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Abstract

Three problems that are linked by way of motivation are addressed in this work.

In the first part of the thesis, we study the generalised Langevin equation for simulated

annealing with the underlying goal of improving continuous-time dynamics for the prob-

lem of global optimisation of nonconvex functions. The main result in this part is on

the convergence to the global optimum, which is shown using techniques from hypocoer-

civity given suitable assumptions on the nonconvex function. Alongside, we investigate

numerically the problem of parameter tuning in the continuous-time equation.

In the second part of the thesis, this last problem is addressed rigorously for the under-

damped Langevin dynamics. In particular, a systematic procedure for finding the optimal

friction matrix in the sampling problem is presented. We give an expression for the gra-

dient of the asymptotic variance in terms of solutions to Poisson equations and present a

working algorithm for approximating its value.

Lastly, regularity of an associated semigroup, twice differentiable-in-space solutions to

the Kolmogorov equation and weak numerical convergence rates of order one are shown

for a class of stochastic differential equations with superlinearly growing, non-globally

monotone coefficients. In the relation to the previous part, the results allow the use of

Poisson equations for variations of Langevin dynamics not permissible before.
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Introduction

The purpose of this section is to present the synopsis of the thesis, to explain the connec-

tion between the problems in each of the chapters and to mention briefly the methodologies

involved. Since the chapters contribute to sufficiently disjoint parts of the literature, the

review of such is left to each chapter.

1.0.1 Generalised Langevin equation

The paradigmatic continuous time dynamics that is at the base of our investigations is

the following. For a positive function U ∈ C1(Rn), constant T > 0 and a standard Wiener

process on Rn, consider an Rn-valued solution Xt to the stochastic differential equation

(SDE)

dXt = −∇U(Xt)dt+
√

2TdWt,

that is called Langevin, Brownian or overdamped Langevin dynamics

For our purposes in sampling and optimisation problems, the interest in this model is that

under suitable assumptions on U , the distribution of Xt is proportional to exp(−U(x)
T )dx

if the same holds for X0, that is, exp(−U(x)
T )dx is invariant. In the case of the sampling,

we consider the problem itself to be drawing samples from a distribution exp(−U(x)
T )dx for

use in estimating values depending on such and in the case of optimisation, to be finding

the minimum of a function U . The invariance of exp(−U(x)
T )dx can be seen intuitively by

an application of Itô’s rule: for compactly supported f ∈ C2(Rn), it holds that

f(Xt) = f(X0) +

∫ t

0

(−∇U(Xs) · ∇f(Xs) + ∆f(Xs))ds+

∫ t

0

√
2T∇f(Xs)dWs,

so that taking expectations gives

Ef(Xt)− Ef(X0) =

∫ t

0

E(−∇U(Xs) · ∇f(Xs) + ∆f(Xs))ds



and the equation is solved by Xs ∼ exp(−U(x)
T )dx for all s ∈ [0, t], since in that case we

have∫ t

0

E(−∇U(Xs) · ∇f(Xs) + ∆f(Xs))ds ∝
∫ t

0

∫
Rn

(−∇U(x) · ∇f(x) + ∆f(x))e−U(x)dxds

=

∫ t

0

∫
Rn

f(x)∇ · ((∇U(x) +∇)e−U(x))dxds

= 0.

One may include a momentum variable in the dynamics above in order to improve the

exploration of Xt over Rn. For a constant γ > 0, the same calculation as above for

dXt = Ytdt, (1.0.1)

dYt = −∇U(Xt)dt− γYtdt+
√

2γTdWt, (1.0.2)

that is the (underdamped) Langevin equation, also holds but with the invariant distribu-

tion e−
1
T (U(x)+

|y|2
2 ), whose marginal distribution in x is the same as before and the same

still for the generalised Langevin equation

dXt = Ytdt,

dYt = −∇U(Xt)dt+ λZtdt,

dZt = −λYtdt− λ′Ztdt+
√

2λ′TdWt

for constants λ ∈ R, λ′ > 0 with invariant distribution e−
1
T (U(x)+

|y|2
2 +

|z|2
2 ).

Specifically for the problem of optimisation, one may make use of the forms of these

distributions by taking T → 0 as t → ∞, so that the marginal distribution of Xt is

concentrated around the minimum of U for large t if the distribution of Xt is indeed

close to the invariant distribution. This is in the spirit of simulated annealing, which

refers to the particular feature of gradual changes of a temperature parameter, which is T

in our cases above, to a limit in order to find the global minimum value of a function.

It is an open problem for general systems to show that such applications of simulated

annealing indeed yield convergence to the global optimum and the rate of change in T -

like parameters in the large time must typically be slow enough for the system to explore

the space sufficiently. For the overdamped Langevin dynamics, convergence was shown

in [42]. For the underdamped Langevin equation, an approach for this convergence was

shown for the first time in [139]. The main goal in Chapter 2 is to prove that the same

holds for the generalised Langevin equation. Alongside, numerical examples are given for

cases of improved performance over the underdamped dynamics.
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The technical core of Chapter 2 is to prove, for T = Tt varying in time, mt the density

of Xt, µt(x, y, z) := e
−1
Tt

(U(x)+
|y|2
2 +

|z|2
2 )), Z :=

∫
Rn µt(x, y, z)dxdydz, ht := mt

Z−1µt
and

some constants C > 0, 0 < γ < 1, that an inequality of the form∫
mt lnht ≤ C

(
1

t

)γ

, (1.0.3)

holds for all t > 0. In order to prove such an inequality, the quantity∫ (
⟨S∇ht,∇ht⟩

ht
+ β(T−1

t )ht lnht

)
Z−1dµt,

for some well chosen matrix S and polynomial β(·) will be considered. This construction

of H over the left-hand side of (1.0.3) is the strategy of [190] and, as is well-known,

compensates for the fact that the diffusion is degenerate.

1.0.2 Formula for improving a certain parameter

The analysis described above turns out not to guide the choice of parameter in the gen-

eralised Langevin equation. We are motivated then in the next part of the thesis to

find a methodology for choosing parameters in the dynamics. In this direction, focus is

placed on the somewhat simpler underdamped Langevin dynamics (1.0.1) and the friction

parameter γ for the sampling problem. It is worth highlighting that for this problem,

although the goal is to find optimal parameters for the dynamics, the sense of optimality

is not a speed of convergence to a global optimum of U , but to be decided out of a num-

ber of options relevant for the sampling problem. In particular, our analysis is aimed at

reducing the value of the asymptotic variance for a function f : R2n → Rn given by the

expression

σ2 := 2

∫
ϕ(f −

∫
fdπ)dπ, (1.0.4)

where ϕ is the solution to

Lϕ(x, y) = f(x, y)−
∫
fdπ, (1.0.5)

the operator L is the infinitesimal generator of the underdamped Langevin dynamics

given by

L = −y · ∇x +∇U(x) · ∇y + γy · ∇y − γ∇y · ∇y (1.0.6)

when acting on smooth functions and π is the invariant measure with density proportional

to e−U(x)− |y|2
2 . The use of (1.0.4) and (1.0.5) are justified as follows. For solutions (Xt, Yt)

13



to the underdamped Langevin equation, the random variable

1√
t

∫ t

0

(
f(Xs, Ys)−

∫
fdπ

)
ds, (1.0.7)

converges in distribution to N (0, σ2) under suitable assumptions on U and f , so that σ

determines an asymptotic speed for the convergence of the time average 1
t

∫ t

0
f(Xs, Ys)ds

to a quantity of interest
∫
fdπ, the approximation of which we assume to be the sampling

problem. The next paragraph is devoted to a formal justification for this convergence,

see the functional central limit theorem approach in [15] and also [113]. Supposing a

solution ϕ to (1.0.5) indeed exists and that it is smooth, by Itô’s rule we have

ϕ(Xt, Yt) = ϕ(X0, Y0)−
∫ t

0

(f(Xs, Ys)−
∫
fdπ)ds+

√
2γ

∫ t

0

∇yϕ(Xs, Ys) · dWs, (1.0.8)

so that assuming initial stationarity (X0, Y0) ∼ π and taking expectation gives

E
[

1√
t

∫ t

0

(f(Xs, Ys)−
∫
fdπ)ds

]
= 0.

Moreover, using (1.0.8), the variance of (1.0.7) can be calculated as

1

t
E
[
(ϕ(Xt, Yt)− ϕ(X0, Y0))2 − 2

√
2γ(ϕ(Xt, Yt)− ϕ(X0, Y0))

(∫ t

0

∇yϕ(Xs, Ys) · dWs

)
+ 2γ

(∫ t

0

∇yϕ(Xs, Ys) · dWs

)2 ]
≤ 2

t
E
[
(ϕ(Xt, Yt)− ϕ(X0, Y0))2 + 2γ

(∫ t

0

∇yϕ(Xs, Ys) · dWs

)2]
Given that t−

1
2ϕ(Xt, Yt) converges to zero in square mean as t → ∞ (it will be shown

that in fact equation (1.0.10) holds), the only nonzero term as t → ∞ is the last term,

for which formally we have

2γE
[(

1

t

∫ t

0

∇yϕ(Xs, Ys) · dWs

)2 ]
=

2γ

t

∫ t

0

∇yϕ(Xs, Ys) · ∇yϕ(Xs, Ys)ds

→ 2γ

∫
∇yϕ · ∇yϕdπ

= −2γ

∫
ϕ(∇y · ∇y − y · ∇y)ϕ)dπ

= −2

∫
ϕ

(
f −

∫
fdπ

)
dπ

14



as t→∞, where Itô’s isometry, (assumed) ergodicity, (1.0.5), (1.0.6) and integration by

parts have been used.

Having justified the validity of the criterion of asymptotic variance and returning to its

representation (1.0.4), the main result of Chapter 3 is a formula for the derivative of the

asymptotic variance with respect to γ. In particular, it is shown that

∂

∂γ
σ2 = −2

∫
∇yϕ · ∇yϕ̃dπ, (1.0.9)

where ϕ̃(x, y) = ϕ(x,−y). Therefore given approximations of ∇yϕ, equation (1.0.9) nat-

urally yields a gradient descent procedure on σ2 with respect to γ. We may indeed

approximate ∇yϕ by using the known formula

ϕ(x, y) =

∫ ∞

0

(Ef(Xt, Yt)−
∫
fdπ)dt, (1.0.10)

where (Xt, Yt) is a solution to the underdamped Langevin equation with initial condi-

tion (x, y). In particular, one has a systematic procedure for improving the value of γ for

the goal of approximating
∫
fdπ using

∫ t

0
f(Xs, Ys)ds. It is shown in Chapter 3 that this

provides a functioning gradient procedure for estimating improved values of γ.

1.0.3 Kolmogorov equations

In order to derive (1.0.9), we make use of the fact that the differential operator (1.0.6)

has a maximally accretive closure in L2(π), see Section 5.2 in [91] for a definition and

discussion. Existing results about the maximal accretivity of the closure of analogous

operators to the above are far from general when noise does not appear in all of the

component dynamics of the SDE. An alternative, more involved method for proving the

main formula (1.0.9) of Chapter 3 (not explicitly given here, but see [36]) is to use that

an associated semigroup is the solution to a Kolmogorov equation.

In Chapter 4, we consider general SDEs driven by Wiener processes. Our underlying result

is to show, by combining techniques of [44] with those in [114], some moment estimates

on derivative (with respect to initial condition) processes for SDEs with nonglobally

monotone coefficients. These estimates are bedrock to three results that give

• differentiability-in-x of the semigroup Ptg(x) := Eg(Xt) for g regular enough,

where Xt solves the SDE with initial condition x,

• that the semigroup solves the Kolmogorov equation (∂t +L)Ptg = 0, where L is the

generator of the SDE acting on twice differentiable functions and

15



• weak numerical convergence rates of order one for a stopped increment-tamed Euler-

Maruyama scheme.

In the case where the coefficients of the SDE are globally Lipschitz or at least globally

monotone, such results are known and in fact numerous related works are available on

numerical convergence rates. However, Hairer et al. [85] showed that there exist counterex-

amples to the aforementioned differentiability and weak polynomial convergence rates for

the Euler-Maruyama scheme outside this regime even in the case where the coefficients

are smooth and globally bounded. For example, from Theorem 3.1 in [85], solutions up

to time T > 0 to the SDE

dXt = cos(Zt · exp(Y 3
t ))dt

dYt =
√

2dWt

dZt = 0dt

are such that there exist φ ∈ C∞
c where E[φ(Xt, Yt, Zt)] is not locally Hölder continuous in

initial condition for any t ∈ (0, T ]. Our main assumption here is loosely that the Lipschitz

constant of our drift and diffusions coefficients are o(log V ) and o(
√

log V ) respectively

for a Lyapunov function V satisfying LV ≤ CV , for some constant C and the associated

differential operator L (for example given by (1.0.6) for the SDE (1.0.1)-(1.0.2)). Our

conditions are satisfied by a class of SDEs similar to [44, 105] and show for the first time

all of the above under these conditions.

In particular, these results allow one to show that the semigroup associated to the un-

derdamped Langevin equation with variable friction γ = γ(x, y), which has non-globally

Lipschitz coefficients by definition, solves the Kolmogorov equation and as a consequence

forms a distributional solution to the equation (1.0.5), thus forming a first step for proving

formulae such as (1.0.9).
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2

Generalised Langevin equation for simulated

annealing

The contents of this chapter are from the paper [37] written in collarboration with G.

Pavliotis and N. Kantas.

2.1 Introduction

Optimisation algorithms have received significant interest in recent years due to appli-

cations in machine learning, data science and molecular dynamics. Many models in

machine learning result in a formulation whereby some loss function and its parameters

are to be minimised, in which use of optimisation techniques is heavily relied upon. We

refer to [22, 179] for related discussions. Many models, for instance neural networks, use

parameters that vary over a continuous space, where gradient-based optimisation meth-

ods can be used to find good parameters that generate effective predictive ability which

fulfill the purpose of the model. As such, the design and analysis of such algorithms

for global optimisation has been the subject of considerable research [170] and it has

proved useful to study algorithms for global optimisation using tools from the theory of

stochastic processes and dynamical systems. A paradigm of the use of stochastic dy-

namics for the design of algorithms for global optimisation is one of simulated annealing,

where overdamped Langevin dynamics with a time dependent temperature (2.1.1) that

decreases with an appropriate cooling schedule is used to guarantee the global minimum

of a nonconvex loss function U : Rn → R:

dXt = −∇U(Xt) dt+
√

2Tt dWt. (2.1.1)

Here Wt is a standard n-dimensional Wiener process and T· : (0,∞)→ (0,∞) is an appro-

priate determinstic function of time often referred to as the annealing or cooling schedule.



For fixed Tt = T > 0, this is the dynamics used for the related problem of sampling from

a possibly high dimensional probability measure, for example in the unadjusted Langevin

algorithm [59]. Gradually decreasing Tt to zero balances the exploration-exploitation

trade-off by allowing at early times larger noise to drive Xt and hence sufficient mixing

to escape local minima. Designing an appropriate annealing schedule is well-understood.

We briefly mention classical references [42, 73, 74, 77, 78, 92, 93, 115], as well as the more

recent [107, 131, 160], where one can find details and convergence results. In this chapter

we aim to consider generalised versions of (2.1.1) for the same purpose.

Using dynamics such as (2.1.1) has clear connections with sampling, as stated in the in-

troduction of the thesis. When Tt = T is a constant function, the invariant distribution of

X is proportional to exp(−U(x)
T )dx. In addition, when Tt decreases with time, the prob-

ability measure given by νt(dx) ∝ exp(−U(x)
Tt

)dx converges weakly to the set of global

minima based on the Laplace principle [106]. One can expect that if one replaces (2.1.1)

with a stochastic process that mixes faster and maintains the same invariant distribution

for constant temperatures, then the superior speed of convergence should improve per-

formance in optimisation due to the increased exploration of the state space. Indeed, it

is well known that many different dynamics can be used in order to sample from a given

probability distribution, or for finding the minima of a function when the dynamics is

combined with an appropriate cooling schedule for the temperature. Different kinds of

dynamics have already been considered for sampling, e.g. nonreversible dynamics, pre-

conditioned unadjusted Langevin dynamics [3, 10, 125, 156], as well as for optimisation,

e.g. interacting Langevin dynamics [184], consensus based optimisation [27, 28, 161], to

name a few.

A natural candidate in this direction is to use the underdamped Langevin dynamics:

dXt = Yt dt (2.1.2a)

dYt = −∇U(Xt) dt− T−1
t µYt dt+

√
2µdWt. (2.1.2b)

Here the reversibility property of (2.1.1) has been lost; the improvement from breaking

reversibility in both the context of sampling and that of optimisation is investigated

in [55, 122] and [70] respectively. When Tt = T , (2.1.2) can converge faster than (2.1.1)

to its invariant distribution

ρ(dx, dy) ∝ exp

(
− 1

T

(
U(x) +

|y|2

2

))
dx dy,

see [61] or Section 6.3 of [158] for particular (theoretical) comparisons and also [18, 19]

for more applications using variants of (2.1.2). In the context of simulated annealing,

using this set of dynamics has recently been studied rigorously in [139], where the author
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established convergence to global minima using the generalised Γ-calculus [140] framework

that generalises Bakry-Emery theory to degenerate systems. Note that (2.1.2b) uses the

temperature in the drift rather than the diffusion constant in the noise as in (2.1.1). Both

formulations admit the same invariant measure when Tt = T . In the remainder of the

chapter, we adopt this formulation to be closer to [139].

In this chapter we will consider an extension of the kinetic Langevin equation by adding

an additional auxiliary variable that accounts for the memory in the system. To the

best of the authors’ knowledge, this has not been attempted before in the context of

simulated annealing and global optimisation. In particular we consider the Markovian

approximation [158, Section 8.2] to the generalised Langevin equation:

dXt = Yt dt (2.1.3a)

dYt = −∇U(Xt) dt+ λ⊤Zt dt (2.1.3b)

dZt = −λYt dt− T−1
t AZt dt+ Σ dWt, (2.1.3c)

where A ∈ Rm×m is symmetric positive definite matrix, meaning that there exists a

constant Ac > 0 such that z⊤Az ≥ Ac|z|2 for all z ∈ Rm, Σ ∈ Rm×m satisfies ΣΣ⊤ = 2A

(that is, the fluctuation-dissipation theorem [158, Section 6.1] holds) and Wt is now m-

dimensional. Here Xt, Yt ∈ Rn and Zt ∈ Rm (with m ≥ n), M⊤ denotes the transpose of

a matrix M , λ ∈ Rm×n is a rank n matrix with a left inverse λ−1 ∈ Rn×m.

Our aim is to establish convergence using similar techniques as [139] and investigate the

improvements in performance. Equation (2.1.3) is related to the generalised Langevin

equation, where memory is added to (2.1.2) by integrating over past velocities with a

kernel Γ : (0,∞)→ Rn×n:

ẍ = −∇U(x)−
∫ t

0

Γ(t− s)ẋ(s) ds+ Ft (2.1.4)

with Ft being a zero mean stationary Gaussian process with an autocorrelation matrix

given by the fluctuation-dissipation theorem E(FtF
⊤
s ) = TtΓ(t − s). When1 Tt = T ,

(2.1.4) is equivalent to (2.1.3) with Z0 ∼ N (0, T I) for identity matrix I when setting

Γ(t) = λ⊤e−Atλ, see Proposition 8.1 in [158]. In this case, the invariant distribution

becomes

ρ(dx, dy, dz) ∝ exp

(
− 1

T

(
U(x) +

|y|2

2
+
|z|2

2

))
dx dy dz.

In the spirit of adding a momentum variable in (2.1.1) to get (2.1.2), (2.1.3) adds an

additional auxiliary variable to the Langevin system whilst preserving the invariant dis-

1 To our knowledge, there is no known direct translation between (2.1.4) and (2.1.3) for a non-constant
Tt; at the very least the intuition here is useful.
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tribution in the x marginal. In the constant temperature context, (2.1.4) is natural from

the point of view of statistical mechanics and has already been considered as a sampling

tool in [31, 32, 33, 145] with considerable success. We will demonstrate numerically that

the additional tuning parameters can improve performance; see also [143] for recent work

demonstrating advantages of using (2.1.4) compared to using (2.1.2) when sampling from

a log concave density. A detailed study of the Markovian approximation (2.1.3) of the

generalised Langevin dynamics in (2.1.4) can be found in [151].

To motivate the use of (2.1.3), consider the quadratic case where U = αx2 and 0 <

α < 1. This case allows for explicit or numerical calculation of the spectral gaps of the

generators in (2.1.1)-(2.1.3) in order to compare the rate of convergence to equilibrium;

see [135, 152] for details. Preliminary work not explicitly presented here show that for the

aforementioned cases, best choices of λ,A yield an improvement in terms of the spectral

gap compared to (2.1.2) with the best choice of µ.

Use of (2.1.4) is also motivated by parallels with accelerated gradient descent algorithms.

When the noise is removed from (2.1.2), the second order differential equation can be

loosely considered as a continuous time version of Nesterov’s algorithm [183]. The latter

is commonly preferred to discretising the first order differential equation given by the

noiseless version of (2.1.1), because in the high dimensional and low iterations setting it

achieves the optimal rate of convergence for convex optimisation; see Chapter 2 in [150]

and also [76] for a nonconvex setting. Here we would like to investigate the effect of adding

another auxiliary variable, which would correspond to a third order differential equation

when noise is removed. When noise is added for the fixed temperature case, [69] has

studied the long time behaviour and stability for different choices of a memory kernel as

in (2.1.4). Finally, we note that generalised Langevin dynamics in (2.1.4) have additionally

been studied in related areas such as sampling problems in molecular dynamics from

chemical modelling [1, 31, 32, 33, 145, 195], see also [116] for work determining the kernel

Γ in the generalised system (2.1.4) from data.

Our theoretical results will focus only on the continuous time dynamics and follow the

approach in [139]. The main requirement in terms of assumptions are quadratic upper

and lower bounds on U and bounded second derivatives. This is different to classical

references such as [74], [77] or [93]. These works also rely on the Poincaré inequality, an

approach which will be mirrored here (and in [139] for the underdamped case) using a log-

Sobolev inequality; see also [92] for the relationship between such functional inequalities

and the annealing schedule in the finite state space case. We will also present detailed

numerical results for different choices of U . There are many possibilities for the method

of discretisation of (2.1.3), we will use a time discretisation scheme that appeared in [6],

but will not present theoretical results on the time discretised dynamics; this is beyond

the scope of this thesis. We refer instead the interested reader to [171] for a study on
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discretisation schemes for the system (2.1.3), [41] for a recent consideration on (2.1.2)

and its time-discretisation and [71, 72] for linking discrete time Markov chains with the

overdamped Langevin system in (2.1.1).

2.1.1 Contributions and organisation of the chapter

Here we summarise the main contributions of the chapter.

• We provide a complete theoretical analysis of the simulated annealing algorithm

for the generalised Langevin equation (2.1.3). The main theoretical contribution

consists of Theorem 2.2.5 that establishes convergence in probability of Xt in the

higher order Markovian dynamics (2.1.3) to a global minimiser of U . For the optimal

cooling schedule Tt out of those that are proved here to give a convergent process, the

rate of convergence is as the known rate for the Langevin system (2.1.2) presented

in [139].

• The initially non-Markovian property and pronounced degeneracy in the sense of

requiring a second commutator bracket for hypoellipticity by way of Hörmander

introduces additional difficulties that are overcome using techniques from [139]. As

such, we use a different form of the distorted entropy, stated formally in (2.4.36).

Additional technical improvements include a different truncation argument and a

limiting sequence of nondegenerate SDEs for establishing dissipation of this dis-

torted entropy. These extensions also address certain technical issues in [139]; see

Remarks 2.2.1, 2.4.1 and 2.4.4 for more details. Also we make an effort to emphasise

the role of the critical factor of the cooling schedule in the rate of convergence in

Theorem 2.2.5. This can be seen in our assumptions for Tt and U below.

• Numerical experiments are provided to illustrate the performance of our approach.

We also discuss tuning issues. In particular, we investigate numerically the role of

matrix A and how it can be chosen to increase exploration of the state space. As

regards to time discretisation of (2.1.3) we use the leapfrog scheme of [6]. We com-

pare this with a similar time discretisation of (2.1.2) and observe that exploration

of the state space is increased considerably.

The rest of the chapter is organised as follows. Section 2.2 will present the assumptions

and main theoretical results. Proofs can be found in Section 3.6. Section 2.3 presents

numerical results demonstrating the effectiveness of our approach in terms of reaching

the global minimum. In Section 2.6, we provide some concluding remarks.
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2.2 Main Result

Let Lt denote the infinitesimal generator of the associated semigroup to (2.1.3) at t > 0

and temperature Tt. This is formally given by

Lt = (y · ∇x −∇xU(x) · ∇y) + (z⊤λ∇y − y⊤λ⊤∇z)− T−1
t z⊤A∇z +A : D2

z , (2.2.1)

where we denote the gradient vector as ∇x = (∂x1 , . . . , ∂xn)⊤, the Hessian with D2
x and

similarly for the y and z variables. For matrices M,N ∈ Rr×r we denote M : N =∑
i,j MijNij for all 1 ≤ i, j ≤ r and the operator norm as

|M | = sup

{
|Mv|
|v|

: v ∈ Rr with v ̸= 0

}
.

We will also use |v| to denote Euclidean distance for a vector v. Let mt be the law of

(Xt, Yt, Zt) in (2.1.3) and, with slight abuse of notation, we will also denote as mt the

corresponding Lebesgue density. Similarly we define µTt
be the instantaneous invariant

law of the process

µTt(dx, dy, dz) =
1

ZTt

exp

(
− 1

Tt

(
U(x) +

|y|2

2
+
|z|2

2

))
dx dy dz (2.2.2)

with ZTt =
∫

exp
(
− 1

Tt

(
U(x) + |y|2

2 + |z|2
2

))
dxdydz. Finally, denote the density between

the two laws ht = dmt

dµTt
. We proceed by stating our assumptions on the potential U .

Assumption 1. The function U belongs to C∞(Rn) and its second derivatives satisfy

|D2
xU |∞ := sup

x∈Rn

max

{
sup
ij
|∂i∂jU(x)|, |D2

xU(x)|
}
<∞. (2.2.3)

Its first derivatives satisfy

∇xU(x) · x ≥ r1|x|2 − Ug (2.2.4)

|∇xU(x)|2 ≤ r2|x|2 + Ug (2.2.5)

for some constants r1, r2 ∈ R, Ug > 0. Moreover, either

(a)

|ā ◦ x|2 + Um ≤ U(x) ≤ |ā ◦ x|2 + UM (2.2.6)

for some Um, UM ∈ R, ā ∈ (0,∞)n, where ◦ denotes the Hadamard product, or

(b) • U is a nonnegative Morse function, defined as follows. There exists 1 ≤ CH <

22



∞ such that if x ∈ Rn satisfies ∇xU(x) = 0, then

1

CH
≤ ∥D2

xU(x)∥ ≤ CH

• U is nondegenerate in the sense that:

– For any two local minima mi,mj ∈ Rn, there exists a unique (communi-

cating saddle) point si,j ∈ Rn such that

∗ ∇xU(si,j) = 0,

∗ U(si,j) = inf{maxs∈[0,1] U(γ(s)) : γ ∈ C([0, 1],Rn), γ(0) = mi, γ(1) =

mj},
∗ the dimension of the unstable subspace of D2

xU(si,j) is equal to 1.

– Setting m1 to be the global minimum of U , there exists δ > 0 and an

ordering of the local minima {m2,m3, . . . } such that U(s1,2) − U(m2) ≥
U(s1,i)− U(mi) + δ for all i ≥ 3.

Note that (2.2.4) and (2.2.5) imply

am|x|2 + Um ≤ U(x) ≤ aM |x|2 + UM (2.2.7)

for some am, aM > 0, Um, UM ∈ R. In the rest of the chapter, if (2.2.6) holds then the

smallest and largest element of ā is denoted with am = mini āi and aM = maxi āi, where

ā = (ā1, . . . , ān).

Assumption 2. The temperature Tt satisfies limt→∞ Tt = 0.

Before we proceed with further assumptions on the annealing schedule Tt and on the

initial distribution, note that under Assumption 1 and 2, a log-Sobolev inequality holds

with a time-varying constant that increases as t → ∞, which is consistent with the

concentration of µTt around global minima of U . This allows one to conclude exponential

convergence to an instantaneous equilibrium at each t and forms part of the proof to our

main convergence result.

Proposition 2.2.1. Under Assumptions 1 and 2, there exist constants t
(0)
ls , Ê, A

(0)
∗ > 0

and a finite order polynomial r(0) : (0,∞)→ (0,∞) with coefficients depending on U such

that for all 0 < h ∈ C∞(R2n+m) satisfying
∫
hdµTt = 1, it holds that

∫
h lnhdµTt

≤ C(0)
t

∫
|∇h|2

h
dµTt

, (2.2.8)
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where for t > t
(0)
ls ,

C
(0)
t = r(0)

(
T

− 1
2

t

)
eÊT−1

t . (2.2.9)

Proof. Firstly, the case that U satisfies Assumption 1(a) is dealt with. The standard log-

Sobolev inequality for a Gaussian measure [80] alongside the properties that log-Sobolev

inequalities tensorises and are stable under perturbations, which can be found as Theorem

4.4 and Property 4.6 in [83] respectively, yields the result. In particular,∫
h lnhdµTt

=

∫
(h lnh− h+ 1)dµTt

≤
∫

(h lnh− h+ 1)Z−1
Tt
e−

Um
Tt

− 1
Tt

(
|ā◦x|2+ |y|2

2 +
|z|2
2

)
dxdydz

= e−
Um
Tt Z−1

Tt

∫
h lnhe−

1
Tt

(
|ā◦x|2+ |y|2

2 +
|z|2
2

)
dxdydz

≤ e−
Um
Tt max

(
Tt
2
,max

i

Tt
4ā2i

)
Z−1
Tt

∫
|∇h|2

ht
e−

1
Tt

(
|ā◦x|2+ |y|2

2 +
|z|2
2

)
dxdydz

≤ e
UM−Um

Tt max

(
Tt
2
,
Tt

4a2m

)∫
|∇h|2

h
dµTt ,

where the first inequality follows by (2.2.6) since x lnx− x+ 1 ≥ 0 for all x ≥ 0, so that

C
(0)
t = max

(
2, a−2

m

)Tt
4
e(UM−Um)T−1

t .

In the case of Assumption 1(b), the inequality in the x-marginals is taken as a consequence

of Corollary 2.17 in [134] (see however Definition 1.8 in [176] for Morse functions); for

the announced form (2.2.9) of C
(0)
t , equation (2.18) in [134] can be used by taking t

(0)
ls

large enough such that for t > t
(0)
ls , Tt is small enough. The proof concludes by [83,

Theorem 4.4] together with the log-Sobolev inequality for Gaussian measures.

The constant Ê from the above proposition will be used in stating the following assump-

tion about Tt, as well as what follows. In the case of Assumption 1(a), Ê can be taken

as UM − Um, otherwise for Assumption 1(b) it is the critical depth [134] of U .

Assumption 3. The cooling schedule T· : [0,∞)→ (0,∞) is continuously differentiable,

bounded above and there exists some constant t0 > 1 such that Tt satisfies for all t > t0:

(i) Tt ≥ E(ln t)−1 for some constant E > Ê ≥ 0, where Ê is the constant in Proposi-

tion 2.2.1,

(ii) Denoting T ′
t = ∂sTs|s=t, it holds that |T ′

t | ≤ T̃ t−1 for some constant T̃ > 0.

Assumption 4. The initial law m0 admits a bounded density with respect to the

Lebesgue measure on R2n+m, also denoted m0, satisfying:
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(i) m0 ∈ C∞(R2n+m),

(ii)
∫ |∇m0|2

m0
dxdydz <∞,

(iii)
∫

(|x|2 + |y|2 + |z|2)m0 dxdydz <∞,

Remark 2.2.1. Note that (2.2.5) and (2.2.6) deviate from [139]. Condition (2.2.6) is useful

for a self-contained exposition for the log-Sobolev constant in (2.4.45); it is satisfied for

instance by a multivariate Gaussian after a rotation of the x coordinates. The alternative

condition that U is a nondegenerate Morse function allows us to conveniently apply the

results of [134], in which case Ê is given as the critical depth of U .

We present two key propositions.

Proposition 2.2.2. Under Assumptions 1 and 3, for all t > 0, denote by
(
XTt , Y Tt , ZTt

)
a r.v. with distribution µTt . For any δ, α > 0, there exists a constant Â > 0 such that

P
(
U
(
XTt

)
> minU + δ

)
≤ Âe−

δ−α
Tt (2.2.10)

holds for all t > 0.

Proof. The result follows exactly as in Lemma 3 in [139].

In fact, the e
α
Tt factor on the right-hand side in (2.2.10) may be substituted by a subex-

ponential (in T−1
t ) term, see the comment after Lemma 3 in [139].

Proposition 2.2.3. Under Assumptions 1, 3 and 4, for all t > 0, (Xt, Yt, Zt) are well

defined as the unique strong solution to (2.1.3), E
[
|Xt|2 + |Yt|2 + |Zt|2

]
<∞ and the law

mt admits an everywhere positive density with respect to the Lebesgue measure on R2n+m.

For the proof of Proposition 2.2.3, see Proposition 2.4.1.

Proposition 2.2.2 can be thought of as a Laplace principle; Proposition 2.2.3 asserts that

the process (2.1.3) does not blow up in finite time and the noise in the dynamics (2.1.3c)

for Zt spreads throughout the system, that is to Xt and Yt.

Proposition 2.2.4. Under Assumption 1, 3 and 4, for any 0 < α ≤ 1
2 −

Ê
2E , there exists

some constant B > 0 such that for all t ≥ 0,

∫
ht lnhtdµTt ≤ B

(
1

t

)1− Ê
E−2α

. (2.2.11)

The full proof is contained in Section 2.4.7 and follows from Proposition 2.4.10. It uses an

approximating sequence of SDE’s, in which all of the elements have nondegenerate noise.

The problem is split into the partial time and partial temperature derivatives where,
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amongst other tools, (2.4.40) and a log-Sobolev inequality are used as in [139] to arrive

at a bound that allows a Grönwall-type argument.

Remark 2.2.2. Proposition 2.4.10 is a statement about the distorted entropy H(t), which

bounds the entropy
∫
ht lnhtdµTt

. In fact this is achieved in such a way that the bound be-

comes less sharp as t becomes large but without consequences for our main Theorem 2.2.5

below.

We proceed with the statement of our main result, using th from Proposition 2.2.4.

Theorem 2.2.5. Under Assumptions 1, 2, 3 and 4, for any δ > 0, as t→∞,

P(U(Xt) ≤ minU + δ)→ 1.

If in addition Tt = E(ln t)−1, then for any 0 < α ≤ min

(
1
2 −

Ê
2E , δ

)
, there exists a

constant C > 0 such that for all t ≥ 0,

P(U(Xt)> minU + δ) ≤ C
(

1

t

)re(E)

,

where the rate re : (Ê,∞)→ R is defined by

re(E) := min

(
1− Ê

E − 2α

2
,
δ − α
E

)

=


1
2

(
1− Ê

E − 2α
)

if E < Ê+2(δ−α)
1−2α

δ−α
E otherwise.

Proof. For all t > 0, denote by
(
XTt , Y Tt , ZTt

)
a random variable with distribution µTt

.

For all δ > 0, with the definition of ht and triangle inequality, we have

P(U(Xt) > minU + δ) ≤ P
(
U
(
XTt

)
> minU + δ

)
+

∫
|ht − 1|dµTt

.

Pinsker’s inequality gives

∫
|ht − 1|dµTt ≤

(
2

∫
ht lnhtdµTt

) 1
2

, (2.2.12)

which, by Proposition 2.2.4, together with Proposition 2.2.2 gives the result.

The cooling schedule Tt = E(ln t)−1 is optimal with respect to the method of proof for

Proposition 2.4.10; see Proposition 2.5.2. This is a consistent with works in simulated

annealing, e.g. [42, 73, 74, 77, 78, 92, 93, 115].
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The ’mountain-like’ shape of re indicates the bottleneck for the rate of convergence at low

and high values of E: a small E means the term related to convergence to the measures

µTt
is restrictive and a large E means the convergence of µTt

to the global minima of U

is slow.

Although the focus in Theorem 2.2.5 is for decaying Tt, it is only for convergence to the

global minimum where Assumption 2 is used. In particular, the convergence result in

Proposition 2.2.4 is valid for temperature schedules that are not converging to zero. This

includes the instance of using a variable temperature in order to tackle the problem of

metastability in the sampling problem.

2.3 Numerical results

Here we investigate the numerical performance of (2.1.3) in terms of convergence to a

global optimum and exploration capabilities and compare with (2.1.2). The details of the

discretisations we use for both sets of dynamics and some details related to the anneal-

ing schedule and parameters can be found in Section 2.3.1. Rates of transition between

different regions of the state space are presented in Section 2.3.2. In Section 2.3.3, for

different parameters and cost functions, we present results for the probability of conver-

gence to the global minimum. We investigate the effect of E appearing in the annealing

schedule as well as the parameters in the dynamics (2.1.2) and (2.1.3). In particular,

we consider different λ = λ̄λi and A = µAi in the generalised Langevin dynamics for

λ̄, µ > 0. Note that µ is used also as the friction parameter in (2.1.2), which makes

notational sense because µ determines the relative strength of Ornstein-Uhlenbeck part

of the respective dynamics. In addition, we introduce a coefficient γ > 0 in front of the

terms in (2.1.2) and (2.1.3) corresponding to the part in the respective generators given

by y · ∇x −∇xU(x) · ∇y; unless otherwise stated, we keep γ = 1. The numerical scheme

for the experiments is detailed, but error analysis related to the discretisation is outside

the scope of the thesis.
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2.3.1 Time discretisation

In order to simulate from (2.1.3), we will use the following time discretisation. For k ∈ N,

Yk+ 1
2

= Yk −
∆t

2
γ∇U(Xk) +

∆t

2
λ⊤Zk, (2.3.1a)

Xk+1 = Xk + ∆tγYk+ 1
2
, (2.3.1b)

Zk+1 = Zk − θλYk+ 1
2
− θAZk + α

√
Tk Σξk, (2.3.1c)

Yk+1 = Yk+ 1
2
− ∆t

2
γ∇U(Xk+1) +

∆t

2
λ⊤Zk+1, (2.3.1d)

where ∆t denotes the time incremements in the discretisation, ξk are i.i.d. standard

m-dimensional normal random variables with unit variance and θ = 1 − exp(−∆t), and

α =
√

1− θ2. Specifically this is method 2 of [6] applied on a slight modification of (2.1.3),

where γYtdt and γ∇Udt is used instead in the r.h.s. of (2.1.3a) and (2.1.3b). Tuning γ

can improve numerical perfomance especially in high dimensional problems, but we note

that this has no effect in terms of the instantaneous invariant density in (2.2.2); similar

to λ and A, γ will not appear in (2.2.2). Unless stated otherwise, in the remainder we

will use γ = 1.

As we will see below the choices for A make a difference in terms of performance. To

illustrate this we will use different choices of the form

A = µAi;

i here is an index for different forms of A. The first choice will be to set m = n and set

A1 = In where In is n × n identity matrix. For the rest, we will use m = 2n and pick

without rigorous justification

A2 =

(
1.9In 0.4In

0.1In 0.1In

)
, A3 =

(
In 0.5In

0.5In In

)
, (A4)ij =

1 if i = j

1
mn otherwise

.

Doubling the state space of Zt relative to Xt, Yt allows investigating the effect of injecting

more noise in the dynamics has to the overall performance and the state space exploration.

As per [81] (following [68]), the constraint that the trace of A is uniformly bounded has

been used in selecting the above matrices. Note that A2 does not satisfy the symmetry

assumption for the results, but figures for A2 are displayed in spite of this because there

is an interesting improvement in performance for one of the cases below (see Figure 2.3.2

and also others for the sake of comparison). Similarly we will use in each case λ = λ̄λi
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with λ̄ > 0, λ1 = In and

λi =

(
In

0

)
for i = 2, 3, 4. As a result λ̄, µ > 0 are the main tuning constants for (2.3.1) that do not

involve the annealing schedule.

The Langevin system (2.1.2) will be approximated with a leapfrog scheme, that is similar

to (2.3.1) in an effort to minimise differences arising from the numerical error,

Yk+ 1
2

= Yk − θ̂γ∇U(Xk)− θ̂µYk + α̂
√
µTkξk, (2.3.2a)

Xk+1 = Xk + ∆tγYk, (2.3.2b)

Yk+1 = Yk+ 1
2
− θ̂γ∇U(Xk+1)− θ̂µYk+ 1

2
+ α̂

√
µTk+1ξk+ 1

2
, (2.3.2c)

for θ̂ = 1−exp(−∆t
2 ), and α̂ =

√
1− θ̂2, where in the implementation, (2.3.2a) and (2.3.2c)

are combined (aside from the first iteration) and only integer-indexed ξ are used. To make

valid comparisons, both (2.3.1) and (2.3.2) will use γ = 1 and the same noise realisation

ξk (or the first common n elements) and the same step size ∆t.

Finally for both cases we will use following annealing schedule:

Tk =

(
1

5
+

ln(1 + k∆t)

E

)−1

,

where E is an additional tuning parameter (since Ê is unknown in general).

2.3.2 Sample path properties

Our first set of simulations focus on illustrating some properties of the sample paths

generated by (2.3.1) and (2.3.2). We will use the following bivariate potential function as

a toy problem

U(x1, x2) =
x21
5

+
x22
10

+ 5e−x2
1 − 7e−(x1+5)2−(x2−3)2 − 6e−(x1−5)2−(x2+2)2

+
2
3x

2
1e

− x2
1
9 cos(x1 + 2x2) cos(2x1 − x2)

1 +
x2
2

9

. (2.3.3)

The global minimum is located at (−5, 3), but there are plenty of local minima where the

process can get trapped. In addition, there is a barrier along the vertical line {x1 = 0}
that makes crossing from each half plane less likely. Here we set ∆t = 0.1, E = 5 and

each sample is initialised at (4, 2). As a result, it is harder to cross {x1 = 0} to reach the

global minimum and it is quite common to get stuck in other local minima such as near
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(5,−2). We use the number of crossings on {x1 = 0} as a scale for how stuck the process

is in Table 2.3.1. Note that the asymmetric A = A2 case displays the smallest number of

crossings.

To illustrate this, in Figure 2.3.1 we present contour plots of U together with a typical

realisation of sample paths (in the left panels) for (2.3.2) and (2.3.1) for the different

choices of Ai. As expected, (2.3.1) generates smoother paths than those of (2.3.2). We

also employ independent runs of each stochastic process for the same initialisation. The

results are presented in the right panels of Figure 2.3.1, where we show heat maps for

two dimensional histograms representing the frequency of visiting each (x1, x2) location

over 20 independent realisations of each process. The heat maps in Figure 2.3.1 do not

directly depict time dependence in the paths and only illustrate which areas are visited

more frequently. Of course converging at the global minumum or the local one at (5,−2)

will result in more visits at these areas. The aim here is to investigate the exploration of

the state space.

Method equation Number of transitions across x = 0
(2.3.2) 11295

(2.3.1) with A = A1 11893
(2.3.1) with A = A2 10915
(2.3.1) with A = A3 11728
(2.3.1) with A = A4 11771

Tab. 2.3.1: Number of crossings across the vertical line {x1 = 0} for U defined in (2.3.3). The
results are summed from k = 105 iterations of 104 independent runs.

2.3.3 Performance and tuning

As expected, the tuning parameters, E, λ̄ and µ play significant roles in the performance

of the discretisations. As E is common to both (2.1.2) and (2.1.3), we wish to demon-

strate numerically that the additional tuning variable for the higher order Markovian

approximation to the generalised Langevin dynamics improves performance, in spite of

the lack of improvement in our theoretical guarantees over Langevin dynamics (2.1.2).

We first comment on relative scaling of λ̄ and µ based on earlier work for quadratic

U and Tt = T being constant. A quadratic U satisfies the bounds in Assumption 1

and is of particular interest because analytical calculations are possible for the spectral

gap of Lt, which in turn gives the (exponential) rate of convergence to the equilibrium

distribution. It is observed numerically in [152] that in this case, (2.1.3) has a spectral

gap that is approximately a function of λ̄2

µ . On the other hand, the spectral gap of (2.1.2)

with quadratic U is a function of µ thanks to Theorem 3.1 in [135]. For the rest of the
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comparison, we will use λ̄2

µ and µ as variables for the respective discretisations as these

quantities appear to have a distinct effect on the mixing in each case. We mention that

these choices of variable also allows one to adjust the global Lipschitz constant of the

drift coefficient for free in the generalised Langevin equation (2.1.3) up to that of ∇U
and 1, whilst in (2.1.2), this grows as µ grows. Therefore one can expect to be able to

take a stepsize in the simplest (Euler-Maruyama) discretisation of (2.1.3) that is at least

that of (2.1.2) for numerical stability [112, Section 9.8] of the approximation. A detailed

stability analysis is beyond the scope of the thesis, we refer the reader to [6] and [112]

(see paragraph before Exercise 9.8.1).

We will mainly consider the popular Alpine function in 12 dimensions (see Table 2.3.2,

∇U1 here is a subgradient), with additional cases presented in Section 2.3.4, setting ∆t =

0.02 (see Section 2.3.1). Note the Alpine function does not strictly satisfy Assumption 1,

but since drift conditions for Lyapunov functions are typically available even for weakly

growing potentials [52] for the dynamics considered here, the trajectories are expected

(and are observed) to remain in a loose sense close to 0. Therefore we may mollify or

modify the behaviour at infinity of U to satisfy Assumption 1 with no real observable

consequence.

We will initialise at a point well separated from the global minimum and consider each

method to be successful if, at the end of the simulation, either the endpoint or an average

of the last points are contained within a tolerance region, chosen visually, around the

global minumum.

In Figure 2.3.2 we present proportions of 20 independent simulations converging at the

region near the global minimum for U = U1 (Table 2.3.2) depending on E and µ for

the discretisation of the Langevin dynamics and on E and λ̄2

µ for that of the generalised

Langevin dynamics based on discussion above. Each simulation is run for k = 5 · 104

iterations. The left panels of Figure 2.3.2 are based on final state and the right on

an average of the positions (of X) over the last 5000 iterations. In this example it is

clear empirically that the generalised Langevin dynamics result in a higher probability of

reaching the global minumum. Another interesting observation is that for the generalised

Langevin dynamics good performance is more robust to the chosen value of E. In this

example, this means that adding an additional tuning variable and scaling µ proportional

to λ̄2 makes it easier to find a configuration of the parameters E,µ, λ̄ that leads to

good perfomance, compared to using the Langevin dynamics and tuning E,µ. It’s also

worth noting the cases of small E where the generalised Langevin dynamics performs

significantly better than the Langevin dynamics in the top plot and even than the case

of the same dynamics and larger E. This is an improvement that is not completely

encapsulated by the analytic results here; it indicates that the deterministic dynamics

(E = 0) can be inherently much more successful at climbing out of local minima, which
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translates to better convergence rates in the E > 0 cases.

The selection A = A2, shown as the middle row in each of Figures 2.3.2, 2.3.4 and 2.3.5,

does not satisfy the probably superfluous symmetry assumption as stated in the introduc-

tion, but it is noteworthy that the performance varies to such a large extent for different

U and that any optimality of A, left as future work, could change depending on whether

the symmetry assumption is in place.

2.3.4 Additional cases of U

To produce the figures related to (2.3.1), after setting E, λ̄
2

µ we pick a random value of

µ from a grid. The aim of this procedure is to ease visualisation, reduce computational

cost and to emphasise that it is λ̄2

µ that is crucial for mixing and the performance here

is not a product of a tedious tuning for µ. U2 is modified to have the same quadratic

confinement in x1 and x2 direction and there are several additional local minima due to

the last term in the sum. More importantly, compared to (2.3.3) (and U3) it has a narrow

region near the origin that allows easier passage through {x1 = 0}. On the other hand

U3 similar to (2.3.3) except that the well near the global minimum (and the dominant

local minimum at (5,−2)) are elongated in the direction of x2 (and x1 respectively).

Cost function Initial condition Tolerance sets

U1(x) = 1
2

∑12
i=1 |xi sin(xi) + 0.1xi| xj = 6 ∀j xj ∈ [−2, 2] ∀j

U2(x1, x2) =
x2
1

7 +
x2
2

7 + 5
(

1− e−9x2
2

)
e−x2

1

−7e−(x1+5)2−(x2−3)2

−6e−(x1−5)2−(x2+2)2

+
2
3x

2
1e

−
x2
1
9 cos(x1+2x2) cos(2x1−x2)

1+
x2
2
9

x1 = 4,
x2 = 2

x1 ∈ [−6.5,−4.5],
x2 ∈ [1.5, 4.5]

U3(x1, x2) =
x2
1

5 +
x2
2

10 + 5e−x2
1

−7e−2(x1+5)2− (x2−3)2

5

−6e−
(x1−5)2

5 −2(x2+2)2

x1 = 4,
x2 = 2

x1 ∈ [−6.5,−4.5],
x2 ∈ [1.5, 4.5]

Tab. 2.3.2: Details of three different cost functions, initialisation and tolerance regions corre-
sponding to regions of attraction of the global minimum.

In Figures 2.3.4 and 2.3.5 we present results for U2 and U3. A notable difference to

Figure 2.3.2 here is that the panels on the left show proportions of the position average

of the last 5000 iterations being near the correct global minimum and the panels on the

right present the number of jumps across {x1 = 0} demonstrated by a position average

at each iteration of the previous 5000 iterations. More precisely, the panels on the right
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show the number of jumps shown by the trajectory

X̃k =
1

5000

5000∑
k′=1

Xk−k′+1

for all k > 5000. All results are averaged over 20 independent runs. The aim here is to

measure the extent of exploration of each process similar to Table 2.3.1. We observe that

in both cases using (2.3.1) leads to a similar number of jumps. We believe the benefit of

the higher order dynamics here are the robustness of performance for different values of E

and λ̄2

µ . This is especially for using A3 and A4. Finally we note that despite similarities

between U2 and U3 there are significant features that are different: the sharpness in the

confinement, the shape and number of attracting wells and the shape of barriers that

obstruct crossing regions in the state space. This will have a direct effect in performance,

which can explain the difference in performance when comparing Figures 2.3.4 and 2.3.5;

U3 is a harder cost function to minimise.

We complement our results with an application of (2.3.1) on the optimisation of param-

eters in a neural network with respect to a loss function in Figure 2.3.3. In particu-

lar, (2.3.1) with λ̄ = µ = 1, E = 0.001 and ∆t = 0.05 is used to update the parameters

in a neural network of size n = 122970. Here, the function U is fixed as the cross entropy

between the network prediction and target values for the MATLAB Digits data set2 and

full gradient evaluations are used. We follow the network architecture and overall im-

plementation found in https://uk.mathworks.com/help/deeplearning/ref/dlupdate.html.

Although a thorough comparison between different parameter choices and dynamics for

such a high dimensional problem is beyond the scope of the thesis, Figure 2.3.3 illustrates

the feasibility of (2.3.1) on such problems.

2.4 Proofs

2.4.1 Notation and preliminaries

In this section, unless stated otherwise, ∂t is used to denote the partial derivative with

respect to t with Tt fixed (whenever its operand depends on Tt), whereas d
dt denotes the

full derivative in t. In addition, ∇ denotes the gradient in R2n+m space and dζ will be

used for the Lebesgue measure on R2n+m. The notation 1S will be used for the indicator

function on the set S.

2 https://uk.mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html
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For all k > 0, recall the standard mollifier φ : R→ R and φk : R→ R to be:

φk(x) :=
1

k
φ

(
x

k

)
, φ(x) :=

e
1

x2−1

(∫ 1

−1
e

1
y2−1 dy

)−1

if − 1 < x ≤ 1

0 otherwise.

(2.4.1)

For existence and uniqueness of (2.1.3), we will use the setting in [163]. Let (Ω,F ,P) be

a complete probability space and Ft, t ∈ [0,∞) be a normal filtration. Here (Wt)t≥0 is a

standard Wiener process on Rm with respect to Ft, t ∈ [0,∞).

The formal3 L2(µTt
)-adjoint L∗

t of Lt is given by

L∗
t = − (y · ∇x −∇xU(x) · ∇y)− (z⊤λ∇y − y⊤λ⊤∇z)− T−1

t z⊤A∇z +A : D2
z . (2.4.2)

Let ϵ ≥ 0 and consider the perturbed system

dXϵ
t = Y ϵ

t dt+ ϵ(−T−1
t ∇xU(Xϵ

t ) dt+ dW 1
t ), (2.4.3a)

dY ϵ
t = −∇xU(Xϵ

t ) dt+ λ⊤Zϵ
t dt+ ϵ(−T−1

t Y ϵ
t dt+ dW 2

t ), (2.4.3b)

dZϵ
t = −λY ϵ

t dt− T−1
t AZϵ

t dt+ Σ dW 3
t , (2.4.3c)

with (Xϵ
0, Y

ϵ
0 , Z

ϵ
0) = (X0, Y0, Z0) restricted as in Assumption 4, where W 1

t ,W
2
t ,W

3
t are

independent n-dimensional and m-dimensional Wiener processes. As before, the law and

density of (2.4.3) will be denoted by mϵ
t along with hϵt =

dmϵ
t

dµTt
. Let the linear differential

operators Sx
t , Sy

t and their respective formal L2-adjoints Sx⊤
t and Sy⊤

t be given by

Sx
t = −T−1

t ∇xU · ∇x + ∆x, Sy
t = −T−1

t y · ∇y + ∆y,

Sx⊤
t = T−1

t ∇xU · ∇x + T−1
t ∆xU + ∆x, Sy⊤

t = T−1
t y · ∇y + T−1

t n+ ∆y.

Note that the formal L2(µTt
)-adjoints of Sx

t and Sy
t coincide with Sx

t and Sy
t , so that the

generator, denoted Lϵ
t, associated to (2.4.3) and its formal L2(µTt

)-adjoint are given by

the formal operators

Lϵ
t = Lt + ϵ(Sx

t + Sy
t ), Lϵ∗

t = L∗
t + ϵ(Sx

t + Sy
t ).

For any ϕ ∈ C∞ and f : R2n+m → R smooth enough,

Lϵ
t(ϕ(f)) = ϕ′(f)Lϵ

t(f) + ϕ′′(f)Γϵ
t(f), (2.4.4)

3 See for instance Appendix B in [62]. In the present chapter the infinitesimal generators and their
adjoints are considered as honest differential operators acting on smooth functions.
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where Γϵ
t is the carré du champ operator for Lϵ

t given by

Γϵ
t(f) =

1

2
Lϵ
t(f

2)− fLϵ
t(f) = ∇f · (Aϵ∇f), (2.4.5)

Aϵ ∈ R(2n+m)×(2n+m) denotes the matrix with entries

Aϵ
ij :=


ϵ if 1 ≤ i = j ≤ 2n,

Ai−2n,j−2n if 2n+ 1 ≤ i, j ≤ 2n+m,

0 otherwise

and Ai,j denotes the (i, j)th entry of A. Let C∞+ = {f ∈ C∞ : f > 0}. For Φ : C∞+ → C∞

differentiable in the sense that for any f ∈ C∞+ , g ∈ C∞,

(dΦ(f).g)(ζ) := lim
s→0

(Φ(f + sg))(ζ)− (Φ(f))(ζ)

s

exists for all ζ ∈ R2n+m, the ΓΦ operator for Lϵ∗
t is defined by

ΓLϵ∗
t ,Φ(h) :=

1

2
(Lϵ∗

t Φ(h)− dΦ(h).(Lϵ∗
t h)). (2.4.6)

As is well-known, Lϵ∗
t does not satisfy the standard chain and product rules due to the

additional term from the second derivatives in Lϵ∗
t ; straightforward calculations give:

Lϵ∗
t (ψ(f)) = ψ′(f)Lϵ∗

t f + ψ′′(f)∇f · (Aϵ∇f) (2.4.7)

Lϵ∗
t (fg) = fLϵ∗

t (g) + gLϵ∗
t (f) +∇f · (2Aϵ∇g) (2.4.8)

for all f, g ∈ C∞ and ψ ∈ C∞. Note ∇f · (Aϵ∇f) and ∇f · (2Aϵ∇g) are respectively the

carré du champ and its symmetric bilinear operator via polarisation for Lϵ∗
t .

In addition, for a scalar-valued D1 and a vector-valued operator D2 both acting on scalar-

valued functions, denote the commutator bracket as follows:

[D1, D2]h = (D1(D2h)1 − (D2D1h)1, . . . , D1(D2h)dD2
− (D2D1h)dD2

) (2.4.9)

for h ∈ C∞, where dD2
∈ N is the number of elements in the output of D2.

2.4.2 Auxiliary results

For the next result, the space of smooth functions that will be used is from [38]: let

C∞b,c = C∞b,c((0,∞)×R2n+m) be the space of real-valued functions f : (0,∞)×R2n+m → R
such that
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1. f is measurable with respect to B((0,∞))⊗ B(R2n+m),

2. for all t > 0, f(t, ·) is smooth and f is bounded on compact subsets of R>0×R2n+m.

Proposition 2.4.1. Under Assumption 1, 3 and 4, for all t > 0 and ϵ ≥ 0, the unique

strong solution (Xϵ
t , Y

ϵ
t , Z

ϵ
t ) to (2.4.3) is well-defined and there exists some constant κ > 0

such that

E
[
|Xϵ

t |
2

+ |Y ϵ
t |

2
+ |Zϵ

t |
2] ≤ eκtE[|X0|2 + |Y0|2 + |Z0|2

]
<∞. (2.4.10)

Furthermore, for all time t > 0, the law of the process (Xϵ
t , Y

ϵ
t , Z

ϵ
t )

• admits an almost-everywhere finite strictly positive density, also denoted mϵ
t, with

respect to the Lebesgue measure on R2n+m,

• is the unique integrable distributional solution to the Fokker-Planck-Kolmogorov

equation [20] ∂tmϵ
t = (L⊤

t + ϵ(Sx⊤
t + Sy⊤

t ))mϵ
t

mϵ
0 = m0,

(2.4.11)

where L⊤
t is the formal L2-adjoint of Lt.

Finally when ϵ > 0, m• and its partial derivative in time belongs in C∞b,c.

For the notion of integrable distributional solutions, see p.338 in [20].

Proof. Existence and uniqueness of an almost surely continuous Ft-adapted processes fol-

lows by conditions (2.2.3) and (2.2.5) using Theorem 3.1.1 in [163]; in addition, (2.4.10)

holds by the same theorem. For the claim that the law admits a density, we will ap-

ply Theorem 1 in [94] for the case of an arbitrary deterministic starting point. First,

condition (H1) in the same article is verified. Take the sets ‘Kn’ to be

Kp =

2n+m∏
i=1

[−p, p]

for all p ∈ N. The unique solution to (2.4.3) with a deterministic starting point

(X0, Y0, Z0) = (x0, y0, z0) ∈ R2n+m

satisfies the same bound (2.4.10) as before when initialising from m0. Moreover, for the

random sets

Ξp = {s > 0 : (Xϵ
u, X

ϵ
u, X

ϵ
u) ∈ Kp, 0 ≤ u ≤ s},
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for p ∈ N, the solution (X̂ϵ
t , Ŷ

ϵ
t , Ẑ

ϵ
t ) to the stopped stochastic differential equation

dX̂ϵ,p
t = 1Ξp(t)(Ŷ ϵ,p

t dt+ ϵ(−T−1
t ∇xU(X̂ϵ,p

t ) dt+ dW 1
t )), (2.4.12a)

dŶ ϵ,p
t = 1Ξp(t)(−∇xU(X̂ϵ,p

t ) dt+ λ⊤Ẑϵ,p
t dt+ ϵ(−T−1

t Ŷ ϵ,p
t dt+ dW 2

t )), (2.4.12b)

dẐϵ,p
t = 1Ξp

(t)(−λŶ ϵ,p
t dt− T−1

t AẐϵ,p
t dt+ Σ dW 3

t ), (2.4.12c)

is well-defined by the same Theorem 3.1.1 in [163] and the corresponding bound

E
[
|X̂ϵ,p

t |2 + |Ŷ ϵ,p
t |2 + |Ẑϵ,p

t |2
]
≤ eκt

(
|x0|2 + |y0|2 + |z0|2

)
<∞

holds. Identifying (X̂ϵ,p
t , Ŷ ϵ,p

t , Ẑϵ,p
t ) = (Xϵ

t∧supΞp
, Y ϵ

t∧supΞp
, Zϵ

t∧supΞp
) a.s. yields that4 for

any τ > 0

P(inf{t ≥ 0 : (Xϵ
t , Y

ϵ
t , Z

ϵ
t ) /∈ Kp} ≤ τ) ≤ 1

p2
E
[
|Xϵ

τ∧supΞp
|2 + |Y ϵ

τ∧supΞp
|2 + |Zϵ

τ∧supΞp
|2
]

≤ eκτ

p2
(
|x0|2 + |y0|2 + |z0|2

)
and in particular that for any τ > 0,

P(inf{t ≥ 0 : (Xϵ
t , Y

ϵ
t , Z

ϵ
t ) /∈ Kp} ≤ τ)→ 0 as p→∞. (2.4.13)

Suppose for contradiction that with nonzero probability, the increasing-in-p random vari-

able inf{t ≥ 0 : (Xϵ
t , Y

ϵ
t , Z

ϵ
t ) /∈ Kp} converges to a real value as p→∞. Then there exists

a time τ̂ > 0 such that with nonzero probability,

inf{t ≥ 0 : (Xϵ
t , Y

ϵ
t , Z

ϵ
t ) /∈ Kp} ≤ τ̂ ∀p ∈ N,

which contradicts (2.4.13). Therefore condition (H1) in [94] holds for (2.4.3). Con-

dition (H2) in the same article holds due the Kp being compact and the smoothness

assumption on U . It can be readily checked that the local weak Hörmander condition,

see definition in [94, (LWH)], also holds at any (t, y0) for any r ∈ (0, t) and R > 0. There-

fore5 by Theorem 1 in [94], due to our Assumptions 1 and 3, the solution to (2.4.3) with

a deterministic starting point ζ0 ∈ R2n+m admits a smooth density pζ0t ∈ C∞(R2n+m) for

all t > 0. Moreover by Theorem 2 in [94], for any fixed ζ ∈ R2n+m, R2n+m ∋ ζ0 7→ pζ0t (ζ)

is lower semi continuous and hence measurable, so that the R ∪ {±∞}-valued function

4 Alternatively Corollary 1.2 of Section 5 in [67] can be used.
5 Note that there is a wealth of related results, e.g. [30, 46], but [94] seems to contain the only

immediately applicable (and relevant) result for our particular case; see also remark 2.4.1.

37



on R2n+m, ∫
R2n+m

pζ0t m0(dζ0), (2.4.14)

is integrable by Fubini’s theorem and so is almost everywhere R-valued on R2n+m. By

Itô’s rule, (2.4.14) solves (2.4.11) in the distributional sense. In addition, (2.4.11) is the

unique integrable solution by Theorem 9.6.3 in [20], which requires for any T > 0 that

there exists V ∈ C2(R2n+m) such that

1. V (x)→∞ as |x| → ∞ and

2. for some constant CV > 0 and all (x, t) ∈ R2n+m×(0, T ), it holds that Lϵ
tV ≥ −CV V

and |∇V | ≤ CV V .

Setting V (x, y, z) = 1 + U(x)− Um + |y|2
2 + |z|2

2 and calculating

Lϵ
t

(
U(x)+

|y|2

2
+
|z|2

2

)
= ϵ

(
− 1

Tt
|∇xU |2+∆xU−

1

Tt
|y|2+n

)
− 1

Tt
z⊤Az+TrA, (2.4.15)

it is clear from assumptions (2.2.3), (2.2.5) and either (2.2.6) or (2.2.7) on U that these

conditions are satisfied since T is finite; therefore there is a unique integrable solution

to (2.4.11) in the sense of p.338 in [20]. The expression in (2.4.14) is thus the density for

the law of the solution to (2.4.3) with initial law m0 at time t.

For ϵ > 0, the time-depending law of (Xϵ
t , Y

ϵ
t , Z

ϵ
t ) and its partial derivative with respect

to time belongs in C∞b,c by Theorem 1.1 in [38] because (2.4.14) satisfies (2.4.11).

For positivity of the density where ϵ = 0, the steps in Lemma 3.4 of [132] involving the

solution to an associated control problem can be followed. The associated control problem

has the expression

d

dt

Qt

Pt

Vt

 =

 Pt

−∇U(Qt) + λ⊤Vt

−λPt − TtAVt + ΣdŨ
dt

 . (2.4.16)

It suffices to show that given any S > 0 and any pair (Q0, P0, V0) ∈ R2n+m and

(Q∗, P ∗, V ∗) ∈ R2n+m, there exists a control Ũ : [0,∞) → Rm such that the solution

(Qt, Pt, Vt) to (2.4.16) starting at (Q0, P0, V0) satisfies (QS , PS , VS) = (Q∗, P ∗, V ∗). Fix

S > 0, ϵ > 0, (Q0, P0, V0) ∈ R2n+m, (Q∗, P ∗, V ∗) ∈ R2n+m. Using the mollifier (2.4.1), let

ν := φ 1
2
∗1(−∞, 12 ]

, where ∗ denotes convolution. Define a smooth function Q̂· : [0, S]→ Rn
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by

Q̂t =

(
(−∇U(Q0) + λ⊤V0)

t2

2
+ P0t+Q0

)
ν

(
t

S

)
+

(
(−∇U(Q∗) + λ⊤V ∗)

t2

2
+ P ∗t+Q∗

)
ν

(
1− t

S

)
, (2.4.17)

which satisfies

Q̂0 = Q0, Q̂S = Q∗,
dQ̂t

dt
(0) = P0,

dQ̂t

dt
(S) = P ∗.

Define P̂· : [0, S]→ Rn through

P̂t =
dQ̂t

dt
. (2.4.18)

For V̂· : [0, S]→ Rm, V̂· : [0, S]→ Rm is defined with

V̂t = λ(λ⊤λ)−1

(
∇U(Q̂t) + ∂2t

[(
−∇U(Q0)

t2

2
+ P0t+Q0

)
ν

(
t

S

)
+

(
−∇U(Q∗)

t2

2
+ P ∗t+Q∗

)
ν

(
1− t

S

)])
+ ∂2t

[
V0
t2

2
ν

(
t

S

)
+ V ∗ t

2

2
ν

(
1− t

S

)]
,

(2.4.19)

where (λ⊤λ)−1 exists by λ having rank n. Note that V̂t satisfies V̂0 = V0 and V̂S = V ∗.

Let the smooth function Ũ : [0,∞)→ Rm be given by

dŨ

dt
= Σ−1

(
dV̂t
dt

+ λP̂t + TtAV̂t

)
, Ũ(0) = 0. (2.4.20)

For this Ũ , the solution to (2.4.16) with initial condition (Q0, P0, V0) is (Q̂t, P̂t, V̂t) by

construction; its uniqueness is guaranteed by considering the system satisfied by the

difference between two supposedly different solutions (Q1
t , P

1
t , V

1
t ) and (Q2

t , P
2
t , V

2
t )

d

dt

Q
1
t −Q2

t

P 1
t − P 2

t

V 1
t − V 2

t

 =

 P 1
t − P 2

t

−∇U(Q1
t )−∇U(Q2

t ) + λ⊤(V 1
t − V 2

t )

−λ(P 1
t − P 2

t )− TtA(V 1
t − V 2

t )


and the time derivative of |Q1

t − Q2
t |2 + |P 1

t − P 2
t |2 + |V 1

t − V 2
t |2, using (2.2.3) and the

mean value theorem on |∇U(Q1
t )−∇U(Q2

t )|2.

With non-zero probability, the path of Brownian motion stays within an ϵ-neighbourhood

of any continuously differentiable path, in particular of Ũ . Positivity of mt follows by the

support theorem of Stroock and Varadhan (Theorem 5.2 in [182]). The above construction
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for the ϵ > 0 case follows with a simple modification; equation (2.4.16) becomes

d

dt

Qt

Pt

Vt

 =

 Pt − ϵ∇U(Qt) + ϵdŨ1

dt

−∇U(Qt) + λ⊤Vt − ϵPt + ϵdŨ2

dt

−λPt − TtAVt + ΣdŨ
dt

 , (2.4.21)

so setting dŨ1

dt = ∇U(Q̂t) and dŨ2

dt = P̂t together with (2.4.20) gives that (2.4.17), (2.4.18)

and (2.4.19) solves equation (2.4.21) and concludes the proof.

Remark 2.4.1. For smoothness of the density, the results in [186] can also be consid-

ered, but there the assumptions are slightly mismatched. Firstly, the statement assumes

boundedness of ∂αV for any multiindex α where V would in the case here be any of

the coefficients appearing in (2.1.3), which fails for |α| = 0. Secondly, in case of (A.1)

(in [186]), condition (i) fails and in case of (A.2), condition (i) fails due to V0. Both of

these assumptions seem possibly unnecessary in the proofs but we avoid this in favour of

the more recent work [94].

The results below up to Proposition 2.4.10 are directed towards showing dissipation of a

distorted entropy as required in the proof of Theorem 2.2.5.

2.4.3 Lyapunov function

Lemma 2.4.2. Under Assumption 1, 3 and 4, there exist constants a, b, c, d, δ > 0 inde-

pendent of ϵ such that R : R2n+m+1 → R defined as

R(x, y, z, Tt) := U(x) +
|y|2

2
+
|z|2

2
+ δTt

(
y⊤λ−1z +

1

2
x · y

)
(2.4.22)

satisfies

a(|x|2 + |y|2 + |z|2)− d ≤ R(x, y, z, Tt) ≤ b(|x|2 + |y|2 + |z|2) + d (2.4.23)

and there exists 0 < ϵ′ ≤ 1 for which ϵ ≤ ϵ′ implies

Lϵ
tR ≤ −cTtR+

d

Tt
. (2.4.24)

Proof. By the quadratic assumption (2.2.7) on U and boundedness Assumption 3 on Tt,

it is clear that there exists δ̂ > 0 such that the first statement (2.4.23) holds with d =

max(|Um|, |UM |) for all δ ∈ (0, δ̂]. Inequality (2.4.24) follows by the following calculation

using our assumptions on U , Tt and applications of Young’s inequality.
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Fix δ > 0 to be

δ ≤ min

(
δ̂, 1,

4r21
(r2 + 1) sups≥0 Ts

, 2
(

sup
s≥0

Ts

)−1

,

Ac

2

[(
|λ|2

2r1
+ 1 +

r2
r1

∣∣λ−1
∣∣2)( sup

s≥0
Ts

)2
+ 2(|A|2 + 1)

∣∣λ−1
∣∣2]−1)

, (2.4.25)

where |·| is the operator norm here and Ac > 0 is the coercivity constant of the positive

definite matrix A. Consider each of the terms of Lϵ
t(R) seperately.

Lϵ
t

(
U(x) +

|y|2

2
+
|z|2

2

)
= ϵ

(
− 1

Tt
|∇xU |2 + ∆xU −

1

Tt
|y|2 + n

)
− 1

Tt
z⊤Az + TrA

(2.4.26)

≤ ϵ
(
− 1

Tt
(r21|x|

2 − 2r1Ug) + n|D2
xU |∞ −

1

Tt
|y|2 + n

)
− 1

Tt
z⊤Az + TrA, (2.4.27)

where the last inequality follows from (2.2.4) and ∇xU · x ≤ 1
2r1
|∇xU |2 + r1

2 |x|
2
. Using

the quadratic bound (2.2.5) on ∇xU , we get

Lϵ
t(y

⊤λ−1z) = −ϵT−1
t y⊤λ−1z −∇xUλ−1z + |z|2 − |y|2 − T−1

t z⊤A(λ−1)⊤y (2.4.28)

≤ |y|
2

4
+ 2T−2

t (|A|2 + ϵ2)
∣∣λ−1

∣∣2|z|2 +
r1
4r2
|∇xU |2 +

r2
r1

∣∣λ−1
∣∣2|z|2 + |z|2 − |y|2

≤ r1
4
|x|2 +

r1
4r2

Ug −
3

4
|y|2 +

(
1 +

r2
r1

∣∣λ−1
∣∣2 + 2T−2

t (|A|2 + 1)
∣∣λ−1

∣∣2)|z|2.
(2.4.29)

Then using also (2.2.4) for ∇xU · x, we get

Lϵ
t(x · y) = −ϵT−1

t y · ∇xU − ϵT−1
t x · y + |y|2 −∇xU · x+ z⊤λx (2.4.30)

≤ ϵT−1
t

((
r2
2

+
1

2

)
|x|2 + |y|2 +

Ug

2

)
+ |y|2 − r1|x|2 + Ug +

∣∣λ⊤∣∣2
r1
|z|2 +

r1
4
|x|2.

(2.4.31)
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Combining (2.4.22), (2.4.27), (2.4.29), (2.4.31) and taking ϵ ≤ 1,

Lϵ
t(R(x, y, z, Tt)) = Lϵ

t

(
U(x) +

|y|2

2
+
|z|2

2

)
+ δTtLt(y

⊤λ−1z) +
δTt
2
Lt(x · y) (2.4.32)

≤ −δTt
r1
8
|x|2 − δTt

1

4
|y|2 − 1

Tt
z⊤Az + C +

2ϵr1Ug

Tt

+ δTt

[ ∣∣λ⊤∣∣2
2r1

+

(
1 +

r2
r1

∣∣λ−1
∣∣2 + 2T−2

t (|A|2 + 1)
∣∣λ−1

∣∣2)]|z|2.
+ ϵT−1

t

[(
δTt
4

(r2 + 1)− r21
)
|x|2 +

(
δTt
2
− 1

)
|y|2
]
, (2.4.33)

where 0 < C = n(|D2
xU |∞ + 1) + TrA+ δ

r1Ug

4r2
sups≥0 Ts + δUg( 1

4 +
sups≥0 Ts

2 ). Therefore

for δ satisfying the bound (2.4.25), the first square bracket term satisfies

δTt

[ ∣∣λ⊤∣∣2
2r1

+

(
1 +

r2
r1

∣∣λ−1
∣∣2 + 2T−2

t (|A|2 + 1)
∣∣λ−1

∣∣2)] ≤ 1

2

(
sup
s≥0

Ts

)−1

Ac|z|2

and the second square bracket term is negative, where the assumption that Tt is bounded

above for all time has been used. Rearranging,

Lϵ
t(R(x, y, z, Tt)) ≤ −δTt

r1
8
|x|2 − δTt

1

4
|y|2 − Ac

2 sups Ts
|z|2 + C +

2ϵr1Ug

Tt

≤ −cTtR+ C ′T−1
t ,

where c > 0 is small enough, C ′ > 0 is large enough and the right inequality of (2.4.23)

has been used. The result follows using d = max(C ′, |Um|, |UM |).

Lemma 2.4.3. Under Assumption 1, 3, 4 and for 0 ≤ ϵ ≤ ϵ′, the solution (Xϵ
t , Y

ϵ
t , Z

ϵ
t )

to (2.4.3) is such that
E[R(Xϵ

t ,Y
ϵ
t ,Zϵ

t ,Tt)]
(ln(e+t))2 is bounded uniformly in time t and in ϵ.

Proof. It is equivalent to prove the result for R + d > 0 in place of R. Let Rt :=

R(Xϵ
t , Y

ϵ
t , Z

ϵ
t , Tt). Firstly, by (2.4.22), the left hand bound in (2.4.23) and the Assump-

tion 3,

T ′
tE
[
δ

(
(Y ϵ

t )⊤λ−1Zt +
1

2
Xϵ

t · Y ϵ
t

)]
≤ |T ′

t |E
[
δ

∣∣∣∣(Y ϵ
t )⊤λ−1Zϵ

t +
1

2
Xϵ

t · Y ϵ
t

∣∣∣∣] ≤ B

t
E[Rt + d]

(2.4.34)
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for a constant B ≥ 0 independent of ϵ. By Itô’s rule and for t0 < s < t,

ERt − ERs =

∫ t

s

E(T ′
u∂Tt

R+ Lϵ
uR)(Xϵ

u, Y
ϵ
u , Z

ϵ
u, Tu)du,

where (2.4.34), (2.4.32) (2.4.26), (2.4.28), (2.4.30), (2.2.3), (2.2.5) have been used together

with Fubini’s theorem. Property (2.4.24) from Lemma 2.4.2 and (2.4.34) give

E[Rt + d]− E[Rs + d] ≤
∫ t

s

(
B

u
E[Ru + d] + E[−cTuRu + dT−1

u ]

)
du

≤
∫ t

s

((
B

u
− cTu

)
E[Ru + d] +B′T−1

u

)
du (2.4.35)

for a constant B′ ≥ 0 independent of ϵ. By the spatial quadratic bounds on R and (2.4.10),

the right-hand side is converging to zero as s → t. Since a similar lower bound of the

left-hand side may be obtained by explicit calculations as before for the upper bound, the

expression E[Rt + d] is continuous in t and consequently the integral on the right-hand

side may be interpreted as a Riemann integral. Therefore by the fundamental theorem

of calculus and Assumption 3, we have for t > t0∗, where t∗0 > t0 is such that B
t ≤

cE
2 ln t

for t > t∗0, that

d

dt
E[Rt + d] ≤

∫ t

s

((
B

u
− cTu

)
E[Ru + d] +B′T−1

u

)
du ≤ − cE

2 ln t
E[Rt + d] +

B′

E
ln t.

This yields for t > t∗0,

d

dt

(
e

cE
2

∫ t
t∗0

(ln s)−1dsE[Rt + d]

)
≤ B′

E
ln te

cE
2

∫ t
t∗0

(ln s)−1ds

and

E[Rt + d] ≤ E[Rt∗0
+ d]e

− cE
2

∫ t
t∗0

(ln s)−1ds
+

∫ t

t∗0

B′

E
ln se−

cE
2

∫ t
s
(lnu)−1du

≤ E[Rt∗0
+ d] +

B′

E

∫ t

t∗0

ln se−
cE
2

∫ t
s
(lnu)−1du

≤ E[Rt∗0
+ d] +

B′

E
ln t

∫ t

t∗0

e−
cE

2 ln t (t−s)

≤ E[Rt∗0
+ d] +B′ 2(ln t)2

cE2

(
1− e− cE

2 (ln t)−1(t−t∗0)

)
≤ E[Rt∗0

+ d] +B′ 2(ln t)2

cE2
,

where the first term on the right-hand side can be bounded via Proposition 2.4.1 and the
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inequalities in (2.4.23).

Corollary 2.4.4. Under Assumption 1, 3, 4 and for 0 ≤ ϵ ≤ ϵ′, the solution (Xϵ
t , Y

ϵ
t , Z

ϵ
t )

to (2.4.3) is such that
E[|Xϵ

t |
2+|Y ϵ

t |2+|Zϵ
t |

2]
(ln(e+t))2 is bounded uniformly in time and in ϵ.

Proof. By the lower bound on R in (2.4.23),

E
[
|Xϵ

t |
2

+ |Y ϵ
t |

2
+ |Zϵ

t |
2] ≤ E

[
R(Xϵ

t , Y
ϵ
t , Z

ϵ
t , Tt) + d

a

]
,

which concludes by Lemma 2.4.3.

2.4.4 Form of Distorted Entropy

For ϵ ≥ 0, let Hϵ(t) be the distorted entropy

Hϵ(t) =

∫ (∣∣2∇xhϵt + 8S0(∇yhϵt + λ−1∇zhϵt)
∣∣2

hϵt
+

∣∣∇yhϵt + S1λ
−1∇zhϵt

∣∣2
hϵt

+ β(T−1
t )hϵt ln(hϵt)

)
dµTt

, (2.4.36)

where S0, S1 > 0 are the constants

S0 := (1 + |D2
xU |2∞)

1
2 , S1 := 2 + 28S2

0 + 1024S4
0 (2.4.37)

and β is a second order polynomial (see (2.4.38) and the end of the proof for Proposi-

tion 2.4.6) to be determined by Proposition 2.4.6 and independent of ϵ.

Remark 2.4.2. This particular expression for H is not necessarily the best possible choice.

However the above is a working expression and optimality is left as future work; see

also [159].

The following auxiliary result can be found as Lemma 12 of [139]; its proof can also be

found there.

Lemma 2.4.5. For

Φ∗(h) =
|M∇h|2

h
,

where M is matrix-valued,

ΓLϵ∗
t ,Φ∗(h) >

(M∇h) · [Lϵ∗
t ,M∇]h

h

holds for all h ∈ C∞+ .
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Notice the Φ∗ appears in the first two terms of Hϵ(t).

For the calculations below, recall the definitions (2.4.37) stated below for convenience:

S0 = (1 + |D2
xU |2∞)

1
2 ,

S1 = 2 + 28S2
0 + 1024S4

0 .

Using Lemma 2.4.5, the following proposition shows the distorted entropy (2.4.36) is a

useful one.

Proposition 2.4.6. There exist β0, β1, β2 > 0 independent of ϵ such that for β : R→ R
given by

β(x) := 1 + β0 + β1x+ β2x
2, (2.4.38)

the operator ΨTt
,

ΨTt
(h) :=

∣∣2∇xh+ 8S0(∇yh+ λ−1∇zh)
∣∣2

h
+

∣∣∇yh+ S1λ
−1∇zh

∣∣2
h

+ β(T−1
t )h ln(h)

(2.4.39)

for h ∈ C∞+ , satisfies

ΓLϵ∗
t ,ΨTt

(h) ≥ |∇h|
2

h
(2.4.40)

for all 0 ≤ ϵ ≤ 1.

Remark 2.4.3. β0, β1, β2 depend on λ̂2 := max
(
|λ|2,

∣∣λ⊤∣∣2, ∣∣λ−1
∣∣2, ∣∣λ−1

∣∣∣∣λ⊤∣∣), |D2
xU |∞

and |A|. H satisfying property (2.4.40) is crucial for proving dissipation in Proposi-

tion 2.4.10.

Proof. Let Φ1,Φ2,Φ3 be the terms in ΨTt
,

Φ1(h) :=

∣∣2∇xh+ 8S0(∇yh+ λ−1∇zh)
∣∣2

h
, (2.4.41a)

Φ2(h) :=

∣∣∇yh+ S1λ
−1∇zh

∣∣2
h

, (2.4.41b)

Φ3(h) := h ln(h). (2.4.41c)

Note that the ΓΦ operator is linear in the Φ argument by linearity of Lϵ∗
t , so that (2.4.40)

can be written as ΓLϵ∗
t ,Φ1

(h) + ΓLϵ∗
t ,Φ2

(h) + β(T−1
t )ΓLϵ∗

t ,Φ3
(h) ≥ |∇h|2

h . Consider ΓLϵ∗
t ,Φ3

first. Using the definition (2.4.6) of ΓLϵ∗
t ,Φ, the product and chain rule (2.4.8) and (2.4.7)
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for Lϵ∗
t , and the coercivity property of A, we get

ΓLϵ∗
t ,Φ3

(h) =
1

2

(
(lnh+ 1)Lϵ∗

t h+
1

h
∇h · (Aϵ∇h)− (1 + lnh)Lϵ∗

t h

)
=

1

2h
∇h · (Aϵ∇h) ≥ 1

2h
(ϵ|∇xh|2 + ϵ|∇yh|2 +Ac|∇zh|2). (2.4.42)

Since the goal is to show (2.4.40), the availability of (2.4.42) counteracts any negative

contributions in the z-derivative term, and any order ϵ contributions in the x- and y-

derivatives, from ΓLϵ∗
t ,Φ1

and ΓLϵ∗
t ,Φ2

; this counterweight materialises as β.

For ΓLϵ∗
t ,Φ1

and ΓLϵ∗
t ,Φ2

, S0 > 0 and S1 > 0 as in (2.4.37) are used. Beginning with

Lemma 2.4.5, we have

hΓLϵ∗
t ,Φ2

(h)

> (∇y + S1λ
−1∇z)h · [Lϵ∗

t ,∇y + S1λ
−1∇z]h

= (∇y + S1λ
−1∇z)h · (∇x − λ⊤∇z + ϵT−1

t ∇y + S1∇y + S1T
−1
t λ−1A∇z)h

= ∇xh ·∇yh−∇yh · (λ⊤∇zh) + ϵT−1
t |∇yh|

2
+ S1|∇yh|2+ S1T

−1
t ∇yh · (λ−1A∇zh)

+ S1∇xh · (λ−1∇zh)− S1(λ−1∇zh) · (λ⊤∇zh) + ϵT−1
t S1∇yh · (λ−1∇zh)

+ S2
1∇yh · (λ−1∇zh) + S2

1T
−1
t (λ−1∇zh) · (λ−1A∇zh).

In order to get a bound in terms of (∂ih)2 terms rather than ∂ih∂jh terms, we bound the

∂ih∂jh terms in the following ways,

∇xh ·∇yh ≥ −
1

2
|∇xh|2 −

1

2
|∇yh|2,

−∇yh · (λ⊤∇zh) ≥ −1

6
|∇yh|2 −

3

2

∣∣λ⊤∣∣2|∇zh|2,

S1T
−1
t ∇yh · (λ−1A∇zh) ≥ −1

6
|∇yh|2 −

3

2
S2
1T

−2
t

∣∣λ−1
∣∣2|A|2|∇zh|2,

S1∇xh · (λ−1∇zh) ≥ −1

2
|∇xh|2 −

1

2
S2
1

∣∣λ−1
∣∣2|∇zh|2,

ϵT−1
t S1∇yh · (λ−1∇zh) ≥ −ϵT−1

t |∇yh|2 −
ϵ

4
S2
1T

−1
t

∣∣λ−1
∣∣2|∇zh|2,

S2
1∇yh · (λ−1∇zh) ≥ −1

6
|∇yh|2 −

3

2
S4
1

∣∣λ−1
∣∣2|∇zh|2
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and using (2.4.3) gives

hΓLϵ∗
t ,Φ2(h) > −|∇xh|2 + (1 + 28S2

0 + 1024S4
0)|∇yh|2

− 1

2
λ̂2
(

3 + 2S1 + S2
1 + 3S4

1 + S2
1T

−1
t

(
|A|+ ϵ

2

)
+ 3S2

1T
−2
t |A|

2

)
|∇zh|2.

(2.4.43)

The last term ΓLϵ∗
t ,Φ1

compensates for the negative x-derivative. Again, beginning with

Lemma 2.4.5, we have

hΓLϵ∗
t ,Φ1

(h)

> (2∇x + 8S0(∇y + λ−1∇z))h · [Lϵ∗
t , 2∇x + 8S0(∇y + λ−1∇z)]h

= (2∇x + 8S0(∇y + λ−1∇z))h · (−2(D2
xU)(∇y − ϵT−1

t ∇x)

+ 8S0(∇x + ϵT−1
t ∇y − λ⊤∇z +∇y + T−1

t λ−1A∇z))h

= ((16S0In + 4ϵT−1
t D2

xU)∇xh) · ∇xh+ 2∇xh · ((−2D2
xU + 8S0(1 + ϵT−1

t )In)∇yh)

+ 2∇xh · (8S0(−λ⊤ + T−1
t λ−1A)∇zh) + ((64S2

0In + 16S0ϵT
−1
t D2

xU)∇xh) · ∇yh

+ 8S0∇yh · ((−2D2
xU + 8S0)∇yh) + 8S0∇yh · (8S0(−λ⊤ + T−1

t λ−1A)∇zh)

+ ((64S2
0In + 16S0ϵT

−1
t D2

xU)∇xh) · (λ−1∇zh)

+ ((−16S0D
2
xU + 64S2

0(1 + ϵT−1
t )In)∇yh) · (λ−1∇zh)

+ 64S2
0(λ−1∇zh) · ((−λ⊤ + T−1

t λ−1A)∇zh).
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Bounding the ∂ih∂jh terms as for Φ2, using (2.4.3) and (2.2.3) yields

hΓLϵ∗
t ,Φ1(h)

> (16S0 − 4ϵT−1
t |D2

xU |∞)|∇xh|2

−
(

2|∇xh|2 + 2|D2
xU |2∞|∇yh|2 + 8(1 + ϵT−1

t )|∇xh|2 + 8S2
0(1 + ϵT−1

t )|∇yh|2
)

−
(

2|∇xh|2 + 32S2
0 λ̂

2
(

1 + T−2
t |A|

2
)
|∇zh|2

)
−
(

(1 + 8S0ϵT
−1
t |D2

xU |2∞)|∇xh|2 + (1024S4
0 + 8S0ϵT

−1
t )|∇yh|2

)
−
(

16S0|D2
xU |∞|∇yh|2−64S2

0 |∇yh|2
)

−
(

32S2
0 |∇yh|2+ 32S2

0 λ̂
2
(
1 + T−2

t |A|
2
)
|∇zh|2

)
−
(

(1 + 8S0ϵT
−1
t |D2

xU |2∞)|∇xh|2 + (1024S4
0 + 8S0ϵT

−1
t )λ̂2|∇zh|2

)
−
((

2|D2
xU |2∞ + 32S2

0(1 + ϵT−1
t )

)
|∇yh|2 + (32S2

0 + 32ϵT−1
t S2

0)λ̂2|∇zh|2
)

− 64S2
0 λ̂

2
(

1 + T−2
t |A|

2
)
|∇zh|2

≥
(

2− 4(2 + (1 + 4S2
0)S0)ϵT−1

t

)
|∇xh|2

+
(
S2
0(−28− 1024S2

0)− 8S0(1 + 5S0)ϵT−1
t

)
|∇yh|2

−
(
S2
0 λ̂

2(160 + 128T−2
t |A|

2
+ 1024S2

0) + 8S0λ̂
2(1 + 4S0)ϵT−1

t

)
|∇zh|2,

so that

hΓLϵ∗
t ,Φ1(h)

≥
(

2− 4(2 + (1 + 4S2
0)S0)ϵT−1

t

)
|∇xh|2

+
(
S2
0(−28− 1024S2

0)− 8S0(1 + 5S0)ϵT−1
t

)
|∇yh|2

−
(
S2
0 λ̂

2(160 + 128T−2
t |A|

2
+ 1024S2

0) + 8S0λ̂
2(1 + 4S0)ϵT−1

t

)
|∇zh|2.

Matching powers in T−1
t to take

β0 =
1

Ac
(S2

0 λ̂
2(160 + 1024S2

0) +
1

2
λ̂2(3 + 2S1 + S2

1 + 3S4
1))

β1 =
1

Ac

(
4(2 + (1 + 4S2

0)S0) + 8S0(1 + 5S0) + 8S0λ̂
2(1 + 4S0) +

1

2
λ̂2
(
S2
1

(
|A|+ 1

2

)))
β2 =

1

Ac

(
128S2

0 λ̂
2|A|2 +

3

2
λ̂2S2

1 |A|
2

)
,

using ϵ ≤ 1 and putting together the bounds for ΓLϵ∗
t ,Φ3 ,ΓLϵ∗

t ,Φ2 ,ΓLϵ∗
t ,Φ1 gives (2.4.40).
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2.4.5 Log-Sobolev Inequality

Proposition 2.4.7. Under Assumption 1, 2 and for ϵ ≥ 0, there exists constants tls, A∗ >

0 and a finite order polynomial r : (0,∞)→ (0,∞) with coefficients depending on U and

λ but independent of ϵ such that the distorted entropy (2.4.36) satisfies

Hϵ(t) ≤ Ct

∫
|∇hϵt|

2

hϵt
dµTt

, (2.4.44)

where for t > tls,

Ct = A∗ + r
(
T

− 1
2

t

)
eÊT−1

t . (2.4.45)

Proof. Given Proposition 2.2.1, only the first two terms in the integrand of Hϵ(t) are left,

which lead directly to the inequality corresponding to A∗.

2.4.6 Proof of Dissipation

Lemma 2.4.8 below constructs a sequence of compactly supported functions that are

multiplied with the integrand in H(t). It gives sufficient properties for retrieving a bound

on ∂tH(t) after passing the derviative under the integral sign and passing the limit in the

sequence of approximating initial densities. The key sufficient property turns out to be

(2.4.46) below.

Let φk be given as in (2.4.1) and νk := φk ∗ 1(−∞,k2] ≤ 1 for k > 0.

Lemma 2.4.8. For k > 0, define the smooth functions ηk : R2n+m+1 → R

ηk = νk(− ln(R+ 2d)),

where d > 0 is the same as in (2.4.23). The following properties hold:

1. ηk is compactly supported;

2. ηk converges to 1 pointwise as k →∞;

3. for some constant C > 0 independent of k, t and 0 ≤ ϵ ≤ min(1, ϵ′)

Lϵ
tηk ≤

CT−1
t

k
. (2.4.46)

Proof. By the quadratic assumption (2.2.7) on U and the bound (2.4.23) on R, R grows

quadratically and in particular for an arbitrarily large constant R(0) > 0, a compact set

K can be chosen such that R > R(0) in R2n+m \K; along with the support of νm being
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bounded below, the first statement is clear. The second statement is also trivial to check.

The third statement is an application of (2.4.4), (2.4.5) and (2.4.24); by (2.4.4) and (2.4.5),

we have

Lϵ
tηm = −ν′m(− ln(R+ 2d))Lϵ

t ln(R+ 2d)

+ ν′′m(− ln(R+ 2d))(∇ ln(R+ 2d))⊤Aϵ∇ ln(R+ 2d).

It can be seen that ν′m and ν′′m are estimated by terms at most of order m−1; to see this,

for all x ∈ R,

νm(x) =

∫ m2

−∞
φm(x− y)dy =

∫ ∞

x−m2

φm(z)dz,

so that 0 ≥ ν′m(x) = −φm(x − m2) ≥ −m−1 maxφ and |ν′′m(x)| =
∣∣φ′

m(x−m2)
∣∣ ≤

m−2 maxφ′. Therefore there exists a constant C̄ > 0 such that

Lϵ
tηm ≤ −ν′m(− ln(R+ 2d)) max(0, Lϵ

t ln(R+ 2d))

+m−2 maxφ′∣∣(∇ ln(R+ 2d))⊤Aϵ∇ ln(R+ 2d)
∣∣

≤ C̄
(
m−1 max(0, Lϵ

t ln(R+ 2d)) +m−2
∣∣(∇ ln(R+ 2d))⊤Aϵ∇ ln(R+ 2d)

∣∣).
A calculation using property (2.4.24) with (2.4.4) and (2.4.5) for Lϵ

t reveals

Lϵ
t ln(R+ 2d) =

Lϵ
tR

R+ 2d
− (∇R)⊤Aϵ∇R

(R+ 2d)2

≤ −cTtR+ dT−1
t

R+ 2d
− ϵ(|∇xR|2 + |∇yR|2) +Ac|∇zR|2

(R+ 2d)2

≤ −cTt(R+ d) + cTtd+ dT−1
t

R+ 2d
− ϵ(|∇xR|2 + |∇yR|2) +Ac|∇zR|2

(R+ 2d)2

and

(∇ ln(R+ 2d))⊤Aϵ∇ ln(R+ 2d) ≤ (|A|+ 2)|∇ ln(R+ 2d)|2 = (|A|+ 2)

∣∣∣∣ ∇RR+ 2d

∣∣∣∣2,
which are bounded above as claimed considering (2.4.23) and that ∇R grows linearly in

space and is uniformly bounded in time.

Remark 2.4.4. Lemma 2.4.8 is different to Lemma 16 in [139]. We believe the first few

equations in the proof of Lemma 16 in [139] contain a sign error; as a consequence the

proofs in [139] beyond that point require significant modifications. Here we address this

by modifying the truncation arguments we require, proving (2.4.46) instead of Lemma 17
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of [139]. In addition, the finiteness of the distorted entropy is required, which is not

a readily available result for our dynamics. This is the reason for using the perturbed

dynamics in (2.4.3), so that the square integrability Theorem 7.4.1 in [20] can be used,

which applies only to solutions of PDEs with uniformly elliptic operators. We prove the

dissipation result for the original dynamics (2.1.3) by using a limiting argument.

For the convenience of the reader, we state here the corollary of Theorem 7.4.1 in [20]

that will be used.

Theorem 2.4.9. Under Assumptions 1, 3 and 4, for any ϵ, T > 0, it holds that mϵ
t ∈

W 1,1(Rn) for all t > 0 and ∫ T

0

∫
|∇mϵ

t(ζ)|2

mϵ
t(ζ)

dζdt <∞.

The proof of Proposition 2.4.10 follows in the direction of Lemma 19 of [139].

Proposition 2.4.10. Under Assumption 1, 2, 3 and 4 and for 0 < ϵ ≤ min(1, ϵ′), it

holds that for any 0 < α ≤ 1
2 (1− Ê

E ), there exists some constant B > 0 and some tH > 0

both independent of ϵ, such that for all t > tH ,

Hϵ(t) ≤ B
(

1

t

)1− Ê
E−2α

. (2.4.47)

Proof. Consider for t ≥ 0 the auxiliary distorted entropies

Hϵ
k(t) =

∫
ηk

(∣∣2∇xhϵt + 8S0(∇yhϵt + λ−1∇zhϵt)
∣∣2

hϵt
+

∣∣∇yhϵt + S1λ
−1∇zhϵt

∣∣2
hϵt

+ β(T−1
t )hϵt ln(hϵt)

)
dµTt

=

∫
ηk(Φ1(hϵt) + Φ2(hϵt) + β(T−1

t )Φ3(hϵt))dµTt
=

∫
ηkΨTt

(hϵt)dµTt
, (2.4.48)

where recall hϵt = mϵ
tµ

−1
Tt

, Φ1, Φ2, Φ3 is as in (2.4.41) and ηk are as in Lemma 2.4.8. Due

to the appearance of ηk, the function Hϵ
k is differentiable and the order between the time

derivative and the integral can be exchanged:

d

dt
Hϵ

k(t) =

∫
ηk∂t(ΨTt(h

ϵ
t))dµTt + T ′

t

∫
ηk∂Tt(ΨTt(h

ϵ
t)µTt)dxdydz. (2.4.49)

The terms will be considered separately. Since mϵ
t is the density of the law of (2.4.3)

and Lϵ∗
t is the L2(µTt

) adjoint of Lϵ
t, by Itô’s rule for smooth compactly supported f
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on R2n+m,∫
f∂tm

ϵ
t = ∂t

∫
fmϵ

t =

∫
Lϵ
tfm

ϵ
t =

∫
Lϵ
tf
mϵ

t

µTt

µTt
=

∫
fLϵ∗

t

(
mϵ

t

µTt

)
µTt

. (2.4.50)

The first term in (2.4.49) is then bounded as follows.∫
ηk∂t(ΨTt

(hϵt))dµTt
=

∫
ηkdΨTt

(hϵt).∂th
ϵ
tdµTt

=

∫
ηkdΨTt

(hϵt).
∂tm

ϵ
t

µTt

dµTt

=

∫
ηkdΨTt

(hϵt).L
ϵ∗
t h

ϵ
tdµTt

= −
∫

2ηkΓLϵ∗
t ,ΨTt

(hϵt)dµTt
+

∫
ηkL

ϵ∗
t (ΨTt

(hϵt))dµTt

= −
∫

2ηkΓLϵ∗
t ,ΨTt

(hϵt)dµTt
+

∫
Lϵ
tηk

(
ΨTt

(hϵt) + β(T−1
t )e−1

)
dµTt

≤ −2

∫
ηk
|∇hϵt|2

hϵt
dµTt +

CT−1
t

k

∫ (
ΨTt(h

ϵ
t) + β(T−1

t )e−1
)
dµTt ,

(2.4.51)

using Proposition 2.4.6 and Lemma 2.4.8, where β(T−1
t )e−1

∫
Lϵ∗
t ηkdµTt

= 0 is added to

force

β(T−1
t )(hϵt lnhϵt + e−1) ≥ 0, so that ΨTt

(hϵt) + β(T−1
t )e−1 ≥ 0.

For the second term in (2.4.49), consider the Φ1 and Φ2 terms in the integrand

ηk∂Tt
(ΨTt

µTt
) = ηk∂Tt

((Φ1 + Φ2 + β(T−1
t )Φ3)µTt

)

of Hk(t) with the forms

∂Tt
(Φi(h

ϵ
t)µTt

) = ∂Tt

∣∣∣∣Mi∇ ln

(
mϵ

t

µTt

)∣∣∣∣2mϵ
t, i = 1, 2

for the corresponding matrices M1 and M2 depending on S0, S1 and λ. Applying the

partial derivative in Tt,

∂Tt
(Φi(h

ϵ
t)µTt

) = −2(Mi∇ lnhϵt ·Mi∇∂Tt
lnµTt

)mϵ
t, (2.4.52)
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and using definition (2.2.2) for µTt
and ZTt

=
∫
R2n+m e−

1
Tt

(
U(x)+

|y|2
2 +

|z|2
2

)
dxdydz, gives

∂Tt
lnµTt

= µ−1
Tt
∂Tt

(
Z−1
Tt
e−

1
Tt

(
U(x)+

|y|2
2 +

|z|2
2

))
= µ−1

Tt

(
− Z−2

Tt
∂Tt

ZTt
+
Z−1
Tt

T 2
t

(
U(x) +

|y|2

2
+
|z|2

2

))
e−

1
Tt

(
U(x)+

|y|2
2 +

|z|2
2

)

= µ−1
Tt

(
− µTtZ

−1
Tt
∂TtZTt +

µTt

T 2
t

(
U(x) +

|y|2

2
+
|z|2

2

))

= −
∫

1

T 2
t

(
U(x) +

|y|2

2
+
|z|2

2

)
dµTt

+
1

T 2
t

(
U(x) +

|y|2

2
+
|z|2

2

)
. (2.4.53)

Note the exchange in differentiation and integration is justified by the bounds (2.2.7)

on U . Integrating by parts in y and z (or simply using formulae for second moments)

gives n+m
2Tt

for the |y|2 and |z|2 terms in the first integral. The integral over U can be

dealt with using assumptions (2.2.4) and (2.2.5), to be specific:∫
UdµTt

≤
∫

(a2M |x|2 + UM )dµTt
≤
∫ (

a2M
r1

(∇U · x+ Ug) + UM

)
dµTt

=
a2M
r1

(nTt + Ug) + UM∫
UdµTt

≥
∫

(a2m|x|2 + Um)dµTt
≥
∫ (

a2m
r2 + 1

(|∇U |2 − Ug + |x|2) + Um

)
dµTt

≥
∫ (

a2m
r2 + 1

(2∇U · x− Ug) + Um

)
dµTt

=
a2m

r2 + 1
(2nTt − Ug) + Um.

Plugging into (2.4.53) gives

p1

(
T−1
t

)
≤ ∂Tt lnµTt −

1

T 2
t

(
U(x) +

|y|2

2
+
|z|2

2
− n+m

2
Tt

)
≤ p2

(
T−1
t

)
. (2.4.54)

where p1(x) = −a2
Mn
r1
x−

(
a2
MUg

r1
+ UM

)
x2 and p2(x) = − 2a2

mn
r2+1 x+

(
a2
mUg

r2+1 − Um
)
x2.

Substituting (2.4.53) back into (2.4.52),

∂Tt(Φi(h
ϵ
t)µTt) ≤

(
|Mi∇ lnhϵt|

2
+ T−4

t

∣∣∣∣Mi∇
(
U(x) +

|y|2

2
+
|z|2

2

)∣∣∣∣2
)
mϵ

t

≤ Φi(h
ϵ
t)µTt

+ C̃T−4
t

(
1 + |x|2 + |y|2 + |z|2

)
mϵ

t (2.4.55)

for a constant C̃ ≥ 0 independent of k and ϵ by the quadratic assumption (2.2.5) on |∇xU |2

and ηm ≤ 1.
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For the last integrand in the last term of the right hand side of (2.4.49), namely the

derivative over Φ3(hϵt)µTt
=

mϵ
t

µTt
ln

mϵ
t

µTt
µTt

, the left inequality of (2.4.54) gives

∂Tt
(β(T−1

t )Φ3(hϵt)µTt
)

= −T−2
t β′(T−1

t )Φ3(hϵt)µTt
+ β(T−1

t )∂Tt
ln
mϵ

t

µTt

mϵ
t

= −T−2
t β′(T−1

t )(Φ3(hϵt) + e−1)µTt + T−2
t β′(T−1

t )e−1µTt − β(T−1
t )∂Tt lnµTtm

ϵ
t

≤ T−2
t β′(T−1

t )e−1µTt
+ β(T−1

t )

·
∣∣∣∣p1(T−1

t

)
+

1

T 2
t

(
− n+m

2
Tt+ UM + aM |x|2+

|y|2

2
+
|z|2

2

)∣∣∣∣mϵ
t, (2.4.56)

where in the last step Φ3 + e−1 ≥ 0, β1, β2 > 0 and (2.2.7) have been used. Putting

together the bounds (2.4.55) and (2.4.56) and applying Corollary 2.4.4 yields∫
ηk∂Tt

(ΨTt
(hϵt)µTt

)dζ ≤ q
(
T−1
t

)(
Hϵ

k(t) + E
[
1 + |Xϵ

t |
2

+ |Y ϵ
t |

2
+ |Zϵ

t |
2
])

≤ p
(
T−1
t

)(
Hϵ

k(t) + Ĉ
)
, (2.4.57)

where p and q are some finite order polynomials with nonnegative coefficients, Ĉ > 0,

both independent of k and ϵ.

Returning to (2.4.49), collecting (2.4.51) and (2.4.57) then integrating from any s ≥ 0

to t > s gives

Hϵ
k(t)−Hϵ

k(s) ≤ 2

∫ t

s

(
−
∫
ηk
|∇hϵu|2

hu
dµTu

+
CT−1

u

k
(Hϵ(u) + β(T−1

u )e−1)

+ |T ′
u|p
(
T−1
u

)(
Hϵ

k(u) + Ĉ
))

du. (2.4.58)

Fix an arbitrary S > 0. By Theorem 2.4.9, the log-Sobolev inequality (2.4.44), (2.2.5)

and the finiteness of second moments (2.4.10), it holds that

∫ S

0

Hϵ(u)du ≤
∫ S

0

Cu

∫
|∇hϵu|

2

hϵu
dµTu

du

=

∫ S

0

Cu

∫ ∣∣∇mϵ
u + T−1

u mϵ
u(∇xU + y + z)

∣∣2
mϵ

u

dxdydzdu <∞. (2.4.59)

Then in (2.4.58) the k → ∞ limit can be taken. Due to (2.4.59), the term denominated

by k goes to zero. Applying Fatou’s lemma (adding and subtracting β(T−1
t )e−1

∫
ηmdµTt
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wherever necessary for positivity) and using ηm ≤ 1, it holds that for s < t,

Hϵ(t)−Hϵ(s) ≤ −2

∫ t

s

∫
|∇hϵu|2

hϵu
dµTudu+

∫ t

s

|T ′
u|p
(
T−1
u

)(
Hϵ(u) + Ĉ

)
du (2.4.60)

and for6 tls < s < t,

Hϵ(t)−Hϵ(s) ≤
∫ t

s

((
|T ′

u|p
(
T−1
u

)
− 2C−1

u

)
Hϵ(u) + Ĉ|T ′

u|p
(
T−1
u

))
du. (2.4.61)

Since tα ≫ (ln t)
ρ
2 for any ρ, α > 0 and large enough t > 0, for any α > 0, there

exists t1 > max(tls, t0), where t0 is as in Assumption 3, and c1, c2 > 0 independent of k, ϵ

such that for all t ≥ t1,

|T ′
t |p
(
T−1
t

)
≤ c1

(
1

t

)1−α

, (2.4.62)

−2C−1
t ≤ −c2

(
1

t

) Ê
E+α

, (2.4.63)

where the assumption Tt ≥ E
ln t and (2.4.45) have been used. Using further that E > Ê

by Assumption 3, then taking α < 1
2 (1 − Ê

E ), there exists t2 ≥ t1 independent of ϵ such

that for t ≥ t2,

|T ′
t |p
(
T−1
t

)
− 2C−1

t ≤ −c3
(

1

t

) Ê
E+α

(2.4.64)

and from (2.4.61), for t2 < s < t,

Hϵ(t)−Hϵ(s) ≤
∫ t

s

(
− c3

(
1

u

) Ê
E+α

Hϵ(u) + Ĉc1

(
1

u

)1−α)
du. (2.4.65)

To obtain the corresponding differential inequality for all time, (2.4.65) can be divided

6 tls from Proposition 2.4.7
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by t− s, mollified with (2.4.1) for 0 < k < 1 and the limit s→ t can be taken:

lim
ϵ̂→0

1

2ϵ̂

∫ t+1

t−1

φk(t− u)(Hϵ(u+ ϵ̂)−Hϵ(u− ϵ̂))du

≤ lim
ϵ̂→0

1

2ϵ̂

∫ t+1

t−1

φk(t− u)

∫ u+ϵ̂

u−ϵ̂

(
− c3

(
1

u′

) Ê
E+α

Hϵ(u′) + Ĉc1

(
1

u′

)1−α)
du′du

≤
∫ t+1

t−1

φk(t− u) lim
ϵ̂→0

1

2ϵ̂

∫ u+ϵ̂

u−ϵ̂

(
− c3

(
1

u′

) Ê
E+α

Hϵ(u′) + Ĉc1

(
1

u′

)1−α)
du′du

=

∫ t+1

t−1

φk(t− u)

(
− c3

(
1

u

) Ê
E+α

Hϵ(u) + Ĉc1

(
1

u

)1−α)
du

for t ≥ t2 + 2, where the second-to-last line follows from Fatou’s lemma and dominated

convergence (adding and subtracting β(T−1
u′ )e−1 to Hϵ for Fatou); the last equality follows

by the Lebesgue differentiation theorem. Therefore

d

dt
(φk ∗Hϵ)(t) ≤ −c3

(
1

t+ 1

) Ê
E+α

(φk ∗Hϵ)(t) + Ĉ ′
(

1

t− 1

)1−α

for some constant Ĉ ′ > 0 independent of k, ϵ. Setting

γ1(t) := c3

(
1

t+ 1

) Ê
E+α

, γ2(t) := Ĉ ′
(

1

t− 1

)1−α

and following the argument as per [139] from Lemma 6 in [138], there exists t3 ≥ t2 +

2, c4, c5, c6 > 0 independent of k and ϵ such that for t ≥ t3,

d

dt

(
γ2
γ1

)
(t) =

(t+ 1)
Ê
E+α

(t− 1)1−α

(
c4
t+ 1

− c5
t− 1

)
≥ −c6t−1,

so that there exists t4 ≥ t3 independent of k and ϵ such that for t ≥ t4,

d

dt

(
φk ∗Hϵ − 2γ2

γ1

)
(t) ≤ −γ1(t)

(
φk ∗Hϵ(t)− 2γ2(t)

γ1(t)

)
and consequently

φk ∗Hϵ(t) ≤ 2γ2(t)

γ1(t)
+ φk ∗Hϵ(t4)e

−
∫ t
t4

γ1(u)du. (2.4.66)

Finally, from (2.4.65) (adding and subtracting β(T−1
u′ )e−1 to Hϵ), it holds that for t ≥
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t4 + 2,

Hϵ(t) =

∫ t

t−2k

φk(t− k − s)dsHϵ(t) ≤
∫ t

t−2k

φk(t− k − s)Hϵ(s)ds+ g̃(2k) (2.4.67)

for some g̃ : R→ R satisfying g̃(k′)→ 0 as k′ → 0, so that (2.4.66) yields

Hϵ(t) ≤ 2γ2(t− k)

γ1(t− k)
+ φk ∗Hϵ(t4)e

−
∫ t−k
t4

γ1(u)du + g̃(2k),

where φk ∗Hϵ(t4) can be bounded independently of k in a similar spirit to (2.4.67), and

taking k → 0 concludes the proof.

Remark 2.4.5. The annealing schedule Tt is chosen to satisfy the relationship (2.4.64)

between C−1
t and |T ′

t |p
(
T−1
t

)
.

2.4.7 Degenerate noise limit

After taking advantage of the square integrability Theorem 7.4.1 in [20] for the case with

a nondegenerate diffusion term in the proof of Proposition 2.4.10, the ϵ→ 0 limit is taken

to obtain the same dissipation inequality in this section.

Proof of Proposition 2.2.4. From (2.4.60), for any 0 ≤ s < t and 0 < ϵ ≤ min(1, ϵ′), it

holds that

Hϵ(t)−Hϵ(s) ≤
∫ t

s

|T ′
u|p
(
T−1
u

)(
Hϵ(u) + Ĉ

)
du,

where p is a finite order polynomial with nonnegative coefficients and Ĉ > 0 is a constant

both independent of ϵ. Therefore, mollifying in time and taking s→ t as in the end of the

proof by Proposition 2.4.10, it is straightforward that Hϵ is uniformly bounded in7 0 ≤
t ≤ tH and 0 < ϵ ≤ min(1, ϵ′). Moreover by Proposition 2.4.10, the entropy

∫
hϵt lnhϵtdµTt

is bounded uniformly in t > tH and 0 < ϵ ≤ min(1, ϵ′). Therefore for any t ≥ 0 by the de

la Vallée-Poussin criterion (see for example [49]), the subset {hϵt : 0 < ϵ ≤ min(1, ϵ′)} ⊂
L1(µTt

) is uniformly integrable and consequently the Dunford-Pettis theorem implies the

existence of a weak limit gt ∈ L1(µTt
) for a (sub)sequence (ϵi)i∈N such that ϵi → 0,

hϵit ⇀ gt, in L1(µTt
) as i→∞.

For any S > 0, any compactly supported smooth test function ϕ : [0, S) × R2n+m → R,

omitting the dependence on the space variable ζ = (x, y, z) wherever convenient, denoting

7 tH from Proposition 2.4.10
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DS := (0, S)× R2n+m and using Itô’s rule,

0 = lim
i→∞

∫
DS

(mϵi
t − gtµTt

)(−∂t − Lt)ϕdtdζ

= lim
i→∞

∫
DS

ϵim
ϵi
t (Sx

t + Sy
t )ϕdtdζ +

∫
DS

gtµTt
(∂t + Lt)ϕdtdζ +

∫
R2n+m

m0ϕ(0, ζ)dtdζ,

=

∫
DS

gtµTt(∂t + Lt)ϕdtdζ +

∫
R2n+m

m0ϕ(0, ζ)dtdζ, (2.4.68)

so that in the distributional sense of [20],∂t(gtµTt) = L⊤
t (gtµTt) on R2n+m ∀t > 0,

(g0µT0
) = m0.

(2.4.69)

By Proposition 2.4.1, the solution to (2.4.69) is unique in the class of integrable solutions

and since mt belongs in this same class, it holds that

gtµTt
= mt

for all t ∈ [0, S], which is that

mϵi
t ⇀mt, in L1(µTt) as i→∞.

for all 0 ≤ t < S. By Corollary 3.8 in [25], there exists a sequence (m̂i
t)i∈N made

up of convex combinations of mϵi
t that converge strongly to mt in L1, hence a subse-

quence (m̂
ij
t )j∈N that convergences pointwise almost everywhere. By Fatou’s lemma,

convexity of f(x) = x lnx ≥ e−1 for x > 0 and Proposition 2.4.10, for t > tH , we get

∫
ht lnhtdµTt

=

∫
mt ln

(
mt

µTt

)
≤ lim inf

j→∞

∫
m̂

ij
t ln

(
m̂

ij
t

µTt

)
≤ B

(
1

t

)1− Ê
E−2α

.

2.5 Some additional results

Before concluding, we complement our results about convergence to the global minimum

with the analog of Proposition 2.4.10 for the Tt = T > 0 sampling case and a result about

the choice of the annealing schedule.

For completeness, we also show exponential convergence to equilibrium for the generalised

Langevin equation (2.1.3) with constant temperature. Part of the analysis used in the

proof of Proposition 2.4.10 can be used for the sampling case and Tt = T , i.e. working
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only with the partial time derivatives mentioned above for the invariant distribution.

Proposition 2.5.1. Let Assumption 1 and 4 hold and let Tt = T for all t for some

constant T > 0. There exist constants Cc, C∗ > 0 such that∫
|ht − 1|dµT ≤ Cce−

C
−1
∗
2 t,

for all t > 0.

Proof. After Pinsker’s inequality (2.2.12) and consideration of the definition (2.4.36) of

H, what remains is the partial time derivative part of the proof of Proposition 2.4.10. The

proof concludes by the same calculations as in Proposition 2.4.10, keeping in mind T ′
t = 0,

until (2.4.61) followed by the Grönwall argument. Note that (2.4.45) and (2.4.63) are not

required and a log-Sobolev constant (in t also) works, in which case (2.4.44) and hence

the current argument follow without requiring Assumption 2. The limiting ϵ argument

as in Proposition 2.2.4 is the same.

Proposition 2.5.2. Under Assumption 1, 3 and 4, the schedule Tt = E
ln(e+t) , E > Ê is

optimal in the sense that for any differentiable f : R+ → R+, if

Tt =
1

f(t)

(
Ê

ln(e+ t)

)
, (2.5.1)

Ct is the log-Sobolev factor (2.4.45) and p is the finite order polynomial with nonnegative

coefficients from the proof of Proposition 2.4.10, then the relation

2C−1
t ≫ |T ′

t |p
(
T−1
t

)
(2.5.2)

holds for large times only if lim supt→∞ f(t) ≤ 1.

Proof. Suppose there exists a constant δ > 0 and times (ti)i∈N such that 0 < ti →∞ and

f(ti) ≥ 1 + δ ∀i.

From (2.4.45),

C−1
t ∼ O(e−ÊT−1

t T−1
t ),

which after substituting in (2.5.1) gives

e−ÊT−1
t T−1

t = (e+ t)−f(t) f(t) ln(e+ t)

Ê
∼ O(t−f(t)f(t) ln t). (2.5.3)
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Compare this to

|T ′
t |p
(
T−1
t

)
∝ p(f(t) ln(e+ t))

(f(t) ln(e+ t))2

(
f(t)

e+ t
+ |f ′(t)| ln(e+ t)

)
, (2.5.4)

which has order at least (tf(t))−1(ln t)−2. For t = ti, i large enough, f(t) ≥ 1 + δ and so

t−f(t)f(t) ln t≪ (tf(t))−1(ln t)−2, (2.5.5)

which violates (2.5.2).

Remark 2.5.1. One can strengthen the proposition by making precise the form of p from

Proposition 2.4.10, which will determine how slowly f(t) is allowed to converge to 1; in

fact p should be at least sixth order. This seems inconsequential with respect to optimality

and so is omitted.

2.6 Conclusions

We explored the possibility of using the generalised Langevin equations in the context

of simulated annealing. Our main purpose was to establish convergence as for the un-

derdamped Langevin equation and provide a proof of concept in terms of performance

improvement. Although the theoretical results hold for any scaling matrix A given the

stated restrictions, we saw in our numerical results that its choice has great impact on

the performance. In Section 2.3, A2, A3 or A4 seemed to improve the exploration on

the state space and/or the success proportion of the algorithm. There is plenty of work

still required in terms of providing a more complete methodology for choosing A. This

is left as future work and is also closely linked with time discretisation issues as a poor

choice for A could lead to numerical integration stiffness. This motivates the development

and study of improved numerical integration schemes, in particular, the extension of the

conception and analysis on numerical schemes such as BAOAB [119] for the Langevin

equation for (2.1.3) and the extension of the work in [143] for non-identity matrices λ and

A. See [121] for work in this direction.

In addition, the system in (2.1.3) is not the only way to add an auxiliary variable to the

underdamped Langevin equations in (2.1.2) whilst retaining the appropriate equilibrium

distribution. Our choice was motivated by a clear connection to the generalised Langevin

equation (2.1.4) and link with accelerated gradient descent, but it could be the case

that a different third or higher order equations could be used with possibly improved

performance. Along these lines, one could consider adding skew-symmetric terms as

in [56]. As regards to theory, an interesting extension could involve establishing how the

results here can be extended to establish a comparison of optimisation and sampling in
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a nonconvex setting for an arbitrary number of dimensions similar to [130]. We leave for

future work finding optimal constants in the convergence results, investigating dependence

on parameters and how the limits of these parameters and constants relate to existing

results for the Langevin equation in (2.1.2) in [139, 159]. Finally, one could also aim to

extend large deviation results in [107, 131, 169] for the overdamped Langevin dynamics

to the underdamped and generalised case.
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Fig. 2.3.1: Dynamics in order from top: (2.3.2), (2.3.1) with A = A1, . . . , A4. Left: One instance
of noise realisation. Right: Log histogram of 20 independent runs. See Section 2.3.2
for comments.
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Fig. 2.3.2: Proportion of simulations close to the global minimum for the Alpine function as
U . Panels from top to bottom: Langevin (2.3.2), generalised Langevin (2.3.1) with
A = A1, A2, A3, A4. Left: Final position. Right: time-average of last 5000 iterations.
We use γ = 3 for improving colour contrast, plots are visually similar for γ = 1.
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Fig. 2.3.3: Cross entropy between prediction and target over iterations of (2.3.1).
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Fig. 2.3.4: Both proportion of success and numerical transition rates for U = U2. Panels from
top to bottom: (2.3.2), (2.3.1) with A = A1, A2, A3, A4. Left: Proportion satisfying
the optimality tolerance for time-average of last 5000 iterations. Right: Average
number of crossings of position averages over 5000 iterations across {x1 = 0} for each
independent run. The remaining details are as in caption of Figure 2.3.2.
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Fig. 2.3.5: Results for U = U3. Details are as in caption of Figure 2.3.4.
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3

Optimal friction for underdamped Langevin

sampling

The contents of this chapter are from the paper [36] written in collaboration with N.

Kantas, T. Lelièvre and G. Pavliotis.

3.1 Introduction

Let π be a probability measure on Rn with smooth positive bounded density, also de-

noted π, with respect to the Lebesgue measure on Rn and let f ∈ L2(π) be an observable

or test function. In a range of applications including molecular dynamics [23, 120, 124]

and machine learning [146, 191, 193], a quantity of interest is the expectation of f with

respect to π,

π(f) :=

∫
fdπ,

which is analytically intractable and is numerically approximated most commonly by

Markov Chain Monte Carlo (MCMC) methods, whereby π is sampled by simulating an

ergodic Markov chain (Xk)1≤k≤N with π as its unique invariant measure and π(f) is

approximated by the empirical average 1
N

∑N
k=1 f(Xk). MCMC methods enjoy central

limit theorems for many Markov chains employed, the most well-known (class) of such

methods being the Metropolis-Hastings algorithm [89, 136]. Recent efforts have been to

develop MCMC methods suited to settings where n≫ 1 and where point evaluations of π

or its gradients are computationally expensive; these methods include slice sampling [54,

147], Hamiltonian Monte Carlo [14, 53, 148], piecewise-deterministic Markov processes [16,

24, 189] and those based on discretisations of continuous-time stochastic dynamics [60,

124, 129] together with divide-and-conquer and subsampling approaches [8].

In this chapter, the underdamped Langevin dynamics (1.0.1) are considered as noted in

the introduction of the thesis, with the generality of a friction matrix. Denoting Sn++ as



the set of real symmetric n × n positive definite matrices, the underdamped Langevin

dynamics with mass M ∈ Sn++ and friction matrix Γ ∈ Sn++ is given by the R2n-valued

solution (qt, pt) to

dqt = M−1ptdt (3.1.1a)

dpt = −∇U(qt)− ΓM−1ptdt+
√

2ΓdWt, (3.1.1b)

where
√

Γ ∈ Rn×n is any matrix satisfying

√
Γ
√

Γ
⊤

= Γ,

the function U : Rn → R is the associated smooth potential or negative log density

such that π ∝ e−U and Wt denotes a standard Wiener process on Rn. The probability

distribution from underdamped Langevin dynamics converges under general assumptions

to the invariant probability measure given by

π̃(dq, dp) = Z−1e−U(q)− p⊤M−1p
2 dqdp (3.1.2)

for a normalising constant Z and there have been numerous recent works [41, 47, 57,

65, 90, 117, 141, 173] on its discretisations in terms of the quality of convergence to π̃

over time; in this chapter, the goal is to optimise Γ ∈ Sn++ directly with respect to the

asymptotic variance in the convergence of

πT (f) :=
1

T

∫ T

0

f(qt)dt

to π(f) for any particular f (or a finite set of observables) depending on q as T →∞.

We mention that parameter tuning in MCMC methods is a widely considered topic [4, 196]

(and references within). Specifically for underdamped Langevin dynamics, tuning the

momentum part of π̃ with respect to reducing metastability or computational effort was

considered in [166, 181, 188]. The choice of friction (as a scalar) has been a subject of

consideration as early as in [96], then in [3, 26, 110, 178] within the context of molecular

dynamics and also in [47, 56]. Most of these works make use of different measures for effi-

ciency. The present work constitutes the first systematic gradient procedure for choosing

the friction matrix in an optimal manner, with respect to an appropriate cost criterion.

3.1.1 Outline of approach

Complementary to the introduction of the thesis, we give here a concise description of

our approach, precise statements can be found in the main Theorems 3.3.1 and 3.3.3. It

68



is known using results from [172] and [15] that, under suitable assumptions on U and f ,

a central limit theorem

1√
T

∫ T

0

(f(qt)− π(f))dt
D→ N (0, σ2) as T →∞ (3.1.3)

holds and that σ2, the asymptotic variance, has the form

σ2 = 2

∫
ϕ(f − π(f))dπ̃ (3.1.4)

where ϕ is a solution to the Poisson equation

−Lϕ = f − π(f) (3.1.5)

and L denotes the infinitesimal generator associated to (3.1.1). Two key observations

are then made. Firstly, at any Γ ∈ Sn++ and for any direction δΓ ∈ Rn×n in the friction

matrix, the directional derivative of σ2 evaluated at Γ in the direction δΓ, denoted dσ2.δΓ,

is given by the formula

dσ2.δΓ = −2

∫
(∇pϕ)⊤δΓ∇pϕ̃dπ̃, (3.1.6)

where ϕ is the solution to (3.1.5) at Γ and ϕ̃ is given by

ϕ̃(q, p) = ϕ(q,−p). (3.1.7)

A direction δΓ that guarantees a decrease in σ2 is then

∆Γ :=

∫
∇pϕ⊗∇pϕ̃dπ̃ (3.1.8)

where ⊗ denotes the outer product. Similarly, taking δΓ to be the diagonal elements

of (3.1.8) or δΓ = In
∫
∇pϕ · ∇pϕ̃dπ̃ give in both cases a negative change in asymptotic

variance respectively for diagonal Γ and Γ of the form cIn. The second observation is

that since the solution ϕ to the Poisson equation (3.1.5) is known to be given by

ϕ(q, p) =

∫ ∞

0

E[f(qt)]dt, (3.1.9)

where (qt, pt) solves (3.1.1) with initial condition (q0, p0) = (q, p), given convexity condi-

tions on the potential U and under suitable assumptions, we have

∇pϕ =

∫ ∞

0

E[∇f(qt)
⊤Dpqt]dt, (3.1.10)
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where Dpqt denotes the Rn×n-matrix made of partial derivatives of qt with respect to

the initial condition p in momentum. In this case, Dpqt satisfy the dynamics that result

from taking partial derivatives in (3.1.1), which are susceptible to algorithmic simulation.

Moreover, under strong enough convexity assumptions on U , the process also decays to

zero exponentially quickly, so that the infinite time integral (3.1.10) can be accurately

approximated with a truncation using short simulations of Dpqt for adaptive estimations

of the direction (3.1.8) in Γ. This leads to an adaptive algorithm involving the selection

of Γ in an appropriate constrained set, of which we illustrate the performance with nu-

merical examples.

Examples where improved Γ can be found analytically are presented in Section 3.4. Nu-

merical illustrations making use of (3.1.6) and (3.1.10) are presented in Sections 3.5.

In particular, the algorithm is applied on the problem of finding the posterior mean in

a Bayesian logistic regression inference problem for two datasets with hundreds of di-

mensions, where the best friction matrices found in both cases are close to zero (for

example Γ = 0.1In performs well compared to Γ = In, demonstrating reduced variance

of almost an order of magnitude in Tables 3.5.2 and 3.5.3).

To use the asymptotic variance for a particular observable (or a set of them) and to use

measures for the quality of convergence to π̃ or to minimise an autocorrelation time as

considered in [3, 26, 47, 96, 110, 178] can be conflicting goals. To elaborate, in [96], the

autocorrelation time was used as the point of comparison in the Gaussian target measure

case for the optimal friction. For n = 1, ω, γ > 0, U(q) = 1
2ω

2q2, M = 1, Γ = γ, the

autocorrelation functions for (3.1.1) satisfies

d

dt

(
E(qtq0)

E(ptq0)

)
=

(
0 1

−ω2 −γ

)(
E(qtq0)

E(ptq0)

)
. (3.1.11)

By considering the eigenvalues, the conclusion in [97] is that the optimal γ for minimising

the magnitude of E(qtq0) is given by the critical damping γ = 2ω, see Figure 3.1.1. A

similar conclusion can be made when considering the spectral gap[158]. On the other

hand, if f(q) = q in our setting, formally, the quantity σ2 = 2
∫ ∫∞

0
E(qtq0)dtdπ̃(q0, p0)

is the asymptotic variance due to (3.1.4) and (3.1.9). Despite the appearance of E(qtq0)

as before, Corollary 3.4.8 asserts that γ = 0 is optimal for the asymptotic variance. A

more detailed discussion about Corollary 3.4.8 is given in Section 3.4.2. This difference

emphasizes that, at the cost of generic convergence to π̃, the tuning of Γ here is directed

at variance reduction for a particular observable, in this case f(q) = q. However, multiple

asymptotic variances can be used for the objective function to minimise, so that Γ can

be optimised with respect to several observables of interest simultaneously. Remark 3.5.1
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Fig. 3.1.1: The values mini(|Re(λi)|), where λi are the eigenvalues of the matrix appearing in
the square matrix on the right-hand side of (3.1.11), also the spectral gap for the
generator of (3.1.1) with n = 1, ω > 0, harmonic potential U(q) = 1

2
ω2q2, M = 1

and Γ = γ. Critical values of γ are given by 2ω.

describes the implementation for a linear combination of asymptotic variances at no extra

cost in terms of evaluations of π or its gradients.

The rest of the chapter is organised as follows. In Section 3.2, we provide a mathematical

setting in which the underdamped Langevin dynamics with a friction matrix and in

particular (3.1.1) has a well-defined solution and satisfies the central limit theorem for

suitable observables, together with notations used throughout the chapter. In Section 3.3,

prerequisite results and the main formulae (3.1.6) and (3.1.10) are precisely stated. Exact

results concerning improvements in Γ including the quadratic U , quadratic f and linear f

cases are given in Section 3.4. Numerical methods in approximating (3.1.8) together with

an algorithm resulting from (3.1.6) and (3.1.10) is outlined and detailed in Algorithm 1

and 2 respectively in Section 3.5, alongside examples of U and f where improvements

in variance are observed. In Section 3.6, deferred proofs are given. In Section 3.7, we

conclude and discuss future work.

3.2 Setting

Let (Ω,F ,P) be a complete probability space, (Ft)t≥0 be a normal (satisfying the usual

conditions) filtration with (Wt)t≥0 a standard Wiener process on Rn with respect to the

filtration (Ft)t≥0 and let π̃ be a probability measure given by (3.1.2) for some potential

function U : Rn → R and mass matrix M ∈ Sn++.

The set of smooth compactly supported functions is denoted C∞
c . Following the notation

of [62], we denote the infinitesimal generator (see (3.6.5) for a definition) associated

to (3.1.1) as L, which is given formally by its differential operator form, denoted L, when

acting on the subset C∞
c (R2n),

L = p⊤M−1∇q −∇U(q)⊤∇p − p⊤M−1Γ∇p +∇⊤p Γ∇p. (3.2.1)
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Its formal L2(Rn)-adjoint L⊤ satisfies

L⊤π̃ = 0, (3.2.2)

so that π̃ (see (3.1.2)) is an invariant probability measure for (3.1.1) for a normalisation

constant Z. Let

L2
0(π) := {g ∈ L2(π) :

∫
gdπ = 0}

and similar for L2
0(π̃). The notation D2U will be used for the Hessian matrix of U . As in

the introduction, In ∈ Rn×n denotes the identity matrix. For a matrix A, |A| denotes the

operator norm associated with the Euclidean norm. ei is used to denote the ith Euclidean

basis vector. For A,B ∈ Rn×n, A : B :=
∑

i,j AijBij and AS = 1
2 (A+A⊤). ⟨·, ·⟩π̃ denotes

the inner product in L2(π̃) and similar for π.

3.2.1 Semigroup bound, Poisson equation and central limit theorem

In this section, a central limit theorem for the solution to (3.1.1) is established, where the

resulting asymptotic variance will be used as a cost function to optimise Γ with respect

to. Specifically, it will be shown that under some weighted L∞ bound on the observ-

able f ∈ L2(π), the estimator πT for the unique solution (qt, pt) to (3.1.1) converges

to π(f) as T →∞ such that (3.1.3) holds with (3.1.4).

It is well known that the asymptotic variance can be expressed in terms of the solution

to the Poisson equation (3.1.5) using the Kipnis-Varadhan framework, see for example

Chapter 2 in [113], Section 3.1.3 in [124], [29] and references therein. In order to show

that the expression (3.1.9) is indeed a solution to the Poisson equation (3.1.5), the expo-

nential decay of the semigroup (see (3.6.4)) is used. In Theorem 3.2.1 below, we establish

convergence in law to the invariant measure for the Langevin dynamics (3.1.1).

We will pose the following assumptions on U :

Assumption 5. The function U ∈ C∞(Rn) satisfies U ≥ 0. Moreover, there exist

constants β1, β2 > 0 and α ∈ R such that

∀q ∈ Rn, ⟨q,∇qU(q)⟩ ≥ β1U(q) + β2|q|2 + α. (3.2.3)

The following Lyapunov function Kl : R2n → R for all l ∈ N will be used:

Kl(z) = Kl(q, p) =
(
cU(q) + a|q|2 + b⟨q, p⟩+

c

2
|p|2 + 1

)l
(3.2.4)

for constants a, b, c > 0. The well-posedness of equation (3.1.1) is stated in Theorem 3.6.1.
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Theorem 3.2.1. Under Assumption 5, π̃ is the unique invariant probability measure for

the SDE (3.1.1) and for all l ∈ N, there exist constants κl, Cl > 0 depending on l and

constants a, b, c > 0 independent of l such that the solution zzt = (qt, pt) to (3.1.1) with

initial condition z satisfies

|E[φ(zzt )]− π̃(φ)| ≤ Cle
−tκlKl(z)

∥∥∥∥φ− π̃(φ)

Kl

∥∥∥∥
L∞

(3.2.5)

for Lebesgue almost all initial z ∈ R2n, Kl ≥ 1 given by (3.2.4) and all Lebesgue measur-

able φ satisfying
φ

Kl
∈ L∞ (3.2.6)

Moreover for any l ∈ N, Kl satisfies ∫
Kldπ̃ <∞ (3.2.7)

and

LKl ≤ −alKl + bl (3.2.8)

for some constants al, bl > 0.

For the sake of brevity we omit the proof. The fact that π̃ is invariant is thanks to (3.2.2).

For the rest of the statements, the proof is contained in [172, Theorem 3], which is based

on [133]. In the latter the setting is more general than (3.1.1) in that the friction matrix is

dependent on q and the drift is not necessarily conservative, i.e. the forcing term is not the

gradient of a scalar function and the fluctuation-dissipation theorem (see equation (6.2)

in [158]) does not hold, but of course, [172, Theorem 3] applies in particular to our setting.

Remark 3.2.1. Inequality (3.2.5) holds for all initial z ∈ R2n, as opposed to almost all z,

given any bounded measurable φ. This is a consequence of combining (3.2.5) together

with the strong Feller property given by Theorem 4.2 in [51].

The following corollary holds by taking φ as indicator functions and Remark 3.2.1.

Corollary 3.2.2. Under Assumption 5, for all initial z ∈ R2n, the transition probabil-

ity ρzt of (3.1.1), given by ρzt (A) = P(zzt ∈ A), satisfies

∥ρzt − π̃∥TV → 0 as t→∞

where ∥ · ∥TV denotes the total variation norm.

The solution to the Poisson equation is given next following the direction of [29], see the

paragraph before Corollary 3.2 there.
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Theorem 3.2.3. Under Assumption 5, if f ∈ L2
0(π̃) satisfies f

Kl
∈ L∞ for some l ∈ N,

then there exists a unique solution ϕ ∈ L2
0(π̃) to the Poisson equation (3.1.5). Moreover,

the solution is given by

ϕ =

∫ ∞

0

Pt(f)dt. (3.2.9)

Proof. For T > 0, let gT :=
∫ T

0
Pt(f)dt. Note that gT ∈ L2(π̃) for T ∈ R+ ∪ {∞} and by

Theorem 3.2.1

gT →
∫ ∞

0

Pt(f)dt (3.2.10)

in L2(π̃) as T →∞, specifically (3.2.5) with φ = f and using (3.2.7) for 2l in place of l.

Applying L, it holds that

LgT = lim
s→0

Ps(gT )− gT
s

= lim
s→0

1

s

(∫ T+s

s

−
∫ T

0

)
Pu(f)du = PT (f)− f,

where the exchange in the order of integration is justified by Fubini, (3.2.5) and the

last equality follows by the strong continuity of (Pt)t≥0 (given by Proposition 3.6.2).

Inequalities (3.2.5) and (3.2.7) (with 2l in place of l) also give

PT (f)→ 0 in L2(π̃) (3.2.11)

as T → ∞, so that since L is a closed operator, equations (3.1.5) and (3.2.9) hold.

In addition,
∫
ϕdπ̃ = 0 follows from the invariance of π̃, Theorem 3.2.1 and Fubini’s

theorem.

We proceed to state the central limit theorem for the solution to (3.1.1).

Theorem 3.2.4. Under Assumption 5, if f ∈ L2(π̃) satisfies f
Kl
∈ L∞ for some l ∈ N,

the random variable 1√
t

∫ t

0
(f(zs)−π(f))ds converges in distribution to N (0, σ2

f ) as t→∞
for any initial distribution, where

σ2
f = 2

∫
ϕ(f − π(f))dπ̃ (3.2.12)

and ϕ ∈ L2
0(π̃) is the solution to (3.1.5).

Proof. By Corollary 3.2.2 and Theorem 3.2.3, the result follows by Theorem 2.6 in [15].

Note that the joint measurability assumption in [15] of the transition probability is verified

in Theorem 3.6.1. See also Theorem 3.1 in [29].
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3.3 Directional derivative of σ2

In this section, we give a number of natural preliminary results that pave the path for

the main result in Theorem 3.3.2, in which a formula for the derivative (3.1.6) of σ2 with

respect to Γ is provided. The derivative formula is based on the fact that the invariant

measure π̃ is independent of Γ appearing in the Langevin equation (3.1.1), yet on the other

hand that the asymptotic variance varies as Γ changes. It gives a systematic method to

find an optimal parameter in our dynamics, in contrast to the numerical comparison in

the previous Chapter 2 (see Figure 2.3.2). The proofs of Lemma 3.3.1 and Theorem 3.3.2

are deferred to Section 3.6.

3.3.1 Preliminary results and the main formula

In order for the integral in a formula like (3.1.6) to be finite, control on the derivatives

in p is required. This will also be used in the proof of Theorem 3.3.2 and it is given

by the following Lemma 3.3.1. Note that the results in the seminal work of Pardoux

and Veretennikov are not relevant for our derivative bounds for a number of reasons, for

example results in [154] may not be applied because the diffusion matrix in (3.1.1) is

degenerate.

Lemma 3.3.1. Under Assumption 5, if f ∈ L2
0(π̃) satisfies f

Kl
∈ L∞ for some l ∈ N, then

the weak derivative in p of the solution ϕ to −Lϕ = f , denoted ∇pϕ, satisfies
∫
|∇pϕ|2dπ̃ <

∞.

The main result of this section is the expression for the directional derivative of the

asymptotic variance and is given next. Since Lemma 3.3.1 is available only for observable

functions of position q, the formula for the derivative is given for such observables. The

directional derivative of E : Sn++ → R at Γ ∈ Sn++ in a symmetric matrix direction δΓ ∈
Rn×n is denoted by dE(Γ).δΓ = limϵ→0

1
ϵ (E(Γ + ϵδΓ)−E(Γ)) whenever the limit exists.

The explicit dependence on Γ is omitted in the notation when it is clear from the context.

Theorem 3.3.2. Under Assumption 5, if f = f(q) ∈ L2
0(π) is continuous, satisfies f

Kl
∈

L∞ for some l ∈ N and there exists ϵ′ > 0 such that Γ,Γ + ϵδΓ ∈ Sn++ for |ϵ| ≤ ϵ′, then

the directional derivative of the asymptotic variance σ2 at Γ in the direction δΓ∈ Rn×n

has the form

dσ2(Γ).δΓ = −2

∫
(∇pϕ)⊤δΓ∇pϕ̃dπ̃, (3.3.1)

where ϕ is the solution (3.2.9) to the Poisson equation for the dynamics (3.1.1) at Γ and ϕ̃

is given by (3.1.7).

As mentioned in the introduction, from (3.3.1), the direction (3.1.8) guarantees a decrease
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in asymptotic variance; similarly the scalar change in Γ given by (3.1.8) where the outer

product is replaced by a dot product guarantees a decrease in σ2.

3.3.2 A formula using a tangent process

The directional derivative dσ2.δΓ of the asymptotic variance (3.3.1) can be written in a

more useful form for simulation based approximation. The first variation process of (3.1.1)

is used here to calculate (3.1.10); this will be the main methodology used in the numerical

sections. This alternative formula given in Theorem 3.3.3 provides a way to avoid using a

finite difference Monte Carlo estimate of the derivative of an expectation. For simplicity,

we set M = In here. The first variation process (with respect to initial momenta p)

associated to (3.1.1), denoted by (Dpqt, Dppt) ∈ Rn×2n for t ≥ 0, is defined as the

matrix-valued solution to

∂t

(
Dpqt

Dppt

)
=

(
0 In

−D2U(qt) −Γ

)(
Dpqt

Dppt

)
(3.3.2)

with the initial condition Dpq0 = 0, Dpp0 = In. By Theorems V.39 in [165], the partial

derivatives of (qt, pt) with respect to the initial values in p is the unique solution to (3.3.2)

and (Dpqt, Dppt) is continuous with respect to those initial values. The aim in setting the

various assumptions in the following Theorem 3.3.3 is to ensure the exponential decay of

these derivative processes, as opposed to exponential decay of derivatives of the associated

semigroup as in [45]. We omit in the notational dependence of (qt, pt) on its initial

condition (q0, p0) = (q, p) = z whenever convenient in the following.

Theorem 3.3.3. Let Assumption 5 hold. If in addition,

• there exist U0 > 0 and Q ∈ Sn++ such that for all q ∈ Rn, v ∈ Rn,

v⊤D2U(q)v ≥ U0|v|2, D2U(q) = Q+D(q),

where D : Rn → Rn×n is small enough everywhere in the following sense:

|D(q)| ≤ λ̂ := min

(
λm
2
,
λmU

2
0

8λ2M
,
λmU0

16
,
U0

8

√
σmin(Q)

)
, (3.3.3)

where λm, λM > 0 are respectively the smallest and largest eigenvalue of Γ and σmin(Q)

denotes the smallest eigenvalue of Q;

• f = f(q) ∈ L2
0(π) ∩ C1(Rn) and satisfies |f |+|∇f |

Kl
∈ L∞ for some l ∈ N,
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then the weak derivative ∇pϕ has the form

∇pϕ(q, p) =

∫ ∞

0

E[∇f(qt)
⊤Dpqt]dt, (3.3.4)

where qt solves (3.1.1) with initial condition (q0, p0) = (q, p) and Dpqt solves (3.3.2), the

latter satisfying

|Dpqt|2 + |Dppt|2 ≤ C ′e−Ct (3.3.5)

for some constants C,C ′ > 0 independent of (q0, p0) and ω ∈ Ω.

The additional assumptions on U are made in order to ensure that the process (Dpqt, Dppt)

converges to zero exponentially quickly so that the integral in (3.3.4) is finite. In par-

ticular, (3.3.3) requires U to be close to a quadratic function q⊤Qq; see also [21] for a

situation where a similar assumption is made for the long time behaviour for the Vlasov-

Fokker-Planck equation.

Remark 3.3.1. Exponential decay of the first variation process is not required for the in-

tegrability of the integrand on the right-hand side of (3.3.4), only some uniform (in initial

condition (q0, p0)) integrability in time of Dpqt together with a boundedness assumption

on ∇f . On the other hand, Proposition 1 in [47] and Proposition 4 in [142] explores

more detailed conditions under which contractivity holds and does not hold for scalar

friction Γ = γ > 0; our result places the focus on conditions on U such that contractivity

holds for all Γ ∈ Sn
++.

Proof. Let b > 0 be the constant

b = min

(
λmU0

2λ2M
,
λm
4
,

1

2

√
σmin(Q)

)
(3.3.6)

so that λ̂ reduces to λ̂ = min

(
λm

2 , b
U0

4

)
and, since b ≤ 1

2

√
σmin(Q), the matrix

(
Q bIn

bIn In

)
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is positive definite. We have the following bound.

1

2
∂t

[
e⊤i

(
Dpqt

Dppt

)⊤(
Q bIn

bIn In

)(
Dpqt

Dppt

)
ei

]
= e⊤i Dpq

⊤
t QDpptei + b|Dpptei|2

− e⊤i (bDpqt +Dppt)
⊤(D2U(q)Dpqt + ΓDppt)ei

= −be⊤i Dpq
⊤
t D

2U(qt)Dpqtei + e⊤i Dpq
⊤
t (−bΓ−D(qt))Dpptei

− e⊤i Dpp
⊤
t (Γ− bIn)Dpptei

≤
(
− bU0 +

bU0

2
+
λ̂

2

)
|Dpqtei|2 +

(
− λm + b+

bλ2M
2U0

+
λ̂

2

)
|Dpptei|2

≤ −bU0

4
|Dpqtei|2 −

λm
4
|Dpptei|2

≤ −Ce⊤i

(
Dpqt

Dppt

)⊤(
Q bIn

bIn In

)(
Dpqt

Dppt

)
ei (3.3.7)

for some generic constant C > 0 independent of the initial values (q0, p0) and ω ∈ Ω.

Consequently, using the weighted boundedness assumption on |∇f | (that |∇f |
Kl
∈ L∞ for

some l ∈ N ) and for each index i,

∣∣(∇f(qt)
⊤Dpqt)i

∣∣ ≤ C ′e−Ct|∇f(qt)|

≤ C ′e−Ct(|∇f(qt)| − π(|∇f |)) + C ′e−Ct (3.3.8)

for a generic C ′ > 0 independent of (q0, p0) and ω ∈ Ω. Due to (3.3.8) together with

Fubini’s theorem, it holds for T > 0 and a test function g ∈ C∞
c (R2n) that∫ ∫ T

0

E[f(qzt )]dt∇pg(z)dz =

∫ T

0

E
[∫

f(qzt )∇pg(z)dz

]
dt

= −
∫ T

0

E
[∫
∇f(qzt )⊤Dpq

z
t g(z)dz

]
dt

= −
∫ ∫ T

0

E[∇f(qzt )⊤Dpq
z
t ]dtg(z)dz.

Using Theorem 3.2.1, (3.3.8) again and dominated convergence to take T → ∞ on both

sides concludes the proof.

The following is a brief discussion about how equation (3.3.4) can be used in practice

to approximate the gradient direction
∫
∇pϕ⊗∇pϕ̃dπ̃ from realisations (qt, pt) of (3.1.1).

We have in mind at first setting (q∗, p∗) = (q0, p0), where (q0, p0) is the initial condition

from equation (3.1.1), so that equation (3.3.4) implies ∇pϕ(q∗, p∗) ⊗ ∇pϕ̃(q∗, p∗) can be
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approximated using

δΓ =

∫ T

0

∇f(q(q
∗,p∗)

s )⊤Dpq
(q∗,p∗)
s ds⊗

∫ T

0

∇f(q(q
∗,−p∗)

s )⊤Dpq
(q∗,−p∗)
s ds, (3.3.9)

where (q
(q∗,p∗)
s , p

(q∗,p∗)
s ) solves (3.1.1) with initial condition (q∗, p∗), and (q

(q∗,−p∗)
s , p

(q∗,−p∗)
s )

denotes a parallel solution of (3.1.1) with initial condition (q∗,−p∗) and independent re-

alisations for W . Moreover, (Dpqs)0≤s≤T denotes corresponding solutions to (3.3.2) for

both initial conditions. At time T one can then update Γ using equation (3.3.9), up-

date (q∗, p∗) = (qT , pT ) and repeat using (3.3.9) in the same way until some satisfactory Γ

has been reached. There are sources of bias from not being at stationarity and using finite

T , but both these can be mitigated in practice with careful and adaptive choice of T . The

overall approach is summarised in Algorithm 1 and given with more detail in Algorithm 2.

The next result is that the estimator (3.3.9) has finite variance.

Theorem 3.3.4. Let the assumptions of Theorem 3.3.3 hold. For Lebesgue almost-

all (q, p) ∈ R2n, each entry of δΓ defined in (3.3.9) has finite variance.

Proof. It suffices to show that (3.3.9) has finite second moment, for which it suffices to

show that each element in the vector of time integrals
∫ T

0
∇f(q

(q,p)
t )⊤Dpq

(q,p)
t ds has finite

second moments by independence. For each index i, using (3.3.7),

∣∣(∇f(qt)
⊤Dpqt)i

∣∣2 ≤ C ′2e−2Ct|∇f(qt)|2

≤ C ′2e−2Ct(|∇f(qt)|2 − π(|∇f |2)) + C ′2e−2Ctπ(|∇f |2),

so that using the (weighted) boundedness assumption on |∇f | together with Theorem 3.2.1

and Fubini’s theorem, the proof concludes.

3.4 Gaussian cases

Throughout this section, the target measure π is assumed to be Gaussian, when π is

mean zero this is π ∝ exp(− 1
2q

⊤Σ−1q) for Σ ∈ Sn++, in other words, the potential is

quadratic, U(q) = 1
2q

⊤Σ−1q. For polynomial function observables, we look for solutions

to the Poisson equation (3.1.5) by using a polynomial ansatz and comparing coefficients

in order to obtain an explicit expression for the asymptotic variance. The results provide

benchmarks to test the performance of the algorithms that arise from using the gradient

in Theorem 3.3.2 as well as intuition for how Γ can be improved in concrete cases. We

will consider the following cases for the observables:

1. Quadratic f = 1
2q

⊤U0q under the assumption of commutativity between U0 and Σ

(Proposition 3.4.5), also f = 1
2U0q

2 + lq in one dimension (Proposition 3.4.6);
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2. Odd polynomial f , where the asymptotic variance will be shown to decrease to zero

as Γ→ 0 (Proposition 3.4.7, Corollary 3.4.8 and Proposition 3.4.9);

3. Quartic f in one dimension, in which case the situation is similar to quadratic f

(Proposition 3.4.10).

4. Quadratic f , but with polynomial Γ. This is not the setting above, but the difficulty

of any such extension to the case of variable friction Γ is demonstrated by a negative

result about the form of optimal Γ in polynomial settings, in which one hopes for

analytical solutions to the Poisson equation.

All of the proofs and derivations for the results in this section can be found in Section 3.6.

We proceed with stating in more detail the general situation of this section.

Let Σ ∈ Sn++, U0 ∈ Sn++ and l ∈ Rn. The Gaussian invariant measure π̃ and the

observable f : R2n → R are given by

π̃ ∝ exp

(
− 1

2
q · Σ−1q − 1

2
p ·M−1p

)
, f(q) =

1

2
q · U0q + l · q (3.4.1)

and the value π(f) becomes

π(f) =

∫
fdπ =

∫
1

2
q · U0qdπ =

1

2
U0 : Σ. (3.4.2)

The infinitesimal generator L becomes in this case

L =

(
0 M−1

−Σ−1 −ΓM−1

)(
q

p

)
· ∇+∇p · Γ∇p

= M−1p · ∇q − Σ−1q · ∇p − ΓM−1p · ∇p +∇p · Γ∇p. (3.4.3)

Consider the natural candidate solution ϕ to the Poisson equation (3.1.5) given by

ϕ(q, p) =
1

2
q ·Gq + q · Ep+

1

2
p ·Hp+ g · q + h · p− 1

2
(G : Σ +H : M). (3.4.4)

for some constant matrices G,E,H ∈ Rn×n and vectors g, h ∈ Rn. Note that we allow G

and H not to be symmetric and specify GS and HS as the respective symmetric parts in

order to make a clear distinction.

Lemma 3.4.1. Given f in (3.4.1), π(f) in (3.4.2) and L of the form (3.4.3), it holds
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that ϕ given by (3.4.4) is a solution to the Poisson equation (3.1.5) if and only if

Σ−1q · (E⊤q + h)− Γ : HS −
1

2
q · U0q − l · q +

1

2
U0 : Σ = 0, (3.4.5)

−M−1(GSq + g) +HSΣ−1q +M−1Γ(E⊤q + h) = 0, (3.4.6)

−E⊤M−1 +HSΓM−1 = A1, (3.4.7)

for some antisymmetric A1 ∈ Rn×n.

3.4.1 Quadratic observable

Similar calculations in this situation have appeared previously in Proposition 1 in [55],

where explicit expressions analogous to G, E, H and for σ2 are given. For our purposes of

finding an optimal Γ, the approach take here is different. Instead of taking these explicit

expressions, we keep unknown antisymmetric matrices (such as A1) as they appear as

an alternative to the aforementioned explicit expressions. Eventually the commutativity

property between Σ and U0 is used to show that the antisymmetric matrices are zero.

We continue from (3.4.5), (3.4.6) and (3.4.7) with finding explicit expressions for the

coefficients G, E, H of ϕ.

Lemma 3.4.2. Given f in (3.4.1), π(f) in (3.4.2), L of the form (3.4.3), ϕ given

by (3.4.4) is a solution to the Poisson equation (3.1.5) with (3.4.3) if and only if there

exist antisymmetric matrices A1, A2 such that

GS =
1

2
M(ΣU0 − ΣA2 − 2A1M)Γ−1Σ−1 +

1

2
Γ(U0Σ−A2Σ), (3.4.8)

E =
1

2
U0Σ +

1

2
A2Σ, (3.4.9)

HS =
1

2
(ΣU0 − ΣA2 − 2A1M)Γ−1, (3.4.10)

h = Σl and g = ΓΣl. (3.4.11)

The asymptotic variance from Theorem 3.2.4 can be given by a formula in terms of Σ, U0

and the coefficients of ϕ. Before substituting the expressions from Lemma 3.4.2 into the

formula, we give the formula itself, which is adapted from the proof of Proposition 1

in [55].

Lemma 3.4.3. Let f be given by (3.4.1), π(f) be given by (3.4.2) and L be given

by (3.4.3). If the solution ϕ to the Poisson equation (3.1.5) is of the form (3.4.4), then

the asymptotic variance σ2 given by (3.2.12) has the expression

2⟨ϕ, f − π(f)⟩π̃ = Tr(GSΣU0Σ) + 2g · Σl. (3.4.12)
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From the expressions (3.4.8) and (3.4.10) for GS and HS respectively, it is not straight-

forward to check that there exist antisymmetric A1 and A2 such that the right hand

sides are indeed symmetric at this point, which is necessary for the ansatz (3.4.4) for ϕ

to be a valid solution. On the other hand, if Σ, U0, Γ, M all commute, then the right

hand sides of (3.4.8) and (3.4.10) are symmetric for A1 = A2 = 0 and the coefficients G

and H become explicit, which allows taking derivatives of σ2 with respect to the entries

of Γ. Moreover, the explicit coefficients allow optimisation of M , which is given by the

following proposition.

Proposition 3.4.4. Suppose Σ, U0 and Γ all commute. Let f be as in (3.4.1), π(f) be as

in (3.4.2), L be of the form (3.4.3) and ϕ be the solution to the Poisson equation (3.1.5).

It holds that

lim
M=mIn,m↓0

∫
ϕ(f − π(f))dπ̃ = inf

M∈SΣ

∫
ϕ(f − π(f))dπ̃, (3.4.13)

where SΣ is the set of symmetric positive definite matrices commuting with Σ.

Remark 3.4.1. The limit (3.4.13) in Proposition 3.4.4 is, together with a rescaling in

the velocity space, the overdamped limit of the Langevin dynamics, see Section 2.2.4

in [123]. However, (3.4.13) does not necessarily mean overdamped dynamics are better

in practice. For example when Γ is a small scalar, the overdamped limit corresponding

to (3.4.13) results in a time speed-up inversely proportional to Γ over the overdamped

limit corresponding to Γ = In. Consequently, any such comparison between Langevin

dynamics and the overdamped limit should include constraints such as those in [81] for

both sets of dynamics. We focus on the optimisation of Γ and fix M = In in the following.

As before, we denote SΣ to be the set of symmetric positive definite matrices commuting

with Σ.

Proposition 3.4.5. Let Σ, U0, l,M be such that

ΣU0 = U0Σ, l = 0, M = In, (3.4.14)

the function f be as in (3.4.1), π(f) be as in (3.4.2), L be of the form (3.4.3) and ϕ be

the solution to the Poisson equation (3.1.5). It holds that

min
Γ∈SΣ

2

∫
ϕ(f − π(f))dπ̃ = Tr

(
U2
0 Σ

5
2

)
,

where the minimum is attained by Γ = Σ− 1
2 .

In the scalar case, we can remove the restriction on l.
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Proposition 3.4.6. If n = 1, U0 ̸= 0, l ̸= 0, f : R→ R is given by (3.4.1), π(f) is given

by (3.4.2), L is of the form (3.4.3) and ϕ is the solution to the Poisson equation (3.1.5),

then minΓ>0 2
∫
ϕ(f − π(f))dπ̃ = M

1
2 Σ2U2

0 (Σ + 4l2U−2
0 )

1
2 and the minimum is attained

by Γ = M
1
2

(Σ+4l2U−2
0 )

1
2
.

3.4.2 Odd polynomial observable

Another special case within (3.4.1) where the solution ϕ can be readily identified is

when U0 = 0, that is, for linear observables. More generally, (almost) zero variance

can be attained in the following special case.

Proposition 3.4.7. Under Assumption 5, for a general target measure π ∝ e−U on Rn,

if the observable f is of the form f(q) = α · ∇U, for α = (α1, . . . , αn), αi ∈ R, L is of

the general form (3.2.1) and ϕ is the solution to the Poisson equation (3.1.5), then the

asymptotic variance satisfies

inf
Γ∈{γIn:γ>0}

2

∫
ϕ(f − π(f))dπ̃ = 0. (3.4.15)

Corollary 3.4.8. Given a Gaussian target measure with density π ∝ e−U on Rn, observ-

able f : Rn → R as in (3.4.1) with U0 = 0, that is, f(q) = l · q, where l ∈ Rn, π(f) = 0, L
of the form (3.2.1) and ϕ the solution to the Poisson equation (3.1.5), equation (3.4.15)

holds.

Note that Corollary 3.4.8 is also a consequence of (3.6.19) in the proof of Lemma 3.4.3.

Furthermore, the setting in Corollary 3.4.8 is included in Proposition 3.4.4, which sug-

gests that the overdamped limit (see Remark 3.4.1) for some fixed small Γ (used to

obtain arbitrarily small asymptotic variance in the proof of Proposition 3.4.7) also has

small asymptotic variance. One can readily check, at least formally, that the smallness

of Γ corresponds to a speed up in time for the overdamped limit.

We give here some intuition for the situation in Corollary 3.4.8. First note that the

Langevin diffusion with Γ = 0 reduces to deterministic Hamiltonian dynamics and that it

is the limit case for the Γ attaining arbitrarily small asymptotic variance in the proof of

Proposition 3.4.7. The result indicates that this is optimal in the linear observable, Gaus-

sian measure case (i.e. (3.4.1), U0 = 0) and this aligns with the fact that the value (3.4.2)

to be approximated is exactly the value at the q = p = 0, so that Hamiltonian dynam-

ics starting at q = 0, staying there for all time, approximates the integral (3.4.2) with

perfect accuracy. A similar idea holds for when the initial condition is not q = p = 0,

where (3.4.2) is approximated exactly after any integer number of orbits in (q, p) space.

Continuing on this idea, it seems reasonable that the same statement holds more generally

for any odd observable. At least, the following holds in one dimension.
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Proposition 3.4.9. If n = 1, k̂ ∈ N0 and f : R → R is an odd finite order polynomial

observable given by

f(q) =

k̂∑
i=0

aiq
2i+1, (3.4.16)

also π(f) = 0, L is of the form (3.4.3) and ϕ is the solution to the Poisson equation (3.1.5),

then the asymptotic variance satisfies (3.4.15).

3.4.3 Quartic observable

The situation in the quartic observable case, at least in one dimension, is similar to

quadratic observable case.

Proposition 3.4.10. If n = 1 and f : R→ R is a quartic observable given by

f(q) = q4, (3.4.17)

also π(f) = 3Σ2 for some Σ > 0, L is of the form (3.4.3), M = 1 and ϕ is the solution

to the Poisson equation (3.1.5), then there exists σquar > 0 such that minΓ=γ>0 2
∫
ϕ(f −

π(f))dπ̃ = σquar.

3.4.4 Polynomial Γ

The final consideration in this section is variable friction Γ : Rn → R in the case of (3.4.1).

Although Langevin dynamics with variable friction is not the setting of this chapter, a

natural class of functions for Γ where the Poisson equation might be expected to have a

closed form solution is when Γ is polynomial; we demonstrate the difficulty of this setting

by presenting here the negative result that no finite order polynomial ϕ solves the Poisson

equation for n = 1.

Proposition 3.4.11. If n = 1, f : R→ R is given by (3.4.1) with U0 ̸= 0, π(f) is given

by (3.4.2), L is given by (3.4.3), Γ is given by a nonconstant finite order polynomial, then

finite order polynomials in q, p cannot be a solution ϕ to the Poisson equation (3.1.5).

The proof of Proposition 3.4.11 can be found in Section 3.6.

3.5 Computation of the change in Γ

Throughout this section, theM = In case is considered. As mentioned, the formula (3.3.1)

gives a natural gradient descent direction (3.1.8) to take Γ in order to optimise σ2 from

Theorem 3.2.4. In Theorem 3.3.2 and in the form (3.1.8), the expression for the gradient

is already susceptible to a Green-Kubo approach in the sense that the form (3.2.9) for ϕ
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can be substituted in to obtain a trajectory based formula, where finite difference is used

to approximate ∇p and independent realisations of (qt, pt) is used for the expectations.

However, this is too inaccurate in the implementation to be useful. The more directly

calculable form as stated in the introduction in (3.1.10) is used involving the derivative

of (qt, pt) with respect to the initial condition in Section 3.3.2.

We focus the discussion on a Monte Carlo method to approximate ∇ϕ and gradient di-

rections in Γ (e.g. (3.1.8)) based on Theorem 3.3.2, but a spectral method to solve (3.1.5)

and compute the change in Γ is given in Section 3.5.5, which is computationally feasible in

low dimensions. Algorithm 1 summarises the resulting procedure, where all expectations

within (3.1.8) are approximated by single realisations; further justifications, refinements

and a concrete implementation (Algorithm 2) can be found in Section 3.5.1, whilst alter-

native methods are given in Section 3.5.5.

Algorithm 1 Continuous-time outline of Γ update using (3.1.6) and (3.1.10)

Result: Γ ∈ Sn++

Start from arbitrary (q0, p0) ∈ R2n and set (q̃0, p̃0) = (q0,−p0), Dq0 = Dq̃0 = 0,
Dp0 = Dp̃0 = In, ζ = ζ̃ = 0, Γ = In, t = t0 = 0;
for N epochs do

simulate one time-step in qt, q̃t then in Dpqt and Dpq̃t;

add to ζ, ζ̃ to approximate the row vectors

ζ =

∫ t

t0

∇f(qs)
⊤Dpqsds, ζ̃ =

∫ t

t0

∇f(q̃s)
⊤Dpq̃sds;

if (Dpqt, Dppt) is small enough in magnitude then

update Γ with the gradient direction −ζ ⊗ ζ̃ − (ζ ⊗ ζ̃)⊤;
reset (q̃t, p̃t)← (qt,−pt); (Dpqt, Dppt), (Dpq̃t, Dpp̃t)← (0, In); t0 ← t; ζ, ζ̃ ← 0;

end if
t← t+ ∆t

end for

Section 3.5.2 contains the simplest one-dimensional Gaussian case where the optimal Γ is

known and it is shown that the algorithm approximates it quickly. A different Gaussian

problem extracted from a diffusion bridge context is explored in Section 3.5.3, where the

algorithm is shown to approximate a Γ matrix that exhibits an even better empirical

asymptotic variance than the one given by Proposition 3.4.5. Finally, the algorithm is

applied to finding the optimal Γ in estimating the posterior mean in a Bayesian inference

problem in Section 3.5.4, where the situation is shown to be similar to Proposition 3.4.8,

in the sense that the optimal Γ is close to 0; after and separately from such a finding, the

empircal asymptotic variance for a small Γ is compared that for Γ = In, with dramatic

(about tenfold) improvement in both the full gradient and minibatch gradient cases.
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3.5.1 Methodology

Here we describe an on-the-fly procedure1 to repeatedly calculate the change (3.1.8) in Γ

by simulating the first variation process parallel to underdamped Langevin processes. The

discretisation schemes used to simulate (3.1.1) and (3.3.2) are given in Section 3.5.1. Two

gradient procedures, namely gradient descent and the Heavy ball method, for evolving Γ

given a gradient are detailed in Section 3.5.1. Then iterates from Section 3.5.1 are used

to approximate each change in Γ in Section 3.5.1 (see also Section 3.5.5). The key idea

linking the above is that if equation (3.3.4) holds, then

∆Γ =

∫
∇pϕ⊗∇pϕ̃ dπ̃

= −
∫ (∫ ∞

0

E[∇f(qs)
⊤Dpqs]

⊤ds

)(∫ ∞

0

E[∇f(q̃t)
⊤Dpq̃t]dt

)
dπ̃, (3.5.1)

where (qt, pt) and (q̃t, p̃t) denote the solutions to (3.1.1) with initial values (q, p), (q,−p)
respectively, (Dpqt, Dppt) and (Dpq̃t, Dpp̃t) denote the solutions to (3.5.3) with q̃t replac-

ing qt for the latter and the integral in (3.5.1) is with respect to (q, p).

Splitting

We split the dynamics (3.1.1) by a so-called BAOAB splitting scheme, see [117, 118], in

order to integrate the Langevin dynamics (3.1.1). This is given explicitly by

pi+
1
3 = pi −∇U(qi)∆t

2

qi+
1
2 = qi + pi+

1
3
∆t
2

pi+
2
3 = exp(−∆tΓi)pi+

1
3 +

√
1− exp(−2∆tΓi)ξi

qi+1 = qi+
1
2 + pi+

2
3
∆t
2

pi+1 = pi+
2
3 −∇U(qi+1)∆t

2

(3.5.2)

for i ∈ N, ∆t > 0, where ξi are independent n-dimensional standard normal random

variables and Γi ∈ Sn++ are a sequence of friction matrices to be updated throughout

the duration of the algorithm. We mention again recent developments, e.g. [41, 47, 65,

141, 173, 177], on discretisations of the underdamped Langevin dynamics; the majority

of the numerical error involved in updating Γ is expected to come from the small number

of particles in approximating the integrals in the expression (3.1.8) for ∆Γ, so that no

further deliberation is made about the choice of discretisation for the purposes here. The

1 meaning that this procedure occurs simultaneously to the MCMC procedure to approximate π(f)
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first variation process (3.5.3) together with its initial condition is

Dpqt =

∫ t

0

Dppsds, (3.5.3a)

Dppt = In −
∫ t

0

(D2U(qs)Dpqs + ΓDpps)ds. (3.5.3b)

In order to simulate (3.5.3), an analogous splitting scheme is used:

Dpi+
1
3 = Dpi −D2U(qi)Dqi∆t

2

Dqi+
1
2 = Dqi +Dpi+

1
3
∆t
2

Dpi+
2
3 = exp(−∆tΓi)Dpi+

1
3

Dqi+1 = Dqi+
1
2 +Dpi+

2
3
∆t
2

Dpi+1 = Dpi+
2
3 −D2U(qi+1)Dqi∆t

2 .

(3.5.4)

In the case where the second derivatives of U are not directly available, the kth column

of (for example) D2U(qi)Dqi∆t
2 can be approximated by

−∇U
(
qi +

∆t

2
(Dqi)k

)
+∇U(qi) (3.5.5)

where (Dqi)k denotes the kth column of Dqi, so that (3.5.3) can still be approximated

in the absence of Hessian evaluations. The approximation (3.5.5) will be used only when

explicitly stated in the sequel.

Gradient procedure in Γ

Suppose we have available a series of proposal updates (b0, . . . , bL−1) ∈ Rn×n×L for Γ,

each element of which being noisy estimates of the same gradient direction in Γ. Given

stepsizes αi = α ∈ R and an annealing factor r ∈ R, the following constrained stochastic

gradient descent (for i where proposal updates are produced)

Γi+1 = Πµ
pd

(
Γi +

αi

2L

L−1∑
j=0

(bj + b⊤j )

)
(3.5.6)

can be considered, where L ∈ N and Πµ
pd is the projection to a positive definite matrix,

for some minimum value µ > 0 that we choose arbitrarily in order to ensure ergodicity,

given by

Πµ
pd(M) =

n∑
i=1

max(λi, µ)viv
⊤
i (3.5.7)
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for symmetric M ∈ Rn×n and its the eigenvalue decomposition

M =

n∑
i=1

λiviv
⊤
t .

Alternatively, a Heavy-ball method [162, 75] (with projection) can be used. The method

is considered in the stochastic gradient context in [40], given here asΓi+1 = Πµ
pd(Γi + αiΘi+1),

Θi+1 = (1− αir)Θi + αi

2L

∑L−1
j=0 (bj + b⊤j ).

(3.5.8)

The heavy-ball method offers a smoother trajectory of Γ over the course of the algorithm.

Under appropriate assumptions on bj , in particular if

1

2L

L−1∑
j=0

(bj + b⊤j ) ∼ N (∇σ2(Γi), σ2
b In2),

for some gradient ∇σ2(Γi
k) and variance σ2

b > 0, then the system (3.5.8) has the interpre-

tation of an Euler discretisation of a constrained Langevin dynamics, in which case r√
αiσ2

b

is the inverse temperature. By increasing r, the analogous invariant distribution ‘sharp-

ens’ around the maximum in its density and in this way reduces the effect of noise at

equilibrium; on the other hand, decreasing r reduces the decay in the momentum.

A thinning approach for ∆Γ

The most straightforward way of approximating the integral in (3.5.1) is to use inde-

pendent realisations of (3.5.2), as described at the end of Section 3.5.5, but we draw

alternatively a thinned sample [153] from a single trajectory here in order to run only

a single parallel set of realisations of (3.5.2) and (3.5.4) at a time. More specifically,

we consider a single realisation of (3.5.2) and regularly-spaced points from its trajectory

(possibly after a burn-in) as sample points from π̃. Starting at each of these sample

points and ending at each subsequent one, the process is replicated albeit starting with a

momentum reversal and simulated in parallel. In addition, for each of the two processes, a

corresponding first variation process (3.5.4) is calculated in parallel. A precise description

follows.
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Let K = 1 for simplicity. The Γ direction (3.5.1) is approximated by

− 1

(L+ L∗)

L+L∗−1∑
l=0

( T∑
i=1

∆t

K

K∑
k=1

∇f(qi+Tl+B
(k) )⊤Dqi+Tl+B

(k)

)
⊗

( T∑
i=1

∆t

K

K∑
k=1

∇f(q̃i+Tl+B
(k) )⊤Dq̃i+Tl+B

(k)

)
, (3.5.9)

where L ∈ N, ((qi(k), p
i
(k)))i∈N, ((q̃i(k), p̃

i
(k)))i∈N denote solutions to (3.5.2)

• for i ̸= B + T l − 1, l ∈ N if k ̸= 1 and

• for all i if k = 1

with initial condition (0, 0), noise ξi = ξi(k), ξ̃
i
(k) for all i ∈ N satisfying ξi(k) = ξi(k′) = ξ̃i(k) =

ξ̃i(k′) for all i < B, 1 ≤ k ≤ K, 1 ≤ k′ ≤ K, independent otherwise as i and k vary, along

with corresponding (Dqi(k), Dp
i
(k)), (Dq̃i(k), Dp̃

i
(k)) satisfying (3.5.4) for i ̸= B+T l−1, l ∈

N0 (regardless of k), and where the k ̸= 1 processes are ‘reset’ at i = B+T l corresponding

to the values of the k = 1 chain if the first variation processes have converged to zero,

that is,

qTl+B
(k) = qKl+B

(1) , pTl+B
(k) = pTl+B

(1) , DqTl+B
(k) = 0, DpTl+B

(k) = In (3.5.10a)

q̃Tl+B
(k) = qTl+B

(1) , p̃Tl+B
(k) = −pTl+B

(1) , Dq̃Tl+B
(k) = 0, Dp̃Tl+B

(k) = In (3.5.10b)

for all 1 ≤ k ≤ K if for some Dconv > 0,

max
i,j,k

∣∣∣(DqTl+B
(k) )ij

∣∣∣ < Dconv, max
i,j,k

∣∣∣(Dq̃Tl+B
(k) )ij

∣∣∣ < Dconv, (3.5.11a)

max
i,j,k

∣∣∣(DpTl+B
(k) )ij

∣∣∣ < Dconv, max
i,j,k

∣∣∣(Dp̃Tl+B
(k) )ij

∣∣∣ < Dconv (3.5.11b)

and L∗ ∈ N is such that the number of elements in {l ∈ N : 1 ≤ l ≤ L + L∗} satis-

fying (3.5.11) is L. The approach is summarised in Algorithm 2. Of course, the above

for generic K ∈ N constitutes improving approximations to ∆Γ. Note that as Γ changes

through the prescribed procedure, the asymptotic variance associated to the given ob-

servable f is expected to improve, but on the contrary, the estimator (3.5.9) for the

continuous-time expression (3.5.1) may well worsen, since the integrand (of the outer-

most integral) in (3.5.1) is not f . Increasing L is expected to solve any resulting issues;

on the other hand extremely small L have been successful in the experiments here.

Remark 3.5.1. If it is of interest to approximate expectations of P ∈ N observables with

respect to π, the quantity
∑P

i σ
2
i for example can be used as an objective function,

where σ2
i is the asymptotic variance from the ith observable. In the implementation
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Algorithm 2 Gradient procedure in Γ

Result: Γi, 1 ≤ i ≤ N + 1;
Start from arbitrary (q0, p0) ∈ R2n and set Dq0 = Dq̃0 = 0, Dp0 = Dp̃0 = In,
ζ = ζ̃ = 0, k = 0, Γj = In ∀1 ≤ j ≤ B
for i = 1 : B − 1 do

compute qi+1 according to (3.5.2);
end for
if i = B then

set (q̃i, p̃i)← (qi,−pi)
end if
for i = B : N do

compute qi+1 and q̃i+1 according to (3.5.2);
compute Dqi+1, Dq̃i+1 from (3.5.4) corresponding to qi+1, q̃i+1 respectively;
compute the row vectors ζ ← ζ +∇f(qi+1)⊤Dqi+1∆t

ζ̃ ← ζ̃ +∇f(q̃i+1)⊤Dq̃i+1∆t

;

if l := i−B ∈ TN and (3.5.11) hold (ignoring appearances of (k)) then
save the matrix b( k

G−⌊ k
G ⌋)G = −ζ ⊗ ζ̃;

reset as follows: ζ, ζ̃ ← 0, (q̃i+1, p̃i+1)← (qi+1,−pi+1)

Dqi+1, Dq̃i+1 ← 0, Dpi+1, Dp̃i+1 ← In

;

and update the counter k ← k + 1;
end if
if k ∈ GN then

compute Γi+1 according to (3.5.8);
set Γi+1 = Γi.

end if
end for

in Algorithm 2, instead of only the vectors ζ, ζ̃, this amounts to calculating at each

iteration the vectors ζ(i), ζ̃(i) corresponding to the ith observable and taking the sum of

the resulting update matrices in Γ to update Γ. This calls for no extra evaluations of ∇U
over the single observable case.

Remark 3.5.2. (Tangent processes along random directions) We mention here the situation

where simulating the full first variation processes (Dpqt, Dppt) in Rn×2n is prohibitively

expensive, namely when n2 is large. In order to calculate changes in Γ, a directional

tangent process can be used instead of (Dpqt, Dppt). Consider for a randomly chosen

vector v ∈ Rn with |v| = 1, the pair of vectors (Dpqtv,Dpptv) ∈ Rn×2. Multiplying on
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the right of ((3.5.3) and) (3.5.4) by v, one obtains the system

Dpvi+
1
3 = Dpvi −D2U(qi)Dqvi∆t

2

Dqvi+
1
2 = Dqvi +Dpvi+

1
3
∆t
2

Dpvi+
2
3 = exp(−∆tΓi)Dpvi+

1
3

Dqvi+1 = Dqvi+
1
2 +Dpvi+

2
3
∆t
2

Dpvi+1 = Dpvi+
2
3 −D2U(qi+1)Dqvi∆t

2 ,

(3.5.12)

where the first term involving the Hessian of U in (3.5.12) can be approximated by

−∇U(qi +
∆t

2
Dqvi) +∇U(qi)

and similarly for the last such term. The advantage of this approximation is that

it is no longer necessary to work with D2U , which is an n-by-n matrix, and instead

only with ∇U , a length-n vector. In continuous time, the resulting direction in Γ is∫
∇ϕ⊤v∇ϕ̃⊤vdπ̃v ⊗ v and from (3.3.1) the rate of change in asymptotic variance in this

direction is −2(
∫
∇ϕ⊤v∇ϕ̃⊤vdπ̃)2. However, the trade-off is that the resulting gradient

procedure in Γ turns out to be very slow to converge in high dimensions in comparison to

simulating a full first variation process; it is illustrative to think of the situation where the

randomly chosen vector v is taken from the set of standard Euclidean basis vectors, where

only one diagonal value in Γ is changed at a time. See also [187, 82] for such directional

derivatives under a different context.

3.5.2 One dimensional quadratic case

Here the algorithm given in Section 3.5.1 is used in the simplest one dimensional

U(q) =
V0
2
q2, f(q) =

1

2
q2, (3.5.13)

for V0 > 0, case to find the optimal constant friction. Since commutativity issues dis-

appear in the one-dimensional case, the optimal constant friction is known analytically

and is given by Proposition 3.4.5 to be Γ =
√
V0, with the asymptotic variance V

− 5
2

0 .

Moreover, the relationship between the asymptotic variance and Γ is explicitly given by

equations (3.4.8) and (3.4.12), which reduces in this case to

σ2(Γ) =
1

4V 2
0

(
Γ−1 +

1

V0
Γ

)
.
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The case V0 = 5 is illustrated in Figure 3.5.3. In the middle and right plot of Figure 3.5.3,

the procedure in Section 3.5.1 is used for 5 · 104 epochs, with ∆t = 0.08, block-size T =

125, L = 1 and Dconv = 2 · 10−4. Changing the observable to the linear

f(q) = q (3.5.14)

gives that the ‘optimal’ (but unreachable in the algorithm due to the constraints) friction

is 0 by Corollary 3.4.8. The right plot in Figure 3.5.3 shows that the procedure arrives

at a similar conclusion in the sense that the Γ hits and stays at µ = 0.2.

Fig. 3.5.1: Left: Relationship between asymptotic variance and Γ for (3.5.13). Middle and right:
Trajectory of Γ for (3.5.13) and (3.5.14) respectively by (3.5.8) with αi = 1, G = 1,
r = 0.5 and µ = 0.2. Middle: the red line is the optimal value Γ =

√
5 given by

Proposition 3.4.5. All plots are for V0 = 5.

3.5.3 Diffusion bridge sampling

The algorithm in Section 3.5.1 is applied in the context of diffusion bridge sampling [86, 88]

(see also for example [13, 48, 87]), where the SDE

dxt = −∇V (xt)dt+
√

2β−1dW ′
t (3.5.15)

for a suitable V : Rd → R, β > 0 and W ′
t standard Wiener process on Rd, is conditioned

on the events

x0 = x− and xT = x+ (3.5.16)

for some fixed T > 0, x0, x+ ∈ Rd and the problem setting is to sample from the path

space of solutions to (3.5.15) conditioned on (3.5.16). For the derivation of the following

formulations, we refer to Section 5 in [86] and Section 6.1 in [12]; here we extract a

simplified potential U to apply our algorithm on after a brief description.

Let

V (x) =
1

2
|x|2, x− = x+ = 0, β = 1, d = 1, T = 1.
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Using the measure given by Brownian motion conditioned on (3.5.16) as the reference

measure µ0 on the path space of continuous functions C([0, 1],R), the measure µ asso-

ciated to (3.5.15) conditioned on (3.5.16) satisfies dµ
dµ0

(x) ∝ exp

(
− 1

4

∫ T

0
|x|2dt

)
, where

the left hand side denotes the Radon-Nikodym derivative, so that discretising µ on a grid

in [0, 1] with grid-size δ > 0 gives the approximating measure π(q1, . . . , qn) ∝ e−U(q1,...,qn)

where U is given by

U(q) =
1

2
q⊤Σ−1q =

1

2
q⊤



2
δ + δ

4 − 1
δ

− 1
δ

2
δ + δ

4 − 1
δ

. . .

− 1
δ

2
δ + δ

4 − 1
δ

2
δ + δ

4 − 1
δ

 q.

From here the Langevin system (3.1.1) can be used to sample from π and the algorithm

given in Section 3.5.1 is applied. For this purpose, the observable f(q) = 1
2 |q|

2
is used

together with the parameters δ = 1
21 , n = 20, K = 1, L = 5, T = 60, B = 100

and Dconv = 0.01. Only the diagonal values of Γ are updated and their trajectories are

shown in Figure 3.5.2.

Fig. 3.5.2: Diagonal values of Γ over iterations of (3.5.8) with αi = 0.2, G = 5, r = 1 and
µ = 0.2.

At the end of 300000 epochs, Γ is given by

Γfinal = diag(1.2129, 1.5673, 1.8199, 1.8055, 1.2858, 0.9013, 0.3588, 0.2631,

0.2000, 0.2000, 0.2252, 0.2579, 0.3621, 0.4715, 1.3842, 1.9467,

1.9289, 1.6326, 1.3730, 1.1153).

This Γ is fixed and used for a standard sampling procedure for the same potential and

observable. The asymptotic variance is approximated by grouping the epochs after B =

93



100 burn-in iterations into NB = 999 blocks of T = 300 epochs, specifically,

σapprox =
1

NB

NB−1∑
l=0

[
1√
T∆t

T∑
i=1

∆t

(
f(qi+Tl+B)− 1

N

N∑
j=1

∆tf(qj+B)

)]2
,

where qi are iterates in the numerical approximation of qt, and this is compared to the

estimate from the same procedure using different values of fixed Γ in Table 3.5.1. Note

that Γ = Σ− 1
2 is the optimal Γ in the restricted class of matrices commuting with Σ given

by Proposition 3.4.5, where the asymptotic variance is known to be Tr(Σ
5
2 ) ≈ 6.4785.

σapprox
Γ = In 6.9834

Γ = Σ− 1
2 6.5096

Γ = Γfinal 6.1667

Tab. 3.5.1: Empirical asymptotic variances with NB = 999, T = 300, B = 100, N = 299700.

3.5.4 Bayesian inference

We adopt the binary regression problem as in [58] on a dataset2 with datapoints encod-

ing information about images on a webpage and each labelled with ‘ad’ or ‘non-ad’. The

labels {Yi}1≤i≤p, taking values in {0, 1}, of the p = 2359 datapoints (counting only those

without missing values) given in the dataset are modelled as conditionally independent

Bernoulli random variables with probability {ρ(β⊤Xi)}1≤i≤p, where ρ is the logistic func-

tion given by ρ(z) = ecz/(1 + ecz) for all z ∈ R, c ∈ R is given by (3.5.18), {Xi}1≤i≤p, β,

both taking values in Rn, are respectively vectors of known features from each datapoint

and regression parameters to be determined. The parameters β are given the prior dis-

tribution N (0,Σ), where Σ−1 = 1
p

∑p
i=1X

⊤
i Xi ∈ Rn×n, and the density of the posterior

distribution of β is given up to proportionality by

πβ(β|{(Xi, Yi)}1≤i≤p) ∝ exp

( p∑
i=1

{cYiβ⊤Xi − log(1 + ecβ
⊤Xi)} − 1

2
β⊤Σ−1β

)
,

so that the log-density gradient, in our notation −∇U , is given by

−∇U(β) =

p∑
i=1

cXi(Yi − (1 + e−cβ⊤Xi)−1)− Σ−1β.

2 http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements. Note that besides missing values
at some datapoints, the dataset comes with many quantitatively duplicate features and also some linear
dependence between the vectors made up of a single feature across all datapoints; here features have been
removed so that the said vectors remaining are linearly independently. In particular, n = 642.
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The observable vector fi(q) = qi, 1 ≤ i ≤ n, corresponding to the posterior mean is used.

The coordinate transform β̂ = Σ− 1
2 β is made before applying the symmetric precondi-

tioner Σ
1
2 on the Hamiltonian part of the dynamics so that the dynamics simulated are

as in (3.1.1) with M = In and

−∇U(β̂) = Σ
1
2

p∑
i=1

cXi(Yi − (1 + e−c(Σ
1
2 β̂)⊤Xi)−1)− β̂. (3.5.17)

We use the observable vector fi(β̂) = β̂i, 1 ≤ i ≤ n and the sum of their corresponding

asymptotic variances as the value to optimise with respect to Γ, but show in Figures 3.5.3

and 3.5.4 the estimated asymptotic variances for both sets fi(β̂), fi(β) of observables,

where the estimation is calculated using the vector on the left of the outer product

in (3.5.9) in accordance with 2
∫
∇ϕ⊤Γ∇ϕdπ̃ which follows from the formula (3.2.12)

after integrating by parts with truncation. The approximation (3.5.5) for the term(s)

including the Hessian in (3.5.4) has been used to test the method despite the explicit

availability of the Hessian. During the execution of Algorithm 2, the constant c has been

set to

c = c̄ :=
5

maxi(Σ
1
2

∑
j XjYj)i

. (3.5.18)

In detail, 30000 epochs are simulated; after 100 burn-in iterations of the Langevin dis-

cretisation (3.5.2), 2 parallel simulations of (3.5.2) and 2 of the first variation discretisa-

tion (3.5.4) are run according to Section 3.5.1 with time-step ∆t = 0.1, block-size T =

100, L = 1 block per update in Γ, K = 1 and tolerance Dconv = 0.01.

Fig. 3.5.3: Left: Diagonal values of Γ over iterations of (3.5.8) with αi = 0.1, G = 1, r = 1 and
µ = 0.2. Note that the mean of the absolute values of all entries of Γ at the end of
the iterations is 0.0039. Middle: Sum over i of estimated asymptotic variances for
fi(β̂); right: for fi(β).

In Figures 3.5.3 and 3.5.4, Γ starts initially from the identity In and descends towards 0.2In

(restricted as in (3.5.7)), as expected for a linear observable and potential close to a

quadratic (see Proposition 3.4.9). We note that in the gradient descent procedure for Γ,

using the minibatch gradient does not change the behaviour shown in Figures 3.5.3
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Fig. 3.5.4: The same as in the caption of Figure 3.5.4, except r = 0.5 and a different dataset
(https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1)) is used where n = 167
and p = 476. The mean of the absolute values of all entries of Γ at the end of the
iterations is 0.0210.

and 3.5.4. In addition, although the trajectory of Γ seems to go directly to zero, we

expect the optimal Γ to be close but away from zero since the potential is close but not

exactly quadratic.

Next, the value for Γ is fixed at various values and used for hyperparameter training on

the same problem for the first dataset, using both the full gradient (3.5.17) and a mini-

batch3 version where the sum in (3.5.17) is replaced by p
10 times a sum over a subset S

of {1, . . . , p} with 10 elements randomly drawn without replacement such that S changes

once for each i in (3.5.2). In the minibatch gradient case, c is set to a fraction of (3.5.18),

specifically c̄( p
10 )−1. In Tables 3.5.2 and 3.5.3, variances for the posterior mean estimates

are shown (similar variance reduction results persist when using the probability of success

for features taken from a single datapoint in the dataset).

In detail, for each row of Tables 3.5.2 and 3.5.3, N = 29700 epochs of (3.5.2) are simulated

with the same parameters as above. The asymptotic variance for each observable entry

is approximated using block averaging (Section 2.3.1.3 in [123]) by grouping the epochs

after B = 100 burn-in iterations into NB = 99 blocks of T = 300 epochs, that is,

σ2
k,approx =

1

NB

NB−1∑
l=0

[
1√
T∆t

T∑
i=1

∆t

(
fk(qi+Tl+B)− 1

N

N∑
j=1

fk(qj+B)

)]2

and NB = 3 blocks of T = 9900 epochs (respectively for each column of Tables 3.5.2

and 3.5.3); the values 0.8667 and 0.1571 approach and correspond to values in the middle

plot of Figure 3.5.3 after multiplying by n = 642. The variances are compared to those

using a gradient oracle: unadjusted (overdamped) Langevin dynamics[58] and with an

3 The control variate stochastic gradient on underdamped dynamics [39, 149] is not directly considered
here but the benefits of an improved Γ is expected to carry over to such variations of the stochastic
gradient.
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irreversible perturbation[55], where the antisymmetric matrix J is given by

Ji,j =


1 if j − i = 1 or 1− n,

−1 if i− j = 1 or 1− n,

0 otherwise

for 1 ≤ i, j ≤ n and the stepsizes are the same as for underdamped implementa-

tions. In addition, the Euclidean distance from intermediate estimates of the poste-

rior mean to a total, combined estimate is shown for each method. Specifically, dk :=∣∣∣ 1
300k

∑300k
i=1 f(qi+B)− π̂(f)

∣∣∣ is plotted against k in Figure 3.5.5, where π̂(f) is the mean

(over the methods listed in Tables 3.5.2 and 3.5.3) of the final posterior mean estimates.

A weighted mean with unit weights except one half on the Γ = 0.2In and Γ = 0.1In

methods also gave similar results, though this is not shown explicitly.

block-size T = 300 block-size T = 9900
Γ = In (1.2669,0.0320) (0.8667,0.7190)

Γ = 0.2In (0.2939,0.0018) (0.1571,0.0243)
Γ = 0.1In (0.1739,0.0007) (0.0890,0.0092)

overdamped (1.2298,0.0319) (0.8687,0.8662)
irreversible overdamped (0.5642,0.0077) (0.3835,0.1614)

Tab. 3.5.2: ( 1
n

∑n
k=1 σ

2
k,approx,

1
n

∑n
k=1(σ

2
k,approx − 1

n

∑n
l=1 σ

2
l,approx)

2) - Empirical asymptotic
variances, mean and variance over observable entries, where full gradients have been
used.

block-size T = 300 block-size T = 9900
Γ = In (1.9575,0.0744) (1.3338,1.6650)

Γ = 0.2In (0.4600,0.0042) (0.2781,0.0784)
Γ = 0.1In (0.2646,0.0016) (0.1335,0.0208)

overdamped (1.9137,0.0791) (1.3065,1.9714)
irreversible overdamped (0.8764,0.0150) (0.5778,0.3266)

Tab. 3.5.3: The same as in Table 3.5.2, except for minibatch gradients

These figures demonstrate improvement of an order of magnitude in observed variances

for Γ close to that resulting from the gradient procedure over Γ = In. The improve-

ment is also seen when compared to overdamped Langevin dynamics with and without

irrreversible perturbation.
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Fig. 3.5.5: Euclidean distances to a combined posterior mean estimate over time. Left: full
gradient. Right: minibatch gradient.

3.5.5 Alternative methods

Here we complete the section on numerical methods by detailing alternative ways to

approximate the gradient value for our friction optimisation procedure.

Solving the Poisson equation with a Galerkin method

Throughout this section 2.3.1, M = In is assumed. In low dimensions, it is feasible to

approximate ∇pϕ and a change in Γ using Hermite polynomials. This approach gives an

approximation in a finite subspace of L2(π̃) at the level of ϕ, as opposed to estimates

of ∇pϕ at particular points in space as in the Monte Carlo approach in Section 3.5.

Specifically, the polynomials given by

Hl(z) =
(−1)l√
l!
e

z2

2
dl

dzl

(
e−

z2

2

)
for l ∈ N0 and their products in the multidimensional case

Hl(p) =

n∏
k=1

Hlk
(pk), p = (p1, . . . , pn) ∈ Rn

for multiindices l = (l1, . . . , ln) ∈ Nn
0 are considered in the weighted L2(ω) space, where ω

is given by ω(p) = e−
1
2
|p|2

(2π)−
n
2

. A property of the Hermite polynomials that is repeatedly

used here is that

∂zHl(z) =
√
lHl−1(z).

For the application of Hermite polynomials in solving the Poisson equation associated

to Langevin dynamics (in the case of scalar friction), we refer to [168]. See also Chap-

ter 5 in [84] for Hermite polynomials in the multidimensional setting. In the case of a
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non-quadratic potential U , the same polynomials are used here after a Gram-Schmidt

procedure in L2(π), which are denoted (Ĥl)l∈Nn
0
, so that

Ĥl =
∑

|k|∞≤K

α
k
lHk,

where |k|∞ = max(k1, . . . , kn), K ∈ N, for some constants α
l
k ∈ R calculated numerically.

Their products with Hl are considered on L2(π̃). Similarly, Fourier approximations can

be used in the case of an n-torus (in q).

The observable f ∈ L2
0(π) is approximated by the projection defined by

Πq
Kf :=

∑
|l|∞≤K

Ĥl

∫
fĤldπ =

∑
|k|∞,|l|∞≤K

Ĥlα
k
l

∫
fHkdπ. (3.5.19)

Since the generator has the form

L = ∇∗
p · ∇q −∇∗

q · ∇p − (∇∗
p )⊤Γ∇p,

where

∇∗
q = −∇q +∇U, ∇∗

p = −∇p + p

are the respective formal L2(π̃)-adjoints of ∇q and ∇p, the negative of the generator in the

Poisson equation applied on functions of the form (3.5.19) is the (K + 1)2n-by-(K + 1)2n

matrix given by

Lk,l,k̂,l̂ = ⟨ĤkHl,−L(Ĥk̂Hl̂)⟩π̃

= −⟨Ĥk∇pHl,∇qĤk̂Hl̂⟩π̃ + ⟨∇qĤkHl, Ĥk̂∇pHl̂⟩π̃ + ⟨Ĥk∇pHl,ΓĤk̂∇pHl̂⟩π̃

= −
∑
i

⟨Ĥk, ∂qiĤk̂⟩π(
√
liδ

l−ei

l̂
) +

∑
i

⟨∂qiĤk, Ĥk̂⟩π(

√
l̂iδ

l

l̂−ei
)

+
∑
i,j

δ
k

k̂
δ
l−ej

l̂−ei

√
lj l̂iΓi,j (3.5.20)

where δ denotes the Kronecker delta here, the dependences of Ĥk, Ĥk̂ and Hl, Hl̂ on q

and p respectively have been suppressed, ⟨v, w⟩ denotes
∑

i⟨vi, wi⟩ for v = (v1, . . . , vn), w =

(w1, . . . , wn) and ⟨·, ·⟩ denotes the inner product on L2(π̃). Note further that

⟨∂qiĤk, Ĥk̂⟩π =
∑

|l|∞,|l̂|∞≤K

α
l
k

√
li⟨Hl−ei , Hl̂⟩πα

l̂

k̂
,
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so that since α
l
k are derived from the inner products in L2(π) between the original Hermite

polynomials (Hl)l, these inner products are the only values to be computed numerically

other than those for the projection Πq
Kf of the observable onto the finite dimensional

subspace of L2(π̃) spanned by the first K + 1 Hermite polynomials given by (3.5.19).

Solving the Poisson equation then reduces to finding the coefficients ϕk,l ∈ R of

Π
(q,p)
K ϕ =

∑
|k|∞,|l|∞≤K

ϕk,lĤkHl

solving the linear system

∑
|k̂|∞,|l̂|∞≤K

Lk,l,k̂,l̂ϕk̂,l̂ = Π
(q,p)
K f =


∑
|k̂|∞≤K α

k̂
k

∫
fHk̂dπ if l = 0

0 otherwise,
(3.5.21)

where note Lk,l,0,0 = L0,0,k̂,l̂ = 0 so that only ϕk,l for (k, l) ̸= (0, 0) are determined

by (3.5.21) and ϕ0,0 = 0 is enforced independently. Finally, the gradient direction in Γ is

given by

(∆Γ)i,j =

∫ ∑
|k|∞,|l|∞≤K

ϕk,lĤk

√
liHl−ei

∑
|k̂|∞,|l̂|∞≤K

ϕk̂,l̂(−1)|l̂|Ĥk̂

√
l̂jHl̂−ej

dπ̃

=
∑

|k|∞,|l|∞,|k̂|∞,|l̂|∞≤K

ϕk,lϕk̂,l̂

√
li l̂j(−1)|l̂|δk

k̂
δ
l−ei

l̂−ej

=
∑

|k|∞,|l|∞≤K

ϕk,lϕk,l−ei+ej

√
li(l − ei + ej)j(−1)|l| (3.5.22)

where
∣∣∣l̂∣∣∣ = l̂1 + · · · + l̂n and ϕk,l = 0 if there is some i such that ki > K or li > K.

More robustly, the asymptotic variance can be discretised first, followed by taking the

gradient direction with respect to the approximate asymptotic variance. Namely, (half

of) the asymptotic variance
∫
∇pϕ⊤Γ∇pϕdπ̃ can be approximated by∑

|k|∞,|l|∞,|k̂|∞,|l̂|∞≤K

ϕk,lLk,l,k̂,l̂ϕk̂,l̂ (3.5.23)

(or simply the last term in (3.5.20) replacing Lk,l,k̂,l̂), so that the derivative with re-

spect to the entries Γi,j can be taken as follows. With abuse of notation, let L−1 ∈
R(K+1)2n−1×(K+1)2n−1 be the inverse of the matrix depending on Γ given by (3.5.20)

with the Lk,l,0,0 = L0,0,k̂,l̂ = 0 entries removed. Let also ϕ ∈ R(K+1)2n be the vector
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made up of the coefficients ϕk,l for k+ l ̸= 0 so that equation (3.5.21) can be rewritten as

ϕ = L−1((Π
(q,p)
K f)2, . . . , (Π

(q,p)
K f)(K+1)2n)⊤.

By (3.5.20), the derivative of Lk,l,k̂,l̂ with respect to the entry Γi,j is

∂Li,j

k,l,k̂,l̂
:= δ

k

k̂
δ
l−ej

l̂−ei

√
lj l̂i.

Let ∂Li,j ∈ R(K+1)2n−1×(K+1)2n−1 denote the matrix with entries ∂Li,j

k,l,k̂,l̂
except that

the ∂Li,j
k,l,0,0 and ∂Li,j

0,0,k̂,l̂
entries are deleted. The derivative of (3.5.23) with respect to

the entry Γi,j is then

ϕ⊤∂Li,jϕ+
∑

|k|∞,|l|∞,|k̂|∞,|l̂|∞≤K

2(∂ϕi,j)k,lLk,l,k̂,l̂ϕk̂,l̂, (3.5.24)

where ∂ϕi,j ∈ R(K+1)2n is the vector given by

(∂ϕi,j)k :=

0 if k = 1

−(L−1∂Li,jϕ)k−1 otherwise,

so that the gradient direction in Γ is given by the negative of (3.5.24).

It’s also possible to approximate ϕ using a finite difference in q, Hermite projection in p

approach in the case when the state space in q is the n-torus; we omit further descriptions

but refer to [64] for this direction.

Approximation of ∆Γ using independent realisations

One can use the ending values of a number of independent realisations of (3.5.2) to

approximate the integral with respect to π in (3.5.1) and, for each of those realisations,

to use two additional sets of realisations of (3.5.2) and (3.5.4) to approximate each of the

expectations under the integral in (3.5.1). This is alternative to the thinning approach

described earlier.

Fix a starting point (q, p); the first of the expectations in (3.5.1) (and similarly for the

second) can be approximated at time s = i∆t with

1

K

K∑
k=1

∇f(qi(k))
⊤Dqi(k)
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where K ∈ N, (qi(k), p
i
(k))i∈N denotes the solution to (3.5.2) with initial condition (q, p),

noise ξi = ξi(k) for all i ∈ N and where ξi(k) are independent as k = 1, . . . ,K, i varies

and (Dqi(k), Dp
i
(k)) is the corresponding solution to (3.5.4). Subsequently, introducing an

additional population of independent realisations of (3.5.2) to draw from π after some

burn-in period, the change (3.5.1) in Γ can be approximated by

− 1

L

L∑
l=1

( B+T∑
i=B+1

∆t

K

K∑
k=1

∇f(qi(l,k))
⊤Dqi(l,k)

)⊤( B+T∑
i=B+1

∆t

K

K∑
k=1

∇f(q̃i(l,k))
⊤Dq̃i(l,k)

)

where B ∈ N0 is some burn-in number of iterations, T ∈ N is some a posteriori number of

iterations depending on whether the magnitude of the entries of DqB+T
(l,k) are smaller than

some fixed value for all k, l; furthermore L ∈ N, ((qi(l,k), p
i
(l,k)))i∈N denotes the solution

to (3.5.2) with initial condition say (0, 0), noise ξi = ξi(l,k) for all i ∈ N satisfying

ξi(l,k) = ξi(l,k′) ∀i < B, 1 ≤ k, k′ ≤ K

and are independent otherwise, ((q̃i(l,k), p̃
i
(l,k)))i≥B denotes the solution to (3.5.2) with

‘initial’ condition

(q̃B(l,k), p̃
B
(l,k)) = (qB(l,k),−p

B
(l,k))

for all 1 ≤ k ≤ K, 1 ≤ l ≤ L, independent noise ξi = ξ̃i(l,k) for i ≥ B independent also

to (ξi(l,k))i∈N. The notation (Dqi(l,k), Dp
i
(l,k)), (Dq̃i(l,k), Dp̃

i
(l,k)) represent the correspond-

ing solutions to (3.5.4).

3.6 Proofs

Theorem 3.6.1. Let Assumption 5 hold. For any F0-measurable z0 : Ω → R2n, there

exists an almost surely continuous in t solution (qt, pt) = zt : Ω → R2n to (3.1.1) that is

Ft-adapted and unique up to equivalence. Furthermore, for any z ∈ R2n, t ≥ 0, let ρzt be

the probability measure given by

ρzt (A) = P(zzt ∈ A) (3.6.1)

for any Borel measurable A, where zzt denotes the solution to (3.1.1) starting at z0 = z,

then ρzt

1. is a transition probability in the sense that

(a) (t, z) 7→ ρzt (A) is Borel measurable on (0,∞)× R2n,

(b) the Chapman-Kolmogorov relation [67] holds and
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2. admits a density denoted ρ(z, ·, t) : R2n → R with respect to the Lebesgue measure

on R2n at every (t, z) ∈ (0,∞)×R2n such that ρ is a measurable function satisfying

for every z ∈ R2n,

ρ(z, ·, ·) ∈ C∞(R2n × (0,∞)). (3.6.2)

Proof. Theorem 3.5 in [111] together with (3.2.8) yields existence and uniqueness of the

solution to (3.1.1). Theorem 3.1 and 3.6 in Section 5 of [67] give that ρzt (A) given by (3.6.1)

is a probability kernel, that is, ρzt (A) is Borel measurable in z for fixed A, t, is a probability

measure in A for fixed z, t and satisfies the Chapman-Kolmogorov relation. For Borel

measurability of (t, z) 7→ ρzt (A) for fixed A, consider ẑzt given by

ẑzt (ω) =

zzt (ω) if ω : zz•(ω) ∈ C([0,∞)),

0 otherwise.
(3.6.3)

The process ẑzt is continuous in t and F-measurable in ω, therefore P(ẑzt ∈ A) = P(zzt ∈ A)

is continuous in t hence Borel measurable in (t, z). Finally, ρzt admits a density at every

(t, z) ∈ (0,∞) × R2n satisfying (3.6.2) due to Itô’s rule and Hörmander’s theorem [95];

measurability with respect to the starting point z and therefore jointly in all of the

arguments [2, Lemma 4.51] follows by the strong Feller property given by Theorem 4.2

in [51], because ρ(·, ζ, t) is the pointwise limit of the continuous functions (
∫
ηk(ζ −

ζ ′)ρ(·, ζ ′, t)dζ ′)k>0, where ηk denotes the standard scaled mollifiers.

For all t ≥ 0, all z ∈ R2n and all f : R2n → R integrable under the law L((zt)t≥0|z0 = z)

of zt starting at z, let

Pt(f) : z 7→ E(f(zzt )) = E(f(zt)|z0 = z). (3.6.4)

The family (Pt)t≥0 forms a strongly continuous (by Proposition 3.6.2) semigroup (by the

Markov property; Theorem 3.5 in [111]) on L2(π̃) with unit operator norm. Denote by L

the infinitesimal generator associated to this semigroup, given by

Lu = lim
t→0

Pt(u)− u
t

(3.6.5)

for all functions u ∈ D(L) ⊂ L2(π̃), where the domain D(L) consists of the functions for

which the above limit in L2(π̃) exists.

Proposition 3.6.2. The family (Pt)t≥0 is strongly continuous in L2(π̃).

Proof. Fix ϵ > 0. For any f ∈ L2(π̃), there exists g ∈ C∞
c such that ∥f − g∥L2(π̃) ≤ ϵ

3 .
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By triangle inequality, it holds that

∥Ptf − f∥L2(π̃) ≤ ∥Ptf − Ptg∥L2(π̃) + ∥f − g∥L2(π̃) + ∥Ptg − g∥L2(π̃). (3.6.6)

The last term on the right hand side converges to 0 as t→ 0 by Itô’s rule. Since the mea-

sures
∫
E[1·(z

z
t )]π̃(dz) solve the associated Fokker-Planck equation in the distributional

sense, it is equal to the unique solution π̃, therefore the first term on the right-hand side

of (3.6.6) can be bounded by ϵ
3 after Jensen’s inequality.

Proposition 3.6.3. The differential operator −L defined on C∞
c has a maximally accre-

tive closure in L2(π̃).

Proof. Let K denote the differential operator

K = e−
1
2 (U(q)+ p2

2 )L(e
1
2 (U(q)+ p2

2 )·)

= p⊤M−1∇q −∇U(q)⊤∇p +
1

2
TrΓ− 1

4
p⊤Γp+∇⊤p Γ∇p

acting on C∞
c . By a straightforward adaptation of the proof of Proposition 5.5 in [91],

the closure of −K in L2(R2n) and therefore the closure of −L in L2(π̃) are maximally

accretive.

Proof of Lemma 3.3.1. By Proposition 3.6.3, there are ϕk ∈ C∞
c such that (ϕk,−Lϕk)k∈N

is an approximating sequence to (ϕ,−Lϕ) in L2(π̃)2. We have

λm

∫
|∇pϕk −∇pϕk′ |2dπ̃ ≤

∫
∇p(ϕk − ϕk′)⊤Γ∇p(ϕk − ϕk′)dπ̃

= −
∫

(ϕk − ϕk′)(Lϕk − Lϕk′)dπ̃, (3.6.7)

so that ∇pϕk is Cauchy, with limit denoted as g ∈ L2(π̃). For any h ∈ C∞
c ,∣∣∣∣∫ gh+

∫
ϕ∇ph

∣∣∣∣ ≤ ∣∣∣∣∫ gh−
∫
∇pϕkh

∣∣∣∣+

∣∣∣∣∫ ϕ∇ph−
∫
ϕk∇ph

∣∣∣∣,
hence

∇pϕk → g = ∇pϕ ∈ L2(π̃). (3.6.8)

Some additional preliminaries are presented here for the proof of Theorem 3.3.2. For

small ϵ ∈ R and some direction δΓ ∈ Rn×n such that Γ + ϵδΓ ∈ Sn++, let Lϵ be the

infinitesimal generator of (3.1.1) with the perturbed friction matrix Γ + ϵδΓ in place of Γ,
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given formally by the differential operator

−Lϵ = −p⊤M−1∇q +∇U(q)⊤∇p + p⊤M−1(Γ + ϵδΓ)∇p −∇⊤p (Γ + ϵδΓ)∇p.

The formal L2(π̃)-adjoint of Lϵ is denoted

−L∗
ϵ = p⊤M−1∇q −∇U(q)⊤∇p + p⊤M−1(Γ + ϵδΓ)∇p −∇⊤p (Γ + ϵδΓ)∇p

just as for L∗.

Proof of Theorem 3.3.2. For ϵ ≤ ϵ′, by Theorem 3.2.3 there exists a solution ϕ + δϕϵ ∈
L2
0(π̃) to the Poisson equation with the perturbed generator −Lϵ(ϕ + δϕϵ) = f − π(f).

By Theorem 3.2.4, the directional derivative of σ2(Γ) in the direction δΓ : Rn → Rn×n is

1

2
dσ2.δΓ = lim

ϵ→0

1

ϵ

∫
δϕϵfdπ̃. (3.6.9)

By Proposition 3.6.3, there are ϕk, ϕk,ϵ ∈ C∞
c such that (ϕk,−Lϕk)k∈N, (ϕk,ϵ,−Lϵϕk,ϵ)

are approximating sequences to (ϕ, f − π(f)), (ϕ+ δϕϵ, f − π(f)) respectively in L2(π̃)2.

Furthermore, in the same way as in the proof of Lemma 3.3.1 to obtain (3.6.8), it holds

that

∥∇pϕk −∇pϕ∥L2(π̃) + ∥∇pϕk,ϵ −∇p(ϕ+ δϕϵ)∥L2(π̃) → 0 as k →∞. (3.6.10)

Using the obvious extension on the notation from (3.1.7),∫
(ϕk,ϵ− ϕk)(f − π(f))dπ̃ =

∫
(ϕk,ϵ − ϕk)(f − π(f) + L∗ϕ̃k)dπ̃ −

∫
(ϕk,ϵ− ϕk)L∗ϕ̃kdπ̃,

(3.6.11)

where the first term on the right hand side is negligible as k → ∞ for any fixed ϵ due

to L∗ϕ̃k = L̃ϕk and the second term is

−
∫

(ϕk,ϵ − ϕk)L∗ϕ̃kdπ̃ =

∫
(−Lϵϕk,ϵ + Lϕk)ϕ̃kdπ̃ −

∫
ϵ(M−1p−∇p)⊤δΓ∇pϕk,ϵϕ̃kdπ̃.

Again, the first term on the right hand side is negligible for any fixed ϵ as k → ∞ since

both terms in the bracket converge to ±(f −π(f)). Integration by parts on the last term

gives

−
∫
ϵ(M−1p−∇p)⊤δΓ∇pϕk,ϵϕ̃kdπ̃ = −

∫
ϵ∇pϕ⊤k,ϵδΓ∇pϕ̃kdπ̃
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Collecting the above, for any fixed ϵ, taking k →∞ and using (3.6.10),∫
δϕϵfdπ̃ = −

∫
ϵ∇pϕ⊤δΓ∇p(ϕ̃+ δϕ̃ϵ)dπ̃

holds. Plugging into (3.6.9), the directional derivative becomes

1

2
dσ2.δΓ = − lim

ϵ→0

∫
∇pϕ⊤δΓ∇p(ϕ̃+ δϕ̃ϵ)dπ̃. (3.6.12)

From here, for any ϵ, the unwanted term under the limit can be controlled by approxi-

mating again with ϕ̃k,ϵ,

λm

∫ ∣∣∣∇p(ϕ̃k,ϵ − ϕ̃k)
∣∣∣2dπ̃

≤
∫
∇p(ϕ̃k,ϵ − ϕ̃k)⊤(Γ + ϵδΓ)∇p(ϕ̃k,ϵ − ϕ̃k)dπ̃

=

∫
(ϕ̃k,ϵ − ϕ̃k)(M−1p−∇p)⊤(Γ + ϵδΓ)∇p(ϕ̃k,ϵ − ϕ̃k)dπ̃,

= −
∫

(ϕ̃k,ϵ − ϕ̃k)L∗
ϵ (ϕ̃k,ϵ − ϕ̃k)dπ̃

= −ϵ
∫

(ϕ̃k,ϵ − ϕ̃k)(M−1p−∇p)⊤δΓ∇pϕ̃kdπ̃

= −ϵ
∫
∇p(ϕ̃k,ϵ − ϕ̃k)⊤δΓ∇pϕ̃kdπ̃

≤ ϵC
∫ (∣∣∣∇p(ϕ̃k,ϵ − ϕ̃k)

∣∣∣2 +
∣∣∣∇pϕ̃k∣∣∣2)dπ̃,

where λm = inf0<ϵ≤ϵ′ λ
ϵ
m, λ

ϵ
m is the smallest eigenvalue of Γ+ϵδΓ and C > 0 is a constant

depending on δΓ and independent of k. Therefore taking k →∞ and using (3.6.10) gives∫ ∣∣∣∇pδϕ̃ϵ∣∣∣2dπ̃ ≤ ϵC

λm − ϵC

∫ ∣∣∣∇pϕ̃∣∣∣2dπ̃
holds for small enough ϵ and putting into (3.6.12) concludes the proof.

Proof of Lemma 3.4.1. Substituting (3.4.3), (3.4.4) and (3.4.1) into the Poisson equa-

tion (3.1.5), one obtains

−

(
0 M−1

−Σ−1 −ΓM−1

)(
q

p

)
·

(
GSq + Ep+ g

E⊤q +HSp+ h

)
− Γ : HS

=
1

2
q · U0q + l · q − 1

2
U0 : Σ.
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Comparing the constant, first order and second order coefficients in p give respectively

the sufficient conditions (3.4.5), (3.4.6) and (3.4.7) as stated.

Proof of Lemma 3.4.2. Comparing coefficients in q in equation (3.4.5) gives

2Γ : HS = U0 : Σ (3.6.13)

h⊤Σ−1 = l⊤ (3.6.14)

2EΣ−1 = U0 +A2 (3.6.15)

and the same for condition (3.4.6) gives

M−1GS = HSΣ−1 +M−1ΓE⊤, (3.6.16)

M−1g = M−1Γh. (3.6.17)

Condition (3.6.15) yields (3.4.9). Together with (3.4.7), this gives (3.4.10). From the

expression (3.4.10) and by symmetry of U0 , condition (3.6.13) is in turn satisfied:

2Γ : HS = Γ : ((ΣU0 − ΣA2 − 2A1M)Γ−1)

=
∑
i,j,k,l

Γji(Σik(U0)kl − Σik(A2)kl − (A1)ikMkl)(Γ
−1)lj

=
∑
i,k

(U0)kiΣki = U0 : Σ,

where symmetry of Σ and M have been used. Substituting (3.4.9) and (3.4.10) into equa-

tion (3.6.16) then gives (3.4.8). Equations (3.6.14) and (3.6.17) give the equations (3.4.11)

for g and h.

Proof of Lemma 3.4.3. Denote

Ḡ =

(
GS E

E⊤ HS

)
, Ū0 =

(
U0 0

0 0

)
, Σ̄ =

(
Σ 0

0 M

)
, ḡ =

(
g

h

)
, l̄ =

(
l

0

)
.

Each of ϕ and f − π(f) are given by

ϕ(z) =
1

2
z · Ḡz − ḡ · z − 1

2
Ḡ : Σ̄

f(z)− π(f) =
1

2
z · Ū0z − l̄ · z −

1

2
Ū0 : Σ̄
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for z = (q, p) ∈ R2n. Substituting into σ2 = 2⟨ϕ, f − π(f)⟩π̃ gives

2

∫
ϕ(f − π(f))dπ̃

=
1

2

∫
(z · Ḡz)(z · Ū0z)dπ̃ − 1

2

∫
(z · Ḡz)Ū0 : Σ̄dπ̃ + 2

∫
(ḡ · z)(l̄ · z)dπ̃

− 1

2

∫
Ḡ : Σ̄(z · Ū0z)dπ̃ +

1

2
(Ḡ : Σ̄)(Ū0 : Σ̄),

where ∫
(z · Ḡz)(z · Ū0z)dπ̃ =

∑
i,j,u,v

Ḡij(Ū0)uv

∫
zizjzuzvdπ̃

=
∑

i,j,u,v

Ḡij(Ū0)uv

(
Σ̄ijΣ̄uv + Σ̄iuΣ̄jv + Σ̄ivΣ̄ju

)
= (Ḡ : Σ̄)(Ū0 : Σ̄) + 2Tr(ḠΣ̄Ū0Σ̄).

As a result,

2

∫
ϕ(f − π(f))dπ̃ =

1

2
(Ḡ : Σ̄)(Ū0 : Σ̄) + Tr(ḠΣ̄Ū0Σ̄)− 1

2
(Ḡ : Σ̄)(Ū0 : Σ̄)

+ 2

∫
(ḡ · z)(l̄ · z)dπ̃

= Tr(ḠΣ̄Ū0Σ̄) + 2ḡ · Σ̄l̄.

Proof of Proposition 3.4.4. Let

G =
1

2
MΣU0Γ−1Σ−1 +

1

2
ΓU0Σ, E =

1

2
U0Σ, H =

1

2
ΣU0Γ−1, (3.6.18a)

g = ΓΣl, h = Σl (3.6.18b)

so that by Lemma 3.4.2, ϕ given by (3.4.4) is the solution to the Poisson equation (3.1.5)

and inserting G, g into (3.4.12) gives

2⟨ϕ, f − π(f)⟩π̃ =
1

2
Tr(MΣU0Γ−1U0Σ + ΓU0Σ2U0Σ) + 2l⊤ΣΓΣl. (3.6.19)

The result follows since A : B > 0 for A,B ∈ Sn++.

Proof of Proposition 3.4.5. Let Σ = P⊤ΣdP be the eigendecomposition of Σ for orthog-

onal P . Since all symmetric matrices in the set commuting with Σ share eigenvectors
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with Σ, it suffices to find a unique extremal point of the asymptotic variance with respect

to the eigenvalues of Γ, call them (λi)1≤i≤n, λi ≥ 0. Setting again (3.6.18), ϕ given

by (3.4.4) is the solution to the Poisson equation (3.1.5) and the asymptotic variance σ2

given by (3.2.12) becomes

2⟨ϕ, f − π(f)⟩π̃ =
1

2
Tr(ΣU0Γ−1U0Σ + ΓU0Σ2U0Σ), (3.6.20)

which reduces to a sum of functions of the form aiλ
−1
i +biλi, ai, bi > 0 after diagonalising

with P and the result follows.

Proof of Proposition 3.4.6. By Lemma 3.4.2, the solution (3.4.4) to the Poisson equa-

tion (3.1.5) is

ϕ =

(
U0ΓΣ

4
+
MU0

4Γ

)
q2 +

U0Σ

2
qp+

U0Σ

4Γ
p2 + ΣΓlq + Σlp− U0ΓΣ2

4
− MU0Σ

2Γ
.

By Lemma 3.4.3, the asymptotic variance is given by

2

∫
ϕ(f − π(f))dπ̃ = 2Σ2

(
U2
0 Σ

4
+ l2

)
Γ +

U2
0 Σ2

2Γ
,

which attains the stated minimum at the stated Γ.

Proof of Proposition 3.4.7. Let Γ = γIn, γ ∈ R. Note there is a unique solution ϕ ∈ L2
0(π̃)

to (3.1.5) by Theorem 3.2.3. The solution ϕ to (3.1.5) has the expression ϕ =
∑

i αi(γqi +

pi). The asymptotic variance is equal to

2⟨ϕ, f − π(f)⟩π̃ = 2γ
∑
i,j

αiαj

∫
Rn

qi∂qjU(q)π(dq)

= −2γ
∑
i

α2
i

∫
Rn

qi∂qiπ(q)dq − 2γ
∑
i̸=j

αiαj

∫
Rn

qi∂qjπ(q)dq

= 2γ
∑
i

α2
i

∫
Rn

π(q)dq − 2γ
∑
i ̸=j

αiαj

∫
Rn−1

qi

∫
R
∂qjπ(q)dqjdq−j

= 2γ
∑
i

α2
i .

where dq−j denotes dq1 . . . dqj−1dqj+1 . . . dqn. Taking γ → 0 gives (3.4.15).

Remark 3.6.1. In the proof of Proposition 3.4.7, either of

γ(q) =
1√
2π
e−

1
2 (q+α)2 or γ(q) =

1

α
√

2π
e−

1
2 q

2
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for Γ = γIn also work for large α > 0 in place of γ(q) = ϵ.

For the proof of Proposition 3.4.9, some notation is introduced. For k̃ ∈ N0, let the

tridiagonal matrix Mk̃ ∈ R(k̃+1)×(k̃+1) be given by its elements

(Mk̃)i,j =



i if i+ 1 = j,

(i− 1)γ if i = j,

i− k̃ − 2 if i− 1 = j,

0 otherwise

(3.6.21)

for indices 1 ≤ i, j ≤ k̃ + 1.

Lemma 3.6.4. Let m ∈ N. Any tridiagonal matrix M̃ ∈ Rm×m of the form

(M̃)i,j =



bi if i+ 1 = j,

b′iγ if i = j,

b′′i if i− 1 = j,

0 otherwise

for constants bi, b
′
i, b

′′
i ∈ R, has an order γ determinant as γ → 0 if m is odd and a

determinant that is bounded away from zero as γ → 0 if m is even.

Lemma 3.6.4 is straightforwardly proved by repeatedly taking Laplace expansions. An

explicit proof is not given here.

Proof of Proposition 3.4.9. Only a standard Gaussian and M = 1 is considered, the argu-

ments for the general centered Gaussian case are the same. First consider the observable

f(q) = qk (3.6.22)

for some odd k ∈ N0. Take the polynomial ansatz

ϕ(q, p) =

k∑
i,j=0

ai,jq
ipj (3.6.23)

for ai,j ∈ R and Γ = γ > 0. It will be shown that arbitrarily small asymptotic variance

is achieved in the γ → 0 limit. Note that only pairs (i, j) with odd i and even j make
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nonzero contributions to the asymptotic variance. Applying −L to the ansatz,

−Lϕ =

k∑
i,j=0

−iai,jqi−1pj+1 + jai,jq
i+1pj−1 + γjai,jq

ipj − γj(j − 1)ai,jq
ipj−2

=
∑
i,j=0

(−(i+ 1)ai+1,j−1 + (j + 1)ai−1,j+1 + γjai,j

− γ(j + 2)(j + 1)ai,j+2)qipj .

where

ai,j = 0 ∀i, j < 0 and ∀i, j > k. (3.6.24)

Comparing coefficients in (3.1.5),

−(i+ 1)ai+1,j−1 + (j + 1)ai−1,j+1 + γjai,j − γ(j + 2)(j + 1)ai,j+2 = 0 (3.6.25)

for all (i, j) ̸= (k, 0). It holds by strong induction (in j′) that

ai′+j′,k+1−j′ = 0 ∀i′, j′ ≥ 0 (3.6.26)

because of the following. The base case j′ = 0 follows by (3.6.24), the induction step

follows by taking (i, j) = (i′+j′−1, k+2−j′) for i′ ≥ 0 in (3.6.25) and again using (3.6.24)

where necessary. Comparing coefficients in the Poisson equation (3.1.5) for (i, j) = (k, 0)

and using (3.6.24), (3.6.26) yields4

ak−1,1 = 1. (3.6.27)

Combining (3.6.27) with setting (i, j) = (j′ − 1, k + 1 − j′) for j′ = 1, . . . , k in (3.6.25),

the entries aj′,k−j′ satisfy the linear system

Mk(ak,0, ak−1,1, . . . , a0,k)⊤ = (1, 0, . . . , 0)⊤, (3.6.28)

where Mk ∈ Rk+1×k+1 is the tridiagonal matrix given in (3.6.21). In order to find the

order in γ as γ → 0 of the elements of (ak,0, . . . , a0,k)⊤ appearing in (3.6.28), it suffices

to find the order of the entries in the leftmost column of M−1
k . For this, let Ci ∈ R be

the ith minor appearing in the top row of the cofactor matrix of Mk. On the corresponding

submatrix, repeatedly taking the Laplace expansion on the leftmost column until only

the determinant of a (k + 1 − i)-by-(k + 1 − i) square matrix from the bottom right

corner of Mk remains to be calculated, then using Lemma 3.6.4 for this (k + 1 − i)-by-

4 It is illustrative to imagine a grid of coefficients and the relations (3.6.25) and (3.6.27) as L-shaped
chains on the grid, where (3.6.26) and (3.6.24) leave only a triangular area of nonzero coefficients.
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(k + 1 − i) matrix gives that Ci is of order γ as γ → 0 for odd i. Furthermore, the

determinant of Mk is bounded away from zero as γ → 0 by Lemma 3.6.4. Therefore

the elements of (ak,0, . . . , a0,k) in the left hand side of (3.6.28) with an odd index, that

is ak−j,j for even j, have order γ and at most order 1 otherwise as γ → 0. These

elements with odd indices are exactly those from the vector (ak,0, . . . , a0,k)⊤ that make

a contribution to the asymptotic variance. The ‘next’ set of contributions come from the

vector (ak−2,0, ak−3,1 . . . , a0,k−2). Using again (3.6.24) and (3.6.25), the vector satisfies

Mk−2(ak−2,0, ak−3,1, . . . , a0,k−2)⊤ = vk−2,

for some vector vk−2 (from the last term on the left hand side of (3.6.25)) of order γ as γ →
0 and since the determinant of Mk−2 is of order 1 (by Lemma 3.6.4), the contributions

here to the asymptotic variance are again of order γ. Continuing for

(ak−2j,0, ak−2j−1,1 . . . , a0,k−2j)
⊤, j ∈ N,

it follows that all contributions are of order γ as γ → 0. The resulting coefficients indeed

make up a solution ϕ to the Poisson equation because the matrices Mk are invertible and

because the coefficients ai,j for even i + j are equal to zero from repeating the above

procedure for the coefficients associated to Mk−1, Mk−3 and so on.

For the general case of (3.4.16), since L is a linear differential operator and the contri-

butions to the value of
∫
ϕ(f − π(f))dπ̃ come from exactly the same (odd i, even j) ai,j

coefficients from the corresponding solution ϕ to each summand in (3.4.16), the proof

concludes.

Proof of Proposition 3.4.10. Take the polynomial ansatz

ϕ(q, p) =

4∑
i,j=0

ai,jq
ipj (3.6.29)

for ai,j ∈ R, where ai,j not appearing in the sum are taken to be zero in the following.

Again, only the standard Gaussian is considered, it turns out the arguments follow sim-

ilarly otherwise. Comparing coefficients in (3.1.5) and using the same strong induction

argument as in the proof of Proposition 3.4.9 leads to (3.6.25) for all (i, j) ̸= (4, 0), (0, 0)

and equation (3.6.26). Taking (i, j) = (j′ − 1, 5 − j′) for 1 ≤ j′ ≤ 4 in (3.6.25) and

comparing the q4 coefficients in the Poisson equation, it holds that

M4(a4,0, a3,1, a2,2, a1,3, a0,4)⊤ = (1, 0, . . . , 0)⊤ (3.6.30)
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and taking (i, j) = (j′ − 1, 3− j′) for j′ ≥ 1 in (3.6.25) yields

M2(a2,0, a1,1, a0,2)⊤ = γ(2a2,2, 6a1,3, 12a0,4)⊤. (3.6.31)

Equations (3.6.30), (3.6.31) can be solved explicitly and the asymptotic variance is a

weighted sum of the resulting coefficients. Those in (3.6.29) that make contributions

are a4,0, a2,2, a2,0, which gives the asymptotic variance 12(21γ4+55γ2+27)
γ(3γ2+4) that goes to in-

finity as γ → 0 or γ →∞. Comparing constant terms in the Poisson equation yields

a0,2 =
1

2Γ

∫
q4
e

q2

2

√
2π
dq =

3

2Γ
,

which turns out to be satisfied by the solution for a0,2, so that (3.6.29) is indeed a solution;

note that the coefficients associated to M3 and M1 are zero by a similar procedure as

above.

Proof of Proposition 3.4.11. Note for a quadratic ϕ, it can be read immediately from

condition (3.4.7) that the nonconstant part of Γ must be equal to zero. Therefore consider

ϕ(q, p) =
∑
i,j=0

ai,jq
ipj (3.6.32)

where ai,j ∈ R for all i, j ≥ 0. The function Γ is given by

Γ(q) =
∑
k∈N0

bkq
k > 0 (3.6.33)

for bk ∈ R, k ∈ N, b0 > 0 and

−Lϕ = −
∑
i,j=0

(
(i+ 1)ai+1,j−1 − (j + 1)Σ−1ai−1,j+1 − j

∑
k=0

ai−k,jbk

+ (j + 2)(j + 1)
∑
k=0

ai−k,j+2bk

)
qipj ,

where if either i < 0 or j < 0, we set ai,j = 0. Comparing coefficients in q, p in the
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Poisson equation (3.1.5), we obtain

2a0,2b0 =
1

2
U0Σ (3.6.34)

Σ−1a0,1 − 2

1∑
k=0

a1−k,2bk = l (3.6.35)

Σ−1a1,1 − 2

2∑
k=0

a2−k,2bk =
1

2
U0 (3.6.36)

(i+ 1)ai+1,j−1 − (j + 1)Σ−1ai−1,j+1 − j
i∑

k=0

ai−k,jbk

+(j + 2)(j + 1)

i∑
k=0

ai−k,j+2bk = 0 ∀(i, j) ̸= (0, 0), (1, 0), (2, 0). (3.6.37)

Suppose for contradiction there exists a finite order polynomial solution to (3.1.5). Let

j∗ := min{J ∈ N0 : ai,j = 0 ∀j ≥ J, i ≥ 0} (3.6.38)

and k∗ ∈ N0 be the order of the polynomial Γ, that is,

bk = 0 ∀k ≥ k∗ + 1, bk∗ ̸= 0. (3.6.39)

Note that k∗ ≥ 2 since Γ must be positive. First of all, ϕ clearly cannot be a function

of just q. If j∗ = 2, then condition (3.6.37) applied to i = 0, j = 2 gives a1,1 = 0 which

contradicts with equation (3.6.36). Therefore j∗ ≥ 3. In this case, condition (3.6.37)

applied to j = j∗ yields

ai+1,j∗−1 = 0 ∀i ≥ 0, (3.6.40)

which in turn by condition (3.6.37) this time applied to j = j∗ − 1 yields

ai+1,j∗−2 = 0 ∀i ≥ k∗ + 1.

A strong induction argument yields for all 1 ≤ j ≤ j∗ − 1 the equation

ai+1,j−1 = 0 ∀i ≥ (j∗ − j)(k∗ + 1),

or equivalently, using the definition (3.6.38) for j∗, for all j ≥ 1 the equation

ai+1,j−1 = 0 ∀i ≥ max{−1, (j∗ − j)(k∗ + 1)} (3.6.41)
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and in particular

ai+1,2 = 0 ∀i ≥ (j∗ − 3)(k∗ + 1).

Now with this and (3.6.39), applying condition (3.6.37) for (i, j) = ((j∗−2)(k∗ +1)+1, 0)

gives

a(j∗−2)(k∗+1),1 = 0,

but then condition (3.6.37) for (i, j) = ((j∗ − 2)(k∗ + 1) − 1, 2), together with (3.6.41)

for j = 2, 3, 4 gives

a(j∗−3)(k∗+1),2 = 0.

If j∗ = 3, then this contradicts already since ai,2 = 0 for all i ≥ 0 and so j∗ ≤ 2

by definition. Carrying on from this for j∗ > 3, in a similar way, condition (3.6.37)

for (i, j) = ((j∗ − 3)(k∗ + 1)− 1, 3), with (3.6.41) for j = 3, 4, 5, gives

a(j∗−4)(k∗+1),3 = 0

and so on, where the last equation from the induction, which use condition (3.6.37)

for i = k∗, j = j∗ − 1 and (3.6.41) for j = j∗ − 1, j∗, j∗ + 1, is

a0,j∗−1 = 0.

Together with (3.6.40), this contradicts with the definition (3.6.38) of j∗.

3.7 Discussion

3.7.1 Relation to literature

The infinite time integral (3.1.9) has been used for the calculation of transport coefficients

in molecular dynamics [120, 157] and the derivative of the expectation appearing in (3.1.9)

with respect to initial conditions is a problem considered when calculating the ‘greeks’

in mathematical finance [66]. On the topic of the latter and in contrast to [66], there is

previous work dealing with cases of degenerate noise in the system, but the formulae de-

rived were done so under different motivations and do not seem to improve upon (3.1.10)

in our situation; some of these references are given in Remark 3.5.2.

Taking Γ → ∞ together with a time rescaling, the dynamics (3.1.1) become the over-

damped Langevin equation [158]. An analogous result holds [98] when Γ = Γ(q) is

position dependent, where a preconditioner for the corresponding overdamped dynam-

ics appears in terms of Γ−1; see Section 3.7.3 for a consideration of our method in the
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position dependent friction case. On the other hand, the Hessian of U makes a good

preconditioner in the overdamped dynamics because of the Brascamp-Lieb inequality, see

Remark 1 in [3].

On the application of underdamped Langevin dynamics with (variance reduced) stochas-

tic gradients alongside the related Hamiltonian Monte Carlo method, [197] presents a

comparison with convergence rates for the latter. In [39], convergence guarantees are

provided for variance reduced gradients in the overdamped case and the control variate

stochastic gradients in the underdamped case, along with numerical comparisons in low

dimensional, tall dataset regimes. Furthermore, the underdamped dynamics with single,

randomly selected component gradient update in place of the full gradient is considered

in [50].

Variance reduction by modifying the observable instead of changing the dynamics has

been considered for example in [7, 9, 180]. The methods there are incompatible with the

framework in the present work due to the improved observable being unknown before the

simulation of the Markov chain. Although useful, their applicability are limited in large n

cases due to storage requirements [7], not to mention either escalating computational cost

for improvements in the observable or requirement of a priori knowledge [180].

On the topic of adaptive MCMC, we refer the reader to the review in [79].

3.7.2 The nonconvex case

In the case where U is nonconvex, the Monte Carlo procedure in Section 3.5.1 may

continue to be used as presented, however the first variation process could easily stray from

the case of exponential decay as in Theorem 3.3.3. Transitions from one metastable state

to another cause the tangent process to increase in magnitude. In a one dimension double

well potential U(q) = q4

4 − q
2 + q

2 , linear observable f(q) = q case, these transitions occur

frequently enough during the gradient procedure in Γ that Dq blows up in simulation.

Even in cases for which the metastabilities are strong, so that transitions occur less

frequently, simulations show that Γ dives to zero in periods where no transitions are

occuring (as if the case of Corollary 3.4.8), but increase dramatically in value once a

transition does occur, causing the trajectory in Γ to decay over time but occasionally

jumping in value, so that there is no convergence for Γ. On the other hand, the Galerkin

method presented in Section 3.5.5 tends to give good convergence for Γ in such cases.

3.7.3 Position-dependent friction

It is possible to adapt the formula (3.3.1) to the case of position-dependent gradient

direction in Γ. The gradient direction is the same as (3.1.8) with the change that the

integral is replaced by the corresponding marginal integral in p. Ideas using such a
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formula need to take into account that the first variation process retains a non-vanishing

stochastic integral with respect to Brownian motion, so that the truncation in calculating

the corresponding infinite time integral in Section 3.5.1 is not as well justified, or rather,

does not happen in the execution of Algorithm 2 due to (3.5.11) not being satisfied.

Moreover, the work here raises the same question under the setting where the friction

matrix depends on both position and velocity, which is the original motivating factor for

the next chapter.

3.7.4 Metropolisation

Throughout Section 3.5, the implementation has not involved accept-reject steps. Metropoli-

sation of discretisations of the underdamped Langevin dynamics was given in [97], see

also Section 2.2.3.2 in [123] and [141, 174]. The systematic discretisation error is removed

with the inclusion of this step but the momentum is reversed upon rejection (to avoid

high rejection rates [174]), which raises the question of whether friction matrices arising

from Algorithm 1 improve the Metropolised situation where dynamics no longer imitate

those in the continuous-time. For example the intuition in the Gaussian target measure,

linear observable case discussed in Section 3.4.2 no longer applies.

3.7.5 Conclusion

We have presented the central limit theorem for the underdamped Langevin dynamics

and provided a formula for the directional derivative of the corresponding asymptotic

variance with respect to a friction matrix Γ. A number of methods for approximating

the gradient direction in Γ have been discussed together with numerical results giving

improved observed variances. Some cases where an improved friction matrix can be ex-

plicitly found have been given to guide the expectation of an optimal Γ. In particular,

in cases where the observable is linear and the potential is close to quadratic, which is

the case when finding the posterior mean in Bayesian inference with Gaussian priors, the

optimal friction is expected to be close to zero (due to Corollary 3.4.8). This is consistent

with the numerical conclusion from the proposed Algorithm 2. Moreover, it is shown that

the improvement in variance is retained when using minibatch stochastic gradients in a

case of Bayesian inference.

We mention that the gradient procedure using (3.1.6) and (3.1.10) can be used to guide

Γ in arbitrarily high dimension by extrapolation; that is, given a high dimensional prob-

lem of interest, the gradient procedure can be used on similar, intermediate dimensional

problems in order to obtain a friction matrix that can be extrapolated to the original

problem. In particular, for the Bayesian inference problem as formulated in Section 3.5.4,

the algorithm recommends the choice of a small friction scalar, which can be expected to
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apply for datasets in an arbitrary number of dimensions.

Future directions not mentioned above includes well-posedness of the optimisation in Γ,

extension to higher-order Langevin samplers methods as in the previous chapter or [144]

and gradient formulae in the discrete time case analogous to Theorem 3.3.2.
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4

Regularity preservation in Kolmogorov equa-

tions under Lyapunov conditions

The contents of this chapter are from the paper [35].

4.1 Introduction

Consider for b : [0,∞) × Rn → Rn, σ : [0,∞) × Rn → Rn×n and a standard Wiener

process Wt, the SDE on Rn given by

dXt = b(t,Xt)dt+ σ(t,Xt)dWt. (4.1.1)

The underlying results of this work are moment bounds of derivatives of Xt with respect

to initial condition in the case that the coefficients b and σ are not globally Lipschitz

continuous in space. These estimates are used to validate an Itô-Alekseev-Gröbner for-

mula [99] and differentiability of semigroups associated with (4.1.1), which enable the

existence of twice differentiable-in-space solutions to Kolmogorov equations [114], solu-

tions to corresponding Poisson equations, weak error estimates of numerical approxima-

tions [112, 185, 192] and related derivative estimates [46]. Similar moment bounds on the

first and second derivative with respect to initial value in the non-globally Lipschitz case

have recently been studied in [100] using the stochastic Grönwall inequality [101, 175],

where related ideas for the non-globally monotone case had appeared earlier in [44, 103].

In this work, it is shown that the above consequences hold for the case that the coef-

ficients b, σ are non-globally monotone, where higher derivatives of b, σ are bounded by

Lyapunov functions and loosely that b and σ admit Lipschitz constants which are o(log V )

and o(
√

log V ) respectively for a Lyapunov function V . The results are applicable to all of

the example SDEs in [105] except in Section 4.7, in Section 4.7.2 we consider specifically



the stochastic Duffing-van der Pol equation given by

dxt = ytdt (4.1.2a)

dyt = [α1xt − α2yt − α3ytx
2
t − x3t ]dt+ β1xtdWt + β3dW̃t, (4.1.2b)

where α1, α2, β1, β3 ∈ R, α3 > 0 and Wt, W̃t are independent standard Wiener processes.

In particular, for the first time, weak convergence rates of order one are shown for a

numerical scheme approximating SDEs with non-globally monotone coefficients including

the stochastic Duffing-van der Pol oscillator as given above, stochastic Lorenz equation

with additive noise, underdamped Langevin equation with variable friction, overdamped

Langevin dynamics with a non-globally monotone potential gradient and the stochastic

Ginzburg-Landau equation.

In contribution to regularity analysis of SDEs, the results give criteria for the positive

case of regularity for semigroups beyond the settings of globally Lipschitz coefficients or

ellipticity and against the counterexamples of [85] with globally bounded smooth coeffi-

cients. For example, one of the counterexamples given in the aforementioned reference is

the SDE

dxt = cos(zte
y3
t )dt

dyt =
√

2dWt

dzt = 0dt,

which turns out to have the property that E[φ(xt, yt, zt)] is not locally Hölder continu-

ous in initial value for some compactly supported smooth φ. In the present work, the

coefficients b and σ are not directly imposed to be in any weighted L∞ spaces for spatial

differentiability of semigroups, note however the coefficients are indirectly bounded by

the aforementioned local Lipschitz bound. More generally, the regularity with respect

to initial condition demonstrated here under our assumptions has further counterexam-

ples for SDEs with constant diffusion coefficient and drift with polynomially growing first

derivatives [109]. On the other hand, in the globally Lipschitz case [114] and the globally

monotone (or one-sided Lipschitz) case [34], moment bounds on derivatives with respect

to initial condition are known. In addition, for infinitely differentiable b and σ satisfying

Hörmander’s bracket condition [95], infinite differentiability of the associated semigroup

is given by Proposition 4.18 in [85].

Our basic result about semigroup differentiability can be summarised as follows.

Assumption 6. There exists V : [0, T ] × Rn → R twice continuously differentiable

in space, continuously differentiable in time and constant C > 0 such that ∂tV (t, x) +
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∑n
i=1 bi(t, x)∂xi

V (t, x)+ 1
2

∑n
i,j=1 σ(t, x)σ(t, x)⊤∂xi

∂xj
V (t, x) ≤ CV (t, x) for all t ∈ [0, T ], x ∈

Rn and lim|x|→∞ V (t, x) = ∞. The functions f, c : [0, T ] × Rn → R, g : Rn → R are

measurable functions and p ∈ N0. For any R > 0, it holds that
∫ T

0
supx∈BR

(|c(t, x)| +
|f(t, x)|)dt <∞, b, σ, f(t, ·), g, c(t, ·) ∈ Cp, and

• there exists measurable G : [0, T ] × Rn such that G(t, ·) = o(log V (t, ·)) uniformly

in t and satisfying

|b(t, x)− b(t, y)| ≤ (G(t, x) +G(t, y))|x− y|,

∥σ(t, x)− σ(t, y)∥2 ≤ (G(t, x) +G(t, y))|x− y|2

for all t ∈ [0, T ], x ∈ Rn,

• for every k > 0, h ∈ {b, f, g, c}, there exists C ′ > 0 such that

|∂αh(t, λx+ (1− λ)y)|+ ∥∂βσ(t, λx+ (1− λ)y)∥2 ≤ C ′(1 + V (t, x) + V (t, y))
1
k

for all t ∈ [0, T ], x, y ∈ Rn, λ ∈ [0, 1] and multiindices α, β with p0 ≤ |α| ≤ p, 2 ≤
|β| ≤ p, where p0 = 2 if h = b and p0 = 0 otherwise.

To comment on Assumption 6, the first assertion about the existence of G is our main

assumption about the Lipschitz constant of the coefficients of the SDE and generalises

the global Lipschitz condition; the second assertion about the higher derivatives is less

stringent in term of the right-hand side, but more so in the sense that the bound should

hold in between two points x, y as λ varies.

Theorem 4.1.1. Let Assumption 6 hold. For any s ∈ [0, T ] and stopping time τ ≤ T−s,
the expectation of the random function u(s, τ , ·) : Rn → R given by

Eu(s, τ, x) = E
[ ∫ τ

0

f(s+ r,Xs,x
r )e−

∫ r
0
c(s+w,Xs,x

w )dwdr + g(Xs,x
τ )e−

∫ τ
0

c(s+w,Xs,x
w )dw

]
,

(4.1.3)

is continuously differentiable in x up to order p, where for any s ∈ [0, T ], x ∈ Rn, Xs,x
·

is the solution to Xs,x
t = x+

∫ t

0
b(s+ r,Xs,x

v )dr +
∫ t

0
σ(s+ r,Xs,x

r )dWr on t ∈ [0, T − s].
Moreover, if p ≥ 2, the function given by v(t, x) = Eu(t, T − t, x) is locally Lipschitz in t

and satisfies

∂tv + a : D2v + b · ∇v − cv + f = 0 (4.1.4)

almost everywhere in (0, T )× Rn.

Results assuming instead local estimates on the derivatives of b, σ, f, c, g in the case of

time-independent b, σ are given in Section 4.5. Theorem 4.1.1 follows as corollary to The-

orem 4.4.2 and the assertion about Kolmogorov equations can be found in Theorem 4.4.5.
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The latter appears to be the only result against the literature about almost everywhere

twice differentiable-in-space solutions to Kolmogorov equations in the non-hypoelliptic,

non-elliptic diffusion coefficient and non-globally Lipschitz coefficients case.

Our basic result about weak convergence rates of a numerical approximation is as follows,

assuming a deterministic initial condition for (4.1.1). The scheme considered here is the

stopped increment-tamed Euler-Maruyama scheme from [105] and it is given by

Y δ
t = Y δ

kδ + 1
{|Y δ

kδ|≤exp(|log δ|
1
2 )}

(
b(Y δ

kδ)(t− kδ) + σ(Y δ
kδ)(Wt −Wkδ)

1 + |b(Y δ
kδ)(t− kδ) + σ(Y δ

kδ)(Wt −Wkδ)|4

)
. (4.1.5)

Theorem 4.1.2. Let Assumption 6 hold with p ≥ 3. Suppose b, σ are independent of t

and suppose V is of the form V (t, x) = eU(x)e−ρt

for U ∈ C3(Rn, [0,∞)), ρ > 0, such that

there exist c ≥ 1 satisfying

|x| 1c + |∂αb(x)| 1c + ∥∂ασ(x)∥ 1
c + |∂βU(x)| ≤ c(1 + U(x))1−

1
c ,

for all x ∈ Rn, multiindices α, β with 0 ≤ |α| ≤ 2 and 1 ≤ |β| ≤ 3. If h ∈ C3(Rn,R) is

such that

|∂αh(x)| ≤ c(1 + |x|c)

for all x ∈ Rn and multiindices α with 0 ≤ |α| ≤ 3, then there exists a constant C > 0

such that

|E[h(XT )]− E[h(Y δ
T )]| ≤ Cδ, (4.1.6)

for all 0 < δ < 1, where Y δ
· : [0, T ] → Rn is the approximation given by Y δ

0 = X0

and (4.1.5) for all t ∈ [kδ, (k + 1)δ], k ∈ N0 ∩ [0, Tδ ).

Theorem 4.1.2 is corollary to Theorem 4.6.3. The numerical scheme (4.1.5) from [105] has

the key property of retaining exponential integrability properties of the continuous time

SDE, which is used throughout the proof for Theorem 4.6.3. As is well documented [104],

the classical Euler-Maruyama scheme may diverge in both the strong and weak sense for

superlinearly growing, non-globally Lipschitz coefficients without this property. The proof

of Theorem 4.6.3 uses the recent Itô-Alekseev-Gröbner formula [99] in order to expand the

left-hand side of (4.1.6), instead of using a solution to Kolmogorov equations as in [112]

that is twice continuously differentiable-in-space and once continuously differentiable-

in-time. The Itô-Alekseev-Gröbner formula describes in particular the pathwise error

associated to the left-hand side of (4.1.6) in terms of local differences in the coefficients of

the respective SDEs for Xt and Y δ
t , of the derivative processes (of Xt) and of derivatives

of h. In order to satisfy the assumptions for the formula, strong completeness using a

result in [44] is shown for the derivative processes; note this property appeared recently
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under the results of [100] using a different approach and different assumptions. Although

weak convergence without rates has been established by way of convergence in probability

in [105, Corollary 3.7] and [102, Corollary 3.19], weak rates of convergence analogous to

the globally monotone case (of order 1 as above) seem to be an open problem for non-

globally monotone coefficients outside of the present work. For weak convergence results

in the former case, see references within [44] and also [192]. On the other hand, strong

convergence rates of order 1
2 have been established in even the latter case, see [103].

The proofs for the moment estimates underlying both Theorems 4.1.1 and 4.1.2 use di-

rectly the results of [101], where the strongest assumptions that are made here are used

for exponential integrability as in [44, 103]. The core argument is to consider for any

κ ∈ Rn processes Xt(κ) satisfying

sup
t∈[0,T ]

∣∣∣∣Xx+rκ
t −Xx

t

r
−Xx

t(κ)

∣∣∣∣→ 0

in probability as r → 0, where Xx
t denotes a solution to (4.1.1) with Xx

0 = x. Such

processes exist [114, Theorem 4.10] for b, σ continuously differentiable in space satisfying

some local integrability assumption and Xx
t(κ) satisfies the system resulting from a formal

differentiation of (4.1.1) (see precisely (4.3.5)). If b and σ are independent of t and

the derivatives of b and σ are locally Lipschitz, the processes Xx
t(κ) are almost surely

continuous derivatives in the classical sense as in [165, Theorem V.39]. Higher derivatives

exist for b and σ with higher orders of differentiability. Considering SDEs solved by these

derivatives, it is seen that only the term involving the derivative of the highest order

on the right-hand side of the dynamics requires serious control and that the stochastic

Grönwall inequality of [101] together with our Lipschitz Assumption 7 and an induction

argument suffice to control all of the terms. The bounds for higher derivatives, as required

for twice differentiability of the semigroup in the Kolmogorov equation for example, call

for two-sided Lipschitz conditions as in our Assumption 7 in contrast to the one-sided

conditions in [44, 103]. We use o(log V ) and o(
√

log V ) Lipschitz constants in order to

control the moments for large time T , but the results follow for O(log V ) and O(log V )

Lipschitz constants if T is suitably small. In order to establish solutions to the Kolmogorov

equation for the setting here, we prove a number of intermediary results following the

strategy of [114]. In particular, we show by extending an argument in [164] that an

Euler-type approximation converges to solutions of the SDE in probability and locally

uniformly in initial time and space, that is, the SDE is regular [114, Definition 2.1], which

is also used as mentioned for Theorem 4.1.2.

In relation to the previous chapter, our result about the Kolmogorov equation is mo-

tivated by its use in establishing that the semigroup associated to Langevin dynamics
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indeed forms a solution to the Poisson equation in the distributional sense, even when

maximal dissipativity results on the generator are not available and beyond the glob-

ally Lipschitz case. In particular, this is the case for the Langevin equation with po-

sition and velocity-dependent friction. Indeed, we have that given an invariant mea-

sure π̃, f ∈ L2(π̃), h ∈ C∞
c (R2n), generator L defined for twice differentiable functions,

its L2(π̃)-adjoint L∗, ϕ(t, x) =
∫∞
0

Ef(Xx
t )dt, Ptf(x) = Ef(Xx

t ), and an approximating

sequence (fk)k∈N such that fk ∈ C∞
c (R2n), fk → f in L2(π̃), it holds that

∣∣∣∣ ∫ L∗hϕdπ̃ −
∫
hfdπ̃

∣∣∣∣ ≤
∣∣∣∣∣
∫
L∗hϕdπ̃ −

∫
L∗h

∫ T

1
T

Pt(f)dtdπ̃

∣∣∣∣∣
+

∣∣∣∣∫ h(f − P 1
T

(f) + PT (f))dπ̃

∣∣∣∣
+

∣∣∣∣∣
∫
L∗h

∫ T

1
T

Pt(f − fk)dtdπ̃

∣∣∣∣∣
+

∣∣∣∣∫ h(P 1
T

(f − fk)− PT (f − fk))dπ̃

∣∣∣∣
+

∣∣∣∣∣
∫
L∗h

∫ T

1
T

Pt(fk)dtdπ̃ +

∫
h(P 1

T
(fk)− PT (fk))dπ̃

∣∣∣∣∣, (4.1.7)

so that, given convergences of the first terms, the semigroup Ptf being a solution of the

Kolmogorov equation is enough to conclude that the Poisson equation is solved by ϕ in

the distributional sense.

Alternative to the related Feynman-Kac formula for making the connection between the

SDE and the Kolmogorov equation satisfied by the transition semigroup is to use the

theory of Dirichlet forms. In that context, the order in which one works is reversed, in the

sense that one begins with the partial differential operator acting on the space of smooth

compactly supported functions, shows that the closure of the graph in some Banach

space generates a strongly continuous semigroup and that the semigroup is associated

to the transition semigroup of a Hunt process that is a weak solution to the stochastic

differential equation. In the case of Langevin dynamics in [11, 43], note however that

the Banach space is L2(π) for the invariant measure π, so that the strongly continuous

semigroup is a classical solution in the sense of an abstract Cauchy problem, where the

transition semigroup is then implied to be in the domain of the infinitesimal generator,

but not necessarily a twice differentiable-in-space function solving the partial differential

equation pointwise nor almost everywhere nor in the sense of distributions.

For solutions in the sense of distributions to the Kolmogorov equation, in Proposition 4.18

in [85], the authors make use of (essentially) Lemma 5.12 in [114] to obtain such solu-

tions in the case of smooth coefficients. In fact, the proof there only makes use of local

124



Lipschitz continuity of the coefficients and that σσ⊤ admits a derivative which is locally

Lipschitz. The authors in [85] moreover provide existence and uniqueness results for vis-

cosity solutions under a Lyapunov condition, which yield distributional solutions under

Hölder regularity on the coefficients [108] and almost everywhere solutions given enough

regularity on the solution, see Proposition I.4 in [127]. On a similar note, the existence

of a viscosity solution to the Poisson equation with possible degenerate second-order co-

efficients is given by [155], which, to the best of the author’s knowledge, requires the

aforementioned regularity to be interpreted as a solution in the distributional sense. In

the present work, sufficient conditions for the backward Kolmogorov equation to hold in

the distributional sense are presented as a secondary result. In particular, maximal dissi-

pativity of the associated infinitesimal generator defined on smooth compactly supported

functions is shown to be (mostly) sufficient.

The rest of the chapter is organised as follows. In Section 4.2, the setting, notation

and various definitions about what is referred to as Lyapunov functions are given. In

Section 4.3, moment estimates of the supremum over time on the derivative process and

the difference processes in initial value are given. These results are used throughout

for proving the other results in the chapter. In Section 4.4, results on the regularity of

the semigroup associated to (4.1.1) are presented, which are followed by results about

twice differentiable-in-space and distributional solutions to the Kolmogorov equation.

Section 4.6 contains the results about weak convergence rates for the stopped increment-

tamed Euler-Maruyama scheme on SDEs with non-globally monotone coefficients.

4.2 Notation and preliminaries

Just as the previous chapters, let (Ω,F ,P) be a complete probability space, Ft, t ∈ [0,∞),

be a filtration satisfying the usual conditions and (Wt)t≥0 be a standard Wiener process

on Rn with respect to Ft, t ∈ [0,∞). Let T ∈ (0,∞) and ∥M∥ denote the Frobenius norm

of a matrix M . Let b : Ω×[0,∞)×Rn → Rn, σ : Ω×[0,∞)×Rn → Rn×n be functions such

that b(t, ·), σ(t, ·) are continuous for every t, ω, b(·, x), σ(·, x) are F⊗B([0,∞))-measurable

for every x, b(t, x), σ(t, x) are Ft-measurable for every t, x and
∫ T

0
sup|x|≤R(|b(t, x)| +

∥σ(t, x)∥2)dt < ∞ for any R > 0, ω ∈ Ω. For an open set O ⊆ Rn and any x ∈ O, let

Xs,x
t be an Ft-adapted O-valued process such that Xs,x

t is P-a.s. continuous satisfying

for all s, t ∈ [0, T ],

Xs,x
t = x+

∫ t

0

b(s+ r,Xs,x
r )dr +

∫ t

0

σ(s+ r,Xs,x
r )dWr. (4.2.1)

When the initial conditions are not important or are obvious from the context, simply

Xt and similarly Xx
t is written. For f ∈ C2(O) and for either b, σ as above or (bx· :
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Ω × [0, T ] → Rn)x∈O, (σx
· : Ω × [0, T ] → Rn×n)x∈O that are, for each x, F ⊗ B([0, t])-

measurable and Ft-adapted satisfying P-a.s. that
∫ T

0
(|bxs |+ |σx

s |2)ds <∞, we denote

Lf = b · ∇f + a : D2f, (4.2.2)

where a = 1
2σσ

⊤, D2 denotes the Hessian and for matrices M,N , M : N =
∑

i,j MijNij .

Throughout, Ô is used to denote the convex hull of O, C∞
c ((0, T )×Rn) denotes the set of

compactly supported infinitely differentiable functions on (0, T )×Rn, Cb(Rn) denotes the

set of bounded continuous function on Rn, C1,2([0, T ]×Rn) denotes the set of continuous

functions of the form [0, T ]×Rn ∋ (t, x) 7→ f(t, x) that are once continuously differentiable

in t and twice so in x, BR(x) denotes the closed ball of radius R > 0 around x ∈ Rn,

BR = BR(0), ei denotes the ith Euclidean basis vector in Rn, and C > 0 denotes a

generic constant that may change from line to line. The expression 1A denotes the

indicator function on the set A. We denote ∆T = {(s, t) : 0 ≤ s ≤ t ≤ T}. The

notation ∂iZ
z
t,T = ∂ziZ

·
t,T |z is used and similarly for the higher order derivatives ∂αZz

t,T

for multiindices α. Moreover, for a multiindex α, we denote

κα = (e1,
α1 times︷︸︸︷. . . , e1, e2, . . . ).

Definition 4.2.1. A positive random function V : Ω× [0, T ]×O → (0,∞) is referred to

as a (b̃··, σ̃
·
· , α·, β·, p

∗, V0)-Lyapunov function if F ⊗ B([0, T ])-measurable and Ft-adapted

processes b̃·· : Ω × [0, T ] × O → Rn, σ̃·
· : Ω × [0, T ] × O → Rn×n, α·, β· : Ω × [0, T ] →

[0,∞], p∗ ∈ [1,∞) and V0 ∈ C1,2([0, T ] × O) are such that for all y ∈ O there exists

an F ⊗ B([0, T ])-measurable, Ft-adapted process Y y
· : Ω × [0, T ] → O that is P-a.s.

continuous, V (t, y) = V0(t, Y y
t ) and it holds P-a.s. that∫ T

0

(|b̃ys |+ |σ̃y
s |2 + |αs|)ds <∞,

Y y
t∧τ = y +

∫ t

0

1[0,τ)(u)b̃yudu+

∫ t

0

1[0,τ)(u)σ̃y
udWu, (4.2.3)

(∂t + L)V0(t, Y y
t ) +

p∗ − 1

2

∣∣(σ̃y
t )⊤∇V0(t, Y y

t )
∣∣2

V0(t, Y y
t )

≤ αtV0(t, Y y
t ) + βt (4.2.4)

for all t ∈ [0, T ], y ∈ O and stopping times τ , where L is given by (4.2.2) with b̃, σ̃

replacing b, σ.

Definition 4.2.2. A function V is referred to as a Lyapunov function if there exist n̄ ∈ N,

p∗ ∈ [1,∞), open Ō ⊆ Rn̄, b̃·· : Ω × [0, T ] × Ō → Rn̄, σ̃·
· : Ω × [0, T ] × Ō → Rn̄×n̄, V0 ∈

C1,2([0, T ] × Ō), along with some α· and β· such that V : Ω × [0, T ] × Ō → (0,∞) is
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a (b̃··, σ̃
·
· , α·, β·, p

∗, V0)-Lyapunov function and

∥∥∥e∫ T
0

|αu|du
∥∥∥
L

p∗
p∗−1 (P)

dt+

∫ T

0

∥∥∥∥ βv

e
∫ v
0

αudu

∥∥∥∥
Lp∗ (P)

dvdt <∞. (4.2.5)

Remark 4.2.1. (i) Smooth functions V satisfying LV ≤ CV for some constant C as in

[111, Theorem 3.5] form Lyapunov functions with p∗ = 1, αt = C and βt = 0.

(ii) Lyapunov functions satisfy the stochastic Grönwall inequality as in Theorem 2.4

in [101] along with a finiteness condition on the associated processes, which are

properties that will be used many times throughout the chapter.

The following property allows control across families of Lyapunov functions.

Definition 4.2.3. For a family of functions (Ŵs)s∈[0,T ], we say that (Ŵs)s∈[0,T ] is

(n̄, Ō, V0)-local in s if n̄ ∈ N, open Ō ⊆ Rn̄, V0 ∈ C1,2([0,∞) × Ō) are such that there

exists a constant C > 0 satisfying that for any s ∈ [0, T ], Ŵs : Ω × [0, T ] × Ō → (0,∞)

is a (b̃s,T , σ̃s,T , αs,T
· , βs,T

· , ps,T , V0(s+ ·, ·)|[0,T ]×Ō)-Lyapunov function for some b̃s,T , σ̃s,T

together with some αs,T
· , βs,T

· , ps,T where (4.2.5) holds uniformly with bound C, that is,

∥∥∥e∫ T
0 |αs,T

u |du
∥∥∥
L

ps,T

ps,T −1 (P)
+

∫ T

0

∥∥∥∥ βs,T
v

e
∫ v
0

αs,T
u du

∥∥∥∥
Lps,T (P)

dv < C. (4.2.6)

We say that (Ws)s∈[0,T ] is local in s if there exist n̄, Ō, V0 such that (Ws)s∈[0,T ] is (n̄, Ō, V0)-

local in s.

A family of Lyapunov functions being local in s allows terms of the form E[Ws(t,X
s,x
t )]

to be bounded uniformly in s after applying Theorem 2.4 in [101]. This is an important

property for twice differentiable solutions to Kolmogorov equations, since such solutions

and many lemmatic terms depend on a time variable via the starting times s. On the

other hand, such a property is in all of the examples mentioned here easily satisfied.

4.3 Moment estimates on derivative processes

The following assumption states our main requirement on the Lyapunov function. Alter-

native assumptions for the main results in the case where b and σ are independent of t

and admit locally Lipschitz derivatives are given in Theorem 4.5.2.

Assumption 7. There exists G : Ω× [0, T ]×O → [0,∞) such that G is F ⊗B([0, T ])⊗
B(O)-measurable and G(t, ·) is Ft ⊗ B(O)-measurable,

|b(t, x)− b(t, y)| ≤ (G(t, x) +G(t, y))|x− y|, (4.3.1)

∥σ(t, x)− σ(t, y)∥2 ≤ (G(t, x) +G(t, y))|x− y|2, (4.3.2)

127



for all t ∈ [0, T ], x, y ∈ O and such that for any s ∈ [0, T ], there exist locally bounded

functions M : (0,∞)→ (0,∞), x̄ and Lyapunov function V satisfying

G(s+ t,Xs,x
t ) ≤ m log V (t, x̄(x)) +M(m) P-a.s. (4.3.3)

for all m > 0, x ∈ O and stopping times t ≤ T − s.

By and large and throughout the chapter, the process Yt associated with Lyapunov func-

tions can be thought of to be equal to Xt and in the applications here, it is enough to

take G ≤ m log V0 +M in place of (4.3.3); the generality is justified by a trick to increase

the set of Lyapunov functions, as exemplified by the inclusion of Ū in [101, Corollary 3.3].

Note that we may just as easily prove with the same effect most of the results in the

sequel by introducing a weaker condition that is∫ t

0

G(s+ r,Xs,x
r )dr ≤M(m) +m

∑
i∈I0

∫ t

0

log Vi(r, x̄i(x))dr + log Vi(t, x̄i(x)) P-a.s.

in place of (4.3.3), where I0 is some finite set. This in some sense covers the inclusion of Ū

as mentioned and also the conditions with multiple Lyapunov-type functions as in [44,

Theorem 2.24]. In this thesis, we work with (4.3.3) for simplicity.

Assumption 7 is strictly weaker than assuming globally Lipschitz coefficients, since poly-

nomial Lyapunov functions are easily constructed in that case. In addition, whenever

continuous differentiability up to some order m∗ of b and σ is assumed, we also assume P-

a.s.

∑
θ∈Nn

0 ;|θ|≤m∗

∫ T

0

sup
|x|≤R

(|∂θb(t, x)|+ ∥∂θσ(t, x)∥)dt <∞, ∀R > 0. (4.3.4)

For x ∈ O, s ∈ [0, T ], let Xs,x
t(κ) be the first t-uniform derivatives in probability of Xs,x

t

with respect to the initial value in any directions κ ∈ R2n, that is, for any ϵ > 0, T > 0,

it holds that

P
(

sup
t∈[0,T−s]

∣∣∣∣Xs,x+rκ
t −Xs,x

t

r
−Xs,x

t(κ)

∣∣∣∣ > ϵ

)
→ 0

as r → 0 with r ̸= 0, x+ rκ ∈ O. If b(t, ·) and σ(t, ·) are once continuously differentiable

onO for all t ∈ [0,∞) and satisfy (4.3.4) withm∗ = 1, then by Theorem 4.10 in [114],Xs,x
t(κ)

exists for any x ∈ O, s ∈ [0, T ] and satisfies the system obtained by formal differentiation

of (4.2.1), that is,

dXs,x
t(κ) = (Xs,x

t(κ) · ∇)b(s+ t,Xs,x
t )dt+ (Xs,x

t(κ) · ∇)σ(s+ t,Xs,x
t )dWt. (4.3.5)
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By induction, if b(t, ·) and σ(t, ·) are continuously differentiable on O up to some order p

for all t ∈ [0,∞) and satisfy (4.3.4) with m∗ = p, then the pth-order t-uniform derivative in

probability of Xs,x
t with respect to the initial value in directions (κi)1≤i≤p, κi ∈ Rn, |κi| =

1, 1 ≤ i ≤ p exists for any x ∈ O, s ∈ [0, T ] and satisfies the system obtained by a

correponding pth-order formal differentiation of (4.2.1).

First we state a straightforward application of the Lyapunov property to obtain an es-

timate of a time integral, which will be used later and is also demonstrative for many

similar derivations in the following. Throughout and consistent with Assumption 7, we

omit in the notation the dependence of V , x̄ and M on s.

Lemma 4.3.1. Under Assumption 7, for any constant c > 0, it holds that∫ T−s

0

EecG(s+t,Xs,x
t )dt ≤ eM̂

∫ T−s

0

E[V (t, x̄(x))]dt

≤ eM̂
(∫ T−s

0

∥∥∥e∫ t
0
αsds

∥∥∥
L

p∗
p∗−1 (P)

(
E[V (0, x̄(x))] +

∫ t

0

∥∥∥∥ βv

e
∫ v
0

αudu

∥∥∥∥
Lp∗ (P)

dv

)
dt

)
≤ C(E[V (0, x̄(x))] + 1) <∞

for all x ∈ O and T > 0, where M̂ = M( 1
c ) and V is a (b̄··, σ̄

·
· , α·, β·, p

∗, V̄0)-Lyapunov

function for some b̄··, σ̄
·
·, p

∗, V̄0.

Proof. The first inequality is (4.3.3) with m = 1
c ; the second inequality follows by The-

orem 2.4 in [101] with q1 = 1, q2 = p∗

p∗−1 , p = p∗; the third and last inequalities follow

by (4.2.5).

Lemma 4.3.2. Under Assumption 7, for any k > 0, s ∈ [0, T ], there exists ρ > 0 such

that

E sup
0≤t≤T−s

∣∣∣X(r)
t(κ)

∣∣∣k ≤ ρW (x, rκ)|r|k (4.3.6)

for all x ∈ O, r ∈ R\{0}, κ ∈ Rn, |κ| = 1, x+rκ ∈ O, where X
(r)
t(κ) := Xs,x+rκ

t −Xs,x
t and

W (x, rκ) := 1+V (0, x̄(x+rκ))+V (0, x̄(x)). If in addition b(t, ·), σ(t, ·) are continuously

differentiable for all t ≥ 0 and (4.3.4) holds with m∗ = 1, then

E sup
0≤t≤T−s

∣∣∣Xs,x
t(κ)

∣∣∣k ≤ ρW (x, 0) (4.3.7)

lim
0 ̸=r→0

E sup
0≤t≤T−s

∣∣∣Xs,x
t(κ) − r

−1X
(r)
t(κ)

∣∣∣k = 0 (4.3.8)

for all x ∈ O, κ ∈ Rn with |κ| = 1. If V is local in s, then ρ is independent of s.

Remark 4.3.1. In the proof of Lemma 4.3.2, only a one sided Lipschitz version of (4.3.1)
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is necessary, see also Section 3.3 in [101] or Corollary 2.31 in [44], which gives similar

estimates to (4.3.6).

Proof. For any r,

dX
(r)
t(κ) = (b(s+ t,Xs,x+rκ

t )− b(s+ t,Xs,x
t ))dt+ (σ(s+ t,Xs,x+rκ

t )− σ(s+ t,Xs,x
t ))dWt.

(4.3.9)

Since Xt is almost surely continuous in t, it holds that
∫ t

0
(G(s + u,Xs,x+rκ

u ) + G(s +

u,Xs,x
u ))du ≤ C

∫ t

0
(log V (u, x̄(x + rκ)) + log V (u, x̄(x)) + 1)du < ∞ for any ω ∈ Ω

and finite 0 < t ≤ T − s (for everywhere continuous modifications of Xt), therefore

Corollary 2.5 in [101] can be applied with

at = b(s+ t,Xs,x+rκ
t )− b(s+ t,Xs,x

t ), bt = σ(t,Xs,x+rκ
t )− σ(t,Xs,x

t ),

αt =

(
1

2
+ k ∨ 1

)
(G(s+ t,Xs,x+rκ

t ) +G(s+ t,Xs,x
t )),

p = 2k ∨ 2, βt = 0, q1 = k, q2 = 3k, q3 =
3k

2
,

to obtain

E sup
0≤t≤T−s

∣∣∣X(r)
t(κ)

∣∣∣k ≤ C(Ee∫ T−s
0

3k( 1
2+k∨1)(G(s+u,Xs,x+rκ

u )+G(s+u,Xs,x
u ))du

) 1
3

|r|k. (4.3.10)

By Jensen’s inequality and Lemma 4.3.1, the expectation on the right-hand side of (4.3.10)

satisfies the bound

Ee
∫ T−s
0

3k( 1
2+k∨1)(G(s+u,Xs,x+rκ

u )+G(s+u,Xs,x
u ))du

≤ (T − s)−1e2M((6k( 1
2+k∨1)(T−s))−1) · E

∫ T−s

0

e
1
2 log V (u,x̄(x+rκ))+ 1

2 log V (u,x̄(x)))du

≤ (2(T − s))−1e2M((6k( 1
2+k∨1)(T−s))−1)E

∫ T−s

0

(
V (u, x̄(x+ rκ)) + V (u, x̄(x))

)
du

≤ Ce2M((6k( 1
2+k∨1)(T−s))−1)(1 + V (0, x̄(x+ rκ)) + V (0, x̄(x))).

which easily gives (4.3.6).

The statement for Xs(κ) follows along the same lines, where instead Xs(κ) satisfies (4.3.5)

and Corollary 2.5 in [101] can be applied as above except with

αt = (1 + 2k)(m log V (t, x̄(x)) +M(m)) > 0 (4.3.11)

m = (6k(1 + 2k)(T − s))−1.
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Equation (4.3.8) is a known consequence; it is immediate from the definition of Xu(κ),

the previous bounds and

E[Sk1 ] ≤ ϵP(Sk1 ≤ ϵ) + E[1{Sk1>ϵ}S
k1 ]

≤ ϵP(Sk1 ≤ ϵ) + E[1{Sk1>ϵ}]E[Sk]
k1
k (4.3.12)

with S = sup0≤u≤T−s

∣∣∣Xs,x
u(κ) − r

−1X
(r)
u(κ)

∣∣∣. The final assertion follows by noting that the

constants C above are independent of s.

The following Assumption 8 states our requirements on the higher derivatives of b and σ

for results on the higher derivatives of solutions to (4.2.1).

Assumption 8. There exist p ∈ N0 such that b(t, ·)|Ô, σ(t, ·)|Ô ∈ Cp for all t ≥ 0, ω ∈ Ω

and inequality (4.3.4) holds with m∗ = p. Moreover, for all s ∈ [0, T ] and k ≥ 2,

there exist M ′ > 0, n̂k ∈ N, open Ôk ⊂ Rn̄k , mappings x̂k : O → Ôk and Lyapunov

function V̂ s,T
k : Ω× [0, T−s]×Ôk → (0,∞) satisfying for any x, x′ ∈ O and multiindices α

with 2 ≤ |α| ≤ p that P-a.s.∣∣∣∂αb(s+ t, λXs,x
t + (1− λ)Xs,x′

t )
∣∣∣+ ∥∂ασ(s+ t, λXs,x

t + (1− λ)Xs,x′

t )∥2

≤M ′(1 + V̂ s,T
k (t, x̂k(x)) + V̂ s,T

k (t, x̂k(x′)))
1
k (4.3.13)

holds for all t ∈ [0, T − s], λ ∈ [0, 1].

In the following, for κ = (κi)1≤i≤l, κi ∈ Rn, the lth order t-uniform derivatives in proba-

bility of a process Zx
t with respect to initial condition x in the directions κ1, . . . , κl ∈ Rn

is denoted by ∂(κ)Zx
t .

Theorem 4.3.3. Under Assumptions 7 and 8, for any s ∈ [0, T ], constants 1 ≤ l ≤
p − 1, k1 > 0, there exist i∗ ∈ N, ν ≥ k1

2 , {li}i∈{1,...,i∗} ⊂ (0,∞) and a finite order

polynomial q0, the degree of which is independent of s, T, V, V̂ s,T
k , such that

E sup
0≤t≤T−s

∣∣∣∂(κ)Xs,x+rκl+1

t − ∂(κ)Xs,x
t

∣∣∣k1

≤ (T − s)νq(x, x+ rκl+1)|r|k1 (4.3.14)

E sup
0≤t≤T−s

∣∣∣∂(κ̄)Xs,x
t

∣∣∣k1

≤ (T − s)νq(x, x) (4.3.15)

lim
r→0

E sup
0≤t≤T−s

∣∣∣∂(κ̄)Xs,x
t − r−1(∂(κ)X

s,x+rκl+1

t − ∂(κ)Xs,x
t )

∣∣∣k1

= 0 (4.3.16)

for all initial condition x ∈ O, r ∈ R\{0}, κi ∈ Rn, |κi| = 1, 1 ≤ i ≤ l+1, x+rκl+1 ∈ O,
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where κ = (κi)1≤i≤l, κ̄ = (κi)1≤i≤l+1 and q : O ×O → R is given by

q(y, y′) = q0(V (0, x̄(y)), (V̂ s,T
li

(0, x̂li(y)))i∈{1,...,i∗}, (V̂
s,T
li

(0, x̂li(y
′)))i∈{1,...,i∗}). (4.3.17)

If V and V̂ s,T
k are local in s for every k, then the form of the polynomial q0 is independent

of s, T, V, V̂ s,T
k .

Remark 4.3.2. Assumption 8 can be weakened if only finite order moments of the deriva-

tives in Theorem 4.3.3 are sought after, that is, if the statements in Theorem 4.3.3 are

only required to hold for k1 up to some finite k1 ≤ K1. In particular, M ′, n̂k, Ôk, x̂k, V̂k in

Assumption 8 need only exist for k up to some finite k ≤ K. In the same vein, Assump-

tion 7 can be weakened (so that the Lipschitz constants are only required to be O(log V )

and O(
√

log V )) in this case if T is sufficiently small.

Proof. Fix k1 > 0, s ∈ [0, T ], let J be the set of strictly increasing functions from N to

itself and D(κ)b(s+ t,Xs,x
t ) denote the formal derivative of b(s+ t,Xs,x

t ) with respect to

x in the directions indicated by κ. In particular,

D(κ)b(s+ t,Xs,x
t ) =

(
∂(κ)Xx

t · ∇
)
b(s+ t,Xs,x

t )

+ qb,Xs,x
t

(( ∏
1≤i≤l′

∂(κj(i))

)
Xs,x

t , 1 ≤ l′ ≤ l − 1, j ∈ J
)
,

where the last term denotes a Rn-valued polynomial taking arguments as indicated, for

which exactly l of the operators ∂(κi) appear in each term and coefficients are spatial

derivatives between orders 2 and l of elements of b evaluated at (s + t,Xs,x
t ). The term

D(κ)σ(s+ t,Xs,x
t ) is similarly defined. Denoting x′ = x+ rκl+1, the difference processes

of the derivatives satisfy

d(∂(κ)Xs,x′

t − ∂(κ)Xs,x
t ) = (D(κ)b(s+ t,Xs,x′

t )−D(κ)b(s+ t,Xs,x
t ))dt

+ (D(κ)σ(s+ t,Xs,x′

t )−D(κ)σ(s+ t,Xs,x
t ))dWt

on t ∈ [0, T − s] for all x, x′ ∈ O, r ∈ R \ {0}, κi ∈ Rn, |κi| = 1, 1 ≤ i ≤ l + 1.

We proceed by strong induction in l for (4.3.14). A base case has been established

in Lemma 4.3.2. By the fundamental theorem of calculus on derivatives of b and σ,

inequalities (4.3.13), (4.3.1), (4.3.2) and (4.3.3) with m1 = ((4k1 ∨ 4)− 1)m2 = 1
4T ( 1

k1
−
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1
2k1∨2 ), so that M(m1),M(m2) are locally bounded as functions of T , it holds P-a.s. that∣∣∣D(κ)b(s+ t,Xs,x′

t )−D(κ)b(s+ t,Xs,x
t )

∣∣∣
≤
∑
i

∣∣∣(∂(κ)Xs,x′

t − ∂(κ)Xs,x
t )i

∣∣∣|∂ib(s+ t,Xs,x
t )|+H(t,Xs,x

t , Xs,x′

t )q̂t

≤ 2
∣∣∣∂(κ)Xs,x′

t − ∂(κ)Xs,x
t

∣∣∣(m1 log V (t, x̄(x)) +M(m1)) +H(t,Xs,x
t , Xs,x′

t )q̂t,

∥D(κ)σ(s+ t,Xs,x′

t )−D(κ)σ(s+ t,Xs,x
t )∥2

≤ 2
∑
i

∣∣∣(∂(κ)Xs,x′

t − ∂(κ)Xs,x
t )i

∣∣∣2∥∂iσ(s+ t,Xs,x
t )∥2 + (H(t,Xs,x

t , Xs,x′

t )q̂t)
2

≤ 4
∣∣∣∂(κ)Xs,x′

t − ∂(κ)Xs,x
t

∣∣∣2(m2 log V (t, x̄(x)) +M(m2)) + (H(t,Xs,x
t , Xs,x′

t )q̂t)
2,

on t ∈ [0, T ], where

H(t,Xs,x
t , Xs,x′

t ) = M ′
(

1 + V̂4k1∨4(t, x̂4k1∨4(x)) + V̂4k1∨4(t, x̂4k1∨4(x′))
) 1

4k1∨4

(4.3.18)

and q̂s denotes a polynomial with constant coefficients taking arguments from the set

S = S1 ∪ S2,

S1 =

{∣∣∣∣( ∏
1≤i≤l′

∂(κj(i))

)
Xt

∣∣∣∣ : 1 ≤ l′ ≤ l, j ∈ J,Xt ∈ {Xs,x′

t , Xs,x
t }

}

S2 =

{∣∣∣∣( ∏
1≤i≤l′

∂(κj(i))

)
(Xs,x′

t −Xs,x
t )

∣∣∣∣ : 1 ≤ l′ ≤ l − 1, j ∈ J
}
∪ {|Xs,x′

t −Xs,x
t |},

for which exactly l of the operators ∂(κi) appear in each term of q̂s and a factor from S2

appears exactly once in each term. Note for p ≥ 2 and by Lemma 4.3.1, it holds P-a.s.

that ∫ T−s

0

|(m1 + (p− 1)m2) log V (t, x̄(x)) +M(m1) + (p− 1)M(m2)|dt

<

∫ T−s

0

|(m1 + (p− 1)m2)V (t, x̄(x)) +M(m1) + (p− 1)M(m2)|dt <∞
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on t ∈ [0, T − s]. Corollary 2.5 in [101] can then be applied with

at = D(κ)b(s+ t,Xs,x′

t )−D(κ)b(s+ t,Xs,x
t ),

bt = D(κ)σ(s+ t,Xs,x′

t )−D(κ)σ(s+ t,Xs,x
t ),

αt = 2(m1 + (p− 1)m2) log V (t, x̄(x)) + 2(M(m1) + (p− 1)M(m2)) +
1

2
> 0, (4.3.19)

βt =
√

2k1 ∨ 2H(t,Xs,x
t , Xs,x′

t )q̂t,

p = 4k1 ∨ 4, q1 = k1, q2 =

(
1

k1
− 1

2k1 ∨ 2

)−1

, q3 = 2k1 ∨ 2

to obtain

E sup
0≤t≤T−s

∣∣∣∂(κ)Xs,x′

t − ∂(κ)Xs,x
t

∣∣∣k1

≤ CA(1)
T−sA

(2)
T−s,

where

A
(1)
T−s :=

(
E
[
e
∫ T−s
0

(2q2(m1+(p−1)m2) log V (u,x̄(x))+2q2(M(m1)+(p−1)M(m2))+
q2
2 )du

]) k1
q2

A
(2)
T−s :=

(
E
[ ∫ T−s

0

(2k1 ∨ 2)(H(u,Xs,x
u , Xs,x′

u )q̂u)2du

] q3
2
) k1

q3

.

By substituting our expressions for q2, m1, m2, setting V (u, x̄(x)) = 1 for all u ≥ T − s
and using Lemma 4.3.1, the first expectation has the bound

A
(1)
T−s

≤
(
E
[

1

T − s

∫ T−s

0

e(T−s)(2q2(m1+(p−1)m2) log V (u,x̄(x))+2q2(M(m1)+(p−1)M(m2))+
q2
2 )du

]) k1
q2

≤ C
(
E
[

1

T − s

∫ T−s

0

V (u, x̄(x))du

]) k1
q2

≤ C(E[V (0, x̄(x))] + 1)
k1
q2 ,

where note C is, here and in the rest of the proof, locally bounded as a function of T and

also of s, T if V is local in s. On the other hand, by the inductive argument and the form
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of H, q̂s and q3, it holds that

A
(2)
T−s ≤ C

(
E
[(∫ T−s

0

H(u,Xs,x
u , Xs,x′

u )2du

)k1∨1

sup
0≤u≤T−s

q̂2k1∨2
u

]) k1
2k1∨2

≤ C
(
E
[ ∫ T−s

0

H(u,Xs,x
u , Xs,x′

u )2du

]2k1∨2) k1
4k1∨4

(
E sup

0≤u≤T−s
q̂4k1∨4
u

) k1
4k1∨4

≤ C
(

(T − s)(2k1∨2)−1

∫ T−s

0

E(1 + V̂4k1∨4(u, x̂4k1∨4(x))

+ V̂4k1∨4(u, x̂4k1∨4(x′)))du

) k1
4k1∨4

q̃(x, x′)|r|k1 ,

where q̃(x, x′) = q̃0(V (0, x̄(x)), (V̂li(0, x̂li(x)))i∈{1,...,̂i∗}, (V̂li(0, x̂li(x
′)))i∈{1,...,̂i∗}) for some

î∗ ∈ N, {li}i∈{1,...,̂i∗} ⊂ (0,∞) and finite order polynomial q̃0 taking arguments as indi-

cated. Therefore, by Theorem 2.4 in [101] with q1 = 1, it holds that

A
(2)
T−s ≤ C

(
(T − s)(2k1∨2)(1 + V̂4k1∨4(0, x̂4k1∨4(x)) + V̂4k1∨4(0, x̂4k1∨4(x′)))

) k1
4k1∨4

· q̃(x, x′)|r|k1 ,

which concludes the proof for (4.3.14). Inequality (4.3.15) follows along the same lines,

therefore the argument is not repeated. Equation (4.3.16) holds by (4.3.12) with

S = sup
0≤u≤t

∣∣∣∂(κ̄)Xs,x
u − r−1(∂(κ)Xs,x′

u − ∂(κ)Xs,x
u )

∣∣∣.

Remark 4.3.3. In the proofs of Lemma 4.3.2 and Theorem 4.3.3, the stochastic Grönwall

inequality, that is, Theorem 2.4 and Corollary 2.5 in [101], can be replaced with Lemma 4.2

in [114] and Theorem 3.5 in [111]. For this, one works directly with the SDEs govern-

ing
∣∣∂(κ)Xt

∣∣k1
in the proof and inequality (4.2.4) is to be replaced by (∂t + L)V0 ≤ CV0.

The latter point raises complications in the examples of [44] with domain not equal to

Rn.

4.4 Kolmogorov’s equation

Throughout this section, we assume that b and σ are nonrandom functions. In Sec-

tion 4.4.1, the moment estimates from Section 4.3 are used to derive pth differentiability

of a Feynman-Kac semigroup and in particular of x 7→ Eg(Xs,x
t ) for Xs,x

t solving (4.2.1).

We allow the functions such as g to be bounded by Lyapunov functions. As such, the
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proof, although the approach of which is classical, demands finer attention compared

to [114] for example, in which g and its derivatives are only required to be polynomially

bounded. This regularity is then used to show that the semigroup solves the Kolmogorov

equation in the almost everywhere sense in Section 4.4.2. In Section 4.4.3, we complement

our results with a criterion for the Kolmogorov equation to be solved in the distributional

sense. The criterion is based on the maximal dissipativity of the closure of the infinitesi-

mal generator associated to (4.1.1).

4.4.1 Semigroup differentiability

To begin, we state a condition that will be imposed on functions such as g.

Definition 4.4.1. For p ∈ N, k > 1, h : Ω × [0, T ] × Ô → R with h(t, ·) ∈ Cp(Ô)

for all (ω, t) ∈ Ω × [0, T ], we say that h has Lyapunov derivatives up to order (p, k) if

there exist (V s,T )s∈[0,T ] local in s, locally bounded x̃ and constant N > 0 such that for

any s ∈ [0, T ] and multiindices α with 0 ≤ |α| ≤ p, it holds P-a.s. that∣∣∣∂αh(s+ t, λXs,x
t + (1− λ)Xs,x′

t )
∣∣∣ ≤ N(1 + V s,T (t, x̃(x)) + V s,T (t, x̃(x′)))

1
k (4.4.1)

for all stopping times t ≤ T − s, x, x′ ∈ O and λ ∈ [0, 1].

We make the following mild assumptions about the Lyapunov functions V s,T associated to

Lyapunov derivatives in Definition 4.4.1 or otherwise. These are gathered with additional

assumptions on the SDE (4.2.1). Assumption 9 will be referenced only when V s,T has

been given in the context.

Assumption 9. For each R ≥ 0, there exists a Borel, locally integrable K·(R) : [0,∞)→
[0,∞) such that

2⟨x− y, b(t, x)− b(t, y)⟩+ ∥σ(t, x)− σ(t, y)∥2 ≤ Kt(R)|x− y|2

for all t ≥ 0, x, y ∈ BR ∩ O. For any s ≥ 0, T > 0, x ∈ O, there exists a P-a.s.

continuous O-valued unique solution Xs,x
t to (4.2.1) on [0, T ]. Moreover, for any T > 0,

there exist n̄ ∈ N, open Ō ⊆ Rn̄, V0 ∈ C1,2([0,∞)×Ō), x̃ : Rn → Ō, Ĝ : [0,∞)×Rn → R,

constant C ≥ 0 and 0 < l̄ ≤ 1 such that

(i) (V s,T )s∈[0,T ] is (n̄, Ō, V0)-local in s,

(ii) for any s ≥ 0, V s,T is a (b̃··, σ̃
·
· , α·, C, p

∗, Ṽ0)-function for some b̃··, σ̃
·
· , α·, p

∗, Ṽ0,

(iii) for any s ≥ 0, it holds P-a.s. that

V s+τ,T (0, x̃(Xs,x
τ ))l̄ ≤ C(1 + V s,T (τ, x̃(x)))
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for all x ∈ O and stopping times τ ≤ T ,

(iv) for any s ≥ 0, it holds that lim|x|→∞ inft∈[0,T ] Ĝ(t, x) =∞ and P-a.s. that

Ĝ(s+ t,Xs,x
t ) ≤ V s,T (t, x̃(x))

for all t ∈ [0, T ], x ∈ O.

Beside the first two sentences, Assumption 9 is satisfied by the Lyapunov functions con-

sidered for example in [44, Corollary 2.4]. More specifically, taking α and the func-

tions U , Ū from there, for n̄ = n + 1, one may take V0 = V0(t, (x, y)) = eU(x)e−αt+y

and x̃ = x̃(x) = (x, 0) ∈ Rn+1, then

b̃(t, (x, y)) = (b(t, x), Ū(t, x)), σ̃(t, (x, y)) =

(
σ(t, x) 0

0 0

)
, Ĝ(t, x) = eU(x)e−αt

for t ≥ 0, x ∈ Rn, y ∈ R and the latter statements of Assumption 9 are satisfied by the

conditions on U and Ū if lim|x|→∞ U(x) =∞ and Ū ≥ C for some C ∈ R everywhere.

Theorem 4.4.2. Let T > 0, let Assumptions 7, 8 hold and let f : Ω× [0, T ]×Rn → R, c :

Ω × [0, T ] × Rn → [0,∞), g : Ω × Rn → R be such that f(·, x), c(·, x) are F ⊗ B([0, T ])-

measurable functions for every x ∈ Ô, satisfying
∫ T

0
supx∈BR∩Ô(|c(t, x)|+|f(t, x)|)dt <∞

for every R > 0 and P-a.s. f(t, ·)|Ô, c(t, ·)|Ô, g|Ô ∈ Cp(Ô) for all (ω, t) ∈ Ω× [0, T ]. Sup-

pose there exists k2 > 1 such that f and g have Lyapunov derivatives up to order (p, k2).

There exists K > 1 such that if for any 1 < k′ < K, c has Lyapunov derivatives up

to order (p, k′) and all of the Lyapunov functions associated to Lyapunov derivatives are

such that Assumption 9 is satisfied with l̄ > k−1
2 ,K−1, then the following statements hold.

(i) For u given by

u(s, t, x) =

∫ t

0

f(s+ r,Xs,x
r )e−

∫ r
0
c(s+w,Xs,x

w )dwdr + g(Xs,x
t )e−

∫ t
0
c(s+w,Xs,x

w )dw

(4.4.2)

defined for (s, x) ∈ [0, T ]×O and stopping times t ≤ T−s, the expectation Eu(s, t, x)

is continuously differentiable in x up to order p.

(ii) For every multiindex β with 0 ≤ |β| ≤ p, there exists a finite order polynomial q∗, the

form of which is independent of V̂ s,T and V̂ s,T
k , such that for all stopping times t ≤

T − s, it holds that

|∂βxEu(s, t, x)| ≤ q∗(V (0, x̄(x)), V s,T (0, x̃(x)), V̂ s,T
li

(0, x̂li(x)) : i ∈ I∗) (4.4.3)
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on (s, x) ∈ [0, T ]×O, where I∗ ⊂ N is finite, li > 0 and x̂, x̂li , V
s,T , V̂ s,T

li
represent

any and all of the functions across h ∈ {f, c, g}, multiindices α with 0 ≤ |α| ≤ |β|
and k ∈ K0 ⊂ (0,K) for some finite K0.

(iii) If for each k and multiindex α with 0 ≤ |α| ≤ p, the mappings x̂k are indepen-

dent of s and (V̂ s,T
k )s∈[0,T ] is local in s, then |∂αx u| is locally bounded for every

multiindex α with 0 ≤ |α| ≤ p and if p ≥ 2, then for any R > 0, there exists a

constant N > 0 such that

|Eu(s′, T − s′, x)− Eu(s, T − s, x)| ≤ N |t− s|

for all s, s′ ∈ (0, T ) and x ∈ BR.

We prove first a lemma that will used in the proof of Theorem 4.4.2. Throughout the

proofs of Theorem 4.4.2, Lemma 4.4.3 and consistent with the statement of the results,

we omit in the notation any dependence of V s,T , x̃ and k2 on k and h.

Lemma 4.4.3. Let the first sentence of Theorem 4.4.2 hold and let c have Lyapunov

derivatives up to order (p, k′) for all 1 ≤ k′ < K, for K from the same theorem. For

any h ∈ {f, c, g}, k3 > 0 with k3 < k2 if h ∈ {f, g}, s ∈ [0, T ], x ∈ O, κ ∈ Rn

with |κ| = 1, λ′ ∈ [0, 1], multiindex α with 0 ≤ |α| ≤ p and stopping time t ≤ T − s, it
holds that

E
∫ t

0

∣∣∣∂αh(s+ v, λ′Xs,x′

v + (1− λ′)Xs,x
v )− ∂αh(s+ v,Xs,x

v )
∣∣∣k3

dv → 0 (4.4.4)

E
∣∣∣∣∫ 1

0

∂αh(s+ t, λXs,x′

t + (1− λ)Xs,x
t )dλ− ∂αh(s+ t,Xs,x

t )

∣∣∣∣k3

→ 0

E
∫ t

0

∣∣∣∣∫ 1

0

∂αh(s+ v, λXs,x′

v + (1− λ)Xs,x
t )dλ− ∂αh(s+ v,Xs,x

v )

∣∣∣∣k3

dv → 0

as x′ → x, where the derivatives ∂α are in the spatial argument and g(t, ·) = g.

Proof. For any ϵ > 0, s ∈ [0, T ] and stopping time t ≤ T − s, note that

P( sup
0≤u≤T−s

|Xs,x′

u −Xs,x
u | ≤ ϵ) ≤ P(|Xs,x′

t −Xs,x
t | ≤ ϵ),

so that for any λ ∈ [0, 1], by Theorem 1.7 in [114], it holds that λXs,x′

t + (1 − λ)Xs,x
t −

Xs,x
t = λ(Xs,x′

t − Xs,x
t ) → 0 in probability as x′ → x (sequentially). Therefore for any

multiindex α, Ĵ := ∂αh(s+ t, λXs,x′

t + (1−λ)Xs,x
t )− ∂αh(s+ t,Xs,x

t )→ 0 in probability

by Theorem 20.5 in [17]. Moreover, if h ∈ {f, g}, by (4.3.12) with k1 = k3, k = k2

and S = |Ĵ |, it holds that E|Ĵ |k3 → 0 as x′ → x. The same holds for h = c using (4.3.12)
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with some k > k3 instead. By the assumption (4.4.1) and Theorem 2.4 in [101], it holds

that

E
∣∣∣∂αh(s+ u, λXs,x′

u + (1− λ)Xs,x
u )

∣∣∣k3

≤ CE(1 + V s,T (0, x̃(x)) + V s,T (0, x̃(x′))),

where C here is independent of r, λ and u, so that Jensen’s inequality, Fubini’s theorem

and dominated convergence theorem concludes the proof.

Proof of Theorem 4.4.2. For x ∈ O, s ∈ [0, T ], stopping time t ≤ T − s, κ ∈ Rn, r ∈
R \ {0}, |κ| = 1, let x′ := x+ rκ ∈ O and for h ∈ {f, c, g}, let

h′t :=

∫ 1

0

∇h(s+ t, λXs,x′

t + (1− λ)Xs,x
t )dλ, ĥ(t, x) := h(s+ t,Xs,x

t ),

c†t :=

∫ 1

0

e−λ
∫ t
0
c(s+u,Xs,x′

u )du−(1−λ)
∫ t
0
c(s+u,Xs,x

u )dudλ, ĉ(t, x) := e−
∫ t
0
c(s+u,Xs,x

u )du,

where ∇ denotes the gradient in the spatial argument, g(s + t, ·) = g and the same for

its derivatives. For (i), we show first once directional differentiability. Let h ∈ {f, g}; it

holds that∣∣∣∣Eĥ(t, x′)ĉ(t, x′)− Eĥ(t, x)ĉ(t, x)

r
− E

[
∇h(s+ t,Xs,x

t ) ·Xs,x
t(κ)ĉ(t, x)

− ĥ(t, x)ĉ(t, x)

∫ t

0

∇c(s+ u,Xs,x
u ) ·Xs,x

u(κ)du

]∣∣∣∣
≤

∣∣∣∣∣Eĥ(t, x′)ĉ(t, x′)− Eĥ(t, x)ĉ(t, x′)

r
− Eh′t ·X

s,x
t(κ)ĉ(t, x)

∣∣∣∣∣
+

∣∣∣∣Eĥ(t, x)ĉ(t, x′)− Eĥ(t, x)ĉ(t, x)

r
+ Eĥ(t, x)c†tr

−1

(∫ t

0

(c(s+ u,Xs,x′

u )

− c(s+ u,Xs,x
u ))du

)∣∣∣∣+
∣∣∣Eh′t ·Xs,x

t(κ)ĉ(t, x)− E∇h(s+ t,Xs,x
t ) ·Xs,x

t(κ)ĉ(t, x)
∣∣∣

+

∣∣∣∣Eĥ(t, x)c†tr
−1

(∫ t

0

(c(s+ u,Xs,x′

u )− c(s+ u,Xs,x
u ))du

)
− Eĥ(t, x)ĉ(t, x)

∫ t

0

∇c(s+ u,Xs,x
u ) ·Xs,x

u(κ)du

∣∣∣∣. (4.4.5)

The first three terms on the right-hand side of (4.4.5) converge to 0 as r → 0 by the

fundamental theorem of calculus, (4.4.1), Lemma 4.3.2 and Lemma 4.4.3. For the last
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term, Hölder’s inequality yields∣∣∣∣Eĥ(t, x)c†tr
−1

(∫ t

0

(c(s+ u,Xs,x′

u )− c(s+ u,Xs,x
u ))du

)
− Eĥ(t, x)ĉ(t, x)

∫ t

0

∇c(s+ u,Xs,x
u ) ·Xs,x

u(κ)du

∣∣∣∣
≤
∥∥∥ĥ(t, x)

∥∥∥
Lk2 (P)

∥∥∥∥c†t(∫ t

0

(
c(s+ u,Xs,x′

u )− c(s+ u,Xs,x
u )

r
−∇c(s+ u,Xs,x

u )

·Xs,x
u(κ)

)
du

)
+ (c†t − ĉ(t, x))

∫ t

0

∇c(s+ u,Xs,x
u ) ·Xs,x

u(κ)du

∥∥∥∥
Lk′

2 (P)
, (4.4.6)

where 1
k2

+ 1
k′
2

= 1. By (4.4.1) and Theorem 2.4 in [101], we have E|ĥ(t, x)|k2 ≤ C(1 +

V s,T (0, x̃(x)) + V s,T (0, x̃(x′))). Moreover, Hölder’s inequality yields

E
∣∣∣∣(c†t − ĉ(t, x))

∫ t

0

∇c(s+ u,Xs,x
u ) ·Xs,x

u(κ)du

∣∣∣∣k
′
2

≤
(
E
∣∣∣c†t − ĉ(t, x)

∣∣∣2k′
2

) 1
2
(
E
∣∣∣∣∫ t

0

∇c(s+ u,Xs,x
u ) ·Xs,x

u(κ)du

∣∣∣∣2k
′
2
) 1

2

. (4.4.7)

For the first factor on the right-hand side, note that by (4.4.4) in Lemma 4.4.3, we

have
∫ t

0
c(s+ u,Xs,x′

u )du→
∫ t

0
c(s+ u,Xs,x

u )du in probability as r → 0, so that

Ŝt := e−λ
∫ t
0
(c(s+u,Xs,x′

u )−(1−λ)
∫ t
0
c(s+u,Xs,x

u ))du − e−
∫ t
0
c(s+u,Xs,x

u )du → 0

in probability by the continuous mapping theorem and E|c†t−ĉ(t, x)|2k′
2 ≤

∫ 1

0
E|Ŝt|2k

′
2dλ→

0 as r → 0 by (4.3.12) with k1 = 2k′2, k > 2k′2 and S = Ŝt. By setting K > 2k′2, the

second factor on the right-hand side of (4.4.7) is clearly bounded independently of r (and

of t) by Hölder’s inequality, our assumption on the derivatives of c and Lemma 4.3.2.

For the remaining term in the second factor on the right-hand side of (4.4.6), the triangle

inequality on Lk′
2(P) yields∥∥∥∥c†t ∫ t

0

(r−1(c(s+ u,Xs,x′

u )− c(s+ u,Xs,x
u ))−∇c(s+ u,Xs,x

u ) ·Xs,x
u(κ))du

∥∥∥∥
Lk′

2 (P)

≤
∥∥∥∥∫ t

0

(
c′u · r−1(Xs,x′

u −Xs,x
u )−∇c(s+ u,Xs,x

u ) ·Xs,x
u(κ)

)
du

∥∥∥∥
Lk′

2 (P)

≤
∥∥∥∥∫ t

0

c′u · (r−1(Xs,x′

u −Xs,x
u )−Xs,x

u(κ))du

∥∥∥∥
Lk′

2 (P)

+

∥∥∥∥∫ t

0

(c′u −∇c(s+ u,Xs,x
u )) ·Xs,x

u(κ)du

∥∥∥∥
Lk′

2 (P)
. (4.4.8)
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For the first term of the right-hand side of (4.4.8), by Jensen’s inequality, Theorem 2.4

in [101], setting K > 2k′2 and our assumption about the derivatives of c, we have

E

∣∣∣∣∣
∫ t

0

c′u ·
(
Xs,x′

u −Xs,x
u

r
−Xs,x

u(κ)

)
du

∣∣∣∣∣
k′
2

≤ T k′
2−1E

∫ T−s

0

∣∣∣∣∣c′u ·
(
Xs,x′

u −Xs,x
u

r
−Xs,x

u(κ)

)∣∣∣∣∣
k′
2

du

≤ T k′
2−1

(
E
∫ T−s

0

|c′u|
2k′

2du

) 1
2
(
E
∫ T−s

0

∣∣∣∣Xs,x+rκ
u −Xs,x

u

r
−Xs,x

u(κ)

∣∣∣∣2k
′
2

du

) 1
2

≤ C(1 + V s,T (0, x̃(x′)) + V s,T (0, x̃(x)))
1
2

·
(
E sup

0≤u≤T−s

∣∣∣∣Xs,x+rκ
u −Xs,x

u

r
−Xs,x

u(κ)

∣∣∣∣2k
′
2
) 1

2

(4.4.9)

for C independent of t, which converges to 0 as r → 0 by Lemma 4.3.2. For the second

term on the right-hand side of (4.4.8), it holds that

E
∣∣∣∣∫ t

0

(c′u −∇c(s+ u,Xs,x
u )) ·Xs,x

u(κ)du

∣∣∣∣k
′
2

≤ C
(∫ T−s

0

E|c′u −∇c(s+ u,Xs,x
u )|2k

′
2du

) 1
2
(
E
∫ T−s

0

|Xs,x
u(κ)|

2k′
2du

) 1
2

. (4.4.10)

The last factor in the right-hand side of (4.4.10) is uniformly bounded in r by Lemma 4.3.2

and the first factor converges to 0 as r → 0 by Lemma 4.4.3.

Putting together the above in (4.4.5) gives that Eg(Xs,x
t )e

∫ t
0
c(s+u,Xs,x

u )du is directionally

differentiable in x. For the other term in (4.4.7), it suffices to check that after integrating

the inequality (4.4.5) in t from 0 to T − s, the same convergences hold as r → 0. This

is true for the first three term on the right-hand side of (4.4.5) by the same reasoning as

before. It is true for the right-hand side of (4.4.6) by dominated (in t) convergence, since

the right-hand sides of (4.4.7), (4.4.9) and (4.4.10) are uniformly bounded in t ∈ [0, T −s]
and r ∈ [0, ϵ] for some ϵ > 0. By induction and largely the same arguments as above,

higher order directional derivatives in x of Eĥ(t, x)ĉ(t, x) exist and they are sums of

expressions of the form

E
[
∂β1h(s+ t,Xs,x

t )ĉ(t, x)

( ∏
β2∈Î2

(∂(β2)Xs,x
t )jβ2

)
(4.4.11)

·
∏

β3∈Î3

∫ t

0

∂β3c(s+ u,Xs,x
u )

∏
β4∈Îβ3

(∂(β4)Xs,x
u )jβ4

du

]
,
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where h ∈ {f, g}, β1 is a multiindex with 0 ≤ |β1| ≤ p, Î2, Î3, Îβ3 are some finite sets of

multiindices each with absolute value less than or equal to p and jβ2 , jβ4 ∈ {1, . . . , n}. A

fully detailed argument for this is omitted.

For differentiability of the expectation of (4.4.2) in x, note that Theorem 1.2 in [114] may

be applied on (4.3.5) due to ∇b(s + t,Xs,x
t ) ≤ C(1 + log V (t, x̄(x))) ≤ C(1 + V (t, x̄(x)))

(by Assumption 7 and the same for σ) and Lemma 4.3.1, so that the derivatives in

probability Xt(κ) are unique solutions to (4.3.5) for the initial condition κ. Therefore

the first directional derivatives from (4.4.5) indeed form a linear map. The same ar-

guments apply for expressions of the form (4.4.11) that are directionally differentiable,

where additionally Assumption 8, Lemma 4.3.2 and Theorem 4.3.3 are to be used to

control Kt(1) from Theorem 1.2 in [114]. Next, we show continuity in x of expressions

of the form (4.4.11) (for multiindices with absolute values bounded by p). Note first

that P(sup0≤u≤T−s|∂βXs,x′

u −∂βXs,x
u | ≤ ϵ) ≤ P(|∂βXs,x′

t −∂βXs,x
t | ≤ ϵ), therefore ∂βXs,x

t

is continuous in probability w.r.t. to x by Theorem 4.10 in [114]. Consequently the prod-

uct w.r.t. β2 in (4.4.11) and ∂β1h(s + t,Xs,x
t ) are sequentially continuous in probability

by Theorem 20.5 in [17]. Lemma 4.4.3 and continuous mapping theorem yield that ĉ(t, x)

is continuous in probability w.r.t. x. For the remaining factors in (4.4.11), for 1 < k < K,

we have∫ t

0

∣∣∣∣∂β3c(s+ u,Xs,x′

u )
∏

β4∈Îβ3

(∂(β4)Xs,x′

u )jβ4
− ∂β3c(s+ u,Xs,x

u )
∏

β4∈Îβ3

(∂(β4)Xs,x
u )jβ4

∣∣∣∣du
≤
∫ T−s

0

∣∣∣∣∂β3(c(s+ u,Xs,x′

u )− c(s+ u,Xs,x
u ))

∏
β4∈Îβ3

(∂(β4)Xs,x′

u )jβ4

∣∣∣∣du
+

∫ T−s

0

∣∣∣∣∂β3c(s+ u,Xs,x
u )

∏
β4∈Îβ3

(∂(β4)(Xs,x′

u −Xs,x
u ))jβ4

∣∣∣∣du
≤ C

∫ T−s

0

∣∣∣∣∂β3(c(s+ u,Xs,x′

u )− c(s+ u,Xs,x
u ))

∣∣∣∣du ∏
β4∈Îβ3

sup
0≤u≤T−s

∣∣∣∂(β4)Xs,x′

u

∣∣∣
+ C

∫ T−s

0

|∂β3c(s+ u,Xs,x
u )|du

∏
β4∈Îβ3

sup
0≤u≤T−s

∣∣∣∂(β4)Xs,x′

u − ∂(β4)Xs,x
u

∣∣∣
By Hölder’s inequality, Lemma 4.3.2 and Theorem 4.3.3, the first term on the right-

hand side converges to zero in mean, therefore to zero in probability, as x′ → x. By

Theorem 4.10 in [114] (and continuous mapping theorem), the second term on the right-

hand side also converges to zero in probability. Therefore the left-hand side converges to

zero in probability. By continuous mapping theorem, the term inside the square bracket

in (4.4.11) is sequentially continuous in probability. Consequently, by (4.3.12) with k1 =
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1, k = 1+k2

2 , S = |J(x′) − J(x)|, where J(x) is equal to the term inside the square

brackets in (4.4.11), together with Hölder’s inequality, inequality (4.4.1), our assumption

on the derivatives of c with a large enough K, Theorem 2.4 in [101], Lemma 4.3.2 and

Theorem 4.3.3, expectations of the form (4.4.11) are continuous functions w.r.t. x and so

are their integrals in t by dominated convergence, which concludes the proof for (i).

Using the same results and denoting the expression (4.4.11) by û, it holds that

û ≤ C(1 + V s,T (0, x̃(x)))
1
k2

(
E
[

sup
0≤u≤T−s

|∂(β2)Xs,x
u |2k

′
2

]) 1
2k′

2

·
∏

(β3,β4)∈Î

(1 + V s,T (0, x̃(x)))
1

cβ3

(
E
[

sup
0≤u≤T−s

|∂(β4)Xs,x
u |cβ4

]) 1
cβ4

for some cβ3
, cβ4

> 0, β3, β4 ∈ Î and in particular for some constant C independent of t.

The proof for (ii) then concludes by Theorem 4.3.3.

Assertion (iii) then follows by Theorem 3.5(iii) in [114], Lemma 4.8.2 and by noting that C

above is independent of s given that the Lyapunov functions are local in s.

4.4.2 Twice spatially differentiable solutions

In this section, we prove that the expectation of (4.4.2) with t = T−s solves Kolmogorov’s

equation by the approach in [114]. The main ingredient beside differentiability of the

associated semigroups, given in Theorem 4.4.2, is that the SDE can be approximated in

probability by an Euler-type approximation locally uniformly in initial time and space,

which is given in Lemma 4.4.4. Throughout this section, we assume O = Rn.

Lemma 4.4.4. Suppose for any T > 0, there exists a family of functions (V s,T )s∈[0,T ]

such that Assumption 9 holds. For I = {tk}k∈N0
⊂ [0,∞) with t0 = 0, tk+1 ≥ tk, k ∈

N, tk →∞ as k →∞, supk≥0 tk+1 − tk <∞, s ∈ [0,∞), x ∈ Rn, let Xs,x
t (I) denote the

Euler approximation given by Xs,x
0 (I) = x and

Xs,x
t (I) = Xs,x

tk
(I) +

∫ t

tk

b(s+ r,Xs,x
tk

(I))dr +

∫ t

tk

σ(s+ r,Xs,x
tk

(I))dWr, (4.4.12)

on t ∈ [tk, tk+1], k ∈ N. For any R′, T ′ ≥ 0, ϵ > 0, it holds that

sup
s∈[0,T ′]

sup
|x|≤R′

P
[

sup
t∈[0,T ′]

|Xs,x
t −Xs,x

t (I)| ≥ ϵ
]
→ 0

as supk≥0 tk+1 − tk → 0.
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Proof. We extend the proof of Theorem 1 in [164] to obtain convergence that is uniform

with respect to s ∈ [0, T ] and x ∈ BR. Fix the numbers R′, T ′ ≥ 0. For k ∈ N, let φk :

Rn → [0,∞) be smooth cutoff functions satisfying φk(x) = 1 for x ∈ Bk, φk(x) = 0

for x ∈ Rn \ Bk+1 and let b(k) : [0,∞) × Rn → Rn, σ(k) : [0,∞) × Rn → Rn×n be given

by b(k) = bφk and σ(k) = σφk. Let Y s,x,k
t (I) be the unique solutions to the corresponding

SDE with drift b(k) and diffusion coefficient σ(k). The corresponding Euler approximation

is given by (4.4.12) with Y s,x,k
0 = Y s,x,k

0 (I) = x. Fix w.l.o.g. 0 < ϵ ≤ 1. In the same

way as in the proof of Theorem 1 in [164], one obtains that for any s ∈ [0, T ′], x ∈ Rn

and k ≥ R′ + 1,

P
(

sup
0≤t≤T ′

|Xs,x
t −Xs,x

t (I)| > ϵ

)
≤ P

(
sup

0≤t≤T ′

∣∣∣Y s,x,k
t − Y s,x,k

t (I)
∣∣∣ > ϵ

)
+ P(τk−1 ≤ T ′),

where τk−1 = inf{t ≥ 0 : |Xs,x
t | > k − 1}. By Markov’s inequality, Theorem 2.4 in [101]

and Assumption 9(iv), it holds that

P(τk−1 ≤ T ′) inf
t∈[s,s+T ′],|y|=k−1

Ĝ(t, y)

≤ E[Ĝ(s+ (τk−1 ∧ T ′), Xs,x
τk−1∧T ′)]

≤ E[V s,T ′
(τk−1 ∧ T ′, x̃(x))]

≤
∥∥∥e∫ (τk−1∧T ′)

0 αs,T ′
u du

∥∥∥
L

ps,T
′

ps,T
′−1 (P)

(
V0(s, x̃(x)) +

∫ T ′

0

∥∥∥∥1[0,τk−1∧T ′)(v)βs,T ′

v

e
∫ v
0

αs,T ′
u du

∥∥∥∥
Lps,T

′
(P)
dv

)
.

For any 0 < ϵ′ < 1, by the assumption that V s,T ′
is local in s and continuity of V0, there

exists k∗ such that P(τk∗−1 ≤ T ′) ≤ ϵ′

2 for all s ∈ [0, T ′] and x ∈ BR′ . In addition, for

any R > 0, it holds that

2⟨x− y, b(k
∗)(t, x)− b(k

∗)(t, y)⟩+ ∥σ(k∗)(t, x)− σ(k∗)(t, y)∥2

≤ 2⟨x− y, b(t, x)− b(t, y)⟩φk∗(x) + 2|b(t, y)||x− y||φk∗(x)− φk∗(y)|

+ ∥σ(t, x)− σ(t, y)∥2φk∗(x)2 + ∥σ(t, y)∥2|φk∗(x)− φk∗(y)|2

≤ (Kt(R) + C sup
y′∈BR

(|b(t, y′)|+ ∥σ(t, y′)∥2))|x− y|2

for all x, y ∈ BR and

2⟨x, b(k
∗)(t, x)⟩+ ∥σ(k∗)(t, x)∥2 ≤ 2(1 + |x|) sup

x′∈Bk∗+1

(|b(t, x′)|+ ∥σ(t, x′)∥2)
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for all x ∈ Rn. Therefore Corollary 5.4 in [114] can be applied to obtain

sup
s∈[0,T ′]

sup
x∈BR

P
(

sup
0≤t≤T ′

∣∣∣Y s,x,k∗

t − Y s,x,k∗

t (I)
∣∣∣ > ϵ

)
→ 0

as supk≥0 tk+1 − tk → 0, which concludes the proof.

Theorem 4.4.5. Let all of the assumptions in Theorem 4.4.2 hold. In particular, let c

have Lyapunov derivatives up to order (p, k′) for any 1 < k′ < K, let the mappings x̂k be

independent of s, (V̂ s,T
k )s∈[0,T ] be local in s for any k, multiindex α with 0 ≤ |α| ≤ p and

let p ≥ 2. For v : [0, T ]× Rn → R given by

v(t, x) = Eu(t, T − t, x), (4.4.13)

with u as in (4.4.2), the equation

∂tv + a : D2v + b · ∇v − cv + f = 0 (4.4.14)

holds almost everywhere in (0, T )× Rn.

Proof. Theorem 4.4.2, Theorem 3.6 in [114] applied on the SDE (4.1.1) appended by (4.8.2)

and Lemma 4.8.2 yield (∂tv + b · ∇v + a : D2v − cv + f)e−x′
= 0 almost everywhere.

Note the assumptions in Theorems 4.4.2 and 4.4.5 remain strictly weaker than those in

[114, Lemma 5.10], since Lyapunov functions that are positive polynomials can easily be

conjured under the global Lipschitz conditions there.

4.4.3 Distributional solutions under maximal dissipativity

This section complements our result about Kolmogorov equations by considering a case

where maximal dissipativity of the closure of the generator acting on C∞
c is known. It

is shown that if there exists an associated semigroup and the coefficients b and σ are

regular enough, this is sufficient for a solution of the backward Kolmogorov equation

in the distributional sense. In this section we do not assume our conditions about the

Lipschitz constants or the higher derivatives of the coefficients. Below, L is used to denote

the differential operator

L = b · ∇+ a : D2

defined on C∞
c .

Proposition 4.4.6. Assume O = Rn, a and b are independent of ω, t, they admit distri-

butional derivatives of order two and one respectively and that µ is a probability measure
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on Rn absolutely continuous with respect to the Lebesgue measure with density ρ satisfying,

for some p, q ∈ [1,∞] with p−1 + q−1 = 1,

• ρ−1, ρ−1∂ki ∂
l
jaij , ρ

−1∂ki bi ∈ L
p
loc(µ), for i, j ∈ {1, . . . , n}, k, l ∈ {0, 1}, where ρ−1 :=

0 whenever ρ = 0,

• the closure L̄ of L in Lq(µ) generates a strongly continuous semigroup {Tt}t≥0 on

Lq(µ),

then for any g ∈ D(L̄) and η ∈ C∞
c ((0, T )× Rn),∫ T

0

∫
Rn

Ttg

[
∂η

∂t
+
∑
ij

∂i∂j(aijη)−
∑
i

∂i(biη)

]
dxdt = 0. (4.4.15)

In the case when det(a) > 0 and a, b are regular enough, Sections 3.4, 3.5, 5.2 in [20]

and Section 8.1 in [128] provide results sufficient for the assumptions in Proposition 4.4.6.

Otherwise when det(a) > 0 does not hold everywhere, such statements are less generally

available, but hold for example in the settings of [43]1 and [11]; note the assumed regularity

on a, b are more than what’s required in these works but are necessary for the formulation

of (4.4.15).

Stationarity of µ is not required for the proof of Proposition 4.4.6, but it is the case for the

assumptions to be satisfied in the above references. In addition, {Tt}t≥0 is not specified

in terms of an expectation as in (4.4.13); for this, there must be some stochastic process

Xt associated to {Tt}t≥0, which solves (4.2.1). In [43] and [11] (for example), where such

a process is given, the statement in Proposition 4.4.6 does not amount to a corollary of

(the proof of) Proposition 4.18 in [85] because the probability measures in the associated

Hunt process are not necessarily shared amongst different initial points.

Proof of Proposition 4.4.6. By mean value theorem, there exists constant kη > 0 and

compact set Kη ⊂ (0, T )×Rn such that
∣∣∣Ttg η(t+s,·)−η(t,·)

s

∣∣∣ ≤ |Ttg|kη1Kη for all s, therefore

by the dominated convergence theorem,∫
Tϵ

∫
Rn

Ttg∂tηdxdt = − lim
s→0

∫ T

0

∫
Rn

Ttg
η(t− s, x)− η(t, x)

s
dxdt.

By the inequality above, strong continuity of Tt and the assumption on ρ−1, the expres-

sions above make sense and the integral under the limit has the same limit as the left-hand

1 The state space here is slightly different to Rn, but the statement and proof of Proposition 4.4.6 can
be modified accordingly.
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side of ∫ T+s

0

∫
Rn

Ttg
η(t− s, x)− η(t, x)

s
dxdt =

∫ T

0

∫
Rn

Tt+sg − Ttg
s

ηdxdt,

which can be dealt with by considering∣∣∣∣∣
∫ T

0

∫
Rn

(
Tt+sg − Ttg

s
− L̄Ttg

)
ηdxdt

∣∣∣∣∣
≤
∫ T

0

∥∥∥∥Tt+sg − Ttg
s

− L̄Ttg
∥∥∥∥
Lq(µ)

∥η(t, ·)ρ−1∥Lp(µ)dt

≤ kµ
∫ T

0

∥∥∥∥Tt+sg − Ttg
s

− L̄Ttg
∥∥∥∥
Lq(µ)

dt (4.4.16)

for some constant kµ > 0. The right hand side of (4.4.16) is converging to zero as s→ 0

by dominated convergence theorem with constant dominating function since∥∥∥∥Tt+sg − Ttg
s

− L̄Ttg
∥∥∥∥
Lq(µ)

≤
∥∥∥∥Tt(Tsg − gs

)∥∥∥∥
Lq(µ)

+ ∥TtL̄g∥Lq(µ)

≤MeωT (1 + 2∥L̄g∥Lq(µ))

for all s ∈ (0, S), t ∈ [0, T ], some M,S > 0 and ω > 0 by Proposition 1.1 in [63].

Therefore, ∫ T

0

∫
Rn

Ttg∂tηdxdt = −
∫ T

0

∫
Rn

L̄Ttgηdxdt.

By assumption, for each t ∈ (0, T ), there exist a sequence (gtk)k∈N ⊂ C∞
c (Rn) with

gtk → Ttg and Lgtk = L̄gtk → L̄Ttg in Lq(µ) as k → ∞. Since ρ−1 ∈ Lp
loc(µ), we have for

every t, ∣∣∣∣∫
Rn

(L̄Ttg − Lgtk)ηdx

∣∣∣∣ ≤ ∥L̄Ttg − Lgtk∥Lq(µ)∥ρ−1η∥Lp(µ)∣∣∣∣∫
Rn

(Ttg − gtk)L⊤ηdx

∣∣∣∣ ≤ ∥Ttg − gtk∥Lq(µ)∥ρ−1L⊤η∥Lp(µ),

where L⊤ denotes the L2(Rn)-adjoint of L, which concludes the proof.

4.5 Alternative assumptions for time-independent, nonrandom

coefficients

In the following, we restrict to the case where b and σ are nonrandom and time-independent,

so that we may use Theorem V.39 in [165] in order to rid the need for bounds on function
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values on line segments in terms of the endpoint values. In doing so, more local conditions

are obtained in place of (4.3.1), (4.3.2), (4.3.13) and (4.4.1).

Lemma 4.5.1. Let p ∈ N, b, σ be independent of ω, t and suppose they are continuously

differentiable up to order p with locally Lipschitz derivatives. For every s ∈ [0, T ], there

exists Ω × ∆T × Rn ∋ (ω, t, x) 7→ X̂x
t ∈ Rn that is for P-a.a. ω ∈ Ω continuously

differentiable in x up to order p and indistinguishable from the corresponding derivatives

in probability of Xx
· .

Proof. By Theorem V.38 and V.39 in [165], continuously differentiable X̂x
· up to order p

exists. Moreover, it satisfies (4.2.1) and X̂x
· is indistinguishable from Xx

· . The partial

derivatives of X̂x
· satisfy the systems given by formal differentiation of (4.2.1). On the

other hand, derivatives in probability of Xx
t as in [114, Theorem 4.10] and Theorem 3.3

above satisfy the same system. Therefore by uniqueness in the aforementioned references2,

it holds that ∂αX̂x
· are the unique solutions to their respective systems for all time and

are therefore indistinguishable from the corresponding derivatives in probability ∂(κα)Xx
·

for every s ∈ [0, T ] and multiindex α with 0 ≤ |α| ≤ p.

Theorem 4.5.2 (Alternative assumptions to Lemma 4.3.2 and Theorems 4.3.3, 4.4.2

and 4.4.5). Let b and σ be independent of ω, t and let O = Rn. The following statements

hold.

(i) Lemma 4.3.2 continues to hold with W (x, rκ) = (1 +
∫ 1

0
V (0, x̄(x+ λrκ))dλ) if

• the coefficients b and σ admit locally Lipschitz first derivatives and

• in Assumption 7, the inequalities (4.3.1), (4.3.2) are replaced by∑
i

|∂ib(x)|+ ∥∂iσ(x)∥2 ≤ G(t, x). (4.5.1)

(ii) Theorem 4.3.3 continues to hold with (4.3.17) replaced by

q(y, y′) = q0

(∫ 1

0

V (0, x̄(λy + (1− λ)y′))dλ),

∫ 1

0

V̂ s,T
l1

(0, x̂l1(λy + (1− λ)y′))dλ,

V (0, x̄(y)), (V̂ s,T
li

(0, x̂li(y)))i∈{2,...,i∗}, (V̂
s,T
li

(0, x̂li(y
′)))i∈{2,...,i∗}

)
if

• the coefficients b and σ admit locally Lipschitz second derivatives,

2 Alternatively, since these systems have terms on right-hand sides that are continuous functions of the
partial derivatives and are in particular at most linear in the highest order derivative (see the beginning
of proof for Theorem 4.3.3), uniqueness holds by continuity of Xx

t in t, (4.3.7) in Lemma 4.3.2, induction
in the number of derivatives and Theorem 1.2 in [114] with Kt(R) = Kt(1) constant in t.
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• Assumption 7 is replaced as above and

• in Assumption 8, inequality (4.3.13) is replaced by

|∂αb(Xx
t )|+ ∥∂ασ(Xx′

t )∥2 ≤M ′(1 + V̂ s,T
k (t, x̂k(y)))

1
k .

(iii) Theorems 4.4.2 and 4.4.5 continue to hold if

• the second derivatives of b and σ are locally Lipschitz,

• Assumption 7 and 8 are replaced as above and

• in Definition 4.4.1, inequality (4.4.1) is replaced by

|∂αh(Xx
t )| ≤ N(1 + V s,T (t, x̃(x)))

1
k .

Proof. The proof strategies follow largely in the same way as in the previous proofs, the

differences are specified in the following using the same notation as before. For (i), note

first (4.3.7) follows unperturbed. By Lemma 4.5.1, classical derivatives are indistinguish-

able from derivatives in probability and we use the properties of both without changing

the notation in the following. In place of (4.3.9), it holds that

dX
(r)
t(κ) = r

∫ 1

0

(Xx+λrκ
t(κ) · ∇)b(Xx+λrκ

t )dλdt+ r

∫ 1

0

(Xx+λrκ
t(κ) · ∇)σ(Xx+λrκ

t )dλdWt.

Note that since for every t and almost all ω, the functions Xx
t , Xx

t(κ) are continuous

in x, the integrands on the right-hand side are B([0, T ]) ⊗ F ⊗ B([0, 1])-measurable by

Lemma 4.51 in [2] and the integrals (in λ) themselves are adapted. For any k̂ ≥ 1,

by (4.5.1), the coefficients satisfy

2rX
(r)
t(κ) ·

∫ 1

0

(Xx+λrκ
t(κ) · ∇)b(Xx+λrκ

t )dλ

+ (2k̂ − 1)

∥∥∥∥r ∫ 1

0

(Xx+λrκ
t(κ) · ∇)σ(Xx+λrκ

t )dλ

∥∥∥∥2
≤
∣∣∣X(r)

t(κ)

∣∣∣2 + 2k̂r2
∫ 1

0

∣∣∣Xx+λrκ
t(κ)

∣∣∣2(2G(t,Xx+λrκ
t ))2dλ.

Consequently, Theorem 2.4 in [101] (in place of Corollary 2.5 in the proof of Lemma 4.3.2)
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can be applied with

at = r

∫ 1

0

(Xx+λrκ
t(κ) · ∇)b(Xx+λrκ

t(κ) )dλ, bt = r

∫ 1

0

(Xx+λrκ
t(κ) · ∇)σ(Xx+λrκ

t(κ) )dλ,

p = 2k ∨ 2, αt = 1, βt = 4(k ∨ 1)r2
∫ 1

0

∣∣∣Xx+λrκ
t(κ)

∣∣∣2G(t,Xx+λrκ
t )2dλ,

q1 =
k

2
, q2 =

(
2

k
− 1

k ∨ 1

)−1

, q3 = k ∨ 1, V (x) = |x|2,

to obtain

E sup
0≤u≤t

|Xx
u |

k

≤ Ce kt
2 rk

(
E
[
1 + 4(k ∨ 1)

∫ t

0

e−s

∫ 1

0

∣∣∣Xx+λrκ
s(κ)

∣∣∣2G(s,Xx+λrκ
s )2dλds

]k∨1) k
2(k∨1)

≤ Ce kt
2 rk

(
E
[
1 +

∫ 1

0

sup
0≤u≤t

∣∣∣Xx+λrκ
u(κ)

∣∣∣2k∨2
∫ t

0

G(s,Xx+λrκ
s )2k∨2dsdλ

]) k
2(k∨1)

≤ Ce kt
2 rk

(
1 +

(∫ 1

0

E sup
0≤u≤t

∣∣∣Xx+λrκ
u(κ)

∣∣∣4k∨4

dλ

) 1
2

·
(
E
[ ∫ 1

0

∫ t

0

G(s,Xx+λrκ
s )2k∨2dsdλ

]2) 1
2
) k

2(k∨1)

.

By (4.3.7), the first expectation on the right-hand side has the bound

E sup
0≤u≤t

∣∣∣Xx+λrκ
u(κ)

∣∣∣4k∨4

dλ ≤
∫ 1

0

ρ(1 + V (0, x̄(x+ λrκ)))dλ

and, by (4.3.3) and Lemma 4.3.1, the second expectation has the bound

E
[ ∫ 1

0

∫ t

0

G(u,Xx+λrκ
u )2k∨2dudλ

]2
≤
∫ 1

0

t

∫ t

0

EG(u,Xx+λrκ
u )4k∨4dudλ

≤ C
∫ 1

0

t

∫ t

0

E(1 + log V (u, x̄(x+ λrκ)))4k∨4dudλ

≤ C
∫ 1

0

t

∫ t

0

E(1 + V (u, x̄(x+ λrκ)))dudλ

≤ Ct
∫ 1

0

(V (0, x̄(x+ λrκ)) + 1)dλ,

which concludes the proof of (i).

For (ii), the conclusions of Theorem 4.3.3 follow with differences that have already been

addressed when dealing with (i), using that expressions of the form h(s + u,Xs,x′

u ) −
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h(s + u,Xs,x
u ) =

∫ 1

0
∇h(s + u, λXs,x′

u + (1 − λ)Xs,x
u ) · (Xs,x′

u −Xs,x
u )dλ may be replaced

by
∫ 1

0
∇h(t,Xx+λrκ

u ) · rXx+λrκ
u(κ) dλ and therefore the arguments are not repeated.

For (iii), Lemma 4.4.3 can easily be modified using what has already been mentioned,

so that Theorem 4.4.2(i) holds. Proofs for the other assertions of Theorem 4.4.2 and

Theorem 4.4.5 follow unperturbed.

4.6 Weak convergence rates for approximations under Lyapunov

conditions

Here, the results in Section 4.3 are used with the exponential integrability property

of stopped increment-tamed Euler-Maruyama schemes from [105] in order to establish

weak convergence rates for SDEs with non-globally monotone coefficients. Classical

proofs as in [112] establishing weak rates for the Euler-Maruyama scheme approximat-

ing (4.2.1) with globally Lipschitz coefficients require bounds on derivatives of the expec-

tation (4.4.13), the Kolmogorov equation (4.4.14) and moment bounds on the discretisa-

tion. Although analogous requirements have mostly (beside continuous differentiability

of (4.4.13) in t, which may be remedied for example by hypoellipticity in some cases)

been shown to hold to an extent in the setting here, the Itô-Alekseev-Gröbner formula

of [99] is used for a more direct proof, which uses moment estimates on derivative pro-

cesses as the main prerequisites. Along the way, strong completeness (see e.g. [126] for a

definition) of the derivative SDEs as in (4.3.5) (and its higher order analogues) are shown

in Lemma 4.6.2 using a result of [44]. The same assertions as those in Lemma 4.6.2 up to

order 2 have appeared recently in [100] under different assumptions. The approach here

uses the results in [165] for continuous differentiability in initial condition as a starting

point and consequently requires (at least at face value) the underlying space to be all

of Rn. Before the aforementioned strong completeness result, a local Hölder continuity in

time result in the strong Lp(P) sense for derivatives to our SDE is shown in Lemma 4.6.1.

We begin by stating the numerical scheme and assumptions from [105] (amongst which is

a Lyapunov-type condition) used for its exponential integrability. Assumptions about the

relationship between the Lyapunov(-type) functions there and those in Assumptions 7, 8

are stated alongside, as well as the mild assumptions from [99]. Lemma 4.6.2 serves to

verify the more serious assumptions in [99, Theorem 3.1] for use in proving the main

Theorem 4.6.3.

Assumption 10. (i) The filtration Ft satisfies Ft = σ(F0 ∪ σ(Ws : s ∈ [0, t]) ∪ {A ∈
F : P(A) = 0}) and that F0 and σ(Ws : s ∈ [0, T ]) are independent. It holds

that O = Rn and b, σ are independent of ω, t.

(ii) There exist γ, ρ ≥ 0, γ′, c′ > 0, ξ, c > 1, C ∈ R, U ∈ C2(Rn, [0,∞)), Ū ∈ C(Rn)
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such that Ū > C, U(x) ≥ c′|1 + x|γ′
and

sup
κ1,...,κj∈Rn\{0}:
|κ1|=···=|κj |=1

∣∣∣∣∣∣
n∑

i1,...,ij=1

∂i1 . . . ∂ij (U(x)− U(y))(κ1)i1 . . . (κj)ij

∣∣∣∣∣∣
≤ c|x− y|

(
1 + sup

λ∈[0,1]

|U(λx+ (1− λ)y)|
)(1− j+1

ξ )∨0

,

|∂αb(x)|+ ∥∂ασ(x)∥+ |Ū(x)| ≤ c(1 + U(x))γ ,

|Ū(x)− Ū(y)|
|x− y|

≤ c(1 + |U(x)|γ + |U(y)|γ),

LU(x) +
1

2
∥σ⊤∇U(x)∥2 + Ū(x) ≤ ρU(x).

for all x, y ∈ Rn, j ∈ {0, 1, 2} and multiindices α with 0 ≤ |α| ≤ 2.

(iii) For any θ ∈ Θ := {θ = (t0, . . . , tn∗) : n∗ ∈ N, tk ∈ [0, T ], tk < tk+1, k ∈ {1, . . . , n∗ −
1}, t0 = 0, tn∗ = T}, the function Y θ

· : Ω × [0, T ] → Rn is an Ft-adapted, P-a.s.

continuous process satisfying supθ∈Θ E[eU(Y θ
0 )] <∞ and

Y θ
t = Y θ

tk
+ 1

{y:|y|<exp(|log supk tk+1−tk|
1
2 )}

(Y θ
tk

)

·
[

b(Y θ
tk

)(t− tk) + σ(Y θ
tk

)(Wt −Wtk)

1 + |b(Y θ
tk

)(t− tk) + σ(Y θ
tk

)(Wt −Wtk)|q′
]

on t ∈ [ti, ti+1) for each k ∈ {0, . . . , n∗ − 1}, where q′ ≥ 3.

(iv) Assumptions 7 and 8 hold and p ≥ 3. For any V ′ ∈ {V, V̂ s,T
k : s ∈ [0, T ], 2 ≤ |α| ≤

p − 1, k ≥ 2}, there exist 0 < l∗ ≤ 1, n̄ ≥ n, Ō ⊂ Rn̄ and b̂, σ̂ such that V ′ is

a (b̃··, σ̃
·
· , C, 0, 1, V0)-Lyapunov function for some b̃··, σ̃

·
· , V0 with b̃yt = b̂(t, Y y

t ), σ̃y
t =

σ̂(t, Y y
t ) for processes Y y

t satisfying (4.2.3) and V0 ∈ C2([0, T ], Ō) satisfies P-a.s.

that

(∂t + L)V0(t, y) ≤ CV0(t, x), lim
|x′|→∞

V0(t, x′) =∞, (4.6.1)

V ′(0, x̃′(Xy
s,t))

l∗ ≤ C(1 + V ′(t− s, x̃′(y))), V0(0, x̃′(y))l
∗
≤ C(1 + eU(y)e−ρT

)

for all s, t ∈ [0, T ], x ∈ Ō, y ∈ ∪θ∈ΘRange(Y θ
· ), where x̃′ = x̄ if V ′ = V , x̃′ = x̂k

otherwise, L is given by (4.2.2) with b, σ replaced by b̂, σ̂ and Xy
s,· is the solution to

Xy
s,t = y +

∫ t

s

b(Xy
s,u)du+

∫ t

s

σ(Xy
s,u)dWu. (4.6.2)

152



Remark 4.6.1. By Theorem 3.5 in [111], the first part of Assumption 10(iv) implies that

for all s ∈ [0, T ], x ∈ Rn, there exists a unique up to distinguishability, Ft-adapted, P-a.s.

continuous solution to (4.6.2) and for t ∈ [s, T ] it holds P-a.s. that X
Xx

s,t

t,T = Xx
s,T . In (i),

the assertions about Ft are from [99]. We set O to be the whole space and fix b and σ to

be time-independent and nonrandom in order to use continuous differentiability in initial

value from [165] and to use the exponential integrability results of [105]. Items (ii) and (iii)

closely follow the assumptions in [105]. Here, of particular note is that q′ is asserted to be

greater than or equal to 3 rather than 1 in the denominator of the expression for Y θ
t ; this

assumption is made in order to ensure well-behavedness of some higher order terms in the

Itô-Alekseev-Gröbner expansion such that weak convergence rate of order 1 is attained.

It is worth mentioning that the Lipschitz estimate on U with j = 0 in (ii) easily gives

that U is polynomially bounded, so that the set under the indicator function in (iii) indeed

satisfies the assumptions in [105], as used in [103, 105]. The last assertions of item (iv)

(and in general Assumption 10) are easily satisfied by all of the examples mentioned here;

they collect properties of the Lyapunov-type function from (ii) required for our argument

without requiring the Lyapunov functions to have V0 be given by eU(x)e−ρt+y (see the

proof of Corollary 3.3 in [101]).

In the following, for any s ∈ [0, T ], we extend the definition of any process Zt defined

on [s, T ] to [0, T ] by setting Zt = Zs for t ∈ [0, s).

Lemma 4.6.1. Under Assumption 10, for any k1 > 2(n + 1), R > 0, there exist con-

stants C > 0, n+ 1 < ν1 ≤ k1 such that

E sup
u∈[s,t]

|∂(κ)Xx
s,u − ∂(κ)Xx

s,s|k1 < C|t− s|ν1

for all (s, t) ∈ ∆T , x ∈ BR, κ ∈ {(κi)1≤i≤p0
: κi ∈ Rn, |κi| = 1, 1 ≤ i ≤ p, p0 ∈ N0∩[0, p]}.

Proof. By (4.3.15) in Theorem 4.3.3 (with a time shifted Wiener process and filtration)

and using that ∂(κ)Xx
s,s = 0 (for κ in the following set), the existence of such constants

have already been shown for κ ∈ {(κi)1≤i≤p0
: κi ∈ Rn, |κi| = 1, 1 ≤ i ≤ p, p0 ∈ N0∩[2, p]}.

Using Assumption 10(ii), Corollary 2.5 and Corollary 3.3 both in [101], it holds that

E sup
u∈[s,t]

|Xx
s,u − x|k1 ≤ Cek1(t−s)

(∫ t−s

0

(
E
[
eU(Xx

s,s+u)e
−ρu−2k1u

]) 1
k1

du

) k1
2

≤ Cek1(t−s)

(∫ t−s

0

e
U(x)
k1 du

) k1
2

≤ C|t− s|
k1
2
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for all (s, t) ∈ ∆T , x ∈ BR. Using instead Assumption 7, it holds that

E sup
u∈[s,t]

|∂(κi)Xx
s,u − κi|k1

≤ C
(
E
[
e
∫ t−s
0

1
2k1T log V (u,x̄(x))

]2k1
) 1

2

(∫ t−s

0

(E[log V (u, x̄(x)) + 1]2k1)
1
k1 du

) k1
2

≤ C(1 + V (0, x̄(x)))

(∫ t−s

0

(EV (u, x̄(x)) + 1)
1
k1 du

) k1
2

≤ C(1 + V (0, x̄(x)))((t− s)(V (0, x̄(x)) + 1)
1
k1 )

k1
2

≤ C|t− s|
k1
2

for all (s, t) ∈ ∆T , x ∈ BR, κi ∈ Rn with |κi| = 1.

The following lemma shows that the assumptions of Theorem 3.1 in [99] hold under

Assumption 10. Moreover, it is shown that the estimates therein hold uniformly with

respect to the discretisation θ ∈ Θ.

Lemma 4.6.2. Let Assumption 10 hold. There exists a function Ω × ∆T × Rn ∋
(ω, (s, t), x) 7→ X̄x

s,t(ω) ∈ Rn such that

• it holds P-a.s. that for any (s, t) ∈ ∆T , Rn ∋ x 7→ X̄x
s,t ∈ Rn is continuously

differentiable in x up to order p − 1 and the derivative ∆T × Rn ∋ ((s, t), x) 7→
∂αX̄x

s,t ∈ Rn is continuous for all multiindices α with 0 ≤ |α| ≤ p− 1,

• for any s ∈ [0, T ], x ∈ Rn, the function ∂αX̄x
s,· is indistinguishable from ∂(κα)Xx

s,·

for all multiindices α with 0 ≤ |α| ≤ p− 1.

Moreover, for any p† > 0, it holds that

sup
0≤|α|≤p−1

sup
θ∈Θ

sup
0≤r≤s≤t≤T

E
[
|b(X̄Y θ

s
s,t )|p

†
+ ∥σ(X̄

Y θ
s

s,t )∥p
†

+ |∂αX̄X̄
Y θ
r

r,s

t,T |
p†
]
<∞.

Proof. By Lemma 4.5.1 (with time-shifted Wiener process and filtration), derivatives in

probability ∂(κα)Xx
s,· are indistinguishable from classical derivatives ∂αX̂x

s,·. In order to

use the strong completeness Corollary 3.10 in [44], we show that for each R > 0, k1 >

2(n+ 1), it holds that

sup
0≤|α|≤p−1

sup
x,x′∈BR

sup
s,s′∈[0,T ]

E supt∈[0,T ]|∂αX̂x′

s′,t − ∂αX̂x
s,t|k1

(|x′ − x|2 + |s′ − s|2)
ν1
2

<∞, (4.6.3)

where ν1 is the same constant from Lemma 4.6.1. The marginal differences in x and s in

the numerator are considered separately. By Lemma 4.3.2 or Theorem 4.3.3, the difference
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term in x in the numerator of (4.6.3) has the bound

E
[

sup
t∈[0,T ]

|∂αX̂x′

s′,t − ∂αX̂x
s′,t|k1

]
≤ C|x′ − x|k1

for all s ∈ [0, T ], x, x′ ∈ BR, which is the desired Hölder bound for (4.6.3). For the

difference term in s in the numerator of (4.6.3), it holds that

E
[

sup
t∈[0,T ]

|∂αX̂x
s′,t − ∂αX̂x

s,t|k1

]
≤ E

[
sup

t∈[s∧s′,s∨s′]

|∂αX̂x
s∧s′,t − ∂αX̂x

s∨s′,s∨s′ |k1

]
+ E

[
sup

t∈[s∨s′,T ]

|∂αX̂x
s′,t − ∂αX̂x

s,t|k1

]
, (4.6.4)

where the first term on the right-hand side has the desired Hölder bound for (4.6.3) by

Lemma 4.6.1. For the second term, by Assumption 10(iv) and Lemma 4.4.4, combined

with Theorem 5.3 in [114], the joint system solved by (∂αXx
s,t)0≤|α|≤p−1 is regular [114,

Definition 2.1] and the same holds for the sum (∂αXx
s′,t − ∂αXx

s,t)0≤|α|≤p−1 by an easy

argument; therefore the strong Markov property (Theorem 2.13 in [114] with Proposi-

tion 4.1.5 in [63])3 yields for any R′ > 0 that

E
[

sup
t∈[s∨s′,T ]

|∂αX̂x
s′,t − ∂αX̂x

s,t|k1 ∧R′
]

= E
[[

sup
t∈[s∨s′,T ]

|∂αX̂x
s′,t − ∂αX̂x

s,t|k1 ∧R′
∣∣∣∣Fs∨s′

]]
=

∫ ∫
sup

t∈[s∨s′,T ]

∣∣∣∂αX̂(∂βX̂x
s∧s′,s∨s′ (ω))β

s∨s′,t (ω′)− ∂αX̂x
s∨s′,t(ω

′)
∣∣∣k1

∧R′ dP(ω′)dP(ω),

(4.6.5)

where ∂αX̂
(∂βX̂x

s∧s′,s∨s′ (ω))β

s∨s′,t (ω′) denotes the solution to the same (joint) system as ∂αX̂x
s∨s′,t(ω

′)

but with initial conditions ∂βX̂x
s∧s′,s∨s′(ω) for 0 ≤ |β| ≤ p− 1 for each respective partial

derivative in place of the initial conditions x, ei or 0. Then the proofs of Lemma 4.3.2 and

Theorem 4.3.3 may be slightly modified in order to obtain analogous statements for the

expectation in ω′ in (4.6.5); the modification is namely that the initial condition (fixed

with respect to ω′) as mentioned can be added with no complications when Corollary 2.5

3 Alternatively, we have uniqueness in the joint system by Theorem 3.5 in [111] and Theorem 1.2
in [114], so that Theorem IX.1.7 in [167], Itô’s rule, Theorem 4.4.2 and Proposition 4.1.5 both in [63] give
together the same required Markov property.
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in [101] is applied. Given this, it holds that

E
[

sup
t∈[s∨s′,T ]

|∂αX̂x
s′,t − ∂αX̂x

s,t|k1 ∧R′
]
≤ C

|α|−1∑
β=0

E|∂βX̂x
s∧s′,s∨s′ − ∂βX̂x

s∨s′,s∨s′ |k1 ,

= C

|α|−1∑
β=0

E|∂βX̂x
s∧s′,s∨s′ − ∂βX̂x

s∧s′,s∧s′ |k1 ,

for all x ∈ BR, s, s′ ∈ [0, T ], 0 ≤ |α| ≤ p− 1, which, by Lemma 4.6.1 and dominated con-

vergence in R′, implies that the last term on the right-hand side of (4.6.4) has the desired

Hölder bound for (4.6.3). Gathering the above and using the triangle inequality, (4.6.3)

holds. Consequently, using on the way Lemma 4.3.2 and Theorem 4.3.3, Corollary 3.10

in [44] may be applied with β = ν1

k1
, D = [0, T ] × Rn, E = F = C([0, T ],Rn), X =

(Ω× [0, T ]×Rn ∋ (ω, s, x) 7→ ∂αX̂x
s,·(ω) ∈ C([0, T ],Rn)) to obtain for 0 ≤ |α| ≤ p−1 exis-

tence of an F⊗B(Rn)-measurable Ω××[0, T ]×Rn ∋ (ω, s, x) 7→ ∂αX
x

s,·(ω) ∈ C([0, T ],Rn)

such that for all ω ∈ Ω, the function [0, T ]×Rn ∋ (s, x) 7→ ∂αX
x

s,· ∈ C([0, T ],Rn) is con-

tinuous and for any (s, x) ∈ [0, T ]× Rn, ∂αX
x

s,· is indistinguishable from ∂αX̂x
s,·.

Since partial integrals of (jointly) continuous functions are still continuous, we may par-

tially integrate |α| times each ∆T × Rn ∋ ((s, t), x) 7→ ∂αX
x

s,t ∈ Rn from 0 to xi in

order to obtain for each α, ω a continuous function ∆T × Rn ∋ ((s, t), x) 7→ X̄x,α
s,t ∈ Rn,

where along the way the continuous functions of the form ((s, t), x) 7→ ∂βX
(x1,...,0,...,xn)

s,t

are to be added in line with the fundamental theorem of calculus. For any (s, t) ∈ ∆T ,

by definition of ∂αX
x

s,t and its continuity in x, it holds P-a.s. that ∂αX
x

s,t = ∂αX̂x
s,t

for all x ∈ Rn, so that their partial integrals in x are also P-a.s. equal for all x ∈ Rn

and in particular it holds P-a.s. that X̄x,α
s,t = X̂x,α

s,t , for all x ∈ Rn. Therefore, by

continuity in (s, t), x, these functions coincide P-a.s. across α, that is, it holds P-a.s.

that X̄x,α
s,t = X̄x,α′

s,t and thus ∂βX̄x,α
s,t = ∂βX̄x,α′

s,t for all (s, t) ∈ ∆T , x ∈ Rn and multi-

indices α, α′, β with |α|, |α′|, |β| ∈ [0, p − 1]. Let this P-a.s. defined function be denoted

by X̄x
s,t, then the assertions about X̄x

s,t in the statement of the lemma have been shown

beside indistinguishability with the corresponding derivatives in probability, which holds

by continuity in t for both functions.

For the last assertion, the Markov property as used earlier (this time only Theroem 2.13

in [114]) will be applied repeatedly without further mention. Since Assumption 10(ii)

implies in particular for any p† > 0 that

|b(x)|p
†

+ ∥σ(x)∥p
†
≤ CeU(x)e−ρt
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for all x ∈ Rn, t ∈ [0, T ], by Corollary 3.3 in [101] and Assumption 10(ii), it holds that

sup
θ∈Θ

sup
0≤s≤t≤T

E[|b(X̄Y θ
s

s,t )|p
†

+ ∥σ(X̄
Y θ
s

s,t )∥p
†
]

≤ C sup
θ∈Θ

sup
0≤s≤t≤T

E[eU(X̄
Y θ
s

s,t )e
−ρ(t−s)

]

≤ C sup
θ∈Θ

sup
0≤s≤t≤T

E[eU(X̄
Y θ
s

s,t )e
−ρ(t−s)+

∫ t
s
Ū(X̄Ys

s,u)e
−ρ(u−s)du]

≤ C sup
θ∈Θ

sup
0≤s≤T

E[eU(Y θ
s )],

which is finite by Theorem 2.9 in [105]. For any p† > 0, by Assumption 10(ii), Corollary 3.3

in [101] and that e−ρ(s−r), e−ρr < 1, it holds that

sup
0≤r≤s≤t≤T

E
∣∣∣X̄X̄

Y θ
r

r,s

t,T

∣∣∣p†

≤ C sup
0≤r≤s≤t≤T

E[eU(X̄
X̄

Y θ
r

r,s
t,T )e−ρ(T−t)e−ρ(s−r)e−ρr+

∫ T
t

Ū(X̄
X̄

Y θ
r

r,s
t,u )e−ρ(u−t)e−ρ(s−r)e−ρrdu]

≤ C sup
0≤r≤s≤T

E[eU(X̄
Y θ
r

r,s )e−ρ(s−r)e−ρr

]

≤ C sup
0≤r≤s≤T

E[eU(X̄
Y θ
r

r,s )e−ρ(s−r)e−ρr+
∫ s
r
Ū(X̄

Y θ
r

r,u)e−ρ(u−r)e−ρrdu]

≤ C sup
0≤r≤T

E[eU(Y θ
r )e−ρr

],

for all θ ∈ Θ, which is finite uniformly in θ by Theorem 2.9 in [105].

For the higher derivatives, first note that for V0 satisfying (4.6.1) and 0 < l < 1, (4.6.1)

is also satisfied with V l
0 in place of V0. Moreover, the respective Lyapunov functions

they generate satisfy Assumptions 7 and 8. Therefore, for any Ĩ ∈ N ∩ [1, p − 1], κ ∈
{(κi)i=1,...,Ĩ : κi ∈ Rn, |κi| = 1}, we may choose l = 2l∗

degree(q0)
, with q0 from Theo-

rem 4.3.3, so that for p̃† > 0, by Lemma 4.3.2 or Theorem 4.3.3, Young’s inequality,
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Assumptions 10(ii)(iv) and Theorem 2.4 in [101], it holds that

sup
0≤r≤s≤t≤T

E
∣∣∣∂(κ)XX

Y θ
r

r,s

t,T

∣∣∣p̃†

≤ C sup
0≤r≤s≤T

E[1 + V (0, x̄(X
Y θ
r

r,s ))2l
∗

+

i∗∑
i=1

V̂ 0,T
li

(0, x̂li(X
Y θ
r

r,s ))2l
∗
]

≤ C sup
0≤r≤s≤T

E[1 + V (s− r, x̄(Y θ
r ))l

∗
+

i∗∑
i=1

V̂ 0,T
li

(s− r, x̂li(Y θ
r ))l

∗
]

≤ C sup
0≤r≤T

E[1 + V (0, x̄(Y θ
r ))l

∗
+

i∗∑
i=1

V̂ 0,T
li

(0, x̂li(Y
θ
r ))l

∗
]

≤ C sup
0≤r≤T

E[1 + eU(Y θ
r )e−ρT

],

where C is in particular independent of κ ∈ {(κi)i=1,...,Ĩ : κi ∈ Rn, |κi| = 1} and θ ∈ Θ, so

that the right-hand side is finite uniformly in θ by Theorem 2.9 in [105] and also uniformly

in Ĩ.

The main theorem of this section about weak convergence of order 1 for the stopped

increment-tamed Euler-Maruyama scheme is as follows.

Theorem 4.6.3. Let Assumption 10 hold. For f ∈ C3(Rn,R), if there exist con-

stants q†, Cf > 0 such that

|∂αf(x)| ≤ Cf (1 + |x|q
†
) (4.6.6)

for all x ∈ Rn and multiindices α with 0 ≤ |α| ≤ 3, then there exists a constant C > 0

such that ∣∣∣Ef(X
Y θ
0

0,T )− Ef(Y θ
T )
∣∣∣ ≤ C sup

k∈N0∩[0,n∗)

(tk+1 − tk)

for all θ ∈ Θ, where θ = (t0, . . . , tn∗).

Proof. Throughout the proof, we write D|θ| = {y : |y| < exp(|log supk tk+1 − tk|
1
2 )}. To

begin, we rewrite the approximation Y θ
t as an SDE. For every k ∈ N0 ∩ [0, n∗ − 1], θ =

(t0, . . . , tn∗) ∈ Θ, consider

Zθ,k
t =


0 if t < tk

b(Y θ
tk

)(t− tk) + σ(Y θ
tk

)(Wt −Wtk) if tk ≤ t < tk+1

b(Y θ
tk

)(tk+1 − tk) + σ(Y θ
tk

)(Wtk+1
−Wtk) if tk+1 ≤ t

=

∫ t

0

1[tk,tk+1)(u)b(Y θ
tk

)du+

∫ t

0

1[tk,tk+1)(u)σ(Y θ
tk

)dWu, (4.6.7)
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defined for all t ∈ [0, T ], then Y θ
t solves

Y θ
t = Y θ

0 +

n∗−1∑
k=0

1D|θ|(Y
θ
tk

)
Zθ,k
t

1 + |Zθ,k
t |q

′
, (4.6.8)

where by Itô’s rule, for f̂ : Rn → Rn given by f̂(z) = z
1+|z|q′ , it holds that

Zθ,k
t

1 + |Zθ,k
t |q

′
=

∫ t

0

1[tk,tk+1)(u)(b(Y θ
tk

) + b∗(Y θ
tk
, Zθ,k

u ))du

+

∫ t

0

1[tk,tk+1)(u)(σ(Y θ
tk

) + σ∗(Y θ
tk
, Zθ,k

u ))dWu (4.6.9)

and b∗ : Rn × Rn → Rn and σ∗ : Rn × Rn → Rn×n are given by

b∗(y, z) = −b(y)

(
|z|q′

1 + |z|q′
)
− q′z

(
z · b(y)

|z|q′−2

(1 + |z|q′)2

)
+

1

2
((σσ⊤(y)) : D2)f̂(z)

(4.6.10)

σ∗(y, z) = −σ(y)

(
|z|q′

1 + |z|q′
)
− q′z

(
z⊤σ(y)

|z|q′−2

(1 + |z|q′)2

)
. (4.6.11)

Note that using q′ ≥ 3, there exists a constant ν2 ≥ 2 such that the second order

derivatives satisfy |∂2ij f̂(z)| ≤ C|z|ν2 for all z ∈ Rn, i, j ∈ N ∩ [1, n].

By Theorem 3.1 in [99] and Lemma 4.6.2, for any θ ∈ Θ, it holds that

E[f(X
Y θ
0

0,T )]− E[f(Y θ
T )]

=

n∗−1∑
k=0

E
∫ tk+1

tk

(((
b(Y θ

t )− 1D|θ|(Y
θ
tk

)(b(Y θ
tk

)

+ b∗(Y θ
tk
, Zθ,k

t ))
)
· ∇
)
X̄

Y θ
t

t,T

)
· ∇
)
f(X̄

Y θ
t

t,T )dt

+
1

2
E
∫ tk+1

tk

n∑
i,j=1

(
σ(Y θ

t )σ(Y θ
t )⊤ − 1D|θ|(Y

θ
tk

)(σ(Y θ
tk

) + σ∗(Y θ
tk
, Zθ,k

t ))(σ(Y θ
tk

)

+ σ∗(Y θ
tk
, Zθ,k

t ))⊤
)
ij

(
((∂iX̄

Y θ
t

t,T ⊗ ∂jX̄
Y θ
t

t,T ) : D2)f(X̄
Y θ
t

t,T ) + (∂2ijX̄
Y θ
t

t,T · ∇)f(X̄
Y θ
t

t,T )
)
dt

(4.6.12)

For the first terms on the right-hand side of (4.6.12), denoting

b̂∗(y′, y, z) = b(y′)− 1D|θ|(y)(b(y) + b∗(y, z)), (4.6.13)
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it holds that(((
b̂∗(Y θ

t , Y
θ
tk
, Zθ,k

t ) · ∇
)
X̄

Y θ
t

t,T

)
· ∇
)
f(X̄

Y θ
t

t,T )

=
(((

b̂∗(Y θ
t , Y

θ
tk
, Zθ,k

t ) · ∇
)(
X̄

Y θ
t

t,T − X̄
Y θ
tk

t,T

))
· ∇
)
f(X̄

Y θ
t

t,T )

+
(((

b̂∗(Y θ
t , Y

θ
tk
, Zθ,k

t ) · ∇
)
X̄

Y θ
tk

t,T

)
· ∇
)(
f(X̄

Y θ
t

t,T )− f(X̄
Y θ
tk

t,T )
)

+
(((

b̂∗(Y θ
t , Y

θ
tk
, Zθ,k

t ) · ∇
)
X̄

Y θ
tk

t,T

)
· ∇
)
f(X̄

Y θ
tk

t,T ). (4.6.14)

The first part of the factor involving b has the form

b(Y θ
t )− 1D|θ|(Y

θ
tk

)b(Y θ
tk

)

=

[
b(Y θ

t )− b(Y θ
tk

)

]
+

[
b(Y θ

tk
)− 1D|θ|(Y

θ
tk

)b(Y θ
tk

)

]
=

∫ t

tk

1Dθ
(Ytk)

((
(b(Y θ

tk
) + b∗(Y θ

tk
, Zθ,k

u )) · ∇
)
b(Y θ

u )

+
1

2

((
(σ(Y θ

tk
) + σ∗(Y θ

tk
, Zθ,k

u ))(σ(Y θ
tk

) + σ∗(Y θ
tk
, Zθ,k

u ))⊤
)

: D2
)
b(Y θ

u )
)
du

+

∫ t

tk

1Dθ
(Ytk)

(
(σ(Y θ

tk
) + σ∗(Y θ

tk
, Zθ,k

u )) · ∇
)
b(Y θ

u )dWu

+ b(Y θ
tk

)(1− 1D|θ|(Y
θ
tk

)), (4.6.15)

where the integral w.r.t. u is uniformly bounded in θ by C(t − tk) in L2(P) norm, the

stochastic integral is uniformly bounded in θ by C(t − tk)
1
2 in L2(P) norm and the last

term has the same property as the integral-in-u (and in fact of arbitrary order in t− tk)

by the calculation of inequalities (47), (48) in [103]. Using the definition (4.6.10) for b∗

along with q′ ≥ 3, there exists a constant ν2 ≥ 2 such that the remaining part of the

factor involving b from (4.6.14) has the bound

|1D|θ|(Y
θ
tk

)b∗(Y θ
tk
, Zθ,k

t )| ≤ C|b(Y θ
tk

)||Zθ,k
t |ν2 (4.6.16)

for all θ ∈ Θ. Putting (4.6.15) and (4.6.16) into the first term on the right-hand

side of (4.6.14) and using Hölder’s inequality, Assumptions 10(ii)(iv), together with

the equalities (4.6.7), (4.6.8), (4.6.9), (4.6.10), (4.6.11), inequality (4.6.6), Lemma 4.6.2,

Lemma 4.3.2, Theorem 4.3.3, Markov property (Theorem 2.13 in [114]; see also justifica-

tion in the proof of Lemma 4.6.2) and exponential integrability for U as in Theorem 2.9

in [105] yield

E
∣∣∣∣(((b̂∗(Y θ

t , Y
θ
tk
, Zθ,k

t ) · ∇
)(
X̄

Y θ
t

t,T − X̄
Y θ
tk

t,T

))
· ∇
)
f(X̄

Y θ
t

t,T )

∣∣∣∣ ≤ C(t− tk) (4.6.17)
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for all t ∈ [tk, tk+1), θ ∈ Θ. The same arguments can be used for the second term on the

right-hand side of (4.6.14), along with the additional estimate

E|∂if(X̄
Y θ
t

t,T )− ∂if(X̄
Y θ
tk

t,T )|r

≤ E
∣∣∣∣ ∫ 1

0

∇∂if(λX̄
Y θ
t

t,T + (1− λ)X̄
Y θ
tk

t,T )dλ · (X̄Y θ
t

t,T − X̄
Y θ
tk

t,T )

∣∣∣∣r
≤ C(1 + E|X̄Y θ

t

t,T |
2q† + E|X̄

Y θ
tk

t,T |
2q†)

r
2 (E|X̄Y θ

t

t,T − X̄
Y θ
tk

t,T |
2)

r
2

≤ C(EeU(Y θ
t ) + EeU(Y θ

tk
))E|Y θ

t − Y θ
tk
|r

≤ C(t− tk)
r
2

where r > 1, in order to obtain the same right-hand bound as (4.6.17). For the last term

on the right-hand side of (4.6.14), we rely more prominently on the Markov property. For

any R > 0, it holds that

E
[(((

b̂∗(Y θ
t , Y

θ
tk
, Zθ,k

t ) · ∇
)
X̄

Y θ
tk

t,T

)
· ∇
)
f(X̄

Y θ
tk

t,T ) ∧R
]

= E
[
E
[(((

b̂∗(Y θ
t , Y

θ
tk
, Zθ,k

t ) · ∇
)
X̄

Y θ
tk

t,T

)
· ∇
)
f(X̄

Y θ
tk

t,T ) ∧R
∣∣∣∣Ft

]]
=

n∑
i=1

E
[
b̂∗i (Y θ

t , Y
θ
tk
, Zθ,k

t )E
[(
∂iX̄

Y θ
tk

t,T · ∇
)
f(X̄

Y θ
tk

t,T ) ∧R
∣∣∣Ft

]]

=

n∑
i=1

E
[
E
[
b̂∗i (Y θ

t , Y
θ
tk
, Zθ,k

t )
∣∣∣Ftk

]
E
[(
∂iX̄

Y θ
tk

t,T · ∇
)
f(X̄

Y θ
tk

t,T ) ∧R
∣∣∣Ftk

]]
,

so that (4.6.13), (4.6.15) and (4.6.16), where the only order 1
2 term in t− tk from (4.6.15)

has vanished, together with the same arguments as before and dominated convergence

in R yields

E
[(((

b̂∗(Y θ
t , Y

θ
tk
, Zθ,k

t ) · ∇
)
X̄

Y θ
tk

t,T

)
· ∇
)
f(X̄

Y θ
tk

t,T )

]
≤ C(t− tk) (4.6.18)

for all t ∈ [tk, tk+1), θ ∈ Θ. Gathering the arguments from (4.6.17) onwards, the integrals

involving b in (4.6.12) have been shown to be of order t− tk. For the integrals involving σ

in (4.6.12), after rewriting

σ(Y θ
t )σ(Y θ

t )⊤ − 1D|θ|(Y
θ
tk

)(σ(Y θ
tk

) + σ∗(Y θ
tk
, Zθ,k

t ))(σ(Y θ
tk

) + σ∗(Y θ
tk
, Zθ,k

t ))⊤

=
(
σ(Y θ

t )− 1D|θ|(Y
θ
tk

)(σ(Y θ
tk

) + σ∗(Y θ
tk
, Zθ,k

t ))
)
σ(Y θ

t )⊤

+ 1D|θ|(Y
θ
tk

)(σ(Y θ
tk

) + σ∗(Y θ
tk
, Zθ,k

t ))
(
σ(Y θ

t )⊤ − (σ(Y θ
tk

) + σ∗(Y θ
tk
, Zθ,k

t ))⊤
)
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and similarly

((∂iX̄
Y θ
t

t,T ⊗ ∂jX̄
Y θ
t

t,T ) : D2)f(X̄
Y θ
t

t,T ) + (∂2ijX̄
Y θ
t

t,T · ∇)f(X̄
Y θ
t

t,T )

= (((∂iX̄
Y θ
t

t,T − ∂iX̄
Y θ
tk

t,T )⊗ ∂jX̄
Y θ
t

t,T ) : D2)f(X̄
Y θ
t

t,T ) + ((∂2ijX̄
Y θ
t

t,T − ∂
2
ijX̄

Y θ
tk

t,T ) · ∇)f(X̄
Y θ
t

t,T )

+ (((∂iX̄
Y θ
t

t,T − ∂iX̄
Y θ
tk

t,T )⊗ ∂jX̄
Y θ
tk

t,T ) : D2)f(X̄
Y θ
t

t,T ) + (∂2ijX̄
Y θ
tk

t,T · ∇)(f(X̄
Y θ
t

t,T )−f(X̄
Y θ
tk

t,T ))

+ ((∂iX̄
Y θ
tk

t,T ⊗ ∂jX̄
Y θ
tk

t,T ) : D2)(f(X̄
Y θ
t

t,T )− f(X̄
Y θ
tk

t,T )) + (∂2ijX̄
Y θ
tk

t,T · ∇)f(X̄
Y θ
tk

t,T )

+ ((∂iX̄
Y θ
tk

t,T ⊗ ∂jX̄
Y θ
tk

t,T ) : D2)f(X̄
Y θ
tk

t,T ),

the same bound as (4.6.18) holds for all of (4.6.12) by the same treatment as for (4.6.18).

4.7 Examples

In this section, specific examples are provided where the results presented above are ap-

plicable. As stated in the introduction, most of the examples in [44, 105] are viable

and many Lyapunov functions have already been given in these references (applicable

here after a simple transformation, see Remark 4.6.1). Here, the focus is placed on two

particular examples differing in some considerable way to the aforementioned references.

In Section 4.7.1, our results are applied to the (underdamped) Langevin dynamics with

variable friction, which, by definition, does not have globally Lipschitz (nor monotone)

coefficients.In Section 4.7.2, a Lyapunov function of the classical type (that is, V0 sat-

isfying LV0 ≤ CV0) is given for the Stochastic Duffing-van der Pol equation; moreover,

this is given in consideration of a limiting parameter case that has not fallen under the

assumptions in previous works mentioned above.

4.7.1 Langevin equation with variable friction

Here, the backward Kolmogorov equation and Poisson equation associated with the

Langevin equation are shown to hold even in cases where the friction matrix depends

on both position and velocity variables. The pointwise solution to the Kolmogorov equa-

tion is used to obtain a distributional solution to the associated Poisson equation and in

doing so the derivation of a gradient formula for the asymptotic variance as in the previous

chapter is made viable; the last part is not explored further here. Note that the case where

the friction matrix depends on the velocity variable was considered in [11]. We allow the

potential to not be infinitely differentiable and do not make use of hypoellipticity.

Assumption 11. The function U ∈ C3(Rn) is such that there exists k̃, K̃ > 0 with

∇U(q) · q ≥ k̃|x|2 − K̃ for all q ∈ Rn. The friction matrix Γ ∈ C∞(R2n,Rn×n) ∩ L∞
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is symmetric positive definite everywhere such that there exist4 β1 < 1, m̃, M̃ > 0 with

|∇p · Γ(q, p)| < M̃(1 + |q|β1 + |p|β1) and Γ(q, p) ≥ m̃I for all q, p ∈ Rn.

Note Assumption 11 implies for R > 1, q ∈ Rn with |q| = 1,

U(Rq)− U(q) =

∫ R

1

∇U(λq) · λq
λ
dλ ≥

∫ R

1

(k̃|λq|2 − K̃)λ−1dλ

=
k̃(R2 − 1)

2
− K̃ logR,

which yields U(q) ≥ k̃
4 |q|

2 − C for all q ∈ Rn and some constant C > 0. Consider

R2n-valued solutions (qt, pt) to

dqt = ptdt (4.7.1a)

dpt = −∇U(qt)dt+∇p · Γ(qt, pt)dt− Γ(qt, pt)ptdt+
√

Γ(qt, pt)dWt, (4.7.1b)

where
√

Γ denotes some matrix satisfying
√

Γ
√

Γ
⊤

= Γ and (∇·Γ)i =
∑

j ∇pj
Γij . For b =

min(k̃−1(supR2n |Γ|)−1, m̃, k̃
1
2 ), a = 1

4 min( b
k̃
, m̃), let

Vγ(q, p) = eγ(U(q)+a|q|2+bq·p+|p|2). (4.7.2)

In the following, |M | denotes the operator norm of M ∈ Rn×n.

Proposition 4.7.1. Under Assumption 11, there exists constants c1, c2, c3 > 0 such that

for all γ satisfying

0 < γ ≤ γ∗ :=
1

8
min((k̃b sup

R2n

|Γ|)−1, m̃(4 sup
R2n

|Γ|)−1), (4.7.3)

it holds that

LVγ(q, p) ≤ (c1 − c2|q|2 − c3|p|2)γVγ(q, p) (4.7.4)

for all (q, p) ∈ R2n, where L is the generator (4.2.2) associated with (4.7.1).

If in addition there exist 0 < β2 < 1, M̄ > 0 such that

|∂i(∇p · Γ(q, p)−∇U(q))| ≤ M̄(1− inf U + U(q) + |p|2)β2

|∂iΓ(q, p)| ≤ M̄(1− inf U
1
2 + U(q)

1
2 + |p|)β2

|∂i∂j(∇p · Γ(q, p)−∇U(q))|+ |∂i∂jΓ(q, p)| ≤ M̄(1 + e(U(q)+|p|2)β2
)

for all q, p ∈ Rn, i, j ∈ {1, . . . , 2n}, then Assumption 8 (with p = 2) is satisfied with

4 It is possible to allow for β1 = 1, but at the cost of more stringent bounds on the coefficients.

163



V̂k = Vγ with any γ satisfying (4.7.3), G(q, p) = C(1 − inf U + U(q) + |p|2)β3 for some

constants C > 0 and β2 < β3 < 1.

Proof. The left-hand side of (4.7.4) calculates as

(p · ∇q −∇qU(q) · ∇p + (∇p · Γ(q, p)) · ∇p − (Γ(q, p)p) · ∇p + Γ(q, p) : D2)Vγ(q, p)

= (2aq · p+ b|p|2 − b∇qU(q) · q + (∇p · Γ(q, p)− Γ(q, p)p) · (bq + 2p)

+ 2TrΓ(q, p) + γΓ(q, p) : (b2qq⊤ + 4pp⊤))γVγ(q, p)

≤
((

a− b

k̃
+

1

2
b2|Γ|+ b2γ|Γ|

)
|q|2 +

(
a+ b+

1

2
|Γ| − 2m̃+ 4γ|Γ|

)
|p|2

+ M̃(1 + |q|β1 + |p|β2)|bq + 2p|+ bK̃ + 2TrΓ

)
γVγ(q, p)

≤
(
c− b

16k̃
|q|2 − m̃

16
|p|2
)
γVγ(q, p) (4.7.5)

for some constant c > 0. The last assertion follows by straightforward applications of

Young’s inequality.

For U with locally Lipschitz third derivatives and by Theorem 4.5.2 (iii), the associated

Poisson equation with right-hand side f̂ = f−
∫
R2n fdµ ∈ L2(µ) holds in the distributional

sense if in addition∣∣∣Ef̂(z·t)
∣∣∣+

∣∣∣∣∫ ∞

t

Ef̂(z·s)ds

∣∣∣∣→ 0 in L2(µ) as t→∞, (4.7.6)

where for any z ∈ R2n, zzt = (qt, pt) solves (4.7.1), P((q0, p0) = z) = 1 and µ(dq, dp) =

Z−1e−U(q)− p2

2 dqdp is the invariant probability measure with normalizing constant Z. We

obtain (4.7.6) in the following by using the ergodicity results of [52], see alternatively

Theorem 2.4 in [194]. The proof of Proposition 1.2 in [194] can be modified for (4.7.1) to

obtain

Proposition 4.7.2. For every x ∈ R2n, t > 0, the measure P t(x, ·) admits a density

pt(x, ·) satisfying pt(x, y) > 0 Lebesgue almost every y ∈ R2n and

(x 7→ pt(x, ·)) ∈ C(R2n, L1(R2n)). (4.7.7)

Proof. For the Markov property, see the proof of Lemma 4.6.2 just before (4.6.5). The

proof in the aforementioned reference follows through except in the proof of Lemma 1.1

in [194], where the Lyapunov function (4.7.2) is to be used in place of H̃(x, y) = 1
2 |y|

2
+

V (x)− infRn V + 1 and R2 in the ensuing calculations is replaced as needed.

Proposition 4.7.2 implies the existence of an irreducible skeleton chain, see [52]; together
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with Theorem 3.2 in the same reference (with Ψ = (Ψ1,Ψ2), Ψ1(x) = Ψ2(x) = (x/2)
1
2 ,

ϕ(x) = x
1
2 , V = V 1

2γ
∗), Theorem 3.4 in [52] (compact sets are petite by Theorem 4.1(i)

in [137]) and Proposition 3.1 in the same reference (with ϕ(x) = x, V = Vγ∗), this

yields (4.7.6) for f̂ satisfying f̂/V 1
8γ

∗ ∈ L∞. Note that the Foster-Lyapunov condition for

geometric ergodicity suffice as well.

In addition, maximal dissipativity of the closure of the generator defined on C∞
c is also

enough to conclude a distributional solution to the Poisson equation, which motivates the

question of whether there is a relationship between this property and the Kolmogorov

equation; a partial answer is given by Proposition 4.4.6. However, maximal dissipativity

is not generally available and for example not established for (4.7.1) with Γ dependent

on both q and p, see [11] on the other hand.

4.7.2 Stochastic Duffing-van der Pol equation

We show here that the Stochastic Duffing-van der Pol oscillator admits a Lyapunov func-

tion satisfying the assumptions of Theorem 4.3.3. Note that in doing so, the difficult parts

of Assumption 10 are shown to be satisfied, so that our Theorem 4.6.3 about weak numer-

ical convergence rates applies. In particular, the logarithm of the Lyapunov function de-

scribed below may be used for U in Assumption 10. The version of the equation considered

is from [102] with β2 = 0, which is less general than in [102] but still includes the setting

of Section 13.1 in [112] and [5] for example. Moreover, it is more general than Section 4.3

in [44], which is reflected in the form of the Lyapunov function here. Note on the other

hand, it is not more general than in [103]. Specifically, for (W (1),W (3)) : [0, T ]×Ω→ R2

a standard (Ft)t∈[0,T ]-adapted Brownian motion, α1, α2, β1, β3 ∈ R, α3 ≥ 0, consider

R2-valued solutions to (4.1.2), restated here for convenience:

dX
(1)
t = X

(2)
t dt, (4.7.8a)

dX
(2)
t = [α1X

(1)
t − α2X

(2)
t − α3X

(2)
t (X

(1)
t )2 − (X

(1)
t )3]dt

+ β1X
(1)
t dW

(1)
t + β3dW

(3)
t . (4.7.8b)

For α3 > 0 (see Remark 4.7.1 for the case α3 = 0, V is chosen here with regard to this

case), let a = min(1, 1
α3

), b = (2 − α3)1α3<1 + 3
21α3≥1, c = 6|α2|, γ ≤ min( α3

4β2
1
, 1
β2
1
, |α2|
8β2

3
)

and let η : R→ [0, 1] be a C∞
c cut off function satisfying η(y) = 1 for y2 ≤ 1+|a−2α2b+2β2

3γb
2|

2α3b−2β2
1γb

2 .

Define

V (x1, x2) = V1(x1, x2) + V2(x1, x2)

:= (1− η(x1))eγ(x
4
1+ax1x2+bx2

2) + eγ(−cx1x2+
1
2x

2
2).
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Proposition 4.7.3. If α3 > 0, then there exists a constant C∗ > 0 such that LV ≤
C∗V , where L is the generator (4.2.2) associated with (4.7.8). Moreover, Assumptions 7

and 8 are satisfied with G(t, x) = (3 + 2
∑

i|αi| + β2
1)(1 + |x1|3 + |x2|

3
2 ) and V̂k(t, x) =

(|X(1)
t |4 + 2|X(2)

t |2 + 1)k for t ≥ 0, x = (x1, x2) ∈ Rn, where (X
(1)
t , X

(2)
t ) solves (4.7.8)

with (X
(1)
t , X

(2)
t ) = (x1, x2).

Proof. The functions V1 and V2 satisfy

LV1(x1, x2) = [(2α1b− α2a)x1x2 + (a− 2α2b+ 2β2
3γb

2)x22 + (α1a+
1

2
β2
3γa

2 + β2
1b)x

2
1

+ (2β2
1γb

2 − 2α3b)x
2
1x

2
2 − (α3a+ 2b− 4)x31x2 + (

1

2
β2
1γa

2 − a)x41

+ bβ2
3 −

x2∂x1
η(x1)

1− η(x1)
]γV1(x1, x2)

LV2(x1, x2) = [(
1

2
β2
3γ − c− α2)x22 + (

1

2
c2β2

3γ − α1c+
1

2
β2
1)x21

+ (α2c+ α1)x1x2 + (α3c− 1)x31x2 + (c+
1

2
c2γβ2

1)x41

+ (
1

2
β2
1γ − α3)x21x

2
2 +

1

2
β2
3 ]γV2(x1, x2).

where 1
1−η(x1)

:= 0 whenever 1 − η(x1) = 0. In order to see LV ≤ CV , consider sepa-

rately the regimes x21 ≤
1+|a−2α2b+2β2

3γb
2|

2α3b−2β2
1γb

2 and its complement in R2. In the former case,

V1(x1, x2) = LV1(x1, x2) = 0 and by our choice of c and γ, there exists a generic constant

C > 0 such that LV2 ≤ CV2, therefore LV ≤ CV . Otherwise in the complementary case

where |x1| is bounded below, we have LV1 ≤ CV1 and when in addition x1 ∈ suppη∪B1(0),

it holds that LV2 ≤ CV2. It remains to estimate LV2 when x1 /∈ suppη ∪B1(0), in which

case we have |x|ieγ(−cx1x2+
1
2x

2
2) ≤ Ceγ(

1
2x

4
1+

3
4x

2
2) ≤ CV1(x1, x2) for i ≤ 4, from which

LV2 ≤ CV1.

For the second assertion, it is straightforward to see that (4.3.1), (4.3.2) hold and that

the higher derivatives of the coefficients of (4.7.8) are bounded above in terms of V̂k

for any k, p as called-for in Assumption 8; for (4.3.3), consider separately the cases

|x1| ≤ sup{|x| : x ∈ suppη} and otherwise. In the former case, it holds that

G(x1, x2) ≤ C(1 + |x2|
3
2 ),

which yields that for any m > 0, there is M = M(m) > 0 continuous in m such that

G ≤ m log(V2) +M ≤ m log(V ) +M. (4.7.9)

When |x1| > sup{|x| : x ∈ suppη}, inequalities (4.7.9) continue to hold with V1 replacing

V2 and a corresponding continuous function m 7→M(m).
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Remark 4.7.1. When α3 = 0, the arguments of Proposition 4.7.3 fail to adapt, but one

can consider (4.7.8) and its derivative dynamics appended with dα3 = 0 with initial

condition as a positive function in R in order to obtain the statements of Theorem 4.3.3.

To elaborate, for almost all ω ∈ Ω, the solution to the appended derivative dynamics is

continuously differentiable with respect to α3 by Theorem V.39 in [165] and in particular

is continuous, so that Fatou’s lemma can be used to obtain

E lim
α3→0

sup
0≤s≤t

∣∣∣∂(κ)Xx′

s − ∂(κ)Xx
s

∣∣∣k1

≤ lim inf
α3→0

E sup
0≤s≤t

∣∣∣∂(κ)Xx′

s − ∂(κ)Xx
s

∣∣∣k1

.

Therefore the same bounds in Lemma 4.3.2 and Theorem 4.3.3 apply if they are uniform

with respect to small α3; since γ is proportional to α3 (for small γ), it follows that M

in (4.3.3) and subsequently in αt in both the proofs of Lemma 4.3.2 (in Lemma 4.3.1

and (4.3.11)) and Theorem 4.3.3 (equation (4.3.19)) blows up as α3 → 0. This can be

addressed by increasing m accordingly so that M is uniformly bounded.

4.8 Proofs of some auxiliary results

Just as in the case of globally Lipschitz coefficients in [114, Lemma 5.10], the regularity of

an extended system and the harmonic property of the expectation (4.4.13) are required.

These properties are established for our setting in the following.

Throughout the section, we assume O = Rn and b, σ are nonrandom functions. More-

over for the functions f, c, g, we assume nonrandomness and all of the presuppositions

about them made in Theorem 4.4.2 regarding Assumption 9. In particular, f : [0,∞) ×
Rn → R, c : [0,∞) × Rn → [0,∞) and g : Rn → R are Borel functions satisfy-

ing that f(t, ·), c(t, ·), g(·) are continuous for every t ∈ [0, T ],
∫ T

0
supx∈BR

(|c(t, x)| +

|f(t, x)|)dt < ∞ for every R > 0 and such that for h ∈ {f, c, g}, R > 0, there exists

C ≥ 0, 0 < l̄ ≤ 1, Lyapunov functions V s,T , locally bounded x̃ for which for any s ∈ [0, T ]

it holds P-a.s. that

|h(s+ t,Xs,x
t )| ≤ C(1 + V s,T (t, x̃(x)))l̄ (4.8.1a)

|h(s+ t, y)− h(s+ t, y′)| ≤ C|y − y′| (4.8.1b)

V s+τ,T (0, x̃(Xs,x
τ ))l̄ ≤ C(1 + V s,T (τ, x̃(x))) (4.8.1c)

for all s ∈ [0, T ], t ≤ T−s, stopping times τ ≤ T , x ∈ Rn and y, y′ ∈ BR, where continuity

of the underlying V0 for the relevant Lyapunov functions have been used for (4.8.1b).

For any s ≥ 0, T > 0, x ∈ Rn, x′, x′′ ∈ R, consider solutions Xs,x
t to (4.2.1) appended
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with the corresponding R-valued solutions X
(n+1),s,x′

t and X
(n+2),s,x′

t to

X
(n+1),s,x′

t = x′ +

∫ t

0

c(s+ r,Xs,x
r )dr, (4.8.2a)

X
(n+2),s,x′′

t = x′′ +

∫ t

0

f(s+ r,Xs,x
r )e−X(n+1),s,x′

r dr (4.8.2b)

on [0, T ], denoted X̄s,y
t = (Xs,x

t , X
(n+1),s,x′

t , X
(n+2),s,x′′

t ), y = (x, x′, x′′). Let X̄s,y
t (I) be

the corresponding Euler approximation analogous to (4.4.12) with I as in the beginning

of Lemma 4.4.4.

Lemma 4.8.1. Under the assumptions of this section, for every R, T > 0, it holds that

sup
s∈[0,T ]

sup
y∈BR

P
(

sup
t∈[0,T ]

∣∣X̄s,y
t − X̄s,y

t (I)
∣∣ > ϵ

)
→ 0

as supk tk+1 − tk → 0.

Proof. For any R′ > 0, let Rs,x
X (I,R′) ∈ F denote the event

Rs,x
X (I,R′) =

{
sup

t∈[0,T ]

|Xs,x
t | ≤ R′

}
∩
{

sup
t∈[0,T ]

|Xs,x
t (I)| ≤ R′

}
.

For any ϵ, R′ > 0, it holds that

P
(

sup
t∈[0,T ]

∣∣X̄s,y
t − X̄s,y

t (I)
∣∣ > ϵ

)
≤ P

(
sup

t∈[0,T ]

|Xs,x
t | > R′

)
+ P

(
sup

t∈[0,T ]

|Xs,x
t (I)| > R′

)
+ P

(
sup

t∈[0,T ]

∣∣X̄s,y
t − X̄s,y

t (I)
∣∣ > ϵ

∣∣∣∣Rs,x
X (I,R′)

)
.

Fix ϵ′ > 0. For any T,R > 0, we may choose R′ = R∗ so that, by Lemma 2.2 in [114],

the sum of the first and second term on the right-hand side is bounded above by ϵ′/2

uniformly in s ∈ [0, T ] and x ∈ BR. For the last term on the right, note that by our

assumptions on c, there exists locally bounded G̃ : Rn → [0,∞) such that

sup
t∈[0,T ]

|c(s+ t,Xs,x
t )− c(s+ t,Xs,x

t (I))|

≤ sup
t∈[0,T ]

|Xs,x
t −Xs,x

t (I)|(G̃(Xs,x
t ) + G̃(Xs,x

t (I))) (4.8.3)
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and such that for It := max{tk : t ≥ tk},

sup
t∈[0,T ]

∣∣c(s+ t,Xs,x
t (I))− c(s+ t,Xs,x

It
(I))

∣∣
≤ sup

t∈[0,T ]

∣∣Xs,x
t (I)−Xs,x

It
(I)
∣∣(G̃(Xs,x

t (I)) + G̃(Xs,x
It

(I)))

= sup
t∈[0,T ]

∣∣∣∣∫ t

It

c(s+ r,Xs,x
It

(I))dr

∣∣∣∣(G̃(Xs,x
t (I)) + G̃(Xs,x

It
(I)))

≤ 2 sup
t∈[0,T ]

(t− It)(G̃(Xs,x
t (I)) + G̃(Xs,x

It
(I))) (4.8.4)

for all s ∈ [0, T ], y = (x, x′, x′′) ∈ Rn+2, where we have used that c is uniformly bounded

on [0, 2T ] × BR by the continuity of the underlying V0 for the Lyapunov function that

forms an upper bound for c. By (4.8.3), it holds that{
sup

t∈[0,T ]

|Xs,x
t −Xs,x

t (I)| ≤ ϵ

12
√

3T supz∈BR∗ G̃(z)

}
∩Rs,x

X (I,R∗)

⊂
{

sup
t∈[0,T ]

|c(s+ t,Xs,x
t )− c(s+ t,Xs,x

t (I))| ≤ ϵ

6
√

3T

}
∩Rs,x

X (I,R∗)

⊂
{∫ T

0

|c(s+ u,Xs,x
u )− c(s+ u,Xs,x

u (I))|du ≤ ϵ

6
√

3

}
∩Rs,x

X (I,R∗)

and by (4.8.4), there exists δ∗ > 0 such that supk tk+1 − tk ≤ δ∗ implies

Rs,x
X (I,R∗) ⊂

{∫ T

0

∣∣c(s+ u,Xs,x
u (I))− c(s+ u,Xs,x

Iu
(I))

∣∣du ≤ ϵ

6
√

3

}
.

As a result, by Lemma 4.4.4 and our assumptions on b and σ, there exists 0 < δ ≤ δ∗

such that for I satisfying supk≥0 tk+1 − tk ≤ δ, it holds that

P
(

sup
t∈[0,T ]

∣∣∣X(n+1),s,x′

t −X(n+1),s,x′

t (I)
∣∣∣ > ϵ

3
√

3

∣∣∣∣Rs,x
X (I,R∗)

)
≤ P

(
sup

t∈[0,T ]

|Xs,x
t −Xs,x

t (I)| > ϵ

12
√

3T supz∈BR∗ G̃(z)

)
≤ ϵ′

6
(4.8.5)

for all s ∈ [0, T ] and y = (x, x′, x′′) ∈ BR ⊂ Rn+2. By a similar argument and using the

above, (4.8.5) holds with n+1 replaced by n+2 and x′ by x′′. Together with Lemma 4.4.4,

the lemma is proved.

Next, the harmonic property (see [114, Definition 3.1]) of (4.4.13) is shown. Let ḡ given

by ḡ(y) = x′′ + g(x)e−x′
for all y = (x, x′, x′′) ∈ Rn+2 and for T > 0, s ∈ [0, T ],
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let v̄ : [0,∞)× Rn+2 → R be given by

v̄(s, y) = E[ḡ(X̄s,y
T−s)] = x′′ +v(s, x)e−x′

= E[X
(n+2),s,x′′

T−s +g(Xs,x
T−s)e

−X
(n+1),s,x′
T−s ]. (4.8.6)

for v given in (4.4.13). In addition for a bounded subset Q ⊂ (0, T )× Rn+2, let τ be the

stopping time

τ := inf{u ≥ 0 : (s+ u, X̄s,y
u ) /∈ Q}. (4.8.7)

The next lemma establishes the equality v̄(s, y) = E[v̄(s+(τ∧t), X̄s,y
τ∧t)] under our setting.

Lemma 4.8.2. Under the assumption of this section, for any T > 0, any bounded sub-

set Q ⊂ (0, T )× Rn+2, (s, y) ∈ Q, t ∈ [0, T − s], it holds that

E[ḡ(X̄s,y
T−s)] =

∫ ∫
ḡ(X̄

s+(τ(ω)∧t),X̄s,y
τ(ω)∧t

(ω)

T−s−(τ(ω)∧t) (ω′))dP(ω′)dP(ω),

where τ is defined by (4.8.7).

Proof. For any R, T > 0, t ∈ [0, T ], (s, y) ∈ Q with y = (x, x′, x′′), by Theorem 2.13

in [114] together with Lemma 4.8.1, it holds for P-a.a. ω that

E[(1BR
ḡ)(X̄s,y

T−s)|Fτ∧t] =

∫
(1BR

ḡ)(X̄
s+(τ(ω)∧t),X̄s,y

τ(ω)∧t
(ω)

T−(s+(τ(ω)∧t)) (ω′))dP(ω′), (4.8.8)

so that the right-hand side is Fτ∧t-measurable. Moreover for P-a.a. ω, by (4.8.1), the

absolute value of the integrand in the right-hand side is bounded independently of R as

(1BR
|ḡ|)(X̄

s+(τ(ω)∧t),X̄s,y
τ(ω)∧t

(ω)

T−(s+(τ(ω)∧t)) (ω′))− |X(n+2),s,x′′

τ(ω)∧t (ω)|

≤
∫ T−s−(τ(ω)∧t)

0

|f(s+ (τ(ω) ∧ t) + r,X
s+(τ(ω)∧t),Xs,x

τ(ω)∧t
(ω)

r (ω′))|dr

+ |g(X
s+(τ(ω)∧t),Xs,x

τ(ω)∧t
(ω)

T−(s+(τ(ω)∧t)) (ω′))|

≤ C
(∫ T−s−(τ(ω)∧t)

0

(1 + V s+(τ(ω)∧t),T (ω′, r, x̃(Xs,x
τ(ω)∧t(ω))))l̄dr

+ (1 + V s+(τ(ω)∧t),T (ω′, T − s− (τ(ω) ∧ t), x̃(Xs,x
τ(ω)∧t(ω))))l̄

)
. (4.8.9)

Since l̄th-powers of Lyapunov functions are still Lyapunov functions (but with different

auxiliary processes), the expectation in ω′ of the right-hand side of which is bounded by
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Theorem 2.4 in [101] and (4.8.1c) as in

∫ (∫ T−s−(τ(ω)∧t)

0

(1 + V s+(τ(ω)∧t),T (ω′, r, x̃(Xs,x
τ(ω)∧t(ω))))l̄dr

+ (1 + V s+(τ(ω)∧t),T (ω′, T − s− (τ(ω) ∧ t), x̃(Xs,x
τ(ω)∧t(ω))))l̄

)
dP(ω′)

≤ C∥e
∫ T
0 |αs+(τ(ω)∧t),T

u (ω′)|du∥
L

ps+(τ(ω)∧t),T

ps+(τ(ω)∧t),T −1 (dP(ω′))

·
∫

(1 + V s+(τ(ω)∧t),T (ω′, 0, x̃(Xs,x
τ(ω)∧t(ω))))l̄dP(ω′)

≤ C
(

1 +

∫
V s,T (ω′, τ(ω) ∧ t, x̃(x))dP(ω′)

)
≤ C(1 + V s,T (0, x̃(x)))

<∞. (4.8.10)

Therefore by dominated convergence, the right-hand side of (4.8.8) converges to the same

expression but without 1BR
for P-a.a. ω. Moreover, by (4.8.1) and Theorem 2.4 in [101],

E|X(n+2),s,x′′

τ∧t | − |x′′| ≤ E
∫ τ∧t

0

|f(s+ r,Xs,x′′

r )|dr ≤ C
∫ T

0

E[1 + V s,T (r, x̃(x′′))]dr

≤ C(1 + V s,T (0, x̃(x′′))).

Consequently, together with (4.8.9), (4.8.10) and dominated convergence (in ω), it holds

that ∫ ∫
(1BR

ḡ)(X̄
s+(τ(ω)∧t),X̄s,y

τ(ω)∧t
(ω)

T−(s+(τ(ω)∧t)) (ω′))dP(ω′)dP(ω)

→
∫ ∫

ḡ(X̄
s+(τ(ω)∧t),X̄s,y

τ(ω)∧t
(ω)

T−(s+(τ(ω)∧t)) (ω′))dP(ω′)dP(ω)

as R → ∞. On the other hand, by a similar argument as above, the expectation of the

left-hand side of (4.8.8) has the limit

E[E[(1BR
ḡ)(X̄s,y

T−s)|Fτ∧t]] = E[(1BR
ḡ)(X̄s,y

T−s)]→ E[ḡ(X̄s,y
T−s)]

as R→∞.
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