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Abstract

Electric power systems are transforming from synchronous machine (SG) dominated systems to com-

posite grids in which inverter-based resources (IBRs) coexist with SGs. The lack of standardisation of

IBRs leads vendors to treat their control algorithms as commercial secrets and they are willing to dis-

close only black-box models that give input-output relationships but no internal details. An impedance

model spectrum is commonly put forward as a black-box model useful for stability analysis.

Several types of impedance models have been proposed to represent the dynamic characteristics of

a complete power networks. A study is undertaken to compare two types of networked impedance

models: those based on direct nodal or loop analysis and those based on a whole-system formulation.

The underlying relationship between eigenvalues of the impedance matrix and the oscillatory modes

of the network for both model types have been unclear but are resolved here and the relative merits of

the models are established.

Through examining eigenvalue sensitivity, a proposal is made for an impedance participation factor

that can identify root-causes of low damping. It is proved that the impedance participation factor is

related to the classic state-space participation via a chain-rule relationship. Based on the chain-rule,

a grey-box approach is developed as a generic method for root-cause tracing in impedance models.

It has three degrees of transparency according to the available information and they are aggregated

participation, damping contribution, and key parameters. The grey-box approach can indicate appro-

priate re-tuning of parameters that would shift the oscillatory mode in a desired direction in complex

plain so as to stabilise the system. The theoretical contributions are verified through three differ-

ent scales of case study: a simple three-node passive circuit, a modified IEEE 14-bus system and a

modified NETS-NYPS 68-bus system.

A significant advantage of using an impedance model is that the model can, in principle, be measured

online with injection of a small-signal perturbation. However, a vital issue of concern is error caused

by noise in the measured signals since this will determine the magnitude of injected perturbation

required and the practicality of arranging that. To address this issue, a noise analysis process for

impedance measurement is proposed in this thesis, from which guidance on selecting an appropriate

injection magnitude can be provided. To verify the proposed analysis process, a power-hardware-in-

the-loop system is built where a high-bandwidth power amplifier (OP1400 series) is used to inject the

perturbation.

i



The theoretical developments and noise analysis presented in this thesis combine to offer stability

analysis and root-cause tracing of the type normally found only in white box state-space models

but here are available in models built from equipment manufacturers’ black-box models or from

measurement-based models.
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Chapter 1

Introduction

1.1 Stability Challenges with the High Penetrations of IBRs

The deployment of renewable energy sources (RES) is progressing rapidly around the world. In

2020, RES generated an estimated 29.0% of global electricity, up from 27.3% in 2019 [1]. By 2021,

renewable electricity generation had expanded by more than 8% to reach 8,300 TWh, the fastest

year-on-year growth since the 1970s [2]. On 29 January 2021, wind generation in the UK reached

19.6 GW, which was the highest ever share of the electricity mix across the country at 66.2% [3]. Not

only is this remarkable for the growth in renewable energy but also, because wind, photovoltaic (PV)

and battery energy storage system (BESS) generation use inverters to export power, inverter-based

resources (IBRs) are replacing synchronous generators (SGs) and becoming the dominant sources in

power systems [4].

Although IBR facilitates remarkable climate change mitigation and economic benefits, the high level

of IBRs in power systems is causing stability challenges. Instabilities induced by IBRs are observed

worldwide and the characteristics are evidently different to those of SG-dominated grids including the

issue of harmonic pollution in the grid [5–15]. A recent example is that on 9 August 2019, following

a lightning strike, two modules in Hornsea 1 wind farm deloaded from around 737 MW to zero due to

a technical fault which included oscillatory behaviour and contributed to a large-scale power outage

in the UK [16, 17]. According to the technical report from Ørsted, the company who runs Hornsea 1,

1
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Figure 1.1: Line to line RMS voltage (the blue waveforms) and reactive power output (the orange
waveform) from Hornsea, 10 minutes prior to the 9 August 2019 power outage in the UK, in response
to a 2% voltage step change, showing that a low-damped mode had been existed [18].

this deload was a knock-on effect caused by insufficient damping of resonance: the lightning strike

triggered oscillatory response in the wind farm system, which in turn caused unexpected wind farm

control response, which further led to the wind farm deload [18]. In the investigation of this event,

oscillations were also spotted at Hornsea 1 wind farm during a 2% voltage step change 10 minutes

prior to the blackout event, as shown in Fig. 1.1. Such oscillations indicate that a low-damped mode

had been existed in the system before the power outage happened. Although Ørsted stated that this

was the first time such oscillations had led to a deload of a windfarm, it is crucial to recognise that low-

damped modes in an IBR dominated system are risks to system stability. To this end, it is important

to assess the system stability, to identify the potential risks (low-damped modes) and tune the system

to increase the damping to avoid such events.

For conventional grids, state-space modelling is the mainstream approach for stability assessment.

Typically, state-space models can be used for identifying instability (through eigenvalue mapping)

[19–23], for tracing the root-cause of instability (through eigenvalue sensitivity and participation fac-

tors) [24–27] and for damping design (through pole-placement, linear matrix inequalities etc) [28–30].

The establishment of a state-space model relies on a set of state variables and parameters combined in
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the equations that describe the dynamics of each of the components in the system. As a result, state-

space modelling requires the full-knowledge of the system and is considered to be an open model,

often described as a white-box model. Such a model is feasible in an SG-dominated system because

SGs are largely standardised and have common models, such as the widely used linear magnetic cir-

cuit model [31]. Importantly, the controllers of SGs, such as exciters and power system stabilizers

(PSS), also exist as commonly-used standard types [32, 33].

Unlike SG, the dynamic behaviour of IBRs is highly dependent on the internal control system which is

extremely flexible and far from standardised. Manufacturers treat their control algorithms as critical

proprietary technology and when, asked to disclose models to system operators (SOs) for stability

prediction, they prefer to disclose only a black-box model which obscures details of internal working.

The black-box models provided by manufactures are usually in complied binary library files such

as ’.lib’ and ’.dll’ files that can be incorporated in standard time-step simulators of power system of

the electro-magnetic transient (EMT) or root-mean-square (RMS) form. In this format, the control

algorithms can be invoked by a numerical solver and are then used for time-domain simulation [34–

36]. Such models can represent dynamics, nonlinear dynamics, with high fidelity, hence offering

explicit and convincing results for stability validation. However, the EMT simulation is very time-

consuming, especially for large scale power systems and when exhaustive studies of many operating

point variations are needed, while the RMS simulation only considers the fundamental frequency

values. In addition, the underlying stability risks sometimes cannot be observed from time-domain

simulation.

Considering the challenges described in this section, a less time-consuming but more interpretive

black-box model is desired for SOs to assess the stability of power systems with high penetrations of

IBRs.

1.2 Impedance Models in Three-Phase AC systems

Due to the restriction of binary library files as a model of IBR, research attention has fallen on an alter-

native black-box model: the impedance model, or equivalently the admittance model [37–40]. Such
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models are frequency-domain models representing linearised small-signal dynamics via frequency

spectra or transfer functions.

1.2.1 Illustration of Impedance Model

Impedance, or admittance, expresses the frequency-dependent relationship between voltage and cur-

rent at the output ports of a device or a system. Typically, the symbol Z(s) is employed to represent

an impedance, where s is a complex number frequency parameter s = σ ± jω, with real numbers σ

and ω. Similarly, the symbol Y (s) is usually used to represent admittance. An impedance given in

transfer function format is usually expressed as a polynomial such as

Z (s) =
ans

n + an−1s
n−1 + · · ·+ a1s+ a0

bmsm + bm−1sm−1 + · · ·+ b1s+ b0
. (1.1)

For physical systems, {a0, a1, · · · , am} and {b0, b1, · · · , bn} are all real numbers. Alternatively, an

impedance can be written in a pole-zero form as

Z (s) =
(s− zn) (s− zn−1) · · · (s− z1)

(s− pm) (s− pm−1) · · · (s− p1)
, (1.2)

where {p1, p2, · · · , pm} are the poles of the system while {z1, z2, · · · , zn} are the zeros. The location

of the poles and zeros in the complex plane can provide qualitative insights into the response char-

acteristics of a system. It is worth mentioning that for physical systems, zeros and poles are either

real-valued numbers or conjugate pairs of complex numbers. For a proper system, the number of

zeros cannot exceed the number of poles. Another representation is the pole-residue form as

Z (s) =
rm

s− pm
+

rm−1

s− pm−1

+ · · ·+ r1
s− p1

, (1.3)

where {r1, r2, · · · , rm} refer to the residues in line with the poles, which are either real numbers or

conjugate pairs of complex numbers, depending on the corresponding poles {p1, p2, · · · , pm}.

In addition to transfer functions, impedance can also be represented by a frequency spectrum, ex-

pressed as Z(jω), and depicted in Bode plots. Bode plots are helpful for stability analysis and control
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Figure 1.2: (a) An impedance spectrum, in Bode plot form, measured at one node of a modified IEEE
14-bus network. (b) Step-response of active power at that node, showing that a 18.9 Hz oscillation
can be observed which matches the peak observed in the Bode plot.
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design in that they allow assessment of phase margin [41, 42]. A frequency spectrum also offers a

straightforward way of identifying poorly damped modes in a system because these modes typically

appear as ’peaks’ in Bode plots, and the smaller the damping of the mode, the more significant the

peak will be [43]. Fig. 1.2(a) shows the impedance spectrum measured at one node of a modified

IEEE 14-bus network, where a significant peak is visible at 18.9 Hz. This indicate that the system

contains a 18.9 Hz oscillatory mode. Fig. 1.2(b) shows a time-domain simulation of the active power

at that node during a step change of the load in the system. It is clear that a 18.9 Hz oscillation is

generated during the transient period, which confirms the presence of the mode seen in the spectrum.

In general, impedance models offer some interpretability in the sense of poles and zeros in transfer

functions, as well as resonance peaks in the spectrum.

1.2.2 Impedance Model of an IBR

We first describe an impedance model of an IBR in a single-phase system. A single-phase IBR can

be treated as a single-port system, as shown in Fig. 1.3(a). A single-port system can be represented

in two ways. An IBR working as a voltage source, such as grid-forming inverter, can be represented

in a Thévenin equivalent circuit in which its output impedance ZS(s) is in series with an internal

voltage source VS [37, 44, 45], as shown in Fig. 1.3(b). This impedance ZS(s) describes the way in

which the output voltage changes for changes in output current. And because an impedance model

is essentially a linearised small-signal model, the definition of impedance needs to be established in

small-signal scope, i.e., a small-signal perturbation is introduced around an equilibrium value. In

the Thévenin equivalent circuit in Fig. 1.3(b), a small-signal perturbation ĩ on the output current is

introduced, while the internal source VS is unperturbed and treated as 0 for small-signal analysis. In

such a condition, the small-signal output voltage ∆v at the port is

∆v = ZS(s) · ĩ, (1.4)

where ZS(s) is defined as the impedance model of this IBR since it describes the relationship between

the small-signal voltage and small-signal current at the port. In the alternative case for an IBR behav-
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Figure 1.3: Small-signal impedance model of a single-phase IBR: (a) single-port illustration. (b)
Thévenin equivalent circuit defining the impedance model. (c) Norton equivalent circuit defining the
admittance model.

Figure 1.4: Small-signal impedance model of a three-phase IBR in d-q frame: (a) two-port illustration.
(b) IBR impedance model in d-q frame. (c) IBR admittance model in d-q frame.

ing as current source, such as grid-following inverter, a Norton equivalent circuit can be used where

the output admittance YS(s) is in parallel with a current source IS [46–48], as shown in Fig. 1.3(c).

Similarly, when introducing a small-signal voltage ṽ at the output port, the resulting small-signal

current will be

∆i = YS(s) · ṽ, (1.5)

where YS(s) is defined as the admittance model of this IBR.

Now we extend the IBR impedance models to three-phase AC systems. Because the system is three-

phase, a frame transformation is usually applied in which the stationary frame is transformed to the

synchronously rotating d-q frame, such that the three-phase ac system becomes two coupled dc sys-

tems [49]. The IBR is then seen as a two-port system in the d-q frame, as shown in Fig. 1.4(a).

Fig. 1.4(b) shows the formulation of the IBR impedance model, where two Thévenin equivalent

circuits are employed. In addition to the impedance, each circuit contains a small-signal current-

controlled voltage source (effectively a trans-impedance) that represents the coupling between the

d-axis and the q-axis. The steady, unperturbed, internal voltage sources are omitted. In contrast to
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the single-phase example, the small-signal variations in d-q frame are vectors of dimension 2 and the

impedance element in Fig. 1.3(b) is replaced by a 2× 2 matrix in d-q frame [50], such that:

 ∆vd

∆vq

 =

ZSdd (s) ZSdq (s)

ZSqd (s) ZSqq (s)

 ·

 ĩd

ĩq

 , (1.6)

where, the impedance model of an IBR in d-q frame is defined as

ZS(s) =

ZSdd (s) ZSdq (s)

ZSqd (s) ZSqq (s)

 . (1.7)

Similarly, Fig. 1.4(c) demonstrates the IBR admittance model in d-q frame, where two Norton equiva-

lent circuits are employed and two controlled current sources are presented. The unperturbed internal

current sources are omitted. The relationship between the small-signal voltage input and current

output is  ∆id

∆iq

 =

YSdd (s) YSdq (s)

YSqd (s) YSqq (s)

 ·

 ṽd

ṽq

 . (1.8)

The admittance model of an IBR YS(s) in d-q frame is then defined as

YS (s) =

YSdd (s) YSdq (s)

YSqd (s) YSqq (s)

 . (1.9)

The characteristics of the impedance of an IBR is basically shaped by its hardware (resistance, in-

ductance and capacitance) and software (control loop parameters). There are many approaches to

acquiring impedance model expressions of IBRs. A common approach is to use an analytical method,

such as traditional linearisation [50, 51], harmonic linearisation [39, 52], or through equivalent cir-

cuit manipulation (known as an impedance circuit model) [53]. Such methods use parameter values

of the IBR to calculate the transfer function of the impedance model. Taking an impedance (rather

than admittance) circuit model as an example, using the principles of equivalent-circuit formation

(applications of Ohm’s Law, Superposition Theorem, Thévenin’s or Norton’s equivalent circuits), the

control loops of an inverter can be visualised as discrete circuit elements in an impedance circuit, with
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values calculated from the control parameters. Fig. 1.5(a) illustrates the typical control arrangement

of a grid-forming inverter, where explanations of the parameters can be found in appendix D.2. By

applying the impedance circuit model analysis, the equivalent circuit of Fig. 1.5(b) can be created in

which the controllers, virtual impedances, cross-coupling and decoupling effects, and feed-forward

of output-current and output-voltage can all be represented by a collection of impedance elements

shown with dashed lines to distinguish them from physical impedances. The impedances have been

colour-coded to identify them with specific control elements. The calculation of each impedance

elements and the additional effect of the droop controller can be found in [53].

The analytical method is limited in applicability to cases where full knowledge of the design of the

IBR is available, thus the its use is dependent on the cooperation of vendors and is not fully available

to the SO by default. Besides this, an impedance model is essentially a small-signal model estab-

lished upon steady state and so the model would vary according to the operating point of the system

and the operating point of a power systems is expected to vary widely. The relationship between

an impedance model and the operating point is yet not fully understood. Furthermore, because of

the difference between analytical equations based on simplifying assumptions and detailed hardware

implementations, the analytical impedance models cannot completely describe the behavior of a real

IBR. An alternative approach to acquire impedance models is the measurement-based method which

opens promising opportunities for impedance models [54, 55]. A measurement-based model is found

from a set of real rather than notional voltage or current perturbations applied to an IBR at a range

of frequencies and the corresponding measured responses. Fig. 1.6 [56] shows the positive-sequence

impedance spectra of a 2 MVA BESS inverter measured by National Renewable Energy Laboratory

(NREL) when the BESS inverter was operated in grid-following and grid-forming control modes.

This demonstrates measurement-based impedance spectra can be obtained on power system appara-

tus without knowing any design details and can thus help either vendors to assess their own modelling

or help SOs to acquire independent models.

From a measured spectrum, a corresponding transfer function can be obtained using the vector fitting

technique [57]. Impedance measurement can be fulfilled online [58,59] and thus can be used as a data-

driven approach for stability assessment [60]. A very recent research work [61] combines an artificial

neural network method with the impedance measurement method to identify the model under various
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Figure 1.5: (a) Illustration of the design of a droop-controlled grid-forming inverter. (b) Impedance
circuit model of the grid-forming inverter [53]. Copyright © 2021, IEEE..
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Figure 1.6: Positive-sequence impedance spectra of a 2 MVA BESS inverter measured by National
Renewable Energy Laboratory (NREL) when it is operated in grid-following and grid-forming control
modes [56]. Copyright © 2019, IEEE.

Figure 1.7: d-d axis admittance spectrum of a grid-following inverter at different operating points,
showing that the spectrum varies along with the change of operating points [61]. Copyright © 2020,
IEEE.
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operating points which is said to offer more reliable results in varying conditions. Fig. 1.7 [61] shows

the admittance spectrum of a grid-following inverter equipped with phase-locked loop (PLL) working

at different operating points. It can be noticed that the admittance spectrum of an inverter can vary

according to the changes of its output current. This means that a single spectrum at one operating

point is sometimes not sufficient to describe all the dynamic characteristics of the inverter, and online

measurement is needed to cover different situations. Still, as a matter of fact, measurement error

caused by noise is not yet fully analysed, so the choice of perturbation amplitude to apply rests on the

experience of researchers rather than analysis. Impedance measurement techniques and related issues

will be discussed in detailed in Chapter 5.1.

1.2.3 Impedance Models for Nyquist-based Stability Assessment

The use of impedance models has been popular in the power electronic field used mainly to analyse

the interactions between a power electronic converter (source) and a load connected at the output

of the converter [62–64]. Considering a case where a voltage source converter VS(s) with internal

impedance ZS(s) is connected with a load with admittance of YL(s), the load current IL(s) can be

derived as

IL(s) = VS(s)
YL (s)

1 + ZS (s)YL (s)
. (1.10)

The load voltage can then be acquired:

VL(s) =
IL(s)

YL (s)
= VS(s)

1

1 + ZS (s)YL (s)
. (1.11)

In such way, the relationship between input voltage VS(s) and output voltage VL(s) can be written as

a closed-loop transfer function as 1/(1 + ZS (s)YL (s)) and the corresponding loop transfer function

is ZS (s)YL (s). The Nyquist criterion can then be applied: the system will be closed-loop stable

if and only if the number of counter-clockwise encirclements about (−1, 0j) by the Nyquist plot of

ZS (s)YL (s) be equal to the number of right half plane (RHP) poles of ZS (s)YL (s). This stability

assessment method was widely applied to low-voltage DC distribution networks [65–67], but has

been extended to 3-phase AC systems in the d-q frame to predict the stability at the point of common



1.2. Impedance Models in Three-Phase AC systems 13

coupling (PCC) [45,49,68–71]. The extension of the impedance method to 3-phase AC systems opens

up a path to using impedance representation as an analytical tool for power systems.

To apply the Nyquist Criterion in a power system, the system first needs to be separated into two

parts: a source-side part and a load-side part. Fig. 1.8(a) shows the single-line diagram of such a

bi-partition, where an IBR is presented as the source and a load is connected at the other side. An

IBR working as a voltage source, such as grid-forming inverter, can be represented in a Thévenin

equivalent circuit in which its output impedance ZS(s) is in series with a voltage source VS(s), and

the load is represented as an admittance YL(s), as shown in Fig. 1.8(b). In the alternative case of

an IBR behaving like current source, such as grid-following inverter, a Norton equivalent circuit can

be applied where output admittance YS(s) is in parallel with a current source IS(s), and the load is

represented as an impedance ZL(s), as shown in Fig. 1.8(c). Taking a Thévenin equivalent circuit as

an example:

ZS(s) =

ZSdd (s) ZSdq (s)

ZSqd (s) ZSqq (s)

 , YL (s) =

YLdd (s) YLdq (s)

YLqd (s) YLqq (s)

 , VS(s) =

 VSd (s)

VSq (s)

 . (1.12)

In such a representation, the voltage at the PCC can be derived as [72]

VPCC(s) = (I + ZS(s)YL (s))
−1 VS (s) , (1.13)

where I is an identity matrix. Since the system is a multi-input and multi-output (MIMO) system

in d-q frame, the generalised Nyquist stability criterion (GNC) needs to be employed for stability

assessment of the matrix form of the transfer function. From (1.13), the return ratio matrix L(s) can

be defined as

L(s) = ZS (s)YL (s) , (1.14)

such that

L (s) =

Ldd (s) Ldq (s)

Lqd (s) Lqq (s)

 . (1.15)

Because the system is now extended to MIMO, the term ‘return ratio matrix’ is employed, which is

in contrast with ‘loop transfer function’ in a SISO systems. L(s) contains two frequency-dependent
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Figure 1.8: Single-line diagram of Nyquist-based formulation of impedance models in power systems:
(a) source-side and load-side bi-partition. (b) Thévenin equivalent circuit. (c) Norton equivalent
circuit.

Figure 1.9: Single-line diagram of a meshed network with multiple sources, loads and branches,
showing that it is difficult to separate the system into a source-side and a load-side.

eigenvalues: ι1(s) and ι2(s), the traces of which in the complex plane are also called a set of charac-

teristic loci (eigenloci). According to the GNC [73, 74], the system will be closed-loop stable if and

only if the net sum of anticlockwise encirclements of the critical point (−1, 0j) by the set of eigenloci

of L(s) is equal to the total number of right-half plane poles of ZS(s) and YL (s). Based on the GNC,

the stability of the PCC voltage can be assessed.

Although widely studied for stability assessment and progressed in several ways, the GNC-based

method remains based on a source-side and load-side bipartition of the grid system. Such separation is

straightforward in low-voltage dc system but can be extremely difficult in a meshed AC network [75].

Fig. 1.9 shows a meshed network with multiple sources and loads. It can be seen that it is difficult to

re-structure such system into a source-side and a load-side, meaning GNC-based analysis is hard to

apply in meshed networks like power systems. This is an important factor obstructing the application

of impedance models in power systems.
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1.3 Motivations and Objectives of this Thesis

The possibility of using impedance models in power system stability analysis has prompted a wide

range of research works. However, there are several crucial issues remain unsolved, which limits the

application of impedance models.

1.3.1 Networked Impedance Models

The basic form of the impedance model as a single impedance spectrum observed at one bus means

that it can not represent the full dynamics of an entire power system comprising many buses. Along-

side that difficulty, it is also hard to divide a power system into a source-side and a load-side and

without that the GNC-based analysis cannot be applied. As an alternative, recent research has turned

to impedance models which can represent the whole network, referred as networked impedance mod-

els [47, 76–79]. Individual impedance models are first aligned to a global frame [76] then assembled

together to form an impedance matrix in the global d-q frame. There are essentially two categories of

networked impedance models referred to here as the nodal-loop models [77–79] and whole-system

models [47, 76]. Such models are transfer functions or frequency spectra assembled in matrix form,

such that each entry in the matrix is a transfer function or a frequency spectrum expressed in a global

synchronous frame. These models will be described in detail in Chapter 2 but for now we note that

the nodal-loop model category is further categorised into nodal admittance models Y nodal and loop

impedance models Z loop, and the whole-system model category is further categorised into whole-

system impedance models Zsys and whole-system admittance models Y sys.

The four types of networked impedance models are defined via different methods. For Y nodal and

Z loop, they are defined in a similar fashion as the conventional nodal admittance matrix and loop

impedance matrix used in power flow calculation. The Zsys and Y sys types are developed from a

closed-loop formation in which each entry contains the dynamics of the whole-system. Although all

these models carry common information, i.e., the full dynamics of the system, the inherent relations

between them, as well as their unique characteristics and relative merits have not yet been established

by previous research. In order to select a suitable model for system analysis from among these mod-
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els types, the relationship between nodal-loop model and whole-system model and their underlying

association with oscillatory modes should be compared and clarified, so that their relative merits can

be established.

For stability analysis of a power system through a networked impedance model, it is important to

create a comprehensive view of the entire system not just a view at a single PCC. In state-space

models, eigenvalue analysis has been well established as a means to view all system dynamics [19,

24, 25]. The eigenvalues of the state-space matrix have explicit physical meaning in that conjugate

complex pairs of eigenvalues represent oscillatory modes of the system. For an eigenvalue of the state-

space model λ = σ ± jω, the term ω/(2π) gives the frequency of oscillation in Hz and 1/|σ| gives

the time-constant of the decay of oscillation amplitude. To perform similar analysis in impedance

models, the association between impedance models and state-space models needs to be built. It

has been observed that the zeros of the determinant of nodal-loop models are equal to state-space

eigenvalues [79–81] and the poles common to all elements of a whole-system model are equal the

state-space eigenvalues [76]. However, such findings have not yet created a comprehensive and clear

explanation of all of the relationships .

1.3.2 Modal Analysis in Impedance Models

A networked impedance model is created in a matrix form in a similar way to a state-space matrix,

and appears to have a relationships to state-space. This suggests that seeking further modal analysis

of impedance models such as identifying participation factors and eigenvalue sensitivities might be

possible. Researchers around the world have made progress on using impedance models for stability

analysis [77, 78, 82–92]. So far, two major approaches to impedance-based modal analysis have

been proposed: the resonance mode analysis (RMA) method [77, 78, 82–89], and the Nyquist-based

participation analysis [90–92]. These two methods are reviewed in detail in Chapter 3. However,

the available methods of eigenvalue sensitivity and participation factor assessment for impedance

models are less precise and clear than their equivalents in state-space models, for instance being

restricted to comparing the magnitude of complex quantities with no meaning attached to the angles,

or forming judgements by visual inspection. These indications are useful to an extent but leave the
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engineer needing to tune parameters according to judgement and experience. There is no standard

and unambiguous procedure for sensitivity and participation analysis, i.e., a whole procedure that can

determine the major participants of modes, identify the badly-tuned components, indicated the most

effective parameters for tuning inside these components, and eventually offer precise tuning guidance

for these parameters.

1.3.3 Errors of Impedance Measurement

Online impedance measurement is a potentially important way of obtaining a black-box impedance

model, and a bridge to connect the analytical method with practical implementations. Efforts have

been made to develop perturbation injection equipment and suitable waveforms for small-signal in-

jections and these will be introduced in detail in Chapter 5. However, as a measurement process, the

identification of an impedance spectrum involves errors which may severely affect the final results.

Two important issues related to measurement errors remain unsolved. The first issue is the choice

of signal amplitude and signal to noise ratio (SNR). Background noise and harmonics are known to

exist in the signal channel and can strongly affect measurement results and lead to low accuracy. On

the one hand, the amplitude of injected signal could set as large as possible for higher SNR, while

on the other hand, the amplitude should be as small as possible to minimise its influence on the

operation of the system and its stability. The existence of this conflict has been noted by researchers

but has usually been solved by a trade-off based on experience or numerous trial-and-error attempts.

For example, [59] considers 5% of AC voltage and 10% of AC current as a proper range for small-

signal perturbation without discussing the reason behind this. [93] states that signal with 1% to 5%

of nominal power is required for satisfactory results based on experience at the author’s institution.

In [56], a set of measurements under perturbations of 0.5%, 5% and 10% of the steady-state value

were performed, showing that the measurement results can be affected by noise if the injections are

too small, but a suitable amplitude was not discussed. Researchers have noticed the importance of

noise analysis and tried to assess the value of SNR [94], but the value is only provided for adding

context and aiding intuitive sense rather than being used to to determine the injected amplitude.
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The second issue is the validation of measurement results. So far it is not clear how to estimate the

error present in an impedance measurement taken from an experiment because of the absence of ref-

erence, or true, value. Most research work presents experimental results as Bode plots together with a

‘reference’ plot derived from analytical or simulation results. By observing the dispersion of measure-

ment points on the Bode plot, a rough impression of measurement error can be obtained. However,

as is commonly acknowledged, hardware devices will not be strictly the same as their analytical rep-

resentation because of the presence of nonlinear behaviors such as dead time and therefore the plot

derived from a linearised model or simulation cannot be considered as the true value for the hardware.

Besides this, the impedance measurement results are originally complex numbers, while Bode plot is

acquired from the argument of the complex numbers. Because the gain-plot and phase-plot in a Bode

plot involve errors in different units, it is difficult to compare the errors among different plots.

1.3.4 Objectives of this Thesis

This objectives of this thesis can be concluded as below:

1) To clarify the association between impedance models and the state-space model, and to estab-

lish the relationship among different types of networked impedance models so that the appro-

priate model can be chosen for analysis.

2) To propose a comprehensive theory for root-cause analysis in impedance models, together with

a standard and unambiguous procedure for sensitivity and participation analysis, i.e., a whole

procedure that can determine the major participants of modes, the badly-tuned components, the

most effective parameters inside these components, and eventually offer precise tuning guid-

ance on these parameters.

3) To propose a method which can determine the minimum injection amplitude for impedance

measurement based on an allowable error. Alongside this, a method is needed to determine

what the true value of the impedance of a physical system is so that measures can be judged

for accuracy, and indeed, a metric for measurement error needs to be established so that mea-

surement results can be compared with each other. These are considered as objectives of the
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measurement portion of the thesis.

These objectives are achieved in the following chapters of this thesis, and the outcomes have been

published as two research papers [95, 96].

1.4 Thesis Structure

The main content of the thesis is organised as follows:

Chapter 2 introduces and compares the two categories of networked impedance models and estab-

lishes their relative merits. The association between impedance models and the state-space model is

also discussed.

Chapter 3 reveals the drawbacks of existing impedance-based modal analysis methods and proposes

a comprehensive theory of root-cause analysis in networked impedance models, including eigenvalue

sensitivity and participation factor. A three-layer grey-box approach is then invented as a systematic

way to facilitate root-cause tracing to different depths.

Chapter 4 verifies the root-cause theory and the grey-box approach through case studies of various

scales: a three-node passive network, a modified IEEE 14-bus network and a modified NETS-NYPS

68-bus network.

Chapter 5 investigates the issues identified in impedance measurement and develops a full process for

noise analysis which can be the basis of choosing the injection amplitude and of validating measure-

ment results. Hardware experiments are undertaken to verify the process.

Chapter 6 sets out the conclusions of the work, identifies the contributions of this thesis and discusses

suggestions for future work.



Chapter 2

Networked Impedance Models and

Comparative Study

This chapter will describe the two categories of networked impedance models mentioned in the in-

troduction, namely the nodal-loop models and the whole system models. The relationships between

the two categories will be explored as will their relationship to state-space modelling. A comparative

study is carried out which offers guidance on how to choose a suitable model for different situations.

The main content of this chapter has been published as part of [96] and some sentences and figures

from that paper are reused here.

To recap some of the remarks from the introduction, a single impedance spectrum or transfer function

observed at one node in a network through load-source separation is insufficient to cover all dynamic

characteristics of the system and for that reason networked impedance models have been developed.

The impedances of all apparatus, as well as connecting lines, are included in the networked impedance

models so that the contain all of the dynamics of the systems. Here the term ’apparatus’ is used to

refer to IBRs, synchronous generators and also active loads in the system. There are essentially two

categories of networked impedance model: the nodal-loop model which is further categorised into

Y nodal and Z loop, and the whole-system model which is further categorised into Zsys and Y sys. It is

also worth noting that the impedance of each apparatus is established in its local rotating frame, so

that frame alignment among all impedances is needed before assembling them together.

20
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2.1 Frame Alignment

Apparatus in three-phase AC systems are normally modeled in a rotating reference frame aligned to

the local angle, such as the angle of the physical rotor of a machine or the angle identified by a PLL of

an inverter. To assemble together the models of apparatus at different nodes, these locally referenced

models need to be aligned to a global frame. The alignment is straightforward in a state-space model

because the angle difference between a local frame (node-k) and the selected global frame (node-1)

is available directly from the difference in local frequencies which will be states of the state-space

model:

δ̇k = ωk − ω1, (2.1)

where ωk is the local frame speed and ω1 is the global frame speed.

In contrast, frame alignment is not straightforward in impedance models because impedance models

only express relationships between voltage and current and contain no explicit information on frame

angles. It has been reported that errors can be introduced if impedance models at different nodes

are assembled together without frame alignment [47], and a set of results illustrating this are shown

in Fig. 2.1. It can be clearly seen that the impedance with frame alignment is consistent with the

frequency-scan results carried in simulations, while results without alignment can lead to significant

errors. The alignment in [47] rests on an assumption that the local phase angles are constant values.

This is appropriate for systems with high inertia because the frame dynamics (i.e., rotor swing and

frequency perturbation) in such systems are well separated in frequency from the small-signal stability

issues because they are of very low-frequency. However, for systems with high penetration of IBRs

and low inertia, the local frame dynamics introduced by PLLs cannot be neglected [76].

To solve this issue, a two-step alignment method has been proposed in [76] and is briefly introduced

here. Fig. 2.2(a) illustrates the frame alignment process, where impedance models that are built under

their own local swing frames, are first aligned to a local steady frame, then aligned from local steady

frames to the global steady frame. The local swing frame is the frame in which local impedance

models are established, aligned to either a rotor angle or a PLL angle. The local steady frame is

defined as a frame aligned to the local steady-state operating point, with a constant speed ω0. Based
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Figure 2.1: The spectrum of impedance at the PCC of a simple interconnected ac power electronics
system, showing that the model does not match with simulation results if the frames are not aligned
[47]. Copyright © 2020, IEEE.

on such separation, the local-to-global frame transformation can be fulfilled in two steps: (i) from a

local swing frame to a local steady frame, i.e., from dynamic to constant, and (ii) from a local steady

frame to the global frame, i.e., from constant to constant.

The second step is simple because the transformation is from one steady frame to another steady

frame which contains no dynamics and is therefore a fixed angle rotation. By obtaining the angle ξk

of node-k from power flow analysis, the transformation can be directly derived as

Zk(D′Q′) = Tξk · Zk(d′q′) · T−1
ξk , Tξk =

cos ξk − sin ξk

sin ξk cos ξk

 , (2.2)

where Zk(D′Q′) is the impedance model at node-k aligned to the global steady frame, Zk(d′q′) is the

impedance at the local steady frame, and Tξk is the transfer matrix.

The first step, in which a local swing frame is transformed into a local steady frame has been named

frame-dynamics-embedding impedance transformation. From a local swing frame to a local steady

frame, the voltage transformation is

uk(d′q′) = Tεk · uk(dq), Tεk =

cos εk − sin εk

sin εk cos εk

 (2.3)
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Figure 2.2: (a) Frame alignment in impedance modeling: a local swing frame is first aligned to a local
steady frame, with dynamics introduced via dynamic angle εk, local steady frame is then aligned to the
global steady frame. ε and ξ are angle differences between frames. (b) Signal flow diagram of frame-
dynamics-embedding impedance transformation, showing how a local swing frame is transformed
into a local steady frame [76]. Copyright © 2021, IEEE.

where uk(d′q′) and uk(dq) denote the voltage in steady frame and in swing frame, εk is the dynamic

angle by which the k-th local swing frame axes leads the k-th steady frame axes. The idea of frame-

dynamics-embedding impedance transformation is to perform linearisation on (2.3) to see the effect

of frame perturbation, such that

∆uk(d′q′) = ∆uk(dq) + uk0 · ε, (2.4)

in which

∆uk(d′q′) =

 ∆uk(d′)

∆uk(q′)

 ,∆uk(dq) =
 ∆uk(d)

∆uk(q)

 , uk0 =
 −uk0(q)

uk0(d)

 ,
uk0(d) and uk0(q) are voltages at the steady-state condition in the d-q frame. (2.4) applies the fact that

ε = 0 when there is no perturbations, and lim
ε→0

(sin ε) = ε. In a case where a frame perturbation ε is

introduced by a current perturbation, i.e., ∆idq, the corresponding frame variation will be

ε(s) = Ki(s)∆idq(s), (2.5)

where Ki(s) is the transfer function representing the current governed frame dynamics. Combining

(2.4) and (2.5), it can be concluded that a current disturbance ∆idq can induce a perturbation (or

swing) of the local swing frame by ϵ, which in turn affects the representation of the current and the
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voltage in the steady frame. With such relationship, the signal flow of the frame-dynamics-embedding

impedance transformation can be concluded as Fig. 2.2(b), and the impedance in local steady frame

can be deduced as

Zk(d′q′) =
∆uk(d′q′)
∆ik(d′q′)

=
(
Zk(dq) + uk0Ki

)
(I + ik0Ki)

−1 , (2.6)

where I is a identity matrix, uk0 and ik0 are voltage and current in steady-state point:

uk0 =

 −uk0(q)

uk0(d)

 , ik0 =
 −ik0(q)

ik0(d)

 .
The frame alignment of admittance models is conducted in a similar fashion and is explained in [76],

where examples are also provided to show the ways of acquiring the term Ki(s).

This frame-alignment method is applied in the case studies of this thesis. For the sake of brevity, all

impedance models discussed in the remainder of this thesis have been aligned to the global d-q frame

so that they can be assembled together.

2.2 Formulation

2.2.1 Nodal-loop Model

Nodal-loop model is defined in the similar manner to the well-known nodal admittance matrix YN

and loop impedance matrix ZL used for power flow calculation. A set of circuit equations can be

established from nodal or loop circuit analysis of a network, and assembled into a transfer-function

matrix to form a nodal-loop model. There are two formats: a nodal admittance model Y nodal and a

loop impedance model Z loop. Here we form Y nodal as an example.

The nodal admittance matrix familiar from power flow studies, YN, is a matrix that expresses the

admittances of the network lines connected at each node of a network. It is a matrix composed of

single-value quantities evaluated at the fundamental frequency of the grid. To extend the scope to
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frequency domain analysis, YN is first reformed as a matrix of admittances as functions of frequency

(transfer functions) as

YN =



YN11 (s) YN12 (s) · · · YN1n (s)

YN21 (s) YN22 (s) · · · YN2n (s)

...
...

...
...

YNn1 (s) YNn2 (s) · · · YNnn (s)


. (2.7)

The diagonal entry YNkk(s) represents all admittance terminating at node k, whereas the off-diagonal

entry YNki(s) is the negative of the sum of admittance between node k and node i. Each entry is a

2× 2 matrix block in the global synchronous d-q frame, such that

YNki (s) = −

Rki + sLki −ω0Lki

ω0Lki Rki + sLki


−1

YNkk (s) = −
∑
i̸=k

YNki (s) +

R−1
kk + sCkk −ω0Ckk

ω0Ckk R−1
kk + sCkk

 ,
(2.8)

where Rki and Lki are the series-connected resistance and inductances between node k and node i,

and Rkk and Ckk are the shunt-connected resistance and capacitance at node k.

Turning now to the dynamics of apparatus, each apparatus is represented by an admittance model as

introduced in Chapter 1.2.2, and these are assembled together into form a diagonal matrix YA as

YA =



YA1(s)

YA2(s)

. . .

YAn(s)


, (2.9)

where each entry is the admittance of the shunt-connected apparatus (including active loads), and
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again a 2× 2 matrix block in d-q frame as

YAk(s) =

YAk,dd (s) YAk,dq (s)

YAk,qd (s) YAk,qq (s)

 . (2.10)

It is also worth noting that this description covers only apparatus that are shunt-connected but series-

connected apparatus in branches such as a static series synchronous compensator (SSSC) or the series

element of a unified power flow controller (UPFC), could be included by merging them into YN.

The formulation of nodal admittance model of the system, Y nodal, proceeds by connecting the ad-

mittance of apparatus YA with the admittance of the network YN, through a process which can be

understood from considering a virtual injection. Fig. 2.3(a) shows a network of n nodes represented

by YN with individual apparatus admittances at each node. At each node there is also a voltage pertur-

bation ṽ applied which creates corresponding changes in nodal currents ∆i which flow in the parallel

combination of the apparatus admittance and the nodal admittance. The overall response of the system

to a perturbation injection is expressed as

∆i = Y nodal · ṽ, (2.11)

where

ṽ = [ṽ1, ṽ2, · · · , ṽn]T

∆i = [∆i1,∆i2, · · · ,∆in]T .
(2.12)

Apparently the nodal admittance model is the summation of the nodal admittance matrix YN and the

apparatus admittance matrix YA due to the parallel combination, such that

Y nodal = YN + YA. (2.13)

The fact that both YN and YA respond directly to the perturbation and combine in a simple manner to

form Y nodal is in contrast to other models in which a feedback is formed between two elements of the
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model. For this reason the nodal admittance model can also be referred to as an open-loop model [47].

In a similar manner, the loop impedance model Z loop expresses how a vector of current perturbations

applied to each loop current of the grid creates a vector of corresponding additional voltage drops

around the loop, as shown in Fig. 2.3(b),

∆v = Z loop · ĩ, (2.14)

where

ĩ =
[̃
i1, ĩ2, · · · , ĩn

]T

∆v = [∆v1,∆v2, · · · ,∆vn]T .
(2.15)

Although the loop impedance model is broadly a dual of the nodal admittance model and might be

equally useful, it suffers one significant disadvantage that it can be formulated in a variety of ways

for a given grid because there are multiple legitimate ways to define a set of loops covering the

network. Without a systematic approach to the choice of loop currents, there is not a single unique

loop model for a given network and so ambiguity can exist. Consequently, it is difficult to manipulate

this model in further analysis. In the remainder of this thesis, only Y nodal form of the nodal-loop

model is discussed. It is also worth noting that the small-signal injections in Fig. 2.3 are only shown

for understanding but cannot be fulfilled in real because a small-signal voltage source cannot override

the shunt-connected apparatus, neither can a small-signal current source override the branch current.

2.2.2 Whole-system Models

As discussed in Chapter 1.2.3, the formation of a model by identification of a source impedance

and load admittance was feasible for simple power supply systems but difficult to apply in a meshed

network with intermingled sources and loads and so for that reason other formulations have been

sought. A useful separation is between, on the one hand, the shunt-connected apparatus appearing

at nodes and, on the other hand, the lines and cables of the branches of the network that connect

nodes. Thus the system is separated into a nodal admittance matrix YN and a apparatus matrix YA.
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Figure 2.3: Formulation of nodal-loop models: (a) nodal admittance model Y nodal. (b) Loop
impedance model Z loop.

These two matrices were already introduced in the nodal-loop models as (2.7) and (2.9) but here will

be combined in a different manner. The whole-system impedance model Zsys and the whole-system

admittance model Y sys are formed as illustrated in Fig. 2.4. Taking Zsys as an example, the model is

formed with a virtual nodal injection of current ĩwhereas for the nodal admittance model the injection

was a nodal voltage. The current ĩ causes a change in current through the apparatus and therefore a

change in the apparatus voltage ∆v, which in turn creates a change of current flowing into the network

∆i, which changes the current flow in the apparatus in a feedback fashion. This feedback arrangement

is illustrated in Fig. 2.4(a). The response ∆v to perturbation ĩ is

∆v = ZA(I + YNZA)
−1 · ĩ, (2.16)

where I is identity matrix and ZA is the apparatus impedance matrix defined in the same fashion of

YA but with apparatus impedance as its diagonal elements, i.e.,

ZA =



ZA1(s)

ZA2(s)

. . .

ZAn(s)


, (2.17)
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Figure 2.4: Formulation of whole-system models: (a) whole-system impedance model Zsys. (b)
whole-system admittance model Y sys.

where ZAn = Y −1
An . Noting that if all nodes are connected with apparatus, ZA can be directly linked

with YA via ZA = Y −1
A . However, if some nodes do not have shunt-connected apparatus, i.e., YA

is not full, ZA has to be calculated element-wise with those floating nodes treated as open circuits.

To maintain the simplicity of theory demonstration, all nodes are considered connecting to a shunt-

connected apparatus in the following analysis.

(2.16) gives rise to the definition of Zsys:

Zsys = ZA(I + YNZA)
−1. (2.18)

Similarly, the formulation of the whole-system admittance model is shown in Fig. 2.4(b), using a

series injection of voltage and a response in terms of current. The model is defined as

Y sys = (I + YNZA)
−1YN. (2.19)

Since Zsys and Y sys are formulated from a closed-loop relationship between YN and YA, in accordance

with the open-loop models, whole-system models can also be referred as closed-loop models.
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2.2.3 Associations

Fig. 2.3(a) and Fig. 2.4(a) use the same physical arrangement of YN and YA but in the first case a

nodal voltage is applied and a current change observed to define Y nodal and in the second case a nodal

current is injected and a nodal voltage change observed to define Zsys, and thus these two models are

inverses of each other as defined by

Y nodal = (Zsys)−1. (2.20)

This inverse relationship can also be easily proved mathematically from (2.13) and (2.18):

(Zsys)−1 = (I + YNZA)Z
−1
A = YA + YN = Y nodal, (2.21)

It is worth noting that Zsys is similar as the nodal-impedance matrix, which is the inverse matrix of

YN and familiar from conventional power system circuit analysis. It also is worth remarking that there

is no evidence of a general relationship between Z loop and Y sys because Z loop is not a unique model

because it depends on how the loops are selected.

Also, (2.19) can be used to derive the relation

(Y sys)−1 = Y −1
N (I + YNZA) = Y −1

N + Y −1
A , (2.22)

However, such a relationship is not particularly useful for system analysis because although the ele-

ments of YN relate to specific locations in the network, the elements of Y −1
N are formed by combination

of all elements YN which do not relate to specific locations.

2.2.4 Illustration

A simple three-node system, as shown in Fig. 2.5(a), is employed here to illustrate the formulation of

networked impedance models. The admittance of the IBRs are defined as

YA1 =

YA1,dd YA1,dq

YA1,qd YA1,qq

 , YA2 =

YA2,dd YA2,dq

YA2,qd YA2,qq

 , YA3 =

YA3,dd YA3,dq

YA3,qd YA3,qq

 , (2.23)
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Figure 2.5: (a) A simple three-node system with two IBRs. (b) The formulation of YA and YN.

where each element inside the apparatus matrix is either a transfer function, e.g.,

YA1,dd = YA1,dd (s) =
rm

s− pm
+

rm−1

s− pm−1

+ · · ·+ r1
s− p1

, (2.24)

or a frequency spectrum YA1,dd = YA1,dd(jω), which can be represented by a Bode plot. The formu-

lations of YA and YN of this system are illustrated in Fig. 2.5(b), where the elements in YN are formed

based on (2.8). The apparatus impedance ZA can also be yielded from YA such that

ZA =


ZA1

ZA2

ZA3

 = Y −1
A =


Y −1
A1

Y −1
A2

Y −1
A3

 . (2.25)

Based on the formed YA, ZA and YN, the nodal admittance model Y nodal can be acquired using (2.13),

and the whole-system impedance model Zsys can be acquired using (2.18).
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2.3 Relationship between Networked Impedance and State-Space

To reveal the relationship between networked impedance models and a state-space representation of

a power system, the state-space equations of an m order system with n nodes are as follows:

ẋ = Ax+Buin

yo = Cx,

(2.26)

where A, B and C are the state matrix, input matrix and the output matrix, x, uin and yo are the

state vector, input vector, and output vector. These state equations are usually very high-order but

can be decomposed into a series of first-order (or second-order when the roots are conjugate complex

numbers) equivalents via coordinate transformations z = Ψx and x = Φz, noting that Φ = Ψ−1, such

that the state matrix in the new coordinate z is diagonalised [19], that is,

ż = Λz +ΨBuin,

yo = CΦz

Λ = ΨAΦ = diag(λ1, λ2, · · · , λm),

(2.27)

where λi (i = 1, 2, · · · ,m) is the i-th eigenvalue of A, and the rows and columns of Ψ and Φ corre-

spond to the left- and right-eigenvectors of A, respectively. z is a vector of modes of the system and

determines stability according to the corresponding eigenvalues.

Turning first to whole-system impedance models, taking Zsys as an example, the same virtual injection

of current input can be performed in state-space format with the voltage taken as the system’s output,

which can be described as follows

uin = ĩ =
[̃
i1, ĩ2, · · · , ĩn

]T

yo = ∆v = [∆v1,∆v2, · · · ,∆vn]T .
(2.28)

As a result, Zsys is essentially the transfer function of the state-space model. From the well-known

equation for the transfer function of a state-space model [19], the whole-system impedance model
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Figure 2.6: Whole-system impedance model derived from state-space representation.

can be expressed as

Zsys = C(sI − A)−1B, (2.29)

where I is an identity matrix of order m. For instance, the k-th diagonal element of Zsys is

Zsys
kk (s) =

m∑
i=1

ckϕiψibk
s− λi

=
m∑
i=1

Rki

s− λi
, (2.30)

where ck is the k-th row of C, bk is the k-th column of B, ϕi and ψi are the right and left eigenvectors

of λi, Rki is the residue of Zsys
kk (s) corresponding to the pole λi. The relationship expressed in (2.30)

is illustrated in Fig. 2.6, where ckϕi and ψibk can be viewed as weight factors of the paths. It can

be seen that all elements share the same poles, which are the eigenvalues of the system. The arrows

shown in magenta represents the terms relating ĩk to ∆vk and yielding Zsys
kk .

We now turn to nodal admittance mode Y nodal as an example. Before linking Y nodal with the state-

space model, it is important to clarify that for a state-space model of a power system, the input and

output should be small-signal perturbations around an equilibrium point, i.e., perturbations that add

onto existing steady-state values. In fact, this is a basic principle for small-signal analysis. The virtual

injection of current into a node to create Zsys and a series injection of voltage in series with apparatus

to form Y sys are injections or perturbations that add to existing nodal currents or apparatus voltage

and hence they yield transfer functions of the state-space model. In contrast, the virtual injection of ṽ

in Y nodal in parallel with nodal apparatus overrides the existing nodal voltage (the steady-state value),

and thus ṽ cannot be a small-signal input of the system. As a result, Y nodal cannot be directly linked

to the state-space model via a relationship similar to (2.29).
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Nevertheless, from (2.20), it is possible to obtain

Zsys(s) = (Y nodal)−1(s) =
adj(Y nodal(s))

det(Y nodal(s))
. (2.31)

It is clear from (2.31) that det(Y nodal(s)) is the denominator polynomial for all elements in Zsys.

Because all elements of Zsys share the same poles which are the eigenvalues of the state-space model,

a conclusion can be drawn from (2.31) that the state-space eigenvalues are the roots of the equation

below:

det(Y nodal(s)) = 0. (2.32)

In other words, the zeros of the determinant of Y nodal(s) equal state-space eigenvalues. For the sake

of brevity, we use λ to represent a single nonspecific eigenvalue of the state-space model, and define

det(Y nodal(s)) ≜ Y nodal
det (s) as a transfer function formed by the determinant, such that

Y nodal
det (λ) = 0. (2.33)

An important finding from (2.33) is that λ, an eigenvalue of the state-space matrix, is a singularity

of Y nodal. Therefore, (2.20) does not hold true at s = λ. It is also worth noting that the fact of

Y nodal(λ) being singular holds true theoretically, but mostly cannot be observed in real. For a real

physical system, Y nodal(s) can be a nonsingular matrix at all frequencies due to the existence of line

capacitance such that the shunt impedance could never be infinite. Another explanation is that for an

eigenvalue λ = σ ± jω, a real system typically considers the case where s = jω with the real-part σ

omitted, i.e., Y nodal
det (jω) ̸= 0 if σ ̸= 0. This also explains the fact that the impedance or admittance

spectra are continuous at the oscillatory frequency ω but with a peak at that point, and the closer σ is

to zero, the sharper the peak will be.

The relationships described here links nodal-loop models with state-space model and offer a way of

assessing system stability from nodal-loop models by observing whether there are right-half-plane

(RHP) zeros of the determinant. The proof of (2.33) is based on an understanding of small-signal

injection connections between Y nodal and Zsys, and a more straightforward proof can also be found

in [97].
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2.4 Comparisons

2.4.1 Sensitivity/Participation Analysis

One benefit of using the nodal-loop model is that each entry in the matrix relates directly to a specific

component in the network (or an aggregation of components at a node or branch), so offers explicit

information on the location of an aspect of the model. For example, for Y nodal, the diagonal entry

Y nodal
ii represent all admittances terminating at node i, whereas the off-diagonal entry Y nodal

ki is the

negative of the sum of admittances between node k and node i. By studying eigenvalue sensitivity

with respect to entries of Y nodal, the root-cause of an oscillation can be easily located to a specific shunt

or series-connected item. Recognising this, the RMA method, briefly mentioned in Chapter 1.3.2,

was proposed for Y nodal in a drive to replicate the analysis that can be performed on the state-space

matrix A in investigating the sensitivity of the ‘zero’ eigenvalue of Y nodal with respect to an element

Y nodal
ki [77, 78, 82–89]. The RMA method is fully analysed in Chapter 3.1.1, and the relationship

between the RMA method and eigenvalue sensitivity is the topic for investigation in Chapter 3.3.

Sensitivity or participation analysis of whole-system models had not appeared in the literature before

the work reported here. In this thesis, a comprehensive theory of eigenvalue sensitivity and partic-

ipation analysis will be established for whole-system model, which points out that residues of the

elements of Zsys and Y sys can be used to derive the impedance or admittance participation factors and

eigenvalue sensitivity. A grey-box approach will also be proposed to serve as a powerful tool for root-

cause tracing and parameters tuning for large-scale system stability. The details will be introduced in

Chapter 3.

2.4.2 Measurability

As mentioned in Chapter 1.2, impedance models can be acquired from measurement so that data-

driven approaches can be applied. However, as shown in Fig. 2.3 and pointed out in Chapter 2.3,

perturbation of a nodal voltage of Y nodal can be considered as a theoretical step but as a practical

exercise is problematic. In practice, nodes will have stiff voltage sources present, hence perturbing
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the node voltage with a perturbation in parallel to conduct an online measurement of Y nodal is not

feasible. To acquire Y nodal, admittance of each apparatus needs to be measured individually and

offline and then the apparatus matrix YA can be formed and equation (2.13) can be applied so add YA

to the previously known YN to form Y nodal.

In contrast to the difficulty of measuring Y nodal and Z loop, measuring Zsys and Y sys is feasible. It is

natural to connect a current perturbation source in parallel with apparatus, or a voltage perturbation

source in series with apparatus, as shown in Fig. 2.4. Such feasibility allows whole-system model to

be applied for data-driven methods.

2.4.3 Use with Incomplete Data

It is believed that Zsys and Y sys are more readily used in practice for stability analysis than Y nodal

because they can yield some results even with incomplete data. To analyse the oscillatory modes and

their participation factors, the application of Y nodal relies on the full-knowledge of the model because

modes need to be calculated from its determinant. If some admittances in the system are unknown or

unmeasured, even if they are unlikely to cause an instability, the matrix Y nodal becomes incomplete

and the expression of det(Y nodal(s)) cannot be acquired. Consequently, oscillatory modes and the

corresponding sensitivity and participation analysis cannot be carried out in Y nodal if the system is

only partially known.

However, for Zsys and Y sys, stability analysis is undertaken element-wise because oscillatory modes

can be acquired from poles of any element and participation factors can be derived from the residues

of that element. If some elements in Zsys or Y sys are unmeasured, modes can still be acquired from

other elements, and participation can be compared among all other known elements. This means that

the whole-system models are more widely usable.
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2.4.4 Full comparison

Fig. 2.7 shows comparisons across several different features of nodal-loop models and whole-system

models.

Turning to the features of matrices, it is clear from the formulations that Y nodal is a sparse matrix

because nodes are connected to relative few other nodes with lines of the network. Also from (2.13)

it is clear that Y nodal is symmetric because YA is diagonal and YN is symmetric because if node i is

connected to node j by a line impedance then j is connected to i by the same impedance. The matrix

will be non-symmetric if phase-shifting transformers are present because a phase-shifting transformer

at branch (i, j) creates different impact on YNik and YNki [98]. On the other hand, Zsys and Y sys are

non-sparse because matrix-inverse calculations are involved in (2.18) and (2.19), but are symmetric

when there are no phase-shifting transformers due to the fact that the inverse of a symmetric matrix

is a symmetric matrix.

Turning to elements inside each model, the diagonal elements of Y nodal are the self-admittance of the

node, and each is the sum of all admittance terminating at that node, while the off-diagonal elements

are mutual admittance between two nodes which are the negative sum of admittance connected be-

tween two nodes. This shows that the elements in Y nodal contain explicit locational information so

would be helpful for locating the oscillations in sensitivity analysis. In addition, the zeros of the de-

terminant of Y nodal are equivalent to the state-space eigenvalues. For Zsys and Y sys, all elements share

the same poles which equal the state-space eigenvalues, so that all elements contain dynamics of the

whole-system. A weakness compared with Y nodal is that the elements in whole-system models have

no specific physical meaning as they are formed via closed-loop combination of two matrices.

For root-cause analysis, the RMA method has been developed for Y nodal where the sensitivity of the

zero eigenvalue of Y nodal(λ) is studied. For whole-system models, the development of a root-cause

analysis method is an objective of this thesis.

In contrast to the difficulty of measuring Y nodal and Z loop online with parallel voltage or series current

perturbations, measuring Zsys and Y sys online with parallel current or series voltage perturbations is

feasible.
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Figure 2.7: Comparisons of networked impedance models.

Despite that Y nodal cannot be applied for modal analysis if the model is only partially known, Zsys and

Y sys can be used for modal analysis even if some of the matrix elements are unmeasured.

Comparing across all models in Fig. 2.7, one can conclude that for systematic analysis, nodal analysis

is preferred because there is an exclusive definition for a given power system, which is not the case

for loop analysis because loops can be selected in several different ways. Considering this, Z loop will

not be discussed further. For the further examinations, the models Y nodal, Zsys and Y sys will be the

main focus.
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2.5 Summary

This chapter analyses the two types of networked impedance models and preforms a comparative

study. The formulations and associations of the two types of networked impedance models, namely,

nodal-loop models and whole-system models, are introduced and fully analysed, with a simple three-

node system provided for illustration. The relationship between the networked impedance model and

the state-space model is also clarified, revealing the potential of the networked impedance models for

stability assessment similarly as the conventional state-space model. A comparative study is further

performed to compare the two types of networked impedance models in different aspects so that their

relative merits are established. The contents of this chapter serve as the basis of impedance-based

stability analysis in power systems.



Chapter 3

Root-cause Analysis in Networked

Impedance Models

This chapter focuses on the root-cause analysis in networked impedance models, including eigen-

value sensitivity and participation analysis. A three-layer grey-box approach is then proposed as a

systematic way to facilitate root-cause tracing to different depths, i.e. to apparatus and to param-

eters, according to the available information. the outcomes have been published as two research

papers [95, 96], and some sentences and figures are reused.

3.1 Review of Existing Modal Analysis Methods in Impedance

Models

After establishing the networked impedance models, researchers devoted considerable effort to repli-

cating the state-space modal analysis in impedance models, i.e., eigenvalue sensitivity and participa-

tion factor. So far, two major impedance-based modal analysis approaches have been developed: the

RMA method and the Nyquist-based participation analysis. These two methods are reviewed in this

section.

40
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3.1.1 The Resonance mode analysis Method

A Development

Xu’s group [82–84] first developed a method to perform eigenvalue sensitivity analysis in nodal ad-

mittance matrix, and named it resonance mode analysis (RMA). The RMA method was initially used

to investigate the sensitivity of the smallest eigenvalue of YN(jωr), where YN is the conventional nodal

admittance matrix as defined in (2.7) and ωr refers to a resonant frequency in the system. This small-

est eigenvalue has been referred to as the critical mode, the critical resonance mode, or the critical

eigenvalue. Because such an ‘eigenvalue’ is an eigenvalue of YN(jωr), a careful distinction between

it and a state-space eigenvalue λ is drawn in this thesis, and the term ‘critical admittance-eigenvalue’

is chosen to refer to it. In this thesis, we use λ to represent the eigenvalues of state-space matrix A,

referred to simply as eigenvalues, and use γ to represent the critical admittance-eigenvalues. Based

on the definition from Xu’s group,

γ = min {|eig(YN(jωr)|)} . (3.1)

Two important conclusions are derived from the RMA method:

1) The critical eigenvalue of YN(jωr) is the main cause of the observed resonance phenomenon

with frequency of ωr.

2) A critical admittance-eigenvalue sensitivity matrix Sγ can be directly calculated from the outer

product of the left and right critical eigenvectors of YN(jωr), in which the entry in the i-th row

and the k-th column, Sγ,ik, is the sensitivity of γ with respect to the (k, i) element of YN, as

shown below:

Sλ = uγ ⊗ wγ = uγw
⊤
γ

Sγ,ik =
∂γ

∂YNki

,
(3.2)

where uγ and wγ are the left and right critical eigenvectors of YN(jωr) corresponding to γ.
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By analysing the sensitivity of γ with respect to the impedance of components, the RMA method is

shown to be effective in locating potential root-causes of system oscillations. An alternative concept,

based on RMA, of modal frequency sensitivity was proposed in [85]. Modal frequency analysis gives

an insight into the degree of a components’ influence on the resonance frequency. However, the

resonance frequency of one mode may be the same or similar to that of other modes, i.e., modes

with same imaginary parts but different real parts and so the advantage of original RMA to analyse

specifics modes is lost. To avoid such an issue, [86] extended the critical admittance-eigenvalue

sensitivity matrix to complex form, which is a combination of impedance sensitivity and frequency

sensitivity and provides fuller view to the root-cause of oscillations.

Hereto, the RMA method and its variants can be considered as initial versions, because they neglect

the dynamic characteristics of all generators or IBRs and only consider the passive components in

the system. Nevertheless, the invention of the RMA method is a starting point for using impedance

models for sensitivity analysis and root-cause tracing of oscillations, creating a widespread impact on

further studies.

Recent research has advanced RMA to a new stage where dynamics of active sources are also included

[77, 78, 87–89]. In [87], the RMA method is applied on a wind farm consists of 150 wind turbines,

where the harmonic model of each wind turbine (an double-feed induction generator) is established

so that it can be included in the nodal admittance matrix together with power cables and transformers.

The RMA method is further carried out in the newly assembled nodal admittance matrix to assess the

degree of involvement of each node in different resonance modes. This work brought the dynamics

of IBRs into the nodal admittance matrix so offers more precise knowledge towards the root-cause

analysis than the initial versions of RMA, yet the focus is only on the harmonic frequencies (integer

multiples of the fundamental frequency) with other frequencies omitted. Further studies extended

the nodal-admittance matrix YN to a transfer function matrix, i.e., nodal admittance model Y nodal and

loop impedance model Z loop discussed in the previous subsection, rather than numerical matrices,

thus covers a certain frequency range. In [77], a bus participation factor is calculated and analysed in

a wind farm based on Y nodal, where buses with a larger participation factor are identified as amplifying

disturbances (around the frequency of the resonance mode) more than the other buses. In [78], the

theory of RMA is formally extended to frequency-domain with each apparatus included, such that the
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dynamic characteristics of the whole-system are all included in Y nodal. As discussed in Chapter 2.3,

det(Y nodal(λ)) = 0, i.e., there must be at least one eigenvalue of Y nodal(λ)) equal to zero, which is the

corrected version of critical admittance-eigenvalue concept and stands in contrast with (3.1), i.e.,:

γ ∈ eig
(
Y nodal(λ)

)
, γ = 0. (3.3)

Still, the core of the updated theory follows the RMA method: a sensitivity matrix is calculated from

the outer product of the left and right critical eigenvectors of Y nodal(λ). [78] also put forward an im-

portant idea that if ∂y
∂ρ

is further known, where y is the admittance of an apparatus and ρ is a parameter

of it, manufactures would be able to know which parameter would be the most effective one to affect

the mode. Such advantage is helpful for system tuning. It is worth noting that since the study has now

been brought into frequency-domain, some recent research also refers to RMA as frequency-domain

modal analysis (FMA). [88] further defines the concepts of modal observability and modal controlla-

bility, which are derived from the left and right eigenvectors of Y nodal(λ)) respectively, aiming to find

the best observing location and best tuning location for an oscillatory mode. However, as calculated

in [88], the modal observability and modal controllability are numerically equal, i.e., they are equiv-

alent as the critical admittance-eigenvalue sensitivity value which is the product of the two. In [89],

the RMA method is further applied to a hybrid AC/DC grid, in which oscillations are confined in

some local areas without propagating to the entire system with the help of AC/DC converters acting

as barriers.

In conclusion, the RMA method has been proved to be effective for root-cause tracing, and has created

a wide impact on topic of power system stability.

B Underlying Principle

Because the frequency-domain RMA method is proposed recently, several underlying principles have

not been explicitly clarified in previous research and some proofs may have flaws. To this end, here,

detailed analysis and discussions are given to illustrate the underlying principles of the RMA method.

First, it is important to notice the difference between a critical admittance-eigenvalue, which is the
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‘eigenvalue’ studied in the RMA method, and an ‘eigenvalue’ of the state-space. A state-space eigen-

value λ is an eigenvalue of state transition matrix A with value of

λ ∈ eig(A), λ = σ ± jω. (3.4)

For system stability analysis, λ is recognised as an oscillatory mode, where the real-part σ is con-

sidered as the damping of the mode because 1/|σ| gives the time-constant of the decay of oscillation

amplitude, and the imaginary part ω is the natural frequency of the mode with the unit of rad/s. This

has been well studied in [19]. Typically, for a system which is stabilised at the operating point (with

no eigenvalues in the RHP), the modes of most concern are those conjugate complex pairs with small

absolute values of their real-part, which are described as modes with low damping and which to in-

duce oscillations during transient periods such as step change in a power injection. Considering this,

the sensitivity of mode λ with respect to components and parameters is of great value for analysing

the root-cause of the oscillation.

In contrast, for the RMA method, the focus is not on mode λ, but on the cricital admittane-eigenvalue

γ, which is the zero-eigenvalue of Y nodal(λ), as given in (3.3).

For a better illustration, a property about eigenvalue is introduced here:

Property 3.1 Let Y be a n × n matrix, the product of the n eigenvalues of Y is the same as the

determinant of Y .

First it is certain that a zero-valued critical admittance-eigenvalue γ exists because λ is a zero of the

determinant of Y nodal, i.e., det(Y nodal(λ)) = 0. According to property 3.1, it is clear that there is at

least one eigenvalue of Y nodal(λ) that equals zero. Here a very important premise is introduced:

Premise 3.1 λ is assumed to be a non-repeated eigenvalue of A.

Under this premise, as proved in A.1, the number of zero-valued eigenvalues of Y nodal(λ) does not

exceed one. Therefore, there is one and only one γ corresponding to each λ. Such a premise was

implicitly relied upon in the literature, e.g., [77, 78, 89] but not specifically mentioned.
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It has been stated in the literature [77, 78] that γ is the main factor determining the characteristics

of the mode being examined, but the proof of this finding has some flaws. Previous research proves

it by using the idea of modal current injection at the modal frequency [77, 78]. The proof relies on

a calculation of the inverse of the dioagonalised matrix of Y nodal(λ), where the term γ−1 dominates

modal current because γ−1 = ∞. However, as mentioned below (2.33), Y nodal is a singular matrix

at s = λ and therefore its inverse matrix does not exist, neither does the inverse of its diagonalised

matrix, a fact overlooked in the previous proofs. This fact was noticed in [77] but dealt with by stating

that γ is close to but not exactly zero because of round-off errors of floating-point computations, but

this is not a convincing argument. To avoid this difficulty, we prove the effect of γ using a new method

based on small-signal perturbation, as shown in Appendix A.2. The proof shows that for a variation

of a physical parameter ∆ρ in the system, the corresponding variation |∆γ| is proportional to the

variation of the mode |∆λ|, i.e.,

|∆γ| ∝ |∆λ| , for ρ = ρ+∆ρ (3.5)

Consequently, the sensitivity ∂γ
∂Y nodal

ki
also reflects the sensitivity of the mode with respect to Y nodal

ki .

Based on the above findings, it can also be inferred that the sensitivity of γ with respect to an element

of the nodal admittance ∂γ
∂Y nodal

ki
is proportional to the sensitivity of oscillatory mode λ with respect to

Y nodal
ki , such that ∣∣∣∣ ∂γ

∂Y nodal
ki

∣∣∣∣ ∝ ∣∣∣∣ ∂λ

∂Y nodal
ki

∣∣∣∣ , at s = λ. (3.6)

The relationship in (3.6) is important because the term Y nodal
ki relates to a line or apparatus at a specific

location and λ refers to the oscillatory mode, so that ∂λ
∂Y nodal

ki
can help to trace the location of the cause

of poorly damped or unstable modes in the system. Even though the value of ∂λ
∂Y nodal

ki
is not made

available, the value of ∂γ
∂Y nodal

ki
can be easily calculated because γ is an eigenvalue of Y nodal(λ). By

using the same method of eigenvalue sensitivity described in [19], a critical admittance-eigenvalue

sensitivity matrix is then defined as Sγ , in which the entry in the i-th row and the k-th column, Sγ,ik,
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is the sensitivity of γ with respect to the (k, i) element of Y nodal(λ), as shown below:

Sγ = uγw
⊤
γ

Sγ,ik =
∂γ

∂Y nodal
ki

,
(3.7)

wherewγ and uγ are the left and right eigenvectors of Y nodal(λ) corresponding to γ, and are normalised

as w⊤
γ uγ = 1. This finding is encouraging because it has the same format as the sensitivity analysis in

a state-space model: the outer product of left and right vectors. By comparing ∂γ
∂Y nodal

ki
, system operators

can determine which components dominate in γ, and this gives general indication of the root-cause

of the oscillatory mode λ.

Nevertheless, several obvious drawbacks can be noticed for the RMA method as below:

1) Unlike λ which represents an oscillatory mode in the system, γ does not have clear physical

meaning. The underlying association between γ and λ is also ambiguous. As a result, the

sensitivity of γ cannot reflect a component’s separate influence on damping σ and frequency ω.

2) The critical admittance-eigenvalue sensitivity can only provide some imprecise indication of

the root-cause of oscillations. It is reported that buses with large sensitivity values do not

necessarily mean that the oscillations can be effectively mitigated by adjusting components at

those buses [83].

3) The sensitivity values in Sγ are complex but it has not been established how to interpret the real

and imaginary parts, and previous studies resort to comparing the absolute values. It is also not

clear how to compare the sensitivity in a three-phase system, where the sensitivity values are

2× 2 matrix blocks in the d-q frame and not a single value.

4) Y nodal or Z loop cannot be measured online, hence the RMA method can not be applied as a

measurement-based, data-driven method for stability assessment.

To address the above obstacles, the most straightforward way is to create a method to find the value of

∂λ
∂Y nodal

ki
, to develop a method to produce a single (complex valued) indication in place of a 2× 2 matrix
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block in d-q frame, and to identify clear meanings of the real and imaginary parts of the complex

number.

3.1.2 Nyquist-based Participation Analysis for the Whole System

Because of the drawbacks of the RMA method, some very recent studies have turned back to Nyquist

stability analysis to seek solutions for participation factors in impedance models [90–92].

In [90, 91], L(s), a return-ratio matrix, or so-called minor loop gain, of the whole network is first

defined as

L(s) = YN(s)ZA(s). (3.8)

Such process is to extend the application of Nyquist criteria to the whole network rather than at a PCC

only. From (2.18), it is clear that L(s) is actually the loop transfer function of the system while Zsys(s)

is the closed-loop transfer function. Eigenvalues of L(s) are then calculated, referred as characteristic

loci [90], critical minor loop gain [91], or eigenloci [92]. In this thesis, we simply call them eigenloci

(or eigenlocus for singular), and use ι(s) to refer to a non-specific eigenlocus, i.e.,

ι(s) ∈ eig(L(s)). (3.9)

For a network with n buses, the number of the eigenloci is n. i.e.,

ι (s) ∈ {ι1 (s) , ι2 (s) , · · · , ιn (s)} . (3.10)

For stability analysis, each of the eigenloci needs to be assessed individually, and the system is stable

only if all ι(s) satisfy the single-input and single-output (SISO) Nyquist criteria [91], which has been

introduced in Chapter 1.2.3. Fig. 3.1 [90] illustrates the eigenloci of an eight-node system where eight

eigenloci are presented. Although not specifically mentioned, it is inferred that only results on d-d

axis are presented here. It can be seen that ι1 and ι2 encircle (−1, 0j), indicating that the system is

unstable [90].

Nyquist-based participation factors are calculated from the left and right eigenvectors of L(s) to
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Figure 3.1: Eigenloci of L(s) in an eight-node system: (a) full view, (b) zoomed-in view. ι1 and ι2
encircle (−1, 0j) so that the system is unstable [90]. Copyright © 2021, IEEE.

identify the critical apparatus shaping the eigenloci. For example, the Nyquist-based participation of

the apparatus at the k-th node to ιi(s) is

pιi,k = wιi,kuιi,k, (3.11)

where wιi,k and uιi,k are the k-th element of the left and right eigenvectors of L(s) corresponding to

ιi(s). The so-defined participation factor is derived in a similar method as the participation factor in

state-space, i.e., the physical meaning supporting this conclusion is

pιi,k =
∂ιi
∂Lkk

=
∂ιi

∂ (YNZA)kk
. (3.12)

(3.12) can be proved by using the eigenvalue perturbation method, which has been demonstrated

in [19] so is not repeated here. Because ZA is a diagonal matrix, (YNZA)kk = YNkkZAk. If the network

nodal admittance matrix YN is considered unperturbed, it is easy to have

pιi,k =
1

YNkk

· ∂ιi
∂ZAk

, (3.13)

where ZAk refers to the impedance of the apparatus connected at node-k, such that the value ∂ιi
∂ZAk

can

indicate the participation of the k-th apparatus to the i-th eigenlocus. Here, it is important to notice

that the factor derived from (3.11) need to multiply by a coefficient YNkk to get a correct measure
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of the participation of an apparatus to an eigenlocus ∂ιi
∂ZAk

, but this coefficient is omitted by previous

research. As a result, the participation factors derived in previous research may not correctly indicate

the dominating apparatus of an eigenlocus.

To analyse the so-defined Nyquist-based participation factors, one or several critical eigenloci need

to be picked out for further comparisons. Here, ‘critical’ refers to the eigenloci which is most close to

(−1, 0) for stability systems, or which encircle (−1, 0) for unstable system, and L(s) is considered to

have no RHP poles. It is also worth mentioning that the participation factor calculated from (3.11) is

essentially a transfer function and needs to be turned into numerical values for comparisons. In [90],

the participation factors are compared at the ‘unstable frequencies’ without discussing the reason

behind this choice. The definition of the ‘unstable frequencies’ is also not clear, but can be inferred

as the frequency of the oscillations observed from time-domain simulations. In [91], the factors

are compared at the cross-over frequency of the gain, which can be understood as estimating the

influence of a component on the phase-margin of ι(s), which is more comprehensive. However, as

pointed by [92], in some cases, the apparatus with the largest Nyquist-based participation factor at the

cross-over frequency turns out to be less important for stability. This indicates that by only comparing

the results at the cross-over frequency, incorrect conclusion could be drawn. The reason behind such

finding is not discussed in [92] but might be caused by omitting the aforementioned coefficient YNkk.

[92] further extends the above participation factor comparisons to a frequency range comparison,

i.e., frequency-domain participation analysis. In this method, a critical eigenloci of the system is

first identified, and the critical frequency and the critical frequency range that tends to influence the

encirclement of the Nyquist curve around (−1, 0) are found. The participation analysis is then carried

out on Bode plots by comparing the magnitude of each participation factors in the frequency range.

It is shown that the results of such analysis can correctly indicate which port or subsystem influences

the stability the most significantly. However, unlike numerical values which are straightforward for

comparisons, comparing Bode plots in a certain frequency range involves human judgements which

requires more efforts and can be affected by individual subjective judgements.

Although opening up a new perspective on participation analysis, the participation factor developed

in Nyquist diagrams may encounter several difficulties:
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1) Unlike the state-space or the RMA method which studied the participation of components in

an oscillatory mode, the Nyquist-based participation factors study the participation of compo-

nents in an eigenlocus ι(s). Because an eigenlocus is not directly linked with time-domain

oscillations, the Nyquist-based participation factor is difficult to understand from a physical

perspective.

2) The Nyquist-based participation factors are essentially transfer functions not scalar values. Al-

though methods have been proposed to compare them at instability frequencies, the cross-over

frequency or in a certain frequency range, the physical meaning behind them is not yet fully

understood.

3) Each eigenlocus of L(s) carries information of all oscillatory modes. The Nyquist-based par-

ticipation factors focus on the ’critical eigenloci’, but omit others. In a case where several

eigenloci are together close to (-1,0), the participation of a component in an oscillation will be

represented by several transfer functions together. No such case has been discussed and it is not

clear how to merge these results into a single measure for further comparison.

4) The comparisons of the Nyquist-based participation factors are all undertaken on magnitude

alone with the phase information, which is potentially meaningful, omitted.

In general, the Nyquist-based participation analysis offers some convenience for participation analy-

sis because the return-ratio matrix L(jω) can be acquired and applied base on measurement results

without curve fitting. However, the relationship between the eigenvalue of the return-ratio matrix and

the physical oscillatory modes has not been established, nor has a systematic method of comparing

the Nyquist-based participation factors been established.

3.1.3 Key Research Gaps and Work Described in this Chapter

A conclusion from the review of literature set out above is that each method for root-cause analysis of

small-signal instability possesses certain merits and none is a perfect solution for system with high-

level of IBRs. In particular, the available methods of eigenvalue sensitivity and participation factor
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assessment for impedance models are less precise and clear than their equivalents in state-space mod-

els, for instance being restricted to comparing the magnitude of complex quantities with no meaning

attached to the angles, or forming judgements by visual inspection, and from these indications having

to tune parameters according to experience. There is no method providing a standard and unambigu-

ous procedure for sensitivity and participation analysis, i.e., a whole procedure that can determine the

major participants of modes, the badly-tuned components, the most effective parameters inside these

components, and eventually offer precise tuning guidance on these parameters.

To fill this important gap between the methods available in state-space models and the methods

in impedance models, a comprehensive theory for eigenvalue sensitivity and participation factor in

impedance models was sought and will be described in what follows. A two step process, connected

by a chain-rule, is proposed to link impedance models with classic state-space model so as to prove

that black-box impedance models have potential to offer as much information as state-space mod-

els. The study of eigenvalue sensitivity and participation factors are further carried out in impedance

models, which for the first time uses an impedance model to provide sensitivity information relating

to a classic state-space eigenvalue rather than a critical admittance-eigenvalue or eigenloci. A sys-

tematic way of comparing the sensitivity/participation results is also proposed through a three-layer

grey-box view, serving as a powerful tool to extract almost the same information from a black-box

impedance model as from a white-box state-space model. Table 3.1 presents a comparison between

existing methods of participation analysis and the method established in this thesis. It shows signifi-

cant advantages for the proposal and these constitute the main contributions of this chapter.

These outcomes have been published as two research papers [95, 96].
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Table 3.1: Comparisons of different methods for power system root-cause tracing

Categories and Methods
State-space Impedance models

Classic modal

analysis [19, 24]

Initial versions of

RMA [82–86]

Frequency-domain

RMA

[77, 78, 87–89]

Nyquist-based

participation

factor [90–92]

Method in this

thesis [95, 96]

Matrix used A YN (jωr) Y nodal(s) L(s)
Y nodal(s), Zsys(s),

or Y sys(s)

Eigenvalue studied λ, eigenvalue of A

minimum

eigenvalue of

YN (jωr)

γ, critical

admittance-

eigenvalue

ι(s), eigenvalue

of L(s)
λ, eigenvalue of A

Explicit connections between

studied eigenvalue and mode
+ − − − +

Includes dynamics of appara-

tus
+ − + + +

Applicability to systems with

black-box models
− − + + +

Separate sensitivity of damping

and natural frequency
+ − − − +

Determination of dominant

buses or apparatus
+ + + + +

Precise parameter tuning guid-

ance for stabilisation
+ − − − +

Online measurement − − − + +

d-q frame comparisons + − − − +

Systematic analysis procedure + − − − +

3.2 Participation Analysis in Impedance Models

As a route to participation factors and eigenvalue sensitivity analysis in impedance model, we can

return to the underlying relationship between impedance models and state-space models as set out in

Chapter 2.3 and attempt to extract close to the same information from impedance, a black-box model,

as from a state-space, a white-box model. This opening up of a black-box model has the potential to

very useful in networks with many pieces of apparatus such as IBR for which only black-box models

are available.
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3.2.1 Impedance Participation Factor

From the transfer-function expression of a diagonal element in whole-system impedance Zsys
kk , as

given in (2.30), it is clear that the eigenvalues of the state matrix appear as poles. Meanwhile, the

residue corresponding to the i-th eigenvalue λi is

Rki = ckϕiψibk, (3.14)

where ck is the k-th row of state-space output matrix C, bk is the k-th column of state-space input

matrix B. If for a special case where the k-th element in ck and bk equal 1 and all other elements

equal 0, which means that both B and C are identical matrices, the above equation then simplifies to

a product of only the right and left eigenvectors, that is,

Rki = ψikϕki = pki. (3.15)

In this special case, the the residue of Zsys
kk has become identical to a state participation factor, pki, as

defined in state-space model. This is an important observation which hints that residues being useful

for participation analysis. However, (3.15) is based on a strong assumption aboutB and C which may

not hold for common cases. A general residue-participation relationship which yields the impedance

participation factor needs to be identified.

In order to clarify the roles of residues in participation analysis in a general form, Lemma 1 is intro-

duced here.

Lemma 1 For a square transfer function matrixGρ depending on parameters ρ, letHρ be the inverse

transfer function of Gρ, i.e. Hρ = G−1
ρ , and λ be a non-repeated pole of Gρ. When the parameters ρ

are perturbed infinitesimally by ∆ρ, λ and Hρ are perturbed by ∆λ and ∆Hρ correspondingly and

we have the following relationship:

∆λ = ⟨−Res∗λGρ,∆Hρ(λ)⟩ (3.16)

in which ⟨·, ·⟩ is the Frobenius inner product of two matrices, ResλGρ is the residue matrix of Gρ at
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λ (the residue operates element-wise on a matrix), ∗ denotes the conjugate transpose of the residue

matrix, and the equation holds in the sense of neglecting high-order infinitesimals.

The proof of the Lemma 1 is given in Appendix A.3, and a brief introduction to the mathematical

preliminaries used in this Lemma is included in Appendix B. Lemma 1 proves that in a system where a

parameter is perturbed, ∆λ can be calculated via the corresponding residues of whole-system models,

and the 2 × 2 matrix blocks in d-q frame can be integrated into a single complex value according to

Frobenius inner product. A simple example to illustrate this Lemma is provided in Appendix C.1.

If we take Gρ to be the whole-system admittance seen at node k defined in Chapter 2, that is, Gρ =

Y sys
kk , the corresponding Hρ is

Hρ = (Y sys
kk )−1 = ZAk + ZGk, (3.17)

where ZAk is the impedance of the apparatus connected at the k-th node and ZGk is impedance of the

rest of the grid seen from the k-th node. It is obvious that the two impedances are independent. When

ZAk itself is subject to a perturbation, ZGk will remain unchanged, that is, ∆ZGk = 0, so we have

∆Hρ = ∆ZAk +∆ZGk = ∆ZAk (3.18)

and hence

∆λ = ⟨−Res∗λY
sys
kk ,∆ZAk(λ)⟩. (3.19)

Recall that the pole λ of the transfer function Y sys
kk is exactly an eigenvalue of the system. There-

fore, (3.19) implies that the sensitivity of an eigenvalue to an apparatus impedance is determined by

the whole-system admittance seen by that apparatus. Since Y sys
kk is a diagonal element of Y sys, and

similarly to the state-space formulation, we define the negative values of residue as the impedance

participation factor

pλ,ZAk
≜ −Res∗λY

sys
kk (3.20)

such that

∆λ = ⟨pλ,ZAk
,∆ZAk(λ)⟩. (3.21)
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Due to impedance-admittance duality, we can similarly define the admittance participation factor as

the residue of the whole-system impedance

pλ,YAk
≜ −Res∗λZ

sys
kk (3.22)

such that

∆λ = ⟨pλ,YAk
,∆YAk(λ)⟩ (3.23)

where YAk is the admittance of the k-th apparatus and Zsys
kk is the whole-system impedance at the k-th

node. The impedance and admittance participation factors are theoretically equivalent but each may

better serve different applications, depending on which is more readily available, and on the applica-

tion. In general, on the one hand, the negative of residues of Y sys
kk equal the impedance participation

factors of the apparatus connected in series with the k-th voltage injection source. On the other hand,

the negative of residues of Zsys
kk lead to the admittance participation factors of apparatus connected in

parallel with the k-th current injection source.

3.2.2 Parameter Participation Factor and the Chain Rule

If the sensitivity of the apparatus impedance to its parameters ρ is known, that is,

∆ZAk(λ) =
∂ZAk(λ)

∂ρ
·∆ρ, (3.24)

the parameter participation factor is further defined as

pλ,ρ =

〈
pλ,ZAk

,
∂ZAk(λ)

∂ρ

〉
(3.25)

such that

∆λ = pλ,ρ ·∆ρ. (3.26)

The value of parameter participation factor is of great importance because it delivers information

on how to change the parameters to move λ in a desired direction on the complex plane. Thus the
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Figure 3.2: The relationship between impedance participation factor and state participation factor and
the chain-rule for participation propagation.

parameter participation factor is directly useful in tuning the parameters to stablise the system.

If, in a special case, the parameter ρ is selected as the k-th diagonal element akk in the state matrix A,

the corresponding parameter participation factor is the state participation factor

pki = pλi,akk =

〈
pλi,ZAk

,
∂ZAk(λi)

∂akk

〉
. (3.27)

Thus we establish the relationship between the different types of participation factors and summa-

rize this relationship in Fig. 3.2. In practice, the state coefficient akk might be the combination of

multiple physical or control parameters and thus is not an independent parameter itself. As a result,

akk is treated as a virtual parameter to establish the linkage between state and parameter participation

factors, as marked by the dashed arrow in Fig. 3.2.

Equations (3.25) and (3.27) are described as the chain-rule of participation factors which is of pro-

found importance in participation analysis. The impedance participation factor enables us to evaluate
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the participation of an apparatus in system oscillations through only black-box models. On top of this,

the chain-rule yields the state and parameter participation factors, further enabling us to look inside

the black-box and trace root-causes to specific parameters and states without needing disclosure of

the state equations.

3.3 Impedance-based Eigenvalue Sensitivity Theory

Comparing the impedance participation factor discussed above and the study of the previous RMA

method reviewed in Chapter (3.1.1), several conclusions can be made. On the one hand, the impedance

participation factor shows an advantage of giving the sensitivity of oscillatory mode λ, rather than the

sensitivity of γ which lacks physical meaning. Further, through the use of the Frobenius inner prod-

uct, a 2 × 2 matrix block in d-q frame can be transformed into a single value which can be readily

compared with values of terms. However, the off-diagonal elements of Zsys and Y sys have not been

used and so this analysis does not yet extended to the whole network because series-connected appa-

ratus in branches are not included. In contrast, a significant advantage of the previous RMA method

is that the sensitivity of γ to elements in Y nodal can be acquired, where individual terms such as Y nodal
ki

mapped to specific elements in the system including branches and so sensitivity results covering the

whole network are available. Besides that advantage, the weaknesses of RMA listed in Chapter (3.1.1)

remain and limit its practical application.

Considering the pros and cons of both impedance participation factors and critical admittance-eigenvalue

sensitivity, a desire to combine their advantages motivates a search for solution of state-space eigen-

value sensitivity with respect to entries in Y nodal, i.e., the value of ∂λ
∂Y nodal

ki
.

3.3.1 State-Space Eigenvalue Sensitivity Derived from Impedance Model

To strictly evaluate how impedances of network components affect λ, the eigenvalue sensitivity ∂λ
∂Y nodal

ki

should be found. In a similar fashion to Sγ , we define the eigenvalue sensitivity matrix as Sλ, in which
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the element in the i-th row k-th column is

Sλ,ik =
∂λ

∂Y nodal
ki

. (3.28)

Now we determine the value of ∂λ
∂Y nodal

ki
. From section 2.3 we know that Y nodal

det (λ) = 0. Based on this

condition, the method of eigenvalue perturbation can be applied and the value of eigenvalue sensitivity

matrix can be derived as

Sλ = −adj(Y nodal(λ))

Y nodal
det

′ (λ)
. (3.29)

The detailed proof of eigenvalue sensitivity matrix (3.29) is given in Appendix A.4, where Y nodal
det

′ is

the derivative of Y nodal
det (s) at s = λ defined in (A.30).

Equation (3.29) gives a direct method to calculate state-space eigenvalue sensitivity with respect to

entries in Y nodal. Compared with the sensitivity of critical admittance-eigenvalue Sγ , the result of Sλ

offers more directly useful information about system oscillations because λ is an oscillatory mode of

the system.

We now seek to establish the mathematical relationship between Sλ and Sγ . For a better illustration,

three simple properties are introduced as below:

Property 3.2 Let Y be an n× n matrix, the rank of Y is the number of non-zero eigenvalues of Y .

Property 3.3 Let Y be an n× n matrix, if rank(Y ) = n− 1, then rank(adj(Y )) = 1. If rank(Y ) ⩽

n− 2, then rank(adj(Y )) = 0, i.e., adj(Y ) is a zero matrix.

Property 3.4 Let Y be an n×n matrix, rank(Y ) = 1 if and only if there exist two column vectors us

and ws of dimension n such that Y = usw
⊤
s .

In (3.29), it is clear that the term Y nodal
det

′ (λ) is a scalar while the term adj(Y nodal(λ)) is a matrix. From

section 3.1.1, it is known that λ is considered as a non-repeated eigenvalue and Y nodal(λ) has one and

only one zero-valued eigenvalue plus n − 1 non-zero eigenvalues. According to property 3.2, the
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rank of Y nodal(λ) is n − 1. Consequently, according to property 3.3, the rank of its adjunct matrix

adj(Y nodal(λ)) is 1. Combined with property 3.4, we have

adj(Y nodal(λ)) = us ⊗ ws = usw
⊤
s , (3.30)

where us and ws are two non-zero column-vectors of dimension n. An important finding is that

equation (3.30) has the same format as (3.7), i.e., the outer product of two column vectors.

Through the proof in Appendix A.5, it can be shown that

adj
(
Y nodal (λ)

)
= usw

⊤
s = tr

(
adj

(
Y nodal (λ)

))
· uγw⊤

γ , (3.31)

where uγ andwγ are the left and right eigenvectors of Y nodal(λ) corresponding to the critical admittance-

eigenvalue γ. Combining (3.7),(3.29) and (3.31) yields

Sλ = ξ · Sγ = ξuγw
⊤
γ

∂λ

∂Y nodal
ki

= ξ · ∂γ

∂Y nodal
ki

(3.32)

where ξ is a coefficient with a value of

ξ = −
tr
(
adj

(
Y nodal (λ)

))
Y nodal
det

′ (λ)
. (3.33)

Equations (3.32) and (3.33) reveal the form of the relationship between critical admittance-eigenvalue

sensitivity ∂γ
∂Y nodal

ki
and eigenvalue sensitivity ∂λ

∂Y nodal
ki

: the two values differ by a coefficient ξ. Since the

mode of interest, λ, is usually a conjugate complex pair, it is clear from (3.33) that ξ will accordingly

be a conjugate complex pair, which contains directional information. By omitting ξ, the term ∂γ
∂Y nodal

ki

studied in the previous literature loses any meaning in terms of its direction in the complex plane

and hence cannot reveal a components’ influence on the σ and ω parts of λ as separate terms. As a

result, components with relatively large magnitude of critical admittance-eigenvalue sensitivity may

possibly, but not necessarily, affect the λ-mode. In contrast, the eigenvalue sensitivity ∂λ
∂Y nodal

ki
not

only preserves the advantage of locational information, but also precisely shows how component
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admittance affects the mode in both damping and natural frequency.

3.3.2 Comprehensive Theory for Root-cause Analysis

To compute the value of ∂λ
∂Y nodal

ki
, it is straightforward to apply (3.29) or (3.32). However, as men-

tioned before, the elements in Y nodal cannot be measured readily online because small-signal voltage

perturbations cannot be injected in parallel with stiff voltage sources. If impedance models are also

not available from apparatus vendors, or do not account for operating point variation, then practical

application of eigenvalue sensitivity in the nodal admittance model may not be possible. On the other

hand, Zsys can be measured online, and the residues of the diagonal-elements in Zsys can lead to the

admittance participation factor of shunt-connected components. This observation lead us to explore

the relationship between eigenvalue sensitivity and the residues of Zsys.

From equation (A.22) in Appendix A.3, it is clear that

ResλZ
sys =

adj
(
Y nodal (λ)

)
Y nodal
det

′ (λ)
, (3.34)

Combining (3.29) and (3.34) yields

Sλ = −ResλZ
sys

Sλ,ik =
∂λ

∂Y nodal
ki

= −ResλZ
sys
ki

(3.35)

The finding in equation (3.35) indicates a practical route for determining the sensitivity, because the

spectra of the entries in Zsys can be measured online, and the poles and residues can be identified

from the spectra by vector fitting techniques [57]. This method also provides useful flexibility for

comparing sensitivities where only some specific elements in Sλ need to be compared. A system

operator could choose to partially measure Zsys, that is, the relevant elements of the matrix only,

rather than acquiring the full matrix of the networked impedance model. Such flexibility cannot be

achieved in equations (3.29) or (3.32).

Based on equation (3.35), eigenvalue sensitivity analysis can be implemented for the whole network
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and provide access to the state-space eigenvalue sensitivities with respect to the admittance of any

component in the system. An example will be used to illustrate the point, and only single phase is

considered for simplicity but the frame will be extended to d-q frame later. Considering an apparatus

with admittance of y, its internal parameter ρ is perturbed by a small value ∆ρ so leading to a pertur-

bation of its admittance ∆y. Consequently, such perturbation will add a small change on elements in

nodal admittance model, i.e., for each element in Y nodal the perturbation is

∆Y nodal
ki =

∂Y nodal
ki

∂y
·∆y. (3.36)

Because a diagonal entry of Y nodal represent all admittances terminating at that node whereas the off-

diagonal entry is the negative of the sum of admittances between two nodes, the changes in Y nodal can

be devided into two cases: when y is a shunt-connected component or when it is a branch-connected

component in the system, such that

∆Y nodal

 ∆Y nodal
kk = ∆y

otherelements = 0
, shunt-connected y at node-k, or

∆Y nodal


∆Y nodal

kk = ∆Y nodal
ii = ∆y

∆Y nodal
ki = ∆Y nodal

ik = −∆y

other elements = 0

, branch-connected y at branch-ki

. (3.37)

Eventually, a small variation will be added to the oscillatory mode as

∆λ =
n∑

k=1

n∑
i=1

(
∂λ

∂Y nodal
ki

∆Y nodal
ki

)
(3.38)

Combining with (3.37) yields

∆λ =


∂λ

∂Y nodal
kk

∆y, shunt-connected y at node-k(
∂λ

∂Y nodal
kk

+ ∂λ
∂Y nodal

ii
− ∂λ

∂Y nodal
ki

− ∂λ
∂Y nodal

ik

)
∆y, branch-connected y at branch-ki

(3.39)

Combining (3.39) and (3.35) and rearranging the expressions yields to a general expression on the
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eigenvalue sensitivity with respect to admittance of a specific component in the system:

∂λ

∂y
=

n∑
k,i

(
∂λ

∂Y nodal
ki

∂Y nodal
ki

∂y

)
= −tr

(
ResλZ

sys · ∂Y
nodal

∂y

)
. (3.40)

For instant,

∂λ

∂y
=



−ResλZ
sys
kk shunt-connected y at node-k−ResλZ

sys
kk −ResλZ

sys
ii

+ResλZ
sys
ki +ResλZ

sys
ik

 branch-connected y as branch-ki.

It can also be seen that when y is a shunt-connected component, the above sensitivity is equivalent

to the admittance participation factor defined in (3.22), hence the two definitions can be merged

together into Sλ and forms a general approach for root-cause analysis, which also extends eigenvalue

sensitivity to d-q frame. For a component with admittance y in the system, we define the admittance

sensitivity factor as

sλ,y = −tr

(
ResλZ

sys · ∂Y
nodal

∂y

)∗

, (3.41)

such that

∆λ = ⟨sλ,y,∆y(λ)⟩. (3.42)

If the sensitivity of y with respect to a parameter of a component ρ is further known, i.e., ∂y
∂ρ

, from the

chain rule described in Chapter 3.2.2, we define the parameter sensitivity factor as

sλ,ρ = ⟨sλ,y,
∂y(λ)

∂ρ
⟩ (3.43)

such that

∆λ = sλ,ρ ·∆ρ. (3.44)

It is also worth mentioning that the eigenvalue sensitivity approach above is suitable for whole-

system impedance model Zsys but not for whole-system admittance model Y sys because the entries

of (Y sys)−1, as mentioned in equation (2.22), does not preserve locational information. As a result,

the application of Y sys is restricted to impedance participation factor analysis and cannot be extended
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to a whole-system sensitivity analysis as is possible with Zsys. Nevertheless, Y sys is still quite useful

when only voltage injections are available in the system.

Based on principles described above, a comprehensive theory of root-cause analysis in impedance

models is set out in Fig. 3.3 The figure offers step-by-step guidance on how to extract participation

factors and sensitivity information from impedance models, either using measurement data or using

disclosed models. After acquiring the impedance participation factor and parameter participation

factor, or alternatively admittance sensitivity factor and parameter sensitivity factor, a systematic

analysis approach can be developed to determine the participants in oscillations, the root-cause of

the poor-damping, and the most effective parameter to adjust to stabilise the system. This newly

developed approach has been named the the Grey-box Approach and it will be discussed further in the

next section.

3.4 The Grey-box Approach

The grey-box approach contains three layers with different transparencies according to the available

prior knowledge, as illustrated in Fig. 3.4. The higher the transparency, the more prior knowledge is

needed but along with that comes more useful information for root-cause tracing and trouble-shooting

in whole-system stability analysis. As mentioned in (3.41), the participation factors can be merged

with eigenvalue sensitivity so that only applications on the eigenvalue sensitivity analysis is shown in

Fig. 3.4 and discussed in the following parts of this section. Each layer will be described in detail and

the relationships between them will be revealed.

3.4.1 Grey-Box Layer-1

In this first layer, the information that needs to be available is the admittance y of apparatus along

with the admittance sensitivity factors derived from impedance-based eigenvalue sensitivity matrix

Sλ.

Due to the three-wire, three-phase nature of power systems, y and sλ,y are 2× 2 matrix blocks in the
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Figure 3.3: Illustration of the theory for root-cause analysis in impedance models. The blocks in
golden, purple and grey, as well as all the arrows in red are developed in this thesis. The noise
analysis process for impedance measurement (the orange blocks) is also developed in this thesis as
given in Chapter 5. The green blocks refer to the RMA method proposed previously and reviewed in
Chapter 3.1.1
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Figure 3.4: Illustration of the three-layer grey-box. In Layer-1, estimates of the potential participants
are created based on the upper bound of ∆λ subject to ∥∆y∥ = ϵ∥y∥. In Layer-2, the contribution
of a participant to mode damping is estimated based on the real part of ∆λ subject to ∆y = ϵy. In
Layer-3, the most effective parameter within the participating apparatus is identified, and parameter
re-tuning facilitated, via the admittance-parameter sensitivity.

synchronous d-q frame. A scalar index is needed to represent the four elements of sλ,y collectively so

that sλ,y of different components can be compared and the location of the dominant apparatus (for a

given mode) can be determined. To this end, we assign a consistent magnitude perturbation to each y

and observe the effect on the eigenvalue λ. The perturbation is normalized to ∥y∥ so that it scales with

the corresponding apparatus, that is, ∥∆y∥ = ϵ ∥y∥, where ϵ is a small positive constant. According

to the Cauchy inequality, we have

|∆λ| = |⟨sλ,y,∆y(λ)⟩| ≤ ∥sλ,y∥ · ∥∆y(λ)∥ (3.45)

which yields

|∆λ|max = ∥sλ,y∥ · ∥∆y(λ)∥ = ϵ ∥sλ,y∥ · ∥y(λ)∥. (3.46)

It is clear from (3.46) that ∥sλ,y∥ · ∥y(λ)∥ determines the upper bound of ∆λ, |∆λ|max, which is the

maximum possible participation of the corresponding apparatus. Only apparatus with relatively large

|∆λ|max may possibly, but not necessarily, participate in the λ-mode. Thus, we use ∥sλ,y∥ · ∥ZAk(λ)∥

as the primary participation index in Layer-1 of the grey-box approach. Layer-1 roughly identifies
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potential participants in a mode and does so with black-box models only.

3.4.2 Grey-Box Layer-2

Building on Layer-1, Layer-2 adds a stipulation that the perturbation of apparatus admittance ∆y is

aligned to the original admittance y, that is, ∆y = ϵ y, where ϵ is a very small positive real number.

This is a reasonable stipulation because it emulates the effect of scaling up or down an apparatus so

the resulting impedance shrinks or grows in amplitude but maintains the same angle. The scaling can

be done by changing the base power of an apparatus with per-unit parameters, or by connecting or

disconnecting a portion of apparatus from a farm of identical apparatus (e.g. a wind farm). Layer-

2 does not require extra information to Layer-1 but adds to Layer-1 by the extra stipulation on the

orientation of ∆y, which yields the direction of ∆λ and thus brings additional knowledge about the

node’s impact on system damping:

∆λ = ⟨sλ,y,∆y(λ)⟩ = ϵ ⟨sλ,y, y(λ)⟩ . (3.47)

From (3.47) we see that ∆λ is determined by ⟨sλ,y, y(λ)⟩ which we use as the new participation index

for Layer-2. If the real-part of ⟨sλ,y, y(λ)⟩ is positive, it implies that scaling up the corresponding

apparatus connected at the node tends to shift the mode rightwards in the complex plane, and will

make the system be more unstable.

3.4.3 Grey-Box Layer-3

The final layer of the grey-box approach aims to look into the participating components in order to

identify which physical parameter in the component is the root-cause of instability, and thus provide

indication of which parameter should be re-tuned, and how to re-tune it, to stabilize the system.

Layer-3 requires additional information in the form of the partial derivative of a component’s admit-

tance to its internal parameters, ∂y/∂ρ, so that a parameter perturbation is propagated to an impedance

perturbation and further into an eigenvalue perturbation via the chain-rule (see section 3.2.2). This
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additional information can be provided by the apparatus vendor to the SO, or the SO could pass the

result of sλ,y to the vendor as a reference for tuning. The chain-rule yields the parameter sensitivity

factors sλ,ρ using (3.43). It is also worth mentioning that each parameter has a unit of its own (such

as ohm or hertz) or is dimensionless (such as a gain), so that it is not reasonable to compare sλ,ρ of

all parameters directly. To this end, perturbations should be of a consistent proportion to the original

parameter ρ, i.e. ∆ρ = ϵ ρ, where ϵ is a small positive constant. Substituting ∆ρ to (3.44) yields

∆λ = ϵ (sλ,ρ · ρ) . (3.48)

If the real part of (sλ,ρ · ρ) is large and negative, it implies that by increasing this parameter, the

mode can be shifted leftwards on the complex plane, i.e., the system would become more stable. By

plotting all (sλ,ρ ·ρ) on the complex plane, clear indication would be provided of how to tune (increase

or decrease) the parameters to shift the mode in a desired direction, either to alter the damping or alter

the natural frequency. This is a great advantage of the Layer-3 grey-box approach that is not available

from other impedance model methods. The required additional information to achieve this benefit,

∂y/∂ρ, discloses little information regarding the internal design details or control algorithm of the

apparatus thus still preserves most of the advantages to apparatus vendors of a black-box model.

3.5 Practical Implementation

This section discusses the detailed implementation of the grey-box approach in practical applications.

From Fig. 3.4, it can be seen that three sets of data are required by the grey-box approach, namely, y,

sλ,y, and, for Layer-3 only, ∂y/∂ρ.

There are two routes to obtain y, the admittance of a component (apparatus) in the system:

1) Model-based route.

This route is relevant to vendors who have available detailed analytical models that preserve all

the states. Differential equations can be derived from such models and can be linearised around

an operating point to obtain state-space matrices. The state-space matrices are then transformed
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into transfer functions. This route is used for the 14-bus and 68-bus case studies in this thesis.

It is also worth noting that, as pointed in Chapter 1.2.2, the admittance of an apparatus may

vary according to different operating points. As a result, the underlying relationship between

admittance spectrum and operating points needs to be established, or spectra at some critical

operating points should be given and spectra at other points can be estimated from the available

knowledge [61]. This topic is still being studied.

2) Measurement-Based route.

This route can be fulfilled either by vendors or by system operators. Before connecting the

apparatus to the power system, the vendors can connect it to a known system, such as a constant

power load or a grid emulator [56]. By adding small-signal voltage perturbations at the PCC

and measure the current response, the series-connected admittance of the apparatus y and the

known system y0 can be acquired,, i.e., (y−1 + y−1
0 )−1, from which y can be restored. After

the apparatus connected to the power system, the system operator can add voltage perturbations

in series with the apparatus and measure the current response, such that the diagonal element

of Y sys can be measured. In the meantime, by measuring the voltage response distributed on

the apparatus and taking it as the input, and measuring the current response as the output,

the apparatus admittance y can also be acquired. This route avoids the complicated hand-

written differential equations and can be fulfilled online regardless of operating points, but the

drawback is that the measurement can be sensitive to noise. The issues related to noise are later

discussed in Chapter 5.

The value of sλ,y, which is obtained from (3.40), relies on the knowledge of Zsys and again there are

two routes of acquiring it:

1) Assembly route.

This route relies on the knowledge of y, which is discussed right above. After having admittance

of all apparatus, the admittance matrix YA can be acquired based on the definition given in (2.9),

which can further yields ZA from an inverse calculation. Combining with the nodal admittance

matrix YN which is usually known by the system operator, Zsys can be assembled using (2.18).
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2) Measurement route.

This route is based on the definition of Zsys in (2.16), but to transformed the virtual injections

used for understanding into real small-signal injections. Such method can give useful infor-

mation without knowing any of the details of the system. However, for off-diagonal elements

of Zsys, the measurement requires injection at one node and taking the response at the other

node. When the two nodes are far from each other, the perturbation signal can be significantly

attenuated and buried in the noise. So far, this route can only be applied theoretically, and is

considered as future work of this thesis. Nevertheless, the diagonal elements of Zsys, which can

be used to assess the participation factors of shunt-connected components, are considered to

be measurable because both the injection and the response measurement are performed at the

same node.

The value ∂y/∂ρ is available from vendors. If the symbolic transfer function of the apparatus is

established, ∂y/∂ρ can be calculated in a symbolic manner, after which the value can be acquired by

substituting all the parameter values. Such method is applied in the 3-node case study in this thesis.

Another method is to add a small perturbation upon the parameter ρ and assess the changes on y, such

that
∂y

∂ρ
≈ yρ+∆ρ − y

∆ρ
, (3.49)

where ∆ρ is a small perturbation and yρ+∆ρ is the admittance under the effect of the perturbation.

This method is applied in the 14-bus and 68-bus case studies in this thesis. The value of ∆ρ can

be selected as ∆ρ = 10−5(1 + |ρ|) following [99] as a trade-off between the relative and absolute

definitions of perturbation.

3.6 Summary

This chapter for the first time provides a means to calculate the value of state-space eigenvalue sen-

sitivity and impedance participation factor in impedance models, and establishes a comprehensive

theory for root-cause analysis in impedance models. The three-layer grey-box approach is also in-

vented which, for large power systems for which only impedance models of apparatus are available,
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provides a systematic method of analysis of small-signal stability, participation analysis and guidance

for parameter tuning. The proposed grey-box approach is based on rigorous mathematical analysis

with proof of the relationship between the residue of a pole and the impedance participation factor,

and elucidation of the chain-rule of sensitivity propagation of internal states and parameters forward

to the impedance participation factor. It thus provides a unified participation theory between state-

space and impedance models. Discussions on the practical implementation of the grey-box approach

is also included in this chapter.



Chapter 4

Case Studies: Applications of the Grey-box

Approach

Three case studies, from a simple circuit to a large-scale composite grid, are examined to demonstrate

the validity of the theoretical basis of the proposed impedance-based root-cause analysis, including

the effectiveness of the grey-box approach. The case studies have been presented in the author’s

paper [95, 96] and some figures and sentences are repeated. The system data, the codes used to

generate the simulation results, and all numerical results are available at: https://github.com/

Future-Power-Networks/Publications [100] through an open-source license.

4.1 Three-node Passive Circuit

A single-phase 3-node passive circuit, as shown in Fig. 4.1, is established to demonstrate the advan-

tages of eigenvalue sensitivity analysis in the networked impedance models and to draw a comparison

with critical admittance-eigenvalue sensitivity. The nodal admittance model Y nodal is established as

Y nodal =


y11+y12+y13 −y12 −y13

−y12 y22+y12+y23 −y23

−y13 −y23 y33+y23+y13

 , (4.1)
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Figure 4.1: 3-node simple passive circuit.

where yik is an admittance of the components form a branch (composed of R and L or a shunt admit-

tance a at a node in the system (composed of R and L in parallel with C), that is,

yik =


(Ri + sLi)

−1 + sCi i = k

(Rik + sLik)
−1 i ̸= k

. (4.2)

By calculating the zeros of Y sys
det , we identify 9 eigenvalues for the whole system of which 6 form

complex conjugate pairs and all are in the left half-plane. Since the complex eigenvalues represent

oscillatory modes, we choose the three pairs of complex conjugate eigenvalues for further analysis.

For each selected eigenvalue, a corresponding coefficient ξ can be calculated from (3.33), which

defines the relationship between critical admittance-eigenvalue sensitivity and eigenvalue sensitivity.

Because of the repeated information in a conjugate pair, we only consider the values at the upper

half-plane, i.e.,

λ1=−0.837 + j0.968 rad/s, ξ1=−0.109 + j0.094

λ2=−0.945 + j0.270 rad/s, ξ2=−0.167 + j0.096

λ3=−0.130 + j0.045 rad/s, ξ3=−0.082 + j0.192.

(4.3)

For each of the three eigenvalues, we identify the two components which have the largest affect

on the mode characteristic as noted in the first column of Table 4.1. The third column shows the

critical admittance-eigenvalue sensitivity in magnitude form (Layer-1 of the grey-box), |∂γ
∂y
||y|. The
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Table 4.1: critical admittance-eigenvalue sensitivity and eigenvalue sensitivity for selected compo-
nents in the grey-box layer 1, 2

Mode,
component

Critical admittance-eigenvalue State-space eigenvalue
∂γ
∂y

|∂γ
∂y
||y| sλ,y ⟨|sλ,y|, |y|⟩ ⟨sλ,y, y⟩

λ1, y12 1.747+j0.101 4.576 -0.201-j0.152 0.659 -0.036+j0.658
λ1, y2 0.848-j0.044 3.969 -0.089-j0.084 0.571 -0.001-j0.571
λ2, y13 1.6981-j0.102 4.103 -0.273-j0.179 0.788 -0.597+j0.515
λ2, y3 0.679-j0.026 3.802 -0.111-j0.069 0.730 0.548-j0.483
λ3, y1 0.256+j0.053 0.232 -0.031-j0.045 0.048 0.008+j0.048
λ3, y3 0.442-j0.053 0.270 -0.026-j0.089 0.056 -0.009-j0.056

penultimate column is the eigenvalue sensitivity in magnitude form, ⟨|sλ,y|, |y|⟩. Comparing these two

columns, one can see that there is a fixed scalar relationship between them and they therefore contain

the same information and both roughly indicate the participation of the components in the modes.

However, examining the vector form of the quantities, ∂γ
∂y

has a different ratio between the real-part

and imaginary-part of the sensitivity than sλ,y, in other words, a different angle. This illustrates

the conclusions in Chapter 3.3.1 that the critical admittance-eigenvalue sensitivity does not give an

indication of how a change in component value will affect damping and frequency of a mode. The

result in the final column, ⟨sλ,y, y⟩ (layer-2 of the grey-box) does give guidance on how to stabilise the

system by tuning the admittance by scaling-up or scaling down the the value (aligned to its original

direction). For instance, by increasing y12 proportionally (scaling up), λ1 will shift to up and to the

left such that both the damping and natural frequency will increase.

Considering (4.2), providing information on ∂y
∂ρ

, where ρ is a parameter (R, L, C), allows computation

of layer-3 of the grey-box, as illustrated in Table 4.2. Results are shown for some selected param-

eters which are influential on λ. Parameter sensitivity factors sλ,ρ are calculated from (3.43), and a

predicted change in eigenvalue ∆λpr is calculated and shown in third column for a 5% increment of

a parameter based on

∆λpr = sλ,ρ · ρ · 5%. (4.4)

For comparison, the eigenvalues of the system are re-computed for a 5% increment in parameter and

the actual change in value from the original condition is shown in the fourth column as ∆λ. The error
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Table 4.2: Parameter sensitivity in the grey-box layer 3 and tuning results under 5% increment

Mode, parameter sλ,ρ · ρ Predicted ∆λpr Actual ∆λ Error

λ1, R12 -0.619-j0.598 -0.031-j0.030 -0.030-j0.031 3.63%
λ1, L12 0.658-j0.059 0.033-j0.003 0.031-j0.004 4.95%
λ1, C2 -0.030-j0.625 -0.001-j0.031 -0.002-j0.030 3.47%
λ2, R13 0.759-j0.851 0.038-j0.043 0.035-j0.038 10.43%
λ2, R3 -0.340+j0.053 -0.017+j0.003 -0.017+j0.001 7.64%
λ2, C3 0.515-j0.572 0.0260-j0.029 0.024-j0.027 5.67%
λ3, R1 -0.105-j0.219 -0.005-j0.011 -0.005-j0.013 18.42%
λ3, L1 0.114+j0.114 0.006+j0.006 0.005+j0.005 11.23%
λ3, C3 -0.004-j0.076 0.000-j0.004 0.000-j0.004 3.84%

between the predicted and actual values, in the firth column, were calculated as

error =
|∆λpr −∆λ|

|∆λpr|
. (4.5)

It is clear from Table 4.2 that the whole-system sensitivity analysis provides a useful prediction of

the changes of eigenvalues by tuning specific parameters. The predictions are not perfect because

the impedance model is based on a linearised small-signal model (linearised around the steady-state

operating point) and therefore will not be fully accurate for substantial changes of parameter but when

the perturbation is small, the error will be small also. It can be seen that under a 5% perturbation, the

errors are within 20%, and all changes are in the correct direction. With such predictions available,

a system operator can choose the most effective parameters to increase or decrease in a small range,

in order to move eigenvalues in the desired direction and adjust either damping or natural frequency

or both. If the parameters need to be adjusted over a large range, the grey-box approach would need

to be applied iteratively over the path of parameter variations. The case of ⟨|sλ3|, |y3|⟩ illustrates an

important further point. The value seen in Table 4.1 is of reasonable magnitude but when looking at

the effect of individual parameters in the last line of Table 4.2 we observe that it is not possible to

change the damping (real part) of λ3 by adjusting C3, proving the conclusion that Layer-1 can only

roughly identify the means to re-tune a mode.

As a further illustration, parameters were swept from 100% to 105% (one at a time with other param-
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Figure 4.2: Eigenvalue plot of the system when parameters are swept from 100% to 105% respec-
tively.

eters constant) and the eigenvalues calculated at each point, Fig. 4.2. It can be clearly seen that the

changes of eigenvalues, both in direction and magnitude, match with results in Table 4.1, proving the

correctness of the sensitive analysis.

4.2 Modified IEEE 14-bus System

We now demonstrate the use of sensitivity analysis on a three-phase power system with a mixture of

inverters and conventional generators. The case study is based on the IEEE 14-bus network [101],

with three additional IBRs (Type-IV wind farms) connected to buses 11, 12, 13, as shown in Fig. 4.3.

The detailed parameters and the control of grid-following inverters are shown in Appendix D.1. The

vector fitting process is also demonstrated in this case study.

The whole-system impedance spectra of the network, constructed from the admittance of all apparatus

and grid impedances, are displayed in the Bode plot in Fig. 4.4. Because this is a three-phase power

system modelled in the synchronous d-q frame, the whole-system admittance Zsys
kk at each node is

a 2 × 2 matrix. Only one of the four elements in the matrix (the d-d term) is displayed since that

is sufficient to illustrate the characteristics of the system. Only nodes with sources (SGs or IBRs)

present are plotted because the other nodes are passive. A significant peak is observed at 18.87 Hz

at all nodes, meaning that the system has an oscillatory mode of 18.87 Hz. We choose this mode for
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Figure 4.3: Modified IEEE-14 bus system with 3 extra IBRs.

sensitivity analysis.

Fig. 4.5 shows the results from the grey-box approach layer-1 and layer-2. It can be seen that nodes 6,

11, 12, 13, branches 5-6, 6-12, 6-13 stand out in the layer-1 pie chart. This indicates that the oscillation

is mainly affected by these components. Breakdown of the sensitivity into real and imaginary parts in

layer-2 reveals that node 6 and branch 5-6 have negative real parts and node 11, 12, 13 have positive

real parts. This indicates that by increasing (scaling up) the admittance of node 6 and branch 5-6, the

mode will shift leftwards in the complex plane, i.e., the damping will increase. On the other hand,

by scaling up the apparatus admittance at nodes 11, 12, 13, the oscillation will be further exacerbated

through reduced damping. Further to the results in layer-1, layer-2 goes on to indicate that for scaling-

up of admittance, node 6 and branch 5-6 provide positive damping of the mode, while node 11, 12,

13 provide negative damping. In practical terms, scaling up of the admittance of a windfarm could be

achieved by increasing the number of individual turbines operating.

Fig. 4.6 maps the influences on the 18.87 Hz mode as either increasing or decreasing damping for an

impedance scale-up. It can be seen that damping is reduced by A11, A12 and A13, and increased by

A6 and branch 5-6. Further, the main influences and participation in the mode is the upper part of the
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Figure 4.4: Bode diagram of whole system impedance Zsys
kk at nodes with sources, presented in d-d

axis.

network with branch 5-6 acting as a boundary.

By applying layer-3 of the grey-box, the parameters within A11, A12 and A13 with the greatest

influence on the mode can be identified as candidates for tuning. The results are shown in Table 4.3.

It can be seen that the current control bandwidths fi of the three IBRs are most influential and have a

large negative value for the real part of the sensitivity. We can conclude that the low damping of the

18.87 Hz mode is mainly caused by the current control bandwidth of A11, A12 and A13 having been

set too low. Typically, the current control bandwidth of a grid-following inverter is limited around

500 Hz [102], and cannot be set too high or too low. A high control bandwidth can make the current

controller very sensitive to noise and introduces instability, while a low control bandwidth makes the

inner current loop interact with outer PLL loop which also leads to instability [103]. Layer-3 has

narrowed down the root cause of the oscillation to specific parameters in a way that layers 1 and 2

and critical admittance-eigenvalue sensitivity can not. To stabilise the system, we choose to increase

fi of the three IBRs by 20%, 50% and 28.5% for A11, A12 and A13 respectively which will shift the

pole leftwards. Fig. 4.7 (a) shows the Bode plot of Zsys
12,12 before and after tuning. It can be seen that
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Figure 4.5: Grey-box layer-1 and layer-2 results for 18.87 Hz mode, showing that apparatus at nodes
11, 12 and 13, and the adjacent impedances branches have the highest participations. The layer-2
results are normalized to the sum of absolute values.

Figure 4.6: Oscillation propagation in the system. The circles represent the sensitivity of 18.87 Hz
mode to nodes and branches, indicating the origins and the propagation of the oscillation. The circle
radii are proportional to the results in the grey-box layer-1, and the filling color is determined by the
sign of the real-part in layer-2.
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Table 4.3: Grey-box layer-3: significant parameter sensitivity factors in A11, A12 and A13 with
respect to 18.87 Hz mode

Apparatus Parameter ρ Original value sλ,ρ · ρ

A11 X 0.03 pu -1.014+j1.346
A11 fi 400 Hz -1.818+j2.922
A12 fvdc 10 Hz 1.420+j1.465
A12 X 0.03 pu -3.171+j6.089
A12 fpll 10 Hz 1.511+j1.118
A12 fi 300 Hz -5.039+j13.317
A13 X 0.03 pu -1.946+j2.873
A13 fi 350 Hz -3.379+j6.279

X output reactance
fi current control bandwidth
fvdc dc-link voltage control bandwidth
fpll phase-lock loop control bandwidth

the resonance peak is notably flattened but also the frequency is increased from 18.87 Hz to 27.98 Hz

as expected from the positive imaginary part of the sensitivities. Fig. 4.7 (b) shows the active power

output of A12 in a time-domain simulation, in which the load at bus 12 is increased by 100% at t=35 s

which causes a lightly damped oscillation in power flow at 18.9 Hz. It can be clearly seen that in the

re-tuned system, the mode is significantly better damped and the oscillation frequency has changed

to 28.0 Hz. To tune the mode to a precise characteristic, the whole-system impedance analysis and

grey-box sensitivity can be applied iteratively.

The vector fitting process is also demonstrated here to show the practical application of the grey-box

approach. The fitting is based on rational approximation [57] and the codes can be accessed from

[100]. Because the main purpose of this part is to demonstrate the fitting process and the accuracy,

only spectra of Zsys
12,12 and Zsys

13,13 in d-d axis are employed for further analysis because A12 and A13

are the dominants of the oscillatory mode. For each impedance, 81 frequency response data points,

from 1 Hz to 1000 Hz, are taken out from the theoretical impedance spectrum for vector fitting,

which is consistent with the frequency scanning fulfilled in Chapter 5. The two sets of data are fitted

together such that a series of common poles can be acquired. Although the order of the original state-

space model is 317, the fitting order can be selected much lower depending on what the shapes of the

spectra look like. In this case, the fitting order is selected as 20 based on a series of preliminary tests.

Typically, the higher the order is, the lower the fitting error would be, but the longer time the fitting
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Figure 4.7: Re-tuned system with an increase in current control bandwidth of A11, A12 and A13
by 20%, 50% and 28.5%, respectively: (a) Bode plot of the d-d term of Zsys

12,12 showing the mode
reshaped as predicted; (b) Time domain simulation: active power of A12 during a 100% demand
increase at bus 12 at t=35 s, showing significant improvement in system damping after tuning.
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Figure 4.8: Frequency response data points taken from the spectrum of Zsys
12,12 and Zsys

13,13 in d-d axis
and the spectra of 20-order transfer functions from the vector fitting results.

process would take. The result of vector fitting on a set of frequency response data can essentially be

a state-space model or a transfer function model, and the two models can be easily converted to each

other. Fig. 4.8 shows the frequency response points as well as the fitted spectra of Zsys
12,12 and Zsys

13,13

from these points. It can be seen that the vector fitting results can provide a good accuracy under a

20-order approximation.

Poles and residues corresponding to the 18.87 Hz oscillatory mode are further estimated from the

fitting results, and are compared with the results derived from the original state-space model, as given

in Table 4.4. It can be clearly seen that the errors of fitting results are maintained in a very low level,

meaning they can be employed for further participation analysis in the grey-box approach with no is-

sues. Since the errors are extremely low, the application of the fitting results in the grey-box approach

is assumed to be nearly identical with the theoretical results so is not further demonstrated here. Still,

in a real system, noise existed in the system can significantly affect the measured impedance fre-

quency response so would lead to errors when doing vector fitting. Analysing the noise and choosing

a suitable small-signal injection amplitude to a given accuracy are considered as the main tasks of

Chapter 5.
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Table 4.4: Vector fitting results: poles and residues corresponding to 18.87 Hz mode

State-space results Vector fitting results Error

Poles (Hz) -0.8557+18.8730j -0.8558+18.8729j 0.0007%
Residue of Zsys

12,12 15.9860+2.1687j 16.0088+2.1711j 0.1421%
Residue of Zsys

13,13 10.9911+2.2566j 11.0118+2.2493j 0.1956%

4.3 Modified NETS-NYPS 68-bus System

We now demonstrate the grey-box approach through a large-scale power system with IBR present.

The chosen system, Fig. 4.9, is based on the NETS-NYPS 68 bus system [104, 105] with six addi-

tional IBRs (Type-IV wind farms) connected to buses 17, 26, 28, 29, 58, 59. The SG at bus 15 is

replaced with a grid-forming inverter. Each wind farm is an aggregate with a scaled rating represent-

ing many individual IBR. To make the system prone to oscillation, the frequency droop gain of A15

is deliberately de-tuned high, and the current control bandwidths of A28 and A29 are de-tuned by

−40% and −56% respectively. All SGs use the same parameters as [104], meaning that A11 is poorly

damped and the least stable generator in the system [105]. Parameters of the newly added IBRs are

given in appendix D.2.

The previous two case studies performed analysis on Zsys but, for illustration purposes, this case study

selects Y sys, the whole-system admittance model measured from voltage injections, for impedance

participation factor analysis. Normally the the choice of model would be dictated by what is available.

The whole-system admittance of the network, constructed from the impedance of all apparatus and

admittance of all of the network lines, is displayed in the Bode plot in Fig. 4.10. At each node, the

whole-system admittance Ŷkk is a 2× 2 matrix in the synchronous dq frame, but only one of the four

elements in the matrix is displayed since that is suficient to illustrate the characteristics of the system.

Only the nodes with sources (SGs or IBRs) present are plotted because the other nodes are passive.

Several resonant peaks appear in the Bode plot, each representing an oscillation mode in the system.

The mode at 60 Hz arises from the flux dynamics of windings and lines, and is a standard feature [19].

The modes around 1-2 Hz are rotor swing modes of the SGs, and the mode at high frequency is caused

by the LCL filter of the grid-forming inverter. Three modes, annotated 1 to 3 in Fig. 4.10, are selected

for further analysis, and we use the grey-box approach to trace the root-cause of these modes and find
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Figure 4.9: Modified NETS-NYPS 68 bus system, with 6 extra grid-following inverters, and a grid-
forming inverter replacing the synchronous machine at bus 15.

ways to damp the modes.

Fig. 4.11 shows the results of applying grey-box Layer-1 (on the left) and Layer-2 (on the right).

For mode-1 (5.6 Hz), A11 stands out in the Layer-1 pie chart. Further, the breakdown into real and

imaginary components in Layer-2 shows that A11 affects both the damping and natural frequency

of mode-1 while the adjacent apparatus A10 and A12 also influence the damping of this mode. The

negative real-part in Layer-2 indicates that scaling up the power rating of A15 (which is equivalent

to decreasing its impedance) tends to destabilise the system. Similar analysis of mode-2 shows that

A15 is dominant in this mode, affecting both the damping and natural frequency. Mode-3 is more

complicated: Layer-1 reveals that there are multiple participants (A9, A28, and A29), and the Layer-

2 decomposition shows that the SG (A9) and the IBR (A28, A29) have opposite signs for the change

∆λ. For A9, scaling up of power rating would improve stability whereas for A28 and A29 scaling

up of the power rating decreases stability and indicates that mode-3 is an IBR-induced oscillation.

Further, comparing A28 and A29, we see that A29 has a larger participation in this mode, which is

attributable to the fact that A29 was de-tuned further than A28. The exact cause of the destabilisation

is not revealed until Layer-3 of the grey-box which can point to particular components and control

parameters. Nonetheless, Layer-1 and Layer-2 grey-boxes reveal rich information about the root-

causes of modes 1, 2 and 3 without significant prior knowledge.
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Figure 4.10: Bode diagram of whole system admittance Ŷkk at nodes with sources, presented in d-d
axis.

After locating the participating apparatus and identifying their roles in system stability, the final step

is to use the grey-box Layer-3 to re-tune the parameters in A11, A15, A28 and A29 to improve the

stability of the three modes. Based on the chain-rule, the parameter participation factors for mode-1,

mode-2 and mode-3 against the internal parameters of A11, A15, A28 and A29 are calculated and

illustrated in Fig. 4.12. The results used to draw Fig. 4.12 are shown in Table 4.5. It can be seen

that mode-1 is sensitive to the physical parameters of A11 such as the sub-transient reactance and

the inertia but also to control parameters in the automatic voltage regulator (AVR). In practice, it is

easier to tune the control parameters, hence we can choose to increase the AVR feedback gain KF(11)

to damp mode-1. For mode-2, both the dc-link control and the droop control of the grid-forming

inverter have impacts on the damping but the mode is also sensitive to the LCL filter capacitor and

inductor. Decreasing the frequency droop gain KD(15) shifts the mode leftwards and stabilises the

system. This reflects the fact that KD(15) had been de-tuned high. For mode-3, parameters in A28

and A29 participate in a similar way to each other with those in A29 having a larger impact. This

reflects the fact that A29 had been de-tuned further than A28. Looking inside each inverter, it can

be seen that increasing the current control bandwidth fi helps to stabilise the mode, but increasing

the PLL bandwidth fPLL tends to destabilise the mode. We can remark, therefore, that this mode
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Figure 4.11: Participation analysis of the three under-damped modes using Layer-1 and Layer-2 of
the grey-box, where the results in Layer-2 is normalized to the sum of absolute values.
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Figure 4.12: Grey-box Layer-3 analysis for the three under-damped modes. The parameter partic-
ipation factors are represented as vectors around the associated modes showing the amplitude and
direction of the eigenvalue variation subject to parameter perturbations. The parameter perturbations
are proportional to the original value of parameters. The number in the parentheses in the subscript
of each parameter indicates the number of the apparatus being analysed.

results from coupling between inner-loop (current control) and outer-loop (PLL) in a relatively weak

grid. Such coupling effect can be explained as the interaction between the equivalent capacitance of

inner-loop in d-q frame and the equivalent negative impedance of the outer-loop in q-axis [53,103]. In

this case, we choose to increase fi(28) and fi(29) to stabilise mode-3. For all the three modes, Layer-3

provides guidance on how to change control parameters to stabilise the system without the demand

for changing the hardware.

It is worth noting that many of the parameters are directly associated with states. For example, the

parameter participation factor of KD is identical to the corresponding state participation factor of the

droop control state. Thus Layer-3 provides similar interpretability to the classic state participation

analysis.
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Table 4.5: Significant parameter participation factors for the three selected modes

Mode Apparatus Parameter pλ,ρ · ρ

Mode-1
5.6 Hz

A11 H -0.18-j1.88
A11 X

′′

d -3.45+j1.37
A11 TF 0.43+j0.97
A11 KF -0.45-j0.96
A11 KA -0.37+j0.59

Mode-2
13.1 Hz

A15 KD 2.18-j0.56
A15 FD 0.91+j0.83
A15 Fdc -3.73+j19.60
A15 C -1.89+j9.82
A15 Lo -1.20+j5.46

Mode-3
19.4 Hz

A28 fPLL 1.12+j1.33
A28 fi -3.96+j5.60
A28 L -2.26+j2.48
A29 fPLL 2.27+j2.43
A29 fi -5.25+j12.57
A29 L -3.46+j5.49

To verify the predictions of the three layers of grey-box analysis, time-domain simulation of this case-

study was conducted with the apparent power output of A11, A15 and A29 recorded and displayed

in Fig. 4.13. Two step-changes were introduced to the system to create transient behavior: the load at

bus-61 was disconnected at t = 10 s, and a 5% increase in the load at bus-42 was applied at t = 12 s.

Detailed description and discussion of the results are included in the caption and annotations. Natural

frequencies can be measured from the time-domain oscillations and they are found to agree with the

resonant peaks in the frequency domain spectra in Fig. 4.10. Different modes are excited in different

apparatus, which agrees with the prediction of grey-box Layer-1 and Layer-2. The parameters of the

participating apparatus were tuned in the directions indicated by grey-box Layer-3 and the damping of

the modes is seen improved. The parameters were also adjusted against the grey-box indications and

the damping is seen to worsen. The grey-box-based participation analysis has correctly located the

root-cause of oscillations and indicated appropriate choices for achieving stabilisation. Eigenvalue

plots before and after tuning are provided in Fig. 4.14, where it can be clearly seen that mode-1,2,3

are all shifted leftwards on the complex plane as predicted, with their damping improved, when tuned

in accordance with the layer-3 indications. This proves that the grey-box approach can correctly show

the tuning direction of parameters and help to stabilise the system.
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Figure 4.13: Apparent power output of A11, A15 and A29 during two transients: load-61 discon-
nected at t = 10 s, and load-42 increased 5% at t = 12 s. (a) De-tuned system with obvious oscil-
lations during transient process; (b) Re-tuned by increase of KF(11) by 100%, decrease of KD(15) by
60%, and increase of fi(28) and fi(29) each by 50%, giving significant improvement in system stability;
(c) Counter-tuned by increase of KD(15) by 50% leading to instability.
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Figure 4.14: Eigenvalue plot of the 68-bus system before and after tuning the parameters, showing
that mode-1,2,3 are shifted leftwards as predicted.

4.4 Summary

In this chapter, the comprehensive theory for root-cause analysis in impedance models and the grey-

box approach are validated through three case studies: a three-node passive network, a modified IEEE

14-bus network and a modified NETS-NYPS 68-bus network. The theory and the grey-box approach

have been proved to be effective in all case studies and oscillatory modes are successfully tuned to

the desired direction. All the codes to generate the results were written in Matlab and are published

in open-source form [100].



Chapter 5

Impedance Measurement and Noise Analysis

When considering implementing the proposed participation and sensitivity analysis in a power sys-

tem, a major consideration is whether whole-system impedance or whole-system admittance can, in

practical reality, be measured online. As discussed later in Chapter 5.1, such a measurement relies

on small-signal voltage or current injections in the system. Challenges still remain in noise analysis

and results validations of impedance measurement. This chapter takes a first look at the challenges of

impedance measurement, and develops a full process of noise analysis which can help to determine

an appropriate injection amplitude and validate the results. Considerations of stochastic processes

and statistics are applied from which the minimum amplitude can be determined for injection that

guarantees a certain maximum relative error (12% in the examples used) in the measured impedance.

To demonstrate the newly developed process in a straightforward way, the process is introduced step

by step via an experimental case. The same method could be applied readily in other cases.

5.1 Review of Impedance Measurement Techniques

Online impedance measurement is a potentially important way of obtaining a black-box impedance

model, and a bridge to connect the analytical method with practical implementations. Efforts have

been made to develop perturbation injection equipment configurations and suitable waveforms for

90
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small-signal signal injections. In this section, an introduction to various methods of impedance mea-

surement will be given, and some outstanding issues will be discussed.

5.1.1 Injection Topology

Impedance measurement is generally based on a series of small-signal injections of different frequen-

cies. It is theoretically possible to use ambient data of the system to identify impedance, such as from

the natural harmonics in the system [106–108], and system transients [109–111]. However, such

methods rely on a specific configured environment, e.g., a step-response introduced by connecting a

specific load to the network, and are mostly applied in offline systems. For real-time assessment in a

large-scale system, measurement without active injections is highly dependent on system events and

the signal-to-noise ratio of the measurement, thus has not been successfully applied. In contrast, de-

liberate and controlled waveforms, i.e., small-signal injection, provides better flexibility and accuracy,

and is the mainstream technique for impedance measurement.

To inject small-signal perturbations into a grid system, it is important to choose a proper topology. Ex-

isting technologies include measurement in the abc frame [112], the d-q frame [113] and the sequence

frame [94], among which the d-q frame impedance is widely used for stability analysis. This thesis

focuses on only measurement in the d-q frame. Four common injection topologies are illustrated in

Fig. 5.1.

A straightforward method, as shown in Fig. 5.1(a), is to use a shunt-connected current source at the k-

th node to inject small-signal current ĩk and measure the variations in the voltage ∆vk. Such a source

is independent and would be synchronised to the three phase network via PLL [113, 114]. From the

injected current ĩk and output signal ∆vk, the impedance can be acquired as

(
Z−1

Ak + Z−1
Gk

)−1 · ĩk = ∆vk, (5.1)

where ZAk is the impedance of the inverter at the k-th node, and ZGk is grid impedance seen from

the k-th PCC. From the topology, it is clear that the measured result is the parallel-impedance of ZAk

and ZGk. If further measurements of the small-signal current flowing into the inverter and into the
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Figure 5.1: Small-signal injection topologies for impedance or admittance measurement: (a) inde-
pendent current injection source. (b) Independent voltage injection source. (c) Noninvasive current
injection from grid-following inverter. (d) Noninvasive voltage injection from grid-forming inverter.

grid are made, as in [45, 113], then ZAk and ZGk can be acquired separately. Similarly, as shown in

Fig. 5.1(b), an independent series-connected voltage source can be employed to inject small-signal

voltage perturbation ṽk and measure the current flowing through this source ∆ik [61, 115, 116], such

that (
Y −1

Ak + Y −1
Gk

)−1 · ĩk = ∆vk, (5.2)

where YAk is the admittance of the inverter at the k-th node and YGk is grid admittance seen from the

k-th PCC. The measured result is the series-admittance of YAk and YGk. It is worth noting that the

injecting voltage source needs to be isolated perhaps by using transformers to connect it in series with

the inverter [116].

In addition to independent injection sources which require extra devices, techniques using existing
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inverters to measure impedance or admittance have been developed. In such techniques, small-

signal perturbations are injected in the control loop of existing inverters so that perturbations can

be generated at inverters’ output ports. Because no extra sources are used, such a method is some-

times described as a noninvasive injection method but it does still involve injection of a perturbation.

Fig. 5.1(c) shows the way of using grid-following inverter as the injection source [58, 59, 94]. The

perturbation is added on the current reference in the control loop, while current perturbation ∆ik and

voltage perturbation ∆vk are measured and the grid impedance can be identified as

ZGk ·∆ik = ∆vk. (5.3)

Similarly, as shown in Fig. 5.1(d), perturbations can be added on the voltage reference of a grid-

forming inverter [117] and the grid admittance can be identified as

YGk ·∆vk = ∆ik. (5.4)

Looking across different topologies, one can remark that an independent injection source may provide

better data as it would be designed and instrumented specifically for small-signal injection. Its power

rating could potentially be very small compared with the inverters in the system, and its bandwidth

can be designed to be high in order to cover a wide-range of frequency.

Use of existing IBRs for small-signal injections could save cost and be considered non-invasive in

not needing installation work to be carried out on site other than perhaps software enhancement.

However, the bandwidth of IBR control loop is typically designed to be low (around 500 Hz for current

control loop and 100 Hz for voltage control loop). As a result, perturbations above the bandwidth will

be significantly attenuated so cannot be measured accurately. Besides, it is also worth noting that

noninvasive injection method can only measure impedance of the grid, or devices connected at the

output of the inverter, but not of the inverter undertaking the injection. Such impedance measurements

could also benefit the control of the inverter through use of adaptive control [118], but is limited in

terms of improving system stability because the impedances of both the inverter and the grid are

needed for stability analysis.
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Considering the weakness of using existing IBRs for small-signal injections, independent injection

sources are preferred for high accuracy and wide frequency range measurement.

5.1.2 Injection Waveform

There are a variety of ways of choosing the injected waveforms. Narrowband injection and wideband

injections are two major categories of injection waveforms for impedance measurement.

Narrowband injection is a well-studied method for impedance measurement, which is essentially a

series of sine waves at different frequencies, and is usually referred as a frequency sweep, sine sweep,

or frequency scanning. Such a method has been widely applied in DC systems [119–121] and has

been extended to three-phase AC systems [45, 55, 122–127]. Generally, narrowband injection is con-

sidered as the most accurate method. The amplitude of each sinewave term and the number of cycles

injected for each frequency can be configured in a variety of ways, such that the injected energy can be

regulated in a very flexible way. However, one major drawback is that the total measurement time is

considerable, especially when low-frequency points are measured such as 1 Hz. Still, the experience

of the tests in this thesis indicated that with a careful choice of injected frequencies, duration of each

injection, and interval between each groups of sine waves, the total sweep time for of around 30 s was

enough to scan 1-1000 Hz. This was judged to be an acceptable for online impedance measurement

in power systems.

In contrast, wideband injection is based on a high-frequency content signal to excite a wide range

of frequencies of interest. Such methods have been widely-studied and are often based on inject-

ing a pseudorandom binary sequence (PRBS) [58, 59, 94, 117, 128, 129], a chirp signal [93, 130],

pulses [131, 132] or step changes [109, 110, 133]. Because a variety of frequencies can be excited

and identified at the same time, a wideband method can significantly accelerate measurement pro-

cess compared to narrowband and thus is suitable for online measurement and real-time monitoring.

However, large magnitude perturbations are normally involved for wideband injections because some

frequencies may not be excited distinctly without a a large magnitude of input. The large perturba-

tions may produce a nonlinear response from the system, undermining the basis of linear analysis and
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affecting system stability [58, 93]. Another issue is that the signals of different frequencies may not

be orthogonal in a non-linear system and can affect each other when performing the Fourier trans-

formation, so that the accuracy of wideband injections are considered less accurate than narrowband

injection.

The debate on the most suitable waveforms is still on going. It was decided to contribute to the debate

with a focus on measurement noise and its influence on accuracy and the required injection amplitude.

Frequency sweep was selected for the study because of its high accuracy and simplicity.

5.1.3 Work Described in this Chapter

As with any measurement process, the process of impedance identification involves errors which

may severely affect the final results. Two unsolved issues related to measurement error have been

introduced in Chapter 1.3.3.

This chapter aims to address the issues by developing a method which can determine the minimum

necessary injection amplitude based on an allowable error needs to be developed. Alongside this, a

method is needed to determine what the true value of the impedance of a physical systems is so that

measurements can be judged for accuracy and, indeed, a metric for measurement error needs to be

established so that measurement results can be compared with each other.

5.2 Online Measurement Test Bench

Because the focus is on measurement error, which is a problem caused by hardware devices, sim-

ulation software is not capable of resolving the issues since the non-linear behaviours of inverters

and noise in the system cannot be emulated perfectly in software. As a result, a hardware test bench

is required for further analysis. Based on the discussions in Chapter 5.1, one can see that to build

a hardware test bench in a laboratory for impedance or admittance measurement, there are several

difficulties to be overcome. First, an independent injection source is needed. Such an injection source

is desired to have high bandwidth (to cover a wide frequency range), high accuracy (to inject the
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requested perturbations accurately), and a certain power capability (to source the power needed for

small-signal injections). Besides this, in order to validate fully the feasibility of online measurement

in power systems, a system of sufficient scale is desired, which is difficult to achieve in most research

laboratories. To overcome the above theses limitations, a power hardware-in-the-loop (PHIL) system

is adopted which will be introduced in the following subsection before turning to the testing process.

5.2.1 Introduction of PHIL technique

PHIL is an extension of the hardware-in-the-loop (HIL) technique, and is a hybrid system that contains

both real-time simulations (software) and device under test (DUT, hardware). Compared with HIL

in which the signals exchanged between software and hardware are low-voltage, low-current signals,

PHIL is also capable of exchanging significant power required by the DUT. The basic configuration

of a PHIL system is shown in Fig. 5.2 [134]. The target system is split into a software part running in

real-time simulator, and a hardware part as a DUT. Within the hardware section, a controlled voltage

source generates the same voltage as u1 in the software. This is paired with a controlled current source

in the software section which draws the same current i1 as the DUT. In practice, a power interface

is needed, which can read the simulated voltage value u1 and generate the same voltage physically

u′′
1 , meanwhile it samples the physical current i1 and feeds the value back to the simulation. Such an

interface is named a power interface (PI) and the device to perform this interface is known as a power

amplifier (PA). With the help of the PHIL technique, devices with power input or output such as IBR

can be tested in an appropriate environment by simulating in real-time a power system with the real

IBR connected to one node of that system. Such configuration can help with the analysis of IBR’s

interaction with the system.

There are several types of PA and PI, which are discussed in detail in [134], and those details are

not repeated here. In this experiment, a switched-mode PA and ideal transformer model of voltage

type PI are employed. Because the PA is configured as a voltage type, it is only able to inject voltage

signals into the system and as a consequence it is whole-system admittance Y sys that is measured in

the experiment.
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Figure 5.2: Basic configuration of PHIL system [134]. Copyright © 2016, IEEE.

5.2.2 Experiment Test Bench

Because the main focus of this chapter is to demonstrate the process of impedance measurement

and the methodology of noise analysis, a simple system with one IBR connected to infinite bus is

employed. Fig. 5.3(a) shows the single-line diagram of the tested system. The infinite bus voltage

is 200 Vrms, the line is 0.18 H, the load is 3000 W and -1000 Var, and the inverter feeds 1200 W

and 400 Var to the grid. An voltage injection is placed in series with the IBR so that whole-system

admittance Y sys can be measured, that is,

∆i = Y sys · ṽ. (5.5)

This system contains only one node (the infinite bus is ideal so is merged into the network matrix YN)

so the system admittance matrix is only 2× 2:

Y sys =

Y sys
dd Y sys

dq

Y sys
qd Y sys

qq

 , ṽ =

 ṽd

ṽq

 ,∆i =
 ĩd

ĩq

 . (5.6)

Fig. 5.3(b) shows how the test system is configured in the PHIL system, where the left-part is the

software part that runs in the real-time simulator and the right-part is a real grid-following inverter.

The voltage vo and current io consist of both the steady value and small-signal perturbation, and are
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sampled by the PA. The admittance measurement is designed as follows:

• Frequency sweep is selected as the measurement method, which is the more accurate impedance

measurement method as noted in Chapter 5.1.2. The sweep covers from 1 Hz to 1 kHz in

recognition of the limitations of the equipment (bandwidth of the injection source is 10 kHz, as

will be introduced later).

• Each frequency point comprises 7 cycles of injected signal, of which the first two cycles are

considered as pilot cycles with no measurement taken during that period. This is to ensure

that the measured current response contains no transient period. In addition, the injection is

also preceded by 2 cycles of with no injection to allow the system to settle from any previous

injection. Each round of sweep consists of 81 frequency points and takes around 30 seconds.

• Although the measurement is carried out on both d and q axis, the analysis is only performed

on the d-d axis, i.e., Y sys
dd . The same analysis can be extended to any of the axes. For the sake

of brevity, Y sys is used in the following discussion to represent Y sys
dd .

Fig. 5.4 shows the experimental platform in for the configuration discussed. On the left-part of the

figure, is the power amplifier which is an OP1400 from the company Opal-RT and it houses two

OP8100 PAs which are the devices to generate voltage and exchange power with DUT. The band-

width of the PA extends to 10 kHz, and the total harmonic distortion (THD) for the range 0-1 kHz is

maintained below 0.5%, which guarantees a nearly ideal small-signal injections. The maximum out-

put line-to-neutral voltage is 240 Vrms and in this experiment the output is 200 Vrms. The real-time

simulator used is a OP5707, which is a high-end FPGA-based simulator with 16 Intel Xeon cores.

The simulation runs with a time-step of 50 µs, which is an update rate of, 20 kHz. This is also the

current and voltage sample rate. The data exchange between software and hardware is fulfilled via

fiber optic communication between OP5707 and OP8100.

In the right-part of the figure, the grid-following inverter, also known as DUT, is a three-phase in-

verter manufactured by Triphase (a company acquired by National Instrument in 2018) with a rated

power of 10 kVA. The inverter is controlled via a Triphase real-time target (RTT), which is based on
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Figure 5.3: Single-line diagram of the three-phase experiment: (a) illustration of the aiming tested
system. (b) Configuration of the tested system in PHIL platform.

Figure 5.4: Experiment platform for the system.
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rapid control prototyping (RCP) technique, allowing users to develop control algorithms in Matlab

Simulink. The schematic of the inverter is provided in appendix D.3.

Looking now at the bottom of Fig. 5.4 it can be seen that the DC power sources supply the PA and

the Triphase inverter (DUT) are connected to the lab grid panel. Thus, power absorbed by one is fed

back to the point where the other drew its power and, subject to power conversion losses, power is

circulated around a loop.

At the top of the figure, a Windows-system workstation is shown, which is connected to the OP1400

and the inverter via an Ethernet connection. This workstation has several items of software including

RT-Lab, Matlab, Simulink and Python, through which the workstation can fulfill tasks including user

interaction, monitoring, data acquisition and analysis. An oscilloscope is also employed to monitor

real-time waveforms generated from OP5707’s digital-to-analog converter (DAC) port.

5.3 Noise Analysis for Measurement

When measuring the impedance or admittance at a PCC, the noise observed comes from sources

in the grid-side, sources in the inverter-side, and the background noise from both sides. The signal

injection source and the sampling circuit may also contribute noise but such noise is typically small

when the injecting source is well designed, as is the case for the power amplifier employed in this

experiment. Importantly, features of noise are determined by the design of an individual case and it

can not be assumed that there is a single set of noise features that could cover all situations. As a

result, a methodology to analyze the noise for individual cases is needed. In this section, a method to

analyze the noise and its impact on measurement results will be proposed, and experimental results

will be presented to verify the proposed method.

To begin with, three premises are introduced which will be used in the following sections:

Premise 5.1 The system is considered to be time-invariant during the impedance measurement period

since the measurement period is around 30 s, which is short compared with variations of operating

point of a grid system.
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Premise 5.2 The noise is additive noise. This is because the injecting source is an independent

source, and considered as ideal.

Premise 5.3 During a 30 s measurement period, the noise is considered to be a wide-sense stationary

(WSS) stochastic process. This is because when the system is time-invariant, the noise mainly consists

of background noise, which is typically white Gaussian noise (WGN), and harmonics in the system

which are sinewaves with random phases, which are all wide-sense stationary stochastic processes.

The definition of WSS is introduced in B.4, and proof of the third premise is given in A.6.

5.3.1 Discussion of measurement error

As mentioned in Chapter 5.1.3, the error in the measurement result should be discussed in terms of the

complex plane. Since the result is a frequency spectrum Y sys(jω), it is difficult to select a metric to

represent the error of the whole curve. Consequently, the error should be analyzed at each frequency

point instead of the whole spectrum. The goal is to confine the relative error at each frequency to be

within a certain range.

Consider a frequency point fc, the injected voltage on the d axis is

ṽ(t) = Vc cos (2πfct) , (5.7)

where the injected amplitude is Vc and phase is 0. The measured small-signal output is a current

which can be expressed as

∆ic(t) = Ic0 cos (2πfct+ θc0) + n (t) , (5.8)

where Ic0 is the true amplitude of output current, θc0 is the true phase, and n(t) refers to the noise

which is a stochastic process and is additive noise as set out in premise 5.2. To acquire the amplitude

and phase of current from the time-domain signal, signal demodulation is needed which is based on
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the Fourier transform:

Ic-Re =
2

kcTc

∫ kcT

0

∆ic (t) · cos (2πfct) dt

Ic-Im =
2

kcTc

∫ kcT

0

∆ic (t) · sin (2πfct) dt,
(5.9)

where kc is number of the injected cycles of perturbation, and Tc = 1/fc, Ic-Re and Ic-Im are the real

and imaginary-part of Ic, i.e., Ic = Ic-Re + jIc-Im. The above equation is written in continuous form

but can be easily transferred into discrete form. Substituting (5.8) into (5.9) yields

Ic-Re = Ic0-Re +Nc-Re

Ic-Im = Ic0-Im +Nc-Im,

(5.10)

where Ic0-Re and Ic0-Im are the true real and imaginary-part of current output, and Nc-Re and Nc-Im are

the errors caused by the noise where

Nc-Re =
2

kcTc

∫ kcT

0

n (t) · cos (2πfct) dt

Nc-Im =
2

kcTc

∫ kcT

0

n (t) · sin (2πfct) dt.
(5.11)

Based on the above, the true admittance at fc is

Y sys
true =

Ic0-Re

Vc
+ j

Ic0-Im

Vc
, (5.12)

while the measured admittance at fc is

Y sys
meas = (

Ic0-Re

Vc
+
Nc-Re

Vc
) + j(

Ic0-Im

Vc
+
Nc-Im

Vc
). (5.13)

The relative error η at frequency fc is then defined as the distance between true value and measured

value divided by the true value. Combining (5.8), (5.12) and (5.13) yields

η (fc) =
|Y sys

meas − Y sys
true|

|Y sys
true|

=

√
N2

c-Re +N2
c-Im

|Ic0|
. (5.14)
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Here we define the term
√
N2

c-Re +N2
c-Im as the noise impact on frequency point fc since it is the

absolute error caused by the noise. Equation (5.14) forms the basis of the proposed noise analysis

method, as introduced in the next subsection.

In reality, the true value of the small-signal current output can never be known, i.e., Ic0-Re and Ic0-Im

cannot be known. As a result, it is difficult to assess the errors in the experiment. However, from the

proof of premise 5.3 in appendix (A.6), it is known that the noise is WSS process composed of WGN

and harmonics, and the expected value of the is zero. Under such premise, it can be easily known that

E(Nc-Re) = E(Nc-Im) = 0. (5.15)

This condition holds true in most cases of impedance measurement. Combining (5.15) and (5.10)

yields

E(Ic-Re) = E(Ic0-Re) + E(Nc-Re) = Ic0-Re

E(Ic-Im) = E(Ic0-Im) + E(Nc-Im) = Ic0-Im.

(5.16)

Equation (5.16) shows that the expected value of measurement result is equal to the true value of

current signal. According to the law of large numbers (appendix B.5), when there is a large number

of repetitions of the same test, the expected value will be very close to the average value of tests.

Combined with (5.16), the true value of small-signal current at frequency of fc can be derived as

Ic0-Re = lim
NT→∞

NT∑
i=1

Ic-Re-i

NT

Ic0-Im = lim
NT→∞

NT∑
i=1

Ic-Im-i

NT

Ic0 = Ic0-Re + jIc0-Im,

(5.17)

where the subscript i refers to the i-th test and NT is the total number of tests. Equation (5.17) shows

a way to acquire the true value and to verify the error present in experiments.
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Figure 5.5: Method of noise analysis and injection determination for impedance or admittance mea-
surement.

5.3.2 Methodology

The proposed method of noise analysis and injection determination for impedance or admittance

measurement is depicted in Fig. 5.5. The method contains 4 steps. For a better understanding, each

step is introduced in turn together with the relevant experimental results.

A Step 1: Noise measurement

To evaluate the noise, the first step is to sample a long period of noise from the output port, i.e.,

current, without a injection present. Since the frequency sweep period is expected to be 30 s, the

sampling period for this step is set as 30 s as well. It is important that the sample rate is the same as

the rate used for the subsequent admittance measurement, i.e., 20 kHz in this work, since the noise

is specific to the sample rate. Since the noise is a WSS process, the starting time of noise sampling

won’t affect the results. Fig. 5.6 shows an example measured current from d-axis for 30 seconds,

together with a zoomed-in view showing that the noise includes both repetitive harmonic components

and random background noise.



5.3. Noise Analysis for Measurement 105

Figure 5.6: Waveform of d-axis current, with sample rate of 20 kHz on two timescales. Abundant
noises can be observed.

B Step 2: Noise modelling

Autocorrelation is first applied to the noise since it is a general approach for power analysis of stochas-

tic process. According to the definition introduced in appendix B.6, the autocorrelation of the noise

n(t) is

Rnn (l) =
1

Ns

Ns−1∑
k=0

n (k)n (k − l), (5.18)

where l and k are integers that refer to sample points, and Ns is the total number of sample points.

Since n(t) is a WSS process, we have

Rnn(0) = E(n2(0)), (5.19)

meaning that the total power of the noise equals Rnn(0), which is a property of autocorrelation.

Because this is a WSS process, the Wiener-Khinchin theorem can be applied, from which the power

spectral density (PSD) of the noise can be acquired by performing a Fast Fourier transform (FFT)

on Rnn(l). Wiener–Khinchin theorem is introduced in appendix B.7. Fig. 5.7 shows the results

of autocorrelation and PSD. The diamond shape indicates that the correlation value is decreasing

along with the increasing value of interval |k − l|, which is in accordance with the feature of WSS
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process [135]. This also proves that the assumption in premise 5.3 is correct. Also, the value at 0 is

0.01099 meaning that the total power of the noise is about 0.01099 W. The zoomed in autocorrelation

plot also reveals the presence of harmonics at various frequencies. From the PSD plot, it is obvious

that several peaks stand out in the spectrum, which are harmonics as might be expected from an

inverter. Since the noise was observed on a d-axis signal, 50 Hz in this spectrum corresponds to

DC in the physical signal and is a DC offset. Similarly, 300 Hz corresponds to the 5-th and 7-th

harmonics. The terms above 1 kHz could be caused by excitation of resonances in the inverter’s LCL

output filter. The PSD indicates the power of each harmonic. Taking 300 Hz as an example, the power

density at that point is 0.0411 W/Hz, and the frequency resolution in this case is 1/7.5 Hz. The power

of 300 Hz harmonic P300 is therefore

P300 = 0.0411/7.5 = 0.00548W, (5.20)

The harmonics appearing in Fig. 5.7 (b) with relative large power are picked out to build a model of

the noise.

Using (5.19), the power of WGN, σ2, can be calculated as the difference between the total power and

the power of the harmonics,

σ2 = Rnn(0)−
km∑
i=1

Pfi, (5.21)

where km is the number of selected harmonics, Pfi is the power of the i-th selected harmonic.

Based on the result of the autocorrelation and the PSD, the noise can be modeled as the sum of WGN

and a harmonic series.

NM(t) = GW (t) +
km∑
i=1

Hi(t), (5.22)

where NM(t) is the modelled noise, GW (t) is the WGN, and Hi is the i-th selected harmonic. For

WGN, at any t = t0,

G(t0) ∼ N (0, σ2). (5.23)

The i-th harmonic is modelled as

Hi(t) =
√
Pfi sin(2πfit+ θi), θi ∼ U(0, 2π) (5.24)
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Figure 5.7: (a) Autocorrelation of the noise: the diamond shape is in accordance with the feature
of WSS process. The value at 0 is 0.01099, which is the total power of the noise. Harmonics of
various frequencies are seen in the autocorrelation. (b) PSD of the noise, showing the power of each
harmonic.
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Table 5.1: Parameters of modelled noise

frequency Power/W Inferred noise source

50 Hz 0.0010006 DC bias involved in d-q transform
300 Hz 0.0054798 5th and 7th harmnoics
600Hz 0.0007787 11th and 13th harmonics

1400Hz 0.0005922 LCL filter
1450Hz 0.0012498 LCL filter
1500Hz 0.0064725 LCL filter
1600Hz 0.0023649 LCL filter
WGN 0.002 Background noise

Figure 5.8: Measured noise and the modelled noise, showing that the two are closely similar.

where fi is the frequency of the selected harmonic, and θi is the harmonic phase. It is seen in practice

that low-order harmonics (3rd, 5th ,7th etc) tend to have a consistent phase angle with respect to

the fundamental of the grid frequency. However, since this chapter aims to demonstrate a general

method for noise analysis, for simplicity, the injection source is considered fully independent from the

grid. Therefore, from the injection perspective, it is reasonable to assume θi is a uniformly randomly

distributed phase in [0,2π].

The parameters for the modelled noise for the case studied here are given in Table 5.1, together with

the inferred source of each type of noise.

The modelled noise from (5.22) is shown in Fig. 5.8. Compared with the actually measured noise, the

modeled noise shows the same amplitude and very similar patterns.
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C Step 3: Monte Carlo simulations

The noise model built in step 2 can be utilised to assess the noise impact on different frequency

points, i.e., the probability density function (PDF) of
√
N2

c-Re +N2
c-Im in (5.14) for frequency point

fc. Although the impact of the PDF of the noise at different frequency points can be calculated via

the mathematical expression of the noise model, the process may be difficult because the process

contains multiple arcsine and integration calculations that take significant computational effort which

increases with an increase in the number of harmonics of interest. Alternatively, the Monte Carlo

method can be applied as a simple but effective way to analyse the noise by conducting thousands of

tests in simulations from which the PDF can be estimated based on histograms of noise impact. An

introduction to the Monte Carlo method is given in appendix B.8.

For each of the 81 frequency points in the present study, 2,000 random tests were performed in sim-

ulation so that histograms could be plotted. The computation time for Monte Carlo method is around

126 s in a laptop with an Intel(R) Core(TM) i7 2.20 GHz CPU. The histograms of
√
N2

Re +N2
Im for

each frequency point are shown as a 3-D bar chart in Fig. 5.9. Four red ellipses are marked to help

identify categories of noise impact in various frequency ranges. Looking at ellipse-1, the low fre-

quency portion of the figure, the noise impacts with the highest probability density are those close to

0 impact, which means that admittance measurement at low frequency is affected very little by the

noise. Further along the frequency axis, in ellipse-2, three peaks stand out, which are around 50 Hz,

which means that measurement in this region will be affected by noise but the impact is maintained

below 0.04 which is relatively a small value. In ellipse-3, which includes frequencies around 300 Hz,

several peaks of impact occur, indicating that the noise impact will be significant and therefore a high

amplitude of signal injection will be needed. This also means that such noise impact is unavoidable

since the probability of noise impact being zero is nearly 0, thus this range is of major concern for the

measurement process. At the high end of frequency axis, in ellipse-4, the histogram of noise impact

is spread across a wide range but not far from zero, meaning that the noise could have some affect on

the result but will not be severe.

Another observation is that the histogram of noise impact at different frequency points are of different

shapes. This means that they can not be represented by one single type of distribution such as a normal
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Figure 5.9: Histogram of noise impact on admittance measurements from 1 Hz to 1 kHz.
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Figure 5.10: PDF of noise impact based on kernel density estimation.

distribution. As a result, kernel density estimation, which is a non-parametric way to estimate the PDF

of a random variable, is applied as a generic way to acquire a PDF of noise impact. Fig. 5.10 shows

the estimated PDF of noise impact on admittance measurement for the selected 81 frequencies. Where

a curve has a large value of probability density, that level of impact is likely at that frequency. Peaks

toward the right hand side indicate a large impact on the final measurement results or, looked at the

another way, a large injection amplitude is required to obtain reasonable accuracy at these frequency

points.

D Step 4: Injection guidance

A 95% probability curve of noise impact value was calculated using the PDF of noise impact and is

shown in Fig. 5.11. For each frequency, there is a 95% probability that the absolute error caused by

noise is smaller than the corresponding value of the curve. Here the value 95% is chosen as it is a

common value in the field of statistics when considering a confidence interval. The curve in Fig. 5.11

can serve as a guide for choosing the amplitude for signal injection. Taking 300 Hz as an example,

the absolute error, at 95% probability, is 0.08 or less. If the measurement is required to have a relative
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Figure 5.11: Absolute error caused by noise plotted at the 95% confidence level, i.e., there is 95%
probability that the error is smaller than the value indicated by this curve.

error lower than 12%, then the current should have an amplitude 1
0.12

times of the noise impact which

yields a required amplitude of 0.08
0.12

= 0.67 A. Based on the required amplitude of the current, the

necessary amplitude of voltage injection can be obtained by using knowledge of the expected range

of impedance or through circuit simulations, or through undertaking a set of preliminary experiments

with gradually increasing amplitude. In the experimental system under study, a voltage injection with

an amplitude of 15 V is needed to drive 0.67 A of current, i.e., a 15 V amplitude of voltage injection

can achieve the goal on accuracy. It is also worth mentioning that in this experiment, 15 V amplitude

of voltage injection on d axis is approximately 4.3% of the steady value of vd, which is a small fraction

of the steady state value.

The four steps described above are a complete process for analysing noise impacts relevant to impedance

measurement and lead to determination the minimum injection amplitude required for impedance or

admittance measurement of a particular accuracy. It can be seen that through a process of measure-

ments, modelling and analysis, guidance can be formulated which informs a proper choice of injection

amplitude for the desired accuracy.

5.4 Measurement Results

Two sets of experimental tests have been performed in order to verify the preceding analysis.
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5.4.1 300 Hz admittance measurement

In the first test, the frequency point 300 Hz is measured repeatedly 1,000 times. The waveforms

during the measurement is captured as shown in Fig. 5.12. Each of the test comprises 7 cycles of

300 Hz sine wave with 15 V amplitude injected by the power amplifier. Two cycles are pilot cycles

during which no measurements are taken and 5 cycles are used for measurement. The time interval

between each test is set as a random number. The individual waveforms are described in the caption.

The 15 V injected signal is barely visible on the graphs of va since it is a small value compared with

the steady-state voltage and although not demonstrated here, it is intended to not adversely affect the

operation or stability of the wider system.

Using equation (5.17), the true value of the current response Ic0(300 Hz) can be estimated by calcu-

lating the mean value of the measured results, such that

Ic0(300 Hz) = 0.5250 + j0.5220 A. (5.25)

Combining (5.25) and (5.12) yields the true value of the admittance at 300 Hz

Y sys
true(300 Hz) = 0.0350 + j0.0348 S. (5.26)

The relative error of each test can then be calculated from the ratio of absolute error to the true value

in (5.14). Fig. 5.13 shows the histogram of the relative errors from 1,000 measurements. It is clear

that the error is confined within 12% under 15 V injection, which matches with the intention of the

proposed method. It is also worth noting that the minimum relative error among the 1000 tests is

around 8% meaning that the error at 300 Hz measurement is unavoidable. This is because the 5-

th and 7-th harmonics containing in the system will be sampled and wrongly treated as part of the

current response, thus cause an impact on the Fourier transform results. Eliminating such impact is

considered as future work of this thesis.
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Figure 5.12: Repeated tests of 300 Hz injection captured as oscilloscope screenshots. (a) A series
of injections with random intervals. The yellow waveform is the injected signal on d axis voltage ṽ,
green is the phase-a voltage, blue is the phase-a current, magenta is the d axis current id. (b) Zoomed
in view, showing that ṽ is not obvious in the overall voltage va voltage, but clearly causes a current
perturbation in ia and id. The system is also stable during the injections.
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Figure 5.13: Histogram of relative errors from 1000 tests showing that the measurement errors are all
confined within 12%.

5.4.2 Frequency sweep for admittance measurement

Using the preceding analysis, frequency sweeps can be executed so that Bode plots of the whole-

system admittance Y sys can be acquired. Fig. 5.14 shows the Bode plots acquired from frequency

sweeps with various injection amplitudes. In Fig. 5.14(a), it can be seen that under 15 V injection

amplitude, the measured result is a smooth curve with very small fluctuations at around 300 Hz.

Knowing that 300 Hz is the major frequency point which affects the accuracy of admittance, the

good results in this region prove that a 15 V injection amplitude can generate an accurate result.

Fig. 5.14(b) shows the measurement result under 10 V injection. It can be seen that the fluctuation at

around 300 Hz is more obvious compared with that of 15 V injection, but the measurement in other

parts of the frequency range appear accurate. Fig. 5.14(c) shows results under 5 V injection, where

significant errors can be observed at 300 Hz, and some fluctuations can also be observed around

50 Hz, such that the results are inaccurate. In Fig. 5.14(d) measurement results under 2 V injection

show that the noise impact is sever and admittance can not be measured accurately.

From these experimental results, it can be remarked that the noise analysis method for impedance

measurement developed in this chapter is effective for selecting an injection amplitude to obtain

results that are not adversely affected by the noise present in the current measurement. Nonetheless,

several items of work remain to be undertaken, such as testing on a more complex experimental
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Figure 5.14: Bode plots acquired from frequency sweeps under different injection amplitude: (a)
15 V injection amplitude. (b) 10 V injection amplitude. (c) 5 V injection amplitude. (d) 2 V injection
amplitude.

system containing more modes of interest, solving the remaining unavoidable measurement error

caused by harmonics, adapting the injected voltage to expected impedance, and implementing vector-

fitting taking this forward to the grey-box approach on measured impedance spectra. These items are

viewed as future work to be undertaken in this topic.
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5.5 Summary

This chapter develops a full noise analysis method which can help to determine the injection amplitude

required for impedance measurement to a given accuracy. The process is based on knowledge of

stochastic processes and statistics, where the Monte Carlo method is also employed to simplify the

process. An impedance measurement test bench based on a PHIL technique is also built where a real

hardware inverter can be connected with a real-time simulation of a power system and admittance can

be measured through small-signal perturbations injected by a power amplifier.
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Conclusions, Publications, and Future Work

6.1 Conclusions

This thesis has addressed several major issues related to analysis and online measurement of impedance

models for power system stability. The focus on impedance models came from recognition the ven-

dors of IBR do not disclose sufficient details of their control systems to allow white-box state-space

models to be formed but may disclose input-output models in impedance spectrum form or such

models can be measured. The major work in this thesis can be summarised as follows:

1) This thesis has formalised the relationship between two forms of networked impedance models

of power systems, and the relationship between impedance models and state-space models, so

that the relative merits of impedance models can be clearly stated.

2) This thesis has, for the first time, provided a means to calculate the value of state-space eigen-

value sensitivity and impedance participation factor in impedance models, and established

a comprehensive theory for root-cause analysis in impedance models. For completeness, a

method of calculating the missing complex scaling factor that restores directional meaning to

the previous RMA method has also been proposed.

3) A three-layer grey-box approach has been invented which, for large power systems for which

only impedance models of apparatus are available, provides a systematic method of analysis of

118
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small-signal stability, participation analysis and guidance for parameter tuning. The proposed

grey-box approach is based on rigorous mathematical analysis with proof of the relationship

between the residue of a pole and the impedance participation factor, and elucidation of the

chain-rule of sensitivity propagation of internal states and parameters forward to the impedance

participation factor. It thus provides a unified participation theory between state-space and

impedance models.

4) This thesis has addressed issues related to impedance measurement error, and has developed

a full noise analysis method which can help to determine the injection amplitude required for

impedance measurement to a given accuracy. The process is based on knowledge of stochas-

tic processes and statistics, where the Monte Carlo method is also employed to simplify the

process. A method to validate the results and a metric to describe measurement error are also

proposed.

In addition to the theoretical work, simulations and experiments have been performed to validate the

proposed theories and methods. A three-node passive network, a modified IEEE 14-bus network and

a modified NETS-NYPS 68-bus network were built as simulation models to verify the root-cause

theory and the grey-box approach. All the codes to generate the results were written in Matlab and

are published in open-source form [100], with a wish to benefit other researchers in this area. An

impedance measurement test bench based on a PHIL technique was also built where a real hard-

ware inverter can be connected with a real-time simulation of a power system and admittance can be

measured through small-signal perturbations injected by a power amplifier.

6.2 List of Publications

Some of the contents in this thesis have been published during the author’s PhD study, and are listed

below in chronological order.

Journal Papers:

[J1] Y. Zhu, Y. Gu, Y. Li and T. C. Green, “Impedance-based Root-cause Analysis: Comparative
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Study of Impedance Models and Calculation of Eigenvalue Sensitivity,” in IEEE Transactions on

Power Systems, doi: 10.1109/TPWRS.2022.3179143.

[J2] Y. Zhu, Y. Gu, Y. Li, T. C. Green, “Participation Analysis in Impedance Models: The Grey-Box

Approach for Power System Stability” in IEEE Transactions on Power Systems, vol. 37, no. 1, pp.

343-353, Jan. 2022, doi: 10.1109/TPWRS.2021.3088345.

[J3] Y. Li, Y. Gu, Y. Zhu, A. Junyent Ferre, X. Xiang and T. C. Green, “Impedance Circuit Model of

Grid-Forming Inverter: Visualizing Control Algorithms as Circuit Elements,” in IEEE Transactions

on Power Electronics, doi: 10.1109/TPEL.2020.3015158.

[J4] P. Ge, Y. Zhu, T. Green and F. Teng, “Resilient Secondary Voltage Control of Islanded Mi-

crogrids: An ESKBF-Based Distributed Fast Terminal Sliding Mode Control Approach,” in IEEE

Transactions on Power Systems, doi: 10.1109/TPWRS.2020.3012026.

[J5] Y. Gu, Y. Li, Y. Zhu and T. Green, “Impedance-Based Whole-System Modeling for a Composite

Grid via Embedding of Frame Dynamics,” in IEEE Transactions on Power Systems, doi: 10.1109/TP-

WRS.2020.3004377.

Conference Paper:

[C1] X. Xiang, X. Zhang, Y. Zhu, G. P. Chaffey, Y. Gu and T. C. Green, “The Resonant Modular

Multilevel DC Converters for High Step-ratio and Low Step-ratio Interconnection in MVDC Distri-

bution Network,” IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society,

Lisbon, Portugal, 2019, pp. 5686-5693, doi: 10.1109/IECON.2019.8926939.

Additional papers about impedance measurement based on the work in Chapter 5 are currently in

preparation.

Notes:

[J1] is the journal paper published from the work in chapter 2 and the eigenvalue sensitivity analysis

in chapter 3. [J2] is the journal paper published from the participation analysis and the grey-box

approach in chapter 3. [J3] and [J5] contribute to some of the underpinning ideas in impedance models

in this thesis and are introduced in Chapter 1 and Chapter 2. [J4] and [C1] are from cooperation with
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fellow researchers in the group where the author helped with experimental verification, and their

contents are not included in this thesis.

6.3 Future Work

6.3.1 Root-cause Analysis in Hybrid Systems

With the development of high-voltage DC (HVDC) transmissions, it would be worthwhile extending

impedance-based small-signal stability analysis to hybrid AC/DC systems. Some research work has

explored the application of impedance models for root-cause tracing in hybrid AC/DC systems [89],

but the approach is based on the RMA method hence only provides a partial solution. By extending

the two-port impedance model (d-q) to three-port models (d-q and dc), the root-cause analysis pro-

posed in this thesis can be extended to hybrid systems. Eigenvalue sensitivity with respect to AC/DC

interlink apparatus and DC apparatus could be accomplished and compared with AC apparatus. Such

an extension is planned in the next stage of the research work.

6.3.2 Impedance Measurement Improvement

Recognising that this thesis has only taken a first look into impedance measurement, there is still

work to be fulfilled to further verify the results. In addition, potential improvements to achieve better

measurement accuracy can be envisaged.

A larger-scale test system needs to be built, in which interactions between hardware IBR and emulated

power system can be established with interesting oscillatory modes to observe. Such a system can be

used to verify the proposed noise analysis process in a more complicated environment.

Further, as pointed out in this thesis, the harmonics existed in the noise can cause significant mea-

surement error. A potential solution is to predict the phase of harmonics and inject signals which

are orthogonal to harmonics. In fact, low-order harmonics (3rd, 5th ,7th etc) tend to have a consis-

tent phase angles with respect to the fundamental of the grid frequency, hence predicting the phase
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of harmonics is potentially feasible. Through such a process, the impact of low-order harmonics on

measurement results could perhaps be eliminated.

Additionally, a possible enhancement towards impedance measurement with required accuracy is that,

noticed in Fig. 5.11, the injection amplitude in different frequency ranges could vary according to the

noise impact and approximations on the admittance. For example, according to Fig. 5.11, the voltage

injection amplitude could be set smaller than 15 V for frequency lower than 200 Hz and higher than

700 Hz because the noise impact in these ranges is relative small. Moreover, the injection amplitude

could be set as adaptive so the amplitude is optimised as the admittance is solved. In such way, the

amplitude is always as small as possible to avoid, as far as possible, exciting modes of the system,

and the error is confined in the required range.

Another direction for research is to combine impedance measurement with an artificial intelligence

(AI) algorithm to improve the measurement. This topic has been explored in very recent years [61]

for identifying impedance at different operating points but more work could be done to optimise

the measurement process. Because impedance measurement is a repeated process, and the noise

environment in the grid may follow certain patterns, with the help of AI, it could be possible to make

better use of ambient data, and achieve faster measurement and more accurate results with smaller

injections.



Appendix A

Mathematical Proofs

A.1 Proof of one zero-valued eigenvalue

If λ is a non-repeated eigenvalue of A, the number of zero-valued eigenvalue of Y nodal(λ) does not

exceed one. This can be proved by contradiction.

Assume that λ is a non-repeated eigenvalue of A and Y nodal(λ) has more than one eigenvalues equal

zero. In a simple case, consider Y nodal(λ) has two zero-eigenvalues γ1 and γ2. Combining the as-

sumption with equitation (2.33), we know that λ will therefore be a non-repeated root of equation

Y nodal
det (s) = 0.

According to property 3.1, the determinant of Y nodal(s) can be expressed as the following polynomial

of s:

Y nodal
det (s) =

∏
k

eig(Y nodal(s)) = Γ(s) · γ1(s) · γ2(s), (A.1)

where Γ(s) is the product of all the non-zero eigenvalues of Y nodal(s) at s = λ, i.e., Γ(λ) ̸= 0. Based

on the assumption, at s = λ we have γ1(λ) = γ2(λ) = 0, hence the polynomials of γ1(s) and γ2(s)

can be written as

γ1 (s) = γ′1(s) · (s− λ)k1

γ2 (s) = γ′2(s) · (s− λ)k2 ,

(A.2)
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where γ′1(s) and γ′2(s) are polynomials of s and γ′1(λ) ̸= 0, γ′2(λ) ̸= 0, k1 and k2 are integers and

k1 ⩾ 1, k2 ⩾ 1. Substituting (A.2) into (A.1) yields

Y nodal
det (s) = Γ (s) γ′1(s)γ

′
2(s) (s− λ)k1+k2 . (A.3)

Since k1 + k2 ⩾ 2, it is clear that λ is a repeated root of equation Y nodal
det (s) = 0, which contradicts

the assumption that λ is a non-repeated root of this equation. Therefore, the number of zero-valued

eigenvalues of Y nodal does not exceed one.

A.2 Proof of critical admittance-eigenvalue

At a steady point (λ0, ρ0), γ is the only zero eigenvalue of Y nodal, and Y nodal
det (s, ρ) can be expressed as

the product of all the eigenvalues of Y nodal:

Y nodal
det (λ0, ρ0) =

∏
N

eig
(
Y nodal(λ0, ρ0)

)
= Γ · γ = 0, (A.4)

where the subscription 0 means the value before perturbation, Γ is the product of all none-zero eigen-

values of Y nodal(λ), so that Γ is a none-zero coefficient. It can be clearly seen that Y nodal
det (s, ρ) is

analytical around (λ0, ρ0). Now we consider the case where a small perturbation is added on ρ0 and

the frequency point s keeps the same, the variation on Y nodal
det is

∆Y nodal
det =

∂Y nodal
det

∂ρ

∣∣∣∣
λ0,ρ0

∆ρ

= Γ∆γ + γ∆Γ +∆γ∆Γ ≈ Γ∆γ,

(A.5)

where the fact γ = 0 is applied, and the higher order infinitesimal ∆γ∆Γ is suppressed.

Under the same perturbation, the mode λ0 is moved to λ0 +∆λ. At the new steady point, the critical

admittance-eigenvalue is still zero, such that

Y nodal
det (λ0 +∆λ, ρ0 +∆ρ) = 0 (A.6)



A.3. Proof of Lemma 1 125

Applying Taylor’s expansion to (A.6), and suppressing the higher orders term gives

∂Y nodal
det

∂s

∣∣∣∣
λ0,ρ0

∆λ+
∂Y nodal

det

∂ρ

∣∣∣∣
λ0,ρ0

∆ρ = 0. (A.7)

Substituting (A.5) into (A.7) leads to

∆γ = − 1

Γ

∂Y nodal
det

∂s

∣∣∣∣
λ0,ρ0

∆λ.

|∆γ| =

∣∣∣∣∣− 1

Γ

∂Y nodal
det

∂s

∣∣∣∣
λ0,ρ0

∣∣∣∣∣ · |∆λ| .
(A.8)

Equation (A.8) proves that when there’s a small variation on ρ, |∆γ| is proportional to |∆λ|, so that

∆γ could reflect how parameters will affect the mode λ.

A.3 Proof of Lemma 1

A reduced case is first proved where Gρ is a scalar transfer function and the pole λ is a zero of

Hρ = G−1
ρ , that is,

Hρ(λ) = 0. (A.9)

A perturbation in ρ induces a corresponding perturbation in λ, that is

Hρ+∆ρ(λ+∆λ) = 0. (A.10)

Since Hρ is analytic around its zero λ, we have the following first-order Taylor expansion of (A.10)

Hρ+∆ρ(λ) +H ′
ρ+∆ρ(λ)∆λ = 0 (A.11)

in which H ′ represents the derivative of H . Combining (A.9)-(A.11) yields

Hρ+∆ρ(λ)−Hρ(λ) +H ′
ρ(λ)∆λ+

(
H ′

ρ+∆ρ(λ)−H ′
ρ(λ)

)
∆λ = 0 (A.12)
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and equivalently

∆Hρ(λ) +H ′
ρ(λ)∆λ+∆H ′

ρ(λ)∆λ = 0. (A.13)

Suppressing the high-order infinitesimal ∆H ′
ρ(λ)∆λ in (A.13) yields

∆λ = −H ′
ρ(λ)

−1 ·∆Hρ(λ). (A.14)

As λ is a non-repeated pole for Gρ, the residue of Gρ at λ is

ResλGρ = lim
s→λ

(s− λ)Gρ(s) = lim
s→λ

s− λ

Hρ(s)
=

1

H ′
ρ(λ)

(A.15)

in which the second equal sign results from L’Hôpital’s rule. Combining (A.14) and (A.15) yields

∆λ = −ResλGρ ·∆Hρ(λ). (A.16)

This is the reduced case of Lemma 1 with Gρ being a scalar transfer function.

Now we prove the case where Gρ is a square matrix and the pole λ is a zero for the determinant of

Hρ, that is,

det(Hρ(λ)) = 0. (A.17)

We take det(Hρ) ≜ Hdet as a scalar transfer function so a similar result to (A.14) is obtained

∆λ = −H ′
det(λ)

−1∆Hdet(λ). (A.18)

Expanding Hdet along a column yields

Hdet =
∑
h

HρhlFρhl (A.19)

in which Fρ is the cofactor matrix for Hρ and the subscript hl denotes the element in a matrix at the

h-th row and l-th column. It is clear to see from (A.19) that

∂Hdet

∂Hρhl

= Fρhl (A.20)
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and hence

∆Hdet =
∑
h,l

∂Hdet

∂Hρhl

∆Hρhl

=
∑
h,l

Fρhl∆Hρhl = ⟨F ρ,∆Hρ⟩
(A.21)

where the complex conjugate is associated with the Frobenius inner product ⟨·, ·⟩ for complex

matrices defined in (B.4).

Since Gρ is now a matrix, its residue needs to be calculated element-wise

ResλGρ = lim
s→λ

(s− λ)Gρ(s)

= lim
s→λ

(
(s− λ)Hρ(s)

−1
)

= lim
s→λ

(
s− λ

Hdet(s)
Fρ(s)

⊤
)

=
Fρ(λ)

⊤

H ′
det(λ)

(A.22)

where we make use of the fact that

Hρ(s)
−1 = Fρ(s)

⊤/Hdet(s). (A.23)

Combining (A.18), (A.21) and (A.22) yields Lemma 1

∆λ = −H ′
det(λ)

−1⟨Fρ(λ),∆Hρ(λ)⟩

= ⟨−ResλGρ
⊤
,∆Hρ(λ)⟩ = ⟨−Res∗λGρ,∆Hρ(λ)⟩.

(A.24)

A.4 Proof of Eigenvalue Sensitivity Matrix

Expanding Y nodal
det (λ) along row k yields

Y nodal
det (λ) =

n∑
i=1

Y nodal
ki Cki, (A.25)
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where Cki is the cofactor of Y nodal
ki . According to (A.25) it is clear to have

∂Y nodal
det (λ)

∂Y nodal
ki

= Cki. (A.26)

Considering a small perturbation is added on a system parameter ρ, leading to a perturbation on Y nodal
ki

and λ, i.e.

Y nodal
ki = Y nodal

ki0 +∆Y nodal
ki

λ = λ0 +∆λ,

(A.27)

where the subscript 0 refers to the value before perturbation. At the new steady state, the eigenvalue

λ still satisfies (2.33), hence we have

Y nodal
det

(
λ, Y nodal

ki

)
= Y nodal

det

(
λ0 +∆λ, Y nodal

ki0 +∆Y nodal
ki

)
= 0. (A.28)

Since Y nodal
det is analytical around its zero λ, applying the first-order Taylor expansion to (A.28) and

suppressing the high-order of infinitesimal items yields

∂Y nodal
det (λ)

∂Y nodal
ki

∆Y nodal
ki + Y nodal

det
′ (λ)∆λ = 0, (A.29)

where

Y nodal
det

′ (λ) ≜
dY nodal

det (s)

ds

∣∣∣∣
s=λ

. (A.30)

Substituting (A.26) into (A.29) yields the result of ∂λ
∂Yki

∆λ

∆Y nodal
ki

=
∂λ

∂Y nodal
ki

= Sλ,ik = − Cki

Y nodal
det

′ (λ)
, (A.31)

where C is the cofactor matrix of Y nodal(λ) and Cki is its element. Sλ can then be deduced as

Sλ = − 1

Y nodal
det

′ (λ)
C⊤ = − 1

Y nodal
det

′ (λ)
adj(Y nodal(λ)). (A.32)
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A.5 proof of equation (3.31)

Since λ is considered as a non-repeated eigenvalue of the system, for a system with n nodes, the

rank of Y nodal(λ) is n− 1, hence Y nodal(λ) has one and only one zero-eigenvalue γ. Accordingly, the

rank of its adjugate matrix adj(Y nodal(λ)) is 1, with only one non-zero-eigenvalue γ†. It is known that

rank-1 matrix can be expressed as the outer product of two vectors, such that

adj(Y nodal(λ)) = us ⊗ ws = usw
⊤
s , (A.33)

where us and ws are two column-vectors of n-order. Now we prove uγ , which is the right eigenvector

of Y nodal(λ) corresponding to γ, is proportional to x.

For γ† we have

adj(Y nodal(λ)) · u†γ = γ† · u†γ, (A.34)

where u†γ is a non-zero right-eigenvector corresponding to γ†. Left-multiplying Y nodal in (A.34) and

rearranging the equation yields

Y nodal(λ) · u†γ = 0 · u†γ, (A.35)

where we use fact Y nodal(λ) · adj(Y nodal(λ)) = I · Ydet(λ) = 0, and I is an identity matrix. (A.35)

proves that u†γ is also a right-eigenvector of Y nodal(λ) corresponding to γ, i.e., the non-zero eigenvec-

tors u†γ and uγ are linear combinations of each other. Reversely, uγ is also the right eigenvector of

adj(Y nodal(λ)) corresponding to γ†. Combined with (A.33) it is clear to have

adj(Y nodal(λ)) · uγ = usw
⊤
s uγ = γ† · uγ

us =
γ†

w⊤
s uγ

· uγ.
(A.36)

Since γ†

w⊤
s uγ

is a scalar, us is proportional to uγ . Similarly, we can prove w⊤
s is proportional to w⊤

γ . As

a result,

usw
⊤
s = η · uγw⊤

γ , (A.37)
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where η is a scalar. From (A.33) it is clear that

tr
(
adj

(
Y nodal (λ)

))
= w⊤

s us = η · w⊤
γ uγ. (A.38)

Because uγ and wγ are normalized as w⊤
γ uγ = 1, η = tr(adj(Y nodal(λ))). Substituting η into (A.37)

yields equation (3.31).

A.6 proof of Premise 5.3

The Gaussian noise in this system is mainly caused by thermal noise in electronic system and is

usually assumed as WGN with mean of zero [136]. WGN is originally recognised as a WSS process.

Now we prove that an harmonic Hi(t) is also a WSS process. An harmonic Hi(t) can be expressed as

Hi(t) = Ai sin(2πfit+ θi), θi ∼ U(0, 2π), (A.39)

where Ai is the amplitude, fi is harmonic frequency, θi is the phase and also a random variable with

uniform distribution on (0, 2π). Based on law of the unconscious statistician, the expected value of

Hi(t) can be calculated as

E (Hi (t)) =

∫ 2π

0

Ai

2π
sin (2πfit+ θi)dθi = 0. (A.40)

Therefore, the expected value of Hi(t) is 0 is independent of t. Meanwhile, the autocorrelation of

Hi(t) can be calculated as

RHiHi (τ) =

∫ 2π

0

Hi (t)Hi (t− τ)dt

= A2
i

∫ 2π

0

sin (2πfit+ θi) · sin (2πfit+ θi − 2πfiτ)dt

= −A
2
i

2

∫ 2π

0

cos (4πfit+ 2θi − 2πfiτ) dt+
A2

i

2

∫ 2π

0

cos (2πfiτ) dt

= A2
iπ cos (2πfiτ) .

(A.41)
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(A.41) proves that the autocorrelation of Hi(t) is a function only of the time difference τ . Based on

the definition of WSS in Appendix B.4, Hi(t) is a WSS process.

Based on the above, the noise, which is summation of WGN and harmonics, is a WSS process.



Appendix B

Mathematical Preliminaries

We summarise the mathematical preliminaries used in this paper to assist the reader and to make the

paper self-contained.

B.1 Residue

In complex analysis, the residue of a complex function G(s) is defined as the g−1 coefficient of the

Laurent series [137] of G(s). This is, given the Laurent series of G(s) around λ

G(s) =
∞∑

h=−∞

gh · (s− λ)h (B.1)

the residue of G at λ is defined as

ResλG = g−1. (B.2)

If λ is a non-repeated pole of G, the residue is found from

ResλG = lim
s→λ

(s− λ)G(s). (B.3)

This property is used in the proof of Lemma 1 in Appendix B. The residue can be applied element-

wise on a matrix of complex functions.
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B.2 Frobenius Inner Product

For two complex-valued matrices V and W with the same dimension, the Frobenius inner product

[138] of V and W is defined as

⟨V,W ⟩ ≜
∑
h,l

V hl Whl (B.4)

where h and l are the row and column indices of the matrices, and denotes complex conjugation.

The complex conjugation in (B.4) ensures that the Frobenius inner product of a complex matrix with

itself is a non-negative real number, and thus is induced the Frobenius norm ∥ · ∥

∥V ∥ ≜
√

⟨V, V ⟩. (B.5)

The Frobenius inner product and norm are derived from the common inner product in vector spaces, so

the properties of the common inner product are naturally inherited. One of the most useful properties

is the Cauchy inequality

|⟨V,W ⟩| ≤ ∥V ∥ · ∥W∥ (B.6)

where the equality holds if and only if V and W are aligned in orientation. This property is used in

(3.45) in Section III-C.

B.3 Complex Function Derivative

In this thesis we use two types of derivatives for complex functions. The first type of derivative is

the derivative of a complex function over a real number, e.g. derivative of a transfer function over

its internal parameter ρ, ∂Hρ(s)/∂ρ. This type of derivative is the same as a real-function derivative

with the real part and complex part of Hρ(s) treated separately. The second type of derivative is

the derivative of a complex function over another complex number, e.g. a transfer function over

another transfer function, ∂H/∂G. For such a case, the mapping from G to H has to be analytic

so that ∂H/∂G exists. For the scope of this paper, most complex-to-complex mappings are analytic

throughout the complex plane except at poles so the derivative is almost always proper. As a special
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case, the derivative of a transfer function H over its complex argument s is called H ′, that is,

H ′(s) ≜ ∂H(s)/∂s. (B.7)

Both the complex and real derivatives can be applied to vectors and matrices with each element of the

vectors and matrices treated as independent variables, and the resulted derivative is also a vector or

matrix.

B.4 Wide-sense stationary stochastic process

Wide-sense stationary (WSS) process, sometimes also known as weak-sense stationary process, is a

case of stationary process but not that restrictive. For a continuous-time random process {X (t) , t ∈ R},

X(t) is a WSS process if

1) EX (t) = EX , for all t ∈ R.

2) RXX (t1, t2) = RXX (t1 − t2) , for all t1, t2 ∈ R.

The first condition means that X(t) has a constant expectation value independent of t. The second

condition means that its autocorrelation is a function only of the time difference t2 − t1, but indepen-

dent of t1 or t2. The above is defined for continuous-time process but the same conditions can also be

extended to discrete-time process in the same manner.

B.5 Law of large numbers

From the law of large numbers, the average of the results obtained from a large number of trials

should be close to the expected value and tends to become closer to the expected value as more trials

are performed. Let X be a random variable with finite expected value E(X) and finite non-zero

variance σ2,

lim
n→∞

1

n
(X1 +X2 + · · ·Xn) = E (X) (B.8)
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B.6 Autocorrelation

Autocorrelation is the correlation of a signal with a delayed copy of itself as a function of delay [139].

It can help analyse the repeating patterns of signals such as noise.

For a continuous stochastic process x(t), its autocorrelation Rxx(τ) can be calculated as

Rxx (τ) =

∫ ∞

−∞
x (t) x (t− τ)dt, (B.9)

where τ is the delay, and the bar represents conjugate complex. This is equivilent as the cross-

correlation of x(t) and itself. It is worth noting that if x(t) is a continuous periodic function of period

T , the intergration period can be replaced by a period of length T , instead of from −∞ to ∞. And for

measured noise with limited length, we can do periodic extension on the signal to treat it as periodic

function.

Similarly, for discrete-time signal x(n), its autocorrelation is

Rxx (l) =
∑
n∈Z

x (n) x (n− l), (B.10)

where Z is the set of integers.

An important property for autocorrelation is that if x(t) is a WSS process, its autocorrelation at τ = 0

is the average power of x(t), such that

Rxx(0) = E(x2(t)). (B.11)
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B.7 Wiener–Khinchin theorem

Wiener–Khinchin theorem states that for a WSS process x(t) with autocorrelation function Rxx(τ),

the Fourier transform of Rxx(τ) denotes the power spectral density (PSD) of x(t), such that

S (f) =

∫ ∞

−∞
Rxx (τ)e

−j2πfτdτ. (B.12)

B.8 Monte Carlo Method

So far, there is no consensus on how Monte Carlo should be defined [140]. The general principle can

be understood as an algorithm using massive repeated random sampling to obtain numerical results.

In this experiment, after determining the random variables of the noise, the process of impedance

measurement can be emulated in the simulation for a number of times which gives the histogram of

noise impact. In each simulation, random values are chosen based on the distributions of the random

variables. When the repeated number is large, the histogram of noise impact will be very close to its

probability density, such that the probability density function can be acquired by curve fitting.
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Mathematical Illustrations

C.1 Illustration of LEMMA 1

We use a simple three-node system to illustrate Lemma 1. The whole-system impedance of this

three-node system is

Y sys =


Y sys
11 Y sys

12 Y sys
13

Y sys
21 Y sys

22 Y sys
23

Y sys
31 Y sys

32 Y sys
33

 (C.1)

where each entry of Y sys is a 2×2 transfer function matrix in dq frame. For instance, the first diagonal

element is

Y sys
11 =

Y sys
11,dd (s) Y sys

11,dq (s)

Y sys
11,qd (s) Y sys

11,qq (s)

 (C.2)

which represents the whole-system admittance measured at the first node. Each element in Y sys
11 can

be expressed as the sum of a series of pole-residue pairs, for example, Y sys
11,dd is

Y sys
11,dd (s) =

Rdd
11,1

s− λ1
+

Rdd
11,2

s− λ2
+ · · ·+

Rdd
11,m

s− λm
(C.3)
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where Rdd
11,i is the residue of Y sys

11,dd at the i-th pole (eigenvalue) λi for i ∈ {1, 2, · · · ,m}. The residue

of Y sys
11 at a particular pole λ (subscript i is dropped for brevity) is then given by

ResλY
sys
11 =

R11,dd R11,dq

R11,qd R11,qq

 . (C.4)

For a parameter perturbation ∆ρ in the apparatus at the first node, the corresponding admittance

perturbation of this apparatus is

∆Z1 (λ) =
∂Z1 (λ)

∂ρ
·∆ρ =

∆Zdd
1 ∆Zdq

1

∆Zqd
1 ∆Zqq

1

 (C.5)

which yields

∆λ = ⟨−Res∗λY
sys
11 ,∆Z1 (λ)⟩

= −(R11,dd∆Z
dd
1 +R11,qd∆Z

dq
1 +R11,dq∆Z

qd
1 +R11,qq∆Z

qq
1 )

(C.6)

according to Lemma 1. ∆λ is a complex number whose direction is determined jointly by −Res∗λY
sys
11

and ∆Z1 (λ).
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System Data

D.1 Modified IEEE 14-bus System

This appendix gives the detailed parameters of the modified 14-bus system studied in this paper.

The parameters of the synchronous generators are from the dynamic model built by KIOS centre at

University of Cyprus [101]. The full data is attached below.
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Attachment: IEEE 14-BUS MODIFIED TEST SYSTEM DATA

Nomenclature 

Rated MVA Machine-rated MVA; base MVA for impedances 
Rated kV Machine-rated terminal voltage in kV; base kV for impedances 

𝐻 Inertia constant in s 
𝐷 Machine load damping coefficient 
𝑟𝑎 Armature resistance in p.u. 
𝑥𝑑 Unsaturated d axis synchronous reactance in p.u. 
𝑥𝑞 Unsaturated q axis synchronous reactance in p.u. 
𝑥′𝑑 Unsaturated d axis transient reactance in p.u. 
𝑥′𝑞 Unsaturated q axis transient reactance in p.u. 
𝑥′′𝑑 Unsaturated d axis subtransient reactance in p.u. 
𝑥′′𝑞 Unsaturated q axis subtransient reactance in p.u. 

𝑥𝑙  𝑜𝑟 𝑥𝑝 Leakage or Potier reactance in p.u. 
𝑇′𝑑0 d axis transient open circuit time constant in s 
𝑇′𝑞0 q axis transient open circuit time constant in s 
𝑇′′𝑑0 d axis subtransient open circuit time constant in s 
𝑇′′𝑞0 q axis subtransient open circuit time constant in s 

𝑆(1.0) Machine saturation at 1.0 p.u. voltage in p.u. 
𝑆(1.2) Machine saturation at 1.2 p.u. voltage in p.u. 

𝑇𝑟 Regulator input filter time constant in s 
𝐾𝑎 Regulator gain (continuous acting regulator) in p.u. 
𝑇𝑎 Regulator time constant in s 

𝑉𝑅𝑚𝑎𝑥 Maximum regulator output, starting at full load field voltage in p.u. 
𝑉𝑅𝑚𝑖𝑛 Minimum regulator output, starting at full load field voltage in p.u. 

𝐾𝑒 Exciter self-excitation at full load field voltage in p.u. 
𝑇𝑒 Exciter time constant in s 
𝐾𝑓 Regulator stabilizing circuit gain in p.u. 
𝑇𝑓 Regulator stabilizing circuit time constant in s 
𝐸1 Field voltage value,1 in p.u. 

𝑆𝐸(𝐸1) Saturation factor at  E1 
𝐸2 Field voltage value,2 in p.u. 

𝑆𝐸(𝐸2) Saturation factor at  E2 
𝑃𝑚𝑎𝑥 Maximum turbine output in p.u. 

𝑅 Turbine steady-state regulation setting or droop in p.u. 
𝑇1 Control time constant (governor delay) in s 
𝑇2 Hydro reset time constant in s 
𝑇3 Servo time constant in s 
𝑇4 Steam valve bowl time constant in s 
𝑇5 Steam reheat time constant in s 
𝐹 Shaft output ahead of reheater in p.u. 



TABLE I 
IEEE 14-BUS MODIFIED TEST SYSTEM MACHINE DATA 

Type GENROU GENROU GENROU GENROU 
Operation Sync. Gen. Sync. Gen. Condenser Condenser 

 Default Unit no.  
(New Unit no.) 1(15) 2(16) 3(17) 6(19), 8(18) 

Rated power (MVA) 448 100 40 25 
Rated voltage (kV) 22 13.8 13.8 13.8 

Rated pf 0.85 0.8 0.0 0.0 
𝐻 (s) 2.656 4.985 1.520 1.200 

𝐷 2.000 2.000 0.000 0.000 
𝑟𝑎 (p.u) 0.0043 0.0035 0.000 0.0025 
𝑥𝑑 (p.u) 1.670 1.180 2.373 1.769 
𝑥𝑞 (p.u) 1.600 1.050 1.172 0.855 
𝑥′𝑑 (p.u) 0.265 0.220 0.343 0.304 
𝑥′𝑞 (p.u) 0.460 0.380 1.172 0.5795 
𝑥′′𝑑 (p.u) 0.205 0.145 0.231 0.2035 
𝑥′′𝑞 (p.u) 0.205 0.145 0.231 0.2035 

𝑥𝑙  𝑜𝑟 𝑥𝑝 (p.u) 0.150 0.075 0.132 0.1045 
𝑇′𝑑0 (s) 0.5871 1.100 11.600 8.000 
𝑇′𝑞0 (s) 0.1351 0.1086 0.159 0.008 
𝑇′′𝑑0 (s) 0.0248 0.0277 0.058 0.0525 
𝑇′′𝑞0 (s) 0.0267 0.0351 0.201 0.0151 
𝑆(1.0) 0.091 0.0933 0.295 0.304 
𝑆(1.2) 0.400 0.4044 0.776 0.666 

TABLE II 
IEEE 14-BUS MODIFIED TEST SYSTEM EXCITER DATA 

Type IEEET1 IEEET1 IEEET1 IEEET1 
 Default Unit no. 
 (New Unit no.) 1(15) 2(16) 3(17) 6(19), 8(18) 

Rated power (MVA) 448 100 40 25 
Rated voltage (kV) 22 13.8 13.8 13.8 

𝑇𝑟 (s) 0.000 0.060 0.000 0.000 
𝐾𝑎 (p.u) 50 25 400 400 

𝑇𝑎 (s) 0.060 0.200 0.050 0.050 
𝑉𝑅𝑚𝑎𝑥 (p.u) 1.000 1.000 6.630 4.407 
𝑉𝑅𝑚𝑖𝑛 (p.u) -1.000 -1.000 -6.630 -4.407

𝐾𝑒 (p.u) -0.0465 -0.0582 -0.170 -0.170
𝑇𝑒 (s) 0.520 0.6544 0.950 0.950

𝐾𝑓 (p.u) 0.0832 0.105 0.040 0.040
𝑇𝑓 (s) 1.000 0.350 1.000 1.000

𝐸1 (p.u) 3.240 2.5785 6.375 4.2375
𝑆𝐸(𝐸1) 0.072 0.0889 0.2174 0.2174
𝐸2 (p.u) 4.320 3.438 8.500 5.650
 𝑆𝐸(𝐸2) 0.2821 0.3468 0.9388 0.9386



TABLE III 
IEEE 14-BUS MODIFIED TEST SYSTEM GOVERNOR DATA 
Type BPA_GG BPA_GG 

Default Unit no.  
(New Unit no.) 1(15) 2(16) 

Rated power (MVA) 448 100 
Rated voltage (kV) 22 13.8 

𝑃𝑚𝑎𝑥 (p.u) 0.870 1.050 
𝑅 (p.u) 0.011 0.050 
𝑇1 (s) 0.100 0.090 
𝑇2 (s) 0.000 0.000 
𝑇3 (s) 0.300 0.200 
𝑇4 (s) 0.050 0.300 
𝑇5 (s) 10.000 0.000 

𝐹 0.250 1.000 



Grid-following Inverter 

Parameter A11 A12 A13 
, dc-link voltage in p.u 2.500 2.500 2.500 
, dc-link capacitor in p.u 1.25 1.25 1.25 

, series output reactance in p.u 0.03 0.03 0.03 
, series output resistance in p.u 0.01 0.01 0.01 

, dc-link control bandwidth in Hz 10 10 10 
, PLL control bandwidth in Hz 10 10 10 

, current control bandwidth in Hz 400 400 400 
 

 

Grid-following Inverter control diagram 

+-

+-

PI

PI

dc-link controller

+- PI

PI ++

current controller

PLL controller
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D.2 Modified NETS-NYPS 68-bus System

This appendix gives the detailed parameters of the modified 68-bus system studied in this paper. The

parameters are of the synchronous generators are mainly from the dynamic model in [104], while

the generator at bus-15 is replaced by a grid-forming inverter in this thesis, together with 6 extra

grid-following inverter. The full data is attached below.



Attachment: NETS-NYPS 68-Bus Modified Test System Data 

 

Synchronous Machine Nomenclature 

 

 

Synchronous Machine Data 

Bus X R x_d x'd x''d T'd T''d xq x'q x''q T'q T''q H D 

1 0.013 0.025 0.100 0.031 0.025 10.2 0.05 0.069 0.0416667 0.025 1.5 0.035 42 0 

2 0.035 0.070 0.295 0.070 0.050 6.56 0.05 0.28  0.0933333 0.05 1.5 0.035 30.2 0 

3 0.030 0.061 0.250 0.053 0.045 5.7 0.05 0.237 0.0714286 0.045 1.5 0.035 35.8 0 

4 0.030 0.059 0.262 0.044 0.035 5.69 0.05 0.258 0.0585714 0.035 1.5 0.035 28.6 0 

5 0.027 0.054 0.330 0.066 0.050 5.4 0.05 0.31 0.0883333 0.05 0.44 0.035 26 0 

6 0.022 0.045 0.254 0.050 0.040 7.3 0.05 0.241 0.0675 0.04 0.4 0.035 34.8 0 

7 0.032 0.064 0.295 0.049 0.040 5.66 0.05 0.292 0.0666667 0.04 1.5 0.035 26.4 0 

8 0.028 0.056 0.290 0.057 0.045 6.7 0.05 0.28 0.0766667 0.045 0.41 0.035 24.3 0 

9 0.030 0.060 0.211 0.057 0.045 4.79 0.05 0.205 0.0766667 0.045 1.96 0.035 34.5 0 

10 0.020 0.040 0.169 0.046 0.040 9.37 0.05 0.115 0.0615385 0.04 1.5 0.035 31 0 

11 0.010 0.021 0.128 0.018 0.012 4.1 0.05 0.123 0.0241176 0.012 1.5 0.035 28.2 0 

12 0.022 0.044 0.101 0.031 0.025 7.4 0.05 0.095 0.042 0.025 1.5 0.035 92.3 0 

13 0.002 0.003 0.015 0.003 0.002 5.9 0.05 0.0143 0.0037 0.002 1.5 0.035 496 0 

14 0.002 0.003 0.018 0.003 0.002 4.1 0.05 0.0173 0.0037931 0.0023 1.5 0.035 300 0 

16 0.002 0.004 0.018 0.004 0.003 7.8 0.05 0.0167 0.00475 0.00275 1.5 0.035 450 0 
 

Note:  

• All synchronous machines have the base power of 100 MVA. 

• Saturation factors of synchronous machine are omitted in this case. 

X leakage reactance in p.u 

R resistance in p.u 

x_d d-axis sychronous reactance in p.u 

x'd d-axis transient reactance in p.u 

x''d d-axis subtransient reactance in p.u 

T'd d-axis open-circuit time constant in sec 

T''d d-axis open-circuit subtransient time constant in sec 

xq q-axis sychronous reactance in p.u 

x'q q-axis transient reactance in p.u 

x''q q-axis subtransient reactance in p.u 

T'q q-axis open-circuit time constant in sec 

T''q q-axis open circuit subtransient time constant in sec 

H inertia constant in sec 

D damping coefficient 



Exciter Nomenclature 

T_R input filter time constant in sec 

K_A voltage regulator gain in p.u 

T_A voltage regulator time constant in sec 

V_Rmax maximum voltage regulator output in p.u 

V_Rmin minimum voltage regulator output in p.u 

K_E exciter constant in p.u 

T_E exciter time constant in p.u  

E_1 Field voltage value,1 in p.u 
S(E_1) Saturation factor at E_1 
E_2 Field voltage value,2 in p.u 
S(E_2) Saturation factor at E_2 
K_F stabilizer gain in p.u 

T_F stabilizer time constant in sec 

K_P regulator proportional gain in p.u 

K_I regulator integral gain in p.u 

K_D regulator derivative gain in p.u 

T_D regulator derivative time constant in sec 
 

 

Exciter Data 

Bus T_R K_A T_A V_Rmax V_Rmin K_E T_E E_1 S(E_1) E_2 S(E_2) K_F T_F K_P K_I K_D T_D 

1 0.01 1 0.02 10 -10 1 0.785 3.9267 0.07 5.2356 0.91 0.03 1 200 50 50 0.01 

2 0.01 1 0.02 10 -10 1 0.785 3.9267 0.07 5.2356 0.91 0.03 1 200 50 50 0.01 

3 0.01 1 0.02 10 -10 1 0.785 3.9267 0.07 5.2356 0.91 0.03 1 200 50 50 0.01 

4 0.01 1 0.02 10 -10 1 0.785 3.9267 0.07 5.2356 0.91 0.03 1 200 50 50 0.01 

5 0.01 1 0.02 10 -10 1 0.785 3.9267 0.07 5.2356 0.91 0.03 1 200 50 50 0.01 

6 0.01 1 0.02 10 -10 1 0.785 3.9267 0.07 5.2356 0.91 0.03 1 200 50 50 0.01 

7 0.01 1 0.02 10 -10 1 0.785 3.9267 0.07 5.2356 0.91 0.03 1 200 50 50 0.01 

8 0.01 1 0.02 10 -10 1 0.785 3.9267 0.07 5.2356 0.91 0.03 1 200 50 50 0.01 

9 0.01 1 0.02 10 -10 1 0.785 3.9267 0.07 5.2356 0.91 0.03 1 200 50 50 0.01 

10 0.01 1 0.02 10 -10 1 0.785 3.9267 0.07 5.2356 0.91 0.03 1 200 50 50 0.01 

11 0.01 1 0.02 10 -10 1 0.785 3.9267 0.07 5.2356 0.91 0.03 1 200 50 50 0.01 

12 0.01 1 0.02 10 -10 1 0.785 3.9267 0.07 5.2356 0.91 0.03 1 200 50 50 0.01 

 

Note:  

• All are DC4B exciters . 

  



PSS Nomenclature 

KPSS PSS gain in p.u 

TW washout time constant in sec 

T11 first lead time constant in sec 

T12 first lag time constant in sec 

T21 second lead time constant in sec 

T22 -second lag time constant in sec 

T31 third lead time constant in sec 

T32 third lag time constant in sec 

VSSmax maximum output limit in p.u 

VSSmin minimum output limit in p.u 
 

 

 

PSS Data 

Bus KPSS TW T11 T12 T21 T22 T31 T32 VSSmax VSSmin 

1 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 

2 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 

3 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 

4 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 

5 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 

6 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 

7 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 

8 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 

9 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 

10 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 

11 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 

12 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 

 

Note:  

• All are three-order PSS. 

  



Grid-forming Inverter 

Parameter A15 

, LCL filter invert-side reactance in p.u 0.200 

, LCL filter inverter-side resistance in p.u 0.020 

, LCL filter susceptance in p.u 0.080 

, LCL filter grid-side reactance in p.u 0.030 

, LCL filter grid-side resistance in p.u 0.00000955 

, P-f droop Gain in p.u 0.005 

, droop-control bandwidth in Hz 20.000 

, voltage control bandwidth in Hz 100.000 

, current control bandwidth in Hz 250.000 
 

Grid-forming Inverter control diagram 

+-
low-pass 

filter (LPF)
++

+-

Droop controller

Voltage controller

voltage PI +- current PI

+- voltage PI +- current PI

Curernt controller

Output filter

 



Grid-following Inverter 

Parameter A17 A26 A28 A29 A58 A59 

, dc-link voltage in p.u 2.500 2.500 2.500 2.500 2.500 2.500 

, dc-link capacitor in p.u 7.500 7.500 7.500 7.500 7.500 7.500 

, series output reactance in p.u 0.005 0.005 0.005 0.005 0.005 0.005 

, series output resistance in p.u 0.002 0.002 0.002 0.002 0.002 0.002 

, dc-link control bandwidth in Hz 20.000 20.000 20.000 20.000 20.000 20.000 

, PLL control bandwidth in Hz 20.000 20.000 20.000 20.000 20.000 20.000 

, current control bandwidth in Hz 500.000 500.000 300.000 220.000 500.000 500.000 
 

 

Grid-following Inverter control diagram 

+-

+-

PI

PI

dc-link controller

+- PI

PI ++

current controller

PLL controller
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D.3 Triphase 10 kVA inverter schematic

The schematic of Triphase 10 kVA inverter is attached as shown in Fig. D.1. F1 is the input and F3

is the output. During the model running, contactors K1, K2, K3, K5, K6, KDC1, KDC2 are closed

while others remain open, hence to configure the circuit as an AC-DC-AC circuit with an LCL output

filter. Values of parameters are marked in the schematic.
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Figure D.1: Triphase 10 kVA inverter schematic.



Bibliography

[1] REN21, “Renewables 2021 Global Status Report,” 2021. [Online]. Available: https:

//www.ren21.net/reports/global-status-report/

[2] IEA, “Global Energy Review 2021,” 2021. [Online]. Available: https://www.iea.org/reports/

global-energy-review-2021/renewables

[3] NationGrid ESO, “Great Britain’s monthly electricity stats,” 2021. [On-

line]. Available: https://www.nationalgrideso.com/electricity-explained/electricity-and-me/

great-britains-monthly-electricity-stats

[4] F. Blaabjerg, Z. Chen, and S. Kjaer, “Power electronics as efficient interface in dispersed power

generation systems,” IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1184–1194,

2004.

[5] H. Liu, X. Xie, J. He, T. Xu, Z. Yu, C. Wang, and C. Zhang, “Subsynchronous interaction

between direct-drive pmsg based wind farms and weak ac networks,” IEEE Transactions on

Power Systems, vol. 32, no. 6, pp. 4708–4720, 2017.

[6] Q.-C. Zhong, “Power-electronics-enabled autonomous power systems: Architecture and tech-

nical routes,” IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5907–5918,

2017.

[7] Q.-C. Zhong and G. Weiss, “Synchronverters: Inverters that mimic synchronous generators,”

IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259–1267, 2011.

[8] J. Adams, V. A. Pappu, and A. Dixit, “Ercot experience screening for sub-synchronous control

interaction in the vicinity of series capacitor banks,” in 2012 IEEE Power and Energy Society

General Meeting, 2012, pp. 1–5.

[9] C. Buchhagen, C. Rauscher, A. Menze, and J. Jung, “Borwin1 - first experiences with har-

152

https://www.ren21.net/reports/global-status-report/
https://www.ren21.net/reports/global-status-report/
https://www.iea.org/reports/global-energy-review-2021/renewables
https://www.iea.org/reports/global-energy-review-2021/renewables
https://www.nationalgrideso.com/electricity-explained/electricity-and-me/great-britains-monthly-electricity-stats
https://www.nationalgrideso.com/electricity-explained/electricity-and-me/great-britains-monthly-electricity-stats


BIBLIOGRAPHY 153

monic interactions in converter dominated grids,” in International ETG Congress 2015; Die

Energiewende - Blueprints for the new energy age, 2015, pp. 1–7.

[10] H. Liu, L. Jin, D. Le, and A. A. Chowdhury, “Impact of high penetration of solar photovoltaic

generation on power system small signal stability,” in 2010 International Conference on Power

System Technology, 2010, pp. 1–7.

[11] S. Impram, S. Varbak Nese, and B. Oral, “Challenges of renewable energy penetration on

power system flexibility: A survey,” Energy Strategy Reviews, vol. 31, p. 100539, 2020.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/S2211467X20300924

[12] J. Enslin and P. Heskes, “Harmonic interaction between a large number of distributed power

inverters and the distribution network,” IEEE Transactions on Power Electronics, vol. 19, no. 6,

pp. 1586–1593, 2004.

[13] M. Cespedes and J. Sun, “Renewable energy systems instability involving grid-parallel invert-

ers,” in 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposi-

tion, 2009, pp. 1971–1977.
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