergence theorem of our Gaussian cores.

Theorem 3.2.1. When Assumption 3.1.1 holds, we have

{Sn(t)}0≤t≤T
L
→
√
β{Bt }0≤t≤T , n → ∞,

in D([0, T ]), where Bt is a Brownian motion, β is a constant depending on the Hermite
coefficients and the limit of cross-correlations.

As in the univariate case, we can prove the independence between the limiting Brownian
motion and the Gaussian cores.
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Theorem 3.2.2. Let Assumption 3.1.1 hold, we have

(G(1)
t ,G(2)

t , S(t))
L
→ (G(1)

t ,G(2)
t ,
√
βBt ),

in D([0, T ])3, where Bt is a Brownian motion independent of the bivariate process (G(1)
t −

G(1)
0 ,G(2)

t − G(2)
0 ).

Note that in our settings, we already denote the σ -algebra generated by the process
G(1)

t − G(1)
0 ,G(2)

t − G(2)
0 ) by F . Hence we can easily get a stable convergence version of

heorem 3.2.2. By applying the blocking technique again, we will have the key result below.

heorem 3.2.3 (Central Limit Theorem). Under Assumptions 3.1.1–3.1.3, if σ (1) and σ (2) are
-measurable, we have(

1
√

n

[nt]∑
i=1

p
(
∆n

i X (1)

τ
(1)
n

)
p
(
∆n

i X (2)

τ
(2)
n

)
−

√
nE
[

h
(
∆n

1G(1)

τ
(1)
n

,
∆n

1G(2)

τ
(2)
n

)]∫ t

0
σ (1)

s σ (2)
s ds

)
0≤t≤T

(25)

L
→

(√
β

∫ t

0
σ (1)

s σ (2)
s d Bs

)
0≤t≤T

(26)

n D([0, T ]), where B is a Brownian motion independent of σ (1) and σ (2).

Finally, the above central limit theorem for p(x) = x1{x≥0} can be generalised to a larger
lass of functions.

heorem 3.2.4. Let q ≥ 1, φ(x) = |x |
q I (x) where I (x) = 1, 1{x≥0} or 1{x≤0} and

efine Φ(x, y) := φ(x)φ(y). Assume that Assumptions 3.1.1–3.1.3 hold. If σ (1) and σ (2) are
-measurable, we have(

1
√

n

[nt]∑
i=1

φ

(
∆n

i X (1)

τ
(1)
n

)
φ

(
∆n

i X (2)

τ
(2)
n

)
−

√
nE
[
Φ

(
∆n

1G(1)

τ
(1)
n

,
∆n

1G(2)

τ
(2)
n

)]∫ t

0

(
σ (1)

s σ (2)
s

)q
ds
)

0≤t≤T

(27)

L
→

(√
β

∫ t

0

(
σ (1)

s σ (2)
s

)q
d Bs

)
0≤t≤T

(28)

n D([0, T ]), where B is a Brownian motion independent of σ (1) and σ (2).

. Discussion and outlook

We have established a CLT for the realised semicovariance of a bivariate BSS process
hich extends the work by Granelli and Veraart [14], Passeggeri and Veraart [20] to a non-

inear function of increments and can be seen as a non-semimartingale extension of the
ork by Bollerslev et al. [11]. Moreover, our generalisation from semicovariances to more
eneral functionals provides a more comprehensive multidimensional theory of (semi-)power
ovariation of BSS processes. Our work can be extended in various directions: For example, we
ould investigate whether the asymptotic properties of semicovariances still hold when we add
ump terms into our BSS processes. Furthermore, since we have noticed that the calculation
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of our (normalised) realised semicovariance relies on the scaling factors τ (i)
n , i = 1, 2,

hich are unknown from empirical data, this raises the question of whether it is possible to
erive feasible covolatility estimators without using the scaling factors τ (i)

n , for instance, by
onsidering suitable ratio statistics.

. Proofs

By applying a standard localisation procedure in [8], our volatility process σ can be assumed
o be bounded on compact intervals because it is càdlàg [7].

roof of Theorem 2.4.1. This is a special case of Theorem 1.1 in [16] by letting ϕ(x) =

f (x) −
1
2 = x21{x≥0} −

1
2 . By applying their results, we prove the weak convergence of

nite-dimensional distributions and the tightness of the sequence
√

n(V (G, f )n
t −

1
2 t). □

roof of Theorem 2.4.2. Let (cl , bl], l = 1, . . . , e, be disjoint intervals contained in [0, T ]
nd define

Z l
n =

∞∑
k=1

Ik( f (n,l)
k ),

where

f (n,l)
k =

ak
√

n

[nbl ]∑
i=[ncl ]+1

(
∆n

i G
τn

)⊗k

,

nd

Gl
n = τn

[nbl ]∑
i=[ncl ]+1

∆n
i G
τn

,

nd {ak}k≥1 are Hermite coefficients of function g(x) = x21{x≥0} −
1
2 .

It suffices to show that

(Gl
n, Z l

n)1≤l≤e
L
→ (Gbl − Gcl ,

√
β(Bbl − Bcl ))1≤l≤e.

or the first component, it is obvious that

Gl
n

a.s.
→ Gbl − Gcl , n → ∞,

nd the convergence of the second component follows directly from Theorem 2.4.1. It remains
o look at the covariance between the two components.

For fixed l, by Lemma 1 in [6], we have E[(Z l
n)2] ≤ C1 and E[(Gl

n)2] ≤ C2, then

|E[Gl
n Z l

n]| ≤

√
C1C2.

Thus

E[Gl
n Z l

n] = E

⎡⎣Z l
n ·

⎛⎝ [nbl ]∑
j=[ncl ]+1

∆n
j G

⎞⎠⎤⎦
= E

⎡⎣⎛⎝ ∞∑ ak
√

n

[nbl ]∑
Hk

(
∆n

i G
τn

)⎞⎠ ·

⎛⎝ [nbl ]∑
∆n

j G

⎞⎠⎤⎦

k=1 i=[ncl ]+1 j=[ncl ]+1
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R

i

BCT
=

∞∑
k=1

ak
√

n

[nbl ]∑
i=[ncl ]+1

E

⎡⎣Hk

(
∆n

i G
τn

)
·

⎛⎝ [nbl ]∑
j=[ncl ]+1

∆n
j G

⎞⎠⎤⎦
a1=

√
2
π

=
a1
√

n

[nbl ]∑
i=[ncl ]+1

E

⎡⎣H1

(
∆n

i G
τn

)
·

⎛⎝ [nbl ]∑
j=[ncl ]+1

∆n
j G

⎞⎠⎤⎦
=

a1τn
√

n

[nbl ]∑
i=[ncl ]+1

[nbl ]∑
j=[ncl ]+11

E
[
∆n

i G
τn

∆n
j G

τn

]

=
a1τn
√

n

[nbl ]∑
i=[ncl ]+1

[nbl ]∑
j=[ncl ]+1

rn(|i − j |).

Then for the equation above, w.l.o.g., we let cl = 0, bl = 1, then we have

E[Gl
n Z l

n] =
a1τn
√

n

[nbl ]∑
i=[ncl ]+1

[nbl ]∑
j=[ncl ]+1

rn(|i − j |) =
a1τn
√

n

n∑
i=1

n∑
j=1

rn(|i − j |) (29)

=
a1τn
√

n
(n + 2

n∑
i=1

(n − i)rn(i)). (30)

ecall

R(t) = E[(G t − G0)2], t ≥ 0, rn(i) =
R( i+1

n ) − 2R( i
n ) + R( i−1

n )

2R( 1
n )

, i ∈ N,

then we have

E[Gl
n Z l

n] =
a1τn
√

n
(n + 2

n∑
i=1

(n − i)rn(i))

=
a1τn
√

n

(
n + 2

n∑
i=1

(n − i)
R( i+1

n ) − 2R( i
n ) + R( i−1

n )

2R( 1
n )

)

=
a1τn
√

n

(
n +

R(1) − n R( 1
n )

R( 1
n )

)
=

a1 R(1)√
n R( 1

n )
.

Then the limit depends on the behaviour of the function R near 0. Since

R(t) = t2α+1L0(t), for α < 0,

t follows that
R(t)

t
= t2αL0(t) → ∞, t → 0,

(since α < 0). Then

lim
n→∞

E[Gl
n Z l

n] = 0.

The central limit theorem for Z l
n is basically derived from the fourth moment theorem and

its generalisation Theorem 2.2.4. In order to apply Theorem 2.2.5 to the multivariate random
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variable
(
Gl

n, Z l
n

)
with chaos representation

(
Gl

n, Z l
n

)
=

(
I1(g(n,l)

1 ),
∑

∞

k=1 Ik( f (n,l)
k )

)
, where

g(n,l)
1 = τn

∑[nbl ]
i=[ncl ]+1 u(n)

i for u(n)
i ∈ H and ∥u(n)

i ∥H = 1, it only remains to verify condition (ii)
or the terms including u(n)

i . Notice that

lim
n→∞

E[I1(g(n,l)
1 )I1(g(n,l)

1 )] = R(bl − cl),

nd

lim
n→∞

E[I1(g(n,l)
1 )I1( f (n,l)

1 )] = 0

y the above discussion, we have that
(
Gl

n, Z l
n

) L
−−−→
n→∞

(Gbl − Gcl ,
√
β(Bbl − Bcl )) ∼ N (0,Σ ),

where Σ is a 2 × 2-matrix with 0 off-diagonal elements and β is a constant given by
Theorem 2.4.1. Since Gbl − Gcl and

√
β(Bbl − Bcl ) are jointly Gaussian and uncorrelated,

they are mutually independent. Subsequently, we have the convergence of finite-dimensional
distributions

(Gl
n, Z l

n)1≤l≤e
L
→ (Gbl − Gcl ,

√
β(Bbl − Bcl ))1≤l≤e.

ince the tightness of each component has been proved in the previous theorem, the tightness
f the bivariate process follows. Finally, we have

(G t ,
√

n(V (G, f )n
t −

1
2

t))
L
→ (G t ,

√
βBt ). □

roof of Theorem 2.4.4. This theorem is a direct consequence of Theorem 3.2.3 since the
ealised semivariance is a special case of the realised semicovariance, and the proofs will be
dentical by omitting superscripts. □

roof of Theorem 3.2.1. Let

θ (n)( j) = max
1≤i,l≤2

|r (n)
i,l ( j)|,

K = inf
k∈N

{θ (n)( j) ≤
1
2
,∀| j | ≥ k},

θ (n)
=

∑
j∈Z

θ (n)( j),

γn,m,e =

√
2θ (n)n−1

∑
| j |≤n

θ (n)( j)e
∑
| j |≤n

θ (n)( j)m−e.

By Theorem 3.1 in [14], Assumption 3.1.1 leads to

sup
n≥1

θ (n) < ∞.

It is easy to verify that the conditions in Theorem 2.2 of Nourdin et al. [18] hold. Let
(cl , bl], l = 1, . . . , e be disjoint intervals contained in [0, T ]. Define

Sl
n :=

1
√

n

[nbl ]∑
(h(Xn

i ) − E[h(Xn
i )]) =

∞∑
Ik( f (n,l)

k ),

i=[ncl ]+1 k=1
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A

s
t
c
i
o

T

where

f (n,l)
k =

1
√

n

[nbl ]∑
i=[ncl ]+1

∑
t∈{1,2}k

bn
t un

i,t1
⊗ · · · ⊗ un

i,tk .

For the finite-dimensional convergence, it remains to prove that for any 1 ≤ l1 ̸= l2 ≤ e,

lim
n→∞

⟨ f (n,l1)
k , f (n,l2)

k ⟩H⊗k = 0.

For l1 < l2, we have

|⟨ f (n,l1)
k , f (n,l2)

k ⟩H⊗k | =
1
n

⏐⏐⏐⏐⟨ [nbl1 ]∑
i=[ncl1 ]+1

∑
t∈{1,2}k

bt un
i,t1

⊗ · · · ⊗ un
i,tk ,

[nbl2 ]∑
i=[ncl2 ]+1

∑
t∈{1,2}k

bt un
i,t1

⊗ · · · ⊗ un
i,tk ⟩H⊗k

⏐⏐⏐⏐
≤

(
∑

t∈{1,2}k |bn
t |)

2

n

[nbl1 ]∑
i=[ncl1 ]+1

[nbl2 ]∑
j=[ncl2 ]+1

θ (n)( j − i)k

≤
(
∑

t∈{1,2}k |bn
t |)

2

n

[nbl1 ]∑
i=[ncl1 ]+1

[nbl2 ]∑
j=[ncl2 ]+1

θ (n)( j − i).

ssume w.l.o.g. that cl1 = 0, bl1 = cl2 = 1, bl2 = 2. Then

|⟨ f (n,l1)
k , f (n,l2)

k ⟩H⊗k | ≤ (
∑

t∈{1,2}k

|bn
t |)

2

⎛⎝1
n

n∑
j=1

jθ (n)( j) +

n−1∑
j=1

θ (n)(n + j)

⎞⎠ → 0,

ince supn≥1
∑

∞

j=1 θ
(n)( j) < ∞ by our assumption. (We can find a dominant sequence such

hat 1 ≥ θ ( j) ≥ supn≥1 θ
(n)( j) and rewrite our assumption as θ :=

∑
j∈Z θ ( j) < ∞.) Hence the

onvergence of finite-dimensional distributions holds. Next, we prove the tightness. We initially
gnore the issue about the ϵ-standard property and apply Lemma 3.2.1 to prove the tightness
f {Sn(t)}0≤t≤T .

For a fixed n and 0 ≤ s < t ≤ T , let N = [nt] − [ns] and define

f j,i,N (X i ) := h(X i ) − E[h(X i )], 1 ≤ j ≤ 4, [ns] + 1 ≤ i ≤ [nt].

hus each f j,i,N has a Hermite rank 1, i.e., m = 1.

E[|Sn(t) − Sn(s)|4] =
1
n2 E

⎡⎢⎣
⎛⎝ [nt]∑

i=[ns]+1

h(X i ) − E[h(X i )]

⎞⎠4
⎤⎥⎦

=
1
n2 E

⎡⎢⎣
⎛⎝ [nt]∑

i=[ns]+1

f j,i,N (X i )

⎞⎠4
⎤⎥⎦

≤
1

(Σ4 + Σ3 + Σ2,1 + Σ2,2),

n2
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N

W
θ

R

T

a

A

F
i

where

Σ4 =

∑
′E|[ f1,t1,N (X t1 ) · · · f4,t4,N (X t4 )]|,

Σ3 =

∑
′E|[ f1,t1,N (X t1 ) f2,t2,N (X t2 ) f 2

3,t3,N (X t3 )]|,

Σ2,1 =

∑
′E|[ f 3

1,t1,N (X t1 ) f2,t2,N (X t2 )]|,

Σ2,2 =

∑
E|[ f 2

1,t1,N (X t1 ) f 2
2,t2,N (X t2 )]|,

where
∑

′ stands for the sum over all different integers [ns] + 1 ≤ tp ≤ [nt].
Since we have proved that all fourth-order moments of h(X i ) can be controlled by a constant,

we have

Σ2,1 + Σ2,2 ≤ C1

∑
′1 + C2

∑
1 ≤ C ′([nt] − [ns])2.

ext, we seek to control

Qn = max
[ns]+1≤n1≤[nt]

∑
[ns]+1≤n2≤[nt],n2 ̸=n1

max
1≤u,v≤2

|EX (u)
n2

X (v)
n1

|.

e use the notation we have defined before, θ (n)(n2 − n1) = max1≤u,v≤2 |EX (u)
n2

X (v)
n1

| and
(n)

=
∑

j∈Z θ
(n)( j).

It is easy to see that

Qn ≤ θ (n).

ecall our assumption that supn≥1 θ
(n) < ∞. Hence Qn can be controlled by a constant, i.e.,

Qn ≤ C ′′.

hen we use Lemma 3.1 for p = 4, α = 4, we have

Σ4 =

∑
′E|[ f1,t1,N (X t1 ) · · · f4,t4,N (X t4 )]| ≤ C(ϵ, p,m, α, ν)K N 2 Q2

n = C4([nt]−[ns])2,

nd for p = 3, α = 2, we have

Σ3 =

∑
′E|[ f1,t1,N (X t1 ) f2,t2,N (X t2 ) f 2

3,t3,N (X t3 )]| ≤ C(ϵ, p,m, α, ν)K N 2 Qn

= C3([nt] − [ns])2.

ltogether, we have

E[|Sn(t) − Sn(s)|4] ≤ C
(

[nt] − [ns]
n

)2

.

inally, we revisit the issue of the ϵ-standard property. We will use the decimation technique
ntroduced in [4] to deal with it.

We divide [nt] − [ns] terms in the sum below

Sn(t) − Sn(s) =
1

√
n

[nt]∑
i=[ns]+1

h(X i ) − E[h(X i )]

into l groups where the indices will differ by at least l.
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r

k

c

w

w

w

Define

Tn,l( j) =
1

√
n

∑
[ns]<k≤[nt]:k= j(mod l)

h(Xk) − E[h(Xk)],

then we have

E[|Sn(t) − Sn(s)|4] =
1
n2 E

⎡⎢⎣
⎛⎝ [nt]∑

i=[ns]+1

h(X i ) − E[h(X i )]

⎞⎠4
⎤⎥⎦

= E

⎡⎢⎣
⎛⎝ l−1∑

j=0

Tn,l( j)

⎞⎠4
⎤⎥⎦

≤ l4 max
0≤ j<l

E
[
Tn,l( j)4] .

Next, we choose a finite l such that the ϵ−standard condition will be satisfied. Since we have
(k)
a,b ≤ C(k − 1)δ

(a)
+δ(b)

−1+ϵ′ where 0 < ϵ′ < 1 − δ(a)
− δ(b) is a constant and C is a constant

independent of n. Then for sufficiently large l, we will have |rn
a,b(k)| ≤ ϵ < 1

νp−1 =
1
7 for all

≥ l. We shall fix this l. Thanks to the previous partition, the difference of indices in each sum
Tn,l( j) will be at least l. Thus for random vectors in each group, they satisfy the ϵ−standard
ondition.

For E[Tn,l( j)4], we use similar arguments as before and deduce

E[Tn,l( j)4] ≤
1
l2 C( j)

(
[nt] − [ns]

n

)2

j = 0, 1, . . . , l − 1,

here C( j) are positive constants.
Then

E[|Sn(t) − Sn(s)|4] ≤ l4 max
0≤ j<l

E[Tn,l( j)4] ≤ C
(

[nt] − [ns]
n

)2

,

here C = l2 max0≤ j<l C( j).
This completes the proof of the tightness. □

Proof of Theorem 3.2.2. We need to analyse the dependence structure between the three
components.

Let (cl , bl], l = 1, . . . , e be disjoint intervals contained in [0, T ] and define

Z l
n := Sn(bl) − Sn(cl)

and

G(i)l
n = τ (i)

n

[nbl ]∑
j=[ncl ]+1

∆n
j G

(i)

τ
(i)
n

, i = 1, 2.

We denote e(i)
n, j :=

∆n
j G(i)

τ
(i)
n

. Recall the Hermite decomposition we made in Section 3.1, the term
of the first Hermite component of Sn(bl) − Sn(cl) is

I1( f (n)
1 ) =

An
√

n

[nbl ]∑
j=[ncl ]+1

(e(1)
n, j + e(2)

n, j ),

here A is a generic coefficient.
n
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R

w
m

w

w

b

P

Then

E[Z l
nG(1)l

n ] =
Anτ

(1)
n

√
n

[nbl ]∑
j=[ncl ]+1

[nbl ]∑
i=[ncl ]+1

E

[(
∆n

j G
(1)

τ
(1)
n

+
∆n

j G
(2)

τ
(2)
n

)(
∆n

i G(1)

τ
(1)
n

)]

=
Anτ

(1)
n

√
n

[nbl ]∑
j=[ncl ]+1

[nbl ]∑
i=[ncl ]+1

E

[
∆n

j G
(1)

τ
(1)
n

∆n
i G(1)

τ
(1)
n

]

+
Anτ

(1)
n

√
n

[nbl ]∑
j=[ncl ]+1

[nbl ]∑
i=[ncl ]+1

E

[
∆n

j G
(2)

τ
(2)
n

∆n
i G(1)

τ
(1)
n

]
.

ecall the assumption we made

R(i, j)(t) := E[(G( j)
t − G(i)

0 )2] = Ci, j + ρi, j tδ
(i)

+δ( j)
+1L (i, j)

0 (t),

here Ci, j = 0 if i = j and ρi, j = ρ if i ̸= j , where we assumed that the driving Brownian
otions W (1)

t and W (2)
t have constant correlation ρ.

W.l.o.g., we let bl = 1, cl = 0, then the first term above is

Anτ
(1)
n

√
n

[nbl ]∑
j=[ncl ]+1

[nbl ]∑
i=[ncl ]+1

∆n
j G

(1)

τ
(1)
n

∆n
i G(1)

τ
(1)
n

=
An R(1,1)(1)√

n R(1,1)( 1
n )
,

hich will converge to 0 if δ(1) < 0.
The second term is

Anτ
(1)
n

√
n

[nbl ]∑
j=[ncl ]+1

[nbl ]∑
i=[ncl ]+1

∆n
j G

(2)

τ
(2)
n

∆n
i G(1)

τ
(1)
n

=
Anτ

(1)
n

√
n

n∑
j=1

n∑
i=1

rn
1,2( j − i)

=
Anτ

(1)
n

√
n

R(1,2)(1) + R(2,1)(1) + (n − 1)(R(1,2)(0) + R(2,1)(0)) − n(R(1,2)( 1
n ) + R(2,1)( 1

n ))

2τ (1)
n τ

(2)
n

+
2nE[∆n

1G(1)
n ∆n

1G(2)
n ]

2τ (1)
n τ

(2)
n

=
Anτ

(1)
n

√
n

R(1,2)(1) + R(2,1)(1) + (n − 2)E[(G(2)
0 − G(1)

0 )2] − nE[(G(2)
1
n

− G(1)
1
n

)2]

2τ (1)
n τ

(2)
n

=
An(ρL (1,2)

0 (1) + ρL (2,1)
0 (1))√

n R(2,2)( 1
n )

,

hich converges to 0 if δ(2) < 0.
Thus the independence between the Gaussian cores and the limiting Brownian motion has

een proved since both of them are Gaussian. □

roof of Theorem 3.2.3. We denote µn := E
[

h
(

∆n
1 G(1)

τ
(1)
n

,
∆n

1 G(2)

τ
(2)
n

)]
.

Since σ (1), σ (2) are non-negative, we have

p(σ (i)) = σ (i),
s s
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w

D

and

p

(
σ (i)

s

∆n
j G

(i)

τ
(i)
n

)
= σ (i)

s p

(
∆n

j G
(i)

τ
(i)
n

)
, i = 1, 2.

For a fixed n, let l ≤ n, then we have the following decomposition

1
√

n

[nt]∑
i=1

p
(
∆n

i X (1)

τ
(1)
n

)
p
(
∆n

i X (2)

τ
(2)
n

)
−

√
nE
[

h
(
∆n

1G(1)

τ
(1)
n

,
∆n

1G(2)

τ
(2)
n

)]∫ t

0
σ (1)

s σ (2)
s ds

=
1

√
n

[nt]∑
i=1

p
(
∆n

i X (1)

τ
(1)
n

)
p
(
∆n

i X (2)

τ
(2)
n

)
−

√
nµn

∫ t

0
σ (1)

s σ (2)
s ds

=
1

√
n

[nt]∑
i=1

(
p
(
∆n

i X (1)

τ
(1)
n

)
p
(
∆n

i X (2)

τ
(2)
n

)
− p

(
σ

(1)
(i−1)/n

∆n
i G(1)

τ
(1)
n

)
p
(
σ

(2)
(i−1)/n

∆n
i G(2)

τ
(2)
n

))

+
1

√
n

[nt]∑
i=1

p
(
σ

(1)
(i−1)/n

∆n
i G(1)

τ
(1)
n

)
p
(
σ

(2)
(i−1)/n

∆n
i G(2)

τ
(2)
n

)

−
1

√
n

[lt]∑
j=1

σ
(1)
( j−1)/ lσ

(2)
( j−1)/ l

∑
i∈Il ( j)

p
(
∆n

i G(1)

τ
(1)
n

)
p
(
∆n

i G(2)

τ
(2)
n

)

+

√
n

l
µn

[lt]∑
j=1

σ
(1)
( j−1)/ lσ

(2)
( j−1)/ l −

1
√

n

[nt]∑
i=1

σ
(1)
(i−1)/nσ

(2)
(i−1)/n

+
1

√
n

[lt]∑
j=1

σ
(1)
( j−1)/ lσ

(2)
( j−1)/ l

∑
i∈Il ( j)

p
(
∆n

i G(1)

τ
(1)
n

)
p
(
∆n

i G(2)

τ
(2)
n

)

−

√
n

l
µn

[lt]∑
j=1

σ
(1)
( j−1)/ lσ

(2)
( j−1)/ l

+
1

√
n

[nt]∑
i=1

σ
(1)
(i−1)/nσ

(2)
(i−1)/n −

√
nµn

∫ t

0
σ (1)

s σ (2)
s ds,

here

Il( j) =

{
i :

i
n

∈

(
j − 1

l
,

j
l

]}
.

efine

An
t : =

1
√

n

[nt]∑
i=1

(
p
(
∆n

i X (1)

τ
(1)
n

)
p
(
∆n

i X (2)

τ
(2)
n

)
− p

(
σ

(1)
(i−1)/n

∆n
i G(1)

τ
(1)
n

)
p
(
σ

(2)
(i−1)/n

∆n
i G(2)

τ
(2)
n

))
,

B
′n,l
t : =

1
√

n

[nt]∑
p
(
σ

(1)
(i−1)/n

∆n
i G(1)

(1)

)
p
(
σ

(2)
(i−1)/n

∆n
i G(2)

(2)

)

i=1 τn τn
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W

F

M

T

−
1

√
n

[lt]∑
j=1

σ
(1)
( j−1)/ lσ

(2)
( j−1)/ l

∑
i∈Il ( j)

p
(
∆n

i G(1)

τ
(1)
n

)
p
(
∆n

i G(2)

τ
(2)
n

)

=
1

√
n

[nt]∑
i=1

σ
(1)
(i−1)/nσ

(2)
(i−1)/n p

(
∆n

i G(1)

τ
(1)
n

)
p
(
∆n

i G(2)

τ
(2)
n

)

−
1

√
n

[lt]∑
j=1

σ
(1)
( j−1)/ lσ

(2)
( j−1)/ l

∑
i∈Il ( j)

p
(
∆n

i G(1)

τ
(1)
n

)
p
(
∆n

i G(2)

τ
(2)
n

)

B
′′n,l
t : =

√
n

l
µn

[lt]∑
j=1

σ
(1)
( j−1)/ lσ

(2)
( j−1)/ l −

1
√

n

[nt]∑
i=1

σ
(1)
(i−1)/nσ

(2)
(i−1)/n,

Cn,l
t : =

1
√

n

[lt]∑
j=1

σ
(1)
( j−1)/ lσ

(2)
( j−1)/ l

∑
i∈Il ( j)

p
(
∆n

i G(1)

τ
(1)
n

)
p
(
∆n

i G(2)

τ
(2)
n

)

−

√
n

l
µn

[lt]∑
j=1

σ
(1)
( j−1)/ lσ

(2)
( j−1)/ l ,

Dn
t : =

1
√

n

[nt]∑
i=1

σ
(1)
(i−1)/nσ

(2)
(i−1)/n −

√
nµn

∫ t

0
σ (1)

s σ (2)
s ds.

e first prove that

An
t

P
→ 0, n → ∞.

or function p(x) = x1{x≥0}, we have

|p(a) − p(b)| ≤ |a − b|,

p(a)p(b) − p(c)p(d) =
1
2

[(p(a) − p(c))(p(b) + p(d)) + (p(b) − p(d))(p(a) + p(c))].

oreover, by Lemma 1 in [7], we have

E
[⏐⏐∆n

i X ( j)
⏐⏐] ≤ Cτ ( j)

n , E
[⏐⏐⏐σ ( j)

(i−1)/n∆
n
i G( j)

⏐⏐⏐] ≤ Cτ ( j)
n i = 1, . . . , [nt], j = 1, 2.

hen

E[|An
t |] =

1
√

n
E

[⏐⏐⏐⏐ [nt]∑
i=1

(
p
(
∆n

i X (1)

τ
(1)
n

)
p
(
∆n

i X (2)

τ
(2)
n

)
− p

(
σ

(1)
(i−1)/n

∆n
i G(1)

τ
(1)
n

)
p
(
σ

(2)
(i−1)/n

∆n
i G(2)

τ
(2)
n

)) ⏐⏐⏐⏐]
≤

1
√

n

[nt]∑
i=1

E
⏐⏐⏐⏐p(∆n

i X (1)

τ
(1)
n

)
p
(
∆n

i X (2)

τ
(2)
n

)
− p

(
σ

(1)
(i−1)/n

∆n
i G(1)

τ
(1)
n

)
p
(
σ

(2)
(i−1)/n

∆n
i G(2)

τ
(2)
n

) ⏐⏐⏐⏐
=

1
2
√

n

[nt]∑
E
⏐⏐⏐⏐ (p

(
∆n

i X (1)

(1)

)
− p

(
σ

(1)
(i−1)/n

∆n
i G(1)

(1)

))(
p
(
∆n

i X (2)

(2)

)

i=1 τn τn τn
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H

c

W

+ p
(
σ

(2)
(i−1)/n

∆n
i G(2)

τ
(2)
n

))
+

(
p
(
∆n

i X (2)

τ
(2)
n

)
− p

(
σ

(2)
(i−1)/n

∆n
i G(2)

τ
(2)
n

))(
p
(
∆n

i X (1)

τ
(1)
n

)
+ p

(
σ

(1)
(i−1)/n
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ence we reduce the problem to the univariate case, while the proof of
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an be found in the proof of Theorem 5 in [7].
Next, we prove that
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Then we have, for a fixed l,
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f we denote by G the σ -algebra generated by the process {(G(1)
t − G(1)

0 ,G(2)
t − G(2)

0 )}t≥0 and
when σ (1)
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[lt]∑
j=1

σ
(1)
( j−1)/ lσ

(2)
( j−1)/ l

1
√

n

∑
i∈Il ( j)

(
p

(
∆n

j G
(1)

τ
(1)
n

)
p

(
∆n

j G
(2)

τ
(2)
n

)
− µn

)
st
→

[lt]∑
j=1

σ
(1)
( j−1)/ lσ

(2)
( j−1)/ l

√
β(B j/ l − B( j−1)/ l), n → ∞
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0
σ (1)

s σ (2)
s d Bs .

Hence
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L
→
√
β

∫ t

0
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s d Bs .

The convergence of Dn follows as in the proof of Proposition 8.5 in [14]. □
t
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Proof of Theorem 3.2.4. We prove the central limit theorem for the generalised class
of functions φ first, and the discussion of choices of the generalisation will be found in
Remark 5.0.1.

We only prove for I (x) = 1 and I (x) = 1{x≥0}. From Lemma 1 of Barndorff-Nielsen et al.
[7], we have
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t is obvious that Φ(x, y) := φ(x)φ(y) is square-integrable w.r.t. any 2-dimensional Gaussian
easure, thus all the results established for V (G, φ) still hold.
We will use almost the same method as in the proof of Theorem 3.2.3 to prove the remaining
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he remainder of the proof of the convergence is identical to the proof of Theorem 3.2.3. □

emark 5.0.1. We will discuss here which class of functions we can generalise CLT to.
irst let ψ : R → R be any non-constant function and define Ψ (x, y) := ψ(x)ψ(y). Then
or the central limit theorem for the Gaussian cores, we need that E

[
Ψ 2(X )

]
< ∞ for any

-dimensional Gaussian vector X . Notice that in the proof of Theorem 3.2.3, we decompose

1
√
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[nt]∑
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(
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σ (1)

s σ (2)
s ds

nto five different parts, and in the second part

B
′n,l
t =

1
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n

[nt]∑
i=1

p
(
σ
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,

we use the property that p(ax) = ap(x) for any a ≥ 0. For simplicity, we will omit the
superscripts in the following discussion. Such factorisation property is necessary since we need
to separate σ(i−1)/n and p

(
∆n

i G
τn

)
to prove the convergence of Bn,l

t . Thus, for the function ψ ,
we let it have the following factorisation property:

ψ(xy) = α(x)β(y), x ∈ [0,∞), y ∈ R. (31)

Here the function α needs to satisfy that {α(σs)}0≤s≤T is ζ -Hölder continuous for ζ > 1/2.
onsidering that σ is bounded on the compact interval, we only need to work out what kind of
ontinuity should be satisfied by α on bounded sets. Since uniform continuity is not sufficient,
e assume that α is ξ -Hölder continuous. Then, if ξ > 1

2η , where σ is η-Hölder continuous
ith η > 1/2, {α(σs)}0≤s≤T is ζ -Hölder continuous for ζ > 1/2.
Now we try to solve functional equation (31). Since α is not the zero function, w.l.o.g., we

ssume that α(1) ̸= 0, then we fix x = 1, we have

ψ(y) = α(1)β(y),

hich means that ψ ∝ β in R. Let x, y ∈ [0,∞), we have

α(x)β(y) = ψ(xy) = ψ(yx) = α(y)β(x).

et x = 1 in the above equation, we get

β(y) =
β(1)

α(y),

α(1)
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T

which means that β ∝ α on [0,∞). Thus for all x, y ∈ [0,∞), there is a constant K such
that

ψ(xy) = Kψ(x)ψ(y).

If we further assume that ψ is normalised and satisfies ψ(1) = 1, then we have

ψ(xy) = ψ(x)ψ(y), x, y ∈ [0,∞). (32)

The function that satisfies Eq. (32) is the so-called multiplicative function in number theory.
Since we require α to be Hölder continuous, thus ψ is also continuous. By Theorem 3 in
Chapter 2.1 of Aczél [1], the complete set of solutions of functional equation (32) is {x p, 0}.

he next step is to extend the domain of ψ from [0,∞) to R while Eq. (31) still holds. In
this step, we can introduce another factor I (x) = 1 or 1{x≥0} or 1{x≤0} or sgn(x) into function
ψ(x) = |x |

p. Since we need Hölder continuity of α on a compact set, we will work on the
case that p ≥ 1. If we further assume that we only focus on non-negative valued functions,
then

ψ(x) = |x |
p I (x), I (x) = 1, or 1{x≥0}, or 1{x≤0}, p ≥ 1

is the only family of functions satisfying Eq. (31).
Notice that this does not contradict our choice p(x) = x1{x≥0} since x1{x≥0} = |x |1{x≥0}.

Hence Theorem 3.2.4 is indeed a generalisation of Theorem 3.2.3.
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