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Abstract

This thesis investigates the adaptive control problem for systems with time-varying param-

eters. Two concepts are developed and exploited throughout the thesis: the congelation

of variables, and the active nodes.

The thesis first revisits the classical adaptive schemes and explains the challenges

brought by the presence of time-varying parameters. Then, the concept of congelation of

variables is introduced and its use in combinations with passivity-based, immersion-and-

invariant, and identification-based adaptive schemes are discussed. As the congelation

of variables method introduces additional interconnection in the closed-loop system, a

framework for small-gain-like control synthesis for interconnected systems is needed.

To this end, the thesis proceeds by introducing the notion of active nodes. This

is instrumental to show that as long as a class of node systems that possess adjustable

damping parameters, that is the active nodes, satisfy certain graph-theoretic conditions,

the desired small-gain-like property for the overall system can be enforced via tuning these

adjustable parameters. Such conditions for interconnected systems with quadratic, nonlin-

ear, and linearly parametrized supply rates, respectively, are elaborated from the analysis

and control synthesis perspectives. The placement and the computation/adaptation of

the damping parameters are also discussed.

Following the introduction of these two fundamental tools, the thesis proceeds by

discussing state-feedback designs for a class of lower-triangular nonlinear systems. The

backstepping technique and the congelation of variables method are combined for passivity-

based, immersion-and-invariance, and identification-based schemes. The notion of active

nodes is exploited to yield simple and systematic proofs.



8

Based on the results established for lower-triangular systems, the thesis continues

to investigate output-feedback adaptive control problems. An immersion-and-invariance

scheme for single-input single-output linear systems and a passivity-based scheme for non-

linear systems in observer form are proposed. The proof and interpretation of these results

are also based on the notion of active nodes. The simulation results show that the adaptive

control schemes proposed in the thesis have superior performance when compared with

the classical schemes in the presence of time-varying parameters.

Finally, the thesis studies two applications of the theoretical results proposed. The

servo control problem for serial elastic actuators, and the disease control problem for inter-

connected settlements. The discussions show that these problems can be solved efficiently

using the framework provided by the thesis.
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Notation

This thesis uses standard notation unless stated otherwise. Most symbols are locally

defined and reused if no confusion is caused in the context. There are however some

conventions used throughout the thesis, listed by category as follows.

Vectors and Matrices

For an n-dimensional vector v ∈ Rn, vi ∈ Ri, 1 ≤ i ≤ n, denotes the vector composed of

the first i elements of v; ei denotes the ith unit vector in Rn, that is, the vector in which

the ith element is 1 and the other elements are 0. For an n×m matrix M , (M)i denotes

the ith column; (M)ij denotes the ith element on the jth column; tr(M) denotes the

trace; |M |F ≜
√∑n

i=1

∑m
j=1(M)2ij denotes the Frobenius norm. The symbol ⊗ denotes

the Kronecker product; I and S denote the identity matrix and the upper-shift matrix,

respectively, sometimes with a subscript n indicating that In ∈ Rn×n or Sn ∈ Rn×n; 1

and 0 denote the all-one matrix and the all-zero matrix, respectively, sometimes with a

subscript n×m indicating that 1 ∈ Rn×m or 0 ∈ Rn×m; M > 0 means thatM is element-

wise positive and similarly for other inequality signs. If M is a symmetric matrix, namely

M = M⊤, M ≻ 0 means M is positive definite and similarly for other curved inequality

signs. |v| denotes the Euclidean 2-norm; |v|M ≜
√
v⊤Mv, M = M⊤ ≻ 0, denotes the

weighted 2-norm of the vector v with weight M ;

Time-Varying Signals

For an n-dimensional signal θ : R→ Rn, the image of which is contained in a compact set

Θ, ∆θ : R→ Rn denotes the deviation of θ from a constant value ℓθ, i.e. ∆θ(t) ≜ θ(t)−ℓθ;
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δθ ∈ R denotes the supremum of the 2-norm of θ, i.e. δθ ≜ supt≥0 |θ(t)| ≥ 0; and θ(i)

denotes the ith time derivative of θ(t), namely,
diθ

dti
, assuming it exists.

Graphs

In a directed graph G, Pi and Si denote the index set of the direct predecessors and

successors, respectively, of the vertex i. | · | denotes the cardinality of such a set.

Functions and Mappings

All functions and mappings, unless stated otherwise, are smooth. The operator “◦” denotes

function composition, for example, for functions α : R → R, β : R → R, and a constant

c ∈ R, the expression “α ◦ cβ” means “α
(
cβ(·)

)
”.
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Chapter 1

Introduction

This thesis discusses adaptive control schemes for systems with time-varying parameters

that the author has developed in the past four years, mainly based on two concepts:

congelation of variables and active nodes. These two concepts will be further elaborated

on in the remainder of the thesis. As the thesis mainly focuses on adaptive control, it is

natural and helpful for understanding the context of the thesis to revisit classical adaptive

control methods designed for systems with constant parameters.

1.1 Revisiting Classical Adaptive Control

Adaptive control, as the name suggests, is a control method for coping with unknown

and varying plants and environments. The early development of adaptive control (see

e.g. [98, 113, 136]) was motivated by flight control problems for aircraft to be operated in

a large region within their flight envelope and with desirable performance, in which case a

fixed-gain controller cannot work well. Although lacking rigorous proofs of stability, these

results advocated the idea of dynamically updating the controller gains using the system

output, that is, to “adapt” the controller for the present operating condition. Since the

1980s global stability and convergence of adaptive control systems have been established

in the seminal works [42, 93], giving a solid foundation to the development of adaptive

control theory. The literature on adaptive control has become vast since then and has
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been supported by rigorous results. The mainstream methods have been summarized

and elaborated in books and monographs, see e.g. [5, 47, 51, 75, 76, 92, 126] and references

therein.

What Is Adaptive Control?

To define what is adaptive control, consider the system

ẋ = f(x, θ, u),

y = h(x, θ, u), (1.1)

where x(t) ∈ Rn is the state; u(t) ∈ Rm is the input; y(t) ∈ Rp is the output; θ(t) ∈ Rq

is the vector of system parameters, typically unknown; f : Rn × Rq × Rp → Rn and

h : Rn × Rq × Rp → Rn are mappings that describe the state evolution and the system

output, respectively. The objective of the control problem is to let y track a given reference

yr asymptotically, that is, to achieve reference tracking or set-point regulation, depending

on whether yr is time-varying or constant, respectively. An adaptive controller is a dynamic

feedback controller designed to complete this task without requiring the knowledge of θ,

as illustrated in Fig. 1.1. The controller can further be expressed by the equations

ξ̇ = w(ξ, y, d), (1.2)

u = v(ξ, y, d), (1.3)

where ξ(t) ∈ RnC is the controller state; d stands for yr and its time derivatives; w : RnC×

Rp ×Rp → RnC and v : RnC ×Rp ×Rp → Rm are mappings that describe the controller

state update law1, called “adaptation” in Fig. 1.1, and the control law, respectively. The

key part of the adaptive controller is the dynamic “adaptation” part (1.2). The most

common and intuitive interpretation of this part is that it provides an “estimate” for

1Sometimes (1.2) is said to depend also on u. It is a common misunderstanding that this indicates the
need for measuring input signal. In practice measuring the input signal is unnecessary as it is determined by
the control law, a function of the controller state, the system output, and the reference. The “dependency”
on u means a direct use of the control law to update ξ and does not change the actual dependency at all.
Therefore in (1.2), u is not listed among the arguments to avoid confusion.
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Figure 1.1: Schematic representation of an adaptive controller in a closed-loop system.

the unknown system parameters, which is intuitively correct, but may be misleading in

general. The interpretation is partially correct since, in some cases, the controller state ξ

(or a part of it) can be used in a non-implementable control law parametrized by unknown

parameters, as a substitute for the unknown parameters, therefore making the control

law implementable. The motivation behind is that the control law parametrized by the

“parameter estimates” can be considered “equivalent” to the control law parametrized

by the true parameters, if the parameter update law can let the “parameter estimates”

converge to the true parameters and establish “certainty”, which yields the well-known

certainty-equivalence principle2 . The interpretation is misleading since 1) in most cases

these “parameter estimates”3 do not converge to the true parameters; 2) ξ can include more

“estimates” (as in the so-called overparametrization, see e.g. [60, 61]) or less “estimates”

(as in dynamic high gains, see e.g. [79,80]) than the true parameters to overcome structural

limitations; and 3) ξ may also contain compensation terms for unmeasured system state,

or auxiliary variables facilitating parameter estimation. In the light of this, an adaptive

2The term “certainty-equivalence” or “certainty-equivalent”originates from the optimal and stochastic
control literature. The first known use of the term is in [116], indicating the substitution of the uncondi-
tional expectation of the state for the state measured with uncertainty in the decision-making policy and
treating it as equivalent to the policy in the deterministic case.

3Though the term “parameter estimate” may not be completely precise, to maintain consistency with
existing literature, the controller state variables that are related to system parameters are still denoted
with this term in the rest of the thesis. This should, however, not hinder the understanding of the true
roles of these variables.
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controller is not a controller that controls the system by estimating system parameters,

but a controller dynamically adapting its own state based on measured data such that the

control law fulfils the control objective without the knowledge of the system parameters.

The key features characterizing adaptive control are “dynamic adaptation” and

“without knowledge of parameters”, which distinguish adaptive control from other schemes

mitigating the effects of parametric uncertainty. In contrast, control schemes like gain

scheduling do not require a dynamical system for adaptation (described by (1.2)). They,

instead, admit a set of gain-combinations for different operating conditions, and switch the

controller gains to the prescribed combination once certain conditions hold. Furthermore,

control schemes like robust control require the knowledge of nominal system parameters

and the performance is affected by how the nominal values are close to the true values.

Taxonomy

Though adaptive control is not characterized by parameter estimation, the thesis focuses

on the schemes that relate at least part of the controller state to the system parame-

ters. Among various methods for categorizing adaptive control, the thesis uses the one

based on parameter update laws. In this framework, most adaptive control research can

be categorized into three trends: passivity-based schemes, identification-based schemes,

and immersion-and-invariance schemes. Passivity-based schemes are also known as the

Lyapunov-based schemes. The general idea of these schemes can be demonstrated by the

following simple example. Consider the scalar system (that is, x(t) ∈ R and u(t) ∈ R)

ẋ = θx2 + u, (1.4)

and the dynamic feedback controller

˙̂
θ = x3, (1.5)

u = − x− θ̂x2, (1.6)
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where θ is an unknown constant parameter. Differentiating the functions V1 ≜ 1
2x

2,

V2 ≜ 1
2(θ̂ − θ)

2, and V ≜ V1 + V2 along the trajectories of the closed-loop system yields

V̇ = V̇1 + V̇2 = −x2 − (θ̂ − θ)x3 + (θ̂ − θ)x3 = −x2 ≤ 0, (1.7)

which proves that V is a valid Lyapunov function. Meanwhile, the cancellation of the (θ̂−

θ)x3 terms can be interpreted as resulting from the interconnection in negative feedback of

two passive systems, with storage functions V1 and V2, respectively. These two observations

also explain why the scheme is “Lyapunov-based” or “passivity-based”. In more general

situations, the selection of V may not yield a Lyapunov function (therefore sometimes

referred to as “Lyapunov-like” functions, see e.g. [50]), but the passivity interpretation

always works. Therefore the term “passivity-based scheme” will be used throughout the

thesis. A key feature of passivity-based schemes is that the parametric model used for

designing the parameter update law is a differential model, say, for the aforementioned

example the differential parametric model is

ẋ = −x− (θ̂ − θ)x2. (1.8)

The schemes in this “family” adopt more complex structures for additional considerations

(e.g., to achieve modularity [74]), but the general ideas are essentially similar.

Another trend is given by identification-based (or parameter-estimation-based)

schemes, which considers an algebraic parametric model obtained by filtering and adopts

linear regression algorithms to design parameter update laws. Consider again (1.4) with

the control law

u = −k(x)x− θ̂x2, (1.9)

and the filters

ω̇0 = − k(x)ω0 − θ̂x2,

ω̇ = − k(x)ω + x2. (1.10)
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where k is a strictly positive damping term. The filters allows writing x = ω0 + ωθ + ε,

where ε is such that ε̇ = −k(x)ε, hence converges asymptotically to zero. Then by defining

x̂ = ω0 + ωθ̂, one can further obtain an algebraic parametric model

x̃ ≜ x− x̂ = ω(θ − θ̂) + ε. (1.11)

The algebraic parametric model allows solving the parameter estimation problem as a

linear regression problem with methods available in system identification literature (see,

e.g., [44] for discrete-time identification schemes and, e.g., [51] for continuous-time coun-

terparts). One of the advantages of identification-based schemes is that the “estimates”

of the parameters can converge to the true parameters under a condition known as persis-

tence of excitation4 (see, e.g., [92, Chapter 6]). The condition of persistence of excitation

can be enforced in some reference tracking problems by designing specific reference sig-

nals [10, 11], but it cannot be guaranteed nor verified a priori in general. It should also

be emphasized that though the initial motivation of adaptive control was based on the

“intuition” that the convergence of estimates to the true parameters makes the adaptive

controller certainty-equivalent to a stabilizing true-parameter controller, this is in gen-

eral not true, see the simple counterexample provided in [75, Section 1.2.1]. Most rigorous

proofs for identification-based schemes exploit the so-called swapping lemma [90], in which

the convergence of x̃ rather than that of θ − θ̂ is required, and therefore do not require

persistence of excitation. The general idea is to first establish L2-stability for subsystems

in the analysis and then propagate this property to the overall system by exploiting the

cascaded interconnection of the subsystems.

The immersion-and-invariance (I&I) schemes [6,61,62,64,65], which form the third

trend, adopt parameter estimates inspired by state estimates of reduced-order observers,

see, e.g., [124]. The parameter estimate is not directly updated, and instead, it is composed

of a dynamically updated part θ̂ and a state-dependent part β(x). The resulting controller

4Such a condition can be further relaxed using the so-called Dynamic Regressor Extension and Mixing
(DREM) method [4,97].
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for (1.4) is

˙̂
θ = − x2

((
θ̂ + β(x)

)
x2 + u

)
, (1.12)

u = − x−
(
θ̂ + β(x)

)
x2, (1.13)

where β(x) ≜ 1
3x

3. Then if one defines the parameter estimation error as zθ = θ̂−θ+β(x),

the closed-loop system dynamics can be described by

ẋ = − x− x2zθ, (1.14)

żθ = − x4zθ. (1.15)

It is not difficult to see that x2(t)zθ(t) ∈ L2 and the subsystem (1.14) is finite-gain L2-

stable with input x2zθ and output x, from which stability properties of the overall system

can be concluded due to the cascaded interconnection. Although the I&I scheme adopts a

differential parametric model, the parameter estimation error dynamics described by (1.15)

possess certain stability properties under conditions similar to persistence of excitation.

Similarly to the case in identification-based schemes, such conditions can be enforced in

some reference-tracking tasks by properly selecting the reference signal [133, 134], but in

general cannot be guaranteed a priori in stabilization problems.

It is worth noting that there are other categorizations that are even more popular

than the one stated above. Categorized based on the control law design/synthesize method,

there are the so-called model reference adaptive control (see, e.g., [36,89,121]) and adaptive

pole placement control (also known as self-tuning control, see, e.g., [13,34,94]). The former

one is an adaptive version of the tracking controller designed by pole-zero cancellation and

therefore only applicable to minimum-phase systems. It has, however, some advantages as

the output of the system tracks the output of a reference model, the transient behaviours of

which are known and can be tuned. Adaptive pole placement control schemes can be used

for nonminimum-phase systems though there is no reference model to provide a preview

of the transient behaviours and an intermediate model for tuning. Categorized based on

the computation of controller parameters, there are direct adaptive control and indirect
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adaptive control. In the direct adaptive control schemes [40,49], a parametrized control law

is first derived and the controller parameters are directly updated by (1.2). In the indirect

schemes [135, 140], the estimates for the system parameters are updated by (1.2). The

controller parameters are solved from an algebraic equation parametrized by the system

parameter estimates, which only allow implicit expression of the controller parameters and

are therefore called “indirect”. These categorization methods are common in the adaptive

control literature and comprehensive surveys can be found in [51, 127]. The reason why

these popular categorization methods are not considered in this thesis is that the thesis uses

a standard nonlinear framework to study adaptive control problems. Notions like transfer

functions, poles, and zeros that rely on linearity and time-invariance are not exploited

throughout the thesis (although these terms are used to facilitate the discussion wherever

convenient). In addition, in a nonlinear framework, the design of the control laws and of

the adaptation laws are typically coupled and performed in a recursive manner. Therefore

typically one cannot design a parametrized controller and directly set its parameters using

a separate update law, nor indirectly compute the controller parameters from an algebraic

equation. All of these make the categorization by parameter update laws more suitable in

the context of the thesis.

1.2 Adaptive Control for Time-Varying Systems

An important caveat in classical adaptive control schemes is that most of the supporting

proofs are only valid when the system parameters are constant. In the passivity-based,

identification-based, or I&I schemes, the parameter estimation error terms, which contain

the system parameter θ, are used in the candidate Lyapunov functions or Lyapunov-like

functions. As a result, when differentiating the candidate Lyapunov function, the time

derivatives of θ are injected into the system dynamics, depriving them of either passiv-

ity or L2-stability properties that hold in the constant-parameter scenarios and there-

fore voiding the stability proofs. The use of adaptive control is concisely summarized

in Astrom’s flowchart [7, Section 1.6, Fig. 1.22], which can be interpreted as follows: for

time-invariant plant/process, one should consider controllers with constant parameters; for
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time-varying systems with “predictable” (known) parameters, one should consider gain-

scheduling schemes; and only when the parameters are both time-varying and “unpre-

dictable” (unknown), one should consider adaptive control. In this sense, the assumption

of constant parameters is favourable to stability proof, however, somehow making adaptive

control deviate from its initial aspiration and guidelines of use.

Figure 1.2: Illustration of the projection operation and of the switching σ-
modification.

Several attempts have been made to solve the time-varying parameter issue since

the 1980s. Some pioneering works on adaptive control for time-varying systems (see,

e.g., [41]) exploit persistence of excitation to guarantee stability by ensuring that the

parameter estimates converge to the true parameters5. Subsequent works (see, e.g., [73],

[88]) have removed the restriction of persistence of excitation by requiring bounded and

slow (in an average sense) parameter variations. Since the time derivative of θ is typically

coupled with the parameter estimation error θ̂−θ, when the system parameters are varying

with bounded rates, if one can guarantee boundedness of the parameter estimates θ̂, the

effects of time-varying parameters can be viewed as that of bounded disturbances. To

this end, two widely used techniques are the projection operation (see, e.g., [43,102]) and

the switching σ-modification (see, e.g., [49, 51]). These methods assume that the true

5Methods that require identification of true parameters as a prerequisite, however, are considered to be
more identification-oriented due to the need for excitation conditions and less pursued in control-oriented
works, due to the reason explained in Section 1.1, though there are indeed identification methods suitable
for estimating time-varying parameters and can achieve convergence in finite time (see e.g. [106,109]).
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parameter vector θ is confined to a convex set Θ (this set does not have to be tight

so the simplest choice is a ball centred at 0). The projection operator is an identity

operator when θ̂ belongs to the interior of Θ, otherwise, it alters the update law
˙̂
θ = w

by an additional term w̃ once the parameter estimate vector θ̂ hits the boundary of Θ

from inside and “projects” w into a new direction w̄ tangent to the boundary of Θ. The

switching σ-modification introduces a leakage term −σ(θ̂)θ̂ to the update law w. The

leakage rate σ(θ̂) is a continuous function that remains 0 when θ̂ is in Θ, yet continuously

“switches” from 0 to σ̄ as θ̂ moves away from Θ. A graphic illustration of the two update

law modifications is given in Fig. 1.2. These modifications guarantee boundedness of

the parameter estimation error, and only add non-positive terms to the derivative of the

Lyapunov function, which does not undermine the results guaranteed by the unmodified

update law
˙̂
θ = w.6 Exploiting these modified update laws, if the parameter variations are

slow in some senses, bounded tracking error can be achieved (see, e.g., [73,88,129,132,145]),

and if the rates of parameter variations satisfy some integrability conditions, asymptotic

tracking can be achieved (see, e.g., [84–86]). However, these methods in general cannot

achieve asymptotic results when the parameters are unknown and persistently varying,

and fast varying parameters can further reduce the guaranteed performance, as the time

derivatives of the parameters are taken into account in the analysis.

It is difficult to avoid differentiating the system parameters in schemes that ex-

ploit system parameter estimates for controller adaptation, which inevitably causes the

aforementioned issues. Therefore, in some works, instead of using the classical controller

structure developed in the spirit of the certainty-equivalence principle, the controller struc-

ture is modified in a such a way that a nominal constant-parameter controller can ro-

bustly dominate the parametric uncertainties, regardless if the parameters are constant

or time-varying. It only remains to substitute adaptively updated estimates for these

nominal constant parameters, using classical adaptive control techniques. These methods

exploit either dynamically updated control gains (see, e.g., [79,80,131]), or sliding-mode-

like “switching” terms multiplied by dynamically updated amplitudes (see, e.g., [48,143]).

6In contrast, the original non-switching σ-modification [50] adopts a constant σ = σ̄, which guarantees
boundedness of estimates yet causes loss of asymptotic properties.
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These methods can guarantee bounded tracking error if using continuously “switching”

terms. Asymptotic results can be achieved by making the “switching” terms discontinuous

or “asymptotically” discontinuous [48, 143], but in this case the classical concerns about

discontinuous control law appears, such as “chattering” and lack of differentiability for

recursive design, which undermines the significance of the asymptotic results. It is worth

noting that the recent work [100] considers the technique that is an adaptive counterpart of

the second-order sliding mode control [137], and therefore alleviates the effects associated

with a discontinuous control law.

Another trend dealing with partial-state feedback nonlinear control is also worth

mentioning. Although these results do not mention “adaptive control” or “parameters”

explicitly, the unmeasured state variables are de facto time-varying parameters, and there-

fore the resulting nonlinear control designs can be viewed as adaptive control designs. In

these works the time-varying parameters θ, instead of being generated by the equation

θ̇ = 0, are generated by a dynamical system that is referred to as unmeasured dynamics

or zero dynamics and compensated by update laws that contain the information of the

parameter model. The designs in [37, 38] are essentially generalizations of the passivity-

based adaptive design, and the results in [63, 64] are generalizations of the I&I adaptive

scheme. Although such schemes require additional information on the parameters (that

is, the dynamical model), the parameters themselves are still unknown. Therefore such a

scheme does not violate the definition of adaptive control considered by the thesis. These

methods can achieve asymptotic results and are especially useful in dealing with systems

with periodic parameters, as these parameters can be either modelled or approximated by

sinusoidal signals that can be generated by oscillator-type dynamical systems.

The method coping with time-varying parameters that is more relevant to the thesis

is the so-called congelation of variables method, originally proposed in the author’s M.Sc.

thesis [15]. The general idea is to represent the time-varying parameters as the sum of

constant unknown parameters and time-varying perturbations. The design problem is then

divided into an adaptive control design coping with the constant unknown parameters

and a robust control design coping with the time-varying perturbations. A significant
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advantage of this method is that it does not require the system parameter variations to be

slow or vanishing to achieve the convergence of the state/output to 0. At the same time

this scheme retains compatibility with most classical adaptive control schemes, in the sense

that when the parameters are constant, the modified controller reduces to the associated

classical controller. The congelation of variablesmethod has been combined with passivity-

based schemes [16,20] and the I&I schemes [17] using state feedback, in which the damping

design can be conducted with the help of a recursive change of coordinates commonly

known as backstepping (see, e.g., [75]). For systems in which full-state measurement is

not available, an output-feedback scheme has to be considered and auxiliary filters have

to be used. As a result, interconnections among multiple subsystems have to be dealt

with in both the design and the analysis steps. In contrast to the classical time-invariant

scenarios, in which the subsystems are cascaded or isolated, the time-varying perturbation

terms can connect subsystems in feedback loops. This requires a comprehensive small-

gain-like design and analysis for the network-structured overall system, which turns out

to be more complicated than the standalone design and analysis performed for classical

schemes. The congelation of variables method has been applied to the output-feedback

passivity-based schemes [18,22] and the I&I scheme [19]. Similarly, as identification-based

schemes use auxiliary filters to obtain an algebraic parametric model, the time-varying

perturbations also create cyclic interconnections between the subsystems involved in the

design and analysis. The combination of the congelation of variables method with an

identification-based scheme is discussed in [23]. The relaxation of the constant parameter

assumption improves the flexibility of adaptive control: the adaptive control schemes

developed in the spirit of congelation of variables have been applied to practical scenarios

such as formation control over time-varying flowfield [28, 29] and cyber-physical systems

under time-varying sensor and actuator attacks [25].

Although it has been realized that time-varying perturbations create cyclic intercon-

nections and require a small-gain-like framework for network systems to efficiently design

the controller and to analyze stability properties, most of the aforementioned schemes de-

veloped using the congelation of variables method exploit constructive controller designs

and stability analysis, which are complicated and not sufficiently flexible in selecting de-
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sign parameters. The need for a more concise and more flexible small-gain-like control

synthesis tool has further motivated the other cornerstone of the thesis to be discussed

next.

1.3 Network Small-Gain Results

Dynamical systems interconnected in a network structure have seen extensive research

since the second half of the last century, under the names of dynamical network systems

and large-scale interconnected systems. In particular, stability analysis (see, e.g., [57, 68,

115,122,130]) has been one of the main research areas since, as it is well known, even if each

subsystem (node) possesses some stability properties when disconnected from the overall

system (network), such properties are not necessarily preserved under interconnection.

The majority of the works that guarantee network stability properties via the

preservation of node stability properties (see, e.g., input-to-state stability (ISS) [119], in-

tegral input-to-state stability (iISS) [118], and input-to-output stability (IOS) [120]) under

interconnection are based on small-gain theorems (see [56] for results based on trajecto-

ries and [58] for an equivalent Lyapunov interpretation). These results can be intuitively

understood, from a signal perspective, as requiring that the signals be not amplified while

flowing through the interconnection; and, from an energy perspective, as requiring that

energy do not accumulate via the interaction between the node subsystems.

Compared to the early results focusing on single-cycle interconnection, many subse-

quent works have taken generic network structures into account to extend the small-gain

results to large-scale interconnected systems. These works can be categorized into two

trends. The works in the first trend (see, e.g., [30,32,33]) exploit a nonlinear counterpart

of Perron-Frobenius Theorem [39] and conclude matrix-operator-based small-gain condi-

tions. These results have recently been extended to dynamical networks with infinitely

many nodes in [31, 67]. The matrix-operator-condition proposed in these works can be

viewed as a generalization of the spectral radius condition in the linear case, and it is

equivalent to the simple contraction condition (that is, the loop gain operator is smaller
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than identity) in the classical two-node case. It should however be noted that the matrix

operator is composed of nonlinear functions and the conditions based on such an operator

are in general difficult to check [57].

The other trend adopts graph-based small-gain conditions based on the loop gain

along every cycle path in the network, which is referred to as the cyclic small-gain the-

orem [59]. In the second trend, [81, 82] use a max-type Lyapunov function construction

and consider a max-type aggregation of the neighbours’ inputs, which yields a simple con-

traction condition similar to the classical two-node case. [53] uses a sum-type Lyapunov

function construction and considers sum-type supply rates, which also leads to a simi-

lar contraction condition but requires a decomposition of the gain functions in the node

dissipation inequalities. This is because the gain functions in the sum-type dissipation

inequality are associated with the edges of the underlying graph and each edge may be

shared by multiple cycles. As a result, the loop-gain condition uses decomposed compo-

nents of gain functions to avoid counting the effect of a gain function repeatedly. Although

the decomposition increases the complexity, the sum-type formulation is preferred in some

senses as it allows the smooth construction of the Lyapunov function and its algebraic

form allows direct application of linear algebra theory when the gains are linear.

Most of the aforementioned works (and of course many works not listed here) first

assume a specific stability property of the node system and then find the conditions that

preserve the same stability property for the network system. As the stability properties

need rigorous conditions to be established, introducing the conditions that particularly

serve for stability properties in the beginning may add unwanted restrictions and further

complicate the final results that are already complicated due to the network structure

of the overall system. As pointed out in [54, 68], one can change the assumed stability

properties by changing the assumptions on the gain functions in the dissipation inequality.

One can also conclude, for example, asymptotic stability of the interconnected system

without requiring ISS of the node systems [2], provided the node dissipation inequalities

are in a certain algebraic form. Moreover, there are cases in which no stability property

is required at all, and one may only need a relaxed condition to allow invariance-like
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convergence analysis [111,112].

Motivated by the need for a small-gain-like analysis and control synthesis in adap-

tive control problems for time-varying systems, the notion of the active nodes has been

proposed in [21]. This framework focuses on the feasibility to construct an overall dissi-

pation inequality for the network with negative supply rates by means of linear scaling.

Though the results in [21] are limited to linearly parametrized supply rates, the same no-

tion has been extended to a more general class of sum-type nonlinear supply rates in [26]

by exploiting the nonlinear scaling techniques introduced in [52, 69]. These results pro-

vide feasibility conditions on the structure of the network interconnection such that once

these are verified, the network dissipation inequality can be tuned to possess desired alge-

braic properties, without referring to stability properties explicitly, though adding proper

restrictions to node dissipation inequalities can imply stability properties. The notion

of active nodes has been used to interpret the output-feedback passivity-based adaptive

control scheme in [24], the identification-based adaptive control scheme in [23], and the

control synthesis and analysis steps for the adaptive coordinated attack rejection scheme

in [25] for cyber-physical systems.

1.4 Organization and Contributions

The rest of the thesis is organized as follows. In Chapter 2, the challenges brought by time-

varying system parameters are explained and the method of the congelation of variables

is elaborated with a scalar nonlinear system. The combination of the proposed method

with the passivity-based scheme, the I&I scheme, and the identification-based scheme

are discussed. The fact that the time-varying perturbations cause cyclic interconnection

between subsystems is demonstrated, and the need for a small-gain-like analysis/synthesis

tool is discussed. The chapter covers the motivating ideas in the author’s publications

[16,17,20,23].

In Chapter 3, the notion of active nodes is introduced motivated by the need for a

small-gain-like tool. An analysis condition and a synthesis condition are discussed for three
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classes of network systems: the ones with quadratic supply rates, the ones with generic

sum-type supply rates, and the ones with linearly parametrized supply rates. The chapter

also discusses the control synthesis methods derived from the aforementioned results, which

relate to the placement of the active nodes and the computation/adaptation of the active

node parameters. The chapter covers the results in the author’s publications [21,22].

In Chapter 4, state-feedback adaptive control problems for a class of lower-

triangular systems are considered to demonstrate the combination of the congelation of

variables method with adaptive backstepping techniques. The passivity-base scheme, the

I&I scheme, and the identification-based scheme are discussed, with a focus on how to

overcome the structural limitation posed by the unmatched parametric uncertainty and

the additional difficulties caused by parameter variations. The proofs based on active

nodes are provided to facilitate the understanding of the proposed scheme. The chapter

mainly covers the technical results in [17,22,23].

In Chapter 5, output-feedback adaptive control schemes are discussed. First, an I&I

scheme for a class of single-input single-output (SISO) linear systems are discussed. Then

a more complex SISO nonlinear system is considered with a passivity-based scheme. For

both systems, the control schemes are explained using both classical constructive proofs

and the small-gain-like framework based on the active nodes. The chapter mainly covers

the technical results in [19,22], and the conceptual proof in [24].

Chapter 6 discusses some potential applications of the proposed theoretical results.

A robotic actuator is discussed to show how to model state-dependent nonlinearities with

time-varying parameters and solve the new control problem using the congelation of vari-

ables method. Then, a disease control scheme is proposed to demonstrate how to control

the spread of infectious diseases among interconnected settlements with minimum inter-

vention by exploiting the notion of active nodes. The real-life examples in this chapter are

based on the results in [17,26].

The main contributions of the thesis are summarized as follows.

• The method called congelation of variables is proposed: this solves the long-standing
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constant-parameter restriction of classical adaptive control and is compatible with

most existing adaptive control schemes.

• A small-gain-like framework based on the notion of active nodes is proposed. It

provides flexible and simple tools to enforce a small-gain-like algebraic condition

from a control synthesis perspective for networks of dynamical systems, without

restricting itself to specific stability properties.

• The use of the active-node framework provides a standard routine for the analysis

and the control synthesis for adaptive control problems for time-varying systems,

the underlying networks of which possess cyclic and complex interconnections. The

resulting interpretations yield better conciseness and readability when compared to

classical constructive methods.

1.5 Fundamental Assumptions

To keep consistency throughout the thesis, several assumptions should be made before the

discussion of the technical content. The time-varying parameters considered in this paper

are assumed to satisfy one or more of the following conditions.

Assumption 1.1 (Bounded parameters). The parameter θ is piecewise continuous and

θ(t) ∈ Θ0, for all t ≥ 0, where Θ0 is a compact set. The “radius” of Θ0, i.e. δ∆θ
, is

assumed to be known, while Θ0 can be unknown (see Fig. 1.3).

Assumption 1.2 (Smooth bounded parameters). The parameter θ is smooth, that is,

θ(i)(t) ∈ Θi, for i ≥ 0, for all t ≥ 0, respectively, where Θi’s are compact sets possibly

unknown. δ∆θ
is assumed to be known.

Assumption 1.3 (Sign-definite parameter). The parameter bm(t) is bounded away from

0 in the sense that there exists a constant ℓbm such that sgn(ℓbm) = sgn
(
bm(t)

)
̸= 0 and

0 < |ℓbm | ≤ |bm(t)|, for all t ≥ 0. The sign of ℓbm and bm(t), for all t ≥ 0, is known and

does not change.

The regressor functions, if not stated otherwise, satisfy the following condition.

Assumption 1.4. The mapping ϕ : Rn → Rq is a smooth mapping satisfying ϕ(0) = 0.
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Figure 1.3: Graphical illustration of the role of Θ0, ℓθ, ∆θ(t), and δ∆θ
.
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Chapter 2

Congelation of Variables

In this chapter we discuss some simple scalar examples to understand the basic mechanism

of the so-called congelation of variables method and how this helps to circumvent the re-

strictions due to the presence of time-varying system parameters. Though the spirit of the

congelation of variables method is unique, due to some differences in aspects of implemen-

tation, in the following sections, the discussions are made separately in the context of three

main-stream adaptive schemes: the passivity-based scheme, the immersion-and-invariance

(I&I) scheme, and the identification-based scheme.

2.1 Passivity-Based Scheme

The passivity-based scheme is commonly known as Lyapunov-based scheme. This is par-

tially due to the fact that the parameter estimator is designed by cancelling the parameter

estimation error term that appears in the time derivative of a Lyapunov-like function

along the system trajectories. Since such a Lyapunov-like function is not necessarily a

Lyapunov function, whereas such cancellation can be precisely described by the inter-

connection of passive systems, we refer to such an adaptive scheme as a passivity-based

scheme to highlight its nature.
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2.1.1 Parameter in the Feedback Path

To begin with, consider a scalar nonlinear system described by the equation

ẋ = ϕ(x)θ(t) + u, (2.1)

where x(t) ∈ R is the state, u(t) ∈ R is the input, θ(t) ∈ R is an unknown time-varying

parameter satisfying Assumption 1.1, and ϕ : R → R satisfies Assumption 1.4 (with

n = q = 1). To avoid using the unknown θ explicitly we introduce an “estimate” θ̂ of the

parameter θ, and we rewrite (2.1) as

ẋ = ϕ(x)θ̂ + u+ ϕ(x)(θ − θ̂). (2.2)

In the passivity-based scheme the parameter update law for θ̂ is designed by considering

a storage function of the form

V (x, θ̂, θ) =
1

2
x2 +

1

2γθ
(θ − θ̂)2. (2.3)

Assuming that θ is differentiable with respect to time, for the time being, and taking the

time derivative of V along the solutions of (2.2) yields

V̇ = xϕ(x)θ̂ + xu+ xϕ(x)(θ − θ̂)− (θ − θ̂)
˙̂
θ

γθ
+ (θ − θ̂) θ̇

γθ
, (2.4)

which implies that the selection of the parameter update law

˙̂
θ = γθxϕ(x) (2.5)

cancels the effect of the xϕ(x)(θ − θ̂) term that contains the unknown parameter. The

constant γθ > 0 is known as adaptation gain: it is not essential for stability analysis but

plays an important role in controller tuning and it is therefore included hereafter. In

classical adaptive control problems one assumes that θ is constant, that is θ̇(t) = 0 for all
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t ≥ 0, and selects the control law

u = −kx− xϕ(x)θ̂, (2.6)

with k > 0, which yields V̇ = −kx2 ≤ 0. This leads to the classical adaptive regulation

(to the origin) result stated as follows.

Proposition 2.1. If the system parameter θ is constant, all trajectories of the closed-loop

system described by (2.1), (2.5), and (2.6), are bounded and lim
t→+∞

x(t) = 0.

Proof. To prove boundedness, note that V in (2.3) is positive definite and radially un-

bounded in (x, θ − θ̂), and this, along with the fact that V̇ ≤ 0, yields that V is a proper

Lyapunov function and both x(t) and θ̂(t) are bounded for all t ≥ 0.

To prove convergence, note that since V̇ ≤ 0, the following inequality holds along

the trajectories (with a slight abuse of notation that treats V as a function of time t):

∫ +∞

0
x2(t)dt ≤ 1

k

(
V (0)− V (+∞)

)
≤ 1

k
V (0). (2.7)

Note now that d
dtx

2(t) = 2x(t)ẋ(t) and that both x and ẋ are bounded. Hence by invoking

Lemma A.4 (Barbalat’s lemma), x2 converges to 0 and so does x. The convergence part

of the proof can also be completed by directly invoking Lemma A.5.

When θ̇ ̸= 0, one has to deal with the indefinite term (θ − θ̂) θ̇γθ . One way to do

this is to modify (2.5) with the so-called projection operation (see, e.g., [43], [102]), which

confines the parameter estimate θ̂ inside a convex compact set and therefore guarantees

boundedness of (θ − θ̂). It follows that boundedness of θ̇ guarantees boundedness of x

(either exact boundedness, e.g. in [144] or boundedness in an average sense, e.g. in

[88]), and θ̇ ∈ L1 guarantees convergence of x to 0 (e.g. in [84], [85], [86]). In some

other works (e.g. in [129], [142], [141]), boundedness of θ̂ is guaranteed by the so-called

switching σ-modification, which adds some leakage to the integrator (2.5) if the parameter

estimate drifts outside a reasonable region: this is often referred to as soft projection.

All these schemes share the similarity that they treat θ̇ as a disturbance. As a result

some disturbance attenuation effort is made to guarantee that bounded θ̇ yields bounded
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state/output regulation/tracking error, and sufficiently fast converging θ̇, which means

that θ becomes constant sufficiently fast, guarantees the convergence of the error to 0.

As a result, none of these methods can guarantee zero-error regulation/tracking when the

unknown parameter is persistently time-varying, in which case θ̇ is non-vanishing.

The reason why we cannot avoid θ̇ in the analysis is the θ − θ̂ term in (2.3).

This term is included only to guarantee boundedness of θ̂, yet by no means guaranteeing

convergence of θ̂ to θ, no matter whether θ is time-varying or constant, thus replacing

θ with an unknown constant ℓθ that can guarantee the same properties (as we will see

later, ℓθ is not required for implementation). In the light of this, consider the modified

Lyapunov function candidate

Vℓ(x, θ̂, ℓθ) =
1

2
x2 +

1

2γθ
(ℓθ − θ̂)2. (2.8)

Taking the time derivative of Vℓ along the trajectories of (2.2) yields

V̇ℓ = xϕ(x)θ̂ + xu+ xϕ(x)(ℓθ − θ̂)− (ℓθ − θ̂)
˙̂
θ

γθ
+ xϕ(x)∆θ, (2.9)

where ∆θ = θ − ℓθ. Comparing (2.9) with (2.4) we see that the substitution of ℓθ for

θ eliminates the θ̇ term, at the cost of adding a perturbation term xϕ(x)∆θ due to the

deviation of θ from ℓθ. Note that due to Lemma A.3 and the fact that ϕ(0) = 0, we can

rewrite ϕ(x) as ϕ(x) = ϕ̄(x)x, where ϕ̄ : R → R is a smooth mapping. Consider now a

new control law

u = −
(
k +

1

2ϵ∆θ

δ∆θ

)
x− 1

2
ϵ∆θ

δ∆θ
ϕ̄2(x)x− ϕ(x)θ̂, (2.10)

where ϵ∆θ
> 0 is a constant to balance the linear and the nonlinear terms. This control

law along with the parameter update law (2.5) yields

V̇ℓ = −
(
k +

1

2ϵ∆θ

δ∆θ

)
x2 − 1

2
ϵ∆θ

δ∆θ
ϕ2(x) + xϕ(x)∆θ

≤ −kx2 ≤ 0. (2.11)
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Note that the inequality is established by invoking Lemma A.1 (Young’s inequality) and

by noting that xϕ(x)∆θ ≤ δ∆θ
|x||ϕ(x)| ≤ 1

2ϵ∆θ
δ∆θ

x2 + 1
2ϵ∆θ

δ∆θ
ϕ2(x).

Proposition 2.2. Consider the system (2.1), and the adaptive controller described

by (2.5) and (2.10), with the parameter θ satisfying Assumption 1.1. Then, all trajec-

tories of the closed-loop system are bounded and lim
t→+∞

x(t) = 0, regardless of the rate of

variation of θ(t).

Proof. Note that the dissipation inequality (2.11) is in the same form as that of the

constant parameter case and we can therefore conclude boundedness of all trajectories of

the closed-loop system as well as convergence of x to 0 using the same argument as in

the proof of Proposition 2.1, without requiring any restriction on the rate of parameter

variation.

The method of substituting the constant ℓθ for the time-varying θ to avoid un-

necessary time derivatives is called congelation of variables [16]1. Since restrictions on

the rate of parameter variations are not needed in the analysis, controllers designed via

the congelation of variables method are naturally applicable to systems with fast-varying

parameters.

Remark 2.1. The control law (2.10) and the parameter update law (2.5) do not depend on

ℓθ, in the same way as classical adaptive controllers do not depend on θ, thus showing the

“adaptive” property of the proposed mechanism. One can interpret the proposed controller

as a combination of an adaptive controller, to cope with the unknown parameter ℓθ, and a

robust controller, to cope with the time-varying perturbation ∆θ(t). This fact can also be

revealed by noting that, when θ is a constant, one could select ℓθ = θ, hence δ∆θ
= 0, and

the control law (2.10) is reduced to the classical control law (2.6).

Remark 2.2. Assumption 1.4 is only needed when the parameter θ is time-varying. When

θ is time-varying, if ϕ(0) ̸= 0, one has ẋ = ϕ⊤(x)θ+ u = xϕ̄(x)θ+ u+ϕ(0)θ, where ϕ(0)θ

1Some works predating [16] exploit similar ideas to avoid involving θ̇ in the analysis. For example, in [3]
the unknown time-varying controller parameter in the Lyapunov function is replaced with a constant (0,
as a matter of fact). In other works one first derives a constant parameter controller via dominance design
(instead of directly using a time-varying parameter controller that cancels the time-varying parameter) and
then estimates the constant parameter of the dominance controller, see e.g. [80], [131]. The decomposition
of time-varying parameter into a constant parameter and a time-varying perturbation term is also seen in
the online lecture notes [128].
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is an unknown time-varying disturbance. This leads to a disturbance rejection problem

that is not to be discussed in the thesis. The treatment for the case in which ϕ(0) ̸= 0 is

discussed in [27].

Comparison with a Robust Control Scheme

One could agree that the congelation of variables scheme resembles a pure robust control

scheme in the sense that they both use a nominal parameter, which is ℓθ in this case. It

should be highlighted that in a robust control scheme ℓθ should be known in some sense

and it is required for implementation, whereas in the congelation of variables scheme ℓθ

is only needed for analysis. To illustrate this consider a practical scenario in which we

have a circuit that has to work with one of three resistors with values 50 Ω, 100 Ω, and

150 Ω, yet which one is used is unknown. In addition, due to temperature variations, the

resistances have a fluctuation of ±10 Ω. In the spirit of the proposed method, ℓθ equals

either 50 Ω, 100 Ω, or 150 Ω, which is unknown and not used in the controller design,

as it is replaced by the dynamically updated θ̂, and δ∆θ
= 10 Ω, which is known and

used in the controller design. In the spirit of robust control, one has to determine the

nominal resistance of the resistor before designing the controller, and according to the

known information, the best guess is ℓθ = 100 Ω. In this case the maximum deviation

from this nominal value is δ∆θ
= 60 Ω, which is caused not only by the parameter variation

but also by the imperfect knowledge of the true resistance of the resistor used. This leads

to a more conservative design that uses an unnecessarily high gain and may cause severe

noise amplification issues. In an extreme case in which the nominal resistance of the used

resistor is completely unknown, one cannot design a robust controller while one can still

design an adaptive controller using the proposed method.

On the Knowledge of δ∆θ

It is natural to question whether it is practical to assume that δ∆θ
is known (Assump-

tion 1.1), since ∆θ = θ − ℓθ depends on the selection of ℓθ and so is δ∆θ
This is justified

by the observation that in many practical scenarios (e.g. in the aforementioned resistor
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example), the amplitude of fluctuation (sometimes is also referred to as an error bound),

instead of the mean value of the parameter, is known a priori, and therefore one only needs

to estimate the nominal value ℓθ and apply the congelation of variables method to design

the controller. In the case in which δ∆θ
is unknown, one can add an additional dynam-

ical estimate for δ∆θ
, exploiting the fact that the nonlinear damping term in the control

law (2.10) is linearly parametrized. In fact, consider the dynamic feedback controller

˙̂
θ = γθxϕ(x),

˙̂
k2 = γk2ϕ

2(x),

u = − k1x− k̂2ϕ̄2(x)x− ϕ(x)θ̂, (2.12)

with k1 > 0, γ(·) > 0. Consider a new construction of storage function V = 1
2x

2+ 1
2γθ

(ℓθ−

θ̂)2+ 1
2γk2

(k2− k̂2)2, with k2 = 1
2k1
δ2∆θ

, ϵ∆θ
=

δ∆θ
k1

. Its time derivative along the closed-loop

system trajectories satisfies

V̇ = −
(
k1 −

1

2ϵ∆θ

δ∆θ

)
x2 − 1

2ϵ∆θ

δ∆θ
x2 − 1

2
ϵ∆θ

δ∆θ
ϕ2(x) + xϕ(x)∆θ

+ (k2 − k̂2)ϕ2(x)−
1

γk2
(k2 − k̂2) ˙̂k2

≤ − 1

2
k1x

2 ≤ −kx2 ≤ 0, (2.13)

where k ≜ 1
2k1. It is not difficult to see that the results in Proposition 2.2 still hold with this

new controller since we end up with the same dissipation inequality. This shows that the

knowledge of δ∆θ
is not a restriction and can be circumvented with simple modifications.

Remark 2.3. It is worth introducing a convention to clarify the spirit in which we treat

unknown quantities. If an unknown indefinite term in the time derivative of the Lyapunov

function vanishes as the system parameters become constant, then this term is to be dom-

inated by a static damping design, like the ∆θ-term in this case, and we do not aim at

estimating δ∆θ
, the bound of ∆θ(t). If an unknown indefinite term is not vanishing even

when all system parameters are constant, like the ℓθ-term in this case, then this term is to

be compensated by a dynamically updated “estimate”, which is θ̂ in this case. The reasons

for this convention of design are, first, that we do not want to over-extend the dimension
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of the closed-loop system by adding too many dynamic estimates, and second, that we need

the static damping terms to counteract fast parameter variations for better transient per-

formance (for the same reason one can use nonlinear damping techniques even for system

with constant parameters).

A Passivity Interpretation

Consider the classical adaptive control problem in which θ is constant. The closed-loop

dynamics can be described via a negative feedback loop consisting of two passive systems,

namely

Σ1 :

 ẋ1 = −kx1 + ϕ(x1)u1,

y1 = x1ϕ(x1),
(2.14)

Σ2 :

 ẋ2 = γθu2,

y2 = x2,
(2.15)

where x1 ≜ x, x2 ≜ θ̂ − θ, u1 ≜ −y2, u2 ≜ y1. The storage functions are S1 = 1
2x

2
1 and

S2 = 1
2γθ
x22, respectively. It is well-known that the parameter update law (2.5) is not

designed to guarantee convergence of θ̂ to θ, though θ̂ is called the parameter estimate by

convention, but to make θ̂ − θ an input/output signal to form a passive interconnection.

When θ is time-varying, the dynamics of Σ2 are described by

Σ2 :

 ẋ2 = γθu2 − θ̇,

y2 = x2,
(2.16)

which causes the loss of passivity from u2 to y2. The congelation of variables method

can therefore be interpreted as selecting a new signal θ̂ − ℓθ that can yield a passive

interconnection, while maintaining the passivity of Σ1 by strengthened damping. Within



2.1 Passivity-Based Scheme 49

this framework, the two passive systems are described by

Σ1 :

 ẋ1 = −a(x1, t)x1 + ϕ(x1)u1,

y1 = x1ϕ(x1),
(2.17)

Σ2 :

 ẋ2 = γθu2,

y2 = x2,
(2.18)

where x1 ≜ x, x2 ≜ θ̂ − ℓθ, u1 ≜ −y2, u2 ≜ y2 and a(x1, t) ≜
(
k + 1

2ϵ∆θ
δ∆θ

)
+

1
2ϵ∆θ

δ∆θ
ϕ̄2(x1)−∆θϕ̄(x1) ≥ k > 0.

2.1.2 Parameter in the Input Path

In what follows we show how to extend the idea of congelation of variables to systems in

which a time-varying parameter is coupled with the input by considering the nonlinear

system

ẋ = ϕ(x)θ(t) + b(t)u, (2.19)

where the variables are defined as in (2.1) and in addition b(t) ∈ R satisfies both As-

sumption 1.1 and Assumption 1.3. Similarly as before, equation (2.19) can be re-written

as

ẋ = ϕ(x)θ̂ + ū+ ϕ(x)∆θ +∆bϱ̂ū

+ (ℓθ − θ̂)ϕ(x)− ℓb
(
1

ℓb
− ϱ̂

)
ū, (2.20)

where ∆b(t) = b(t) − ℓb, ϱ̂ is an “estimate” of 1
ℓb
, and u = ϱ̂ū. From classical adaptive

control theory (see e.g. [75]) we know that the effect of the second line of (2.20) can be

cancelled by selecting the parameter update laws (2.5) and

˙̂ϱ = −γϱsgn(ℓb)ūx, (2.21)
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and considering the Lyapunov function candidate V (x, θ̂, ϱ̂) = 1
2x

2+ 1
2γθ

(θ− θ̂)2+ |ℓb|
2γϱ

( 1
ℓb
−

ϱ̂)2, the time derivative of which along the trajectories of (2.20) satisfies

V̇ = xϕ(x)θ̂ + xū+ xϕ(x)∆θ +∆bϱ̂ūx. (2.22)

Note that the perturbation term ∆bϱ̂ūx depends on ū explicitly, which means that we

cannot dominate this term by simply adding damping terms to ū, as doing this also alters

the perturbation term itself. Instead, we need to make ∆bϱ̂ūx non-positive by designing ū

and selecting ℓb. Consider ū as a feedback control law with a non-positive nonlinear gain,

that is

ū = −
(
k +

1

2

(
δ∆θ

ϵ∆θ

+
1

ϵθ̂

)
+

1

2
(ϵ∆θ

δ∆θ
+ ϵθ̂θ̂

2)ϕ̄2(x)

)
x

≜ −κ(x, θ̂)x, (2.23)

where ϵθ̂ > 0. Note that κ(x, θ̂) > 0 by construction.

Proposition 2.3. Consider the closed-loop system described by (2.2), (2.5), (2.10),

and (2.21), with the initial condition of ϱ̂ satisfying ϱ̂(0) sgn(ℓb) > 0, and with θ sat-

isfying Assumption 1.1 and b satisfying Assumption 1.1 and 1.3. Then, all trajectories of

the closed-loop system are bounded and lim
t→+∞

x(t) = 0, regardless of the rates of parameters

θ(t) and b(t).

Proof. First, substituting (2.23) into (2.21) yields ˙̂ϱ = γϱsgn(ℓb)κx
2. There are two cases

to be discussed.

• When b(t) > 0, for all t ≥ 0, due to Assumption 1.3, there exists a constant ℓb such

that 0 < ℓb ≤ b(t), ∆b > 0, ˙̂ϱ ≥ 0, which means that any initialization with ϱ̂(0) > 0

guarantees that ϱ̂(t) > 0, for all t ≥ 0, and therefore ∆bϱ̂ūx = −∆bϱ̂κx
2 ≤ 0, for all

t ≥ 0.

• Similarly, when b(t) < 0, for all t ≥ 0, there exists ℓb such that b(t) ≤ ℓb < 0, ∆b < 0,

˙̂ϱ ≤ 0. Then selecting ϱ̂(0) < 0 guarantees ϱ̂(t) < 0, for all t ≥ 0, and ∆bϱ̂ūx ≤ 0.
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Recalling (2.22), (2.23), and noting that ∆bϱ̂ūx ≤ 0 yields

V̇ ≤ − kx2 −
(
ϵθ̂
2

(
ϕ(x)θ̂

)2
+

1

2ϵθ̂
x2 − xϕ(x)θ̂

)
−
(
ϵ∆θ

δ∆θ

2
ϕ2(x) +

δ∆θ

2ϵ∆θ

x2 + xϕ(x)∆θ

)
≤ −kx2 ≤ 0. (2.24)

This establishes boundedness of the system trajectories. Finally, noting boundedness of

x, ẋ and exploiting Lemma A.5 as before, convergence of x to 0 follows.

Remark 2.4. This example highlights the flexibility of the congelation of variables method:

the congealed parameter ℓ(·) can be selected according to the specific usage. It can be

a nominal value for robust design, or an “extreme” value to create sign-definiteness, as

long as the resulting perturbation ∆(·) is considered consistently. One can make ℓ(·) a time-

varying parameter subject to some of the assumptions used in the literature (e.g. ℓ̇(·) ∈ L∞,

ℓ̇(·) ∈ L1, see e.g. [84, 88]), and use the congelation of variables method to relax these

assumptions. One can also exploit an oscillator-like dynamical system to generate ℓ(·) [27],

which allows avoiding a conservative design with large δ∆(·) when θ is a large-amplitude

periodic signal. This is the reason why the proposed method is named “congelation”2 not

“freeze”.

A Passivity Interpretation

Write (2.20), (2.5), and (2.21) into the system described by

ẋ = f(x, t) + v, (2.25)

·︷ ︸︸ ︷
θ̂ − ℓθ = γθxϕ(x) (2.26)

·︷ ︸︸ ︷
ϱ̂− ℓ−1

b = γϱ sgn(ℓb)κx
2 (2.27)

y = x. (2.28)

where f(x, t) ≜ ϕ(x)θ̂− κx+ ϕ(x)∆θ + (ℓθ − θ̂)ϕ(x) + ℓb(ℓ
−1
b − ϱ̂)κx and the input v is set

to −∆bϱ̂κy. The interconnection among the subsystems (2.25)–(2.27) can be understood

2The word “congelation” is polysemous: it means both “coagulation” and “freeze/solidification” [87].



52 Chapter 2

using the passivity interpretation in Section 2.1.2. Consider now the system consisting

of (2.25)–(2.28) as a whole. One can observe that the selection of κ as in (2.23) renders

the system passive from the input v to the output y with dissipation rate kx2 (see Fig. 2.1

for a schematic illustration). At the same time, the selection of ϱ̂(0) and ℓb guarantees

that K(t) ≜ ∆b(t)ϱ̂(t)κ(t) > 0, for all t ≥ 0. Then, from a passivity perspective, the

results in Proposition 2.3 are established by exploiting the fact that K can be arbitrarily

selected from (0,+∞), to achieve robustness against the time-varying parameter b(t).

Figure 2.1: Schematic representation of system (2.20), (2.5) and (2.21) as the intercon-
nection of passive subsystems.

2.2 Immersion-and-Invariance Scheme

In this section we discuss how to combine the congelation of variables method with the

I&I scheme when the system parameter is time-varying. The core idea of the I&I scheme

introduced in [5, 6], is to use a parameter estimate θ̂ + β(x) that consists of both a dy-

namically updated part θ̂ and a state-dependent static part β(x), which is in contrast

to the parameter estimate used in the passivity-based scheme, where the whole estimate

term is dynamically updated. Such a scheme resembles the mechanism of reduced-order

observers, which also uses the mixture of dynamically updated filter states and static mea-
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surable signals as estimate. Consequently, stability properties of the systems in the I&I

scheme should be established via the study of a cascaded L2 interconnection, instead of

a cyclic passive interconnection, similarly to the reduced-order state estimation problems.

Due to this difference, our results for the passivity-based scheme do not hold directly

without justifications, and further discussions are needed here.

Consider again the nonlinear system (2.1), namely the system ẋ = ϕ(x)θ(t) + u,

with the same assumptions. Consider the dynamic feedback controller

u = − k1x− k2ϕ̄2(x)x− ϕ(x)
(
θ̂ + β(x)

)
, (2.29)

˙̂
θ = − γθϕ(x)

(
ϕ(x)

(
(θ̂ + β(x)

)
+ u

)
, (2.30)

where k1 > 0, k2 ≥ 0, and a possible selection of β is

β(x) = γθ

∫ x

0
ϕ(s)ds, (2.31)

which is such that

∂β

∂x
= γθϕ(x). (2.32)

To understand why the classical design fails to work in the presence of the time-varying

parameter, let k2 = 0. Then, substituting (2.29) and (2.30) into (2.1) and defining the

so-called off-the-manifold variable zθ ≜ θ̂−θ+β(x) yields the closed-loop system dynamics

ẋ = − k1x+ ϕ(x)θ − ϕ(x)
(
θ̂ + β(x)

)
= −k1x− ϕ(x)zθ, (2.33)

żθ =
˙̂
θ +

∂β

∂x

(
ϕ(x)θ + u

)
− θ̇ = −γθϕ2(x)zθ − θ̇. (2.34)

Consider two storage functions Vx(x) = 1
2x

2 and Vzθ(zθ) = 1
2z

2
θ . It can be shown that

their time derivatives along the system trajectories are

V̇x = − k1x2 − xϕ(x)zθ ≤ −
(
k1 −

1

2ϵzθ

)
x2 +

1

2
ϵzθ

(
ϕ(x)zθ

)2
, (2.35)

V̇zθ = − γθ
(
ϕ(x)zθ

)2 − θ̇zθ, (2.36)
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respectively. Selecting Vxzθ(x, zθ) = Vx(x) +
ϵzθ+2

2γθ
Vzθ(zθ) yields

V̇xzθ ≤ −
(
k1 −

1

2ϵz

)
x2 +

1

2
ϵzθ

(
ϕ(x)zθ

)2 − (
1

2
ϵzθ + 1

)(
ϕ(x)zθ

)2 − ϵzθ + 2

2γθ
θ̇zθ

= − kx2 −
(
ϕ(x)zθ

)2 − ϵzθ + 2

2γθ
θ̇zθ, (2.37)

where k1 = k + 1
ϵzθ

, with k > 0. When θ̇ = 0, we have V̇xzθ ≤ −kx2 −
(
ϕ(x)zθ

)2
, with

k > 0. Proceeding with standard Lyapunov and invariance-like analysis, we can conclude

boundedness of closed-loop system trajectories, convergence of x to 0, and in addition,

another property that a passivity-based scheme does not guarantee: ϕ(x)zθ ∈ L2. One

can also interpret the I&I scheme as finding an error signal zθ such that the ϕ(x)zθ ∈ L2

and feeding ϕ(x)zθ to the x-subsystem, which has a finite L2 gain from ϕ(x)zθ to the state

x. This is, however, not true when θ is time-varying. Under the effect of θ̇, ϕ(x)zθ is no

longer L2: we lose L2 property for a reason similar to that for the loss of passivity in the

passivity-based scheme.

To restore the L2 property of the zθ-subsystem, we follow the spirit of the congela-

tion of variables method by substituting ℓθ for θ in the definition of the off-the-manifold

variable, namely, re-defining zθ ≜ θ̂ − ℓθ + β(x). Consider the closed-loop system with

k2 > 0, which yields

ẋ = − k1x− k2ϕ̄2(x)x+ ϕ(x)∆θ − ϕ(x)zθ, (2.38)

żθ =
˙̂
θ +

∂β

∂x

(
ϕ(x)θ + u

)
= −γθϕ2(x)zθ + γθϕ

2(x)∆θ. (2.39)

Taking the time derivatives of the functions Vx(x) and Vzθ(zθ) along the trajectories of

the closed-loop system, respectively, yields

V̇x = − k1x2 − k2ϕ2(x) + xϕ(x)∆θ − xϕ(x)zθ

≤ −
(
k1 −

1

2ϵzθ
− δ∆θ

2ϵ∆θ

)
x2 −

(
k2 −

1

2
ϵ∆θ

δ∆θ

)
ϕ2(x) +

1

2
ϵzθ

(
ϕ(x)zθ

)2
, (2.40)

V̇zθ = − γθ
(
ϕ(x)zθ

)2 − γθϕ2(x)zθ∆θ

≤ − γθ
(
1− δ∆θ

2ϵ∆θ

)(
ϕ(x)zθ

)2
+

1

2
ϵ∆θ

δ∆θ
ϕ2(x), (2.41)
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Selecting Vxzθ(x, zθ) = Vx(x)+cVzθ(zθ), with the scaling coefficient c ≜
ϵ∆θ

(ϵzθ+2)

γθ(2ϵ∆θ
−δ∆θ

) , which

is positive provided ϵ∆θ
> 1

2δ∆θ
, yields

V̇xzθ ≤ −
(
k1 −

1

2ϵzθ
− δ∆θ

2ϵ∆θ

)
x2 −

(
k2 −

1

2
ϵ∆θ

δ∆θ

)
ϕ2(x) +

1

2
ϵzθ

(
ϕ(x)zθ

)2
−

(
1

2
ϵzθ + 1

)(
ϕ(x)zθ

)2
+

1

2
cϵ∆θ

δ∆θ
ϕ2(x)

= −
(
k1 −

1

2ϵzθ
− δ∆θ

2ϵ∆θ

)
x2 −

(
k2 −

1

2
ϵ∆θ

δ∆θ
− 1

2
cϵ∆θ

δ∆θ

)
ϕ2(x)

−
(
ϕ(x)zθ

)2
. (2.42)

Then, setting

k1 = k +
1

2ϵzθ
+

δ∆θ

2ϵ∆θ

(2.43)

k2 =
1

2
ϵ∆θ

δ∆θ
+

1

2
cϵ∆θ

δ∆θ
, (2.44)

with k > 0, gives

V̇xzθ ≤ − kx
2 −

(
ϕ(x)zθ

)2 ≤ 0, (2.45)

which is the same as the dissipation inequality (2.37) in the constant parameter case.

Proposition 2.4. Consider the closed-loop system described by equations (2.1), (2.29),

and (2.30). Then, all trajectories are bounded, lim
t→+∞

x(t) = 0, and ϕ(x)zθ ∈ L2.

Proof. We break the proof into three parts, for boundedness, convergence, and L2 property,

respectively.

Boundedness. First note that Vxzθ is positive definite in x and zθ, and its time

derivative along the system trajectories satisfies Vxzθ ≤ 0. Thus x and zθ are bounded,

and due to the definition of ℓθ and β(·), θ̂ is also bounded.

Convergence of x. Since both x and ẋ are bounded, invoking Lemma A.5 yields

lim
t→+∞

x(t) = 0.
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L2 property. Note that, since Vxzθ ≥ 0 and V̇xzθ ≤ 0, one has

0 ≤
∫ +∞

0

(
ϕ
(
x(s)

)
zθ(s)

)2
ds ≤

∫ +∞

0
kx2(s) +

(
ϕ
(
x(s)

)
zθ(s)

)2
ds

≤ Vxzθ(0)− Vxzθ(+∞) ≤ +∞, (2.46)

which proves that ϕ(x)zθ ∈ L2.

A Small-Gain-Like Interpretation

As we have briefly discussed, the classical scenario of the I&I scheme, namely, with constant

system parameters, guarantees stability properties of the closed-loop system by exploiting

the cascaded interconnection of the zθ-subsystem and the x-subsystem. The same analysis

does not hold in the time-varying parameter case as the θ̇ term corrupts the L2 property of

ϕ(x)zθ (see Fig. 2.2 (a)). By redefining the error zθ in the spirit of the congelation of vari-

ables method, we remove the θ̇ term from the analysis, at the cost of interconnecting the

x-subsystem and the zθ-subsystem into a cyclic structure in which the x-subsystem “in-

puts” ϕ(x) to the zθ-subsystem and the zθ-subsystem “inputs” ϕ(x)zθ to the x-subsystem

(see Fig. 2.2 (b)). Therefore the introduction of the nonlinear damping term −k2ϕ̄2(x)x

is to guarantee a small-gain-like condition for the interconnection. One can see that if we

set δ∆θ
= 0, which means the parameter is constant, the control law (2.29), with the gains

defined by (2.43) and (2.44), reduces to the classical control law.

Figure 2.2: A schematic interpretation of the interconnected x and zθ subsystems: (a)
classical adaptive I&I scheme when θ is time-varying and (b) modified interconnection
via the congelation of variables method. The colour (and line style) convention is not
yet relevant to what we are discussing and will be clarified in Chapter 3 of this thesis.
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One can also intuitively interpret the idea of the congelation of variables method

as removing the effect of θ̇ at the cost of introducing cycles in the closed-loop system, and

dominating the cyclic interconnection via a small-gain-like3 design. This is not seen in

the passivity-based scheme because the dominance takes place within the x-subsystem to

guarantee passivity of the x-subsystem, instead of guaranteeing a small-gain-like condition

between the two subsystems. The fact that the congelation of variables method introduces

cycles is, however, in general evident, especially when auxiliary filters are used, as we will

see in the next section.

2.3 Identification-Based Scheme

The identification-based scheme, as the name suggests, uses a parameter estimator (or

equivalently, an identifier) that can identify the values of the system parameters under

some conditions, though such a feature is not required in a control problem. To achieve

the identification feature, auxiliary filters are used in the design, which increases the

dimension of the closed-loop system significantly, even if the plant is a scalar system.

Consequently, the application of the congelation of variables method also requires more

discussions in this context.

To begin with, we revisit the identification-based scheme using the formulation

in [75, Chapter 6]. Consider again the scalar nonlinear system (2.1), namely, ẋ = ϕ(x)θ+u.

Since a nonlinear system driven by an exponentially converging parameter estimation error

may have finite escape-time (see e.g. the example in [75, Section 1.2.1]), we need to design

a baseline controller that guarantees boundedness of the solutions of (2.1) before applying

standard identification algorithms. To this end, let

u = −k(x)x− ϕ(x)θ̂ + µ, (2.47)

3We call the property that the storage functions and the associated dissipation inequalities of the
subsystems, after some scaling, yield an overall dissipation inequality with a negative semi-definite supply
rate, a small-gain-like property. This is because in adaptive control problems, the property we need is
essentially an algebraic property for dissipation inequalities to allow boundedness and convergence analysis
based on Lemma A.5. This is somewhat similar, yet different, from the small-gain properties well-known
in the literature, which explicitly exploit stability properties. Therefore we use the term “small-gain-like
property” to avoid inaccuracy of expression and confusion.



58 Chapter 2

where k(x) = kL + kϕϕ
2(x) + ζ(x), with the linear damping gain kL > 0, the nonlinear

damping gain kϕ > 0, and the strictly positive term ζ(x) > 0 to be defined. µ is an

additional signal added to the baseline control law, and θ̂ is the parameter estimate (the

update law of which has to be designed). µ is typically set to 0 as we want to regulate x to

0, yet it can also be used as an excitation signal for identification purposes. Substituting

(2.47) into (2.1) yields

ẋ = −k(x)x+ ϕ(x)(θ − θ̂) + µ, (2.48)

which reveals the following property.

Lemma 2.1. The system (2.48) is ISS with respect to the inputs θ − θ̂ and µ.

Proof. Consider the function Vx(x) = 1
2x

2. Its time derivative along the trajectories of

(2.48) satisfies

V̇x = − kLx2 − kϕϕ2x2 − ζx2 + xϕ(θ − θ̂) + xµ

≤ − 1

2
kLx

2 +
1

4kϕ
(θ − θ̂)2 + 1

2kL
µ2. (2.49)

Hence V is an ISS Lyapunov function for the system (2.48), which completes the proof.

To design a parameter update law for θ̂ based on linear regression we first transform

the parametric model (2.48) into a linear regression formulation using the filters

ω̇0 = − k(x)ω0 − ϕ(x)θ̂ + µ,

ω̇ = − k(x)ω + ϕ(x). (2.50)

One could then write

x = ω0 + ωθ + ε, (2.51)
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in which the parameterization error ε is governed by the equation

ε̇ = ẋ− ω̇0 − ω̇θ − ωθ̇ = −k(x)ε− ωθ̇. (2.52)

Note that k(x) > kL > 0 by definition, thus when θ is constant, that is θ̇ = 0, ε converges

to 0 exponentially by (2.52). Treating x̂ = ω0 + ωθ̂ as a prediction for the state x yields

the prediction error

x̃ = x− x̂ = ω(θ − θ̂) + ε. (2.53)

The parametric model (2.51) or (2.53), compared with the parametric model (2.1) or

(2.48), respectively, is described by an algebraic equation instead of a differential equation,

which allows using linear regression algorithms, such as the gradient descent method, the

least square method, and their variants (see e.g. Chapter 4 of [51]), which are widely

applied in the area of system identification.

If θ is time-varying, then θ̇ ̸= 0 and the disturbance term −ωθ̇ “corrupts” the

convergence of ε and the parametric model (2.51) is no longer valid. To circumvent

this issue we continue to exploit the congelation of variables method by rewriting the

parametric models (2.48) and (2.53) as

ẋ = −k(x)x+ ϕ(x)(ℓθ − θ̂) + ϕ(x)∆θ + µ (2.54)

and

x = ω0 + ωℓθ + ε, (2.55)

respectively. Substituting (2.54) and (2.50) into (2.55) yields

ε̇ = −k(x)ε+ ϕ(x)∆θ. (2.56)
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The resulting prediction error is then described as

x̃ = x− x̂ = ω(ℓθ − θ̂) + ε. (2.57)

Note that the use of the new parametric model (2.55) allows replacing the disturbance

term −ωθ̇ in the ε-dynamics with the term ϕ(x)∆θ. The latter perturbation term, though

preventing concluding convergence of ε directly from (2.55), could be dominated via a

joint small-gain-like design without imposing restrictions on θ̇.

To see this, we need to compute the dissipation inequalities for the θ̂, ε, and x̂-

subsystems. First consider the function Vθ̂(θ̂) = 1
2γ (ℓθ − θ̂)

2. One possible selection for

the parameter update law is the classical gradient descent law

˙̂
θ = −γ ∂

∂θ̂

(
x̃2

2

)
= γωx̃, (2.58)

where γ > 0 is the adaptation gain. Recalling the parametric model (2.55), the time

derivative of Vθ̂ along the trajectories of (2.58) is

V̇θ̂ = − ω(ℓθ − θ̂)x̃ = −x̃2 + εx̃ ≤ −1

2
x̃2 +

1

2
ε2. (2.59)

Consider now the function Vε(ε) = 1
2ε

2 and its time derivative along the trajectories of

(2.56), which yields

V̇ε = − k(x)ε2 + εϕ(x)∆θ

≤ − k(x)ε2 + ϵ∆θδ∆θ
2

ϕ̄2(x)ε2 +
δ∆θ
2ϵ∆θ

x2

≤ −
(
k(x)− ϵ∆θδ∆θ

2
ϕ̄2(x)

)
ε2 +

δ∆θ
ϵ∆θ

(x̂2 + x̃2), (2.60)

where ϵ∆θ > 0 is a balancing coefficient that can be selected arbitrarily. Note that the

dynamics of the prediction error is governed by the equation

˙̂x = ω̇0 + ω̇θ̂ + ω
˙̂
θ = −k(x)x̂+ γω2x̃+ µ. (2.61)

Consider finally the function Vx̂(x̂) =
1
2 x̂

2, the time derivative of which along the trajec-
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tories of (2.61) is

V̇x̂ = − k(x)x̂2 + γω2x̂x̃+ x̂µ

≤ − k(x)x̂2 + 1

2
kLx̂

2 +
γ2ω4

kL
x̃2 +

1

kL
µ2

≤ −
(
k(x)− 1

2
kL

)
x̂2 +

γ2ω4

kL
x̃2 +

1

kL
µ2. (2.62)

One notes that the ω-term in the dissipation inequality (2.62) depends on the state of the

dynamical system (2.50), and its boundedness has not been established yet, which causes

difficulties in the small-gain analysis. To solve this issue, consider the function Vω(ω) =

1
2ω

2 and its time derivative along the trajectories of (2.50), that is, V̇ω = −k(x)ω2 +

ϕ(x)ω ≤ −kLω2 + 1
4kϕ

= −2kLVω + 1
4kϕ

. This means that |ω(t)| ≤ max{ω(0), 1

2
√
kLkϕ
} ≜

δω > 0, for all t ≥ 0. Note that δω can be computed since ω(0), kL, and kϕ are known.

This allows rewriting (2.62) as

V̇x̂ ≤ −
(
k(x)− 1

2
kL

)
x̂2 +

γ2δ4ω
kL

x̃2 +
1

kL
µ2. (2.63)

Select now the additional nonlinear damping term ζ(x) in the control law (2.47) as

ζ(x) = ζL +
ϵ∆θδ∆θ

2
ϕ̄2(x), (2.64)

with ζL a linear damping gain that guarantees the small-gain property of the intercon-

nected θ̂, x̂, and ε-subsystems. The existence of such a gain ζL is guaranteed by the

following lemma.

Lemma 2.2. Consider the dissipation inequalities (2.59), (2.60) and (2.63). Let ζ be

defined as in (2.64). There exist constant scaling coefficients cx̂, cθ̂, cε, and a linear

damping gain ζL > 0, such that for the function V (x̂, θ̂, ε) = cx̂Vx̂(x̂) + cθ̂Vθ̂(θ̂) + cεVε(ε),

along the trajectories of the closed-loop system described by (2.61), (2.58), and (2.52), the

dissipation inequality

V̇ ≤ −x̂2 − x̃2 − ε2 + bµµ
2 (2.65)
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holds, for some bµ > 0.

Proof. First note that with the additional nonlinear damping term defined in (2.64) the

dissipation inequalities (2.59), (2.60) and (2.63) can be re-written as


V̇x̂

V̇θ̂

V̇ε

 ≤ −


1
2kL −γ2δ4ω

kL
0

0 1
2 −1

2

− δ∆θ
ϵ∆θ

− δ∆θ
ϵ∆θ

ζL



x̂2

x̃2

ε2

+


1

2kL
µ2

0

0

 , (2.66)

where the “≤” sign is defined element-wise.

We proceed to prove the claim by construction. Consider the selection for ζL:

ζL =
δ∆θ

ϵ∆θ

(
4γ2δ4ω
k2L

+ 3

)
, (2.67)

then one can verify by some straightforward computations that, with the scaling constants

cx̂ =
4

kL
, cθ̂ = 2

(
4γ2δ4ω
k2L

+ 2

)
, cε =

ϵ∆θ

δ∆θ

, (2.68)

the dissipation inequality (2.65) holds with bµ = 2
k2L

.

With the small-gain-like property revealed by Lemma 2.2, one could conclude

boundedness and convergence of the closed-loop signals as follows.

Proposition 2.5. Consider the closed-loop system consisting of the plant (2.1) and the

adaptive controller (2.47), (2.50), (2.58), with the damping term (2.64) and µ = 0. Then

all trajectories of the closed-loop system are bounded and lim
t→+∞

x(t) = 0.

Proof. We break the proof into two parts.

Boundedness. Recall that boundedness of ω has been established. With µ = 0,

it can be concluded from the dissipation inequality (2.65) in Lemma 2.2 that θ̂, x̂ and ε

are bounded. By (2.57), boundedness of ω, θ̂, and ε implies that x̃ is also bounded. By

Lemma 2.1, Assumption 1.1 and the fact that θ̂ is bounded, we can conclude that x is

bounded. Boundedness of x, θ̂ and smoothness of ϕ together with (2.50) imply that ω0 is

bounded.
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Convergence of x. Note that ˙̂x is bounded due to boundedness of x, x̂, x̃, and ω,

and that ˙̃x = −
(
k(x) + γω2

)
x̃ + ϕ(x)(θ − θ̂) is bounded due to boundedness of x, ω, θ̂

and Assumption 1.1. Due to boundedness of x̂, ˙̂x, x̃, and ˙̃x, invoking Lemma A.5, we

can conclude that lim
t→+∞

x̂(t) = 0 and lim
t→+∞

x̃(t) = 0. Finally recall that x = x̂ + x̃, and

therefore lim
t→+∞

x(t) = 0, which completes the proof.

Remark 2.5. Observing the two parametric model (2.54) and (2.57) one could see that

the parameter ℓθ and the parameter estimate θ̂ coupled with ϕ in (2.54) are “swapped”

from the input side of the filter (2.50) to the output side (regarding the filter state ω as

an output) in (2.57), coupled with the filtered regressor ω. The swapping lemma [90], as

well as its equivalents and variants (see e.g. Appendix A of [51] and Appendix F of [75]),

are widely used in the adaptive control literature to justify the use of the filters (2.50).

The classical use of the swapping lemma in the stability proof is to establish boundedness

and square-integrability for the cascaded subsystems depicted in Fig. 2.3(a), which is not

directly applicable 4 to Fig. 2.3(b). To this end, we use Lemma 2.2 instead of the swapping

lemma to establish boundedness and convergence. Though stated differently, the idea behind

the analysis based on Lemma 2.2 and the classical analysis based on the swapping lemma

are similar, and the resulting identifier (filters and the parameter update law) design are

the same except for the additional nonlinear damping term ζ.

Remark 2.6. In the passivity-based congelation of variables scheme discussed in Sec-

tion 2.1, the meaning of congealed parameter ℓθ is not intuitive since it is treated as

a non-implementable unknown parameter to be used only in the analysis for establishing

boundedness of θ̂, whereas there is no guarantee that θ̂ converges to ℓθ. In the identification-

based scheme there is an interpretation of ℓθ from an identification perspective. Note that

V̇ε ≤ −(kL − kϕϕ2)ε2 + εϕ⊤∆θ ≤ −kLε2 + 1
4kϕ

∆2
θ hence if θ varies in such a way that

∆θ ∈ L2 (e.g. θ converges to ℓθ exponentially), then ε ∈ L2. It is well known that if ω is

persistently exciting and ε ∈ L2, then θ̂ converges to ℓθ. This means that the congelation

of variables method preserves the identification capability of the adaptive controller under

proper excitation conditions (enforced by µ). This feature once again highlights that by us-

4It should be noted that as a generic mathematical result on dynamical operators, the swapping lemma
does not impose any restrictions on the system parameters. The design based on this lemma, however,
requires that the signal d

dt
(θ − θ̂) be implementable in the filters. In the classical time-invariant case

d
dt
(θ− θ̂) and − ˙̂

θ can be used interchangeably, and the latter can be directly obtained from the parameter

update law, whereas when θ is time-varying, d
dt
(θ − θ̂) is no longer implementable in the filters.
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ing the congealed parameter ℓθ, we do not lose the “adaptive” nature, which distinguishes

the proposed scheme from other methods that dominate the system without making the

system literally “adaptive”.

Figure 2.3: A schematic interpretation of the interconnected x̂, x̃, and ε subsystems.
(a) shows the interconnection of the classical identification-based scheme when θ is
time-varying and (b) shows the interconnection after modified by the congelation of
variables method.

A Small-Gain-Like Interpretation

One can see from Fig. 2.3 that similarly to the case of the I&I scheme, the congelation

of θ removes the undesired unknown θ̇ from the scope of the analysis at the cost of inter-

connecting the three subsystems into a cyclic structure. The dominance design using the

nonlinear damping term ζ(x) enforces a small-gain-like condition over the interconnected

subsystems, which allows establishing boundedness and convergence of the closed-loop

signals.

However, as there are more than one intersecting cycles in the interconnection, the

small-gain-like analysis in general requires constructive proofs, like the one we did for

Lemma 2.2, if we only consider the standard analysis tools. Such a constructive method

does work for establishing the boundedness and convergence results that we need, but

is not going to be pursued in this thesis, mainly for two reasons. First, the complexity

of such constructions grows together with the dimension of the closed-loop system: the

more complex auxiliary filters we use, the more complicated the analysis is. Sticking to

the constructive method prevents the further development of the proposed schemes once

we move forward to more complex systems. Second, the constructive method does not
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reveal the dependency among the design parameters and in general one has to select the

design in a certain form to make sure that the construction works. Third, and possibly

most importantly, the constructive method creates an illusion that the boundedness and

convergence analysis can only be established based on “smart” constructions of Lyapunov

functions, which may distract the reader (as well as the author) away from the “big picture”

of the proposed schemes. In the light of this, we should develop a suitable analysis and

synthesis tool to reveal the nature of the proposed schemes in an abstract and intuitive

manner.
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Chapter 3

Dominance Design over

Interconnections: Active Nodes

From the aforementioned discussion, one can identify the two ingredients of the congelation

of variables method.

• The parameter congelation consists in substituting ℓθ for θ to remove the unde-

sired θ̇ term from the analysis and design, at the cost of creating additional inter-

connections.

• The dominance design over the interconnected systems consists in enforc-

ing a small-gain-like condition over the interconnected systems via feedback control

design.

The methodology associated to the first step has been introduced with simple examples

in Chapter 2. In this chapter, we show how to accomplish the second step, especially for

interconnected systems with underlying directed graph possessing multiple cycles.

It is worth mentioning that the results to be discussed in this chapter, chronologi-

cally speaking, were not only developed after but also inspired by the development of the

congelation of variables method for the solution of adaptive output-feedback problems in

the presence of time-varying parameters, in which the interconnection of the subsystems in

the closed-loop system is more complex than that arising in the classical constant param-

eter case, and for which constructive analysis/synthesis methods do not work well. These
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results are presented before the adaptive control results that originally motivated them,

because the author believes that understanding these results can significantly facilitate

the understanding of the application of the congelation of variables method to complex

scenarios and it is logically natural.

To start with, some definitions and theorem are recalled since they are useful in

the remainder of the chapter.

Definition 3.1 (Z-matrix). A matrix A is called a Z-matrix (or negated Metzler matrix)

if all its off-diagonal elements are non-positive, that is, (A)ij ≤ 0, i ̸= j.

Definition 3.2 (M-matrix). A matrix A = B + sI, where B is a square Z-matrix and s

is a real number not smaller than the spectral radius of B, is called an M-matrix.

Theorem 3.1. Let A be a Z-matrix. Then the following conditions1 are equivalent.

1. A is a non-singular M-matrix.

2. A⊤ is a non-singular M-matrix.

3. All principal minors of A are positive.

4. All leading principal minors of A are positive.

5. A−1 exists and A−1 ≥ 0.

6. There exists a vector v > 0 such that Av > 0.

3.1 Systems with Quadratic Supply Rates

Consider a network of n interconnected dynamical systems in which each node, a dynamical

system denoted as Σi, i = 1, . . . , n, has n − 1 inputs uij(t) ∈ Rnu
ij , j = 1, . . . , i − 1, i +

1, . . . , n, one output yi(t) ∈ Rny
i , and satisfies the dissipation inequality

V̇i ≤ − ai|yi|2 +
i−1∑

j=1,j ̸=i
bij |uij |2, (3.1)

1These are extracted from 40 equivalent conditions listed in [101], in which the proof of this result is
available.



3.1 Systems with Quadratic Supply Rates 69

with respect to a storage function Vi : R
ni → R+ of class C1, where ni is the dimension of

the state vector of Σi, ai > 0, and bij ≥ 0. The nodes are interconnected via the equations

uij = yj , for all bij ̸= 0, whereas bij = 0 means that Σj is not connected to Σi, that is

uij = 0. Then the node dissipation inequalities can be written into the compact form

˙̄V ≤ −Eϕ(y), (3.2)

where V̄ ≜ [V1, . . . , Vn]
⊤, ϕ(y) ≜

[
|y1|2, . . . , |yn|2

]⊤
, and2

E ≜


a1 −b12 · · · −b1n
...

. . .
...

...
. . .

...

−bn1 · · · −bn(n−1) an

 . (3.3)

The structure of the network can be described by a directed graph, the underlying weighted

adjacency matrix B of which is defined by

(B)ij ≜


0, if i = j,

bij , otherwise,

(3.4)

that is, the negated off-diagonal part of E. For example, consider a network system with

the node dissipation inequalities described by the matrix

E =



a1 0 −b13 −b14 −b15 −b16

−b21 a2 0 0 0 0

−b31 −b32 a3 0 0 0

−b41 0 0 a4 0 0

−b51 0 0 −b54 a5 −b56

−b61 0 0 0 0 a6


. (3.5)

The underlying directed graph is the one shown in Fig. 3.1.

In practice one is interested in the dissipation inequality for the overall network

system. More specifically, one may wonder whether there exist positive scaling coefficients

2The definition of E is different from the definition of its counterpart in [21], as the definition used here
can be related to an adjacency matrix convention commonly used in the control community.
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Figure 3.1: The underlying directed graph of a network with node dissipation inequal-
ities specified by (3.2) and (3.5).

c1, . . . , cn such that the storage function of the overall network system, defined by

V =

n∑
i=1

ciVi = c⊤V̄ , (3.6)

where c ≜ [c1, . . . , cn]
⊤ satisfies the dissipation inequality V̇ ≤ 0. In addition, in the case

in which the Vi’s are positive definite and radially unbounded one may require that

V̇ ≤ −W (y) ≤ 0, (3.7)

where W (·) is a positive definite function of y ≜ [y1, . . . , yn]
⊤. From the dissipation

inequality (3.7) one can conclude Lyapunov stability of the equilibrium of the overall

system and convergence of all yi’s to 0 by Lemma A.5, or similar invariance-like analysis.

Such a property is sufficient for the adaptive control results in the thesis, which focus on

establishing boundedness of closed-loop signals and convergence of system state or output.

A specific stability property, however, is not the main concern of this chapter, although it

reveals a possible area of applicability of the forthcoming results.

The aim of the chapter is to study how to use the structure of the network to make

the dissipation inequality (3.7) hold, in other words, we do not impose any condition on V

and simply focus on V̇ . To this end, the next result provides a condition for the existence

of the scaling coefficients ci, i = 1, . . . , n, mentioned above.

Theorem 3.2. Consider the function V defined by (3.6). If the matrix E in (3.3) is a

non-singular M-matrix then, for all σ ≜ [σ1, . . . , σn]
⊤ > 0, there exists a vector of scaling
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coefficients c > 0 depending on σ such that the dissipation inequality

V̇ ≤ −σ⊤ϕ(y) = −
n∑
i=1

σi|yi|2 ≤ 0 (3.8)

holds.

Proof. To begin with, note that

V̇ =
n∑
i=1

ciV̇i ≤ − c⊤Eϕ(y) ≤ 0, (3.9)

where ϕ(y) =
[
|y1|2, . . . , |yn|2

]⊤
. Invoking condition 5) of Theorem 3.1 we can construct

the scaling vector as c = (E⊤)−1σ, for all σ > 0 and c > 0 due to the fact that (E⊤)−1 is

non-singular and (E⊤)−1 ≥ 0. The conclusion is therefore obtained invoking condition 6)

of Theorem 3.1.

Remark 3.1. There are several variants of Theorem 3.2 available in the literature, for ex-

ample, the criteria for Lp-stability based on the so-called test matrix, that is essentially the

matrix (3.3) written in terms of Lp gains, see [130, Section 6.2]. Theorem 3.2, however,

provides purely an algebraic result which does not require any assumption on the stability

properties of each node.

It is worth noting that the condition expressed by Theorem 3.2 is not generic: it

is straightforward to build networks for which it is not satisfied. One of such networks

is a single-cycle interconnection containing two scalar nodes that violates the small-gain

condition, that is either the condition b21
a1

b12
a2

< 1 or, equivalently, the condition a1a2 −

b12b21 > 0. (The counterpart of this small-gain condition for more complex networks is

precisely condition 4) of Theorem 3.1.) The small-gain analysis for the considered example

reveals the fact that if one is allowed to adjust the coefficients ai’s arbitrarily one can always

enforce the dissipation inequality (3.7), provided there is a distributed controller on each of

the nodes of the network to make the ai’s tunable design parameters. In practice, however,

this is not always feasible, for example, because of dynamics that cannot be controlled,

or economical concerns do not allow using as many distributed controllers as nodes. This

highlights the fact that, even if Theorem 3.2 provides a tool for network analysis, we

need to answer a question from a design perspective: how many controllers are needed to
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enforce the dissipation inequality (3.7) and where these should be placed considering the

structure of the network?

To answer this question we define a special class of nodes.

Definition 3.3. A node Σi is called an active node if it satisfies the dissipation inequal-

ity (3.1) with an adjustable ai ∈ [ai,+∞), with ai > 0. The property “Σi is active” is

denoted by i ∈ IA, where IA is the index set of the active nodes.

We now make a convention for graphic representation: an active node is represented

by a solid green circle (e.g. node Σ1 in Fig. 3.1) and a non-active node is represented by

a red dashed circle. Exploiting the concept of active nodes we now present a feasibility

condition for the considered design problem.

Theorem 3.3. The matrix (3.3) can be made a non-singular M-matrix by adjusting the

parameters aiA, iA ∈ IA, if every directed cycle of the underlying directed graph describing

the network contains at least one vertex associated with an active node.

To prove Theorem 3.3 we need to first identify a directed cycle in the graph. It

turns out that it is much easier to identify a directed graph without any directed cycle,

that is a directed acyclic graph (DAG). Although most of the criteria for determining

DAGs are algorithm-based, we give an algebraic condition on the relation between a DAG

and the matrix (3.3).

Lemma 3.1. The matrix (3.3) of a network which is described by a DAG satisfies the

condition

det(E) =

n∏
i=1

ai. (3.10)

Proof. We use Laplace expansion (also called the cofactor expansion) to compute the

determinant. Note that one of the properties of a DAG is that there is at least one vertex

that has no incoming edges and at least one vertex that has no outgoing edge. Without

loss of generality assume that vertex 1 (related to node Σ1) is the vertex with no incoming

edge. This means that (E)11 = a1 is the only non-zero element in the first row of E,
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namely (E⊤)1, which yields

det(E) = a1(−1)(1+1) det(E1) = a1 det(E1), (3.11)

where E1 is the matrix obtained from E after deleting the row and column containing

(E)11. Note that this is equivalent to deleting vertex 1 and the edges attached to it from

the graph. Recall now that a DAG is such that the removal of any of its vertices yields

a new (reduced) DAG. From the graph thus obtained we can select a vertex without

incoming edges, say, vertex 2 without loss of generality. Noting that (E)22 = (E1)11 = a2

yields

det(E) = a1 det(E1) = a1a2(−1)(1+1) det(E2)

= a1a2 det(E2), (3.12)

where E2 is the matrix obtained from E1 after deleting the row and column containing

(E1)11. Repeating this reduction operation until all the vertices of the original graph have

been deleted and noting that every vertex that has been selected for the reduction process

has no incoming edge, yields a Laplace expansion in which only one factor ai is present at

each step. As a result, condition (3.10) holds and the proof is complete.

Proof of Theorem 3.3: We use condition 3) of Theorem 3.1 to prove the claim. Lemma 3.1

implies that if any subgraph is a DAG the corresponding principal minor cannot contain

bij terms. Thus the bij terms in the principal minors are all contributed by the directed

cycles. More specifically, for directed graphs with more than four vertices, the bij terms can

also be associated with the union of disjoint directed cycles [77, Property 1]. In the light

of this fact and for convenience of the discussion, one can assign an index l = 1, . . . , lmax to

each directed cycle and union of disjoint directed cycles, and let Cl be the vertex index set

of the directed cycle (e.g., the vertex index set {1, 2} for the directed cycle “1→ 2→ 1”)

or the union of disjoint directed cycle (e.g., the vertex index set {1, 2, 3, 4} for the union

of the directed cycles “1→ 2→ 1” and “3→ 4→ 3”). Consider now the largest principal
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minor det(E) and note that

det(E) =
∏
i∈I

ai +

lmax∑
l=1

( ∏
i∈I\Cl

aiΠb

)
, (3.13)

where I is the set of all node/vertex indices of the graph, the structure of which is specified

by E, Πb ≜ sl
∏
j,k∈Cl,k∈Sj

bkj , and sl is the sign of the cofactor related to each Cl. Therefore

det(E) can be re-written as

det(E) =

lmax∑
l=1

( ∏
i∈I\Cl

ai

(
1

lmax

∏
j∈Cl

aj +Πb

))
. (3.14)

It is easy to see that since there is at least one active node in each directed cycle or,

equivalently, there exists iA ∈ Cl such that we can always satisfy the condition

1

lmax

∏
j∈Cl

aj +Πb > 0 (3.15)

by selecting one of the aiA ’s sufficiently large, one can guarantee the condition det(E) > 0.

Since this analysis can also be applied to the submatrix related to each of the principal

minors of E, there has to be a selection of aiA for each active node such that all principal

minors of E are positive. This proves that E is a non-singular M-matrix and completes

the proof.

Remark 3.2. Theorem 3.3 provides a sufficient condition of the existence of αiA, iA ∈ IA,

which makes E a non-singular M-matrix. This condition is in general not necessary, since

if E is already a non-singular M-matrix, then there is no need to use active nodes to enforce

such a property. However, a robust version of Theorem 3.3, which holds for a family of

E’s (instead of a certain E), may make the condition in Theorem 3.3 also necessary. The

robust counterpart of Theorem 3.3 is to be studied in future work.

To illustrate the result expressed by Theorem 3.3 consider the example illustrated in

Fig. 3.1. The matrix E related to this graph is a non-singular M-matrix with a1 sufficiently

large, as node Σ1 is an active node, and its associated vertex is contained in every directed

cycle of the graph. Theorem 3.2 and Theorem 3.3, therefore, reveal that as long as there

is at least one active node in every directed cycle, there exist positive scaling coefficients
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c1, . . . , cn and design parameters aiA , iA ∈ IA such that the dissipation inequality (3.7)

holds. Note that this condition simply guarantees the feasibility of the underlying design

problem, yet does not provide an approach to carry out the design computationally.

3.2 Systems with Nonlinear Supply Rates

The systems discussed in Section 3.1 have dissipation inequalities with quadratic supply

rates. The advantage of this formulation is that each term in the dissipation inequality

is one-to-one related to a node subsystem, which allows carrying out analysis and design

via the underlying directed graph. This, however, puts restrictions that do not allow

the use of many common nonlinear control design techniques, e.g. the use of nonlinear

damping. Although the quadratic supply rate case does take nonlinear dynamic systems

into account, it is natural to ask whether the results developed in Section 3.1 can be

applied to generic nonlinear supply rates. In the light of this, the rest of this subsection

generalizes the matrix-based conditions discussed in Section 3.1 for network systems with

sum-type nonlinear supply rates3. We consider an n-node network, with node dissipation

inequalities given by

V̇i = − αi(Vi) +
n∑

j=1,j ̸=i
βij(Vj), (3.16)

where αi ∈ K∞ and βij ∈ K∞ ∪ {0}. This can be understood as a more general version of

(3.9) and the gain functions βij ’s provides a more general form of the bij in (3.4) which also

describe an underlying weighted directed graph. This allows discussing the dissipativity

properties of the network systems by discussing the weight properties of the underlying

directed graph. Unlike the case of quadratic supply rates, in which finding a vector

of constant scaling coefficients is sufficient to render the desired property of the overall

dissipation inequality, in the case of nonlinear supply rates the constant scaling technique

is not applicable since one cannot separate βij and Vj from the βij ◦ Vj term which is

state-dependent. In this case, the state-dependent scaling method [52] is applicable. More

3In this section we express the supply rates in terms of the node storage functions Vi’s instead of the
output yi’s, for convenience. These can be equivalently expressed using yi as explained in [53].
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specifically, the aim of this subsection is to find the condition on αi and βij that guarantees

the existence of continuous functions λi : R+ → R+, i = 1, . . . , n satisfying

λi(s) > 0, ∀s > 0, (3.17)∫ +∞

0
λi(s)ds = +∞, (3.18)

such that the time derivative of

V =
n∑
i

∫ Vi

0
λi(s)ds (3.19)

is negative definite in V1, . . . , Vn, namely

V̇ = −
n∑
i=1

(
λi(Vi)αi(Vi)−

∑
j∈Pi

λi(Vi)βij(Vj)

)
< 0, (3.20)

where Pi is the set comprised of the indices of the direct predecessors of the vertex i. One

can see that this method is called state-dependent scaling because the construction of the

overall dissipation inequality (3.19) allows λi(Vi) to scale the supply rate to the node Σi

in a similar way as ci works in the quadratic case.

We proceed by removing the coupling between λi(Vi) and βij(Vj) since they are

depending on different variables, namely Vi and Vj . By Lemma A.2, one can write

−λi(Vi)βij(Vj) ≥ −
∫ λi(Vi)

0
fi(s)ds−

∫ βij(Vj)

0
f−1
i (s)ds, (3.21)

which removes the coupling between the Vi-dependent λi and the Vj dependent βij . This

allows deriving a sufficient condition for (3.20) to hold, namely

r̃i(Vi) ≜ λi(Vi)αi(Vi)− pi
∫ λi(Vi)

0
fi(s)ds−

∑
j∈Si

∫ βji(Vi)

0
f−1
j (s)ds > 0, (3.22)

for Vi > 0, i = 1, . . . , n, where pi ≜ |Pi| and Si is the set comprised of the indices of the

direct successors of the vertex i. r̃i(Vi) can be understood as the redundant damping in
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Vi. In fact, if

ri
(
λi(Vi), αi(Vi)

)
≜ λi(Vi)αi(Vi)− pi

∫ λi(Vi)

0
fi(s)ds (3.23)

is treated as the provided damping then

r̂i(Vi) ≜
∑
j∈Si

∫ βji(Vi)

0
f−1
j (s)ds (3.24)

can be treated as the demanded damping. Therefore the implication from (3.22) to (3.20)

can be interpreted as follows: if each node system dissipates the energy that it injects to

its successor node systems, then the overall network system is dissipative. Consider now

two types of vertices (using the index i for illustration).

1. |Pi| = 0, that is, the vertex i has no incoming edges. This means λi can always be

selected as a sufficiently “large” function so that (3.22) is satisfied, since ri(λi, αi) is

not upperbounded in λi if pi = 0. Then the vertex i can be deleted from the graph

as the information of the vertex i is not needed in the analysis of the rest of the

graph.

2. |Pi| ≥ 1, that is, the vertex i has at least one incoming edge. In this case ri(λi, αi) is

upperbounded in λi due to the negative term −pi
∫ λi(Vi)
0 fi(s)ds and therefore (3.22)

can only hold under a small-gain condition on αi and βij .

In the light of these observations, we can recursively delete the vertices with pi = 0 and

the outgoing edges attached to these vertices until obtaining a graph in which each vertex

has pi ≥ 1, and such deletions do not alter the small-gain condition we intend to derive.

Thus, without loss of generality, we can consider a graph with pi ≥ 1, for i = 1, . . . , n,

from the beginning.

To proceed, multiplying 1
pi

on both sides of (3.23) and invoking Lemma A.2 yields

1

pi
ri = λi

1

pi
αi −

∫ λi

0
fi(s)ds ≤

∫ 1
pi
αi

0
f−1
i (s)ds (3.25)
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and the equality holds if and only if f(λi) =
1
pi
αi, which indicates that

max
λi

ri(λi, αi) = pi

∫ 1
pi
αi

0
f−1
i (s)ds, (3.26)

with the maximizer

λi(Vi) = f−1
i ◦

1

pi
αi ◦ Vi. (3.27)

Hence, a sufficient condition for (3.22) to hold is

piTi ◦
1

pi
αi −

∑
j∈Si

Tj ◦ βji ≥ δi, (3.28)

for i = 1, . . . , n, where δi ∈ K∞, and the transform4 Ti is defined by

Ti(s) ≜
∫ s

0
f−1
i (σ)dσ. (3.29)

We now provide two lemmas which are useful in the subsequent analysis.

Lemma 3.2. Consider a convex function g : R→ R such that g(0) ≤ 0 and two positive

real numbers x2 > x1 > 0. The following inequality holds

g(x2)− g(x1) ≥ g(x2 − x1). (3.30)

Proof. By the super-additivity of the convex function g for any positive real numbers x̄1

and x̄2, one has g(x̄1 + x̄2) ≥ g(x̄1) + g(x̄2). Hence substituting x̄1 = x1 and x̄2 = x2 − x1

yields (3.30).

Lemma 3.3. Consider the function Ti defined in (3.29), the functions αi ∈ K∞, βji ∈ K∞,

and δi ∈ K∞ as in (3.28), and a function αi ∈ K∞ such that αi(s) ≤ αi(s), ∀s ≥ 0. Then

the condition

Ti ◦
1

pi
αi −

∑
j∈Si

Tj ◦ βji = δi (3.31)

implies (3.28).

4The transform is known as the Legendre-Fenchel transform and it is used in [69] for simplifying ISS/iISS
Lyapunov functions.
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Proof. By the strict monotonicity of Ti, equation (3.31) implies

Ti ◦
1

pi
αi −

∑
j∈Si

Tj ◦ βji = δ̄i, (3.32)

and noting that pi ≥ 1 further implies

piTi ◦
1

pi
αi −

∑
j∈Si

Tj ◦ βji = ¯̄δi, (3.33)

where δ̄i and
¯̄δi are some positive definite functions and ¯̄δi(s) ≥ δ̄i(s) ≥ δi(s), ∀s ≥ 0. This

completes the proof.

Before proceeding note that Ti is a convex function, since T ′
i = f−1

i is strictly

increasing as required by the condition in Lemma A.2. We treat convexity as a constraint

on Ti to be enforced later. To introduce a recursive algorithm to “solve” for Ti, we re-write

(3.32) using a matrix-like representation and take a fully connected 3-node system as an

example, that is


T1 ◦ 1

p1
α1 −T1 ◦ β12 −T1 ◦ β13

−T2 ◦ β21 T2 ◦ 1
p2
α2 −T2 ◦ β23

−T3 ◦ β31 −T3 ◦ β32 T3 ◦ 1
p3
α3

δ̄1 δ̄2 δ̄3

 ≜

EI
T

σI

 . (3.34)

Applying Gaussian elimination to the first element of the second and the third column

using right composition (instead of multiplication) yields


T1 ◦ 1

p1
α1 0 0

−T2 ◦ β21 (EII0

T )22 (EII
T )23

−T3 ◦ β31 (EII
T )32 (EII

T )33

δ̄1 (σII)2 (σII)3

 . (3.35)
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where

(EII0

T )22 ≜ T2 ◦
1

p2
α2 − T2 ◦ β21 ◦ α−1

1 ◦ p1β12,

(EII
T )23 ≜ − T2 ◦ β23 − T2 ◦ β21 ◦ α−1

1 ◦ p1β13,

(EII
T )32 ≜ − T3 ◦ β32 − T3 ◦ β31 ◦ α−1

1 ◦ p1β12,

(EII
T )33 ≜ T3 ◦

1

p3
α3 − T3 ◦ β31 ◦ α−1

1 ◦ p1β13,

(σII
0

)2 ≜ δ̄2 + δ̄1 ◦ α−1
1 ◦ p1β12,

(σII)3 ≜ δ̄3 + δ̄1 ◦ α−1
1 ◦ p1β13. (3.36)

If all operators are linear, the second pivot equals T2 ◦
(

1
p2
α2−β21 ◦α−1

1 ◦p1β12
)
due to the

left distributivity of multiplication, but since this does not hold for general composition

operation (that is, in general T2◦ 1
p2
α2−T2◦β21◦α−1

1 ◦p1β12 ̸= T2◦( 1
p2
α2−β21◦α−1

1 ◦p1β12)),

additional care is needed. Define

α̂2 ≜ α2 − p2β21 ◦ α−1
1 ◦ p1β12. (3.37)

Suppose that there exists α̂2 such that α̂2 ≥ α̂2 ∈ K∞. Then 1
p2
α2 > β21 ◦ α−1

1 ◦ p1β12

and, by Lemma 3.2,

T2 ◦
1

p2
α2 − T2 ◦ β21 ◦ α−1

1 ◦ p1β12

≥ T2 ◦
(

1

p2
α2 − β21 ◦ α−1

1 ◦ p1β12
)

= T2 ◦
1

p2
α̂2 ≥ T2 ◦

1

p2
α̂2. (3.38)

Due to the monotonicity of T2, replacing T2 ◦ 1
p2
α2 − T2 ◦ β21 ◦ α−1

1 ◦ p1β12 in (3.35) with

T2 ◦ 1
p2
α̂2 effectively replaces α2 in (3.34) with some α2 ∈ K∞ such that α2 ≤ α2 and, by

Lemma 3.3, we can rewrite (3.35) as


T1 ◦ 1

p1
α̂1 0 0

−T2 ◦ β21 (EII
T )22 (EII

T )23

−T3 ◦ β31 (EII
T )23 (EII

T )33

δ1 (σII)2 (σII)3

 ≜

EII
T

σII

 , (3.39)
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where

(EII
T )22 ≜ T2 ◦

1

p2
α̂2,

(σII)2 ≜ δ2 + δ1 ◦ α̂−1
1 ◦ p1β12, (3.40)

δ1 = δ̄1, 0 < δ2 ≤ δ̄2, α̂1 ≜ α1, and α̂2 ∈ K∞ is constructed such that α̂2 ≤ α̂2. Exploiting

the condition that α̂2 ∈ K∞, we can continue to apply Gaussian elimination to the second

term on the third column. The resulting matrix is


T1 ◦ 1

p1
α̂1 0 0

−T2 ◦ β21 (EII
T )22 0

−T3 ◦ β31 (EII
T )32 (EIII

T )33

δ1 (σII)2 (σIII)3

 ≜

EIII
T

σIII

 , (3.41)

where

(EIII
T )33 ≜ T3 ◦

1

p3
α̂3,

(σIII)13 ≜ δ3 + δ1 ◦ α̂−1
1 ◦ p1β13 + δ2 ◦ α̂−1

2 ◦ p2β23

+ δ1 ◦ α̂−1
1 ◦ p1β12 ◦ α̂

−1
2 ◦ p2β23

+ δ2 ◦ α̂−1
2 ◦ p2β21 ◦ α̂

−1
1 ◦ p1β13

+ δ1 ◦ α̂−1
1 ◦ p1β12 ◦ α̂

−1
2 ◦ p2β21 ◦ α̂

−1
1 ◦ p1β13, (3.42)

and 0 < δ3 ≤ δ̄3. α̂3 ∈ K∞ is constructed such that α̂3 ≤ α̂3 (assume that this is possible

for the time being), where

α̂3 ≜ α3 − p3β31 ◦ α̂−1
1 ◦ p1β13 − p3β32 ◦ α̂

−1
2 ◦ p2β23

− p3β31 ◦ α̂−1
1 ◦ p1β12 ◦ α̂

−1
2 ◦ p2β23

− p3β32 ◦ α̂−1
2 ◦ p2β21 ◦ α̂

−1
1 ◦ p1β13

− p3β31 ◦ α̂−1
1 ◦ p1β12 ◦ α̂

−1
2 ◦ p2β21 ◦ α̂

−1
1 ◦ p1β13. (3.43)

It is claimed that as long as there exist K∞-class functions α̂1, α̂2, α̂3 that bound α̂1,

α̂2, α̂3, respectively, from below, one can construct convex T1, T2, T3 by properly selecting
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δ1, δ2, δ3 ∈ K∞. A simple way to see this is to solve (3.41) for T1, T2, T3 in terms of δ1,

δ2, δ3. These allow writing T1, T2, T3 as positive sums of composition terms led by δ1, δ2,

δ3. By properly selecting δ1, δ2, δ3, these positive terms can be individually made convex,

and the convexity is preserved under positive summation, which further justifies the use

of Lemma A.2. Finally, using (3.27) and (3.29) yields

λi(Vi) =
dTi
ds
◦ 1

pi
αi ◦ Vi, (3.44)

which is the state-dependent scaling function needed.

For large-scale systems it is not practically useful to derive a closed-form expres-

sion for α̂i as it can be shown that the total number of the composition terms in α̂i is

described by the Sylvester’s sequence [123] subtracted by one5, which grows doubly expo-

nentially with n, the number of node systems. Instead, we seek a recursive algorithm that

equivalently performs iterative Gaussian elimination (as demonstrated above) and at the

same time reveals the underlying topological meaning of the terms in α̂i. This recursive

algorithm is described in Algorithm 3.1, the main idea of which is that each entry, indexed

by (i, j), of ET (the lower triangular matrix defined by (3.41)), contains the composition

terms formed by a term from an upper entry (k, j) in the same column, the inverse of

α̂k (which is the lower-bound of α̂k), and a term from a left entry (i, k) in the same row,

sequentially composed from right to left, and such a construction holds recursively. From

the aforementioned iterative Gaussian elimination procedures, it is not difficult to see the

reasoning behind: each term in the (i, j) entry was brought from the (i, k) entry as a side

effect of eliminating the (k, j) entry using α̂k. The computation of (σn)k is straightforward

once α̂k has been computed. Since (σn)k is derived by the same Gaussian elimination pro-

cedure as the one that derives α̂k, (σ
n)k is simply the positive sum of each composition

term in α̂k, after removing the sign and replacing the first function of each composition

term with the δl, where l is the column index of the first function.

With the help of the recursive Algorithm 3.1, we can conclude the following small-

gain-like result.

5To see this, first note that the expression of α̂i is a sum-of-composition formula and let Ni denote the
number of composition terms. Then one can find that N1 = 1 and Nn = 1 +

∑n−1
i=1 N2

i , or equivalently

Mn = M2
n−1 −Mn−1 +1, with Mn ≜ Nn +1. It can be proved that Mn = ⌊k2n + 1

2
⌋, where k ≈ 1.264085,

and ⌊·⌋ denotes the floor function. See [1] for detail.
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Algorithm 3.1 Recursive algorithm to compute the lower triangular matrix Mn
T and the

pivot gain functions α̂ and α̂ (see Algorithm 3.2 for the helper functions).

Input: EI
T

Output: EnT , α̂, and α̂
1: Initialize EnT to an empty matrix of the same size as EI

T

2: for each (EnT )ij in E
n
T do

3: if i < j then
4: (EnT )ij ← 0 ▷ The upper triangular entries are eliminated

5: else if i = j then
6: α̂i ← computeEntry(i, i, En

T )
7: α̂i ← pi · removeT(i, α̂i)
8: Find α̂i ∈ K∞ such that α̂i ≤ α̂i
9: (EnT )ii ← Ti ◦ 1

pi
α̂i ▷ The diagonal entries are expressed as Ti ◦ 1

pi
α̂i due to

Lemma 3.2 and 3.3
10: else
11: (EnT )ij ← computeEntry(i, j, En

T ) ▷ Compute the lower triangular entries
without merging the Ti terms

12: end if
13: end for

Theorem 3.4. Consider a network system with node dissipation inequalities given by

(3.16). If there exists α̂i ∈ K∞ such that α̂i ≤ α̂i, i = 1, . . . , n, with α̂i computed by

Algorithm 3.1, then there exist continuous functions λi : R≥0 → R≥0, i = 1, . . . , n such

that (3.17) and (3.18) hold, and the overall dissipation inequality defined by (3.19) satisfies

V̇ ≤ −
n∑
i=1

δi(Vi) < 0, (3.45)

for Vi > 0, i = 1, . . . , n.

Proof. Given the existence of the K∞-class functions α̂i, i = 1, . . . , n, Algorithm 3.1 is

feasible and its output is a lower-triangular matrix EnT and the functions α̂k, which further

yields the functions (σn)k. For ease of expression, in what follows we drop the superscript

n without causing ambiguity, since all the variables used have the same superscript. Let

σ denote [(σn)1, . . . , (σ
n)n]

⊤. From the previous analysis we know that

1⊤ET = σ⊤. (3.46)
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Algorithm 3.2 Helper functions for Algorithm 3.1.

1: function computeEntry(i, j, ET )
2: if i = 1 or j = 1 then ▷ Base Case
3: return (ET )ij
4: else ▷ Recursive Case
5: Ξ← (ET )ij ▷ ξ stores the expression to be returned

6: for k = 1 to min(i− 1, j − 1) do
7: ΞL ← computeEntry(i, k, ET )

▷ ΞL: expression of the (i, k)-entry (left expression)

8: ΞU ← computeEntry(k, j, ET )
9: ΞU ← −removeT(k,ΞU )

▷ ΞU : expression of the (k, j)-entry (upper expression), with Tk and the
minus sign of each term removed

10: α̂k ← computeEntry(k, k, ET )
11: α̂k ← pk·removeT(k, α̂k)
12: Find α̂k ∈ K∞ such that α̂k ≤ α̂k
13: for each ξU in ΞU do
14: for each ξL in ΞL do
15: Ξ← Ξ + ξL ◦ α̂−1

k ◦ (pk · ξU ) ▷ This accounts for the effect of
eliminating the (k, j)-entry on the (i, j)-entry

16: end for
17: end for
18: end for
19: return Ξ
20: end if
21: end function

22: function removeT(i, Ξ)
23: for each ξ in Ξ do
24: remove Ti from ξ
25: end for
26: return Ξ
27: end function

Each element in σ is a positive sum of composition terms, with each composition

term led by one of the δi, i = 1, . . . , n. In addition, the off-diagonal elements of ET

are negative sums of composition terms led by one of the Ti’s, thus T1, . . . , Tn resulting

from (3.46) can be written as positive sums of composition terms led by one of the δi’s.

Note that to meet the conditions of Lemma A.2, T1, . . . , Tn are required to be strictly

convex: this is to guarantee that their derivatives f−1
1 , . . . , f−1

n are strictly increasing.

This is enforced by properly selecting δi ∈ K∞ such that each individual composition term

is strictly convex. Since convexity is preserved under positive summation, the resulting
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T1, . . . , Tn are also strictly convex. Compute λi(Vi) using (3.44), and consider the overall

storage function (3.19). By Lemma 3.3,

V̇ ≤ −
n∑
i=1

(
λi(Vi)αi(Vi)−

∑
j∈Pi

λi(Vi)βij(Vj)

)

≤ −
n∑
i=1

(
piTi ◦

1

pi
αi ◦ Vi −

∑
j∈Si

Tj ◦ βji ◦ Vi
)

≤ −
n∑
i=1

δi(Vi) (3.47)

and V̇ < 0, for Vi > 0, i = 1, . . . , n, which completes the proof.

Remark 3.3. One can regard α̂i ∈ K∞ as the counterpart of the small-gain condition for

network systems, since such a condition guarantees the existence of λi such that V̇ < 0.

For a two-node system, where α̂1 ≜ α1, α̂2 ≜ α2 − β21 ◦ α−1
1 ◦ β12, αi ∈ K∞, βij ∈ K∞,

i = 1, 2, the condition α̂1 ≥ α̂1 ∈ K∞ is satisfied by defining α̂1 ≜ α1 and α̂2 ≥ α2 ∈ K∞

is implied by the classical small-gain condition

α−1
2 ◦ τ2β21 ◦ α

−1
1 ◦ τ1β12 < Id, (3.48)

where τ1 > 1, τ2 > 1, and Id is the identity mapping. To see this, doing some manipula-

tions on (3.48) yields α̂2 = α2−β21◦α−1
1 ◦β12 > α2−β21◦α−1

1 ◦τ1β12 > (τ2−1)β21◦α−1
1 ◦β12.

Then defining α̂2 ≜ (τ2 − 1)β21 ◦ α−1
1 ◦ β12 ∈ K∞ reveals that (3.48) implies the condition

α̂2 ≥ α̂2.

Similarly to Definition 3.3, one can define the notion of active nodes, provided there

is an adjustable α function for a node.

Definition 3.4. A node Σi is called an active node, denoted i ∈ IA, if it satisfies the

dissipation inequality (3.16) with an adjustable αi ∈ K∞, and αi ≥ αi, for some positive

definite function αi.

It turns out that one can select the αiA , iA ∈ IA, to let the algebraic condition of

Theorem 3.4 hold, and the feasibility of this is closely related to the location of the active

nodes in the network system, even though the condition and the proof of Theorem 3.4 are

completely different from Theorem 3.2. In other words, there is a nonlinear counterpart
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of Theorem 3.3, as stated below.

Theorem 3.5. The condition of Theorem 3.4, namely, the existence of α̂i ∈ K∞, holds for

some admissible class K∞ functions αiA, iA ∈ IA, if every directed cycle of the underlying

directed graph contains at least one vertex associated with an active node.

Proof. To prove the claim note the graph-theoretic interpretation of the computeEntry

function of Algorithm 3.2: for each vertex i, the expression of α̂i is obtained from αi sub-

tracting several composition terms, with each composition term associated to one of the

closed paths starting from vertex i and returning to vertex i, regarding the off-diagonal

elements of EI
T as an analogy to the adjacency matrix. The upper expression ξU con-

tains the outgoing path, and the left expression ξL contains the incoming path, and such

interconnection is made recursively. In this sense, α̂i can be written as

α̂i = αi −
lmax∑
l=1

(
piβiklm ◦ α̂

−1
klm
◦ pklmβklmklm−1

◦ · · · ◦ α̂−1
kl1
◦ pkl1βkl1i

)
, (3.49)

where klj ∈ Cil , Cil is the index set of the lth circuit path6 from vertex i to itself, in the

subgraph consisting of vertices 1 to i and the associated edges; lmax is the total number of

such sets; m ≜ |Cil |; and klj ∈ Sklj−1
. We proceed by invoking Lemma A.6, which indicates

that if αi is adjustable in the sense stated in Definition 3.4, then α̂i is also adjustable

in the same sense. Since the negative terms in (3.49) are associated with circuit paths,

having at least an active node in every cycle implies that there is at least an active node in

every circuit, and therefore the negative terms in (3.49) can be made arbitrarily small by

adjusting α̂iA functions. Thus, any αi ∈ K∞ can dominate α̂i and guarantee the existence

of α̂i ∈ K∞ such that α̂i ≤ α̂i, for i = 1, . . . , n. Hence the conditions of Theorem 3.4 hold,

which completes the proof.

3.3 Systems with Linearly Parametrized Supply Rates

Section 3.2 has shown that the notion of active nodes is applicable to a generic class

of nonlinear systems with sum-type dissipation inequalities. While on one hand, this

6The term “circuit path” is used here since the path may not be a simple circuit, or equivalently a
cycle: it can contain nested cycles. See (3.43) for an example: the last term indicates the path 3 → 1 →
2 → 1 → 3, which contains two cycles.
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extends the results in Section 3.1 to more general scenarios, on the other hand, it makes

the formulation of the damping functions αi abstract and therefore difficult to be used in

practical designs. Thus in this subsection, we consider a “middle ground” between the

schemes discussed in Section 3.1 and Section 3.2 which allows parametrizing the supply

rates and allows the implementation of standard nonlinear control design techniques that

are not well catered by the quadratic supply rate case.

To start with, consider a two-node system with storage functions V1 = y21, V2 = y22,

and dissipation inequalities

V̇1 ≤ − a1y21 + b12y
2
2 − a3y41,

V̇2 ≤ b21y
2
1 − a2y22 + b23y

4
1, (3.50)

where y1 ∈ R, y2 ∈ R. Obviously, the selection ϕ(y) = [y21, y
2
2]

⊤ in the spirit of Section 3.1

does not work for this system since it does not take the y41-terms into account. In the

spirit of Section 3.2 one can write α1(s) = a1s + a3s
2, α2(s) = a2s, β12(s) = b12s,

β21 = b21s, which properly describes the system. Nevertheless, the parametrization of

α1, even though a1 and a2 can be selected arbitrarily, does not fulfil the condition for an

active node specified by Definition 3.4. This suggests finding an alternative formulation to

allow exploiting parametrization of node dissipation inequalities. Alternatively, based on

the formulation in Section 3.1, we could augment ϕ with an extra positive definite term,

in this case, y41, and define the augmented vector ϕ̂(y) = [y21, y
2
2, y

4
1]

⊤. Compared to the

case in Section 3.1, in which each term of the supply rate is one-to-one related to a node,

now y21 and y41 are both related to the same node, node Σ1. In other words, node Σ1 has

two supply rate basis functions (basis functions for short), y21 and y41, while node Σ2 has

only one basis function y22.

To generalize this idea, suppose that there are qi basis functions for the dissi-

pation inequality of node Σi and q̂ ≜
∑n

i=1 qi basis functions in total. Define ϕ̂(y) =

[ϕ⊤(y), φ2
1(y1), . . . , φ

q1
1 (y1), . . . , φ

2
n(yn), . . . , φ

qn
n (yn)]

⊤ ∈ Rq̂, where φji (yi) denotes the j-th

basis function of node Σi, and ϕ(y) = [φ1
1(y1), . . . , φ

1
n(yn)]

⊤ ∈ Rn is the vector containing

the primary basis functions7 of each node, with the other elements in ϕ̂(y) referred to as

7One can select any one of the basis functions associated with a node as the “primary” basis function
of the node. The rest of them are treated as the “secondary” basis functions.
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secondary basis functions. Under this definition of ϕ̂(y), the node dissipation inequalities

are

V̇i ≤ −
qi∑
k=1

aki φ
k
i (yi) +

n∑
j=1,j ̸=i

( qj∑
k=1

bkijφ
k
j (yj)

)
, (3.51)

with aki > 0, bkij > 0, and these can be written into a vector form similarly to (3.2), namely

˙̄V ≤ − Ēϕ̂, (3.52)

where Ē ∈ Rn×q̂ contains the coefficients of the node dissipation inequalities with opposite

signs. With the same construction of the overall storage function as (3.6), the overall

dissipation inequality can be derived as

V̇ ≤ −c⊤Ēϕ̂. (3.53)

Define the left n × n submatrix of Ē as E, and the right n × (q̂ − n) submatrix as

Ẽ. For example, the matrix Ē associated with the two-node system with dissipation

inequalities (3.50) is

Ē =

 a1 −b12 a3

−b21 a2 −b23

 ≜
[
E Ẽ

]
. (3.54)

To make the notation natural in the matrix Ē we remove the superscript of the coefficients

in the matrix expression (3.51) and replace the subscript of a(·) and the second subscript of

b(·) (indicating the predecessor node) with the index of the corresponding basis function in

ϕ̂(y) (or equivalently, the column index of the coefficient in Ē). This defines an alternative

set of indices î(i, k) for coefficients associated with the kth basis function of node Σi. For

example in (3.54) we have î(1, 2) = 3 for the second basis function of node Σ1 and therefore

we replace a21 with a3 and replace b221 with b23. Since Ē is not a Z-matrix, if we want to

use the results established in Section 3.1 it is better to restore the one-to-one relation

between each basis function and each matrix dimension by augmenting Ē so that we have

a Z-matrix to analyze. From a graph theoretic perspective, this requires adding some

augmented vertices to the underlying directed graph so that the total number of vertices

is the same as the basis functions rather than the number of nodes. To this end, rewrite
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the overall dissipation inequality as

V̇ ≤ −ĉ⊤Êϕ̂, (3.55)

where Ê is an q̂ × q̂ Z-matrix augmented from Ē, and ĉ ∈ Rq̂ is augmented from c. More

specifically, Ê can be written as

Ê =

 E Ẽ − Udiag(an+1, . . . , aq̂)

0(q̂−n)×n diag(an+1, . . . , aq̂)

 (3.56)

where U ∈ Rn×(q̂−n) is defined as

(U)ij ≜


1, if (Ẽ)ij = a(·) > 0,

0, otherwise.

(3.57)

In other words, the underlying graph described by Ê is obtained by adding vertices (in-

dexed by î) associated with the secondary basis functions, and then by connecting these

augmented vertices to the graph described by E according to the dissipation inequalities,

which is associated with the primary basis functions and the original network. Since the

scaling operation is implemented on the n node systems, not on the q̂ − n augmented

vertices, as they do not originate from new node systems, the last q̂ − n elements of the

augmented scaling vector ĉ are generated by the first n elements, that is, the original

scaling vector c. It is not difficult to find that this fact can be described by the constraint

Lĉ = 0, (3.58)

where L ∈ R(q̂−n)×n is defined by

L ≜
[
U⊤ −Iq̂−n

]
. (3.59)

Consider again the two-node system (3.50). Then U = [1, 0]⊤ and the augmented version
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of (3.54) is

Ê =


a1 −b12 0

−b21 a2 −b23

0 0 a3

 . (3.60)

Since the third column of M̂ comes from the first dissipation inequality, which should be

multiplied by c1, we also need to define ĉ = [c1, c2, c3]
⊤, with the constraint c1 = c3 or

equivalently, Lĉ = [1, 0,−1]ĉ = c1 − c3 = 0.

To derive the counterpart of Theorem 3.2 we have to first answer two questions: 1)

how to determine whether Ê is a non-singular M-matrix by checking the original matrix E;

and 2) how to use condition 6) of Theorem 3.1 considering the additional constraint (3.58).

The answer to the first question is given by the result below.

Lemma 3.4. Ê is a non-singular M-matrix if and only if E is a non-singular M-matrix.

Proof. Consider the block triangular structure of the matrix Ê defined by (3.56). The

leading principal minors with order higher than n have the same sign as det(E). Therefore

using condition 4 of Theorem 3.1 completes the proof.

To answer the second question we need first to clarify the problem we are trying

to deal with. Condition 6) of Theorem 3.1 guarantees the existence of ĉ > 0 such that

Ê⊤ĉ > 0 if Ê is a non-singular M-matrix, which, however, is not sufficient in this case as

there is the additional constraint (3.58) on ĉ. Thus, we need to add an additional condition

to Ê such that ĉ also satisfies the constraint (3.58). This leads to the following result.

Lemma 3.5. Consider the non-singular M-matrix Ê. There exists ĉ > 0 such that Ê⊤ĉ >

0 and Lĉ = 0 if and only if there exists σ̂ > 0 such that σ̂ is in the kernel of L(Ê⊤)−1.

Proof. To prove the “if” part assume that there exists σ̂ > 0 such that L(Ê⊤)−1σ̂ =

0. Then selecting ĉ = (Ê⊤)−1σ̂ satisfies the constraint Lĉ = 0. Due to condition 5)

of Theorem 3.1, (Ê⊤)−1 is non-singular and (Ê⊤)−1 ≥ 0, and therefore ĉ > 0. Left-

multiplying ĉ by Ê⊤ yields Ê⊤ĉ = Ê⊤(Ê⊤)−1σ̂ = σ̂ > 0, which completes proof.

To prove the “only if” part assume that there exists ĉ > 0 such that Ê⊤ĉ > 0 and
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Lĉ = 0, yet for all σ̂ > 0, L(Ê⊤)−1σ̂ ̸= 0. Then we can select σ̂ = Ê⊤ĉ > 0, and therefore

L(Ê⊤)−1σ̂ = Lĉ ̸= 0, which causes a contradiction. Hence the “only if” part is proved.

Having proved Lemma 3.4 and Lemma 3.5 we can proceed to give a criterion for

the existence of scaling coefficients such that the dissipation inequality (3.7) holds.

Theorem 3.6. Consider the node dissipation inequalities given by (3.52). There exists a

vector of scaling coefficients c > 0 such that V constructed by (3.6) satisfies the dissipation

inequality (3.7) if both the conditions below are satisfied.

1. The n× n leading principal submatrix of Ê is a non-singular M-matrix.

2. There exists σ̂ > 0 such that σ̂ is in the kernel of L(Ê⊤)−1.

Proof. By Lemma 3.4, condition 1) of the proposition implies that Ê is also a non-singular

M-matrix. Then by invoking Lemma 3.5, condition 2) of the proposition guarantees that

there exists ĉ > 0 such that Ê⊤ĉ = σ̂ > 0 and Lĉ = 0. Recall that

V̇ ≤ −ĉ⊤Êϕ̂(y) = −σ̂⊤ϕ̂(y) ≤ 0, (3.61)

in which case ϕ̂⊤(y)σ̂ is the positive definite function W (y) in (3.7). Finally construct

c > 0 using the first n elements of ĉ, which completes proof.

Theorem 3.6 reveals the fact that the n× n leading principal submatrix of Ê plays

an important role. It is easier to understand this from a graph perspective. Since all

the augmented columns in Ê have only one non-zero element on the diagonal entries,

the associated vertices in the underlying directed graph have only outgoing edges but

no incoming edges (see Fig. 3.2), which guarantees that no directed cycle contains these

augmented vertices. In other words, the augmentation of the graph does not create new

directed cycles and all directed cycles in the graph are specified by the n × n leading

principal submatrix of Ê.

Note now that each node can have more than one basis function, and therefore we

need to slightly extend Definition 3.3.

Definition 3.5. A node Σi is called an active node, denoted by i ∈ IA, if it satisfies

the dissipation inequality (3.51) and for k = 1, . . . , qi, the damping coefficients aki are
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Figure 3.2: The underlying directed graph specified by (3.60). The notation “3 ← 1”
means that vertex 3 is an augmented vertex which originates from node Σ1.

adjustable in [aki ,+∞), with aki > 0. The indices of all vertices (including the augmented

vertices) of the underlying graph that originate from active nodes make up the set ÎA.

This definition allows the damping coefficient a(·) of all vertices (including the

augmented vertices) in the underlying directed graph that originate from active nodes, to

be adjustable. For instance, in the underlying directed graph of the two-node example,

both vertex 1 and vertex 3 originate from node Σ1, and thus both a1 and a3 are adjustable

if node Σ1 is an active node. Having clarified this, we are ready to see how to enforce the

dissipation inequality (3.7) with active nodes.

Theorem 3.7. For all σ̂ > 0 there exists a selection of akiA, k = 1, . . . , qiA, and a vector

of scaling coefficients c > 0, depending on σ̂, such that V constructed by (3.6) satisfies the

dissipation inequality

V̇ ≤ −σ̂⊤ϕ̂(y) (3.62)

if both the conditions below are satisfied.

1. Every directed cycle of the underlying directed graph describing the network contains

at least one vertex that originates from an active node.

2. Every augmented vertex originates from an active node.

Proof. We first consider the original n-vertex graph without the augmented vertices. Con-

dition 1) of this proposition and Theorem 3.3 indicate that for all σ > 0 there exists a

selection of a1iA , iA ∈ IA, that is, the damping coefficients associated with the primary

basis function of the active nodes, and c > 0, depending on the choice of σ, such that

the n × n leading principal submatrix E satisfies E⊤c = σ. Define ĉ ≜ [c⊤, c̃⊤]⊤, with
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c̃ ∈ Rq̂−n to be determined. Note that (3.58) and (3.59) yield U⊤c− c̃ = 0, or equivalently,

c̃ = U⊤c. Since U > 0 and c > 0, we have c̃ > 0, which provides a valid candidate for

ĉ > 0.

We proceed to prove that for such a ĉ we can select akiA , k = 2, . . . , qiA , iA ∈ IA,

that is, the damping coefficient of the secondary basis functions of the active nodes, such

that the claim holds. To see this, note that

 E⊤ 0n×(q̂−n)

−Ê⊤
12 diag(an+1, . . . , aq̂)


︸ ︷︷ ︸

Ê⊤

 c

c̃


︸ ︷︷ ︸

ĉ

=

 σ

σ̃


︸ ︷︷ ︸

σ̂

, (3.63)

where Ê12 ≜ Udiag(an+1, . . . , aq̂)− Ẽ is independent of the a(·) coefficients (cancelled by

the subtraction) and only depends on the b(·) coefficients and therefore Ê12 ≥ 0. Thus we

have −Ê⊤
12c+[an+1, . . . , aq̂]c̃ = σ̃, or equivalently, [an+1, . . . , aq̂]

⊤ =
(
diag(c̃)

)−1
(σ̃+Ê⊤

12c),

for all σ̃ > 0, which gives a vector of positive candidates for an+1, . . . , aq̂. It remains to

check whether these a(·) are in the interval specified by Definition 3.5. If the resulting

a(·) is below the lowerbound, we replace the value with the lowerbound. This guarantees

that Ê⊤ĉ ≥ σ̂, and therefore V̇ ≤ −ĉ⊤Êϕ̂(y) ≤ −σ̂⊤ϕ̂(y). Combining the arbitrariness of

σ > 0 and σ̃ > 0 we conclude that σ̂ = [σ⊤, σ̃⊤]⊤ > 0 is also arbitrary. Hence the proof is

complete.

Remark 3.4. It is not difficult to see that condition 1) of Theorem 3.7 allows enforcing

condition 1) of Theorem 3.6 and condition 2) of Theorem 3.7 allows enforcing condition 2)

of Theorem 3.6. In this sense, Theorem 3.6 and Theorem 3.7 view the same fact from

an analysis perspective and a synthesis perspective, respectively. A similar remark also

applies to Theorem 3.2 and Theorem 3.3.

Remark 3.5. Different selection of primary basis functions may result in different aug-

mented graphs described by Ê. It is worth noting that if the conditions in Theorem 3.7

hold for one of these graphs, they also hold for the other graphs. The reason for this is

that, in this case, a node system associated with multiple augmented vertices is active due

to Condition 2 of Theorem 3.7. Therefore when an augmented vertex is turned into a

primary vertex due to a different selection of primary basis function, this vertex still orig-

inates from an active node and therefore verifies Condition 1 of Theorem 3.7 even if new
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cycles containing this vertex are created by that selection. Similarly, the previous primary

vertex is turned into an augmented vertex, but since the node system discussed is active,

this augmented vertex verifies Condition 2 of Theorem 3.7.

3.4 Control Synthesis via Active Nodes

In Sections 3.1–3.3 we have focused on the existence of a scaling for the node storage func-

tions to construct an overall network storage function that satisfies a dissipation inequality

with a given dissipation margin, as well as the feasibility conditions based on the location

of the active nodes to enforce such a dissipation inequality. In this subsection, we move

forward to answer the “how to” part of the problem from a synthesis perspective.

3.4.1 Placement of Active Nodes

From Propositions 3.3, 3.5, and 3.7 we know that the active nodes should be placed

in the network such that every directed cycle in the underlying graph contains at least

one of the vertices associated with the active nodes. Hence placing the active nodes,

from a graph-theoretic perspective, boils down to finding a set of vertices such that after

the removal of these vertices (and the edges attached to them), the remaining graph is

acyclic. This set is commonly known as the feedback vertex (node) set (FVS) in the graph

theory and the computing theory literature. In general one may want to use a minimum

number of active nodes to achieve the desired network dissipation inequality, which leads

to the minimum FVS problem. This problem is proved to be NP-complete for directed

graphs [66]. Many contributions have studied the exact solution of the minimum FVS

problem, see e.g. [77, 105, 117]. We present here a method exploiting the permanent of a

matrix to search for the minimum FVS. The permanent of a matrix A ∈ Rn is defined as

per(A) =
∑
π

n∏
i=1

(A)π(i),i, (3.64)

where π is one of the permutations of the set {1, . . . , n}. A more intuitive interpretation

is that per(A) can be computed by using Laplace expansion without switching the sign of

the product terms as when computing det(A). As discussed in Section 3.1, each product

term in det(E) is associated with directed cycles or unions of disjoint directed cycles of
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the underlying directed graph of E. Note that by defining the n× n matrix ΩE as

(ΩE)ij =


1, if (E)ij ̸= 0,

0, otherwise,

(3.65)

the number of Laplace expansion terms of det(E) equals per(ΩE). It is then natural to

understand that vertex i is contained in
(
per(ΩE)− per(ΩEi)

)
directed cycles and unions

of disjoint directed cycles, where ΩEi is the matrix obtained by deleting the ith row and

the ith column of ΩE . This leads to the following lemma.

Lemma 3.6. Consider E and its underlying graph. Let vertex i and vertex j be in the

same directed cycle. Vertex i is contained in at least as many directed cycles as vertex j

is, if and only if

per(ΩEi) ≤ per(ΩEj). (3.66)

Proof. Letmi andmj be the total number of directed cycles and unions of disjoint directed

cycles containing the vertex i and the vertex j, respectively. We have mi =
(
per(ΩE) −

per(ΩEi)
)
, and mj =

(
per(ΩE) − per(ΩEj)

)
. Therefore, mi ≥ mj if and only if (3.66)

holds. Note that mi and mj also count the number of unions of disjoint directed cycles,

but since vertex i and vertex j are in the same directed cycle, the contribution of the

considered cycle to the values mi and mj (via the considered cycle and the unions of the

considered cycle with other disjoint directed cycles) are the same. Hence mi ≥ mj if and

only if the vertex i is contained in at least as many directed cycles as the vertex j is, which

completes the proof.

This lemma indicates that one can find the most “important” vertex in a given

directed cycle by determining the vertex which has the largest decrease in per(ΩE) after the

deletion of itself and its attached edges, as this vertex is contained in more directed cycles

than any other vertex in the considered direct cycle, and therefore should be included in

the solution of the minimum FVS. Algorithm 3.3 is developed under this spirit to place the

active nodes efficiently. The for-loop part of the algorithm is straightforward as this fulfils

the requirement of Theorem 3.7. The while-loop part is essentially an exact algorithm to

solve the underlying minimum FVS problem.
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Algorithm 3.3 Algorithm to place the minimum number of active nodes in a given
network system described by (3.52).

Input: The dissipation coefficient matrix Ē
Output: Index set of the placed active nodes IA
1: Build a directed graph G based on E, the left n × n submatrix of Ē, in which each

vertex stores the original associated node index
2: Compute U from Ē as per (3.57)
▷ The for-loop below allocates active nodes to satisfy condition 2) of Theorem 3.7

3: for each row i of U do
4: if row i of U is not all-zero then
5: Attach node index i to IA
6: Delete vertex i and its attached edges from G
7: end if
8: end for
▷ The while-loop below solves for the minimum FVS of the remaining graph

9: while G is not acyclic do
10: for each vertex i in G do
11: mi ← per(ΩG)− per(ΩGi)
12: end for
13: iA ← argmin

i
mi

14: Attach the original node index stored in vertex iA to IA

15: Delete vertex iA and its attached edges from G
16: end while

Proposition 3.1. The while-loop in Algorithm 3.3 finds one8 of the minimum FVSs of

G.

Proof. First note two facts: 1) G contains a finite number of directed cycles and 2) at

least one vertex in each directed cycles has to be included in the minimum FVS. If G is

acyclic, the minimum FVS is the empty set, which is consistent with the algorithm as the

while-loop breaks without attaching any indices. Otherwise miA ≥ 1, and vertex iA is

contained in at least one directed cycle. Due to fact 2), one has to include at least one

vertex to the minimum FVS for each such cycle, and due to Lemma 3.6, vertex iA is the

vertex such that the deletion of itself and its attached edges removes the most directed

cycles in G. At each step of the while-loop, the selected vertex iA is among the vertices,

one of which has to be selected, and is the one that removes the most directed cycles from

the finite number mentioned in fact 1). Hence the algorithm removes all directed cycles

in G with minimum steps, which completes the proof.

8The minimum FVS of a graph is, in general, not unique.
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Algorithm 3.3 is at most of complexity O
(
p(n)2n

)
or equivalently O∗(2n), where

p(·) is a polynomial. To see this note that the complexity is dominated by the while-loop

solving for the minimum FVS and, in each single loop, the complexity of the algorithm

is dominated by the computation of the permanent. Computing the permanent of an

n × n matrix is of O(n2n) using Ryser’s formula in the Gray code order [96, 110], and in

the worst case the number of permanents that need to be computed is a polynomial of n,

which means that the overall complexity is O∗(2n). The efficiency can be further improved

if one computes the permanent using the method proposed by [114], which reduces the

overall complexity to O∗((2 − ϵ)n), where ϵ > 0 is a constant depending on the sparsity

of the graph. This is comparable to the complexity of existing exact methods (e.g. [105])

for the solution of the minimum FVS problem of directed graphs.

In general the exact methods solve for the minimum FVS in directed graphs in

exponential time, which is not acceptable when the considered network is large. In practice,

the number of available active nodes can also be limited (this is also why one needs to

find a placement method using the minimum number of active nodes), which restricts

the associated FVS problem to a parametrized FVS problem, in which the parameter

is the upperbound of the cardinality of the FVS. The algorithms proposed in [14, 83]

can solve the parametrized FVS problem in linear time or report that no FVS smaller

than the given bound exists. Furthermore, if we allow trading off the computation time

against the number of active nodes used, the approximate method proposed in [55] can

be used for computing permanent and this reduces the computation time to polynomial

in a probabilistic sense. It should be noted that such a reduction in computation time

is achieved at the cost of precision and the resulting set may not be a minimum FVS as

Proposition 3.1 may not hold, but the result is guaranteed to be an FVS by definition since

the while-loop in Algorithm 3.3 checks whether the graph is acyclic before its termination,

and therefore it still computes a valid placement of active nodes.

3.4.2 Computation of Damping and Scaling Coefficients

Once the location of the active nodes has been determined, and the associated vertices

comprise a FVS, one can solve for the damping coefficients of the active nodes and the

corresponding scaling coefficients. In what follows we show that the solution for these



98 Chapter 3

coefficients can be formulated as the solution of a set of linear inequalities, despite the

nonlinear coupling between the coefficients. We consider the linearly parametrized non-

linear supply rates discussed in Section 3.3. Recall that for the network system with node

dissipation inequalities (3.52) and the network storage function (3.6), the network dissi-

pation inequality is (3.55). As a result, the dissipation inequality (3.7) holds if Ê⊤ĉ > 0,

for some ĉ > 0 subject to (3.59). Note that Ê can be decomposed as Ê =M + M̃ , where

(M)ij =


ai, if i ∈ ÎA, j = i,

(Ê)ij , otherwise,

(3.67)

and

(M̃)ij =


ãi, if i ∈ ÎA, j = i,

0, otherwise,

(3.68)

with ãi ≜ ai−ai. Note that in M̃⊤ĉ, for iA ∈ ÎA, the decision variables ãiA are multiplied

by ĉiA , which are also decision variables, creating nonlinear couplings. To linearize these

nonlinear terms, define dj ≜ ĉiAj ãiAj , where iAj ∈ ÎA is the vertex index of the j-th

(augmented) vertex that originates from the active nodes, for j = 1, . . . , |ÎA|, and d ≜

[d1, . . . , d|ÎA|]
⊤. Note that the damping coefficients aiAj can be obtained from d by using

the relation

aiAj =
dj
ciAj

+ aiAj
. (3.69)

This allows defining a constant matrix

(N)ij =


1, if i ∈ ÎA, j = i,

0, otherwise,

(3.70)
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such that M̃⊤ĉ = N⊤d and therefore Ê⊤ĉ = M⊤ĉ+N⊤d. This yields a system of linear

inequalities and equations given by

M⊤ĉ+N⊤d ≥ σ̂,

Lĉ = 0,

ĉ > 0,

d > 0. (3.71)

This describes an admissible region that is non-empty due to Theorem 3.7 yet not a direct

solution for ĉ and d. In the light of this, one can re-write (3.71) into an optimization

problem with some objective function f to be specified, namely

min
v
f(v)

subject to Rv ≥ σ̂,

Qv = 0,

v ≤ v ≤ v̄, (3.72)

where v ≜ [ĉ⊤, d⊤]⊤; R ≜ [M⊤, N⊤]; Q ≜ [L, 0 ]; σ̂ > 0 is the same as the one used in Theo-

rem 3.7 that specifies a minimum guaranteed dissipation rate −σ̂⊤ϕ̂(y); v ≜ [ε⊤, 01×|ÎA|]
⊤,

with ε > 0 to keep ĉ away from 0; and v̄ > 0 is an “upperbound” to make the admissible

region compact and suitable for the use of off-the-shelf optimization solvers. Typically

one may want to keep the damping coefficients of the active nodes as small as possible

while fulfilling all the design specifications. In this case one may consider the objective

function f(v) =
∑|ÎA|

j=1
dj
ciAj

=
∑|ÎA|

j=1 ãiAj or a weighted version of this. Since this cost

is nonlinear and may complicate the computation, one can also consider the linear cost

f(v) = w⊤v, where w is a vector of constant weights. One only needs to tune w in such

a way that wiAj ≪ wq̂+j , which leads to a large ĉiAj and a small dj , yielding a small aiAj .

This reduces (3.72) to a linear programming problem and allows searching for v efficiently,

which is especially favourable for large-scale network systems. It should be noted that the

selection of the objective function only affects the solution for ĉ and aiA , iA ∈ ÎA, whereas

all solutions yield the same network dissipation inequality V̇ ≤ −σ̂⊤ϕ̂(y).

We complete our discussion by showing that Theorem 3.7 also guarantees that the
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admissible region of the reformulated optimisation problem (3.72) is non-empty.

Proposition 3.2. Consider the problem (3.72) and assume that the conditions of Propo-

sition 3.7 are satisfied. Then, for all ε > 0, there exists a v̄, depending on ε, such that the

admissible region of (3.72) is non-empty.

Proof. By Theorem 3.7, setting a constant σ̂ > 0, there exist ĉ > 0 and aiA > aiA , iA ∈ ÎA

such that Ê⊤ĉ = σ̂ and Lĉ = 0. Consider now a scalar λ and a new scaling vector ĉ′ ≜ λĉ.

Keeping aiA unchanged, iA ∈ ÎA, we have d′ = diag(ãiA)ĉ
′ = λdiag(ãiA)ĉ = λd, which

yields v′ = λv. Recall that v = [ε⊤, 0 ]⊤. For all ε > 0, there exists λ ≥ 1, depending on

ε, such that v′ ≥ v. Then it is straightforward to construct v̄ ≥ v′ such that v ≤ v′ ≤ v̄.

Finally note that v′ also satisfies the first two conditions of (3.72) since λ ≥ 1, and hence

the admissible region contains at least v′. This completes the proof.

3.4.3 Adaptation of Damping Coefficients

The result presented in Section 3.4.2 provides a solution for both the scaling coefficients

for all node systems and the damping coefficients for the active nodes. From a control syn-

thesis perspective, the computation of the scaling coefficients is unnecessary as they do not

appear in the implementation, and the existence of such scaling coefficients are sufficient

to establish desired stability properties. Lifting the requirement of computing the scaling

coefficients allows obtaining damping coefficients for the active nodes via adaptation in-

stead of explicit computation. In what follows we present how to implement decentralized

identifiers to achieve this.

For an active node ΣiA , iA ∈ IA, one can substitute the parameter estimates âkiA ,

k = 1, . . . , qiA for the damping coefficients akiA . Define θiA = [a1iA , . . . , a
qiA
iA

]⊤, θ̂iA =

[â1iA , . . . , â
qiA
iA

]⊤, θ̃iA = θ̂iA − θiA , φ̄iA(yiA) = [φ̄1
iA
(yiA), . . . , φ̄

qiA
iA

(yiA)]
⊤ and consider the

parameter update law

˙̂
θiA = proj

(
θiA ,ΓiAφ̄iA(yiA)

)
, (3.73)

where ΓiA = Γ⊤
iA
≻ 0 is the adaptation gain, and proj(θ, v) is the projection operator

proposed in [102], which projects the vector v onto the tangent space (at θ̂) of a convex

region Θ (with smooth boundary) to which θ belongs, if θ̂ reaches the boundary of Θ and
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v is pointing out of Θ. Therefore the condition

θ̃iA proj
(
θiA ,ΓiAφ̄iA(yiA)

)
≤ θ̃iAΓiAφ̄iA(yiA) (3.74)

holds. By Theorem 3.7, the existence of θ is guaranteed and one can always select Θ such

that it is contained in the cone defined by Definition 3.5 and sufficiently large to contain

the true parameter θ. It turns out that one only needs to augment the node storage

functions with a positive definite function of the parameter estimation error θ̃ to obtain a

result similar to Theorem 3.7 without the exact knowledge of θ nor the computation of it.

Proposition 3.3. Consider the augmented node storage functions V θ
iA

= ViA+
1
2 θ̃

⊤
iA
Γ−1
iA
θ̃iA

for all active nodes ΣiA, iA ∈ IA, with akiA, k = 1, . . . , qiA, replaced by the parameter es-

timates θ̂iA (updated by (3.73)), and the original node storage functions with dissipation

inequalities (3.51) for the other nodes. If the two conditions on the active nodes in Theo-

rem 3.7 hold then, for all σ̂ > 0, there exists c > 0 and convex regions of projection ΘiA,

depending on σ̂, such that the network dissipation inequality

V̇ θ ≤ −σ̂⊤ϕ̂(y) (3.75)

holds, where the augmented network storage function is given by

V θ =
∑
i/∈IA

ciAVi +
∑
iA∈IA

ciAV
θ
iA
. (3.76)

Proof. First consider the time derivative of V θ
iA
, namely

V̇ θ
iA

= V̇iA +

·︷ ︸︸ ︷
1

2
θ̃⊤iAΓ

−1
iA
θ

≤ −
qiA∑
k=1

âkiAφ
k
iA
(yiA) +

n∑
j=1,j ̸=iA

( qj∑
k=1

bkiAjφ
k
j (yj)

)
+ θ̃⊤iAΓ

−1
iA

proj
(
θiA ,ΓiAφ̄iA(yiA)

)
. (3.77)
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By inequality (3.74) we obtain

V̇ θ
iA
≤ −

qiA∑
k=1

akiAφ
k
iA
(yiA) +

n∑
j=1,j ̸=iA

( qj∑
k=1

bkiAjφ
k
j (yj)

)

−
qiA∑
k=1

(âkiA − a
k
iA
)φkiA(yiA) + θ̃⊤iAφ̄iA(yiA)

= −
qiA∑
k=1

akiAφ
k
iA
(yiA) +

n∑
j=1,j ̸=iA

( qj∑
k=1

bkiAjφ
k
j (yj)

)
. (3.78)

Similarly to what is done in passivity-based adaptive control, the parameter estimation

error terms are cancelled by the parameter update law (3.73). This means that the node

dissipation inequalities associated with the augmented storage function in the adaptive

case have the same supply rates as that of the original storage functions (3.51) in the

case in which the akiA are known. This allows using the unknown coefficients akiA as if

they were known (the certainty-equivalence principle) in the subsequent analysis as long

as their nominal value is contained in the convex regions ΘiA . This reduces the problem

to the same problem solved by Theorem 3.7. Then the rest of the proof is straightforward

by invoking Theorem 3.7, and by noting that the existence of ΘiA which satisfies the

constraints in Definition 3.5 and contains the nominal value of akiA , is guaranteed by the

existence of akiA . This completes the proof.

Remark 3.6. The regions of projection ΘiA has to be determined when implementing

the parameter update law (3.73): this requires some knowledge of akiA. This is not as

restrictive as the requirement to know the exact value of akiA in two senses. First, one

can make ΘiA sufficiently large to relax the requirement of such knowledge. Second, it is

possible to implement the update law without projection, for example,

˙̂akiA = γkiAφ
k
iA
(yiA), (3.79)

with adaptation gain γkiA > 0 and initial condition âkiA(0) ≥ a
k
iA
. In this case the parameter

estimates are decoupled and each of them is non-decreasing over time. Due to the initial

conditions we set, these parameter estimates satisfy the constraints of Definition 3.5. This

is a special case of (3.73) in which Γ is diagonal and one can prove the counterpart of

Proposition 3.3 in a similar approach. It should, however, be noted that the implementation
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without projection is not robust in the presence of disturbances.

In addition to removing the need for explicit computation, the adaptive update laws

used, either (3.73) or (3.79), only require information on the node ΣiA , which allows the

implementation to be decentralized. This is more favourable in some scenarios in which

the information of other nodes is unavailable, compared to the method in Section 3.4.2.

3.5 A Control Synthesis Example

In this section let us see an example that demonstrates the advantage of active nodes in

stabilizing an interconnected system without explicit computation. Consider the three-

node interconnected nonlinear system described by

Σ1 : ẏ1 = y3 + u,

Σ2 : ẏ2 = y1 − y2 + y21,

Σ3 : ẏ3 = y2 − y3,

(3.80)

and a controller given by

u = −k1y1 − k2y31, (3.81)

where k1 > 0 and k2 > 0 are adjustable parameters. The design objective is to regulate

y1, y2 and y3 to 0. In the spirit of this chapter, the first step is to derive the dissipa-

tion inequality for each node system. Define the standard quadratic storage functions

Vi =
1
2y

2
i , i = 1, 2, 3, for each node system. Taking the time derivatives of these stor-

age functions along the trajectories of the closed-loop system and invoking Lemma A.1

(Young’s inequality) yields the dissipation inequalities

V̇1 ≤ −
(
k1 −

1

2

)
y21 +

1

2
y23 − k2y41,

V̇2 ≤ y21 −
1

2
y22 + y41,

V̇3 ≤
1

2
y22 −

1

2
y23, (3.82)
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which can be written in to the compact form ˙̄V ≤ Ēϕ̂(y), where ϕ̂(y) ≜ [y21, y
2
2, y

2
3, y

4
1]

⊤

and

Ē ≜


k1 − 1

2 0 −1
2 −k2

−1 1
2 0 −1

0 −1
2

1
2 0

 . (3.83)

Using (3.56), one can augment (3.83) into the matrix

Ê ≜


k1 − 1

2 0 −1
2 0

−1 1
2 0 −1

0 −1
2

1
2 0

0 0 0 −k2

 . (3.84)

The underlying augmented directed graph of (3.84) is depicted in Fig. 3.3. Since k1 and

Figure 3.3: The underlying directed graph specified by (3.84).

k2 are adjustable design parameters, Σ1 is an active node according to Definition 3.5. Also

observe that vertex 1 is contained in the only directed cycle of the graph, and therefore

the conditions in Theorem 3.7 are satisfied. By Theorem 3.7 one can conclude that for all

positive constants σ1, σ2, σ3, σ4, there exist some k1 > 0, k2 > 0, and positive constants

c1, c2, c3, depending on σ(·), such that the overall storage function V ≜ c1V1+ c2V2+ c3V3

satisfies the dissipation inequality

V̇ ≤ −σ1y21 − σ2y22 − σ3y23 − σ4y41 ≤ 0. (3.85)
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Instead of computing k1 and k2 explicitly, a shortcut is to use the adaptive controller given

by

˙̂
k1 = γ1y

2
1, k̂1(0) ≥ 0,

˙̂
k2 = γ2y

4
1, k̂2(0) ≥ 0,

u = − k̂1y1 − k̂2y31, (3.86)

where γ1 > 0 and γ2 > 0 are the adaptation gains. Note that by Proposition 3.3, replacing

controller (3.81) with controller (3.86) and re-defining V1 =
1
2y

2
1 +

1
2γ1

(k1− k̂1)2+ 1
2γ2

(k2−

k̂2)
2 does not change the overall dissipation inequality (3.85). Using standard boundedness

analysis and Lemma A.5 we can conclude that all closed-loop signals are bounded and y1,

y2, y3 converge to 0 asymptotically. This is verified by the simulation results shown in

Fig. 3.4.

Note that by using the adaptive controller (3.86) we augment the state of Σ1 with

k̂1 and k̂2, and this subsystem is not ISS. The proposed method, unlike the classical small-

gain based on ISS, is still valid for this system as it only exploits the algebraic properties

of the dissipation inequalities, which is referred to as the small-gain-like analysis/synthesis

in the thesis. From this example we can see that by checking the locations of active nodes

in the graph one can easily check the feasibility of the controller design problem. Even

the synthesis of the controller can be completed without explicit computation if adaptive

control techniques are applied.
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Figure 3.4: Time histories of the closed-loop state variables from the initial conditions
y1(0) = 1, y2(0) = −1.5, y3(0) = 0.5, k̂1(0) = k̂2(0) = 0, and with the gains γ1 = 6, γ2 = 1.
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Chapter 4

State-Feedback Design for

Lower-triangular Systems

In this chapter we move back to the discussion of the congelation of variables method. As

seen in Chapter 2, the congelation of variables method removes the undesired disturbance

caused by the θ̇ term via introducing the congealed parameter ℓθ, and either maintains the

passive interconnection or achieves a small-gain-like condition, via strengthened damping

design. This chapter shows that the same perspective is still applicable to a more general

class of nonlinear systems, namely, systems described by the equations

ẋ1 = ϕ⊤1 (x1)θ(t) + x2,

...

ẋi = ϕ⊤i (xi)θ(t) + xi+1,

...

ẋn = ϕ⊤n (x)θ(t) + u,

(4.1)

where i = 2, . . . , n − 1; x(t) = [x1, . . . , xn]
⊤ ∈ Rn is the state; u(t) ∈ R is the input;

θ(t) ∈ Rq is the vector of unknown parameters satisfying Assumption 1.1; and ϕi : R
i →

Rq, i = 1, . . . , n are the regressors satisfying Assumption 1.4. This class of systems are

commonly said to be in lower-triangular form, due to the fact that the nonlinearities ϕi’s

depend only on xi.
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Remark 4.1. The condition ϕi(0) = 0 implies that ϕ⊤i (0)θ(t) = 0, for all t ≥ 0, which

allows zero control effort at x = 0. One can easily see that if ϕi(0) ̸= 0, ϕ⊤i (0)θ(t) becomes

an unknown time-varying disturbance (similar to the one in Remark 2.2), yielding a dis-

turbance rejection/attenuation problem not discussed here. By Lemma A.3 (Hadamard’s

lemma), one can express the regressors as ϕi(xi) = Φ̄i(xi)xi, where the Φ̄i’s are smooth

mappings.

The challenge brought by the more complex structure of the system is that the

parametric uncertainty term ϕ⊤i (xi)θ enters the system via integrators which are different

from the integrator via which the control input u enters. This requires modifying the

control law as the designs in Chapter 2 are only suitable for nonlinear systems in which

the uncertainty enters the system via the same integrator as the control input u does, that

is, for systems satisfying the so-called matching condition1. This is because in such a case

one can use the certainty-equivalence principle, that is, adding a term −ϕ⊤(x)θ̂ directly to

the control law to compensate for the effect of the uncertainty ϕ⊤(x)θ since it enters the

same integrator, which yields a linearly parametrized error term ϕ⊤(x)(θ− θ̂) that can be

dealt with by adaptively updating θ̂, as seen in Chapter 2.

It is well known that to solve the adaptive control problem when the matching

condition fails, one needs to find a change of coordinates and a feedback control such that

the closed-loop system, described in the new coordinates, contains a linearly parametrized

error term, similar to the matched case, which can be dealt with using the three classes

of identifiers discussed in Chapter 2. The spirit of such a change of coordinates has been

exploited extensively, explicitly or implicitly, in nonlinear control problems. In this chapter

we adopt the formulation and interpretation used in [75] for the aforementioned change

of coordinates, that is, the so-called integrator backstepping scheme, or backstepping for

short, due to its popularity in the adaptive control literature. The core spirit of the

backstepping method is to treat the term xi+1 as a virtual control input to the dynamics

of xi, and to design a stabilizing parametrized virtual control law αi(xi, θ̂) for xi+1 to

“track”. The “tracking” error zi+1 ≜ xi+1 −αi is the resulting coordinate. By controlling

zi+1 using xi+1, one obtains zi+2. Repeating the same procedure in a recursive manner,

with ascending subscript of x, effectively yields the change of coordinates from x to z

1In model reference adaptive control literature (see e.g. [126]) the same terminology is used, with a
different meaning, for model-plant matching.
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step by step in the reverse order of the connection of the integrators, and this is why

this procedures is called integrator backstepping. Since the uncertainty term is directly

compensated by the virtual control law at the same integrator, the parameter update

law can be designed by similar approaches as in Chapter 2. Meanwhile, the perturbation

terms caused by the congelation of variables appear in the dynamics of every integrator

and has to be dominated step by step consistent with the order of the recursive design

of the virtual control laws: this is important to establish boundedness and convergence

properties. In the rest of this chapter, we see how to combine the congelation of variables

method with backstepping when using different classes of identifiers.

4.1 Passivity-Based Scheme with Backstepping

Consider system (4.1). The forward step-by-step derivation of the backstepping variables

for this system is presented in [75, Chapter 4]. For the sake of conciseness and clarity,

the backstepping method is presented the other way round, that is, the definition of the

relevant variables is given before we proceed to explain the reasons for such definitions.

Thus, for each step i, i = 1, . . . , n, define:

• the error variables

z0 = 0, (4.2)

zi = xi − αi−1, (4.3)

• the new regressor vectors

wi(xi, θ̂) = ϕi −
i−1∑
j=1

∂αi−1

∂xj
ϕj , (4.4)

• the tuning functions

τ0 = 0, (4.5)

τi(xi, θ̂) = τi−1 + wizi =

i∑
j=1

wizi, (4.6)
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• the virtual control laws

α0 = 0, (4.7)

αi(xi, θ̂) = − zi−1 − (ci + ζi)zi − w⊤
i θ̂

+
i−1∑
j=1

∂αi−1

∂xj
xj+1 +

∂αi−1

∂θ̂
Γθτi +

i−1∑
j=2

∂αj−1

∂θ̂
Γθwizj , (4.8)

where ci > 0 is the constant feedback gain; ζi(xi, θ̂) is the nonlinear feedback gain to be

defined; and Γθ = Γ⊤
θ ≻ 0 is the adaptation gain.

Remark 4.2. By constructing (4.3) to (4.8) recursively, it is not hard to see that zi(xi, θ̂),

wi(xi, θ̂), τi(xi, θ̂), αi(xi, θ̂) are smooth and zi(0, θ̂) = 0, wi(0, θ̂) = 0, τi(0, θ̂) = 0,

αi(0, θ̂) = 0. Note also that the θ̂-dependent change of coordinates between zi and xi is

smooth, invertible, and xi = 0⇔ zi = 0, thus we can directly express wi as wi = W̄i(xi, θ̂)zi

with Wi smooth, by Lemma A.3.

We are now ready to perform a step-by-step computation to explain the roles of

these variables in the context of the congelation of variables.

Step 1. Computing the z1-dynamics yields

ż1 = ẋ1 = z2 + α1 + w⊤
1 θ. (4.9)

Consider the function V1 =
1
2z

2
1 , which yields

V̇1 = z1(z2 + α1 + w⊤
1 θ)

= − (c1 + ζ1)z
2
1 + z1z2 + z1w

⊤
1 (θ − θ̂)

= − (c1 + ζ1)z
2
1 + z1z2 + z1w

⊤
1 ∆θ + (ℓθ − θ̂)⊤w1z1. (4.10)

The so-called tuning function τ1 can be treated as a temporary candidate for the parameter

update law since considering V̄1 = V1 +
1
2 |ℓθ − θ̂|

2
Γ−1
θ

and
˙̂
θ = Γθτ1, one obtains

˙̄V1 = − (c1 + ζ1)z
2
1 + z1z2 + z1w

⊤
1 ∆θ + (ℓθ − θ̂)⊤(w1z1 − τ1)

= − (c1 + ζ1)z
2
1 + z1z2 + z1w

⊤
1 ∆θ, (4.11)



4.1 Passivity-Based Scheme with Backstepping 111

in which the (ℓθ − θ̂) term is cancelled.

Step 2. The dynamics of z2 are described by

ż2 = ẋ2 − α̇1 = z3 + α2 + w⊤
2 θ −

∂α1

∂x1
x2 −

∂α1

∂θ̂

˙̂
θ. (4.12)

Consider V2 = V1 +
1
2z

2
2 . This yields

V̇2 = V̇1 − z1z2 − (c2 + ζ2)z
2
2 + z2z3 + z2w

⊤
2 ∆θ

+ z2
∂α1

∂θ̂
(Γθτ2 −

˙̂
θ) + (ℓθ − θ̂)⊤w2z2

= − (c1 + ζ1)z
2
1 − (c2 + ζ2)z

2
2 + z2z3 + (z1w

⊤
1 + z2w

⊤
2 )∆θ

+ z2
∂α1

∂θ̂
(Γθτ2 −

˙̂
θ) + (ℓθ − θ̂)⊤τ2. (4.13)

Step i, i = 3, . . . , n− 1. The zi-dynamics can be written as

żi = ẋi − α̇i−1 = zi+1 + αi + w⊤
i θ −

i−1∑
j=1

∂αi−1

∂xj
xj+1 −

∂αi−1

∂θ̂

˙̂
θ. (4.14)

Continue to consider Vi = Vi−1 +
1
2z

2
i . This yields

V̇i = V̇i−1 − zi−1zi − (ci + ζi)z
2
i + zizi+1 + ziw

⊤
i ∆θ

+ zi

i−1∑
j=2

∂αj−1

∂θ̂
Γθwizj + zi

∂αi−1

∂θ̂
(Γθτi −

˙̂
θ) + (ℓθ − θ̂)⊤wizi

= −
i∑

j=1

(cj + ζj)z
2
j + zizi+1 +

i∑
j=1

zjw
⊤
j ∆θ

+

( i−1∑
j=1

zj+1
∂αj

∂θ̂

)
(Γθτi −

˙̂
θ) + (ℓθ − θ̂)⊤τi. (4.15)

Finally, select the actual control law and the parameter update law.

u = αn(x, θ̂), (4.16)

˙̂
θ = Γθτn, (4.17)

which allows the analysis of the last step.
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Step n. Differentiating zn yields

żn = ẋn − α̇n−1 = u+ w⊤
n θ −

n−1∑
j=1

∂αn−1

∂xj
xj+1 −

∂αn−1

∂θ̂

˙̂
θ. (4.18)

Consider Vn = Vn−1 +
1
2z

2
n = 1

2 |z|
2, where z ≜ [z1, . . . , zn]

⊤. This yields

V̇n = V̇n−1 − zn−1zn − (cn + ζn)z
2
n + ziw

⊤
i ∆θ

+ zn

n−1∑
j=2

∂αj−1

∂θ̂
Γθwnzj + zn

∂αn−1

∂θ̂
(Γθτn −

˙̂
θ) + (ℓθ − θ̂)⊤wnzn

= −
n∑
j=1

(cj + ζj)z
2
j +

n∑
j=1

zjw
⊤
j ∆θ

+

( n−1∑
j=1

zj+1
∂αj

∂θ̂

)
(Γθτn −

˙̂
θ) + (ℓθ − θ̂)⊤τn. (4.19)

Note that the second last term is 0 due to the parameter update law (4.17), and thus

V̇n = −
n∑
j=1

(cj + ζj)z
2
j +

n∑
j=1

zjw
⊤
j ∆θ + (ℓθ − θ̂)⊤τn. (4.20)

Then, considering the function V̄n = Vn + 1
2 |ℓθ − θ̂|

2
Γ−1
θ

and its time derivative along the

closed-loop system trajectories yields

˙̄Vn = −
n∑
j=1

(cj + ζj)z
2
j +

n∑
j=1

zjw
⊤
j ∆θ + (ℓθ − θ̂)⊤(τn − Γ−1

θ
˙̂
θ)

= −
n∑
j=1

(cj + ζj)z
2
j +

n∑
j=1

zjw
⊤
j ∆θ. (4.21)

In the classical case, in which ζi = 0, i = 1, . . . , n, and ∆θ(t) = 0, for t ≥ 0, we can conclude

that ˙̄Vn is negative semi-definite and one can invoke Lemma A.5 for the boundedness and

convergence analysis. In the presence of time-varying parameters, one additional step

is needed to establish the negative semi-definiteness of ˙̄Vn via a strengthened damping

design of the ζi terms, which is the main difference of the proposed (virtual) control laws

compared to the classical (virtual) control laws. This is addressed in the following result.

Proposition 4.1. Consider system (4.1), the parameter update laws (4.27), and the con-
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trol law (4.16) with the nonlinear damping gains

ζi(xi, θ̂) =
1

2

(
(n− i+ 1)

δ∆θ

ϵ∆θ

+ ϵ∆θ
δ∆θ
|W̄i|2F

)
, (4.22)

with ϵ∆θ
> 0. Then, all trajectories of the closed-loop system are bounded and lim

t→+∞
x(t) =

0.

Proof. By Remark 4.2 and invoking Lemma A.1 yields

zjw
⊤
j ∆θ = zj∆

⊤
θ W̄jzj

≤ 1

2

(
δ∆θ

ϵ∆θ

+ ϵ∆θ
δ∆θ
|W̄j |2F

)
z2j +

δ∆θ

2ϵ∆θ

|zj−1|2. (4.23)

Recall that Vn = 1
2 |z|

2, V̄n = Vn + 1
2 |ℓθ − θ̂|

2
Γ−1
θ

and consider (4.21) and (4.22) together

with the inequality (4.23). This yields

˙̄Vn = −
n∑
j=1

(cj + ζj)z
2
j +

n∑
j=1

zjw
⊤
j ∆θ

≤ −
n∑
j=1

(
cj +

1

2

(
(n− j + 1)

δ∆θ

ϵ∆θ

+ ϵ∆θ
δ∆θ
|W̄j |2F

))
z2j

+
n∑
j=1

(
1

2

(
δ∆θ

ϵ∆θ

+ ϵ∆θ
δ∆θ
|W̄j |2F

)
z2j +

δ∆θ

2ϵ∆θ

|zj−1|2
)

= −
n∑
j=1

cjz
2
j ≤ 0. (4.24)

Boundedness. Since the function V̄n(z, θ̂) is positive definite and radially unbounded

in (z, ℓθ − θ̂), equation (4.24) shows that both z and θ̂ are bounded. Due to Remark 4.2,

x is bounded, and so are the variables defined from (4.2) to (4.8).

Convergence. Since ż can be expressed using smooth functions of θ(t) and the

variables defined by (4.2) to (4.8), which are all bounded, ż is also bounded. Hence by

invoking Lemma A.5 one can conclude that lim
t→+∞

z(t) = 0, which further indicates that

lim
t→+∞

x(t) = 0, by Remark 4.2.

Remark 4.3. From the proof of Proposition 4.1 one can see that the function of adding

nonlinear damping terms ζi to the control law is to counteract the effect of the perturbation
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z⊤W⊤∆θ, where W ≜ [w1, . . . , wn]. This makes the z-subsystem, with the storage function

Vn, passive from the input ℓθ − θ̂ to the output Wz, in the presence of the perturbation

term z⊤W⊤∆θ resulting from the congelation of variables. This allows the z-subsystem,

together with the passive identifier, to compose a negative feedback interconnection of pas-

sive systems. Therefore, from a passivity perspective and despite the additional complexity,

the design for lower-triangular systems is essentially in the same spirit as the design for

scalar systems discussed in Section 2.1.

Time-varying Input Coefficient

When using the passivity-based scheme, it is possible to modify the aforementioned back-

stepping scheme with modifications similar to the ones used in Section 2.1.2. To illustrate

this, consider the lower-triangular nonlinear system

ẋ1 = ϕ⊤1 (x1)θ(t) + x2,

...

ẋi = ϕ⊤i (xi)θ(t) + xi+1,

...

ẋn = ϕ⊤n (x)θ(t) + b(t)u.

(4.25)

The only difference between (4.25) and (4.1) is that there is a time-varying input coefficient

b(t) ∈ R, which is unknown and satisfies Assumption 1.1 and Assumption 1.3. The way

to deal with b(t) is to select a control law with a nonlinear feedback gain κ(x, θ̂) > 0, like

what is done for the scalar systems. The major difference in this case is that the gain

κ(x, θ̂) has to be multiplied by zn to yield the −κz2n term. Therefore the design of the gain

should be done in the last step of the backstepping procedures2. Thus, select the adaptive

2 [78] has proposed a final-step control law with similar properties and analysis, which also uses a control
law with a nonlinear negative feedback gain, albeit to achieve inverse optimality. This result inspired the
proposed design to counteract the time-varying b(t).
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controller described by

u = −ϱ̂κ(x, θ̂)zn, (4.26)

˙̂
θ = Γθτn, (4.27)

˙̂ϱ = γϱsgn(ℓb)κ(x, θ̂)z
2
n, (4.28)

where zn and τn are given by the recursive definitions (4.2); and κ(x, θ̂) > 0 is the nonlinear

feedback gain to be determined. Since the first n − 1 steps are identical to the case in

which b(t) = 1, for all t ≥ 0, consider the nth step directly. Let V (z, θ̂, ϱ̂) = 1
2 |z|

2 +

1
2 |ℓθ − θ̂|

2
Γ−1 +

|ℓb|
2γϱ
| 1ℓb − ϱ̂|

2. Taking the time-derivative of V along the trajectories of the

closed-loop system yields

V̇ = −
n∑
i=1

(ci + ζi)zi − κz2n +∆+ znψ

+ (ℓθ − θ̂)⊤
( n−1∑
i=1

wizi − Γ−1
θ

˙̂
θ

)
+ ℓb

(
1

ℓb
− ϱ̂

)(
ᾱnzn −

˙̂ϱ

γϱ

)
, (4.29)

where

∆ ≜
n−1∑
i=1

ziw
⊤
i ∆θ −∆bϱ̂κz

2
n, (4.30)

ψ ≜ zn−1 + w⊤
n θ̂ −

n−1∑
j=1

∂αn−1

∂xj
xj+1 −

∂αn−1

∂θ̂
Γθτn −

n−1∑
j=2

∂αj−1

∂θ̂
Γθwnzj . (4.31)

The second line of (4.29) is eliminated by the parameter update laws (4.27) and (4.28),

and the non-positivity of −∆bϱ̂κz
2
n can be established in the same way as in Section 2.1.2,

thanks to the fact that κ(x, θ̂) > 0 and that ∆b(t) and ϱ̂(t) can be made positive for all

t ≥ 0 by properly selecting ℓb and ϱ̂(0), respectively. In addition, note that a similar

observation as the one in Remark 4.2 suggests that one can express ψ as ψ = ψ̄⊤(x, θ̂)z

with ψ̄ smooth. The rest of the design boils down to determining the nonlinear damping

gains ζi and κ to dominate the ∆θ-terms, as discussed in what follows.

Proposition 4.2. Consider the system (4.25) and the adaptive controller described by
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(4.89), (4.27), and (4.28). Let the nonlinear damping gains be defined as

ζi(xi, θ̂) =
1

2

(
(n− i+ 1)

δ∆θ

ϵ∆θ

+ ϵ∆θ
δ∆θ
|W̄i|2F +

1

ϵψ̄

)
, (4.32)

κ(x, θ̂) = cn + ζn +
1

2
ϵψ̄|ψ̄|2, (4.33)

with cn > 0 and ϵ(·) > 0. The parameter estimate ϱ̂ is initialized such that sgn(ϱ̂(0)) =

sgn(b). Then, all trajectories of the closed-loop system are bounded and lim
t→+∞

x(t) = 0.

Proof. Recalling Remark 4.2 and invoking Lemma A.1 yields

ziw
⊤
i ∆θ = zi∆

⊤
θ W̄izi

≤ 1

2

(
δ∆θ

ϵ∆θ

+ ϵ∆θ
δ∆θ
|W̄i|2F

)
z2i +

δ∆θ

2ϵ∆θ

|zi−1|2, (4.34)

znψ = znψ̄z

≤ 1

2

(
1

ϵψ̄
+ ϵψ̄|ψ̄|2

)
z2n +

1

2ϵψ̄
|zn−1|2. (4.35)

Applying these inequalities to (4.29) yields

V̇ = −
n∑
i=1

(ci + ζi)zi − κz2n +
n−1∑
i=1

ziw
⊤
i ∆θ −∆bϱ̂κz

2
n + znψ

≤ −
n∑
i=1

(
ci +

1

2ϵψ

)
zi −

1

2
ϵψ̄|ψ̄|2z2n −∆bϱ̂κz

2
n + znψ

≤ −
n∑
i=1

ciz
2
i −∆bϱ̂κz

2
n. (4.36)

Note now the following two facts: 1) there exists ℓb such that 0 < |ℓb| ≤ |b|, sgn(ℓb) =

sgn(b), and sgn(∆b) = sgn(b), due to Assumption 1.3 and; 2) the selection of ϱ̂(0) such

that sgn(ϱ̂(0)) = sgn(b) guarantees that ϱ̂ driven by (4.28) satisfies sgn
(
ϱ̂(t)

)
= sgn(b).

Therefore, −∆bϱ̂κz
2
n = −|∆b||ϱ̂|κz2n ≤ 0. This yields

V̇ ≤ −
n∑
i=1

ciz
2
i ≤ 0, (4.37)

which has the same supply rate as that of (4.24). Note that V is positive definite and radi-

ally unbounded in (z, ℓθ − θ̂, ℓ−1
b − ϱ̂). Therefore, using the same argument as in the proof
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of Proposition 4.1, boundedness of all closed-loop system trajectories and convergence of

x to 0 can be concluded.

Remark 4.4. The passivity interpretations in Section 2.1.1 and Section 2.1.2 are still

valid in the backstepping case, with some necessary changes to the interconnecting signals.

The schematic interpretation for the closed-loop system consisting of the system (4.25)

and the adaptive controller described by (4.26), (4.27), and (4.28) is shown in Fig. 4.1.

Figure 4.1: Representation of the closed-loop system described by equations (4.25)
(4.26), (4.27), and (4.28) as the interconnection of passive subsystems.

4.2 Immersion-and-Invariance Scheme with Dynamic Scal-

ing

This section extends the results in Section 2.2 to n-dimensional nonlinear systems. Con-

sider a linearly parametrized nonlinear system (not necessarily in lower-triangular form)

described by the equations

ẋ = fu(x, u) + Φ⊤(x)θ, (4.38)

where x(t) ∈ Rn is the state; u(t) ∈ Rm is the input; f : Rn × Rm → Rn is a smooth

mapping; Φ : Rn → Rq×n is a smooth mapping satisfying Assumption 1.4; and θ(t) ∈ Rq is



118 Chapter 4

the vector of time-varying parameters satisfying Assumption 1.1. The parameter estimate

is given by the sum of a dynamic part θ̂ and a static part β(x). In the spirit of the I&I

scheme, one would expect the mapping β : Rn → Rq to be selected in such a way that

∂β

∂x
= ΓθΦ(x), (4.39)

which guarantees that the off-the-manifold error zθ ≜ θ̂ − ℓθ + β(x) satisfies żθ =

−ΓθΦ(x)(zθ − ∆θ), with Γθ = Γ⊤
θ ≻ 0. However, a challenge in this case is that the

derivation of the β function cannot be obtained directly from the integral of Φ over x as

in (2.31), since x is not a scalar. The need for solving the PDE (4.39) can be restrictive

in practical scenarios. To avoid such a restriction, the rest of the section presents a joint

estimator-controller scheme by exploiting the dynamic scaling technique.

4.2.1 Dynamic Scaling Estimator

The dynamic scaling technique has been originally developed for high-gain observers [103],

and extended to the I&I scheme with constant system parameters in [5, 65]. The key of

this method is to scale the off-the-manifold variable θ − ℓθ + β by a factor 1
r(t) , namely,

letting the new error variable be

zθ ≜
θ̂ − ℓθ + β(x, x̂)

r
, (4.40)

where r(t) ∈ R, the update law of which is to be determined; θ̂(t) ∈ Rq is the dynamic

part of the parameter estimate θ̂ + β(x, x̂); ℓθ ∈ Rq is the constant vector of congealed

parameters; and β : Rn × Rn → Rq is the static part of the parameter estimate and is

selected as

β(x, x̂) = ΓθΦ(x̂)x, (4.41)

with Γθ = Γ⊤
θ ≻ 0. The auxiliary state3 x̂ is updated using the filter

˙̂x = fu(x, u) + Φ⊤(x)
(
θ̂ + β(x, x̂)

)
− L(x, r, x̃)x̃, (4.42)

3x̂ can also be interpreted as an estimate of x, but it is called auxiliary state since x is known and x̂ is
introduced solely to help avoid solving the PDE (4.39).
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where x̃ ≜ x̂ − x, and L(x, r, x̃) is the injection gain to be determined. The dynamic

parameter estimate θ̂ is driven by the update law

˙̂
θ = −ΓθΦ(x̂)

(
fu(x, u) + Φ⊤(x)

(
θ̂ + β(x, x̂)

))
− ∂β

∂x̂
˙̂x. (4.43)

Then, the resulting x̃-dynamics and zθ-dynamics are described by the equations

˙̃x = ˙̂x− ẋ = −L(x, r, x̃)x̃+ rΦ⊤(x)

(
zθ −

∆θ

r

)
(4.44)

and

żθ =
1

r

(
˙̂
θ +

∂β

∂x
ẋ+

∂β

∂x̂
˙̂x

)
− ṙ

r2
(
θ̂ − ℓθ + β(x, x̂)

)
= − ΓθΦ(x̂)Φ

⊤(x)

(
zθ −

∆θ

r

)
− ṙ

r
zθ, (4.45)

respectively. Note that due to the smoothness of Φ(·) and by Lemma A.3, one has Φ(x̂) =

Φ(x) +D(x, x̃)(In ⊗ x̃) for some smooth mapping D : Rn ×Rn → Rq×n2
. With this fact

in mind the dynamics of zθ can be re-written as

żθ = −Γθ
(
Φ(x) +D(x, x̃)(In ⊗ x̃)

)
Φ⊤(x)

(
zθ −

∆θ

r

)
− ṙ

r
zθ. (4.46)

Lemma 4.1. Consider the system (4.38), the auxiliary state filter (4.42), and the dynamic

parameter estimate update law (4.43), with the filter injection gain defined by

L(x, r, x̃) = λr2I + L̄(x, r, x̃), (4.47)

and the dynamic scaling coefficient updated as

ṙ = κn|D(x, x̃)|2F|x̃|2r, (4.48)

where L̄(x, r, x̃) = ϵκnr2|D(x, x̃)|2FI, r(0) = 1, κI − 2Γθ ⪰ 0, λ > 0, and ϵ > 0. Then the

function Vzθx̃r(zθ, x̃, r) = 2|zθ|2Γ−1
θ

+ 1
2λ|x̃|

2 + 1
2λϵr

2 satisfies the dissipation inequality

V̇zθx̃r ≤− |Φ
⊤(x)zθ|2 −

1

2
λ2|x̃|2 + 6δ2∆θ

|Φ(x)|2F. (4.49)
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Moreover, if the parameter vector θ is constant, then zθ ∈ L∞, r ∈ L∞, x̃ ∈ L∞ ∩L2, and

Φ⊤(x)zθ ∈ L2.

Proof. First note that r is non-decreasing due to (4.48). Thus r(t) ≥ r(0) = 1 and

|∆θ(t)
r | ≤ δ∆θ

, for all t ≥ 0. Consider now the function Vzθ(zθ) = 1
2z

⊤
θ Γ

−1
θ zθ. Taking its

time derivative along the trajectories of (4.46) yields

V̇zθ ≤− |Φ
⊤(x)zθ|2 +

(
1

4
|Φ⊤(x)zθ|2 + δ2∆θ

|Φ(x)|2F
)

+

(
1

4
|Φ⊤(x)zθ|2 + |D(x, x̃)(In ⊗ x̃)|2F|zθ|2

)
+

(
1

4
δ2∆θ
|Φ(x)|2F + |D(x, x̃)(In ⊗ x̃)|2F|zθ|2

)
− κn|D(x, x̃)|2F|x̃|2z⊤θ Γ−1

θ zθ

≤− 1

2
|Φ⊤(x)zθ|2 +

5

4
δ2∆θ
|Φ(x)|2F. (4.50)

Proceed by considering the function Vzθx̃(zθ, x̃) =
4
λVzθ(zθ) +

1
2 |x̃|

2, the time derivative of

which along (4.44) and (4.46) satisfies

V̇zθx̃ ≤−
2

λ
|Φ⊤(x)zθ|2 +

5

λ
δ2∆θ
|Φ(x)|2F − x̃⊤L(x, r, x̃)x̃

+

(
1

λ
|Φ⊤(x)zθ|2 +

1

4
λr2|x̃|2

)
+

(
1

λ
δ2∆θ
|Φ(x)|2F +

1

4
λr2|x̃|2

)
=− 1

λ
|Φ⊤(x)zθ|2 −

1

2
λr2|x̃|2 − x̃⊤L̄x̃+

6

λ
δ2∆θ
|Φ(x)|2F. (4.51)

Finally, consider the function Vzθx̃r(zθ, x̃, r) = λVzθx̃(zθ, x̃) +
1
2λϵr

2. Taking the time

derivative along (4.44), (4.46), and (4.48) yields

V̇zθx̃r ≤− |Φ
⊤(x)zθ|2 −

1

2
λ2r2|x̃|2

+ 6δ2∆θ
|Φ(x)|2F − λ

(
x̃⊤L̄x̃− ϵκnr2|D(x, x̃)|2F|x̃|2

)
≤− |Φ⊤(x)zθ|2 −

1

2
λ2|x̃|2 + 6δ2∆θ

|Φ(x)|2F. (4.52)

If θ is constant, one can select the congealed parameters as ℓθ = θ, yielding δ∆θ
= 0.

Then V̇zθx̃r ≤ −|Φ⊤(x)zθ|2 − 1
2λ

2|x̃|2 ≤ 0. Due to the positive definiteness and radial
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unboundedness of Vzθx̃r one can conclude that zθ ∈ L∞, x̃ ∈ L∞, and r ∈ L∞. From the

supply rate it can be proven that Φ⊤(x)zθ ∈ L2 and x̃ ∈ L2. Combining these properties

together completes the proof.

Remark 4.5. Compared to its counterpart in [65], Lemma 4.1 does not use over-

parametrization, which makes the result applicable to non-overparametrized controllers. In

addition, Lemma 4.1 uses the Frobenius norm instead of the induced 2-norm, which can

be turned into pre-computed expressions without the need for online norm computation.

4.2.2 ISS Controller

Although in the presence of time-varying θ, the standalone estimator design previously

discussed cannot guarantee boundedness of the estimator states, this problem can be

solved by a joint estimator-controller design. To see this, consider a linearly parametrized,

input affine, nonlinear system described by the equation

ẋ = f(x) + g(x)u+Φ⊤(x)θ, (4.53)

which is a special form of (4.38) with fu(x, u) = f(x) + g(x)u. Consider a nominal

continuous control law v(x, ℓθ) parametrized by the congealed parameters ℓθ (assumed to

be known for the nominal control law, but this assumption can be relaxed by adaptation).

The resulting closed-loop system is described by the equation

ẋ = f(x) + g(x)v(x, ℓθ) + Φ⊤(x)(ℓθ +∆θ) = fℓ(x). (4.54)

To be able to conclude stability properties one typically needs to make a structural as-

sumption based on the plant and the nominal controller.

Assumption 4.1. The system (4.54) has a globally asymptotically stable equilibrium at

x = x∗.

Assumption 4.1 means that the system can be robustly stabilized in the presence

of the time-varying perturbation ∆θ(t) only with the nominal information of a constant ℓθ

(for example, one can select it as the geometric centre of the set Θ to which θ(t) belongs

to). Up to this point, the control law is designed in the spirit of robust control, but since
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ℓθ is not assumed to be known in the context of this thesis, parameter adaptation has to

be considered. To do this, replace ℓθ with the parameter estimate θ̂ + β, which yields an

adaptive control law of the form4 v(x, θ̂ + β) and the closed-loop dynamics

ẋ =f(x) + g(x)v(x, θ̂ + β) + Φ⊤(x)(θ̂ + β − rzθ +∆θ) ≜ fθ̂β , (4.55)

Proposition 4.3. Consider the system (4.53) and the dynamic scaling estimator given

by (4.41), (4.42), (4.43), (4.48), (4.47). Assume that Assumption 4.1 holds and that there

exists a positive definite (centred at x = x∗) and radially unbounded function Vx and a

control law v(x, θ̂+β) such that the time derivative of Vx satisfies the dissipation inequality

V̇x =
∂Vx
∂x

fθ̂β ≤ −W (x)− σΦ|Φ(x)|2F + |Φ⊤(x)zθ|2, (4.56)

where W : Rn → R+ is a differentiable positive-definite function centred at x = x∗; and

σΦ is a damping coefficient that can be adjusted in the interval (0, σ̄Φ], with σ̄Φ ≥ 6δ∆θ
,

by tuning the control law. Then, all trajectories of the closed-loop system are bounded and

lim
t→∞

x(t) = x∗.

Proof. Recall Lemma 4.1 and consider the function V = Vx + Vzθx̃r. Using (4.49) and

(4.56), the time derivative of V along the trajectories of the system satisfies

V̇ =V̇x + V̇zθx̃r

≤−W (x)− σΦ|Φ(x)|2F + |Φ⊤(x)zθ|2

− |Φ⊤(x)zθ|2 −
1

2
λ2|x̃|2 + 6δ2∆θ

|Φ(x)|2F. (4.57)

Selecting σΦ = 6δ2∆θ
yields V̇ ≤ −W (x) ≤ 0. Due to the positive definiteness and radially

unboundedness of V , x, zθ, x̃, and r are bounded, which proves boundedness of the

trajectories of the closed-loop system. Furthermore, both ∂W
∂x and ẋ are bounded due to

diffentiability of W , f , g, v and boundedness of the relevant signals. Finally, invoking

Lemma A.5 yields lim
t→∞

x(t) = x∗.

4Note that there is a slight abuse of notation since the parametrized control needed may not be precisely
v(x, θ̂ + β), that is, the nominal control law evaluated with the parameter estimate. For example, in the
backstepping design one has to add additional terms to compensate for the effect of d

dt
(θ̂ + β) caused by

the substitution of θ̂ + β for ℓθ.
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From (4.56) we can see that the controller in Proposition 4.3 guarantees ISS of

the plant-controller subsystem with respect to the input Φ⊤(x)zθ. The aim of designing

such a controller is to use strengthened damping terms to construct the stabilizing term

−δ2∆θ
|Φ(x)|2F in V̇x to dominate the positive term δ2∆θ

|Φ(x)|2F in V̇zθx̃r resulting from the

estimator design, and to treat Φ⊤(x)zθ as an exogenous input, which is dominated, in turn,

by the stabilizing term −|Φ⊤(x)zθ|2 in V̇zθx̃r. Then, boundedness and convergence prop-

erties of the closed-loop system are guaranteed by the small-gain-like condition enforced

by (4.49) and (4.56).

In practice, this ISS controller is applicable to at least three types of systems.

The first type is given by systems satisfying the matching condition, which has been

discussed in Section 2.2. The second type is given by systems satisfying the extended

matching condition, which will be discussed in Section 6.1 via a practical example. The

third type is given by systems in parametric strict-feedback form. This type of systems

requires exploiting the estimator-controller structure recursively and overparametrization

is needed. This is to be discussed in the next subsection.

4.2.3 Overparametrized Backstepping Design

Consider now the lower triangular system (4.1). This requires backstepping techniques as

the parametric uncertainty is unmatched. Since the backstepping design requires the design

variables to have lower-triangular dependency on the state variables, that is, the variables

used at step i, only depends on xi. In this sense, the non-recursive design introduced

previously does not fit in the backstepping scheme as the β function and the dynamic scaling

estimator, in general, does not satisfy the lower-triangular dependency. To circumvent this

limitation, consider the overparametrization scheme discussed in [5, Section 4.3], that is,

consider n parameter estimates θ̂i + βi, i = 1, . . . , n, for the same unknown parameter θ.

To this end, define, for i = 1, . . . , n, the scaled off-the-manifold variable

zθi =
θ̂i − ℓθ + βi(xi, x̂i)

ri
, (4.58)
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where βi : R×Ri → Rq is selected as

βi(xi, x̂i) = γiϕi(x̂i)xi (4.59)

and it is such that

∂βi
∂xi

= γiϕi(x̂i), (4.60)

with γi > 0. Note that the auxiliary filter (4.42) satisfies the lower-triangular dependency

on the state variables and therefore can be used for backstepping. The overparametrized

structure suggests dividing the counterpart of (4.42) into n filters, that is, the filters

˙̂xi = xi+1 + ϕ⊤i (xi)(θ̂i + βi)− li(xi, ri, x̃i)x̃i, (4.61)

i = 1, . . . , n, where li : R
i ×R×Ri → R is the injection gain function to be determined.

The update law for θ̂i is selected as

˙̂
θi = −γiϕi(x̂i)

(
xi+1 + ϕ⊤i (xi)(θ̂i + βi)

)
−

i∑
j=1

∂βj
∂x̂j

˙̂xj . (4.62)

Then, the resulting x̃i-dynamics and zθi-dynamics are

˙̃xi = ˙̂xi − ẋi

= − li(xi, ri, x̃i)x̃i + riϕ
⊤
i (xi)

(
zθi −

∆θ

ri

)
(4.63)

and

żθi =
1

ri

(
˙̂
θi +

∂βi
∂xi

ẋi +
∂βi
∂x̂i

˙̂xi

)
− ṙi
r2i

(θ̂ − ℓθ + β)

= − γiϕi(x̂i)ϕ⊤i (xi)
(
zθ −

∆θ

ri

)
− ṙi
ri
zθi

= − γi
(
ϕi(xi) +Di(xi, x̃i)x̃i

)
ϕ⊤i (xi)

(
zθi −

∆θ

ri

)
− ṙi
ri
zθi, (4.64)

respectively, where Di : R
i × Ri → Rq×i is a smooth mapping that is well-defined and

known due to smoothness of ϕi and Lemma A.3. For conciseness of expression, the value

of the mapping ϕi at xi, namely ϕi(xi) is written as ϕi where appropriate, while ϕi(x̂i)
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is always written in its complete form to avoid confusion. Due to the overparametrized

design, the counterpart of Lemma 4.1 is decomposed and allocated to each parameter

estimate and auxiliary filter state variable.

Lemma 4.2. Consider the system (4.1), the auxiliary state filters (4.61), and the dynamic

parameter estimates updated by (4.62), with the filter injection gain defined by

li(xi, ri, x̃i) = λi + l̄i(xi, ri, x̃i), (4.65)

and the dynamic scaling coefficients updated by

ṙi = κi|Di(xi, x̃i)x̃i|2ri, (4.66)

where l̄i(xi, ri, x̃i) = ϵκir
2
i |Di(xi, x̃i)x̃i|2, ri(0) = 1, κi ≥ 2γi, λi > 0, and ϵ > 0. Then the

function Vzθix̃iri(zθi, x̃i, ri) = 2γ−1
i |zθi |2+

1
2λix̃

2
i +

1
2λiϵr

2
i satisfies the dissipation inequality

V̇zθix̃iri ≤−
(
ϕ⊤i (xi)zθi

)2 − 1

2
λ2i x̃

2
i + 6δ2∆θ

|ϕi(xi)|2. (4.67)

Proof. Due to the update law (4.66) and the initial condition of ri, ri(t) ≥ ri(0) = 1 and

therefore |∆θ(t)
ri
| ≤ δ∆θ

, for all t ≥ 0. Consider now the function Vzθi(zθi) =
1
2γi
|zθi|2. The

time derivative of Vzθi along the trajectories of the closed-loop system satisfies

V̇zθi ≤− (ϕ⊤i zθi)
2 − κiγ−1

i |Dix̃i|2|zθi|2 +
(
1

4
(ϕ⊤i zθi)

2 + δ2∆θ
|ϕi|2

)
+

(
1

4
(ϕ⊤i zθi)

2 + |Dix̃i|2|zθi|2
)
+

(
1

4
δ2∆θ
|ϕi|2 + |Dix̃i|2|zθi|2

)
≤− 1

2
(ϕ⊤i zθi)

2 +
5

4
δ2∆θ
|ϕi|2. (4.68)

Then, consider the function Vzθix̃i(zθi, x̃i) =
4
λi
Vzθi(zθi)+

1
2 x̃

2
i . The time derivative of each

Vzθix̃i along the system trajectories satisfies

V̇zθix̃i ≤−
2

λi
(ϕ⊤i zθi)

2 +
5

λi
δ2∆θ
|ϕi|2 − l2i x̃2i

+

(
1

λi
(ϕ⊤i zθi)

2 +
1

4
λir

2
i x̃

2
i

)
+

(
1

λi
δ2∆θ
|ϕi|2 +

1

4
λir

2
i x̃

2
i

)
=− 1

λi
|ϕ⊤i zθi |

2 − 1

2
λir

2
i x̃

2
i − l̄ix̃2i +

6

λi
δ2∆θ
|ϕi|2. (4.69)
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Finally, consider the function Vzθix̃iri(zθi, x̃i, ri) = λiVzθix̃i(zθi, x̃i) +
1
2ϵλir

2
i . Taking the

time derivative along the system trajectories yields

V̇zθix̃iri ≤− (ϕ⊤i zθi)
2 − 1

2
λ2i r

2
i x̃

2
i + 6δ2∆θ

|ϕi|2 − λi
(
l̄ix̃

2
i − ϵκir2i |Dix̃i|2

)
≤− (ϕ⊤i zθi)

2 − 1

2
λ2i x̃

2
i + 6δ2∆θ

|ϕi|2. (4.70)

To introduce the overparametrized backstepping controller, for i = 1, . . . , n, con-

sider the variable definitions:

• the error variables

z0 = 0, (4.71)

zi = xi − αi−1, (4.72)

• the virtual control laws

α0 = 0, (4.73)

αi(xi, θ̂i, x̂i, ri) = − zi−1 − (ci + ζi)zi − ϕ⊤i (xi)(θ̂i + βi)

+
i−1∑
j=1

∂αi−1

∂xj

(
xj+1 + ϕ⊤j (xj)(θ̂j + βj)

)
+

i−1∑
j=1

∂αi−1

∂θ̂j

˙̂
θj +

i−1∑
j=1

∂αi−1

∂x̂j
˙̂xj +

i−1∑
j=1

∂αi−1

∂rj
ṙj , (4.74)

where ci > 0 is the constant feedback gain, and ζi(xi, θ̂i, x̂i, ri) is the nonlinear feedback

gain to be determined. To understand the design of the control laws, we note a structural

property that is essential for enforcing the L2 property of the regressor ϕi.

Lemma 4.3. The regressor ψi(zi, θ̂i, x̂i, ri) ≜ ϕi(xi) can be expressed as ψi(zi, θ̂i, x̂i, ri) =∑i
j=1 Ψ̄i,j(zj , θ̂j , x̂j , rj)zj ≜ Ψ̄i(zi, θ̂i, x̂i, ri)zi, where Ψ̄i,j’s are smooth mappings.

Proof. First note that ϕi(xi) can be expressed as ϕi(xi) =
∑i

j=1 Φ̄i,j(xj)xj . To see this,

for j = 1, . . . , i, define a smooth mapping Φ̄i,j , such that Φ̄i,j(xj)xj = ϕi([xj , 0 ]
⊤) −

ϕi([xj−1, 0 ]
⊤), which is feasible due to Assumption 1.4 and Lemma A.3. Similar to what
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is discussed in Remark 4.2, zj depends on xj , θ̂j , x̂j , rj , and zj = 0⇔ xj = 0. Therefore

the equation ψi(zi, θ̂i, x̂i, ri) = ϕi(xi) =
∑i

j=1 Φ̄i,j(xj)xj =
∑i

j=1 Ψ̄i,j(zj , θ̂j , x̂j , rj)zj holds,

which completes the proof.

Lemma 4.3 shows the feasibility of decomposing the regressor ϕi(xi) into the com-

ponents Ψ̄i,jzj that have lower-triangular dependency on the closed-loop signals. This

allows distributing the δ2∆θ
|ϕi|2 terms (from Lemma 4.2) to be dominated to the recursive

steps of the backstepping design, as is explained in the following result.

Proposition 4.4. Consider system (4.1), the dynamic scaling estimator described by

(4.61), (4.62), (4.66), and the virtual control laws (4.74) with the nonlinear damping gains

ζi(xi, θ̂i, x̂i, ri) = ζi1 + ζi2 + ζi3 + ζi4, (4.75)

where

ζi1 ≜ (n2 + n)
δ∆θ

2ϵ∆θ

, (4.76)

ζi2 ≜
1

2ϵϕ

(
r2i +

i−1∑
j=1

r2j

(
∂αj
∂xi

)2)
, (4.77)

ζi3 ≜
ϵ∆θ

δ∆θ

2
|Ψ̄i|2F

(
1 +

i−1∑
j=1

(
∂αj
∂xi

)2)
, (4.78)

ζi4 ≜ σΨ

n∑
j=1

|Ψ̄j,i|2, (4.79)

with σΨ ≜ 3ϵϕn
2δ2∆θ

, ϵ(·) > 0, and Ψ̄(·), Ψ̄(·,·) defined as in Lemma 4.3. Let the actual

control law be u = αn. Then, all trajectories of the closed-loop system are bounded and

lim
t→+∞

x(t) = 0.
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Proof. First note that, for i = 1, . . . , n, one has

żi = ẋi − α̇i

= zi+1 + αi + ϕ⊤i θ −
i−1∑
j=1

∂αi−1

∂xj
(xj+1 + ϕ⊤j θ)

−
i−1∑
j=1

∂αi−1

∂θ̂j

˙̂
θj −

i−1∑
j=1

∂αi−1

∂x̂j
˙̂xj −

i−1∑
j=1

∂αi−1

∂rj
ṙj

= zi+1 − zi−1 − (ci + ζi)zi − ϕ⊤i (rizθi −∆θ) +
i−1∑
j=1

∂αi−1

∂xj
ϕ⊤j (rjzθj −∆θ), (4.80)

where z0 = zn+1 = 0. Consider the function Vzi = 1
2z

2
i . Its time derivative along the

trajectories of the closed-loop system satisfies

V̇zi = zizi+1 − zi−1zi − (ci + ζi)z
2
i − ziϕ⊤i (rizθi −∆θ) + zi

i−1∑
j=1

∂αi−1

∂xj
ϕ⊤j (rjzθj −∆θ)

≤ zizi+1 − zi−1zi − (ci + ζi)z
2
i

+
ϵϕ
2
(ϕ⊤i zθi)

2 +
1

2ϵϕ
r2i z

2
i +

i−1∑
j=1

(
ϵϕ
2
(ϕ⊤j zθj)

2 +
1

2ϵϕ
r2j

(
∂αi−1

∂xj

)2

z2i

)

+
ϵ∆θ

δ∆θ

2
|Ψ̄i|2Fz2i +

δ∆θ

2ϵ∆θ

|zi|2 +
i−1∑
j=1

(
ϵ∆θ

δ∆θ

2
|Ψ̄i|2F

(
∂αi−1

∂xj

)2

z2i +
δ∆θ

2ϵ∆θ

|zj |2
)

≤ zizi+1 − zi−1zi − ciz2i − σΨ
n∑
j=1

|Ψ̄j,i|2z2i +
ϵϕ
2

i∑
j=1

(ϕ⊤j zθj)
2. (4.81)

Consider now the function Vz(z) = 1
2 |z|

2 =
∑n

i=1 Vzi(zi). Its time derivative along the

trajectories of the closed-loop system satisfies

V̇z =
n∑
i=1

V̇zi

≤
n∑
i=1

ciz
2
i − σΨ

n∑
i=1

n∑
j=1

|Ψ̄j,i|2z2j +
ϵϕ
2

n∑
i=1

i∑
j=1

(ϕ⊤j zθj)
2

≤
n∑
i=1

ciz
2
i − σΨ

n∑
i=1

n∑
j=1

|Ψ̄j,i|2z2i +
ϵϕ
2
n

n∑
i=1

(ϕ⊤i zθi)
2. (4.82)

Recall that, by Lemma 4.2, V̇zθix̃iri ≤ −(ϕ⊤i zθi)2 + 6δ2∆θ
|ϕi|2. Consider the function V =

Vz +
ϵϕ
2 n

∑n
i=1 Vzθix̃iri and take its time derivative along the system trajectories. This
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yields

V̇ = V̇z + V̇zθix̃iri

≤
n∑
i=1

ciz
2
i − σΨ

n∑
i=1

n∑
j=1

|Ψ̄j,i|2z2i + 3ϵϕn
2δ2∆θ

n∑
i=1

|ϕi|2. (4.83)

By Lemma 4.3, ϕi =
∑i

j=1 Ψ̄i,jzj . Then, invoking the triangle inequality yields

|ϕi| ≤
∑i

j=1 |Ψ̄i,j ||zj | and therefore |ϕi|2 ≤ i
∑i

j=1 |Ψ̄i,j |2z2j . Note that
∑n

i=1 |ϕi|2 ≤∑n
i=1

(
i
∑i

j=1 |Ψ̄i,j |2z2j
)
≤ n

∑n
i=1

∑n
j=1 |Ψ̄j,i|2z2i and σΨ = 3ϵϕn

2δ2∆θ
. This implies that

V̇ ≤
∑n

i=1 ciz
2
i ≤ 0.

Boundedness. Since the function V is positive definite and radially unbounded in

zi, zθi, x̃i, ri, i = 1, . . . , n, the inequality V̇ ≤ 0 implies that these variables are bounded.

Due to the recursive coupling between zi and xi, and x̂i = xi + x̃i, one can conclude,

recursively, that xi, x̂i, and θ̂i are also bounded, for i = 1 . . . , n. This completes the proof

of boundedness.

Convergence. Due to boundedness of the closed-loop signals, ż is bounded. To

perform an invariance-like analysis, invoking Lemma A.5 yields lim
t→+∞

z(t) = 0. This

further indicates that lim
t→+∞

x(t) = 0, since z = 0⇔ x = 0.

Figure 4.2: Schematic interpretation of the interconnected z-subsystem and the
(zθi, x̃i, ri)-subsystems (represented by zθi for conciseness): (a) the original structure
of the underlying directed graph and (b) the graph after merging zθi-nodes into the
zθ-node.

Note that it is possible to visualize the proof of Proposition 4.4 using the convention
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developed in Chapter 3, as shown in Fig. 4.2(a). Similar to the schematic interpretation

of the scalar system shown in Fig. 2.2, the congelation of variables method removes θ̇ from

the analysis and adds cyclic couplings between the z-subsystem and the zθi-subsystems,

though in a more complex structure (containing n cycles instead of one cycle) due to the

overparametrization. Since the z-node and each of the zθi-nodes are connected in a similar

way except from being coupled by a different regressor ϕi, a simpler interpretation can be

obtained by defining ϕ ≜ [ϕ⊤1 , . . . , ϕ
⊤
n ]

⊤ and ϕz = [ϕ⊤1 zθ1, . . . , ϕ
⊤
n zθn]

⊤, as the concatenated

output and input, respectively, of the z-node, and by merging the n zθi-nodes into one

zθ-node. Then, the overall graph reduces to a single cycle consisting of the z-node and

the zθ-node as shown in Fig. 4.2(b). If we regard the design parameter σΨ in (4.79) as

an adjustable parameter (which is the damping coefficient of the |ϕi|2-terms), the z-node

is an active node. Furthermore, it is contained in every directed cycle of the underlying

graph depicted in Fig. 4.2(a) and it is contained in the only remaining cycle of Fig. 4.2(b).

Therefore, by Theorem 3.3 we can guarantee the existence of σΨ such that Proposition 4.4

holds.

4.3 Identification-Based Scheme with Backstepping

In this section we consider the identification-based adaptive control problem for sys-

tem (4.1). Before diving into the technical details, it is beneficial to first recall the overall

picture of the identification-based adaptive control scheme that we have seen in Section 2.3.

Its design procedure can be summarized in the following steps.

1. Design a parametric control law for the plant such that the closed-loop dynamics is

ISS.

2. Build a set of stable filters to obtain an algebraic model parametrized by a vector of

constant parameters ℓθ, with the parametrization error dynamics driven by a time-

varying perturbation term related to ∆θ. Use the classical method to design the

state prediction and the parameter update law based on the model parametrized in

ℓθ.

3. Select a storage function and compute the dissipation inequality for each subsystem.
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4. Design the additional damping terms via a small-gain-like control synthesis that

takes all subsystems into account.

For clarity, the rest of the section is organized into four parts according to this overall

picture.

4.3.1 ISS Error Dynamics

We begin with by applying the backstepping techniques in Section 4.1, but since the iden-

tifier is designed in a modular way (that is, decoupled from the control law design), we

do not cancel the
˙̂
θ-terms in the recursive design procedures to avoid adding couplings

between the control laws and the identifier which may “corrupt” the modularity. As a

result, there is no need for designing the “tuning functions” τi. Despite this difference, one

could still treat x2, . . . , xn as virtual control inputs and u as the actual control input, to

recursively derive a smooth and invertible change of coordinates between the plant state

x and the error state z ≜ [z1, . . . , zn]
⊤, defined (with z0 ≜ 0 and α0 ≜ 0) as

zi(xi, θ̂) = xi − αi, (4.84)

αi(xi, θ̂) = − zi−1 − kizi − w⊤
i θ̂ +

i−1∑
j=1

∂αi−1

∂xj
xj+1, (4.85)

ki(xi, θ̂) = kiL + kiw|wi|2 + kig|gi|2 + ζi (4.86)

wi(xi, θ̂) = ϕi −
i−1∑
j=1

∂αi−1

∂xj
ϕj , (4.87)

q⊤i (xi, θ̂) =
∂αi−1

∂θ̂
, i = 1, . . . , n (4.88)

where ζi(xi, θ̂) > 0 is a strictly positive nonlinear damping term to be defined. The actual

control law is selected as

u = αn(x, θ̂). (4.89)

In this subsection, we focus on the stabilization problem and therefore the excitation signal

µ, discussed in Section 2.3, is omitted.

Remark 4.6. Observing the recursive change of coordinates described by the equations



132 Chapter 4

(4.84) to (4.88) and noting that ϕi(0) = 0, it is not difficult to see that there is a smooth

and invertible relation between xi and zi, thus xi = 0 ⇔ zi = 0. Moreover, wi(xi, θ̂)

satisfies the condition wi(0, θ̂) = 0. Then, by Lemma A.3 and with a slight abuse of

notation, one could write wi(zi, θ̂) = W̄i(zi, θ̂)zi, where Wi : R
i ×Rq → Rq×i is a smooth

mapping.

Consider now the system (4.1) driven by the feedback control law (4.89), and ex-

press the closed-loop dynamics in terms of the error state z which yields the z-dynamics

described by the equation

ż = Az +W⊤(θ − θ̂)−G⊤ ˙̂
θ, (4.90)

where5

A(z, θ̂) ≜ − diag(k1, . . . , kn) + S − S⊤, (4.91)

W (z, θ̂) ≜ [w1, . . . , wn], (4.92)

G(z, θ̂) ≜ [0, g2, . . . , gn], (4.93)

A(z, θ̂) = −diag(k1, . . . , kn) + S − S⊤, W (z, θ̂) = [w1, . . . , wn], G(z, θ̂) = [0, g2, . . . , gn].

Compared with the x-dynamics (2.48) in the scalar case, equation (4.90), which describes

the z-dynamics, has an additional input
˙̂
θ when n ≥ 2, which is dominated by the kig|gi|2

term in (4.86). Similar to Lemma 2.1, ISS of the z-dynamics can be established as follows.

Lemma 4.4. System (4.90) is ISS with respect to the inputs θ − θ̂ and
˙̂
θ.

Proof. First note that ki > ki − ζi = kiL + kiw|wi|2 + kig|gi|2, since ζi > 0 by definition.

Note that ki − ζi is the damping term used in the classical scheme presented in [75]. The

rest of the proof is identical to the proof of [75, Lemma 5.8], which is straight-forward and

therefore omitted.

5Note that there is a slight abuse of notation in (4.92) and (4.93) as we replace the arguments (x, θ̂) with
(z, θ̂). It is not difficult to see that there is a θ̂-dependent smooth and invertible change of coordinates
between xi and zi, for i = 1, . . . , n, and therefore any term depending on (xi, θ̂) can be equivalently

expressed in term of (zi, θ̂).
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4.3.2 Identifier Subsystems

Similar to Section 2.3, rewrite the z-dynamics with the congealed parameter ℓθ and the

time-varying perturbation ∆θ as

ż = Az +W⊤(ℓθ − θ̂)−G⊤ ˙̂
θ +W⊤∆θ, (4.94)

implement the filters

Ω̇0 = AΩ0 −W⊤θ̂ −G⊤ ˙̂
θ, (4.95)

Ω̇⊤ = AΩ⊤ +W⊤, (4.96)

and consider the parametric model

z = Ω0 +Ω⊤ℓθ + ε. (4.97)

The resulting parametrization error dynamics are then described by

ε̇ = ż − Ω̇0 − Ω̇⊤ℓθ = Aε+W⊤∆θ. (4.98)

Based on the parametric model (4.97) one computes the certainty-equivalence prediction

ẑ = Ω0 +Ω⊤θ̂ for z, which yields the prediction dynamics

˙̂z = Ω̇0 + Ω̇⊤θ̂ +Ω⊤ ˙̂
θ = Aẑ + (Ω−G)⊤ ˙̂

θ. (4.99)

Defining the prediction error z̃ = z − ẑ, another model parametrized in (ℓθ − θ̂) can be

obtained, namely

z̃ = Ω⊤(ℓθ − θ̂) + ε. (4.100)

Finally, select the normalized gradient parameter update law defined as

˙̂
θ = Γ

Ωz̃

1 + ν|Ω|2F
= Γ

Ωz̃N√
1 + ν|Ω|2F

, (4.101)
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where z̃N is the normalized prediction error defined as z̃N ≜ z̃
m , m(Ω) =

√
1 + ν|Ω|2F > 1,

Γ = Γ⊤ ≻ 0 is the adaptation gain, and ν > 0 is a coefficient that adjusts the strength of

the normalization. Up to this point, the dynamics of the subsystems of interest have been

computed and we are now ready to proceed with the control synthesis.

4.3.3 Small-Gain-Like Synthesis

First we establish boundedness of Ω by considering the function VΩ(Ω) =
1
2tr(Ω

⊤Ω) and

its time derivative along the solutions of (4.96), that is,

V̇Ω = tr
( d
dt

(1
2
ΩΩ⊤)) = tr

(1
2
Ω(A+A⊤)Ω⊤)+ tr(W⊤Ω)

≤ −
n∑
i=1

kiL|(Ω)i|2 −
n∑
i=1

kiw|wi|2|(Ω)i|2 +
n∑
i=1

w⊤
i (Ω)i

≤ − kL|Ω|2F +
1

4kW
= 2kLVΩ +

1

4kW
, (4.102)

where kL = mini kiL and kW = (
∑n

i=1 k
−1
iw )−1. Similar to the analysis in Section 2.3, this

guarantees that Ω is bounded and |Ω|F ≤ max{|Ω(0)|F, 1
2
√
kLkW

} ≜ δΩ, where the constant

δΩ can be computed from known constants, namely |Ω(0)|F, kL, and kW .

For the next step, compute the dissipation inequalities of the ẑ, θ̂, and ε-subsystems.

Consider the function Vẑ(ẑ) =
1
2 |ẑ|

2. Taking the time derivative of Vẑ along the solutions

of (4.99) yields

V̇ẑ =
1

2
ẑ⊤(A+A⊤)ẑ + ẑ⊤

Ω⊤ΓΩ

m
z̃N − ẑ⊤

G⊤ΓΩ

m
z̃N

≤ −
n∑
i=1

kiL|ẑi|2 −
n∑
i=2

kig|gi|2|ẑi|2 +
1

2
kL|ẑ|2

+
γ̄2δ2Ω
2ν2kL

|z̃N |2 +
n∑
i=1

kig|gi|2|ẑi|2 +
γ̄2

4ν2kG
|z̃N |2

≤ − 1

2
kL|ẑ|2 +

γ̄2

2ν2

(
δ2Ω
kL

+
1

2kG

)
|z̃N |2, (4.103)

where γ̄ is the largest eigenvalue of Γ and kG = (
∑n

i=2 k
−1
ig )−1. One could see that the

use of normalization reduces the order of δΩ if compared with (2.63). Consider now the
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function Vθ̂(θ̂) =
1
2 |ℓθ − θ̂|

2
Γ−1 and its time derivative along (4.101), which yields

V̇θ̂ = − (ℓθ − θ̂)⊤Γ−1Γ
Ωz̃N
m

= −(mz̃N − ε)⊤
z̃N
m

≤ − 1

2
|z̃N |2 +

1

2m2
|ε|2 ≤ −1

2
|z̃N |2 +

1

2
|ε|2. (4.104)

For the ε-subsystem, consider the function Vε(ε) = 1
2 |ε|

2, the time derivative of which

along the trajectories of (4.98) is

V̇ε =
1

2
ε⊤(A+A⊤)ε+ ε⊤W⊤∆θ. (4.105)

Recalling Remark 4.6, and substituting W̄izi for wi in W , yields

ε⊤W⊤∆θ = ε⊤



z⊤1 W̄
⊤
1

z2
⊤W̄⊤

2

...

zn−1
⊤W̄⊤

n−1

z⊤W̄⊤
n


∆θ =

n∑
i=1

εizi
⊤W̄⊤

i ∆θ

≤ ϵ∆θ
δ∆θ

2

n∑
i=1

|W̄i|2Fε2i +
δ∆θ

ϵ∆θ

n∑
i=1

(|ẑi|2 + |z̃i|2)

≤ ϵ∆θ
δ∆θ

2

n∑
i=1

|W̄i|2Fε2i +
nδ∆θ

ϵ∆θ

(|ẑ|2 + |z̃|2). (4.106)

Let the additional nonlinear damping terms be defined as

ζi = ζiL +
ϵ∆θ

δ∆θ

2
|W̄i|2F, i = 1, . . . , n, (4.107)

where ζiL ≥ ζL and ζL > 0 is a constant to be defined. This yields

V̇ε ≤ −(kL + ζL)|ε|2 +
nδ∆θ

ϵ∆θ

|ẑ|2 + nδ∆θ

ϵ∆θ

(1 + νδ2Ω)|z̃N |2. (4.108)

With the obtained dissipation inequalities, the following lemma (as in Section 2.3) guar-

antees the existence of a feasible ζL.

Lemma 4.5. Consider the dissipation inequalities (4.103), (4.104) and (4.108), and the

additional nonlinear damping terms (4.107). For all given positive constants aẑ, az̃N ,
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and aε, there exist constant scaling coefficients cẑ, cθ̂, cε, and a damping gain ζL > 0,

depending on a(·), such that the function V (ẑ, θ̂, ε) = cẑVẑ(ẑ) + cθ̂Vθ̂(θ̂) + cεVε(ε) satisfies

the dissipation inequality

V̇ ≤ −aẑ|ẑ|2 − az̃N |z̃N |
2 − aε|ε|2. (4.109)

Proof. The dissipation inequalities (4.103), (4.104), and (4.108) can be written as


V̇ẑ

V̇θ̂

V̇ε

 ≤ −


1
2kL (E)12 0

0 1
2 −1

2

(E)31 (E)32 kL + ζL


︸ ︷︷ ︸

≜ E


|ẑ|2

|z̃N |2

|ε|2


︸ ︷︷ ︸
≜ φ

, (4.110)

where (E)12 = − γ̄2

2ν2

(
δ2Ω
kL

+ 1
2kG

)
, (E)31 = −

nδ∆θ
ϵ∆θ

, and (E)32 = −
nδ∆θ
ϵ∆θ

(1 + νδ2Ω).

In the spirit of Section 3.1 we can obtain the underlying directed graph of E as

illustrated in Fig. 4.3. Note that ζL can be regarded as an adjustable parameter, hence

according to Definition 3.3, the ε-subsystem is an active node. It is not difficult to see that

each directed cycle in the underlying directed graph of E contains the vertex associated

with the ε-subsystem and therefore satisfies the condition of Theorem 3.3. As a result,

there exists a sufficiently large ζL > 0 such that the matrix E is a non-singular M-matrix.

Then invoking Theorem 3.2 yields that for any given a ≜ [aẑ, az̃N , aε]
⊤ > 0, there exists a

vector c ≜ [cẑ, cθ̂, cε]
⊤ = (E−1)⊤a > 0 such that

V̇ ≤ −c⊤Eφ = −a⊤φ, (4.111)

which is (4.109) and completes the proof. Finally, ζL and the scaling coefficients can be

computed using Proposition 3.2.

Remark 4.7. Although Lemma 2.2 and Lemma 4.5 are both used for establishing

the small-gain-like property of the interconnected system, compared with Lemma 2.2,

Lemma 4.5 is proven by exploiting the notion of active nodes, which does not require

an explicit construction of the scaling coefficients and meanwhile, it guarantees the exis-

tence of the design parameter ζL and the scaling coefficients for an arbitrary dissipation
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Figure 4.3: A schematic interpretation of the interconnected ẑ, z̃N , and ε-subsystems.
Note that this is also the underlying directed graph of the matrix E defined in (4.110)
and has the same structure as the graph Fig. 2.3(b).

rate specified by a(·), whereas in Lemma 2.2 the dissipation rate is fixed. This highlights

the flexibility brought by the notion of active nodes in control synthesis.

The dissipation inequality (4.109) allows concluding boundedness and convergence

properties for the closed-loop system, as stated hereafter.

Proposition 4.5. Consider the closed-loop system consisting of the plant (4.1) and the

adaptive controller described by the equations (4.84) to (4.89), (4.95), (4.96), (4.101), and

with the additional nonlinear damping terms (4.107). Then, all closed-loop signals are

bounded and lim
t→+∞

x(t) = 0.

Proof. We break the proof into two parts.

Boundedness. Using similar arguments as in the proof of Proposition 2.5 we can es-

tablish boundedness of Ω, ẑ, θ̂, ε, and z̃. Note that z̃N is also bounded due to boundedness

of Ω and m, and this leads to boundedness of
˙̂
θ. Invoking Lemma 4.4 and Assumption 1.1,

we can conclude boundedness of z, and therefore boundedness of x, due to the smooth

and invertible relation between x and z. Since both W (z, θ̂) and Q(z, θ̂) are smooth in z

and θ̂ and both z and θ̂ are bounded, then Ω0 is bounded, because the autonomous part

of (4.95) is exponentially stable. Hence all closed-loop signals are bounded.

Convergence. First rewrite the dissipation inequality (4.109) as

V̇ ≤ −aẑ|ẑ|2 −
az̃N

1 + νδ2Ω
|z̃|2 − aε|ε|2, (4.112)

and recall boundedness of z, ẑ, z̃, as well as boundedness of their time derivatives. By
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Lemma A.5, we can conclude that lim
t→+∞

z(t) = 0. Finally, as pointed out in Remark 4.6,

x = 0 ⇔ z = 0, hence it is clear that lim
t→+∞

z(t) = 0 ⇔ lim
t→+∞

x(t) = 0, which completes

the proof.

Remark 4.8. As long as M in (4.110) is a non-singular M-matrix, or equivalently, the

condition

kL + ζL >
2(E)31(E)12

kL
− (E)32 (4.113)

is satisfied, the scaling coefficients c(·) > 0 can be computed from any given constants a(·)

and E−1. Due to the definitions of (E)31 and (E)32, when θ is constant, or equivalently,

δ∆θ
= 0, we have (E)31 = (E)32 = 0, and E is a non-singular M-matrix for any kL > 0

and ζL = 0. Then, by (4.107), we can set ζi = 0, i = 1, . . . , n, in which case the proposed

scheme reduces to the classical scheme in [74] and [75], while still guaranteeing all the

properties claimed in Proposition 4.5.

Remark 4.9. Proposition 4.5, in contrast to the integrated design in Proposition 4.1,

provides a modular design, in the sense that the control law design is independent of the

parameter update law design. The advantage of a modular design is that one can change the

identifier (say, using a least-square identifier instead of the gradient-descent one (4.101)),

without repeating the backstepping procedure for the control law design.

4.4 Simulations

This section provides a numerical example for the identification-based adaptive scheme

discussed in Section 4.3. Consider the nonlinear system described by the equations

ẋ1 = θ1x
2
1 + x2, ẋ2 = θ2x

2
1 + θ3x

2
2 + u, (4.114)

with the time-varying parameter vector θ(t) ≜ [θ1(t), θ2(t), θ3(t)]
⊤ defined by

θ(t) = θc + θsw(t) +
Wε

|Wε|
, (4.115)

where θc = [1, 1, 1]⊤ is the constant component of the parameter, and θsw consists of

switching signals composed of three square waves of amplitudes equal to 1 and frequencies
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0.5 Hz, 0.3 Hz, and 1 Hz, respectively. The last term Wε
|Wε| in (4.115) can be treated as

a unit vector controlled by a player who intends to maximize the supply rate in (4.105)

and to destabilize the system by manipulating ∆θ. Although ε cannot be implemented in

the controller, it can be computed in the simulation by setting ℓθ = θc due to (4.97) and

therefore can be used for testing robustness.

Consider three scenarios. In the “Baseline” scenario, we use constant parameters

by setting θ = θc, and the classical identification-based backstepping controller proposed

in [74]. In the “Controller 1” scenario, the parameter vector is set to (4.115) and the

controller is the classical controller used in the “Baseline” scenario modified by a projection

update law similar to the one used in [86], which confines the parameter vector within a

ball centred at the origin and with a radius of 5. (note that |θ(t)| ≤ 2
√
3 + 1 < 5,

for all t ≥ 0). In the “Controller 2” scenario, the proposed adaptive control scheme is

implemented. In all scenarios, the initial state is set to x(0) = [1,−1]⊤, and all other

state variables are initialized to 0. The design parameters are defined as k1L = k2L = 1,

k1w = k2w = k2q = 5, Γ = I, ν = 1, ϵ∆θ
= 1, δ∆θ

= 3, and ζ1L = ζ2L = 1.

It is worth noting that W and z are state-dependent. Meanwhile, the performance

comparison between the “Controller 1” scenario and the “Controller 2” scenario can only

be fair if the two scenarios are driven by exactly the same time-varying parameters (“same”

in the sense of time histories). One way to achieve this is to run the two scenarios

“Controller 1” and “Controller 2” in parallel and run the simulation twice, collecting two

sets of simulation data. In the first set, W and z are provided by the system controlled

by Controller 1, and in the second set, by Controller 2.

As shown in Fig. 4.4 and Fig. 4.5, in the presence of time-varying parameters, the

classical adaptive controller, namely Controller 1, still yields boundedness of the system

state yet the transient performance is significantly degraded compared with the “Baseline”

scenario. Oscillations at 0.5 Hz can be observed in both figures, which are triggered by

the 0.5 Hz switching signal component in θ1(t). The proposed Controller 2, in contrast,

demonstrates robustness to parameter variations in both simulation sets and maintains

the transient performance of the “Baseline” scenario.
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Figure 4.4: Simulation set 1: time histories of the system state, control effort, and
state-dependent time-varying parameters for different controllers.
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Figure 4.5: Simulation set 2: time histories of the system state, control effort, and
state-dependent time-varying parameters for different controllers.
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Chapter 5

Adaptive Regulation via Output

Feedback

The methods discussed in Chapter 4 generalize the results of the congelation of variables

method for scalar systems to multi-dimensional systems yet still require full-state feed-

back. Aside from the requirement of the signals that may not be measured in practice, the

lower triangular structure puts an additional structural restriction. This is not a disqui-

eting issue for systems with known parameters, as one can transform a given system into

the lower-triangular form via a parameter-dependent change of coordinates. For systems

with unknown parameters, this is more complicated as the new state variables obtained

from the parameter-dependent change of coordinates are no longer known even if the old

state variables are measured. It is in general not possible to obtain a global parameter-

independent change of coordinates1 that transforms a general nonlinear system into a

system in lower-triangular form. Therefore, both the restrictions on the availability of

signal measurement and on the system structure call for an output-feedback counterpart

of the schemes discussed in Chapter 4. The output-feedback scheme, on one hand, only

requires the output signal instead of all state variables to be measured and, on the other

hand, does not require a parameter-dependent change of coordinates as in this case, only

the input-output mapping matters and one can build up a reparametrized system with

an equivalent input-output mapping using a set of filters with known state variables, for

1This is, however, possible if one either assumes some geometric conditions for the original system or
simply seeks for a local parameter-independent change of coordinates instead of a global one. See [75,
Section G.3] for a detailed discussion.
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which the state-feedback schemes can be applied.

To this end, two output-feedback schemes for systems with time-varying parameters

are presented in this chapter. One is the I&I scheme for linear single-input single-output

(SISO) systems, and the other is the passivity-based scheme for a class of SISO nonlinear

systems.

5.1 I&I Design for Linear SISO System

Consider an n-dimensional SISO linear system in observable canonical form with n ≥ 2

and relative degree ρ, described by the equations

ẋ1 = −a1(t)x1 + x2,

...

ẋρ = −aρ(t)x1 + xρ+1 + bρ(t)u,

...

ẋn = −an(t)x1 + bn(t)u,

y = x1, (5.1)

or, in compact form, by the equations

ẋ = Snx− a(t)y +

0(ρ−1)×1

b(t)

u,
y = e⊤1 x, (5.2)

where x(t) ∈ Rn is the state vector; u(t) ∈ R is the input; y(t) ∈ R is the output; Sn is

the n × n upper-shift matrix; and e1 = [1, 0, . . . , 0]⊤ ∈ Rn. The unknown time-varying

parameters are denoted by the vector θ(t) = [b⊤(t), a⊤(t)]⊤, a(t) = [a1(t), . . . , an(t)]
⊤ ∈

Rn, b(t) = [bρ(t), . . . , bn(t)]
⊤ ∈ Rn−ρ+1. Both b and a satisfy Assumption 1.2 and in

addition, bρ satisfies Assumption 1.3.
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5.1.1 System Reparametrization

As the formulation given by (5.1) is not in the lower-triangular form to which the back-

stepping techniques are applicable, one needs to reparametrize the original system by

exploiting a set of input/output filters, similar to the ones adopted in [5] yet with special

care for the time-varying parameters. In the spirit of the congelation of variables method

the system parameters θ can be regarded as the sum of a vector of constant “congealed”

parameters ℓθ and a vector of differences ∆θ between the actual time-varying parameters

and the “congealed” parameters, that is, θ = ℓθ + ∆θ. To avoid introducing θ̇-related

terms in the analysis, consider first the system parametrized by the constant parameters

ℓθ ≜ [ℓbρ , . . . , ℓbn , ℓa1 , . . . , ℓan ]
⊤. The input-output relation of the system parametrized by

ℓθ is described by the differential equation

y(n) = [u(n−ρ), u(n−ρ−1), . . . , u,−y(n−1),−y(n−2), . . . ,−y]ℓθ. (5.3)

Since the time derivatives of u and y are not directly measured, one needs to apply a

stable filter Λ(s) = sn−1 + λn−1s
n−2 + · · ·+ λ2s+ λ1 to both sides of (5.3). This yields

sn−1

Λ(s)
[ẏ] =

[
sn−ρ

Λ(s)
[u], . . . ,

1

Λ(s)
[u],
−sn−1

Λ(s)
[y], . . . ,

−1
Λ(s)

[y]

]
ℓθ. (5.4)

Note now that
sn−1

Λ(s)
= 1− λn−1s

n−2 + · · ·+ λ2s+ λ1
Λ(s)

, which yields

ẏ = s
λn−1s

n−2 + · · ·+ λ2s+ λ1
Λ(s)

[y]

+

[
sn−ρ

Λ(s)
[u], . . . ,

1

Λ(s)
[u],
−sn−1

Λ(s)
[y], . . . ,

−1
Λ(s)

[y]

]
ℓθ. (5.5)

Consider the state-space realization of the filters described by

ζ̇ = Aλζ + en−1u,

ξ̇ = Aλξ − en−1y, (5.6)

where ζ(t) ∈ Rn−1 and ξ(t) ∈ Rn−1 are the filter states; Aλ = Sn−1 − en−1λ
⊤ is Hurwitz;

Sn−1 is the (n − 1) × (n − 1) upper-shift matrix; en−1 = [0, . . . , 0, 1]⊤ ∈ Rn−1; and
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λ ≜ [λ1, . . . , λn−1]
⊤ is the vector of filter gains. Equation (5.5) can then be written as

ẏ = −λ⊤ξ̇ + ϕ⊤ℓθ + η0

= −λ⊤(Aλξ − en−1y) + ϕ⊤ℓθ + η0, (5.7)

where ϕ ≜ [ζn−ρ+1, . . . , ζ1,−λ⊤ξ − y, ξn−1, . . . , ξ1]
⊤ and ζn ≜ −λ⊤ζ + u. This is also the

parametrization used in [5, Section 4.4.1]. For linear time-invariant systems considered

in classical adaptive schemes, η0 is an exponentially decaying error term because of the

Hurwitz property of Aλ and it is typically ignored in analysis and design. However, this is

not the case when the system parameters are time-varying. To see this, rearranging (5.7)

yields

η0 = − (ℓa1 +∆a1)y + x2 + λ⊤(Aλξ − en−1y)

− [ζn−ρ+1, . . . , ζ1,−λ⊤ξ − y, ξn−1, . . . , ξ1]ℓθ

= λ⊤Aλξ − λ⊤en−1y + x2 −∆a1y

− [ζn−ρ+1, . . . , ζ1,−λ⊤ξ, ξn−1, . . . , ξ1]ℓθ. (5.8)

Define η1 = η0 + ∆a1y to separate the perturbation term −∆a1y from the expression of

η1: this allows avoiding differentiating unknown time-varying parameters when deriving

the error dynamics and yields

η̇1 = λ⊤A2
λξ − λ⊤Aλen−1y − λ⊤en−1x2 + x3

− [ζn−ρ+2, . . . , ζ2,−λ⊤Aλξ,−λ⊤ξ, ξn−1 . . . , ξ2]ℓθ

+ (λ⊤en−1∆a1 −∆a2)y. (5.9)

Define η2 = η̇1 + (−λ⊤en−1∆a1 +∆a2)y, which yields

η̇2 = λ⊤A3
λξ − λ⊤A2

λen−1y − · · · − λ⊤en−1x3 + x4

− [ζn−ρ+3, . . . , ζ3,−λ⊤A2
λξ,−λ⊤Aλξ,−λ⊤ξ, ξn−1 . . . , ξ3]ℓθ

− (−λ⊤Aλen−1∆a1 − λ⊤en−1∆a2 +∆a3)y. (5.10)
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Repeating the procedures above for η3, . . . , ηρ−2 and then defining ηρ−1 = η̇ρ−2 +

(−λ⊤Aρ−3
λ en−1∆a1 − · · · − λ⊤en−1∆aρ−2 +∆aρ−1)y yields

η̇ρ−1 = λ⊤Aρλξ − λ
⊤Aρ−1

λ en−1y − · · · − λ⊤en−1xρ + xρ+1

− [−λ⊤ζ, . . . , ζρ,−λ⊤Aρ−1
λ ξ, . . . , ξρ]ℓθ

− (−λ⊤Aρ−2
λ en−1∆a1 − · · · − λ⊤en−1∆aρ−1 +∆aρ)y

+∆bρu. (5.11)

Repeating again the procedures for ηρ . . . , ηn−2 and, finally, defining ηn−1 = η̇n−2 +

(−λ⊤An−3
λ en−1∆a1 − · · · − λ⊤en−1∆an−2 + ∆an−1)y − (−λ⊤An−ρ−2

λ en−1∆bρ − · · · −

λ⊤en−1∆bn−2 +∆bn−1)u yields

η̇n−1 = λ⊤Anλξ − λ⊤An−1
λ en−1y − · · · − λ⊤en−1xn−

[−λ⊤An−ρλ ζ, . . . ,−λ⊤ζ,−λ⊤An−1
λ ξ, . . . ,−λ⊤ξ]ℓθ

− (−λ⊤An−2
λ en−1∆a1 − · · · − λ⊤en−1∆an−1 +∆an)y

+ (−λ⊤An−ρ−1
λ en−1∆bρ · · · − λ⊤en−1∆bn−1 +∆bn)u. (5.12)

Theorem 5.1. The dynamics of the reparametrization error η0 are described by the equa-

tions

η̇ = Aλη +Bλ

(0(ρ−1)×1

∆b(t)

u−∆a(t)y

)
, (5.13)

η0 = e⊤1 η −∆a1(t)y, (5.14)

where

Bλ ≜


λ⊤en−1 1 0 · · · 0

λ⊤Aλen−1 λ⊤en−1 1 · · · 0
...

. . .
. . .

...

λ⊤An−2
λ en−1 · · · · · · λ⊤en−1 1

 , (5.15)
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η ≜ [η1, . . . , ηn−1]
⊤ and

ηi ≜ λ⊤Aiλξ − λ⊤
i∑

j=1

Ai−jλ en−1xj + xi+1

− e⊤1 [A
i+n−ρ−1
λ ζ, . . . , Ai−1

λ ζ,Ai+n−2
λ ξ, . . . , Ai−1

λ ξ]ℓθ, (5.16)

for i = 1, . . . , n− 1.

Proof. We first prove the classical part of the result, that is, the case in which ∆a(t) = 0

and ∆b(t) = 0. for all t ≥ 0. In this case the equations (5.13) and (5.14) reduce to η̇ = Aλη

and η0 = η1, respectively. It should be noted that the definitions of the ηi’s in (5.16) are

the same as the ones previously defined from η0 and η̇1, . . . , η̇n−2, and therefore one can

directly conclude that η̇1 = η2, η̇2 = η3, . . ., η̇n−2 = ηn−1. It only remains to prove that

η̇n−1 = −λ1η1 − · · · − λn−1ηn−1. (5.17)

Note that e⊤1 A
n−1
λ = −λ⊤, and that when ∆a = 0 and ∆b = 0 the equation

η̇n−1 = λ⊤Anλξ − λ⊤
n∑
j=1

An−jλ en−1xj

− e⊤1 [A
(2n−ρ−1)
λ ζ, . . . , An−1

λ ζ,A2n−2
λ ξ, . . . , An−1

λ ξ]ℓθ

= e⊤1 A
n−1
λ

(
−Anλξ +

n∑
j=1

An−jλ en−1xj − [An−ρλ ζ, . . . , ζ, An−1
λ ξ, . . . , ξ]ℓθ

)
︸ ︷︷ ︸

≜Y

(5.18)

holds. Note also that e⊤1 A
n−2
λ en−1 = 1, and that one can write the standalone xi+1-term

in (5.16) as e⊤1 A
i−1
λ An−i−1

λ en−1xi+1. Thus, one can rewrite (5.16) as

ηi = e⊤1 A
i−1
λ

(
−Anλξ +

i+1∑
j=1

An−jλ en−1xj − [An−ρλ ζ, . . . , ζ, An−1
λ ξ, . . . , ξ]ℓθ

)
. (5.19)

Note now that e⊤1 A
i−1
λ An−jλ en−1 = 0, for j = i+ 2, . . . , n. This yields

ηi = e⊤1 A
i−1
λ Y. (5.20)
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Applying the Cayley-Hamilton theorem to (5.18) yields

η̇n−1 = e⊤1 A
n−1
λ Y = e⊤1 (−λ1In−1 − · · · − λn−1A

n−2
λ )Y

= − λ1η1 − · · · − λn−1ηn−1. (5.21)

Thus we have proven the classical part of the theorem.

Consider now the time-varying part of the proof by observing the equations (5.9)–

(5.12). It is not difficult to see that the time-varying perturbations, namely the ∆a-terms

and the ∆b-terms, are added to the η-dynamics exactly in the way described by the

structure of Bλ. Hence the proof of the theorem is complete.

Remark 5.1. The filters (5.6) are reduced-order filters (containing n − 1, instead of n,

state variables each) because in the regressor ϕ in (5.7), ξn, the additional filter state

variable in the full-order case, is replaced by −
∑n−1

i=1 λiξi − y, exploiting the fact that y is

measured.

As is shown by Theorem 5.1, when θ is time-varying the perturbation terms coupled

with y and with u appear in the dynamics of η, which is a result of the substitution of ℓθ

for θ. Because of these perturbation terms coupled with y and with u, we cannot directly

determine the stability properties of the η-dynamics by exploiting the Hurwitz property of

Aλ, like in classical adaptive control schemes, whereas the convergence of η0 is necessary

to make the reparametrized model (5.7) valid. The perturbations coupled with y can be

dominated by a strengthened filter and controller design, as shown in [16]; however, the

results therein merely circumvent the perturbations coupled with u by assuming a constant

vector of input coefficients b, i.e. ∆b(t) = 0, ∀t ≥ 0. This restriction can be removed by

exploiting a minimum-phase property, which merges the perturbations coupled with u into

the perturbations coupled with y.
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5.1.2 Inverse Dynamics

Consider the inverse dynamics of system (5.1), i.e. considering the system as driven by y

and its time-derivatives instead of u, which yields

x2 = y(1) + a1y,

...

xρ = y(ρ−1) + (a1y)
(ρ−2) + · · ·+ aρ−1y. (5.22)

Setting u = 1
bρ
(−xρ+1 + y(ρ) + (a1y)

(ρ−1) + · · ·+ aρy) yields

ẋρ+1 = −
bρ+1

bρ
xρ+1 + xρ+2 +

bρ+1

bρ

(
y(ρ) + (a1y)

(ρ−1) + · · ·+ aρy

)
,

...

ẋn = − bn
bρ
xρ+1 +

bn
bρ

(
y(ρ) + (a1y)

(ρ−1) + · · ·+ aρy

)
. (5.23)

We now perform a change of coordinates to eliminate the time derivatives of y, which are

not desirable in the design and the analysis. To this end, note that the identity2

s1s
(i)
2 = (−1)is(i)1 s2 +

( i−1∑
j=0

(−1)js(j)1 s
(i−1−j)
2

)(1)

(5.24)

holds for any pair of smooth signals s1 and s2. Using (5.24) and defining the new coordinate

x̄n = xn −
ρ−1∑
j=0

(−1)j
(
bn
bρ

)(j)

y(ρ−1−j)

−
ρ−1∑
i=1

ρ−i−1∑
j=0

(−1)(j)
(
bn
bρ

)(j)

(aiy)
(ρ−i−1−j) (5.25)

yields

˙̄xn = − bn
bρ
xρ+1 − any + (−1)ρ

(
bn
bρ

)(ρ)

y +

ρ∑
i=1

(−1)ρ−i
(
bn
bρ

)(ρ−i)
aiy, (5.26)

2This identity is derived by recursively applying the Leibniz product rule for differentiation. The
notation (·)(i) is used to denote the ith time derivative, assuming it exists.
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Algorithm 5.1 Change of coordinates xρ+1, . . . , xn.

Input: xρ+1, . . . , xn, ẋρ+1, . . . , ẋn.
Output: x̄ρ+1, . . . , x̄n, ˙̄xρ+1, . . . , ˙̄xn.
1: while time derivatives of y appear in the expression of ẋρ+1, . . . , ẋn do ▷ This

while-loop iterates for ρ times as it reduces the order of y(ρ) by one each iteration.
2: for i = n→ ρ+ 2 do
3: Update x̄i and ˙̄xi using (5.24).
4: Rewrite xi in terms of x̄i in the expression of ẋi−1 and leave the feedback term

− bi
bρ
xρ+1 unchanged.

5: end for
6: Update x̄ρ+1 and ˙̄xρ+1 using (5.24).
7: Rewrite xρ+1 in terms of x̄ρ+1 in the expressions of ˙̄xρ+1, . . . , ˙̄xn, respectively. ▷

This brings back the time derivatives of y, but with the order reduced by one.
8: xρ+1 ← x̄ρ+1, . . . , xn ← x̄n, ẋρ+1 ← ˙̄xρ+1, . . . , ẋn ← ˙̄xn. ▷ Update the old

coordinates before the next iteration.
9: end while

which does not contain time derivatives of y. In the spirit of the above procedure, we

proceed with the change of coordinates using Algorithm 5.1, which yields the inverse

dynamics in the new coordinates described by the equations

˙̄x = Ab̄(t)x̄+ by(t)y, (5.27)

u =
1

bρ(t)

(
− x̄ρ+1 + y(ρ) +

ρ−1∑
j=0

ay(j)(t)y
(j)

)
, (5.28)

where x̄(t) = [x̄ρ+1, . . . , x̄n]
⊤ ∈ Rn−ρ, Ab̄ = Sn−ρ − b̄e⊤1 , b̄(t) = [

bρ+1

bρ
, . . . , bnbρ ]

⊤ ∈ Rn−ρ,

and Sn−ρ is the (n − ρ) × (n − ρ) upper-shift matrix. by, ay(i) are unknown due to the

unknown θ, but bounded for all t ≥ 0 due to Assumption 1.2.

Assumption 5.1 (Strong minimum-phase property). System (5.1) has a strong

minimum-phase property in the sense that the inverse dynamics (5.27) are input-to-state

stable (ISS) with respect to the input y. Moreover, there exists an ISS Lyapunov function

Vx̄(x̄) ≜ x̄⊤Px̄x̄, with a constant Px̄ = P⊤
x̄ ≻ 0 and the time derivative of Vx̄ along the

trajectories of the inverse dynamics satisfies the inequality

V̇x̄ ≤ − x̄⊤x̄+ ϵ2byδ
2
byy

2, (5.29)

where ϵby > 0 is constant and δby = sup
t≥0
|by(t)|.
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Remark 5.2. Due to the linearity of the inverse dynamics (5.27), the exponential stability

of the origin of the zero dynamics (which is (5.27) with y(t) = 0 for all t ≥ 0) is equivalent

to the ISS of the inverse dynamics. For linear time-invariant systems the ISS property

can be equivalently replaced by the condition that Aℓb̄ is Hurwitz, which is the typical

assumption made in classical adaptive control schemes.

5.1.3 Filter Design

In the previous subsection we have shown that the control input u can be equivalently

written in terms of the inverse dynamics state variable x̄ρ+1 and the time derivatives

of y of order up to ρ. Since the time derivatives of y is not desirable in the design, in

this subsection we continue to exploit the low-pass characteristics of the dynamics of the

reparametrization error η to eliminate the time derivatives of y. Substituting (5.28) into

(5.13) yields

η̇ = Aλη −Bλ∆a(t)y + ∆̄b(t)

(
y(ρ) +

ρ−1∑
j=0

ay(j)(t)y
(j) − x̄ρ+1

)
, (5.30)

where ∆̄b(t) = Bλ

0(ρ−1)×1

∆b(t)

 1

bρ(t)
, which is unknown, but bounded due to Assump-

tion 1.1. It should be noted that due to the structure of Bλ, the first ρ̄ − 1 elements of

∆̄b(t) are 0, or equivalently, u is separated from η1 (or η0) by ρ̄ integrators, where ρ̄ is

defined by

ρ̄ =


1, if ρ = 1;

ρ− 1, if ρ ≥ 2 and ∆bρ ̸= 0;

ρ, if ρ ≥ 2 and ∆bρ = 0.

(5.31)

To guarantee that no time derivative of y appears in η0, at least ρ integrators between u

and η1 are required, as u contains y(ρ). According to (5.31), the assumption that follows

is introduced to deal with this requirement.

Assumption 5.2. The relative degree of system (5.1) is either ρ = 1 or ρ ≥ 2, in which

case bρ is constant (that is, ∆bρ(t) = 0, ∀t ≥ 0).

Remark 5.3. The restriction imposed by Assumption 5.2 is only related to the relative
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Algorithm 5.2 Change of coordinates η1, . . . , ηn−1.

Input: η1, . . . , ηn−1, η̇1, . . . , η̇n−1.
Output: η̄1, . . . , η̄n−1, ˙̄η1, . . . , ˙̄ηn−1.
1: while time derivatives of y appear in the expression of η̇1, . . . , η̇n−1 do ▷ This

while-loop should only iterate for once if Assumption 5.2 is satisfied.
2: for i = n− 1→ 2 do
3: Update η̄i and ˙̄ηi using (5.24).
4: Rewrite ηi in terms of η̄i in the expression of η̇i−1.
5: end for
6: Update η̄1 and ˙̄η1 using (5.24).
7: Rewrite η1,. . ., ηn−1 in terms of η̄1,. . ., η̄n−1, respectively, in the expressions of

˙̄ηn−1. ▷ This should not bring back any time derivatives of y if Assumption 5.2 is
satisfied.

8: η1 ← η̄1, . . . , ηn−1 ← η̄n−1, η̇1 ← ˙̄η1, . . . , η̇n−1 ← ˙̄ηn−1. ▷ Update the old
coordinates before the next iteration.

9: end while

degree of the original system (5.1) and to ∆b(t) yet it is independent of whether we use

reduced-order filters or full-order filters (as implemented in [18]). Using filters of different

order can only provide a different non-minimal realization of the system while cannot

change the relative degree.

Similar to what implemented in the previous subsection, we use a change of coor-

dinates to eliminate the time derivatives of y. Applying Algorithm 5.2 yields the dynam-

ics (5.30) in the new coordinates, namely

˙̄η = Aλη̄ + b̄y(t)y − ∆̄b(t)x̄ρ+1, (5.32)

η0 = η̄1 + āy(t)y, (5.33)

where, by Assumption 1.2, b̄y and āy are unknown but bounded.

Proposition 5.1. The reparametrization error subsystem (5.32) is ISS with respect to the

inputs x̄ρ+1 and y if the vector of filter gains is given by λ ≜ 1
2e

⊤
n−1Pη̄, where Pη̄ = P⊤

η̄ ≻ 0

satisfies the algebraic Riccati inequality

S⊤
n−1Pη̄ + Pη̄Sn−1 − Pη̄en−1e

⊤
n−1Pη̄ +Qη̄ ⪯ 0, (5.34)
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with

Qη̄ =

(
1

ϵ2
Pη̄∆̄b

+
1

ϵ2
Pη̄ b̄y

+ 1

)
In−1, (5.35)

ϵPη̄∆̄b
> 0 and ϵPη̄ b̄y > 0. Moreover, there exists an ISS Lyapunov function Vη̄(η̄) ≜ η̄⊤Pη̄η̄

and the time derivative of Vη̄ along the trajectories of the reparametrization error dynamics

(5.32) satisfies the inequality

V̇η̄ ≤ − η̄⊤η̄ + ϵ2Pη̄ b̄y
δ2Pη̄ b̄y

y2 + ϵ2Pη̄∆̄b
δ2Pη̄∆̄b

x̄2ρ+1, (5.36)

where δPη̄ b̄y = sup
t≥0
|Pη̄ b̄y(t)| and δPη̄∆̄b

= sup
t≥0
|Pη̄∆̄b(t)|.

Proof. Taking the time derivative of Vη̄ = η̄⊤Pη̄η̄ along the trajectories of the system

(5.32) and recalling that Aλ = Sn−1 − en−1λ
⊤ yields

V̇η̄ = 2η̄⊤Pη̄(Aλη̄ + b̄yy − ∆̄bx̄2)

≤ η̄⊤(S⊤
n−1Pη̄ + Pη̄Sn−1 − Pη̄en−1e

⊤
n−1Pη̄ +Qη̄)η̄

− η̄⊤η̄ + ϵ2Pη̄ b̄y
δ2Pη̄ b̄y

y2 + ϵ2Pη̄∆̄b
δ2Pη̄∆̄b

x̄2ρ+1.

(5.37)

Substituting (5.34) into (5.37) yields (5.36), which completes the proof.

5.1.4 Controller Design

To proceed with the controller design first note that the reparametrization error η0 can

be rewritten in terms of the new coordinate η1, that is,

η0 = η̄1 + āy(t)y, (5.38)

where āy(t) is unknown yet bounded due to Assumption 1.2. As discussed in Section 5.1.1,

the input-output relation can be reparametrized using (5.7) and the filters (5.6). For the

sake of implementing an I&I controller conveniently, rewrite the reparametrized system in
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the equivalent form3

ẏ = ϑ3ν1 + φ(y, d)⊤ϑ1 + η0,

ν̇1 = ν2,

...

ν̇ρ−2 = νρ−1,

ν̇ρ−1 = −λ⊤ζ + u, (5.39)

where ϑ1 = [ℓbρ+1 , . . . , ℓbn , ℓa1 − λn−1, . . . , ℓan−1 − λ1, ℓan ]⊤ ∈ R2n−ρ; ϑ3 = ℓbρ ∈ R; ν1 =

ζn−ρ+1; ν2 = ζn−ρ+2,. . .; νρ−1 = ζn−1; φ(y, d) = [ζn−ρ, . . . , ζ1,−λ⊤ξ − y, ξn−1, . . . , ξ1]
⊤;

and d stands for ξ, ζ1, . . . , ζn−ρ. Define ϑ2 = ℓ−1
bρ
∈ R and ϑ = [ϑ⊤1 , ϑ2, ϑ3]

⊤ ∈ Rq,

with q ≜ 2n − ρ + 2. Similarly to the I&I approach with state feedback, a dynamic

(integral) parameter estimate ϑ̂ and a static (proportional) parameter estimate β are

exploited together for parameter estimation, that is, to use ϑ̂ + β for estimating ϑ. Also

similarly to the state-feedback case, one can treat νi as a virtual input, governed by a

virtual control law αi, to control the dynamics of νi−1, for i = 1, . . . , ρ, with ν0 ≜ y. In

the light of this, define now the error variables

z1 = y, (5.40)

zi = νi−1 − αi−1; (5.41)

3This subsection only discusses the case in which the relative degree ρ ≥ 2. The case in which ρ = 1
is discussed in Section 5.1.5 via a simulation example. Note that the results in that case can be obtained
without using backstepping.
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the virtual control laws

ᾱ1 = σ1 + φ⊤(ϑ̂1 + β1), (5.42)

α1 = − (ϑ̂2 + β2)ᾱ1, (5.43)

α2 = − σ2 − (ϑ̂3 + β3)y +
∂α1

∂ϑ̂

˙̂
ϑ+

∂α1

∂y
(−σ1 + (ϑ̂3 + β3)z2)

+
∂α1

∂ξ
(Aλξ − en−1y) +

n−ρ∑
j=1

∂α1

∂ζj
ζj+1, (5.44)

αi = − σi − zi−1 +
∂αi−1

∂ϑ̂

˙̂
ϑ+

∂αi−1

∂y
(−σ1 + (ϑ̂3 + β3)z2)

+

i−2∑
j=1

∂αi−1

∂νj
νj+1 +

∂αi−1

∂ξ
(Aλξ − en−1y) +

n−ρ∑
j=1

∂αi−1

∂ζj
ζj+1, (5.45)

for i = 2, . . . , ρ; the actual control law

u = αρ + λ⊤ζ; (5.46)

and the update law for the dynamic parameter estimate

˙̂
ϑ = −

(
Iq +

∂β

∂ϑ̂

)−1(∂β
∂y

(
− σ1 + (ϑ̂3 + β3)z2

)
+
∂β

∂ν1
ν2 +

∂β

∂ξ
(Aλξ − en−1y) +

n−ρ∑
j=1

∂β

∂ζj
ζj+1

)
, (5.47)

where β ≜ [β⊤1 (y, d), β2(y, ϑ̂1, d), β3(y, ϑ̂1, ϑ̂2, d)]
⊤ is the static parameter estimate, with

β1 = γ1

∫ y

0
φ(χ, d)dχ, (5.48)

β2 = γ2sgn(ϑ3)

(
1

2
σ1y +

∫ y

0
φ⊤(χ, d)(ϑ̂1 + β1(χ, d)dχ)

)
, (5.49)

β3 = γ3

(
ν1y −

∫ y

0
α1(χ, ϑ̂1, ϑ̂2, d)dχ

)
; (5.50)

γ1 > 0, γ2 > 0, γ3 > 0 are constant adaptation gains; and σ1, . . . , σρ are damping terms

to be defined.

Remark 5.4. Equations (5.48)–(5.50) show that β1 does not depend on ϑ̂; β2 depends

only on ϑ̂1; and β3 depends only on ϑ̂1, ϑ̂2. These indicate that
∂β

∂ϑ̂
is a lower triangular
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matrix with all-zero diagonal terms. Thus

(
I +

∂β

∂ϑ̂

)−1

exists and can be computed using

the formula4

(
I +

∂β

∂ϑ̂

)−1

=

q−1∑
i=0

(−1)i
(
∂β

∂ϑ̂

)i
, (5.51)

without explicitly computing the inverse online.

With the structure of the controller introduced, the design of the damping terms

σi’s is now ready to be presented.

Theorem 5.2. Consider the system (5.1), the filters specified by Proposition 5.1 and the

adaptive controller described by (5.42)-(5.50) with the damping terms

σ1 =
(
c1 + 2(ρ− 1)ϵ2(δ2āy + ϵ̄2ϵ2byδ

2
by + ϵ2Pη̄ b̄y

δ2Pη̄ b̄y
)
)
y, (5.52)

σ2 =

(
c2 +

3

2ϵ2

(
∂α1

∂y

)2)
z2, (5.53)

σi =

(
ci +

3

2ϵ2

(
∂αi−1

∂y

)2)
zi, i = 3, . . . , ρ, (5.54)

where c1 > 0, . . . , cρ > 0, ϵ > 0, ϵ̄ > ϵPη̄∆̄b
δPη̄∆̄b

. Then, all trajectories of the closed-loop

system are bounded and lim
t→+∞

y(t) = 0.

Proof. First, consider the dynamics of the parameter estimation error zϑ ≜ ϑ̂ − ϑ + β,

which are described by the equation

żϑ =

(
I +

∂β

∂ϑ̂

)
˙̂
ϑ+

∂β

∂y
(−σ1 − φ⊤zϑ1 − ϑ3zϑ2ᾱ1 + ϑ3z2 + η0)

+
∂β

∂ν1
ν2 +

∂β

∂ξ
(Aλξ − en−1y) +

n−ρ∑
j=1

∂β

∂ζj
ζj+1. (5.55)

Substituting
˙̂
ϑ into (5.55) yields

żϑ = −∂β
∂y

(Φ⊤zϑ − η0) = −ΓΦ(Φ⊤zϑ − η̄1 − āyy), (5.56)

4The formula (5.51) is derived as follows. For A ∈ Rq×q, 1− Aq = (1− A)
∑q−1

i=0 Ai and in particular,

if A ≜ − ∂β

∂ϑ̂
, the characteristic polynomial of which is pA(s) = sq, one has Aq = 0 by Cayley-Hamilton

Theorem, and (1−A)−1 =
∑q−1

i=0 Ai, namely (5.51) holds.



158 Chapter 5

where Γ ≜ diag(γ1, γ2|ϑ2|, γ3), with γ(·) > 0, and

Φ ≜


φ

ϑ3ᾱ1

z2

 . (5.57)

Consider the function Vzϑ(zϑ) =
1
2z

⊤
ϑ Γ

−1zϑ. Taking the time derivative of Vzϑ along the

trajectories of (5.56) yields

V̇zϑ = − z⊤ϑ Φ(Φ⊤zϑ − η̄1 − āyy) ≤ −
1

2
(Φ⊤zϑ)

2 + η̄21 + δ2āyy
2. (5.58)

With the virtual control laws (5.42)–(5.45) and the actual control law (5.46), the dynamics

of y can be rewritten as

ẏ = −σ1 − (Φ⊤zϑ − η̄1 − āyy) + (ϑ̂3 + β3)z2, (5.59)

and the dynamics of the backstepping variables are described by

ż2 = − σ2 − (ϑ̂3 + β3)y + z3 +
∂α1

∂y
(Φ⊤zϑ − η̄1 − āyy),

żi = − σi − zi−1 + zi+1 +
∂αi−1

∂y
(Φ⊤zϑ − η̄1 − āyy), (5.60)

for i = 3, . . . , ρ, with zρ+1 ≜ 0. Define z = [z1, . . . , zρ]
⊤ and consider the function

Vz(z) =
1
2 |z|

2. The time derivative of Vz along the trajectories of the closed-loop system
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satisfies

V̇z = − σ1y − y(Φ⊤zϑ − η̄1 − āyy)

+

ρ∑
i=2

(
− σizi + zi

∂αi−1

∂y
(Φ⊤zϑ − η̄1 − āyy)

)

≤ −
ρ∑
i=1

ciz
2
i − 2(ρ− 1)ϵ2(δ2āy + ϵ̄2ϵ2byδ

2
by + ϵ2Pη̄ b̄y

δ2Pη̄ b̄y
)y2

− 3

2ϵ2

ρ∑
i=2

(
∂αi−1

∂y

)2

z2i +
1 + 1

4 + 1
4

ϵ2

ρ∑
i=2

(
∂αi−1

∂y

)2

z2i

+ (ρ− 1)ϵ2
(
1

4
(Φ⊤zϑ)

2 + η̄21 + δ2āyy
2

)
= −

ρ∑
i=1

ciz
2
i − (ρ− 1)ϵ2(δ2āy + 2ϵ̄2ϵ2byδ

2
by + 2ϵ2Pη̄ b̄y

δ2Pη̄ b̄y
)y2

+ (ρ− 1)ϵ2
(
1

4
(Φ⊤zϑ)

2 + η̄21

)
. (5.61)

Finally, consider the function

V (z, zϑ, η̄, x̄) = Vz + (ρ− 1)ϵ2
(
Vzϑ + 2(Vη̄ + ϵ̄2Vx̄)

)
. (5.62)

Recalling Assumption 5.1 and Proposition 5.1 and taking the time derivative of V along

the trajectories of the closed-loop system yields

V̇ = V̇z + (ρ− 1)ϵ2
(
V̇zϑ + 2(V̇η̄ + ϵ̄2V̇x̄)

)
≤ −

ρ∑
i=1

ciz
2
i −

(ρ− 1)ϵ2

4
(Φ⊤zϑ)

2 ≤ 0. (5.63)

Boundedness. V̇ ≤ 0 guarantees that z, zϑ, η̄, x̄ are bounded. Note that ξ is

bounded since y = z1 is bounded and the bounded-input bounded-state property of the

ξ-dynamics (5.6). By (5.28), for i = 1, . . . , n− ρ, one has

ζi =
si−1

Λ(s)
[u] =

si−1

Λ(s)

[
1

bρ

(
− x̄ρ+1 + y(ρ) +

ρ−1∑
j=0

ay(j)y
(j)

)]
, (5.64)

which indicates that ζ1, . . . , ζn−ρ are bounded, since Λ(s) is Hurwitz and x̄ρ+1, y are

bounded. Then α1 is bounded. By using (5.41) recursively, one can establish boundedness
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for νi and αi, i = 2, . . . , ρ, which leads to boundedness of ζn−ρ+1, . . . , ζn−1 and boundedness

of u. By (5.13) and (5.14), η and η0 are also bounded due to the fact that u and y are

bounded. Then by (5.39) and Assumption 1.2, it can be concluded that y(1), . . . , y(ρ) are

bounded. Furthermore, equations (5.22) imply that x1, . . . , xρ are bounded. Meanwhile,

note that boundedness of x̄ and y, along with Assumption 1.2, implies boundedness of

xρ+1, . . . , xn. Hence the system state x is bounded. Finally, β is bounded, which yields

that ϑ̂ is bounded. This completes the proof of boundedness of the closed-loop signals.

Convergence. In addition to boundedness of z, by boundedness of the closed-loop

signals, ż is also bounded. Therefore, by Lemma A.5 we can conclude from (5.63) that

lim
t→+∞

z(t) = 0, which further indicates that lim
t→+∞

y(t) = 0. The proof is then complete.

Theorem 5.3. Consider the system (5.1), the filters specified by Proposition 5.1 and the

adaptive controller described by (5.42)-(5.50) with the damping terms

σ1 =
(
c1 + (ρ− 1)ϵ2δ2āy

)
y, (5.65)

σ2 =

(
c2 +

3

2ϵ2

(
∂α1

∂y

)2)
z2, (5.66)

σi =

(
ci +

3

2ϵ2

(
∂αi
∂y

)2)
zi, i = 3, . . . , ρ, (5.67)

where c2 > 0, . . . , cρ > 0, and ϵ > 0. Then, there exists c1 > 0, such that all trajectories

of the closed-loop system are bounded and lim
t→+∞

y(t) = 0. Moreover, if the system (5.1) is

time-invariant, any c1 > 0 with δāy = 0 guarantees the same boundedness and convergence

properties.

Proof. Following the same path of the proof of Theorem 5.2 but with σ1 defined by (5.65)
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yields

V̇z = − σ1y − y(Φ⊤zϑ − η̄1 − āyy)

+

ρ∑
i=2

(
− σizi + zi

∂αi−1

∂y
(Φ⊤zϑ − η̄1 − āyy)

)

≤ −
ρ∑
i=1

ciz
2
i − (ρ− 1)ϵ2δ2āyy

2

− 3

2ϵ2

ρ∑
i=2

(
∂αi−1

∂y

)2

z2i +
1 + 1

4 + 1
4

ϵ2

ρ∑
i=2

(
∂αi−1

∂y

)2

z2i

+ (ρ− 1)ϵ2
(
1

4
(Φ⊤zϑ)

2 + η̄21 + δ2āyy
2

)
= − c1y2 + (ρ− 1)ϵ2

(
1

4
(Φ⊤zϑ)

2 + η̄21

)
−

ρ∑
i=2

ciz
2
i . (5.68)

Furthermore, by Assumption 5.1, Proposition 5.1, and (5.58), we have

V̇x̄ ≤ − x̄2ρ+1 + ϵ2byδ
2
byy

2 −
n∑

i=ρ+2

x̄2i , (5.69)

V̇η̄ ≤ − η̄21 + ϵ2Pη̄ b̄y
δ2Pη̄ b̄y

y2 + ϵ2Pη̄∆̄b
δ2Pη̄∆̄b

x̄2ρ+1 −
n−1∑
i=2

η̄2i , (5.70)

V̇zϑ ≤ −
1

2
(Φ⊤zϑ)

2 + η̄21 + δ2āyy
2, (5.71)

respectively. This allows writing

˙̄V ≤ − Eψ − e1
ρ∑
i=2

ciz
2
i − e2

n∑
i=ρ+2

x̄2i − e3
n−1∑
i=2

η̄2i (5.72)

with V̄ ≜ [Vz, Vx̄, Vη̄, Vzϑ ]
⊤, ψ ≜ [y2, x̄2ρ+1, η̄

2
1, |zϑ|2]⊤, ei the ith unit vector, and

E ≜


c1 0 −(ρ− 1)ϵ2 − (ρ−1)ϵ2

4

−ϵ2byδ
2
by

1 0 0

−ϵPη̄ b̄y −ϵ2
Pη̄∆̄b

δ2
Pη̄∆̄b

1 0

δ2āy 0 1 −1
2

 . (5.73)

The underlying graph of E is depicted in Fig. 5.1(a). Clearly, the z-node is contained

in every directed cycle and if we treat it as an active node by letting c1 adjustable, the
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condition of Theorem 3.3 is satisfied. Then, applying Theorem 3.2 and Theorem 3.3

guarantees that there exists c1 > 0 such that E is a non-singular M-matrix, which further

indicates that for all ϖ > 0, there exists a vector scaling coefficients ς > 0, depending on

ϖ, such that the time derivative of V ≜ ς⊤V̄ satisfies the dissipation inequality

V̇ = ς⊤Eψ ≤ ϖ⊤ψ + ς1

ρ∑
i=2

z2i + ς2

n∑
i=ρ+2

x̄2i + ς3

n−1∑
i=2

η̄2i ≤ 0. (5.74)

Finally, following the same routine as in the proof of Theorem 5.2, one can prove bound-

edness of all closed-loop signals and lim
t→+∞

y(t) = 0.

Consider now the classical time-invariant case, in which the system parameters

a and b are constant. It is not difficult to observe that in this case the dynamics of η

described by (5.13) are not coupled with y or u. Therefore, one can define η̄ = η (as

there is no x̄ρ+1 signal or y signal injected in the η-dynamics) and the edges x̄ → η̄ and

z → η̄ are removed. Furthermore, since η0 is no longer perturbed by y, the y-term in the

zϑ-dynamics (which was brought by η0) does not appear and the edge z → zϑ is removed.

These reduce the underlying graph from the one in Fig. 5.1(a) to the one in Fig.5.1(b),

which is acyclic. Therefore the condition of Theorem 3.3 is naturally satisfied for any

c1 > 0, and this guarantees the same boundedness and convergence properties using the

analysis argument used for the time-varying case.

Figure 5.1: Schematic interpretation of the interconnected z, x̄, η̄ and zϑ subsystems:
(a) the interconnection of the case in which the system parameters are time-varying
and (b) the interconnection of the classical time-invariant case.

Remark 5.5. Compared with the constructive method used in the proof of Theorem 5.2,

the active-node-based method used to prove Theorem 5.3 reveals better the effect of the
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time-varying parameters: the time-varying perturbations introduce couplings between sub-

systems and cyclic interconnections, which do not appear in the classical time-invariant

case. In the classical case, the directed graph describing the subsystem interconnection

is acyclic. The classical analysis, say, the one in Section 4.2.4 of [5], separately estab-

lishes the boundedness and convergence properties of individual subsystems, and the same

properties can be extended to the overall system due to the acyclic interconnection. The

time-varying case, however, requires a small-gain-like analysis exploiting Theorem 3.3, in

which a strengthened damping design (parametrized by c1) using y is performed, which

dominates the cyclic interconnection. In other words, the classical scheme becomes a spe-

cial case of the proposed scheme for the time-varying case, as claimed by Theorem 5.3.

5.1.5 Simulations

To verify the effectiveness of the I&I scheme, consider the 2-dimensional system with

relative degree ρ = 1, described by the equations

ẋ1 = −a1(t) + b1(t)u,

ẋ2 = −a2(t) + b2(t)u,

y = x1, (5.75)

where b1, b2, a), a2 are time-varying parameters to be defined. Since system (5.75) has

relative degree ρ = 1, the reparametrized system (5.39) reduces to

ẏ = ϑ3(u− λζ) + φ(y, ζ, ξ)ϑ1 + η0, (5.76)

where φ ≜ [ζ,−λξ − y, ξ]⊤ and ζ, ξ are the states of the filters

ζ̇ = − λζ + u,

ξ̇ = − λξ − y. (5.77)
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The time-varying parameters are given by

b1(t) = 1 + 0.2 sin(3t), b2(t) = 2 + 1.5 cos(5t),

a1(t) = 1 +
5sgn(y)φ2√
φ2
2 + φ2

3

, a2(t) = 1 +
5sgn(y)φ3√
φ2
2 + φ2

3

, (5.78)

where φ2, φ3 are the second and the third element of φ, respectively. a1 and a2 are state-

dependent time-varying parameters designed to destabilize the system. One can easily

verify that Assumption 5.1 holds since the zero dynamics of (5.75) is exponentially stable

due to the fact that b2
b1

is strictly positive. Also note that the reparametrized model (5.76)

is one-dimensional and the ϑ̂3 + β3 term does not appear. Thus, the update law (5.47) is

reduced to

˙̂
ϑ = −

(
I +

∂β

∂ϑ̂

)−1(∂β
∂y

(−σ1 +
∂β

∂ξ
(−λξ − y) + ∂β

∂ζ
(−λζ + u)

)
. (5.79)

The control law design is not affected by relative degree and therefore (5.46) is considered.

For comparison, consider three scenarios as follows. In the ”Baseline” scenario, only

the constant components of the system parameters are considered, namely b1 = 1, b2 = 2,

a1 = 1, a2 = 1, and the system is time-invariant, controlled by a classical I&I adaptive

controller with σ1 = y. In the “Controller 1” scenario, the same classical I&I controller

is adopted whereas the system parameters are time-varying, specified by (5.77). In the

”Controller 2” scenario, the proposed adaptive controller with a strengthened damping

term σ1 = 8y is used for the time-varying system. In the three scenarios, the rest of the

controller parameters are set the same, namely γ1 = 0.5, γ2 = 0.1, λ = 10, and all filter

states and parameter estimates are initialized at 0.

Similar to the simulation study in Section 4.4, the scenarios “Controller 1” and

“Controller 2” are simulated in parallel twice to keep the comparison fair considering the

use of state-dependent parameters. In the first simulation set, both scenarios are driven

by the state-dependent parameters generated by the “Controller 1” scenario and in the

second simulation set, the state-dependent parameters are generated by the “Controller 2”

scenario.

The results of both simulation sets are presented in Fig. 5.2 and Fig. 5.3. One can
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see that in both simulation sets, the “Controller 2” scenario outperforms the “Controller 1”

scenario (with fast convergence and fewer oscillations in the transient stage). The proposed

controller also restores the performance of the “Baseline” scenario in terms of settling time.
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Figure 5.2: Simulation set 1: time histories of the system output, state, control effort,
and state-dependent time-varying parameters for different controllers.
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Figure 5.3: Simulation set 2: time histories of the system output, state, control effort,
and state-dependent time-varying parameters for different controllers.



168 Chapter 5

5.2 Passivity-Based Design for Nonlinear Systems in Ob-

server Form

In this section, we proceed to investigate the output-feedback adaptive control problem

for a class of nonlinear systems, and at the same time, relax the restriction imposed

by Assumption 5.2 to the I&I scheme introduced in Section 5.1. Due to the increased

complexity of the design, the passivity-based scheme is adopted throughout the section.

Consider an n-dimensional system in output feedback form with n ≥ 2 and relative degree

ρ, described by the equations

ẋ1 = x2 + ϕ0,1(y) +

q∑
j=1

ϕ1,j(y)aj(t),

...

ẋρ = xρ+1 + ϕ0,ρ(y) +

q∑
j=1

ϕρ,j(y)aj(t) + bm(t)g(y)u,

...

ẋn = ϕ0,n(y) +

q∑
j=1

ϕn,j(y)aj(t) + b0(t)g(y)u,

y = x1, (5.80)

or, in compact form, by the equations

ẋ = Sx+ ϕ0(y) + F⊤(y, u)θ,

y = e⊤1 x, (5.81)

where x(t) = [x1, . . . , xn]
⊤ ∈ Rn is the state; u(t) ∈ R is the input; y(t) ∈ R is the

output; θ(t) ≜ [b⊤(t), a⊤(t)]⊤ is the vector of unknown time-varying parameters, with

a(t) ≜ [a1(t), . . . , aq(t)]
⊤ ∈ Rq, b(t) ≜ [bm(t), . . . , b0(t)]

⊤ ∈ Rm+1, m ≜ n− ρ;

F⊤(y, u) ≜

0(ρ−1)×(m+1)

Im+1

 g(y)u,Φ⊤(y)

 , (5.82)
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with (Φ⊤(y))ij = ϕi,j(y), and g : R → R a smooth mapping satisfying g(y) ̸= 0, for

all y ∈ R. In addition, θ satisfies Assumption 1.2, and, in particular, bm also satisfies

Assumption 1.3. The mappings ϕ0,i : R→ R and ϕi,j : R→ R, i = 1, . . . , n, j = 1, . . . , q,

satisfy Assumption 1.4.

Remark 5.6. It is easy to see, by invoking Lemma A.3, that there exist smooth mappings

ϕ̄0,i and ϕ̄i,j such that ϕ0,i(y) = ϕ̄0,i(y)y, ϕi,j(y) = ϕ̄i,j(y)y.

5.2.1 System Reparametrization

To cope with the unmeasured state variables, Kreisselmeier filters (K-filters) [72] are

applied to reparametrize the system with the filter state variables (which are known) into

a new form that is favourable for the backstepping design. The filters are given by the

equations

ξ̇ = Akξ + ky + ϕ0(y), (5.83)

Ξ̇⊤ = AkΞ
⊤ +Φ⊤(y), (5.84)

λ̇ = Akλ+ eng(y)u, (5.85)

where Ak = S − ke⊤1 and k ∈ Rn is the vector of filter gains. These filters are equivalent,

see [75], to the filters

ξ̇ = Akξ + ky + ϕ0(y), (5.86)

Ω̇⊤ = AkΩ
⊤ + F⊤(y, u), (5.87)

where

Ω⊤ ≜ [vm, . . . , v0,Ξ
⊤], (5.88)

vi ≜ Aikλ, i = 0, . . . ,m. (5.89)

Define now the non-implementable state estimate

x̂ = ξ +Ω⊤ℓθ. (5.90)
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The state estimation error dynamics are then described by the equation

ε̇ = Akε+ F⊤(y, u)∆θ

= Akε+Φ⊤(y)∆a +

0(ρ−1)×1

∆b

 g(y)u, (5.91)

where ε = x − x̂. After using the K-filters (5.83)–(5.85) with the congelation of vari-

ables method, the original n-dimensional system with time-varying parameters can be

reparametrized as a ρ-dimensional system with constant parameters ℓθ and some auxiliary

systems to be defined. The substitution of ℓθ for θ prevents θ̇ terms from appearing in the

ε-dynamics. For ρ > 1 one has the system described by the equations

ẏ = ω0 + ω̄⊤ℓθ + ε2 + ℓbmvm,2

...

v̇m,i = −kivm,1 + vm,i+1, i = 2, . . . , ρ− 1,

...

v̇m,ρ = −kρvm,1 + vm,ρ+1 + g(y)u, (5.92)

and, for ρ = 1 one has

ẏ = ω0 + ω⊤ℓθ + ε2 + ℓbmg(y)u, (5.93)

where ω0 ≜ ϕ0,1 + ξ2, ω̄ ≜ [0, vm−1,2, . . . , v0,2, (Φ)
⊤
1 + (Ξ)⊤2 ]

⊤, and ω ≜ ω̄ + e1vm,2.

Similarly to the classical adaptive backstepping scheme we consider the ρth order

system (5.92) (or (5.93) if ρ = 1) to exploit its lower-triangular structure. It should be

noted that the reparametrized models (5.92) and (5.93) are only valid if the estimation

error ε2 converges to 0 (this is similar to the requirement that η0 converges to 0 in Sec-

tion 5.1). In classical schemes this is not a problem since the ∆a and ∆b terms are not

present in the ε-dynamics and ε converges to 0 exponentially provided Ak is Hurwitz.

The difference in the time-varying case is that the estimation error ε2 may not converge

to 0 due to the presence of the ∆a and ∆b terms, which may make the reparametrized

models (5.92) and (5.93) behave differently from the original system and therefore not



5.2 Passivity-Based Design for Nonlinear Systems in Observer Form 171

appropriate to be used for analysis or design. The effect of ∆a can be dominated via a

strengthened damping design, as proposed in [16]. However, the dominance method can-

not be directly applied to (5.91) since ∆b is coupled with the input u, and any additional

damping terms added (to u) for dominance, in turn, alter the perturbation term ∆bu itself.

To avoid this issue, one can transform the perturbation terms coupled with u into new

perturbation terms coupled with y by exploiting the inverse dynamics of system (5.80), in

a similar spirit of the solution presented in Section 5.1.

5.2.2 Inverse Dynamics

The inverse dynamics of (5.80) are more complex than that of (5.1) considered in Sec-

tion 5.1 due to the presence of nonlinearities, whereas the spirit of their derivation is

essentially the same. First, pretend that the system is “driven” by the signals y, ϕ0,i(y),

ϕi(y), and their time derivatives. Then one could write

x2 = y(1) − (ϕ⊤1 a+ ϕ0,1),

...

xρ = y(ρ−1) − (ϕ⊤1 a+ ϕ0,1)
(ρ−2) − · · · − (ϕ⊤ρ−1 + ϕ0,ρ−1). (5.94)

Defining yi = ϕ⊤i a+ ϕ0,i, i = 1, . . . , n and ug = g(y)u, yields

ug =
1

bm
(−xρ+1 + y(ρ) − y(ρ−1)

1 − · · · − yρ). (5.95)

The resulting inverse dynamics are then described by

ẋρ+1 = −
bm−1

bm
xρ+1 + xρ+2 + yρ+1 +

bm−1

bm
(y(ρ) − y(ρ−1)

1 − · · · − yρ),

...

ẋn = − b0
bm
xρ+1 + yn +

b0
bm

(y(ρ) − y(ρ−1)
1 − · · · − yρ). (5.96)

Since it is difficult to use backstepping techniques to establish stability, or convergence,

properties for the time derivatives of y or yi, we need to perform a change of coordinates,

or more intuitively, propagating the time derivatives of the output-related signals along the

chain of integrators to eliminate them from the inverse dynamics. Recall the identity (5.24)
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Algorithm 5.3 Change of coordinates xρ+1, . . . , xn.

Input: xρ+1, . . . , xn, ẋρ+1, . . . , ẋn.
Output: x̄ρ+1, . . . , x̄n, ˙̄xρ+1, . . . , ˙̄xn.
1: while time derivatives of y appear in the expression of ẋρ+1, . . . , ẋn do ▷ This

while-loop iterates for ρ times as it reduces the order of y(ρ) by one each iteration.
2: for i = n→ ρ+ 2 do
3: Update x̄i and ˙̄xi using (5.24).
4: Rewrite xi in terms of x̄i in the expression of ẋi−1 and leave the feedback term

− bn−i

bm
xρ+1 unchanged.

5: end for
6: Update x̄ρ+1 and ˙̄xρ+1 using (5.24).
7: Rewrite xρ+1 in terms of x̄ρ+1 in the expressions of ˙̄xρ+1, . . . , ˙̄xn, respectively. ▷

This brings back the time derivatives of y, y1, . . . , yρ, but with the order reduced
by one.

8: xρ+1 ← x̄ρ+1, . . . , xn ← x̄n, ẋρ+1 ← ˙̄xρ+1, . . . , ẋn ← ˙̄xn. ▷ Update the old
coordinates before the next iteration.

9: end while

in Section 5.1. With this fact, the change of coordinate

x̄n = xn −
ρ−1∑
j=0

(−1)j
(
b0
bm

)(j)

y(ρ−1−j) +

ρ−1∑
i=1

ρ−i−1∑
j=0

(−1)j
(
b0
bm

)(j)

y
(ρ−i−1−j)
i (5.97)

yields

˙̄xn = − b0
bm
xρ+1 + yn + (−1)ρ

(
b0
bm

)(ρ)

y −
ρ∑
i=1

(−1)ρ−i
(
b0
bm

)(ρ−i)
yi, (5.98)

which does not contain time derivatives of y and yi’s. In the same spirit, applying the

change of coordinates specified by Algorithm 5.3, we are able to remove the terms con-

taining the time derivatives of y and yi’s in each equation describing the inverse dynamics.

The resulting inverse dynamics in the new coordinates (denoted by x̄i, i = ρ + 1, . . . , n,

with a slight abuse of notation) are described by the equations

˙̄x = Ab̄(t)x̄+ bx̄y(t)y +
n∑
i=1

bx̄ϕ,0,i(t)ϕ0,i(y) +
n∑
i=1

q∑
j=1

bx̄ϕ,i,j(t)ϕi,j(y), (5.99)

ug =
1

bm(t)

(
− x̄ρ+1 + y(ρ) +

ρ−1∑
j=0

augy(j)(t)y
(j) +

ρ∑
i=1

ρ−i∑
j=0

a
ugy

(j)
i

(t)y
(j)
i

)
, (5.100)

where x̄(t) ≜ [x̄ρ+1(t), . . . , x̄n(t)]
⊤ ∈ Rm, Ab̄ ≜ S− b̄e⊤1 , b̄(t) ≜ 1

bm(t) [bm−1(t), . . . , b0(t)]
⊤ ∈

Rm.
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Remark 5.7. The time-varying vectors bx̄y, bx̄ϕ,0,i, bx̄ϕ,i,j and the time-varying scalars

augy(j), augy(j)i

are unknown as they depend on the unknown system parameter vector θ.

However, as a consequence of Assumption 1.2, they are bounded.

Assumption 5.3 (Strong minimum-phase property). The time-varying system (5.80) has

a strong minimum-phase property in the sense that the inverse dynamics (5.99) are input-

to-state stable (ISS) with respect to the inputs y, ϕ0,i(y), ϕi,j(y), i = 1, . . . , n, j = 1, . . . , q.

Moreover, there exists an ISS Lyapunov function γ
x̄
|x̄|2 ≤ Vx̄(x̄, t) ≤ γ̄x̄|x̄|2, 0 ≤ γx̄ ≤ γ̄x̄,

and the time derivative of Vx̄ along the trajectories of the inverse dynamics satisfies the

inequality

V̇x̄ ≤ −|x̄|2 + σx̄yy
2 + σx̄ϕ0 |ϕ0(y)|2 + σx̄Φ|Φ(y)|2F, (5.101)

for some constant σ(·) > 0.

Remark 5.8. Assumption 5.3 holds if x̄ = 0 is a globally exponentially stable equilib-

rium of the zero dynamics described by ˙̄x = Ab̄(t)x̄, see e.g. Lemma 4.6 in [70]. Some

works ( e.g. [129] and [86]) exploit this exponential stability property as a substitute for the

classical minimum-phase assumption. Note, finally, that Assumption 5.3 is not more re-

strictive than the classical minimum-phase assumption because for time-invariant systems

Assumption 5.3 reduces to minimum-phaseness.

5.2.3 Filter Design

Consider now the state estimation error dynamics (5.91) with ug given by (5.100), which

yields

ε̇ = Akε+Φ⊤(y)∆a +

0(ρ−1)×1

∆b

 1

bm
×

(
− x̄ρ+1 + y(ρ) +

ρ−1∑
j=0

augy(j)(t)y
(j) +

ρ∑
i=1

ρ−i∑
j=0

a
ugy

(j)
i

(t)y
(j)
i

)
. (5.102)

Similarly to what is done in Section 5.2.2, we need to use a change of coordinates to remove

the time derivative terms brought by ug. Implementing a change of coordinates in the

same spirit of Algorithm 5.3, the state estimation error dynamics in the new coordinates
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ε̄ are described by the equations

˙̄ε = Akε̄− ∆̄bx̄ρ+1 + bε̄y(t)y

+
n∑
i=1

bε̄ϕ,0,i(t)ϕ0,i(y) +
n∑
i=1

q∑
j=1

bε̄ϕ,i,j(t)ϕi,j(y), (5.103)

where ∆̄b = [01×(ρ−1),∆
⊤
b ]

⊤ 1

bm
.

Remark 5.9. The time derivative terms are injected into the ε-dynamics via the vector of

time-varying gains ∆b. Similarly to Remark 5.7, the time-varying vectors ∆̄b, bε̄y, bε̄ϕ,0,i,

bε̄ϕ,i,j are unknown, yet bounded, due to Assumption 1.2. We will see that as long as these

parameters are bounded they do not affect the controller design. In particular, when b is

constant, ∆b(t) = 0, for all t ≥ 0, provided ℓb = b. Thus ∆̄b(t), bε̄y(t), bε̄ϕ,0,i(t), bε̄ϕ,i,j(t)

remain 0, for all t ≥ 0, and ε̄ = ε. This yields ε̇ = Akε+Φ⊤(y)∆a, which is the simplified

case that has been dealt with in [16].

Similarly to the description of the ISS inverse dynamics, it is desirable for the

subsequent design that the state estimation error dynamics be ISS. Moreover, instead of

assuming such a property, one can enforce ISS of the ε̄-dynamics by designing the K-filters.

Proposition 5.2. The state estimation error dynamics are ISS with respect to the inputs

x̄ρ+1, y, ϕ0,i(y), ϕi,j(y), i = 1, . . . , n, j = 1, . . . , q, if the vector of filter gains is given by

k ≜ 1
2Xε̄e1, where Xε̄ = X⊤

ε̄ ≻ 0 satisfies the Riccati inequality

SXε̄ +Xε̄S
⊤ −Xε̄(e1e

⊤
1 − γ−1

ε̄ I)Xε̄ +Qε̄ ⪯ 0, (5.104)

where

Qε̄ =

(
δ∆̄b

ϵ∆̄b

+
δbε̄y
ϵbε̄y

+
n∑
i=1

δbε̄ϕ,0,i
ϵbε̄ϕ,0,i

+
n∑
i=1

q∑
j=1

δbε̄ϕ,i,j
ϵbε̄ϕ,i,j

)
I, (5.105)

and ϵ(·) > 0. Moreover, there exists an ISS Lyapunov function Vε̄ ≜ γε̄|ε̄|2Pε̄
, with Pε̄ ≜ X−1

ε̄

and the time derivative of Vε̄ along the trajectories of the state estimation error dynamics
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satisfies the inequality

V̇ε̄ ≤ − |ε|2 + ϵbε̄yδbε̄yy
2 +

n∑
i=1

ϵbε̄ϕ,0,iδbε̄ϕ,0,iϕ
2
0,i(y)

+
n∑
i=1

q∑
j=1

ϵbε̄ϕ,i,jδbε̄ϕ,i,jϕ
2
i,j(y) + ϵ∆̄b

δ∆̄b
x̄2ρ+1, (5.106)

where ϵ(·) > 0, or in a more compact (yet more conservative) form,

V̇ε̄ ≤ − |ε̄|2 + σε̄yy
2 + σε̄ϕ0 |ϕ0(y)|2 + σε̄Φ|Φ(y)|2F

+ σε̄x̄ρ+1 x̄
2
ρ+1, (5.107)

for some constant σ(·) > 0.

Proof. Taking the time derivative of Vε̄ = γε̄|ε̄|2Pε̄
along the trajectories of system (5.103)

yields

V̇ε̄ = 2γε̄ε̄
⊤Pε̄

(
Akε̄+ bε̄y(t)y +

n∑
i=1

bε̄ϕ,0,i(t)ϕ0,i(y)

+
n∑
i=1

q∑
j=1

bε̄ϕ,i,j(t)ϕi,j(y)− ∆̄bx̄ρ+1

)

≤ γε̄

(
ε̄⊤(Pε̄S + S⊤Pε̄ − e1e⊤1 + Pε̄Qε̄Pε̄)ε̄

)
+ ϵbε̄yδbε̄yy

2 +
n∑
i=1

ϵbε̄ϕ,0,iδbε̄ϕ,0,iϕ
2
0,i(y)

+
n∑
i=1

q∑
j=1

ϵbε̄ϕ,i,jδbε̄ϕ,i,jϕ
2
i,j(y) + ϵ∆̄b

δ∆̄b
x̄2ρ+1. (5.108)

Left-multiplying and right-multiplying by Pε̄ on both sides of (5.104) yields

Pε̄S + S⊤Pε̄ − (e1e
⊤
1 − γ−1

ε̄ I) + Pε̄Qε̄Pε̄ ⪯ 0 (5.109)

or, equivalently,

Pε̄S + S⊤Pε̄ − e1e⊤1 + Pε̄Qε̄Pε̄ ⪯ −γ−1
ε̄ I. (5.110)

Substituting (5.110) into (5.108) yields (5.106). Finally, defining σε̄y = ϵbε̄yδbε̄y , σε̄ϕ0 =
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max
i
ϵbε̄ϕ,0,iδbε̄ϕ,0,i , σε̄ϕ0 = max

i,j
ϵbε̄ϕ,i,jδbε̄ϕ,i,j , and σε̄x̄ρ+1 = ϵ∆̄b

δ∆̄b
yields (5.107), which

completes the proof.

Remark 5.10. In practice Qε̄ is tuned, to achieve better filtering performance, rather

than computed analytically. This is feasible since there exist ϵ(·) for any bounded δ(·)

such that Qε̄ can be set to an arbitrary positive multiple of I, due to (5.105). Moreover,

ϵ(·) and δ(·) do not affect the controller design, as the σ(·)-related terms in (5.107) are

dominated adaptively as shown in the next subsection. In this sense, neither ϵ(·) nor δ(·)

are implemented or need to be known.

5.2.4 Controller Design

In Sections 5.2.2 and 5.2.3 we have established the ISS property of the inverse dynamics and

the state estimation error dynamics. However, before proceeding to design the controller,

we have to consider (5.92) in the new coordinates. Note that ε2 can be written as

ε2 = ε̄2 + aε2y(1)(t)ẏ + Yε2(y), (5.111)

where Yε2(y) ≜ aε2y(t)y +
∑n

i=1 aε2ϕ,0,i(t)ϕ0,i(y) +
∑n

i=1

∑q
j=1 aε2ϕ,i,j(t)ϕi,j(y) and

aε2y(1)(t) =
∆bm (t)
bm(t) . If the counterpart of Assumption 5.2 holds, that is, either ρ = 1

or ρ ≥ 2 and bm is constant, then aε2ϕ,0,i(t) = 0, for all t ≥ 0. These two special cases

have been discussed in [18] as well as in Section 5.1 of the thesis. In general, aε2y(1)(t) ̸= 0

and, as a result, ε2 contains ẏ. Substituting (5.111) into the first equation of (5.92) yields

(1− aε2y(1))ẏ = ω0 + ω̄⊤ℓθ + ℓbmvm,2 + ε̄2 + Yε2 . (5.112)

Noting that 1
1−a

ε2y
(1)

= bm
bm−∆bm

= bm
ℓbm

, we can write the dynamics of y as

ẏ =
bm(t)

ℓbm
(ω0 + Yε2 + ε̄2) + ω̄⊤

(
bm(t)

ℓbm
ℓθ

)
+ bm(t)vm,2. (5.113)

Observe that the effect of the aε2y(1)(t)ẏ term is to bring the time-varying parameters back

to the dynamics of y, which requires the congelation of variables method again. To do this,

we need first to augment the system (5.92) with the ξ, Ξ and v-dynamics, which are not

needed in the classical constant parameter scenarios but necessary in the current setup.
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It turns out that the extended system is in the so-called parametric block-strict-feedback

form [75, Section 2.3.3], described by the equations

ξ̇ = Akξ + ky + ϕ0(y), (5.114)

Ξ̇⊤ = AkΞ
⊤ +Φ⊤(y), (5.115)

−−−−−−−−−−−−−−−−−−−−−−−−−−

ẏ =
bm(t)

ℓbm
(ω0 + Yε2 + ε̄2) + ω̄⊤

(
bm(t)

ℓbm
ℓθ

)
+ bm(t)vm,2,

v̇0,2 = v1,2,
...

v̇m−1,2 = vm,2, (5.116)

−−−−−−−−−−−−−−−−−−−−−−−−−−

v̇m,2 =− k1vm,1 + vm,3,
...

v̇m,ρ−1 = − kρ−1vm,1 + vm,ρ,

v̇m,ρ = − kρvm,1 + vm,ρ+1 + g(y)u, (5.117)

and recall that ω0 = ϕ0,1 + ξ2 and ω̄ = [0, vm−1,2, . . . , v0,2, (Φ)
⊤
1 + (Ξ)⊤2 ]

⊤. In these

equations, (5.114) and (5.115) describe the state evolution of the filters of the regressors;

equations (5.117) give the integrator-chain structure used for backstepping; and equations

(5.116) are the key part of the design that contains the dynamics of the output y. As

demonstrated in the preceding discussions, the congelation of variables method requires

an ISS or ISS-like property of each subsystem in the analysis (described by their dissipation

inequalities), and then applying a small-gain-like analysis for the overall system to conclude

boundedness and convergence properties. As a preparation for the backstepping design on

the chain of integrators described by (5.117), one first needs to establish ISS properties for

the filter dynamics (5.114), (5.115), and the zero dynamics of (5.116). For the subsystems

described by (5.114) and (5.115) we have the following result.

Lemma 5.1. Let the filter gain k be as in Proposition 5.2. Then, the system (5.114) is

ISS with respect to the inputs y, ϕ0,i(y) and the system (5.115) is ISS with respect to the

inputs ϕi,j(y), where i = 1, . . . , n, j = 1, . . . , q. Moreover, there exist two ISS Lyapunov

functions Vξ ≜ |ξ|2Pξ
, VΞ ≜ tr(ΞPΞΞ

⊤), with Pξ = PΞ ≜ γε̄Pε̄ ≻ 0 and γε̄ > 0, such that
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the time derivative of Vξ along the trajectories of (5.114) satisfies

V̇ξ ≤ − |ξ|2 + σξyy
2 + σξϕ0 |ϕ0(y)|2 (5.118)

and the time derivative of VΞ along the trajectories of (5.115) satisfies

V̇Ξ ≤ − |Ξ|2F + σΞΦ|Φ(y)|2F, (5.119)

for some constant σ(·) > 0.

Proof. Noting (5.104) and the fact that Pξ = γε̄Pε̄ yields

A⊤
k Pξ + PξAk ⪯ −I − γε̄Pε̄Qε̄Pε̄. (5.120)

Define Q̄ξ = γε̄Pε̄Qε̄Pε̄ ≻ 0, take the time derivative of Vξ = |ξ|2Pξ
along the trajectories of

(5.115), and invoke Young’s inequality to obtain

V̇ξ = ξ⊤(A⊤
k Pξ + PξAk)ξ + 2ξ⊤Pξ(ky + ϕ0)

= − ξ⊤(I + Q̄ξ)ξ + 2ξ⊤Pξ(ky + ϕ0)

≤ − |ξ|2 + σξyy
2 + σξϕ0 |ϕ0(y)|2.

(5.121)

Similarly, we take the time derivative of VΞ = tr(ΞPΞΞ
⊤) along the trajectories of (5.115),

which yields

V̇Ξ =

n∑
i=1

((Ξ⊤)⊤i (A
⊤
k PΞ + PΞAk)(Ξ

⊤)i + 2(Ξ⊤)iPΞ(Φ
⊤)i)

=

n∑
i=1

((Ξ⊤)⊤i (I + Q̄Ξ)(Ξ
⊤)i + 2(Ξ⊤)iPΞ(Φ

⊤)i)

≤ |Ξ|2F + σΞΦ|Φ(y)|2F, (5.122)

where PΞ = Pξ, Q̄Ξ = Q̄ξ, and this completes the proof.

The next step is to establish ISS for the inverse dynamics of (5.116). To derive the
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inverse dynamics, let

vm,2 =
1

bm
ẏ − 1

ℓbm
(ω0 + Yε2 + ε̄2)−

1

ℓbm
ω̄⊤ℓθ

= −
ℓbm−1

ℓbm
vm−1,2 − · · · −

ℓb0
ℓbm

v0,2 +
1

bm
ẏ

− ((Ξ)⊤2 + (Φ)⊤1 )ℓa −
1

ℓbm
(ω0 + Yε2 + ε̄2) (5.123)

and then define the change of coordinates: v̄0,2 = v̄0,2, . . . , v̄m−2,2 = vm−2,2, v̄m−1,2 =

vm−1,2 − 1
bm
y. The inverse dynamics of (5.116) are then described by

˙̄v = Aℓb̄ v̄ + gv̄(y, ξ,Ξ, ε̄2, t), (5.124)

where Aℓb̄ ≜ S − emℓ
⊤
b̄
, ℓb̄ ≜ [

ℓb0
ℓbm

, . . . ,
ℓbm−1

ℓbm
]⊤, and gv̄(y, ξ,Ξ, ε̄2, t) ≜

[0, . . . , 0, 1
bm
y,−( ℓbm−1

bmℓbm
+ ( 1

bm
)(1))y − ((Ξ)⊤2 + (Φ)⊤2 )ℓa − 1

ℓbm
(ω0 + Yε2 + ε̄2)]

⊤. Exploiting

the flexibility of the congelation of variables method we can always select ℓb to construct

a Hurwitz Aℓb̄ , and therefore ISS of system (5.124) can be established as shown in the

lemma that follows.

Lemma 5.2. Consider a vector of congealed parameters ℓb ≜ [ℓbm , . . . , ℓb0 ]
⊤ such that the

polynomial ℓbms
m+ ℓbm−1s

m−1+ · · ·+ ℓb0 is Hurwitz. Then, the system (5.124) is ISS with

respect to the inputs y, ϕ0,i(y), ϕi,j(y), ξ2, (Ξ)j2 and ε̄2, where i = 1, . . . , n, j = 1, . . . , q.

Moreover, there is an ISS Lyapunov function Vv̄ = |v̄|2Pv̄
, with Pv̄ = P⊤

v̄ ≻ 0, such that the

time derivative of Vv̄ along the trajectories of (5.124) satisfies

V̇v̄ ≤ − |v̄|2 + σv̄yy
2 + σv̄ϕ0 |ϕ0(y)|2 + σv̄Φ|Φ(y)|2F

+ σv̄ξ2ξ
2
2 + σv̄(Ξ)2 |(Ξ)2|

2 + σv̄ε̄2 ε̄
2
2, (5.125)

where σ(·) > 0 are constant.

Proof. Since ℓbms
m+ℓbm−1s

m−1+ · · ·+ℓb0 is Hurwitz, Aℓb̄ = S−emℓ⊤b̄ is also Hurwitz, and

therefore there exist Pv̄ = P⊤
v̄ ≻ 0 and Qv̄ = Q⊤

v̄ ≻ 0 such that A⊤
ℓb̄
Pv̄ + Pv̄Aℓb̄ +Qv̄ = 0.

Without loss of generality we assume that Qv̄ = I + Q̄v̄, where Q̄v̄ = Q̄⊤
v̄ ≻ 0. This

condition can always be satisfied by scaling Pv̄. Taking the time derivative of Vv̄ along the
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trajectories of (5.124) yields

V̇v̄ = v̄⊤(A⊤
ℓb̄
Pv̄ + Pv̄Aℓb̄)v̄ + v̄⊤Pv̄gv̄ + gv̄Pv̄v̄

⊤

= − v̄⊤(I + Q̄v̄)v̄ + 2v̄⊤Pv̄gv̄. (5.126)

Note that in gv̄(y, ξ,Ξ, ε̄2, t) all the coefficients coupled with the “inputs” y, ϕ0,i(y), ϕi,j(y),

ξ2, (Ξ)j2, ε̄2 are bounded. Thus, by Lemma A.1, the condition

− v̄⊤Q̄v̄v̄ + 2v̄⊤Pv̄gv̄ − (σv̄yy
2 + σv̄ϕ0 |ϕ0(y)|2

+ σv̄Φ|Φ(y)|2F + σv̄ξ2ξ
2
2 + σv̄(Ξ)2 |(Ξ)2|

2 + σv̄ε̄2 ε̄
2
2) ≤ 0 (5.127)

holds for some constant σ(·) > 0. Substituting (5.127) into (5.126) yields (5.125), which

completes the proof.

Having established the ISS properties of (5.114), (5.115) and the zero dynamics of

(5.116), we proceed to the backstepping design on the chain of integrators (5.117). Define

the error variables

z1 = y, (5.128)

zi = vm,i − αi−1, i = 2, . . . , ρ, (5.129)

the tuning functions

τ1 = (ω − ϱ̂ᾱ1e1)z1, (5.130)

τi = τi−1 −
∂αi−1

∂y
ωzi, i = 2, . . . , ρ, (5.131)
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the virtual control laws

α1 = ϱ̂ᾱ1 = −ϱ̂κz1, (5.132)

α2 = − b̂mz1 − (c2 + ζ2)z2 + β2 +
∂α1

∂θ̂
Γθτ2, (5.133)

αi = − zi−1 − (ci + ζi)zi + βi +
∂αi−1

∂θ̂
Γθτi

−
i−1∑
j=2

∂αj−1

∂θ̂
Γθ
∂αi−1

∂y
ωzj , i = 3, . . . , ρ,

(5.134)

with

κ = c1 +
ϵθ̂
2
|θ̂|2 + ζ̂y + ζ̂ϕ0 |ϕ̄0(y)|2 + ζ̂Φ|Φ̄(y)|2F, (5.135)

ζ2 =
1

2ϵθ̂
+
ρδ∆bm

2ϵ∆bm

+
1

2

(
∂α1

∂y

)2

×(
ϵ∆bm

δ∆bm
(ϱ̂2κ2 + 1) + ϵ∆θ̄

δ∆θ̄
+ ϵYε2 + ϵε̄2

)
,

(5.136)

ζi =
1

2

(
∂αi−1

∂y

)2

×(
ϵ∆bm

δ∆bm
(ϱ̂2κ2 + 1) + ϵ∆θ̄

δ∆θ̄
+ ϵYε2 + ϵε̄2

)
,

(5.137)

βi =
∂αi−1

∂y
(ω0 + ω⊤θ̂) +

∂αi−1

∂ξ
(Akξ + ky + ϕ0)

+

q∑
j=1

∂αi−1

∂(Ξ⊤)j
(Ak(Ξ

⊤)j + (Φ⊤)j) + kivm,1

+

m+i−1∑
j=1

∂αi−1

∂λj
(−kjλ1 + λj+1) +

∂αi−1

∂ϱ̂
˙̂ϱ

+
∂αi−1

∂ζ̂y

˙̂
ζy +

∂αi−1

∂ζ̂ϕ0

˙̂
ζϕ0 +

∂αi−1

∂ζ̂Φ

˙̂
ζΦ,

i = 2, . . . , ρ,

(5.138)

the control law

u =
1

g(y)
(αρ − vm,ρ+1), (5.139)



182 Chapter 5

and the parameter update laws

˙̂ϱ = γϱsgn(ℓbm)κz
2
1 , (5.140)

˙̂
ζy = γζyz

2
1 ,

˙̂
ζϕ0 = γζϕ0 |ϕ0|

2,
˙̂
ζΦ = γζΦ |Φ|

2
F, (5.141)

˙̂
θ = Γθτρ, (5.142)

where ci > 0, i = 1, . . . , ρ, ϵ(·) > 0, γ(·) > 0, Γθ = Γ⊤
θ ≻ 0, θ̄(t) ≜ bm(t)

ℓbm
ℓθ, and ∆θ̄ ≜

θ̄(t) − ℓθ. In the definition of κ, ϕ̄0(y), Φ̄(y) are defined such that ϕ0(y) = ϕ̄0(y)y,

Φ(y) = Φ̄(y)y, which is feasible due to Remark 5.6. Moreover, the initial value of the

parameter estimates are selected such that ϱ̂(0) > 0, ζ̂(·)(0) > 0.

Remark 5.11. Compared to the I&I scheme introduced in Section 5.1 in which “com-

puted” damping term are adopted, in the passivity-based scheme dynamically updated “es-

timates” ζ̂(·) are adopted as the coefficients of the additional damping terms, since the

required damping coefficients are in general difficult to compute. Meanwhile, thanks to

these adaptive damping terms, we do not need to know δ∆θ̄
for a reason similar to what is

explained in Remark 5.10

Proposition 5.3. Consider the adaptive controller described by equations (5.128)–

(5.142) for the system described by equations (5.114)–(5.117) and suppose that Assump-

tions 1.2, 1.3, and 5.3 hold. Then, the closed-loop signals z, x̄, ε̄, ξ, Ξ, v̄, θ̂, ϱ̂, and ζ̂(·)

are bounded.

Proof. We first analyze the backstepping error variables zi step by step.

Step 1. Consider the dynamics of z1, which are described by

ż1 =
bm
ℓbm

(ω0 + Yε2 + ε̄2) + ω̄⊤ bm
ℓbm

ℓθ + bmvm,2

= (ω0 + Yε2 + ε̄2) + ω̄⊤θ̄ + ℓbmvm,2

+∆ bm
ℓbm

(ω0 + Yε2 + ε̄2) + ω̄⊤∆θ̄ +∆bmvm,2

= (ω0 + Yε2 + ε̄2) + ω̄⊤θ̂ + ᾱ1 + bmz2

ω̄⊤(ℓθ − θ̂)− ℓbm
(

1

ℓbm
− ϱ̂

)
ᾱ1

+∆ bm
ℓbm

(ω0 + Yε2 + ε̄2) + ω̄⊤∆θ̄ +∆bm ϱ̂ᾱ1, (5.143)
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where ∆ bm
ℓbm

(t) ≜ bm(t)
ℓbm
− 1 (recall also that θ̄(t) = bm(t)

ℓbm
ℓθ and ∆θ̄ = θ̄(t)− ℓθ). Note that

z2 = vm,2 − ϱ̂ᾱ1 and

bmz2 = b̂mz2 + (ℓbm − b̂m)z2 +∆bmz2, (5.144)

which yields

ω̄⊤(ℓθ − θ̂) + bmz2 = (ω − ϱ̂ᾱ1e1)
⊤(ℓθ − θ̂) + b̂mz2 +∆bmz2. (5.145)

Considering the function Vz1 ≜ 1
2z

2
1 and taking the time derivative of Vz1 along the tra-

jectories of (5.143) yields

V̇z1 = z1(ω0 + Yε2 + ε̄2) + z1ω̄
⊤θ̂ + ᾱ1z1 + b̂mz1z2

+∆ bm
ℓbm

(ω0 + Yε2 + ε̄2)z1 + z1ω̄
⊤∆θ̄ +∆bmz1z2

+ z1(ω − ϱ̂ᾱ1e1)
⊤(ℓθ − θ̂)− ℓbm(ℓ−1

bm
− ϱ̂)ᾱ1z1

+∆bm ϱ̂ᾱ1z1. (5.146)

Invoking Lemma A.1 yields

V̇z1 ≤ − κz21 +
(
ϵθ̂
2
|θ̂|2 + σz1y

)
z21 + σz1ϕ0 |ϕ0|2

+ σz1Φ|Φ|2F + σz1ε̄2 ε̄
2
2 + σz1ξ2ξ

2
2 + σz1(Ξ)2 |(Ξ)2|

2

+ σz1v̄v̄
2 +

(
1

2ϵθ̂
+

δbm
2ϵ∆bm

)
z22 +R1 −∆bm ϱ̂κ̄z

2
1 , (5.147)

where R1 ≜ z1(ω− ϱ̂ᾱ1e1)
⊤(ℓθ− θ̂)−ℓbm(ℓ−1

bm
− ϱ̂)ᾱ1z1 consists of the remaining terms to be

cancelled by the update law/tuning function design. Moreover, using the same argument

as in Section 2.1.2 and Section 4.1, we can show that −∆bm ϱ̂κ̄z
2
1 ≤ 0, and therefore this

term can be dropped hereafter.

Step 2, . . . , ρ. Consider the sum of the functions Vzi ≜
1
2z

2
i , i = 1, . . . , ρ, and take
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the time derivative of the sum along the trajectories of the system, which yields

ρ∑
i=1

V̇zi = V̇z1 −R1 −
ρ∑
i=2

(ci + ζi)z
2
i −

ρ∑
i=2

zi
∂αi−1

∂y
×

(ε̄2 + Yε2 + ω̄⊤∆θ̄ + (α1 + z2)∆bm) +Rρ

≤ V̇z1 −R1 −
ρ∑
i=1

(ci + ζi)z
2
i +

(ρ− 1)δ∆bm

2ϵ∆bm

z22

+

ρ∑
i=2

1

2
z2i

(
∂αi−1

∂y

)2

×(
ϵ∆bm

δ∆bm
(ϱ̂2κ2 + 1) + ϵ∆θ̄

δ∆θ̄
+ ϵYε2 + ϵε̄2

)
+

ρ∑
i=2

σziyz
2
1 +

ρ∑
i=2

σziϕ0 |ϕ0|
2 +

ρ∑
i=2

σziΦ|Φ|2F

+

ρ∑
i=2

σziε̄2 ε̄
2
2 +

ρ∑
i=2

σziξ2ξ
2
2 +

ρ∑
i=2

σzi(Ξ)2 |(Ξ)2|
2

+

ρ∑
i=2

σziv̄|v̄|2 +Rρ

= −
ρ∑
i=1

ciz
2
i − ζ̂yz21 − ζ̂ϕ0 |ϕ0|2 − ζ̂Φ|Φ|2F

+ σzyz
2
1 + σzϕ0 |ϕ0|2 + σzΦ|Φ|2F + σzε̄2 ε̄

2
2

+ σzξ2ξ
2
2 + σz(Ξ)2 |(Ξ)2|

2 + σzv̄|v̄|2 +Rρ, (5.148)

where σz(·) ≜
∑ρ

i=1 σzi(·) > 0 and Rρ ≜ τ⊤ρ (ℓθ − θ̂) − ℓbm(ℓ
−1
bm
− ϱ̂)ᾱ1z1 consists of the

remaining terms to be cancelled by the update laws. Then considering the function Vz ≜∑ρ
i=1 Vzi +

1
2 |ℓθ − θ̂|

2
Γ−1 +

|ℓbm |
2γϱ
|ℓ−1
bm
− ϱ̂|2 and taking its time derivative along the system

trajectories yields

V̇z ≤ −
ρ∑
i=1

ciz
2
i − ζ̂yz21 − ζ̂ϕ0 |ϕ0|2 − ζ̂Φ|Φ|2F

+ σzyz
2
1 + σzϕ0 |ϕ0|2 + σzΦ|Φ|2F + σzε̄2 ε̄

2
2

+ σzξ2ξ
2
2 + σz(Ξ)2 |(Ξ)2|

2 + σzv̄|v̄|2. (5.149)

Consider now the Lyapunov function candidate V ≜ Vz+γVx̄Vx̄+γVε̄Vε̄+γVξVξ+γVΞVΞ+

γVv̄Vv̄+
1

2γζy
(ζy−ζ̂y)2+ 1

2γζϕ0
(ζϕ0−ζ̂ϕ0)2+ 1

2γζΦ
(ζΦ−ζ̂Φ)2, where γVx̄ ≜ σε̄x̄ρ+1(σzε̄2+σv̄ε̄2σzv̄),

γVε̄ ≜ σzε̄2 + σv̄ε̄2σzv̄, γVξ ≜ σzξ2 + σv̄ξ2σzv̄, γVΞ ≜ σz(Ξ)2 + σv̄(Ξ)2σzv̄, γVv̄ ≜ σzv̄ are the
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scaling coefficients of the corresponding partial Lyapunov function candidate, and ζy ≜

σzy+γVx̄σx̄y+γVε̄σε̄y+γVξσξy+γVv̄σv̄y, ζϕ0 ≜ σzϕ0+γVx̄σx̄ϕ0+γVε̄σε̄ϕ0+γVξσξϕ0+γVv̄σv̄ϕ0 ,

ζΦ ≜ σzΦ + γVx̄σx̄Φ + γVε̄σε̄Φ + γVΞσΞΦ + γVv̄σv̄Φ are the required damping coefficients to

be compensated by ζ̂y, ζ̂ϕ0 , and ζ̂Φ, respectively. Taking the time derivative of V along

the trajectories of the system yields

V̇ ≤ −
ρ∑
i=1

ciz
2
i + (ζy − ζ̂y)(z21 − γ−1

ζy

˙̂
ζy)

+ (ζϕ0 − ζ̂ϕ0)(|ϕ0|2 − γ
−1
ζϕ0

˙̂
ζϕ0)

+ (ζΦ − ζ̂Φ)(|Φ|2F − γ−1
ζΦ

˙̂
ζΦ) = −

ρ∑
i=1

ciz
2
i ≤ 0. (5.150)

Hence z, x̄, ε̄, ξ, Ξ, v̄, θ̂, ϱ̂, and ζ̂(·) are bounded, by a standard Lyapunov analysis, which

completes the proof.

We should not forget that the invariance-like proof of asymptotic output regulation

requires boundedness of ε. In Proposition 5.3 we have proved the boundedness of ε̄ after

the change of coordinates described by Algorithm 5.3. However, it is not easy to directly

prove the boundedness of ε since Algorithm 5.3 involves the time derivatives of y, ϕ0,i(y),

and ϕi,j(y), i = 1, . . . , n, j = 1, . . . , q, the boundedness of which is difficult to conclude.

Recall that these time derivatives are present because u has to be decomposed at the design

stage with the help of the inverse dynamics. Now that we have completed the design, it

is more convenient to directly use the boundedness of u for concluding the boundedness

of ε, provided that we can first prove the boundedness of λ, as shown in what follows.

Theorem 5.4. Consider the system described by the equations (5.114)–(5.117), with the

same assumptions as in Proposition 5.3, and the adaptive controller described by the equa-

tions (5.128)–(5.142). Then, all trajectories of the closed-loop system are bounded and

lim
t→+∞

y(t) = 0.

Proof. First note that boundedness of ξ, Ξ, θ̂, ϱ̂, and ζ̂(·) is guaranteed by Proposition 5.3,

and therefore, the rest of the proof is devoted to establish boundedness of λ, ε, and x.
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Recalling (5.89) yields



v0,2
...

vm,2
...

vm,ρ


=


0 1 0 · · · 0

∗ ∗ 1
. . . 0

∗ ∗ ∗ . . . 0

∗ ∗ ∗ ∗ 1




λ1

λ2
...

λn

 , (5.151)

where “∗” represents terms that do not affect the subsequent analysis. Note that v0,2 = λ2

is bounded due to boundedness of v̄ and thus λ2 is also bounded. Note that by Vieta’s

formula, −k1 is the sum of the roots of the characteristic polynomial of Ak, which is also

the trace of Ak. Thus,

k1 = −tr(Ak) (5.152)

and since Ak is Hurwitz, tr(Ak) < 0. Hence k1 > 0. Consider the dynamics of the first

state variable of the input filter (5.85), that is, λ̇1 = −k1λ1+λ2 with a bounded input λ2.

Thus λ1 is also bounded due to the bounded-input bounded-output property. Rewriting

(5.151) yields



v0,2
...

vm,2
...

vm,ρ


=


1 0 · · · 0

∗ 1
. . . 0

∗ ∗ . . . 0

∗ ∗ ∗ 1



λ2
...

λn

+


0

∗

∗

∗

λ1. (5.153)

Since v̄, λ1, and z1 (or y) are bounded, we can conclude that λ3, . . . , λm+1 are bounded

by exploiting the lower-triangular structure of the matrix in (5.153). Since λ1, . . . , λm+1

are bounded, by Proposition 5.3, α1 is bounded. Note that z2 is bounded, thus vm,2 is

bounded, which further guarantees boundedness of λm+2 due to (5.153). In the same

spirit, boundedness of λm+3, . . . , λn can be established in a recursive way similar to the

procedures in [75, Section 8.1.3], which proves that λ is bounded.

To proceed, combining boundedness of λ and Proposition 5.3 yields boundedness
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of αρ and vm,ρ+1, and therefore boundedness of u. This further proves boundedness of ε

along with boundedness of y due to (5.91). Since x = ξ +Ω⊤ℓθ + ε, we can conclude that

x is also bounded. Hence all trajectories of the closed-loop system are bounded.

Finally, recall (5.150) and note that ż is bounded due to boundedness of the system

parameters and all other closed-loop state variables, hence invoking Lemma A.5 yields

lim
t→+∞

z(t) = 0, and also lim
t→+∞

y(t) = 0, which completes the proof.

Remark 5.12. Using the fact that lim
t→+∞

z(t) = 0 we can proceed to prove the convergence

of ξ, Ξ, λ, ε and x to 0 by exploiting the converging-input converging-output property of

the corresponding subsystems or the dependency on converging signals.

It is beneficial to note that the constructive proof of Proposition 5.3 can be per-

formed using the notion of active node. This alternative view significantly reduces the

complexity of the original proof and provides more insight into the challenge of the effects

of time-varying parameters, compared to the classical case, as shown below.

Alternative proof of Proposition 5.3. First, repeat the procedures of the orig-

inal proof up to (5.149) and recall the dissipation inequalities (5.101), (5.107),

(5.118), (5.119), and (5.125), from Assumption 5.3, Proposition 5.2, Lemma 5.1, and

Lemma 5.2, respectively. Then by defining V̄ = [Vz, Vx̄, Vε̄, Vξ, VΞ, Vv̄]
⊤ and ψ̂ =

[y2, x̄2ρ+1, ε̄
2
2, ξ

2
2 , |(Ξ)2|2, |v̄|2, |ϕ0|2, |Φ|2F]⊤, one can write the dissipation inequalities of the

subsystems in a compact form, namely,

˙̄V ≤ − Ēψ̂ − e1
ρ∑
i

ciz
2
i − e2

n∑
ρ+2

x̄2i − e3
(
ε̄21 +

n∑
3

ε̄2i

)

− e4
(
ξ21 +

n∑
3

ξ2i

)
− e5

(
|(Ξ)1|2 +

n∑
3

|(Ξ)i|2
)
, (5.154)
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where ei is the ith unit vector and

Ē ≜



(ζ̂y − σzy) 0 −σϵ̄2 −σzξ2 −σz(Ξ)2 −σzv̄ (ζ̂ϕ0 − σzϕ0) (ζ̂Φ − σzΦ)

−σx̄y 1 0 0 0 0 −σx̄ϕ0 −σx̄Φ

−σε̄y −σε̄x̄ρ+1 1 0 0 0 −σε̄ϕ0 −σε̄Φ

−σξy 0 0 1 0 0 −σξϕ0 0

0 0 0 0 1 0 0 −σΞΦ

−σv̄y 0 −σv̄ε̄2 −σv̄ξ2 −σv̄(Ξ)2 1 −σv̄ϕ0 −σv̄Φ


.

(5.155)

The matrix Ē can be augmented using the method in Section 3.3, described by (3.56),

namely

Ê ≜



(ζ̂y − σzy) 0 −σϵ̄2 −σzξ2 −σz(Ξ)2 −σzv̄ 0 0

−σx̄y 1 0 0 0 0 −σx̄ϕ0 −σx̄Φ

−σε̄y −σε̄x̄ρ+1 1 0 0 0 −σε̄ϕ0 −σε̄Φ

−σξy 0 0 1 0 0 −σξϕ0 0

0 0 0 0 1 0 0 −σΞΦ

−σv̄y 0 −σv̄ε̄2 −σv̄ξ2 −σv̄(Ξ)2 1 −σv̄ϕ0 −σv̄Φ

0 0 0 0 0 0 (ζ̂ϕ0 − σzϕ0) 0

0 0 0 0 0 0 0 (ζ̂Φ − σzΦ)



.

(5.156)

The first 6 × 6 submatrix, denoted as E according to the convention in Section 3.3, is

directly associated with the primary basis functions y2, x̄2ρ+1, ε̄
2
2, ξ

2
2 , |(Ξ)2|2, and |v̄|2.

The underlying graph of E is depicted by Fig. 5.4, in which the augmented vertices asso-

ciated with the basis functions |ϕ0|2 and |Φ|2 are omitted for simplicity as they are not

contained in any cycles. Moreover, since the damping coefficients ζ̂y, ζ̂ϕ0 , ζ̂Φ are adap-

tively adjusted (which makes node z an active node) and vertex z is contained in every

directed cycles of the underlying graph, the conditions of Theorem 3.7 are satisfied. Then,

if we define Vzζ = Vz +
1

2γζy
(ζy − ζ̂y)2 + 1

2γζϕ0
(ζϕ0 − ζ̂ϕ0)2 + 1

2γζΦ
(ζΦ − ζ̂Φ)2 and re-define

V̄ = [Vzζ , Vx̄, Vε̄, Vξ, VΞ, Vv̄]
⊤, an overall storage function can be constructed via linear scal-

ing, namely, V ≜ ς⊤V̄ . By Proposition 3.3, for all ϖ̂ > 0, there exists ς > 0, depending
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on ϖ̂, such that

V̇ ≤ −ϖ̂⊤ψ̂ − ς⊤ψ̃ ≤ 0, (5.157)

where ψ̃ ≜ [
∑ρ

i ciz
2
i ,

∑n
ρ+2 x̄

2
i , ε̄

2
1 +

∑n
3 ε̄

2
i , ξ

2
1 +

∑n
3 ξ

2
i , |(Ξ)1|2 +

∑n
3 |(Ξ)i|2]⊤. The rest

of the proof is identical to the original proof of Proposition 5.3 and the claims in the

proposition hold true.

Figure 5.4: The underlying direct graph described by E (the first 6 × 6 submatrix of
Ē in (5.155), with the augmented vertices omitted).

It is worth comparing the time-varying case with the classical time-invariant case,

say, the scheme in [75, Chapter 8], by using the node-schematic interpretations in Fig. 5.5.

Though the structure of the schematics is more complex than the ones presented in previ-

ous sections and chapters, the core idea is essentially the same: in the time-invariant case

(Fig. 5.5(b)), the interconnections of the subsystems are acyclic, for which boundedness

and convergence properties can be established separately; whereas in the time-varying

case (Fig. 5.5(a)), cyclic interconnections are created by the time-varying perturbations,

hence a small-gain-like analysis is needed to establish boundedness and convergence prop-

erties for the overall system. Furthermore, the proposed scheme uses adaptive damping

terms parametrized by ζ̂y, ζ̂ϕ0 , and ζ̂Φ, which exploits Proposition 3.3 as a synthesis tool

to dominate the cyclic interconnection. This does not require the bounds of unknown

parameters generated by the change of coordinates, which is favourable in practice as the

computation of such bounds is typically difficult.
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Figure 5.5: Schematic interpretation of the interconnected z, x̄, ε̄, ξ, Ξ, and v̄ subsys-
tems. (a) shows the interconnection of the case in which the system parameters are
time-varying and (b) shows the interconnection of the classical time-invariant case.
The signal Y is a collection of the y-related signals y, ϕ0(y), and Φ(y).

5.2.5 Simulations

To compare the proposed controller with the classical adaptive controller, consider the

nonlinear system described by the equations

ẋ1 = a1(t)x
2
1 + x2,

ẋ2 = a2(t)x
2
1 + x3 + b1(t)u,

ẋ3 = a3(t)x
2
1 + b0(t)u,

y = x1,

(5.158)

where the time-varying parameters are defined by

b1(t) = 1 + 0.2 sin(5t), b0(t) = 6 + sin(10t), (5.159)

a(t) = [1,−2,−2]⊤ − 10 sgn

(
∂α1

∂y
z2

)
(ω̄)3:5
|(ω̄)3:5|

, (5.160)

with (ω̄)3:5 ≜ [(ω̄)3, (ω̄)4, (ω̄)5]
⊤. Each of these parameters comprises a constant compo-

nent and a time-varying component. For parameter a the time-varying component is also

state-dependent, and it is designed to destabilize the system. It is not difficult to verify

that Assumption 5.3 is satisfied since b0(t)
b1(t)
≥ 5

1.2 > 0, for all t ≥ 0.

Consider now three scenarios similar to the ones in Section 4.4 and Section 5.1.5.
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The “Baseline” scenario is the case in which the system parameters are constant (evaluated

by their constant components in (5.159)) and the controller used is the classical adaptive

backstepping controller. The “Controller 1” scenario considers the time-varying system

parameters and uses a modified backstepping controller with projection for θ̂ (confined in a

ball centred at the origin and with radius 20) and ϱ̂ (confined in a ball centred at the origin

and with radius 6). The “Controller 2” scenario considers the time-varying parameters (the

same as the ones in the “Controller 1” scenario) and adopts the proposed controller. To

compare the three scenarios fairly, set the common controller parameters as c1 = c2 = 1,

Γθ = I, γϱ = 1 and the initial conditions θ̂(0) = 0, ϱ̂(0) = 1. Each scenario uses an

identical set of K-filters given by (5.83)–(5.85). The filter gains are obtained by solving

the algebraic Riccati equation (5.104) with Qε̄ = 10 and γε̄ = 100, and the filter states are

initialized to 0. The initial condition for the system state is set to x(0) = [1, 0, 0]⊤. For

the parameters solely used in the “Controller 2” scenario, set γ(·) = 1, ϵ(·) = 1, δ∆bm
= 0.2,

ϵ∆θ̄
δ∆θ̄

= 1 (note that the knowledge of δ∆θ̄
is not required as mentioned in Remark 5.11),

with the dynamic damping parameters initialized as ζ̂y(0) = 1, ζ̂Φ(0) = 1 (non-zero initial

conditions provide additional damping from the beginning to counteract the time-varying

effects).

To keep the comparison fair when using state-dependent parameters (similarly to

Section 4.4 and Section 5.1.5), the scenarios “Controller 1” and “Controller 2” are simu-

lated in parallel and simulated twice, generating two sets of simulation data. For the first

set, the state-dependent time-varying parameters of both scenarios are generated by the

“Controller 1” scenario; and for the second simulation set the parameters are generated

by the “Controller 2” scenario. Also note that the “Baseline” scenario does not contain

state-dependent parameters and is simulated only once.

The responses of the closed-loop signals in each scenario and in each simulation

set are plotted in Fig. 5.8 and Fig. 5.9, respectively, and the parameters used in each

simulation set are shown in Fig. 5.6 and Fig. 5.7, respectively. In Simulation set 1, the

state-dependent parameters are designed to destabilize the closed-loop system of the “Con-

troller 1” scenario. One can observe from Fig. 5.6 and Fig. 5.8 that the parameter vari-

ations between 3.5 second and 4 second excite oscillations in the “Controller 1” scenario,

even though the output seems to have been “regulated” to 0 before 3.5 second. Whereas

in Simulation set 2, in which the parameters are designed to destabilize the system con-
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trolled by the proposed Controller 2, the proposed controller restores the performance

of the “Baseline”scenario, with no additional oscillation caused by parameter variations

being observed. These results show that the proposed controller (Controller 2) outper-

forms the classical controller (Controller 1) in the presence of time-varying parameters

and effectively prevents the oscillations caused by parameter variations.
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Figure 5.6: Simulation set 1: time-varying parameters generated by the closed-loop
system controlled by Controller 1.
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Figure 5.7: Simulation set 2: time-varying parameters generated by the closed-loop
system controlled by Controller 2.
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Figure 5.8: Simulation set 1: time histories of the system state and control effort
driven by different controllers and the parameters shown in Fig. 5.6.
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Figure 5.9: Simulation set 2: time histories of the system state and control effort
driven by different controllers and the parameters shown in Fig. 5.7.
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Chapter 6

Applications

In the preceding chapters the closed-loop performance of the proposed adaptive control

schemes have been tested with numerical examples and have been compared with those

resulting from the use of classical control schemes designed for time-invariant systems. This

chapter aims to shed some light on potential applications of the congelation of variables

method and the notion of active node proposed in the thesis. In the first application,

control problem for an actuator servo is solved by treating state-dependent nonlinearities as

time-varying parameters and by applying the modified I&I scheme. The second application

is concerned with the solution of a disease control problem for interconnected settlements

exploiting the notion of active nodes, which allows introducing quarantine measures to

fewer settlements.

6.1 Series Elastic Actuators

In this section the adaptive I&I scheme introduced in Section 4.2 is exploited to design

a controller for the so-called series elastic actuators (SEAs) [104]. SEAs are widely used

in robotics: they turn a force control problem into a position control problem using the

elastic characteristic of the link, exploiting the well-known Hooke’s law.

Control problems arise in SEA due to the extra dynamics caused by the elastic

linkage compared to traditional servo problems. A variety of control methods have been

applied to SEAs, including PID control [104], PD control with a disturbance observer [71],

adaptive control [12], and sliding mode control [8]. In most works, the elastic linkage
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is modelled as a linear spring with known stiffness and the force exerted on the load

is determined by the relative position between the load and the actuator. However, in

general, the elastic linkage has nonlinear elastic characteristic. Such nonlinearity is either

designed on purpose [138], [108], or unavoidable due to the properties of elastic material

[107].

A nonlinear spring can be described by the equation

Fs = Ks(d)d, (6.1)

where Fs is the elastic force of the spring, Ks is the apparent stiffness function, and d

is the deflection of the spring. In the case of a linear spring, Ks is a constant. Since

d(t) is time-varying, the value of Ks

(
d(t)

)
is also time-varying and with a slight abuse of

notation one can also write Ks(t). This allows viewing Ks as a time-varying parameter and

applying an adaptive control scheme for time-varying systems to the SEA position/force

control problem, which circumvents the need for incorporating the detailed description of

the nonlinearity of the spring into the control design step.

Figure 6.1: Schematic of the SEA with a fixed load.

We now consider the SEA connected with a fixed load as shown in Fig. 6.1. This is

the scenario in which the end-effector is in contact with the object to be manipulated and

gradually exerts a force on the object (for instance, the egg-grasping task). The goal of the

control is to let the DC motor drive the moving end of the spring to the desired deflection

d∗ such that the force exerted on the load is the desired value Ks(d∗). The transient stage

should behave in an over-damped manner so that the force on the end-effector does not
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cause damage. The physical model of the SEA with fixed load driven by a translational

DC motor (a compound of DC motor, gearbox, and linkages that turn the rotary motion

into translational motion) is given by the differential equations

md̈ = −Ks(d)d−Kvḋ+Kf i,

Li̇ = −Ri−Kbḋ+ Vin, (6.2)

where m is the apparent mass of the moving parts (the total inertia of the rotor of the

motor, the gearbox and other linkages); Kv is the viscous friction constant; Kf is the

current-to-force constant; Kb is the back-electromotive-force constant; L is the inductance

of the armature; R is the resistance of the armature; i is the current across the armature;

and Vin is the voltage on the armature. Assume in addition that the constants of the DC

motor are known and the only unknown “parameter” is Ks

(
d(t)

)
.
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Figure 6.2: Plot of the stiffness function Ks of the nonlinear spring.

Consider an asymmetric nonlinear spring1, the stiffness of which (plotted in Fig. 6.2)

is given by

Ks(d) =


2Ks1

(
1− l01√

d2 + l21

)
, d ≥ 0

2Ks2

(
1− l02√

d2 + l22

)
, d < 0,

(6.3)

1A realization of the nonlinearity by means of linear springs is discussed in [138, Fig. 8 (b)] and a
realization of the asymmetry is presented in [108, Fig. 4].
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where Ks1 and Ks2 are the stiffness constants of the linear springs used to realize the

nonlinear spring device, l01, l02, l1, l2 are parameters related to geometric configurations

such that l01 ≤ l1, l02 ≤ l2. The system (6.2) has an equilibrium at d = d∗, ḋ = 0, i = i∗,

with input Vin = Vin∗. In a regulator problem we want to shift the origin of the state

variables to the desired set point. To this end, define the shifted elastic characteristic

Ks∗(d) such that Ks∗(d − d∗) = Ks(d). This allows writing (6.2) into the 3-dimensional

state space model

ẋ1 = x2,

ẋ2 = ϕ(x1)θ(x1)− ax2 + x3,

ẋ3 = u, (6.4)

where x1 ≜ d−d∗, x2 ≜ ḋ, x3(t) ≜
Kf

m (i− i∗), u(t) ≜
Kf

L

(
(Vin−Ri−Kbḋ)− (Vin∗−Ri∗)

)
,

a ≜ Kv
m , ϕ(x1) ≜ −x1, and

θ(x1) ≜
1

m

(
Ks∗(x1) +

Ks∗(x1)−Ks∗(0)

x1
d∗

)
. (6.5)

Due to boundedness of Ks∗(x1) and the Lipschitz continuity of Ks∗(x1) at x1 = 0, θ
(
x1(t)

)
can be treated as a bounded time-varying parameter and denoted by θ(t), with a slight

abuse of notation.

Since system (6.4) contains unmatched uncertainty, the controller design requires

the use of the backstepping procedures as follows. Note that in general the over-

parametrized scheme used in Section 4.2.3 is required for lower-triangular systems, be-

cause the construction of the β function (4.41) in Section 4.2.1 does not possess the

lower-triangular dependency. However, for system (6.4), the selection (4.41) is valid since

β(x, x̂) = γθΦ(x̂)x = γθ

[
0 −x̂1 0

]
x1

x2

x3

 = −γθx̂1x2 (6.6)

is brought to the control synthesis stage in the second step of backstepping, indicating

that (6.6) has a lower-triangular dependency (β only depends on variables with a subscript

less or equal to 2). Therefore, overparametrization is not needed for the considered SEA
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system and we can directly use the dynamic scaling estimator discussed in Section 4.2.1.

Proceed now with the backstepping procedure.

Step 1. Define z1 = x1 and z2 = x2−α1, the first two backstepping error variables,

and let the first virtual control law be

α1 = −σ1, (6.7)

where σ1 is a damping function to be defined. This yields

ż1 = z2 + α1 = −σ1 + z2. (6.8)

Step 2. Define z3 = x3 − α2 and

α2 = −σ2 − z1 − ϕ2(θ̂ + β) + ax2 +
∂α1

∂x1
x2, (6.9)

with σ2 a damping function to be defined. Then the dynamics of z2 becomes

ż2 = z3 + α2 = −σ2 − z1 + z3 + ϕ2(rzθ −∆θ), (6.10)

with zθ ≜
θ̂ − ℓθ + β

r
.

Step 3. Let the actual control law

u =− σ3 − z2 +
∂α2

∂x1
x2 +

∂α2

∂x2

(
(θ̂ + β)− ax2 + x3

)
+
∂α2

∂r
ṙ +

∂α2

∂x̂
˙̂x+

∂α2

∂θ̂

˙̂
θ, (6.11)

with σ3 to be defined. This yields the dynamics of the third error variable

ż3 = −σ3 − z2 +
∂α2

∂x2
ϕ2(rzθ −∆θ). (6.12)

Proposition 6.1. Consider system (6.4) with the dynamic scaling estimator given by

(4.41), (4.42), (4.43), (4.48), (4.47), and the controller (6.11). Select the damping terms
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as

σ1 =

(
c1 +

13

2
δ2∆θ

)
z1, (6.13)

σ2 = (c2 + r2 + 1)z2, (6.14)

σ3 =

(
c3 +

(
∂α2

∂x2

)2

(r2 + 1)

)
z3, (6.15)

with c(·) > 0. Then, all trajectories of the closed-loop system are bounded and lim
t→+∞

x(t) =

0. In particular, d→ d∗ as t→ +∞.

Proof. Consider the Lyapunov function candidate Vz =
1
2z

2
1 +

1
2z

2
2 +

1
2z

2
3 . The time deriva-

tive of Vz along the trajectories of the system is such that

V̇z =− σ1z1 + z1z2 − σ2z2 − z1z2 + z2z3 + z2ϕ2(rzθ −∆θ)

− σ3z3 − z2z3 + z3
∂α2

∂x2
ϕ2(rzθ −∆θ)

≤− σ1z1 − σ2z2 − σ3z3 + z22(r
2 + 1)

+ z23

(
∂α2

∂x2

)2

(r2 + 1) +
1

2
(ϕ2zθ)

2 +
1

2
δ2∆θ

ϕ22. (6.16)

Using the damping terms (6.13)-(6.15) yields

V̇z ≤ −c1z21 − c2z22 − c3z23 − 6ϕ22 +
1

2
(ϕ2zθ)

2. (6.17)

It can be concluded from Proposition 4.3 that lim
t→+∞

z(t) = 0 and all trajectories of the

closed-loop system are bounded. Using a standard argument for stability in the back-

stepping scheme, lim
t→+∞

z(t) = 0 implies lim
t→+∞

x1(t) = 0 and lim
t→+∞

α1(t) = 0, which gives

lim
t→+∞

x2(t) = 0, since lim
t→+∞

z2(t) = 0. In the same way we can prove that lim
t→+∞

x3(t) = 0

and this completes the proof.

Remark 6.1. In practice it is not necessary to use exactly δ∆θ
when designing the con-

troller. It leads to a conservative design that can guarantee boundedness and convergence

properties even in the worst case, however, the resulting controller can have high gains and

large-amplitude control signals, which may cause robustness issues. Typically a discounted

version of the “radius” δd < δ∆θ
can be implemented to make a “softer” version of the



6.1 Series Elastic Actuators 203

proposed controller.

Consider now the SEA with the parameters: Ks1 = 45 N/m, Ks2 = 50 N/m,

l01 = l02 = 1 × 10−3 m, l1 = l2 = 5 × 10−3 m, m = 1 kg, R = 3 Ω, L = 1.5 × 10−4 H,

Kf = 1.5 N/A, Kb = 2.5 V·s/m, Kv = 0.01 N·s/m, and the estimator-controller setting:

γθ = 1 × 103, λ = ϵ = 5, κ = 100, c1 = 2, c2 = 2, c3 = 2, δ2d = 2. Let d∗ = 2 × 10−2 m,

and let the initial condition be x(0) = [−0.04, 0, −0.85]⊤ (the third element enforces zero

initial armature current).

The closed-loop system responses are shown in Fig. 6.4. The closed-loop is tuned

to behave in an “overdamped” manner so that the force is smoothly exerted on the load

and thus prevents damage to the manipulated load. Fig. 6.3 shows the time history of

the state-dependent parameter θ during the transient stage. Note that θ is bounded as is

stated in the discussion on (6.5).

The SEA example shows that the congelation of variables method can be exploited

to extend the use of adaptive control, which has mainly been used for coping with constant

parametric uncertainties in the classical scenarios, to deal with state-dependent nonlin-

earities (treated as time-varying parameters). It is therefore natural to apply this idea to

other systems with state-dependent nonlinearities of similar characteristics.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

36

38

40

42

44

46

48

Figure 6.3: Time history of θ.
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Figure 6.4: Time histories of the states of the closed-loop system.
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6.2 Disease Control of Interconnected Settlements

In this section we discuss how to use the notion of active nodes to solve a dis-

ease control problem. In particular, consider the deterministic Susceptible-Infectious-

Quarantined-Susceptible (SIQS) model [35, 46], a modification from the Susceptible-

Infectious-Susceptible (SIS) model (see e.g. [91, Section 10.3]). The isolated version the

SIQS model is described by the equations

Ṡ = − βSI

N
+ γ(I +Q),

İ =
βSI

N
− (γ + δ)I,

Q̇ = δI − γQ, (6.18)

where S(t) ≥ 0 is the susceptible population, I(t) ≥ 0 is the infectious population, β > 0

is the infection parameter, γ > 0 is the recovery parameter, and δ > 0 is the quarantine

parameter. Since Ṡ + İ + Q̇ = 0, the total population N remains constant, that is,

S(t) + I(t) = N, (6.19)

for all t ≥ 0. This model describes infectious diseases that are in general non-lethal and for

which immunity is not acquired after recovery, like influenza. Therefore the infectious and

quarantined population returns to the susceptible population once recovered, instead of

being removed. It is possible to extend this model to a scenario in which n interconnected

settlements and the population migrating among them are considered. For simplification,

in this example we assume that (6.19) holds for every settlement, that is,

Si(t) + Ii(t) +Qi(t) = Ni, (6.20)

for i = 1 . . . n, as the population that the facilities of each settlement can support is

approximately constant in the considered time period. Consider now the interconnected

version of the infectious population dynamics

İi =
βiSiIi
Ni

−
(
γi + δi +

∑
j∈Si

µji
Ni

)
Ii +

∑
j∈Pi

µij
Nj

Ij , (6.21)
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where µij ≥ 0 denotes the rate of migration from settlement j to settlement i. Clearly,

equation (6.20) holds if and only if

∑
j∈Si

µji =
∑
j∈Pi

µij , (6.22)

which indicates the balance of migration. Substituting (6.20) into (6.21) yields

İi = −
(
γi + δi − βi +

1

Ni

∑
j∈Si

µji

)
Ii +

∑
j∈Pi

µij
Nj

Ij − Pi, (6.23)

where Pi ≜
βi
Ni

(I2i +QiIi). It is not difficult to verify that R+ is forward invariant for Si,

Ii, Qi and therefore Pi(t) ≥ 0 for all t ≥ 0. Thus one can select Vi(Ii) = Ii as the storage

function for each node and the associated dissipation inequality is

V̇i ≤ − aiIi +
∑
j∈Pi

bijIj , (6.24)

where ai ≜ γi + δi − βi + 1
Ni

∑
j∈Si

µji, bij ≜
µij
Nj

. Note that so far we have not specified

whether the parameters γi, βi, µij are constant or time-varying. In the classical SIQS

model these parameters are assumed to be constant. It turns out that if these parame-

ters are time-varying, ai and bij are also time-varying scalar parameters, which requires

rewriting (6.24) into the dissipation inequality

V̇i ≤ − ℓaiIi +
∑
j∈Pi

ℓbijIj , (6.25)

with constant parameters ℓai ≜ inft≥0 ai(t) and ℓbij ≜ supt≥0 bij(t). This, however, does

not alter the structure of the underlying directed graph.

It can be observed that in the case in which neither migration nor quarantine is

considered (that is, all µ-terms and δ-terms are zero), the infectious population of each

settlement converges to zero if the basic reproduction number denoted by R0i ≜
βi
γi
< 1, or

equivalently, βi > γi. If quarantine measures are adopted, there exists a δi > 0 such that

δi > βi−γi, which guarantees that the local infectious population asymptotically converges

to zero. For convenience of the subsequent discussion, we assume that the quarantine force
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at each settlement is at least locally “sufficient” in the sense that the condition

δi > βi − γi −
1

Ni

∑
j∈Si

µji (6.26)

holds, for i = 1, . . . , n. The counterpart of this condition in the interconnected case is,

however, more complicated due to the non-zero bij-terms. The infection in the network

system can be amplified through the interconnections even if the damping effect at each

node is sufficient for the isolated scenario. This is part of the reasons why cutting off

transport is considered as a public health control measure. In what follows we show, using

the notion of active nodes, that it is possible to bring the infectious population to zero at

each settlement without the need for cutting off inter-settlement transport, provided the

quarantine forces at the settlements that serve as the “transport hubs” are adjustable.

Figure 6.5: The directed graph describing the migration among the six settlements.

Consider now the six interconnected settlements described by the graph in Fig. 6.5,

with each settlement containing population of N ≜ [N1, . . . , N6]
⊤ = [12, 50, 30, 70, 24, 18]⊤

(unit: thousand people) migration parameters defined by µij ≜ (M)ij , where M(t) ≜
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Mconst +MTV (t),

Mconst ≜



0 6 0 0 0 0

6 0 9 7 0 0

0 7 0 13 0 0

0 9 11 0 12 8

0 0 0 12 0 0

0 0 0 8 0 0


, (6.27)

and

MTV (t) ≜



0 sin 2π
7 t 0 0 0 0

sin 2π
7 t 0 −1.4 sin 2π

7 t 0.8 cos 2π
7 t 0 0

0 −1.4 sin 2π
7 t 0 −1.8 cos 2π

7 t 0 0

0 0.8 cos 2π
7 t −1.8 cos 2π

7 t 0 2 sin 2π
7 t 1.1 cos 2π

7 t

0 0 0 2 sin 2π
7 t 0 0

0 0 0 1.1 cos 2π
7 t 0 0


,

(6.28)

with unit: thousand people/day. The sinusoidal signals in MTV (t) is included to model

the weekly fluctuations of migration rates. One can verify that the given M(t) matrix

satisfies conditions (6.22) for i = 1, . . . , 6 and for all t ≥ 0. Only one infectious disease

prevailing among the settlements is considered. The associated infection and recovery

parameters are βi = 2.0 and γi = 1.4 (unit: day−1), for i = 1, . . . , 6, respectively2. The

initial conditions are I(0) = [0.03, 0.045, 0.015, 0.012, 0.015, 0.022]⊤ and Q(0) = 0 .

In this example the quarantine forces δi is the control variable to be designed.

Consider now two quarantine policies. In Scenario 1, a regional quarantine policy is applied

to all six settlements, with identical quarantine force at each settlement, that is, δi = 0.5,

for i = 1, . . . , 6. This verifies the conditions (6.26). This, however, does not guarantee that

the infectious population converges to zero, as shown in Fig. 6.6. The infectious population

and quarantine population reach a nonzero equilibrium in the 3-month period considered,

which is also called the endemic steady state, a common phenomenon of SIS or SIQS

2The values of β and γ are adopted from the simulation model of seasonal influenza considered in [99].
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models. Note that the node dissipation inequalities (6.24) are in a similar form as (3.2).

Furthermore, conditions (6.26) guarantee that ai > 0, for n = 1, . . . , 6. Therefore, instead

of strengthening the quarantine measures in the whole region, we can exploit the notion of

active nodes and the adaptive technique discussed in Section 3.4.3. This case, denoted by

Scenario 2, only requires applying more strict quarantine measures at settlements 2 and

4 (denoted by green solid circles in Fig. 6.5). More specifically, we replace the constant

quarantine forces δ2 and δ4 with adaptive estimates δ̂2 and δ̂4, updated by the equations

˙̂
δ2 = 1.2I2, δ̂2(0) = 0.5, (6.29)

˙̂
δ4 = 3I4, δ̂4(0) = 0.5. (6.30)

Note that due to the monotonicity and the given initial conditions of δ̂2 and δ̂4, the

projection operation is not needed in this scenario. Invoking Proposition 3.3, we conclude

that the supply rate in the network dissipation inequality is negative definite in I and

applying standard invariance analysis yields convergence of I to zero, which is confirmed

by the simulation results shown in Figs. 6.7 and 6.8.

The example discussed is simple but reveals that it is possible to exploit the notion

of active nodes and the transport topology for a more efficient public health policy, which

does not require an overall strict quarantine or transport lockdown over all nodes and may

improve the trade-off between safety and disruption of normal life. It should, however, be

emphasized that the SIQS model considered is only an elementary epidemiological model

and does not consider the side effects brought by excessive enforcement of quarantine.

A settlement that serves as a “transport hub” typically also provides essential services

to the neighbouring settlements. An excessively strengthened quarantine policy at the

“transport hubs” can effectively prevent the spread of diseases, whereas at the same time

hinder the delivery of necessary services and supplies to the whole region. In the light of

this, public health policy-making requires comprehensive consideration of all aspects of

the society to achieve comprehensive and sustainable welfare.
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Figure 6.6: Time histories of the infectious and the quarantined populations in Sce-
nario 1.
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Figure 6.7: Time histories of the infectious and the quarantined populations in Sce-
nario 2.
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Figure 6.8: Time histories of the estimated quarantine forces in Scenario 2.
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Chapter 7

Conclusion

7.1 Summary of the Results

The thesis has proposed and discussed adaptive control schemes for time-varying systems,

along with the two key theoretical tools:

• the congelation of variables method for re-formulating the original problem; and

• the notion of active nodes for dominance design over cyclic interconnection.

The thesis has reviewed the challenges brought by parameter variations in the classical

control, that is, the “corruption” of passivity or L2-stability due to parameter variations

and has introduced the idea of the congelation of variables. Using such a method, the

time-varying parameters can be divided into a constant unknown component and a time-

varying perturbation. The constant component yields an underlying adaptive control

problem that can be solved by classical parameter update schemes, and the time-varying

perturbation creates cyclic interconnections among the subsystems to be dominated via a

small-gain-like framework.

To conduct a dominance design over the network of subsystems with cyclic struc-

ture, the notion of active nodes has been introduced, which suggests that as long as the

node systems the damping coefficients of which are adjustable, i.e. the active nodes, form

an FVS of the underlying graph of the network system, the overall dissipation inequal-

ity can be made negative by means of linear or nonlinear scaling of the node dissipation
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inequalities. Within this framework analysis and control synthesis conditions have been

proposed for systems with quadratic supply rates, sum-type nonlinear supply rates, and

linearly parametrized nonlinear supply rates. The methods for effectively placing the ac-

tive nodes, and the schemes for obtaining damping coefficients with and without explicit

computation, respectively, have been provided.

Using the two tools proposed, the thesis has then investigated the state-feedback

adaptive control problem for a class of nonlinear systems with lower-triangular structure.

The combination of the congelation of variables method with the passivity-based scheme,

the I&I scheme, and the identification-based scheme has been elaborated. Simulation

results show that the proposed scheme has superior performance in the presence of time-

varying parameters, compared to classical schemes.

The thesis has also studied the output-feedback adaptive control problems. The I&I

scheme for SISO linear time-varying systems, and the passivity-based scheme for a class of

SISO nonlinear systems have been proposed. The control synthesis and stability analysis

have been proven both using the constructive method and the small-gain-like framework

based on active nodes. The notion of active nodes significantly reduces the complexity of

the analysis and increases the flexibility of the results. The simulation results show that

the performance of the proposed output-feedback schemes is also superior to that of their

classical counterparts.

Potential applications, including the servo control problem of SEA, in which the

nonlinearity are viewed as a time-varying parameter to simplify the design, and a disease

control problem among interconnected settlements, in which the settlements serving as

“traffic hubs” are set as active nodes, have been discussed. These provide some examples

on how the proposed theoretical results can be exploited in practice.

7.2 Future Research Directions

Though the thesis has provided tools and a framework to systematically solve the adaptive

control problem for a certain class of systems, the current results are far from comprehen-

sive. This leaves some interesting directions for future study, listed in what follows.

• The current results rely on the condition that the effects of time-varying parameters
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vanish at the reference set-point or trajectory (in the thesis such a condition is

enforced by Assumption 1.4). The relaxation of such a condition yields a disturbance

rejection problem. This requires either the knowledge of the exosystem that generates

the time-varying parameters, or a non-smooth control law that resembles (higher-

order) sliding-mode control. It is interesting to see if the same result can be achieved

without using the knowledge of parameters model or non-smooth control laws.

• The dynamic nonlinear damping terms for dominance design, in the current re-

sults, can only be updated by passivity-based schemes, whereas in the I&I and

identification-based schemes, one has to use static nonlinear damping terms. This is

due to the fact that these damping terms are introduced by the designer, not come

inherently from the system. Thus, while these terms can be “compensated”, they

cannot be “identified” or “observed”. It would be interesting to see if one can use

I&I or identification-based to achieve such dynamic dominance design.

• The active nodes defined in the thesis possess damping coefficients that can be ad-

justed up to +∞, that is, the damping coefficients, viewed as a whole, have a conic

admissible region. It is interesting to see how the results based on FVS may change if

one considers a polyhedral admissible region for the damping coefficients, resulting,

for example, in putting upper limits for these coefficients.

• The analysis for the output-feedback schemes explicitly considers the inverse dy-

namics of the system. Though the systems are assumed to be minimum-phase, the

spirit of the analysis may provide a better framework to investigate adaptive control

problem for nonminimum-phase systems, which remains an open topic.

• The thesis focuses on output-feedback problems for SISO systems. It would be

interesting to understand what modifications are needed to extend the current results

to the multiple-input multiple-output case.
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Appendix A

Useful Lemmas

Lemma A.1 (Young’s inequality). Let a ∈ Rn, b ∈ Rn, and ϵ > 0. The inequality

a⊤b ≤ 1

2ϵ
|a|2 + 1

2
ϵ|b|2 (A.1)

holds.

Lemma A.2 (Young’s inequality for functions [139]). Consider a continuous strictly in-

creasing function f and positive real numbers, a ∈ [0, c], b ∈ [0, f(c)], c > 0, Then the

inequality

ab ≤
∫ a

0
f(s)ds+

∫ b

0
f−1(s)ds (A.2)

holds, and in particular, the equality holds if and only if b = f(a).

Lemma A.3 (Hadamard’s lemma). ([45], see also, e.g., [95, Lemma 2.8] for modern

interpretations) A smooth mapping ϕ : Rn → Rq can be written as

ϕ(x) = ϕ(x̄) + Φ̄(x)(x− x̄), (A.3)

where x̄ ∈ Rn and Φ̄ : Rn → Rq×n is a smooth mapping. A possible selection of Φ̄ is

Φ̄(x) =

∫ 1

0
∇⊤ϕ

(
x̄+ s(x− x̄)

)
ds, (A.4)

where ∇⊤ϕ denotes the Jacobian of ϕ.
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The following two lemmas are useful to establish convergence.

Lemma A.4 (Barbalat’s lemma [9]). Let ϕ : R≥0 → R be a uniformly continuous function.

If

∣∣∣∣ lim
t→+∞

∫ +∞

0
ϕ(s)ds

∣∣∣∣ =M < +∞, then

lim
t→+∞

ϕ(t) = 0. (A.5)

Lemma A.5. Consider a storage function V ≥ 0 and the associated dissipation inequality

V̇ ≤ −W (y), where W (·) is a differentiable positive definite function and y : R→ Rny is

differentiable. If ∂W
∂y and ẏ are bounded, then

lim
t→+∞

y(t) = 0. (A.6)

Proof. Since W is positive definite and V̇ ≤ −W (y), one has

0 ≤
∫ +∞

0
W

(
y(t)

)
dt ≤

(
V
(
y(0)

)
− V

(
y(+∞)

))
≤ V

(
y(0)

)
. (A.7)

Note that Ẇ = ∂W
∂y ẏ is bounded due to boundedness of ∂W∂y and ẏ, and W ◦ y is uniformly

continuous in t. Invoking Barbalat’s lemma yields

lim
t→+∞

W
(
y(t)

)
= 0. (A.8)

Hence lim
t→+∞

y(t) = 0 due to the positive definiteness of W .

It should be noted that Lemma A.5 is a commonly used argument in the proofs for

adaptive control systems (see, e.g., [125]) and it is formulated in this form for the conve-

nience of the expressions in this thesis. Boundedness analysis and convergence analysis

for adaptive control systems, especially for those using auxiliary filters, are typically done

separately. For this reason, Lemma A.5 and its counterparts commonly found in the liter-

ature, are more popular than LaSalle-Yoshizawa Theorem (see, e.g., [75, Theorem A.8]),

which proves boundedness and convergence together, but requires incorporating all state

variables into the proof at once. Nevertheless, both the spirits and the proofs of these

results are essentially similar as they are all based on Barbalat’s lemma.

The next lemma provides a useful property of adjustable class-K∞ functions.
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Lemma A.6. Consider class-K∞ functions α, β. There exists γ ∈ K∞ such that for all

class-K∞ function γ ≥ γ, there exists a class-K∞ function α ≥ α, depending on γ, which

satisfies

α− β ≥ γ. (A.9)

Proof. Letting γ = α and α = β + γ + δ, with δ ∈ K∞. Since β, γ,and δ are class-K∞

functions, α is also a class-K∞ function. In addition,

α ≥ γ + β ≥ α+ β ≥ α, (A.10)

which satisfies (A.9). The proof is now complete.

In short, Lemma A.6 reveals that an adjustable α ∈ K∞, lower-bounded by α ∈

K∞, guarantees the existence of an adjustable γ ∈ K∞, lower-bounded by γ ∈ K∞ and

satisfying (A.9).
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