
Imperial College London
Faculty of Engineering

Department of Computing

Equitable Proof-of-Work Mining Rewards

Ramy Abdelmageed Ebrahim Khalil

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London
September 2022

Abstract

We present Reward-All Nakamoto-Consensus (Reward-All), a Proof-of-Work cryptocurrency

that rewards each miner with a number of coins that is directly proportional to its individual

mining power, rather than in proportion to its relative share of the entire network’s mining

power as done in Bitcoin. Unlike their Bitcoin counterparts, miners in Reward-All do not

have to win the leader-election process to earn coins, and only lose earned coins after block

reorganizations of a configurable minimum length occur. We present a detailed specification

of Reward-All, along with a prototype implementation, and an evaluation of its practicality

and efficiency. Additionally, we provide an analysis of the security of Reward-All, where min-

ing is modeled as a Markov Decision Process, and the advantages of optimal mining strate-

gies are quantified. Under reasonable configurations, Reward-All achieves near-perfect incen-

tive compatibility, and near-zero censorship susceptibility, for adversarial mining shares up to

45%, while retaining the same chain quality as Bitcoin’s Nakamoto Consensus (Nakamoto).

However, Reward-All pays for these advantages with a regression in subversion gain resilience

compared to Nakamoto. Furthermore, under Reward-All’s approach, the growth rate of the

total coin supply correlates closely with the growth rate of mining power invested in the

network. This enables miners to mint coins at a stable hash-based cost of production, and

enables all rewarded coins to correspond to an approximately equal number of hashing at-

tempts on average. Consequently, depending on the network transaction-fees, Reward-All im-

proves miners’ waiting times for rewards, and incentivizes forming mining pools smaller than

required in Bitcoin for an equal level of reward stability. Moreover, rewards in Reward-All

exhibit significantly lower variance for non-majority miners compared to Nakamoto, enabling

unprecedented reward stability.

© 2022 Rami Khalil The copyright of this thesis rests with the author. Unless otherwise indicated, this work is licensed

under a Creative Commons Attribution-NonCommercial 4.0 International License. You may copy and redistribute the material in

any medium or format. You can remix, transform, and build upon the material. You must give appropriate credit, provide a link

to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests

the licensor endorses you or your use. You may not use the material for commercial purposes. You may not apply legal terms or

technological measures that legally restrict others from doing anything the license permits. You do not have to comply with the

license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example,

other rights such as publicity, privacy, or moral rights may limit how you use the material. To view a copy of this license, visit

https://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA

94042, USA. Seek permission from the the author for uses not included in this licence or permitted under UK Copyright Law.

i

https://creativecommons.org/licenses/by-sa/4.0/

Dedications

This thesis is dedicated to my mother – Mervat, to my wife – Sherine, and to my friends, all

without whom I would not have been able to complete this work.

Acknowledgements

I am deeply grateful to my supervisor, Dr. Naranker Dulay, for enabling me to carry on re-

searching a subject I am profoundly passionate about, and for guiding me throughout my

PhD. I am also thankful to Dr. Amani El-Kholy, to Prof. William Knottenbelt, and to the

other members of the Department of Computing who supported me during my time at Im-

perial College London. This work would not have been made possible without the generous

funding and support of the Imperial College London President’s PhD Scholarship program.

Declarations

I, Rami Khalil, hereby confirm the following: I am the sole author of the written work here

enclosed and that I have compiled it in my own words. Parts excepted are corrections of form

and content by the supervisors. I have not knowingly committed any plagiarism against the

works of others. I have documented all methods, data and processes truthfully to the best of

my knowledge. I have not intentionally manipulated or misrepresented any data. I have ap-

propriately mentioned to the best of my judgement any and all persons who were significant

facilitators of or contributors to this work.

ii

Contents

Abstract & Copyright Notice i

Dedications, Acknowledgements & Declarations ii

1 Introduction 1

1.1 Winner-Takes-All Dynamics . 2

1.2 Unsustainable Compensation . 4

1.3 Reward Instability . 5

1.4 Objectives . 6

1.5 Contributions . 7

1.6 Publications . 8

1.6.1 PoSH in Practice . 8

1.6.2 Adaptive layer-two dispute cutoffs in smart-contract blockchains 9

1.6.3 Towards Equity in Proof-of-Work Mining Rewards 9

1.6.4 Reward-All Nakamoto Consensus . 10

1.7 Thesis Structure . 10

iii

iv CONTENTS

2 Background 11

2.1 Ledger Design . 12

2.1.1 Coins, Addresses, Transactions . 12

2.1.2 Transaction Termination . 15

2.1.3 Append-only Updates . 16

2.2 Blockchain Consensus . 18

2.2.1 Network Topologies . 19

2.2.2 Longest-chain Protocols . 21

2.2.3 Stale Blocks . 25

2.3 Mining Incentives . 28

2.3.1 Compliance Payoffs . 29

2.3.2 Fault Penalties . 31

2.3.3 Deviation Advantages . 32

2.4 Summary . 34

3 Equitable Proof-of-Work Mining Rewards 36

3.1 Computational Coinage Framework . 37

3.1.1 Miner Metrics . 38

3.1.2 Blockchain Metrics . 41

3.1.3 Coin Metrics . 43

3.2 Inequity in Nakamoto . 45

3.2.1 Inequitable Hash-Time-to-Issuance . 46

3.2.2 An Increasing Hashcap-to-Coinage Ratio 47

CONTENTS v

3.2.3 Subsidy through the Fungibility Dilution Factor 48

3.2.4 An Increasing Hash-Restitution Time . 50

3.3 Equitable Reward Constraints . 51

3.3.1 Undiluted Reward Constraints . 52

3.3.2 Prompt Restitution Constraints . 53

3.3.3 Equitable Coin Supply Growth . 54

3.4 Summary . 55

4 System Design 57

4.1 Architectural Overview . 58

4.1.1 Block Production . 59

4.1.2 Reward Issuance . 62

4.2 Mining Blocks . 65

4.2.1 Block Proposal . 66

4.2.2 Work Logging . 68

4.3 Smelting Proofs . 69

4.3.1 Proving Conditions . 70

4.3.2 Proof Creation . 71

4.4 Minting Coins . 72

4.4.1 Proof Publication . 73

4.4.2 Reward Calculation . 75

4.5 Proving System . 76

4.6 Summary . 78

vi CONTENTS

5 Block Withholding Attack Analysis 80

5.1 Model Parameters . 81

5.2 State Space . 82

5.3 Action Space . 85

5.4 Implementation . 88

5.4.1 Overview . 88

5.4.2 Tool Parameters . 89

5.4.3 Output . 92

5.5 Results . 94

5.5.1 Chain Quality . 94

5.5.2 Incentive Compatibility . 95

5.5.3 Censorship Susceptibility . 97

5.5.4 Subversion Gain . 98

5.6 Summary . 100

6 Evaluation 102

6.1 Implementation . 103

6.1.1 Multi-threaded Architecture . 103

6.1.2 Data Flows . 106

6.2 Results . 109

6.2.1 Proof Sizes . 109

6.2.2 Reward Times . 111

6.2.3 Reward Variance . 113

CONTENTS vii

6.3 Summary . 114

7 Discussion 116

7.1 Negligent Mining Deterrence . 116

7.2 Pooled Mining Incentives . 118

7.3 Full Smelting Opportunity . 119

7.4 Coin Supply Dynamics . 121

7.5 Summary . 122

8 Conclusion 124

8.1 Review . 124

8.2 Future Directions . 128

8.3 Closing Remarks . 129

Bibliography 129

A Implementation Addendum 140

A.1 Overview . 140

A.2 Data Structures . 142

A.2.1 Trees . 144

A.2.2 Authentication . 148

A.2.3 Ledger . 151

A.2.4 Rewards . 155

A.2.5 Networking . 159

A.2.6 UI Instructions . 163

A.3 Data Tables . 165

A.3.1 Trees . 166

A.3.2 Authentication . 167

A.3.3 Ledger . 167

A.3.4 Rewards . 170

A.3.5 Networking . 173

A.4 Data Storages . 174

A.4.1 Trees . 175

A.4.2 Authentication . 176

A.4.3 Ledger . 177

A.4.4 Rewards . 180

A.4.5 Networking . 183

A.5 Data Caches . 184

A.6 Data Managers . 185

A.6.1 Pointer Manager . 185

A.6.2 Account Manager . 187

A.6.3 Block Manager . 189

A.6.4 Work Manager . 190

A.7 Threads . 191

A.7.1 Primary Thread . 191

A.7.2 Networking Thread . 195

A.7.3 Text User-Interface Thread . 197

viii

List of Tables

4.1 Block production comparison between Nakamoto and Reward-All. Consensus

and block regulation are identical, while the mining outputs and search spaces

differ, whereby additional metadata is used to locally track mining attempts. . 59

4.2 Reward-All miner reward issuance overview. Slabs are used in the smelting

process to create proofs that can be included in blockchain transactions to

mint new coins. 62

5.1 MDP transitions and rewards. Each row in the first column contains a set of

state-action pairs. The second column contains the set of possible outcomes

of all of the state-action pairs of the same row. The third column contains the

probability of each outcome being reached. The last three columns contain the

rewards of each outcome as a consequence of taking some action in an initial

state. For brevity, the functions ωK(u, v) = (if v ≥ K then u + 1 else u), and

ψK(u, v) = (if v < K then u + 1 else u) are defined. RI rewards are Incen-

tive Compatibility rewards, and stand for the number of coins the adversary

can mint in exchange for mining. RS rewards are Subversion Gain rewards,

and stand for the total number of adversary coins confirmed by the honest

network, including mining rewards and double-spending profit. σ denotes how

many confirmations a recipient waits before considering a transaction as final.

Vds(h, σ) denotes how many coins the adversary receives after successfully re-

placing h honest blocks, each containing transactions to be double-spent. RC

rewards are Censorship Susceptibility rewards, and stand for share of mining

rewards the adversary can cause the honest network to lose. 87

ix

A.1 Datastructure specification reference table. 21 data classes, followed by 4 field

enumerators, are presented in the table below in a compact form. 142

A.2 Data storage scheme reference table. 14 table schemes, followed by 15 indices

distributed across 8 tables, are shown below in a compact form. Each table

and field name is prefixed by a number for easy lookup. Index fields are de-

fined numerically in terms of the field numbers of the tables they reference.

. 165

x

List of Figures

1.1 Visualization of the winning proportions of the nodes of different block mining

capabilities in a figurative Bitcoin network. Each node’s size depicts its rela-

tive computational power in the network. Nodes with a larger relative share of

the network’s computational power receive rewards much more frequently than

those with smaller shares. This creates an incentive for nodes with relatively

small shares to consolidate their computational powers into a mining pool, as

they would receive rewards more frequently. Such mining pool are depicted by

nodes grouped together in the same pie chart section. 3

1.2 Three different mining rounds where all miners have equal computational re-

sources invested. The number of miners in rounds 1, 2 and 3 are 5, 9 and 21

respectively. In each round, R coins are issued to the winning miner. As more

miners join to compete for the same set of R reward coins, the expected re-

ward, E[R], of each miner decreases. 4

1.3 Example mining scenario with stale blocks. Squares represent mined blocks.

A gray interior block shade means that the block is stale. No interior block

shade means that the block is part of the main chain. The sign (3) means

that the creation of the containing block is rewarded. The sign (7) means that

the creation of the containing block is not rewarded. 5

xi

xii LIST OF FIGURES

2.1 Single-use transaction output address example. The input of Transction 0 con-

tains 250 coins, which it uses to create two outputs of 45, and 200 coins re-

spectively. The 5 coins difference are unused, and can be collected as fees for

including Transaction 0 in the ledger. Transaction 1 uses the second output of

Transaction 0 to create a single output of 195 coins, similarly leaving 5 coins

as fees. Similarly, Transaction 2 uses the first output created by Transaction

0 to create one output of 40 coins, leaving another 5 coins as a fee. Lastly,

Transaction 3 uses the outputs of Transactions 1 and 2 to create a single out-

put of 225 coins, leaving 10 coins as fees. 13

2.2 Multi-use transaction example. A single transaction from wallet address 0xb1ab1a

explicitly invokes contract address 0xca11 while sending it 7 coins. Because of

0xca11’s program code, this results in the implicit invocation of contract 0xaf-

fec7ed with 2 coins within the same transaction. While only the transfer of 7

coins from 0xb1ab1a to 0xca11 was explicitly mentioned in the transaction, 2

coins were added to 0xaffec7ed’s balance. 14

2.3 Example blockchain diagram, where the chain proceeds from left to right.

Each block is represented by a square. The hash of each block is written di-

rectly above it. Each block commits to the entire chain preceding it by includ-

ing the hash of its immediate parent. 17

2.4 Example conflicting blockchain forks. Each block is represented by a square,

with an arrow pointing to its parent in the directed acyclic graph of blocks.

The two forks contain conflicting information about A’s coins, whereby in the

upper fork, A sends all its coins to B, while in the lower fork, A sends all its

coins to C. 18

2.5 Example peer-to-peer overlay network. Each node is represented by a black

dot, while bi-directional communication links are represented by double-arrow

connections between nodes. The length of each link indicates connection la-

tency. 20

LIST OF FIGURES xiii

2.6 Proof-of-Work mining difficulty acts as a means to throttle block production

to a stable average rate, such that each block is given adequate time to fully

propagate across the overlay network. Only blocks whose hash value falls be-

low the mining target value may pass. The mining target value is inversely

proportional to the mining difficulty, leading fewer blocks to be accepted as

mining difficulty increases. 22

3.1 Hash-Time-to-Issuance versus relative mining power in Bitcoin. 47

3.2 Hashcap-to-Coinage Ratio plots. 48

3.3 Fungibility-Dilution Factor plots. 49

3.4 Hashcap-Restitution time, in blocks, for each block reward in Bitcoin. 50

3.5 Plot of Time versus Coin Supply and Relative Supply Growth (in Percentage)

under three different mining power growth scenarios in Reward-All. Points

on dashed lines represent Coin Supply and fall on the leftmost y-axis. Points

on dotted lines represent Relative Supply Growth and fall on the rightmost

y-axis. Under constant mining power over all time periods (•) the relative

supply growth per time period of coins goes to zero over time. Similarly, un-

der linear growth of mining power (+), where 1x more power is added per

time period, the relative supply growth per time period also goes to zero over

time. However, under exponential mining power growth (×), where 2.5% more

power is added per time period, the relative supply growth converges to the

mining power growth over time. 54

4.1 Component diagram of Reward-All Nakamoto Consensus. 58

4.2 Illustrated Reward-All block headers. For K = 1, the chain commitments

would collapse to those of a regular blockchain, where each block only com-

mits to its immediate parent, as H(BN−K) = H(BN−1) for all N . For K > 1,

the ancestor block hash would refer to a block BN−K that precedes the imme-

diate parent block in the chain. 66

xiv LIST OF FIGURES

4.3 Example smelting scenario. The row of a circle determines the sequence num-

ber range of its set of headers. The column, or block, determines the refer-

ence block number used by all represented headers. The lower-left collection of

headers, shaded in vertical lines, can be proven up to any fraction of validity.

The upper-right collection of headers, shaded in dots, is 1% invalid, and may

fail to be proven valid, as only 85% of the headers with sequence numbers be-

tween 2000 and 3000 which refer to the earliest reference block in the proof are

valid. This is illustrated by partially shaded circle in the upper-right collection

being only 85% filled. 70

4.4 Example reward claim scenario from the perspective of a miner. Squares rep-

resent mined blocks. Circles represent weak headers whose reference blocks

are represented by the squares below them and whose parent blocks exist in

the chain. In this scenario, a miner successfully publishes a minting trans-

action in the block with the check-mark (✓). The proof in this transaction

only confirms the work done using blocks with a positive sign (+) as reference

blocks. No work is proven using blocks with an exclamation mark (!) as refer-

ence blocks. Consequently, N ×M = 5× 4 = 20 unique weak headers are used

to generate the published proof. As the minting transaction was confirmed

three blocks after the last used reference block, a deduction of ρ × 2 × 5 head-

ers worth of coins is applied to the minted amount as a penalty. With ρ = 1,

only 10 headers worth of coins are minted. 72

4.5 Semi-log plot of s = log 2−λ

log θ
, such that θs = 2−λ, for λ = 128 and 0 < θ < 1. To

reach θ = 0.5, at least s = 128 samples are required, and for θ = 0.8, s = 398

samples must be verified. 76

LIST OF FIGURES xv

5.1 Visualisation of base state transition principles in our MDPs. Given a start-

ing state (*), a block is found by the Adversary with probability α, by the

Distant miners with probability (1 − α)(1 − γ), or by the Rushed miners with

probability (1− α)γ. Together, rushed miners and distant miners represent the

entire set of compliant miners that find blocks with probability 1 − α, where

rushed miners represent the γ fraction that receive adversary blocks before

compliant miners’ blocks, while the distant miners receive compliant blocks

first. 82

5.2 A small sub-sequence of the states in the MDP representation of the mining

race between the adversarial miner and the compliant minters. Arrows de-

note transitions between states, where the probability of each transition is de-

noted in terms of α and γ above each arrow. Blocks are denoted by squares

that contain their order of arrival. The leftmost block is accepted by both the

adversary and the compliant miners. The upper sequence of blocks represents

the adversary’s withheld chain of blocks, while the bottom sequence denotes

the compliant miners’ published chain. In the initial leftmost state, the ad-

versarial miner has 2 blocks in its chain (a = 3), while the compliant miners

have mined no block ontop of the mutually accepted block (h = 0). As f = i,

the adversary cannot initiate a tie-breaking fork race. In the subsequent state,

the next block to be found belongs to the compliant miners, creating an op-

portunity for the adversary to initiate a tie-breaking race (f = r) between

blocks number 1 and 3. The third state represents one possible next outcome

after the adversary initiates the race, whereby the next block is found by the

aversary, and the tie-breaking race continues (f = a). In the next state, the

rushed compliant miners find a block ontop of the adversary’s partially re-

vealed chain, and the adversary is able to carry out another attack. 84

xvi LIST OF FIGURES

5.3 Extension of the example presented in Figure 5.2 where each state is anno-

tated with the values of the variables ta, th, and tm for K = 1. In this exam-

ple, we choose all mining time spent creating a chain longer than K to be at-

tributed to creating the block of height K + 1. In the first state, the adversary

had spent one time unit mining block 2. In the second state, a = 2 ≥ K = 1

for one additional time unit, where the compliant miners find block 3. Subse-

quently, as the adversary had started a tie-breaking fork race while h ≥ K,

both th and tm increase by one. Lastly, as the tie was broken in favor of the

adversary, and block 1 was confirmed by the compliant miners, the three vari-

ables are reset. 85

5.4 Plot of loss in chain quality (1 − α) − Q(α) in Nakamoto and Reward-All

versus adversarial mining power α, where Q(α) is the chain quality under α,

for three values of γ. Both protocols exhibit the same chain quality under the

same parameters. 95

5.5 Plot of loss in incentive compatibility (1 − α) − I(α) in NC and Reward-All

versus adversarial mining power α, where I(α) is the incentive compatibility at

α. Reward-All results for all γ are within ±0.001 of each other for α ≤ 0.45. . . 96

5.6 Plot of the censorship susceptibility C(α) in NC and Reward-All versus ad-

versarial mining power α. In Reward-All, results for all values of γ are within

±0.001 of each other for α ≤ 0.45. 98

5.7 Plot of the subversion gain S(α, σ = 6, Vds = 3) in NC and Reward-All versus

adversarial mining power α. 99

6.1 Reward-All implementation architecture diagram. The User and Peer are pro-

cesses external to the system, which communicate with the node via the in-

terface and networking threads respectively. While not pictured, bidirectional

inter-process communication channels exist between all three threads. * The

Mining process launches child threads as needed. 104

LIST OF FIGURES xvii

6.2 Reward-All implementation data flow diagram. In addition to the processes

specified in the original system design, we introduce five additional compo-

nents in this diagram: The aggregation process, their resulting merkle trees

data outputs, partial proofs that result from smelting, the reconstruction

process, and the restricted batches resulting from minting. 107

6.3 Example restricted minting scenario. Empty circles denote non-existent weak

headers. Full circles denote valid weak headers. Squares denote reference blocks.

The row of a circle determines the sequence number range its headers fall in.

The column, or block, determines the reference block number used by all rep-

resented headers. Three shaded regions denote three individual batches of

weak headers published in minting transactions in their corresponding block

shaded in the same style. 109

6.4 Semi-log plot of proof byte sizes versus claimed fractions of validity for differ-

ent header collection sizes, derived from Equation 6.1 for λ = 128. 110

6.5 Semi-log plot of minimum number of headers required in Reward-All for differ-

ent net payout fractions. r = cb
α×Db

denotes the ratio between cb, the cost per

byte, and α×Db = Dm, the maximum minting difficulty of a miner. 111

6.6 Log-scale plot of coefficients of variation in Nakamoto and Reward-All versus

mining power α. 114

7.1 Semi-log plot of the number of penalty blocks a miner is willing to accept ver-

sus the expected fraction of accumulated headers the miner can utilize for

smelting under different header to block ratios. These values are measured

for our reference and sequence number scheduling strategy. 120

A.1 Addresses . 198

A.2 Blockchain . 198

A.3 Explorer . 199

A.4 Log . 199

A.5 Mining . 200

A.6 Network . 200

A.7 Smelting . 201

A.8 Wallet . 201

xviii

Chapter 1

Introduction

This thesis proposes an alternative to Bitcoin’s reward and punishment directives by pre-

senting the Reward-All Nakamoto Consensus (Reward-All) protocol. Reward-All casts light

on and remedies many of the elusive drawbacks of Bitcoin that restrict the equitable com-

pensation of miners, and hold back its coinage from attaining a properly measurable cost-of-

production that can be used to determine its purchasing power.

Bitcoin is by far the world’s leading cryptocurrency in user adoption and market capitaliza-

tion, which exceeded over one trillion USD in the first quarter of 2021. At Bitcoin’s core lies

Nakamoto Consensus (Nakamoto), an effective consensus algorithm based on Proof-of-Work

(PoW) and a cryptographically authenticated data-structure. For over a decade, Nakamoto

has successfully motivated thousands of Bitcoin miners to maintain consensus on the con-

tents of Bitcoin’s ledger, where over 42 million account addresses and over 720 million trans-

actions have been recorded so far [Blo].

The crux of Nakamoto’s incentive mechanism is that miners who invest their computational

resources to maintain the ledger are issued rewards in the form of cryptocurrency units, or

coins, as compensation for their efforts towards advancing the state of the ledger [N+08].

While Bitcoin attests to the resilience and capability of PoW-based consensus in running a

permissionless distributed ledger, we show in this thesis that it still suffers from limitations

that affect the ledger’s ability to support a usable currency that can be adopted by a signifi-

1

2 Chapter 1. Introduction

cant population of individuals.

The limitations we focus on can be summarized in three main points. Namely, only a single

miner is issued rewards every time a block of transactions is executed by the network, while

all other miners are left uncompensated for their work. Furthermore, the amount of compen-

sation is not adjusted based on the number of participants, which leads the expected reward

of each miner to decrease as more miners participate. Lastly, stale blocks, which occur nat-

urally in the protocol, can cause miners to lose their rewards even when all miners are com-

pliant, and when such blocks can be created intentionally by an adversary, they can lead to

dangerous attacks. We elaborate further on the consequences of these limitations.

1.1 Winner-Takes-All Dynamics

To appreciate the need for an alternative coin creation procedure for PoW ledgers, consider

the current state of the mining process in Nakamoto Consensus. Nakamoto incentivizes net-

work participants, called miners, to take part in a periodic leader-election process. In each

leader-election round, the miner who first finds a satisfactory PoW is considered as the elected

leader, and can publish a sequence of transactions, in the form of a block, for the entire net-

work to execute and confirm. For this block to be considered valid, it must be constructed

such that it extends all previously published valid blocks so far, as to form an authenticated

append-only ledger, commonly referred to as a Blockchain.

Remarkably, taking on the role of a miner and abandoning it when needed is done in a per-

missionless peer-to-peer fashion. Once connected to any peer in the network and synchro-

nized with the latest block, any new miner can begin to propose blocks through solving PoW

puzzles and can cease to do so, in both cases without the need to notify other miners in the

network, or any trusted third party (TTP). Despite its permissionless design, Nakamoto ef-

fectively prevents Sybil attackers from overcrowding the leader-election process through ty-

ing participation in consensus to solving computationally expensive PoW puzzles. A miner’s

representation in this leader election process is thus capped by the miner’s computational re-

1.1. Winner-Takes-All Dynamics 3

sources, or by how many times the miner can attempt to solve the PoW puzzle per round.

Mining Lottery

B
B B

B B B
B B

B B

B
B B

Figure 1.1: Visualization of the winning proportions of the nodes of different block mining
capabilities in a figurative Bitcoin network. Each node’s size depicts its relative computa-
tional power in the network. Nodes with a larger relative share of the network’s computa-
tional power receive rewards much more frequently than those with smaller shares. This cre-
ates an incentive for nodes with relatively small shares to consolidate their computational
powers into a mining pool, as they would receive rewards more frequently. Such mining pool
are depicted by nodes grouped together in the same pie chart section.

This induces a lottery each round, an example of which is shown in Figure 1.1, where the

probability of winning is proportional to investment. However, for a miner with relatively

small resources, the expected number of rounds lost before winning can be substantial, and

may very well exceed the lifetime of the living beneficial owner of the miner due to this winner-

takes-all approach employed in Nakamoto. One may be fine with such an arrangement if

deciding the next sequence of transactions to be executed by the network is not of concern,

but what about remuneration for the computational resources that a miner expends out of

pocket? What would incentivize any individual to burn away their computational resources

with no hope of being paid for doing so in their lifetime? And is the size of the reward pro-

portional to the resources invested in the mining process?

Fundamentally, only the elected leader of a round who successfully publishes a block receives

a reward, while all other participants receive nothing for that round at all. Consequently,

coalitions of miners, called mining pools, form to alleviate the impoverishment of independent

mining with relatively small resources [Ros11]. Miners who take part in such pools receive a

share of the rewards won by the entire pool, with this share being proportional to the miner’s

relative contribution to the pool’s mining power. Joining such pools offers a more continuous

4 Chapter 1. Introduction

reward stream, but at the cost of increased centralization of mining power.

1.2 Unsustainable Compensation

Surprisingly, the number of coins issued to the winning leader in a round does not corre-

late with how much total mining power is invested by the network towards mining at the

time [CPR19]. This means that for a miner to receive a non-decreasing expected return on

investment in cryptocurrency units, it must grow its computational resources by at least as

much as the remainder of the network is growing its resources, or risk being gradually phased

out and receiving a smaller return in coins over time [KLK+19]. Additionally, in Bitcoin, the

number of coins issued as a reward for mining a block is split in half every 210, 000 blocks,

making smaller mining rewards inevitable, and artificial scarcity of coins imminent. This, at

the very least, is the tip of a colossal iceberg.

Round 1

E[R] = R
5

B

BB
B

B

Round 2

E[R] = R
9

B

BB
B

B
B

B B

B

Round 3

E[R] = R
21

B

BB
B

B
B

BB
B

B
B B

B
B

B B
BB

B
B

B

Figure 1.2: Three different mining rounds where all miners have equal computational re-
sources invested. The number of miners in rounds 1, 2 and 3 are 5, 9 and 21 respectively.
In each round, R coins are issued to the winning miner. As more miners join to compete for
the same set of R reward coins, the expected reward, E[R], of each miner decreases.

For the profitability of mining to be sustainable, under this disproportionality between total

rewards and total mining power, demands that mining costs have to continuously decrease,

transaction fees have to continuously rise, or the value of Bitcoin itself has to keep increasing.

1.3. Reward Instability 5

Ultimately, this fuels a competitive coin creation process, visualized in Figure 1.2 that does

not thrive under the simultaneous stability of all of the aforementioned processes, which are

all desirable to stabilize for the system to support a practical currency! Surprisingly so, even

as mining power increases, this artificial scarcity leads to a discrepancy in miner compensa-

tion that indirectly rewards owners of coins created earlier than others. With these concerns

in mind, increased adoption of Bitcoin or any other system built on the same mechanism may

very well be unsustainable.

1.3 Reward Instability

So-called stale blocks [VG17] can occur as a result of temporary disagreements in the net-

work on the state of the ledger [NH19]. In such cases, more than one miner each finds a satis-

factory solution to the PoW puzzle of the current leader election round within a short amount

of time, which results in several valid proposals for the latest block. Ultimately, Nakamoto

allows all miners to reach consensus on which block to adopt, causing the other blocks pro-

posed at that round to be discarded, becoming stale [GKL15]. However, the miners of such

stale blocks, and any blocks created on top of them, lose the rewards they would have oth-

erwise been issued, as shown in Figure 1.3, whether the miners were innocently mistaken in

creating such blocks or maliciously intent on inducing failures in consensus.

3 3
3 3 3 3 3

3 3 3

7 7

7
7

Figure 1.3: Example mining scenario with stale blocks. Squares represent mined blocks. A
gray interior block shade means that the block is stale. No interior block shade means that
the block is part of the main chain. The sign (3) means that the creation of the containing
block is rewarded. The sign (7) means that the creation of the containing block is not re-
warded.

Even worse, adversarial miners, whether as pool members [Eya15, KKS+17] or independently,

with a non-negligible share of the network hashing power may even abuse stale blocks to

6 Chapter 1. Introduction

increase their relative rewards per block, harm the revenue of compliant miners, or double-

spend coins [KAC12, BMC+15, NKMS16, SSZ16, ZP19, MJP+20]. This ultimately leads to

protocol-compliant miners becoming vulnerable to incurring losses in mining rewards because

of miners who follow adversarial mining strategies.

These downsides and weaknesses of mining rewards in Nakamoto are detrimental impedi-

ments towards equitable coin acquisition. Without an equitable means of distributing their

mining rewards, Proof-of-Work permissionless distributed ledgers may never realize the full

utility of a currency. This thesis aims to aid that realization by constructing a more equi-

table mechanism for rewarding Proof-of-Work miners.

1.4 Objectives

The primary goal of this thesis is to construct a Proof-of-Work protocol which remedies, or

fixes, the aforementioned shortcomings of Nakamoto. To achieve this goal in a measured and

organized manner, the effectiveness of the constructed protocol against the aforementioned

downsides must be clearly demonstrated, and the constructed protocol must at least satisfy

the following thesis objectives:

1. Establish a fixed mining cost per coin. Ensuring that the protocol rewards miners

directly in proportion to their individual mining powers and does not induce any artificial

scarcity in the supply of the coin allowing it to establish a relatively stable cost of production

in terms of the number of hashing computations required to create a new coin.

2. Minimize value leakage from mining rewards to existing coin holders. Safe-

guarding miners from any undeserved deduction or retraction of mining rewards, which in-

creases the value of the existing coin supply, ensures that rewards are only sent where due,

and hidden mechanisms which draw value from newly mined coins and indirectly feed it to

existing stakeholders are minimized.

1.5. Contributions 7

3. Normalize reward variance across mining powers. Reducing the gap in reward

stability between miners with nominal and significant shares of the mining power is pertinent

to preventing smaller miners from suffering a disadvantage, and minimizing the incentives for

forming large central mining pools.

4. Retain the mutual peer distrust of Nakamoto. The decentralized permissionless

ledger setting implies that no single party in the system may be trusted to behave correctly,

and consequently, all objectives must be satisfied without such an assumption. However,

a majority of the population of miners may be assumed to comply with the protocol as in

Nakamoto.

5. Minimize the impact of stale blocks on miner rewards. Fortifying the protocol

against the effects of stale blocks protects it against adversarial miners that aim to detract

from the number of coins earned by protocol-compliant miners, or degrade the ability of the

network to process transactions. Intentionally introducing stale blocks threatens both the

production cost stability and circulation speed of the protocol coin.

1.5 Contributions

Primarily, to improve the security of acquiring cryptocurrency coins through mining against

leakage of value and manipulation, we design and specify in detail Reward-All Nakamoto-

Consensus (Reward-All), our novel variant of Nakamoto which enforces that:

A. Miner rewards are based on their individual PoW solving throughputs. We

designed Reward-All to reward miners with a number of coins that only depend on their ab-

solute mining power, regardless of the total amount of mining power in the network. This

allows us to establish a fixed hash-based cost per coin that is independent from block mining

difficulty, satisfying our first objective. Consequently, Reward-All does not directly disadvan-

tage participants which mine at a relatively later stage of the protocol’s lifetime than other

8 Chapter 1. Introduction

miners, or those which mine with only a small amount of hashing power, as per our second

and third objectives. To demonstrate the effectiveness of our approach, we implement and

evaluate a functioning prototype of Reward-All, and quantify the overheads associated with

redeeming mining rewards in our system under different ledger conditions. Our prototype

enables two or more mutually distrusting peers to operate a Reward-All payment blockchain.

B. Receiving mining rewards is not conditional on being elected leader. Our

Reward-All protocol directly extends the Proof-of-Work mining process from Nakamoto,

while allowing participants to claim reward coins only after having securely proven the amount

of mining work they have performed. Consequently, we retain the well-studied characteris-

tics of Nakamoto block creation, while introducing no new trust assumptions between peers

to enable our Reward-All approach, as per our fourth objective. Furthermore, this allows

us to compensate Reward-All miners even when they attempt to extend stale block chains,

limited to a preconfigured chain length. Consequently, we achieve our fifth objective, and

quantify the resulting resilience our Reward-All design achieves against adversarial min-

ers by performing a security analysis of mining in Reward-All, where we model mining as a

Markov-Decision-Process (MDP) with the different adversarial proof-of-work mining objec-

tives compiled in the framework of Zhang et al. [ZP19]. Our analyses yield highly favorable

results that demonstrate Reward-All enjoys stronger incentive compatibility and censorship

resilience than all current state-of-the-art protocols, while meeting the state-of-the-art in

chain quality, and falling behind in double-spending resilience under certain conditions.

1.6 Publications

Parts of this thesis are submitted or published, in part or in whole, in the following papers:

1.6.1 PoSH in Practice

• Khalil, Rami, and Naranker Dulay. 2021. “PoSH in Practice: Implementing Proof of

Staked Hardware Consensus with Limited Storage.” The 3rd IEEE International Con-

ference on Blockchain and Cryptocurrency (ICBC).

1.6. Publications 9

This paper introduces the cornerstone concept of operating a permissionless distributed ledger

that rewards miners in proportion to their absolute mining power, and focuses on the techni-

cal challenges associated with storing the data required by the miners throughout the mining

process. Since its debut, we have introduced methods which require even less storage and im-

prove performance. This paper is motivated by Chapter 6.

1.6.2 Adaptive layer-two dispute cutoffs in smart-contract blockchains

• Khalil, Rami, and Naranker Dulay. 2021. “Adaptive layer-two dispute cutoffs in smart-

contract blockchains.” 2021 3rd Conference on Blockchain Research & Applications for

Innovative Networks and Services (BRAINS). (Best Paper Award)

• Khalil, R.A. and Dulay, N., 2022. AC/DC: Adaptive Cutoffs and Disputable Cutoffs

for robust critical transactions in smart-contracts. IEEE Transactions on Network and

Service Management. (Extended Journal Publication)

This paper introduces the necessary functionality a layer-one blockchain must provide for so-

called layer-two solutions to remain secure during times of high transaction fees. This paper

borrows from the blockchain structure presented in Chapter 6 and Appendix A.

1.6.3 Towards Equity in Proof-of-Work Mining Rewards

• Khalil, Rami, and Naranker Dulay. 2022. “Towards Equity in Proof-of-Work Mining

Rewards.” The 3rd International Conference on Mathematical Research for Blockchain

Economy (MARBLE). (Best Paper Award)

This paper presents our framework for assessing reward distribution equity, where we in-

troduce our key definitions that allow us to measure the per-hash coin reward value of a

blockchain over time, and set the key constraints necessary for equitable reward distribution.

We focus Chapter 3 on this paper.

10 Chapter 1. Introduction

1.6.4 Reward-All Nakamoto Consensus

• Rami A. Khalil and Naranker Dulay. 2022. “RANC: Reward-All Nakamoto Consensus.”

The 37th ACM/SIGAPP Symposium on Applied Computing (SAC).

This paper presents the Reward-All protocol specification and demonstrating its efficacy in

protecting against stale block attacks and reducing waiting times for rewards. Much of the

content in this thesis can be found in this paper, albeit in an abridged manner for publication

purposes, and without any dedicated explanation of Reward-All’s implementation. We draw

on the contents of Chapters 4, 5, and 6 for this paper.

1.7 Thesis Structure

The remainder of this thesis is structured as follows:

• Chapter 2 presents reviews background literature and related work.

• Chapter 3 identifies the sources of inequity in Nakamoto Consensus mining rewards and

introduces Reward-All’s solution for equitable mining.

• Chapter 4 presents the full technical specification of Reward-All, detailing its design

methodology and architecture.

• Chapter 5 presents an analysis of Reward-All’s security against block withholding at-

tacks.

• Chapter 6 presents the details of our Reward-All prototype implementation and its

evaluation in terms of the costs and overheads associated with mining rewards.

• Chapter 7 discusses several noteworthy aspects regarding Reward-All.

• Chapter 8 concludes this thesis, and outlines directions for future work.

Chapter 2

Background

Bitcoin is a complex distributed system with several layers. Its base is a ledger layer, which

is a collection of cryptographically endorsed data designed to fully describe the state of own-

ership of a set of coins. Above that layer lies a consensus layer, which allows a distributed

network of mutually-distrusting peers to agree on the contents of the ledger and update it

according to a predefined set of rules. Further up is an incentivization layer, which mo-

tivates participants to participate in the consensus protocol and fully replicate the ledger,

contributing to the security of updating its contents. These layers are designed to coalesce

to form “a purely peer-to-peer version of electronic cash”, where no central party, such as

a Bank, is required to maintain the ledger, or to govern the supply of currency being man-

aged [N+08].

We begin this chapter in Section 2.1 with a review of the existing data schemes of fully repli-

cated distributed ledgers. Then, in Section 2.2 we review the state-of-the-art consensus pro-

tocols designed to keep permissionless distributed networks synchronized on the contents of

their ledgers. Subsequently, in Section 2.3, we examine existing coin reward mechanisms that

are built above the reviewed consensus protocols in order to motivate participants to comply

with the protocol rules. Lastly, we conclude this chapter in Section 2.4 with a summary of

the presented literature.

11

12 Chapter 2. Background

2.1 Ledger Design

At the base of the permissionless distributed ledgers lies a data scheme for storing and re-

trieving the information required to maintain a ledger that is replicated across multiple nodes.

The different data schemes used throughout various permissionless ledgers are all designed to

satisfy one or more of the design goals discussed in this section. We discuss and describe each

goal from the perspective of a single node, or replica, in the distributed ledger.

2.1.1 Coins, Addresses, Transactions

A central goal for permissionless distributed ledgers is to fully maintain the history of coin

creation and expenditure. This goal is relevant for a cryptocurrency in which records are

maintained that describe the state of all coins recorded in the ledger. Ultimately, the ledger

details where each coin lies. How coins have moved so far, where each movement, or update

to coin locations, is the result of a transaction. Notably, coin locations are denoted by hex-

adecimal strings called addresses.

Because coins are deemed fungible, i.e. interchangeable or equivalent, batches of coins are

indexed by a single address, such that the ledger specifies how many coins are located at each

hexadecimal address, instead of redundantly specifying where each individual coin lies. These

addresses have largely been cryptographic commitments to information that defines the con-

straints which must be met for coins to leave the addresses. Such addresses have largely been

of two main types.

Single-use addresses. Most prominently known as transaction-output addresses, these

types of addresses are used in Bitcoin, where each address is a commitment to an executable

program. For coins to be moved from an address, a transaction must specify input data to

and reveal the full code of the program the address commits to. Using the input, the pro-

gram must be successfully executed for coins to be moved [ABLZ18].

2.1. Ledger Design 13

Transactions must specify each input address they move coins from, and each amount and

output address they send coins to, as we illustrate in Figure 2.1. Interestingly, output ad-

dresses are not manually specified in a transaction. Instead, output addresses are derived

from the commitment of the entire transaction. Only the contents of, or a commitment to,

the script of the output address are specified in the transaction, and are used to determine

how this output can later be spent.

Once a transaction is inserted into the ledger, all its input addresses are marked as spent,

such that no further transactions can move coins from its input addresses. Atzei et al. [ABLZ18]

create and analyze a formal abstract model of Bitcoin transactions, and prove that the se-

mantics of the system forbid coins from being located in more than one address simultane-

ously.

Transaction 0

input #0
250

output #0

output #1

Transaction 1

input #0

20
0

output #0 195

Transaction 2

input #0

45

output #0

40

Transaction 3

input #0

input #1

output #0
225

Figure 2.1: Single-use transaction output address example. The input of Transction 0 con-
tains 250 coins, which it uses to create two outputs of 45, and 200 coins respectively. The 5
coins difference are unused, and can be collected as fees for including Transaction 0 in the
ledger. Transaction 1 uses the second output of Transaction 0 to create a single output of 195
coins, similarly leaving 5 coins as fees. Similarly, Transaction 2 uses the first output created
by Transaction 0 to create one output of 40 coins, leaving another 5 coins as a fee. Lastly,
Transaction 3 uses the outputs of Transactions 1 and 2 to create a single output of 225 coins,
leaving 10 coins as fees.

Remark. This addressing scheme is useful when providing highly restricted transactions which

fully determine the changes they make in the ledger. However, since each transaction must

fully specify the inputs it is spending coins from, when two or more transactions attempt to

spend coins from the same address, only one transaction can be executed, while the other

transaction will become invalidated. This causes a race condition problem for applications

14 Chapter 2. Background

such as shared addresses with multiple users.

Multi-use addresses. Multi-use addresses, also known as account addresses, were intro-

duced in Ethereum [W+14]. Such addresses either denote a commitment to the public key of

an identity, or a program that is stored in full in the ledger. In the former case, the address

is referred to as a wallet address, and in the latter case, it is referred to as a contract address.

Transactions that move coins from a wallet address must specify a single destination and

the amount that will be transferred to it. The untransferred coins, and any future incom-

ing coins, remain in the same wallet address [W+14], and can be spent by future transactions

signed by the underlying private key of the wallet.

When specified as the destination of a transaction, a contract address may also utilize any

additional input data specified in the transaction for the execution of its program. Moreover,

a contract’s program can invoke a cascade of transactions to other addresses to be executed

as part of the transaction in the block, and specify an input for each destination if it is a con-

tract address. However, a transaction may only stem from a wallet address, as we illustrate

in Figure 2.2.

Transaction

0xb1ab1a
7

0xca11

send 2 to
0xaffec7ted;
return true;

2

0xaffec7ed

return true;

Figure 2.2: Multi-use transaction example. A single transaction from wallet address 0xb1ab1a
explicitly invokes contract address 0xca11 while sending it 7 coins. Because of 0xca11’s pro-
gram code, this results in the implicit invocation of contract 0xaffec7ed with 2 coins within
the same transaction. While only the transfer of 7 coins from 0xb1ab1a to 0xca11 was explic-
itly mentioned in the transaction, 2 coins were added to 0xaffec7ed’s balance.

These rules mean that a single transaction may result in the execution of several programs

across several contract addresses in a ledger, leading to potentially much more complex changes

in coin locations than those possible with Bitcoin addresses [CCM+20]. Notably, the transac-

tion’s execution must be successful, as in single-use addresses, for any of the movements it

2.1. Ledger Design 15

causes directly or indirectly to be permanently stored in the ledger.

Remark. While this scheme does not suffer from the same race condition problem as Single-

use addresses, it prevents parallel transaction execution in the ledger, as the sequential order

in which transactions are executed determines the final state of the ledger.

2.1.2 Transaction Termination

Another key property in permissionless distributed ledgers is that transactions may only take

measurable amounts of computation and memory to be interpreted and fully executed, an

aspect that is crucial to maintaining predictable read-write ledger throughputs.

In Bitcoin, transactions are specified in a stack-based scripting language designed to keep

transaction processing overheads minimal [ABLZ18]. All language instructions are designed

to take a negligible number of CPU cycles, such that the total number of instructions can be

used as an estimate of how much computational power is required to execute a transaction.

On the other hand, in the Ethereum Virtual Machine [W+14] (EVM), the computational

and storage resources required to process a transaction are characterized by its gas consump-

tion, where gas is a unit designed to capture the total cost of execution of a transaction. This

more elaborate measurement scheme handles the added complexities of the EVM, which en-

ables a much more feature-rich transaction language under a multi-use address scheme.

In the EVM, a transaction that is very small in byte-size may take a considerable amount

of CPU time to execute if it invokes a computationally intensive program stored at a con-

tract address. Consequently, EVM transactions specify explicit limits of how much gas each

may consume, and each EVM instruction has a predefined gas cost to execute. As a transac-

tion is executed, the amount of gas its instructions have tallied so far is counted, and if this

amount exceeds the transaction’s limit, the entire transaction is aborted and its coin move-

ments are not saved in the ledger. Ensuring that the gas unit cost of instructions adequately

corresponds with the number of CPU cycles required to execute them is essential to prevent-

ing denial-of-service attacks [PL22].

16 Chapter 2. Background

Transactions incur a cost in currency units to be executed. In Bitcoin, this cost is pre-defined

in full prior to transaction execution, while in Ethereum, the total cost is calculated based

on the total gas consumed after execution. In both systems, sufficient currency units must be

spendable in a transaction to pay its transaction fee. This means that the total units avail-

able in the Input addresses of a Bitcoin transaction must be sufficient to cover those allo-

cated to the output addresses, in addition to the transaction fee, as shown in Figure 2.1.

Similarly, the units available in an Ethereum wallet address used to initiate a transaction

must be enough to pay for any transferred currency units and also for the total gas incurred

in the transaction.

However, because the total gas consumed by an Ethereum transaction cannot always be

known in advance, the transaction must specify a gas price in currency units, which is mul-

tiplied by the total gas consumed by the end of a transaction to derive its total due fee. To

ensure that the final fee is payable, the maximum fee that can be due in an Ethereum trans-

action is always known in advance, because the transaction must specify the maximum gas

that it can consume, and the balance of the transaction initiator must cover said maximum

fee [W+14]. Transactions which exceed their specified gas limit are marked as failed, which

leads their sending wallet to be debited for the incurred fees without moving any coins to the

destination address or executing any code in its contract.

Remark. Despite relying on transaction pricing mechanics, current ledger designs do not pro-

vide mechanisms for transactions to access historical data associated with transaction fees.

Because such data can be used to measure the demand placed on the ledger, it can be used

to improve the security of applications that depend on timely access to the ledger [KD21].

2.1.3 Append-only Updates

Lastly, another fundamental record-keeping objective in permissionless distributed ledgers is

that once information is inserted into the ledger it should no longer be removed or changed.

Instead, an append-only ledger which contains every incremental update is kept. Namely,

in a blockchain, batches of transactions are recorded in the ledger as blocks. When inserted

2.1. Ledger Design 17

into the blockchain, each block is appended to another preceding block, denoting that the

sequence of transactions in the appended block logically follows, or is executed after, the se-

quence of transactions in the preceding block1. In this model, the blockchain is only a sub-

set of a directed tree of blocks, where different branches denote divergent versions of the

ledger [N+08].

Notably, each block in this design contains a cryptographic commitment to the block it is ap-

pended to, as shown in Figure 2.3, which provides a means of tamper evidence2. In this

tamper evidence model, using the commitment to one block in the stored tree of blocks as a

reference, one can examine the data of any preceding block, even if it is retrieved from an ex-

ternal party, and verify that this data was not modified. This verification is done through us-

ing all blocks starting from the preceding block, and leading up to the block of the reference

commitment, to recompute the reference commitment [N+08]. If the recomputed commit-

ment matches the reference commitment, then one can be certain that, with overwhelming

probability, the preceding block was not modified since the block of the reference commit-

ment was appended.

... 0x6b86b 0xd4735 0x4e074 0x4b227 0xef2d1 0xe7f6c 0x79026

Figure 2.3: Example blockchain diagram, where the chain proceeds from left to right. Each
block is represented by a square. The hash of each block is written directly above it. Each
block commits to the entire chain preceding it by including the hash of its immediate parent.

A core functional feature for this append-only approach is that it enables the ledger to be

safely rolled-back in time, and enables the maintenance of several consistent views of the

ledger simultaneously. The matter of which consistent view constitutes the canonical view is

the core concern of the consensus mechanism, and deciding which view should be adopted as

the main one is essential to ensuring that the ledger can process transactions quickly [SZ15].

Consequently, the blockchain structure must support flexible switching between different

views of the ledger, so that once consensus on the canonical view is reached, it is possible
1More general append-only logs exist where one block may be appended to more than one preceding

block, forming a directed acyclic graph called a blockDAG [LSZ15].
2This is different from tamper proofness, which is an objective of the consensus mechanism.

18 Chapter 2. Background

to efficiently adopt said canonical view.

Remark. While several work has been dedicated to providing efficient tamper-evidence proofs [KLS16,

BKLZ20, KMZ20] using current blockchain commitments which refer only to the preceding

block, little attention has been given to constructing block designs which utilize commit-

ments that can offer more efficient tamper-evidence proofs. For example, using Merkle-Tree

commitments rather than hash chains, which would allow efficient tamper-evidence proofs to

be generated for older blocks given newer reference blocks.

2.2 Blockchain Consensus

Consensus on the canonical chain is a fundamental functionality to achieve in a permission-

less distributed blockchain ledger. The primary aim behind establishing a canonical view of

the ledger’s contents is to prevent the act of double-spending, which would occur when

multiple transactions move the same set of coins from the same address to different destina-

tions [N+08], as illustrated in Figure 2.4.

...

A→ B

A→ C

Figure 2.4: Example conflicting blockchain forks. Each block is represented by a square, with
an arrow pointing to its parent in the directed acyclic graph of blocks. The two forks contain
conflicting information about A’s coins, whereby in the upper fork, A sends all its coins to B,
while in the lower fork, A sends all its coins to C.

While no valid single chain in the tree of blocks maintained in the ledger can contain such

double-spending transactions, divergent branches in the tree, or different chains, can contain

transactions which move the same coins from the same source addresses, but to different des-

tinations in each branch. Consequently, if peers disagree on which chain is the canonical one,

the originators of double-spending transactions can spend their coins more than once, which

is impractical for the recipients as they obtain no guarantee of being considered as the sole

owners of their coins by all nodes.

2.2. Blockchain Consensus 19

Generally, consensus enables a distributed system of independent nodes to function almost

as if it were one cohesive node. Several consensus protocols can achieve such unity under a

multitude of different conditions. e.g. only under the strong assumption that all nodes fully

comply with the protocol, or that all nodes are known in advance and identifiable. Further-

more, this unison may be achieved by partitioning data across nodes, such that, for example,

some nodes contain one half of the ledger, while others are only required to retain the other

half. Several other assumptions can be placed by the consensus mechanism on the structure

of the distributed system and how communication between its nodes takes place.

Notably, a central assumption for permissionless distributed ledger protocols is that any par-

ticipant may enter or exit the system at any point in time without a fixed predetermined

identity or role, and a non-majority of nodes may deviate from the protocol arbitrarily.

2.2.1 Network Topologies

In this section, we review mechanisms that allow nodes to provide their ledger contents to

interested peers in the system, allowing a permissionless distributed ledger to reach consensus

on a canonical view of a ledger.

Typically, these data distribution mechanisms are designed with consideration for a peer-to-

peer network topology, as shown in Figure 2.5. In such a network structure, each node of

the system is connected only to a relatively small, or limited, number of other random nodes.

Ideally, no central node that must be connected to is assumed to exist, and nodes can con-

nect to and disconnect from any of their peers freely.

The propagation of information in this layout is established via gossip protocols [DGH+87],

whereby once a node learns new information, such as a transaction or a block, it passes it on

to its peers. Gossip protocols can employ information advertising and information pushing

mechanisms. In the former case, the availability of information is what is first sent by a node

to its peers, and the full information itself is only transmitted to peers that request it. In the

later case, new information is immediately transferred by a node to its peers.

20 Chapter 2. Background

Figure 2.5: Example peer-to-peer overlay network. Each node is represented by a black dot,
while bi-directional communication links are represented by double-arrow connections be-
tween nodes. The length of each link indicates connection latency.

Notably, as no nodes are assumed to retain fixed identities, each node keeps its own records

of which peers are well behaved, i.e. which peers provide valid information and do not dis-

connect erratically. This localized reputation system enables each node to establish its own

list of peers that are useful to be connected to. Furthermore, peers can exchange information

about other peers, allowing nodes to explore the network and dynamically change their con-

nections, as often done in Ethereum [KSL+21].

Interestingly, the disruption of connectivity and of information propagation in the network

of a permissionless distributed ledger is crucial. Attackers can disrupt the entire consensus

process altogether not only by isolating portions of the network from each other [CDG+02],

but also by inducing severe delays in information propagation between nodes [WWK19].

Remark. Despite their importance towards establishing consensus, there are very few rules in

place that force nodes to propagate newly learned information to other peers. As we discuss

in Section 2.3, there are incentives in place to motivate a node to publish its own blocks to

the network, but there are no guarantees that a node must provide any useful information

to its peers. Furthermore, state-of-the-art consensus algorithms do not offer defenses against

network-layer attackers [HKZG15, AZV17], such as requiring periodic proofs that network

peers are mining on the canonical chain.

2.2. Blockchain Consensus 21

2.2.2 Longest-chain Protocols

Longest-chain protocols allow a node to use all information it has learned so far to take a

local decision about which view constitutes the canonical ledger view. In this context, infor-

mation is comprised of blocks, and the canonical view of the ledger is embodied by a single

branch in the tree of blocks stored by a node. This branch essentially forms a chain of blocks,

or blockchain, and is uniquely identifiable by the last block in the chain, referred to as the

tip. Consequently, longest-chain protocols aim for all of its nodes to reach the same decision

on which tip characterizes the canonical view.

Hinted at by its name, a longest-chain protocol typically aims to guide nodes compliant with

the protocol specification towards a state whereby they regard the longest blockchain, in

terms of its number of blocks, as the canonical chain. However, the length of a chain is not

always the only factor taken into consideration. In addition, a weight may be attributed

to each block according to the protocol, and consequently regarding the heaviest chain, in

terms of effort needed to create it, as canonical becomes the target for consensus. Unsurpris-

ingly, said protocols also take into consideration cases where two or more chains have the

same total length, or weight, by introducing tie-breaking rules which lead to the selection of

only one canonical tip [Hei14, ES14, SZ15, ZP17].

Notably, the scope of longest-chain protocols does not end with only a specification of a pro-

cedure to select a tip from a block tree, but also extends to specifying how nodes can partic-

ipate in block creation, a process which must be regulated in pace so that the canonical tip

does not frequently change across divergent branches [CDE+16].

Broadly speaking, longest-chain protocols regulate block creation by facilitating a periodic

leader election process in regularly intervaled rounds, where the product of each round is usu-

ally intended to be a single block, or series of blocks by a single entity [EGSVR16], to be

appended to the canonical chain. Many such protocols have been successfully designed and

implemented to achieve different trade-offs.

22 Chapter 2. Background

Proof-of-Work (PoW). Nakamoto Consensus is characteristically the seminal PoW-based

longest-chain protocol. In this design, a system inspired by Hashcash [B+02] is adopted to

throttle and regulate new block creation, such that a block can only be appended to an-

other block if the hash of the appended block is less than or equal to a certain numeric value,

which we refer to as the block target.

To create a block that meets the block target, a node must search for a nonce value, which

when inserted into the block’s data, causes the block’s hash value to meet the block target.

Finding such a nonce requires a brute-force search to be performed by the node, and nodes

which undergo this search are commonly referred to as miners. Notably, the PoW approach

is very computationally intensive, and consequently requires a significant amount of energy to

be expended by the distributed system nodes.

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

Bl
oc
k
H
as
h
Va

lu
e
In
cr
ea
se
s
→

M
ining

D
iffi

culty
Increases

→

Figure 2.6: Proof-of-Work mining difficulty acts as a means to throttle block production to
a stable average rate, such that each block is given adequate time to fully propagate across
the overlay network. Only blocks whose hash value falls below the mining target value may
pass. The mining target value is inversely proportional to the mining difficulty, leading fewer
blocks to be accepted as mining difficulty increases.

The number of search attempts required to create a block whose hash meets the block tar-

get follows a geometric distribution, the expected value of which is referred to as the block

mining difficulty. Consequently, the time between block arrivals in this process also follows

an exponential distribution, but whose mean is based on the mining difficulty and the to-

tal search speed of all miners combined. In order to keep block production at a stable rate,

which is currently approximately 1 block every 10 minutes in the Bitcoin network, the block

target is adjusted based on the average amount of time taken to create the most recent N

2.2. Blockchain Consensus 23

blocks, where N is a predetermined constant [N+08]. However, the timestamps which indi-

cate the time at which blocks were created are not precise. Furthermore, a noticeable reduc-

tion in the search power of the distributed system may take a significant amount of time to

be reflected in the mining difficulty under this approach [IWSK21].

Furthermore, while originally intended to enable miners to have somewhat equal shares of the

computational power of the network, high performance application-specific integrated circuit

(ASIC) hardware was commercially developed for PoW [RD17]. This has lead to a severe im-

balance in favor of miners that employ ASICs, compared to those that only utilize a general

purpose CPU to search for a nonce. Nonetheless, families of so-called ASIC-resistant hashing

functions, which cannot be cost-effectively directly implemented in hardware, are under con-

stant research and development, with so-called Memory-bound PoW and Programmatic PoW

retaining a foothold against hardware acceleration [KKKS20].

Remark. The intensive computational resource requirements of PoW lead to significant en-

ergy usage by its nodes [OM14, DV18, GKS20]. This reason has so far been the main motive

for designing alternative schemes that demand less energy intensive resources than computa-

tion, namely storage space, or have only purely virtual resource demands.

Proof-of-Space (PoSpace). PoSpace protocols [ABFG14, PKF+18, PPA+15] operate in a

similar fashion to PoW, but instead of only significantly demanding computational resources

from a miner, they also require a miner to have access to a large amount of storage. In some

protocols, the intensive computational requirements are dropped altogether in favor of de-

manding that storage be the dominant requirement for a miner to participate in consensus.

Creating a block under such protocols requires that the block be accompanied by a PoSpace,

which attests that the miner creating the block has exclusive access to some amount of stor-

age.

Alternative forms of PoSpace are Proof-of-Retrievability (PoR), Proof-of-Space-Time (PoST),

and Proof-of-Capacity (PoC). A PoR [SW08, BJO09] additionally attests that the space in

question is used to store a certain file’s contents, while a PoST [MO16] additionally attests

24 Chapter 2. Background

that the contents of the storage space used to generate the proof have been kept unchanged

for some amount of time. A PoC [HM19] on the other hand attests that the storage space

is being used to store hard-to-compute hash-tables that require intensive computational re-

sources to create.

Remark. While storage-based approaches require smaller energy demands than PoW, they

do not guarantee that the storage resources are being exclusively used to mine on top of one

chain. The Chia blockchain specification refers to this issue as double-dipping, and reme-

dies the advantages which an adversary can gain from it by specifying that honest miners

may also attempt to extend 3 chains concurrently [CP19]. Nonetheless, even when honest

miners extend multiple chains at once, an attacker can completely dominate the blockchain

with fewer resources than required in Proof-of-Work [DKT+20].

Proof-of-Stake (PoS). PoS protocols [KN12, KRDO17] rely purely on each miner own-

ing a stake in the distributed system to enable block production. A miner’s stake ownership

is embodied by a coin balance that is recorded in favor of the miner within the distributed

ledger. Under this approach, and compared to PoW and PoSpace, miners do not perform

any resource-intensive tasks, such as continuous hashing or storage maintenance, in order to

create blocks. Instead, the state of the longest-chain of the ledger decides which miner, or

committee of miners, can create the next block.

However, because creating a block in a PoS system is inexpensive, PoS protocols face unique

challenges that their block creation processes must address [LABK17]. First, the nothing-

at-stake problem occurs when a miner finds itself next-in-line to create a block on more

than one divergent chain and seizes that opportunity. Second, a grinding attack occurs

when said miner searches for a block which would update the ledger’s state such that the

same miner remains next in line to create a block. Third, a long-range attack occurs when

miners can be bribed to reveal their private keys to an adversarial miner who can use them

to rewrite a significant suffix of the canonical chain.

Remark. Despite their acknowledgement as blockchain consensus protocols, PoS designs fall

2.2. Blockchain Consensus 25

short in their support for permissionless participation. Not only must new participants ac-

quire coins in order to take part in the consensus lottery, but also existing participants are

guaranteed to maintain the percentage they own of the coin supply if they consistently in-

crease their stake using the rewards they earn. These issues can be problematic when a ma-

jority of the staked coin supply falls within the hands of a single party, which can then domi-

nate the consensus process and even prevent new participants from partaking in consensus.

2.2.3 Stale Blocks

The objective of longest-chain protocols would be straightforward to achieve in a synchronous

network setting where new blocks propagate to all nodes simultaneously, and the local pro-

cedure used by each node deterministically selects the same new tip after the block is ap-

pended. However, connectivity via today’s internet does not provide such a perfectly syn-

chronous and dependable means of communication, and any practical consensus protocol de-

sign must take into consideration delays in information propagation across the system.

For this reason, longest-chain protocols offer mechanisms for a node to accept blocks at much

later times than their creation times, and to consider any branch these blocks form as the

canonical chain if it indeed forms the longest, or heaviest, chain seen so far by the node.

Consequently, blocks which become abandoned by a majority of protocol-compliant miners

are referred to as stale. Stale blocks are an inevitable unwanted byproduct of all state-of-

the-art longest-chain protocols, even when all miners in their systems are protocol-compliant.

Stale Block Attacks. However, and more importantly, intentionally forcing compliant

miners to switch over to a new view of the canonical chain, and causing the divergent branch

of the prior canonical chain to become stale, is a core adversarial behavior in longest-chain

protocols [SSZ16]. An adversary in control of some miners in the distributed system can

intentionally withhold newly found blocks by those miners from the remainder of the sys-

tem, and subsequently release these blocks once they form a chain that is long enough to be

adopted as the canonical chain by the compliant miners, while causing the branch that was

26 Chapter 2. Background

previously considered canonical by the compliant miners to become stale.

Depending on the objective of the adversary, causing the blocks generated by compliant min-

ers to go stale can have adverse consequences [ZP19]. Most notably, it can enable the adver-

sary to execute double-spending transactions by spending its coins in the compliant miners’

blocks, and then replacing those blocks with its own blocks that spend the same coins differ-

ently. Alternatively, and regardless of the reward mechanism employed, the adversary can

slow down the overall transaction execution throughput of the distributed system by replac-

ing transaction-filled blocks with its own empty blocks.

For an adversary to create a long enough chain that can cause the compliant miner’s blocks

to go stale, it essentially enters into a block creation race with the compliant miners. An ad-

versary can only win this race when it is in possession of a divergent branch that can cause

the compliant miners to adopt that branch as the canonical chain once they receive it. The

probability of an adversary winning such a race depends both on the adversary’s share of the

resources being used to create blocks, and the speed with which blocks created by compliant

miners can propagate to other nodes [ES14].

To understand the limits of longest-chain protocols against such attacks, Garay et al. [GKL15]

analyze the Bitcoin protocol and isolate in it what they term as the Bitcoin backbone pro-

tocol. They demonstrate that the backbone protocol is able to maintain two central prop-

erties when compliant miners control a majority of the block creation resources and under

relatively fast block propagation. The first property is Persistence, which states that, with

overwhelming probability, a confirmed transaction will become permanently adopted by all

compliant nodes after some number of blocks have been added to the chain after its confir-

mation. The second property is Liveness, which states that transactions by compliant min-

ers will eventually be included in the canonical chain. Their work intentionally focuses on the

block creation and propagation process, and excludes an analysis of the rationality of compli-

ant miner behavior or the rewards offered by the block creation process.

Dembo et al. [DKT+20] later present a more general analysis of longest-chain protocols which

yields tighter security bounds in slower block propagation settings, and extends beyond PoW.

2.2. Blockchain Consensus 27

They demonstrate that the block withholding attack is the worst case attack for longest-

chain protocols, including PoW, PoSpace and PoS variants. Most notably, they demonstrate

that some PoSpace protocols are less resilient against stale block attacks than PoW and PoS

protocols, mainly due to the ability of the examined PoSpace miners to use their storage re-

sources to extend multiple branches simultaneously.

Remark. Many of the limitations of Proof-of-Work and other longest-chain protocols against

adversaries that cause blocks to go stale have become clearer as research has progressed.

Nonetheless, such protocols still remain as a viable option against deterring adversarial be-

havior, due to the scale of resources required.

Checkpointing Defenses. The leading mechanism in effectively preventing a node from

considering a block to have gone stale under any circumstances is referred to as checkpoint-

ing. Under this approach, a block is effectively considered permanent once a sufficiently long

chain of blocks has been created on top of it. Even if later presented with a longer, or heav-

ier, chain than the one currently known by the node, the node would not adopt that newly

presented chain as the canonical chain if the new chain causes any checkpointed blocks to be-

come stale.

These checkpoints, which form exceptions to the longest-chain rule, can come in the form of

hard-coded software upgrades to the nodes’ software. The need for such checkpoints arose

from the fact that while longest-chain protocols provide a stable form of consensus to each

node, they offer no absolute guarantees on the permanence of a block in a node’s canonical

view if that node suddenly discovers a new network of nodes with a longer, or heavier, canon-

ical chain.

In essence, the objectivity of longest-chain protocols in determining a canonical chain de-

tracts from the practicality of considering that canonical chain as the only legitimate source

of truth about the transactions that have occurred in the ledger, because said chain can al-

ways be replaced if not checkpointed.

One notable objective for checkpoints is to ensure that a node that is new to the network,

28 Chapter 2. Background

and uses the same software, does not end up adopting a different canonical view from the

node network. This objective is to be met even if an adversary has been secretly building a

longer, or heavier, chain than the canonical chain that can replace it altogether. For example,

checkpointing protects the Bitcoin network from a hypothetical attacker that may have been

mining blocks to date since, or prior to, the network’s inception in 2009 and has created a

heavier chain than the current canonical chain. For this attacker to attract new miners which

want to participate in the Bitcoin network it would have to provide them with client software

that contains different checkpoints than those provided by the standard Bitcoin client.

Alternatively, in [KK21], Karakostas and Kiayias propose both a federated, and a fully de-

centralized checkpointing mechanisms. Their works protects against a block lead attack,

whereby an adversary with more than half of the total network mining power can break the

liveness property of the ledger across different checkpoint periods. However, their work relies

on an external set of parties to checkpoint blockchains.

Remark. While the problem of creating an objectively acceptable checkpointing procedure

is interesting, we believe that it is more promising to avoid the attack altogether. This can

be accomplished, for example, through creating a procedure to safely merge two conflicting

blockchains together to form a third longer, or heavier, chain. However, this procedure must

resolve the conflicts not only between double-spending transactions, but also between smart-

contract state updates. To the best of our knowledge, this approach has not been taken in a

permissionless setting.

2.3 Mining Incentives

Primarily, the main reward offered by all such protocols comes in the form of coins within

the distributed ledger in favor of miners. These rewards are intended as compensation for

the miners’ use of block creation resources to extend the canonical chain and maintain stable

consensus on the ledger contents. Inversely, miners which create divergent branches are not

meant to receive rewards because they impede the stability of the consensus process.

2.3. Mining Incentives 29

However, identifying with certainty which divergences were intentional or not is not always

feasible, and therefore protocols cannot decisively consider every branching as non-compliant.

Consequently, many state-of-the-art protocols take coarse approaches to issuing rewards and

punishments. In this section we examine how these approaches operate under three scenarios.

In Section 2.3.1 we review the state-of-the-art in granting coins to compliant nodes. Subse-

quently, in Section 2.3.2 we review how different protocols punish nodes which perform ex-

plicitly faulty behavior. Lastly, we give a review in Section 2.3.3 of how nodes can deviate

from the protocol specification to maximize their gains beyond compliance rewards.

2.3.1 Compliance Payoffs

The fundamental reward scheme introduced in Nakamoto Consensus is to issue a block re-

ward to the miner which successfully finds a block. This reward creates new coins and cred-

its them to the miner within the block that it created. Additionally, a secondary reward, in

the form of transaction fees, is granted to miners that create blocks. These fees are spec-

ified and paid by the issuers of the transactions which are included in each block. All fees

paid by a block’s transactions are credited to the miners that created said block, after being

deducted from the balances of the transaction issuers. Notably, both rewards are only valid

within the chain that contains the block that issues the rewards. However, as stale blocks are

inevitable, such a stringent policy does not compensate compliant miners that inadvertently

create a stale block.

More Inclusive Protocols. A more lenient strategy is to issue uncle rewards to miners

which have created blocks that recently went stale [SZ15]. These rewards are issued in the

canonical chain when it is extended by a block that proves the existence of one or more such

recent stale blocks. Uncle rewards are split amongst the miner which extends the canonical

chain with a block that references new stale blocks as uncles, and the miners which originally

produced those stale blocks.

Another, more general, strategy is to reward more than one miner for the creation of a block.

30 Chapter 2. Background

The rationale behind this is that the reward distribution per block should be more represen-

tative of the block creation resource expenditure exhibited by miners throughout the search

for a new block, and the rewards should not just be solely distributed to the miner which

found the block’s nonce in a “winner-takes-all” fashion.

In FruitChains, Pass and Shi quantify reward distribution fairness and use weak mining tar-

gets, named Fruits, to reward miners with coins if the fruits are included in a block on time [PS17].

Their work reduces the discrepancy between the variability of rewards of miners with large

resources and of those with smaller resources.

Szalachowski et al. propose StrongChain, which uses weak mining targets to increase the

weight of a chain and distribute block rewards amongst more miners by permitting the in-

clusion of headers of “weak” blocks in “strong” blocks [SRHS19]. This approach also reduces

the per-block reward variance of miners with smaller amounts of resources.

Bissias and Levine generalize the mining target to be the average of the targets met by sev-

eral miners in Bobtail, lowering the variance of inter-block arrival times and per-block re-

wards for miners utilizing resource amounts of all sizes [BL20].

Remark. While effective in many ways, the aforementioned works still distribute rewards in

a lottery-like fashion, where only a limited number of miners may win a fixed-size pool of re-

wards per block. Such approaches only enable a competitive process for miners to earn coins,

and does not adjust the amounts of the coin rewards based on the amount of block creation

resources invested into the process by the miners.

Alternative Reward Protocols. Alternatively, Dong and Boutaba propose publishing

a challenge on a decentralized ledger and subsequently computing a Proof-of-Sequential-

Work (PoSeq) on that challenge to mint a new coin within a limited time-span in Elasti-

coin [Orl20, DB19]. This design does permit coin rewards to increase in proportion to the

amount of computational resources used by miners to create PoSeqs, but only to a limited

extent. This is because the Elasticoin design assumes that the decentralized ledger has suffi-

cient bandwidth to confirm all PoSeqs within the allotted time before they expire.

2.3. Mining Incentives 31

In Melmint, Dong and Boutaba utilize Elasticoin minting to peg a cryptocurrency to the

value of “one day of sequential computation on an up-to-date processor” and adjust its circu-

lating supply depending on demand for it [DB20]. To stabilize the currency’s value, a limited-

time auction is operated on a decentralized ledger, which still may not be have sufficient

bandwidth to enable full network participation in a timely manner.

On the other hand the Ergon protocol issues per-block coin rewards that are proportional to

the block’s mining difficulty [Trz]. Interestingly, however, Ergon attempts to peg the cost of

production of its currency to the amount of energy miners consume, and consequently imple-

ment a mechanism similar to Bitcoin’s halving schedule that is designed to make the same

amount of rewards more difficult to attain over time [Trz21]. While this reward scheme in-

troduces a unique form of proportionality between mining power and rewards, it still suffers

from the drawbacks of winner-takes-all dynamics, and artificial scarcity.

Remark. To date, all state-of-the-art reward mechanisms do not scale up the potentially re-

deemable rewards in direct proportion to the total amount of resources utilized by miners,

and instead encourage miners to compete for an increasingly scarce constant amount of coins.

2.3.2 Fault Penalties

In longest-chain protocols, penalties are deducted from the coin balances of nodes that prov-

ably disrupt the consensus process. Implicit forms of penalties are implemented in PoW and

PoSpace systems, while PoS protocols implement explicit penalty mechanisms.

A reward that was issued to a miner under any state-of-the-art PoW or PoSpace protocol is

contingent on the set of blocks that were created by the miner, in whole or in part, remaining

part of the canonical chain [BBPS19, XZLH20, ZL20], or being referenced by the canonical

chain as in uncle rewards [SZ15]. If a miner spends its resources to create a block that does

not extend the canonical chain, or does not get referenced by it, it receives no compensation

for its resource expenditure. The penalty, therefore, for not contributing to the consensus

process is implicit in the waste of the miner’s resources without compensation. Moreover,

32 Chapter 2. Background

despite requiring the same amount of resources to create as canonical blocks, uncle blocks

reward their creators with fewer new coins and no transaction fees. This also implicitly pe-

nalizes miners that would intentionally mine them.

On the other hand, in PoS protocols, consensus does not directly consume the staked re-

sources, but only encumbers staked coins in the ledger. Consequently, if non-compliant min-

ers use their staked resources to extend two chains simultaneously, the miners would not be

prone to the same implicitly unrewarded waste in resources once a canonical chain is de-

cided. This issue creates a challenge for PoS protocols known as the nothing-at-stake prob-

lem, which some PoS protocols address by using an explicit penalty system that functions

similarly to uncle rewards [XZL+19, BSAB+19]. Explicit PoS penalties rely on blocks in the

canonical chain referencing two stale uncles with the same parent block and the same creator.

Using this reference as proof that the creator of both blocks attempted to induce a fork in

the chain, a penalty is deducted from the staked coins of said creator in the canonical chain.

However, not all forms of misbehavior can similarly be proven as intentional [GHM+17].

Consider, for example, a PoS miner next in line to propose a block, but incurs a crash, or a

power outage, before being able to do so. Penalizing such accidental faults as equally as in-

tentional misbehavior would be unreasonable.

Remark. These penalty mechanisms are designed to dissuade a rational miner, which only

aims to maximize the number of coins that it receives while participating in the consensus

process, from destabilizing the view of the canonical chain. While reasonably effective at do-

ing so, penalties only establish a limited barrier against miners whose non-compliant behavior

could be motivated by external incentives, such as bribes [JSZ+19].

2.3.3 Deviation Advantages

Without considering bribery, or other external factors, the incentive and deterrent mecha-

nisms in state-of-the-art consensus protocols can be gamed by non-compliant nodes to de-

rive more rewards than intended. Notably, when the reward scheme in question promotes a

2.3. Mining Incentives 33

competitive process that awards a scarce or finite resource, the rewards gained by a miner

relative to those gained by other miners can become worth optimizing. Consequently, de-

grading the rewards of compliant miners [ES14], and even dissuading them from participa-

tion [MJP+20], can become a rational objective in some reward schemes.

Zhang et al. [ZP19] propose four metrics as the foundation of a quantitative framework for

evaluating how different PoW consensus protocols perform under adversarial mining strate-

gies. The first metric is chain quality, which quantifies the share of blocks an adversary

could expect to publish in the canonical chain based on how much hashing power the adver-

sary controls. The second metric is incentive compatibility, which quantifies the share

of rewards received by an adversary based on its hashing power. The third metric is sub-

version gain, which quantifies the additional profit an adversary could earn by performing

double-spending attacks. The last metric is censorship susceptibility, which quantifies

how much reward-loss an adversary could inflict on compliant miners based on its share of

the hashing power. These metrics were also individually focused on and evaluated by several

studies [ES14, SSZ16, NKMS16, WHF19, ZET20], and are utilized in this thesis to analyze

the performance of Reward-All compared to Nakamoto in Chapter 5.

Chen et al. [CPR19] analyse block reward allocation schemes and propose a set of axioms

which evaluate how the schemes perform. First, they consider a block reward scheme as sym-

metric if it does not vary rewards based on the identity or ordering of a miner. Second, they

consider a scheme to achieve budget-balance, if the sum of all expected rewards per miner

per block does not exceed 1. Third, a scheme achieves Sybil-proofness if splitting hashing

power across different identities does not yield more rewards than dedicating that power to

one identity. Lastly, a scheme achieves collusion-proofness if forming coalitions of min-

ers does not yield more rewards for the coalition than the sum of rewards of the indepen-

dent miners. Weaker and stronger variations of the aforementioned axioms are also presented

in [CPR19], but they are omitted from this thesis for brevity. They demonstrate that Bit-

coin’s proportional allocation scheme satisfies these criteria. However, this analysis is based

on long-term behavior of Bitcoin rewards, i.e. everything is well defined and balanced only

on-the-long-run.

34 Chapter 2. Background

Kwon et al. [KLK+19] quantify the decentralization of PoW, PoS and DPoS consensus pro-

tocols. In their work, they quantify the decentralization of a network using the difference in

combined resources between the most powerful miners, and the remaining miners which rep-

resent a certain percentile of a known number of miners. With this measure in mind, they

introduce a set of constraints for reward schemes to be able to, with high probability, reach

a state of full decentralization, such that the aforementioned difference in mining resources

is negligible. They argue that systems without Sybil costs fail to promote decentralization,

regardless of whether their consensus protocol is based on computational work or on stake.

Their results imply that current reward schemes are not inherently designed to encourage de-

centralization, since the cost of mining using fragmented mining power across multiple iden-

tities is not less than that of mining using a single identity. However, their analysis is based

on a competitive coin-creation process, where miners compete for the next set of newly issued

coins, and the miners which reinvest more of their earnings into attaining more mining power

are destined to control a majority of network resources. Whether such a dilemma exists in a

less competitive coin creation process, such as those of the decoupling and responsive proto-

cols from Section 2.3.1, is unclear.

Remark. Thus far, mining reward scheme analyses have provided valuable insights into many

aspects of existing reward mechanisms. However, a gap in knowledge exists on how coin

value is truly distributed between miners under different reward schemes.

2.4 Summary

In this chapter we examined the current state-of-the-art in blockchain ledger data schemes,

permissionless consensus protocols, and reward mechanisms. Our examination introduced the

basic goals and principles of these designs, and the most pertinent issues they face.

In Section 2.1 we first reviewed the basic data schemes used in state-of-the-art distributed

permissionless ledgers, and highlighted the susceptibility of single-use addresses to race con-

ditions, and lack of parallel transaction execution in multi-use addresses. Then, we examined

2.4. Summary 35

the methods for interpreting transactions and executing them to modify ledger contents in a

finite amount of time, pointing out the lack of access current systems provide for transactions

to read transaction fee data. Lastly, we reviewed how blockchain ledgers accept updates in

the form of sequential blocks, and emphasized how such block structures are not optimized

for efficient tamper-evidence.

Later in Section 2.2, we began with a review of how nodes in state-of-the-art permission-

less distributed ledger systems are networked and communicate to share the contents of the

ledgers they maintain, identifying the gap in their defenses against attackers with a strong

network presence. Subsequently, we reviewed three different classes of longest-chain proto-

cols, overviewing how they aim to establish consensus on the canonical chain between miners,

and the concessions they make in energy usage, resource exclusivity, and permissionless par-

ticipation. Lastly, we examined the implications of stale blocks on longest-chain protocols,

overviewing both the analyses performed on the attacks that can be carried out using stale

blocks, and the defenses that have been proposed to prevent blocks from going stale. In both

cases, we comment on the effectiveness of longest-chain despite the feasibility of attacks, and

on our preference for a different class of defense than what the state-of-the-art offers.

Finally, we commenced Section 2.3 with a review of incentive mechanisms in permissionless

distributed ledgers which compensate miners for their resource expenditures, calling atten-

tion to the fact that protocols which aim to be more inclusive of smaller miners still rely on

lottery-like mechanisms for reward issuance, while alternative reward schemes suffer from

performance bottlenecks and enforce unfair artificial scarcity. Then we examined state-of-

the-art mechanisms for punishing non-compliant nodes for disruptions to the consensus pro-

cess, highlighting that such mechanisms can only deter non-compliant behavior to a limited

extent as they do not account for bribes external to their systems. We then concluded with

an overview of analyses on the profitability of participating in and gaming these reward and

punishment mechanisms to maximize relative rewards, identifying a gap in knowledge on how

these mechanisms truly distribute the value behind coins amongst participants.

Chapter 3

Equitable Proof-of-Work Mining

Rewards

Nakamoto utilizes its lottery approach to not only pick a leader for consensus, but also to al-

locate the next set of reward coins without consideration for the amount of computational

resources the entire network of miners have used to operate the lottery. More specifically

miners with relatively small mining powers, and miners which join the network at a relatively

late stage where more miners compete for a fixed amount of coins, pay more than others to

create the same amount of coins. This is due to mining difficulty increasing as more min-

ers participate, while the number of reward coins being halved every 210, 000 blocks as per

Nakamoto’s Bitcoin implementation.

The original goal of these restrictions on rewards were intended to only compensate miners

which contribute to the difficulty of creating blocks, and to ensure that the supply of the

coins issued does not grow out of proportion [N+08]. However, no clear arguments were given

for why Nakamoto’s restricted approach to reward issuance was an optimal solution to these

challenges, leaving this important research question unanswered, and providing no grounded

basis for understanding the side effects of restricted coin issuance on Nakamoto miners.

In this chapter we propose a computationally-grounded approach to analyzing and issuing

Nakamoto mining rewards. Our main focus is to establish a set of building blocks which we

36

3.1. Computational Coinage Framework 37

can use to model and quantify the costs of attaining reward coins in terms of the number of

Proof-of-Work attempts made by miners. Using this model, we aim both to identify the bot-

tlenecks of Nakamoto reward issuance which unfairly disadvantage some miners to the ben-

efit of others, and to propose a set of design constraints under which all miners are treated

fairly. The main obstacle we aim to overcome in this chapter is to issue equitable rewards in

a way that provides a similar level of stability in coin supply growth as done in Nakamoto.

The remainder of this chapter is organized as follows. First, in Section 3.1 we introduce our

computationally-grounded framework for establishing a valuation metric for coins. Then, in

Section 3.2 we present the current sources of inequity in state-of-the-art PoW mining reward

schemes, and quantify their effects on mining in Bitcoin. We then introduce in Section 3.3 a

set of constraints for achieving equitable rewards, and argue for their efficacy and reasonable

coin supply growth dynamics. Lastly, we summarize this chapter’s contents in Section 3.4. In

Chapter 4, we present the details of our Reward-All protocol, which rewards miners accord-

ing to our requirements.

3.1 Computational Coinage Framework

In this section we present our computationally-grounded framework for establishing a valu-

ation of a PoW cryptocurrency’s coin supply based solely on the amount of hashing power

dedicated to mining it. The first goal of this framework is to establish the criteria under

which we measure coin production costs. The second goal is to introduce metrics for quan-

tifying the value of the new coins awarded in exchange for mining expenditures, without con-

sideration for auxiliary sources of compensation, such as transaction fees. To achieve our two

goals, we introduce metrics of our computationally-grounded framework according to the fol-

lowing criteria.

Expenditures. The primary expenditure we consider in this computationally-grounded

framework is the hash-function calculation used to find valid PoWs, which abstracts away

the finer details of real-world resource requirements of this search, and accounts only for the

38 Chapter 3. Equitable Proof-of-Work Mining Rewards

number of hash calculations that the usage of resources results in, and the time required to

finish the calculations. This purely hash-based approach was taken to establish a computationally-

grounded framework for analysis, in the sense that no external variables which affect the real-

world resources required to compute a hash are considered. To elaborate, we do not account

for market variables such as electricity prices, hardware cost, maintenance fees, or any similar

expenses.

Compensation. We consider only newly minted coins as the primary form of compensa-

tion in exchange for hashing expenditures. Similar to the abstraction of real-world costs us-

ing hash-function calculations, coins also abstract away any valuation metrics external to a

blockchain, such as the coin’s exchange rate or purchasing power. Expressing the amount

of compensation which a reward scheme issues is our second requirement for establishing a

computationally-grounded coin value.

Value. By combining the expenditure and compensation metrics, we establish a purely

hash-based valuation unit for coins suitable for our computationally-grounded framework.

This approach aims to base the measurement of the value of coins purely on the number of

hashing computations dedicated to creating them, enabling the quantification of the hash-

based value that can be earned through mining some number of coins.

Notably, our framework is applicable regardless of how miners are rewarded, what hashing

function is used, or how block creation conditions are set.

3.1.1 Miner Metrics

In this section, beginning from a single miner’s local perspective, we first define what a local

miner represents in our computationally-grounded framework, and then present the relevant

metrics for a miner.

Definition 3.1 (Miner mµ) A miner, denoted by mµ, where µ is some unique identifier, is

characterized at time t by (i) its absolute mining power, denoted by power(mµ, t), in hashes

3.1. Computational Coinage Framework 39

per second, and (ii) its reward issuance difficulty, denoted by difficulty(mµ, t), in expected

number of hashes.

We consider a single miner in our computationally-grounded framework at time t as a com-

ponent with a certain hashing throughput, and an expected number of hashes to perform

before being rewarded, as per Definition 3.1.

For example, let m4050 be a miner with power(m4050, t) = 240 hashes per second that meets

the reward issuance difficulty once every difficulty(m4050, t) = 250 hash computations on aver-

age for all t. This simple definition of a miner mµ is the basis on which we build the remain-

der of the metrics in this section.

Given a miner mµ, the expected length of the period of time between each reward issuance to

the miner, denoted by period(mµ, t), can be derived using Equation 3.1.

period(mµ, t) =
difficulty(mµ, t)

power(mµ, t)
(3.1)

For example, m4050 is expected to be issued a reward every 250 ÷ 240 = 1024 seconds on aver-

age. Because the process is memoryless, this expected time does not change with t.

Definition 3.2 (Average Hash-Time-to-Issuance hti(mµ, t)) The average hash-time-to-

issuance metric, denoted by hti(mµ, t), represents the average amount of time before a miner’s

hash computation is rewarded.

In addition to the reward period, we establish in our framework a measurement of the time

between completing each hash calculation, and receiving a reward as compensation for it. For

every miner mµ the average hash-time-to-issuance hti(mµ, t) quantifies the average amount

of waiting time for mµ that is associated with every hash computation before the reward

issuance difficulty is met, as per Definition 3.2. This is slightly different from the average

amount of time mµ has to wait before meeting the issuance difficulty, because the average

waiting time in hti(mµ, t) is accounted for per hash rather than per difficulty(mµ, t) hashes.

40 Chapter 3. Equitable Proof-of-Work Mining Rewards

Assuming that the miner’s hashing throughput is uniformly sustained, which will always be

assumed to be the case in the remainder of this thesis, hti(mµ, t) is calculated using Equa-

tion 3.2.

hti(mµ, t) =
difficulty(mµ, t)− 1

2× power(mµ, t)
(3.2)

As an example, consider the miner m13, where power(m13, t) = 1 hash per second, and

difficulty(m13, t) = 3 hashes on average. Using Equation 3.2, hti(m13, t) = 1. This can be

derived by examining the waiting time expected to be incurred after performing each hash

computation as follows:

1. After the first hash computation, m13 has to spend two more seconds computing two

more hashes on average before meeting the issuance difficulty, and so the waiting time

incurred after computing the first hash is 2 seconds.

2. After the second computation, m13 spends 1 more second computing one more hash on

average.

3. Lastly, m13 is expected to have met its issuance difficulty right after the third computa-

tion without any additional waiting time.

The total waiting times divided by the number of hashes is equal to 2+1+0
3

= 1 = hti(m13, t),

meaning that the average time the miner waited between computing each hash and receiv-

ing a reward is 1 second, which is different from the expected waiting time of 3 seconds for

each reward issuance. However, for much larger numbers, the metric can be approximated as

hti(mµ, t) ≈ period(mµ,t)

2
with negligible error.

As previously stated, the reasoning behind introducing hti(mµ, t) is to quantify the aver-

age delay between miners’ hash expenditures, and the reception of rewards. This metric will

prove useful later on when we describe the opportunity cost aspect associated with the costs

of creating coins.

3.1. Computational Coinage Framework 41

Definition 3.3 (Reward reward(mµ, t)) The reward, denoted by reward(mµ, t), is the ex-

pected number of coins received by a miner mµ that finds a PoW that meets its reward is-

suance difficulty at time t.

For a single miner mµ, we denote in our framework the reward received by mµ as reward(mµ, t)

to express a miner’s compensation in coins, as per Definition 3.3. For example, for all Bitcoin

miners, reward(mµ, t) = 625, 000, 000 coins1 (satoshis).

Definition 3.4 (Difficulty-to-Reward Ratio drr(mµ, t)) The Difficulty-to-Reward Ratio,

denoted by drr(mµ, t), is the average number of hashes computed per reward coin for a miner.

Furthermore, for a miner mµ, we establish the Difficulty-to-Reward Ratio as a valuation met-

ric for the average cost of a coin in hashes, as per Definition 3.4. Equation 3.3 defines the

formula for drr(mµ, t).

drr(mµ, t) =
difficulty(mµ, t)

reward(mµ, t)
(3.3)

As an example, consider miner m4050 from before, with reward(m4050, t) = 230 coins. Using

Equation 3.3, the hash-based cost per coin for m4050 is equal to drr(m4050, t) = 250 ÷ 230 =

1, 048, 576 hashes per coin on average.

3.1.2 Blockchain Metrics

In this section we introduce metrics for a chain of PoW-based blocks, rather than a single

miner as in the previous section. Similarly, we first present the definition of a blockchain, fol-

lowed by its associated metrics.

Definition 3.5 (Blockchain Bβ) A blockchain, denoted by Bβ, where β is some unique

identifier, is the product of a network of miners participating in a PoW protocol.
1This reward is scheduled to be halved to 312, 500, 000 after the current batch of 210, 000 blocks is mined.

42 Chapter 3. Equitable Proof-of-Work Mining Rewards

Our computationally-grounded framework’s concept of a blockchain is devoid of implementa-

tion details, and is only constructed to enable the expression of a select few metrics of inter-

est, as per Definition 3.5.

Definition 3.6 (Chain Hashcap hashcap(Bβ, t)) The hashcap of a chain of blocks, de-

noted by hashcap(Bβ, t), is an estimate of the expected total number of hash function calcula-

tions performed by miners to create the chain.

From a blockchain viewpoint, the aggregated number of hash function calculations performed

by miners to create a blockchain is referred to as the chain’s hashcap2, as per Definition 3.6.

As the hashcap value provides an indication of the miners’ expenditures towards creating a

blockchain, we use it as the computationally-grounded valuation metric of the hash-based

cost of production of a blockchain.

The hashcap metric value can be estimated for existing state-of-the-art PoW blockchains,

such as Bitcoin, by summing the difficulty parameter for each block in a chain. However,

while some hash functions can be implemented very efficiently in hardware as ASICs, some

are designed to operate efficiently only on general purpose hardware such as commercially

available CPUs. Consequently, the hashcaps of two blockchains which use two different hash-

ing functions are not directly comparable.

Definition 3.7 (Coinage coinage(Bβ, t)) The coinage of a chain of blocks, denoted by

coinage(Bβ, t), is the total number of coins rewarded to miners in the chain as of time t.

We refer to the total supply of coins issued as rewards in a blockchain Bβ in this framework

as the chain’s coinage, as per Definition 3.7. This term is also known as the circulating coin

supply, or coin supply for short, in cryptocurrency markets.

2The naming of the term hashcap is derived from the word Market Capitalization, or Marketcap for short,
which is used in cryptocurrency markets to represent the total theoretical value of an entire supply of coins
based on the coin’s market price in another currency.

3.1. Computational Coinage Framework 43

Definition 3.8 (Hashcap-to-Coinage Ratio hcr(Bβ, t)) The Hashcap-to-Coinage Ratio

for a blockchain, denoted by hcr(Bβ, t), is the average number of hashes computed per coin

issued in the chain as of time t.

The Hashcap-to-Coinage Ratio is a metric that is similar to the Difficulty-to-Reward Ratio,

but defined for a chain of blocks rather than for a miner, as per Definition 3.8. Using the

previously defined terms for hashcap and coinage, we formulate hcr(Bβ, t) in Equation 3.4.

hcr(Bβ, t) =
hashcap(Bβ, t)

coinage(Bβ, t)
(3.4)

This ratio is a key metric, as it enables the estimation of the average hash-based cost of pro-

duction of a cryptocurrency coins, as we will present in Section 3.1.3.

3.1.3 Coin Metrics

Insofar, in the previous two sections, we have presented basic metrics of interest related to

mining throughput, difficulty, and rewards. In this section, we will utilize these metrics to

construct valuation metrics which can be used to quantify the hash-based value gained, or

lost, from mining coins.

Definition 3.9 (Fungibility Dilution Factor fdf(mµ, Bβ, t)) The Fungibility Dilution

Factor for a miner in a blockchain, denoted by fdf(mµ, Bβ, t), is the amount by which the

hash-based cost of a miner’s reward will be amplified in the blockchain at time t.

We quantify how much gain, or loss, in hash-based value is made by a miner due to fungibil-

ity using the Fungibility Dilution Factor, presented in Definition 3.9. Using our previously

defined metrics, dividing the miner’s difficulty-to-reward ratio by the blockchain’s hashcap-to-

coinage ratio results in the fungibility dilution factor, as per Equation 3.5.

fdf(mµ, Bβ, t) =
drr(mµ, t)

hcr(Bβ, t)
(3.5)

44 Chapter 3. Equitable Proof-of-Work Mining Rewards

Coin fungibility dictates that all coins in a chain’s coinage are perfectly interchangeable with

one another. Because of this, once a new set of coins are created by a miner mµ in a blockchain

Bβ, we treat them in our computationally-grounded framework as having a hash-based value

equal to the chain’s hashcap-to-coinage ratio, even if the difficulty-to-reward ratio that was

exhibited by the miner in creating these coins was different (i.e. hcr(Bβ, t) ̸= drr(mµ, t)).

For a given miner and blockchain, when fdf(mµ, Bβ, t) > 1, then the miner will receive a set

of coins which represent a larger number of hashes than the miner performed to receive them

(i.e. hcr(Bβ, t) > drr(mµ, t)). On the other hand, when fdf(mµ, Bβ, t) < 1, then the miner

will receive a set of coins which represent a smaller number of hashes than performed (i.e.

hcr(Bβ, t) < drr(mµ, t)). When fdf(mµ, Bβ, t) = 1, mµ is issued in Bβ a set of coins worth as

many hash computations as were performed to receive them.

Consequently, we consider miners to have made a hash-based gain in our computationally-

grounded framework if hcr(Bβ, t) > drr(mµ, t). In other words, if a miner is rewarded with

a set of coins at a hash-based cost that is less than the chain’s hashcap-to-coinage ratio, it

was received a set of coins at a discount. This, of course, does not necessarily mean that the

miner can make a profit selling its coins in a real-world market, where prices may not nec-

essarily be dictated by hash-based valuation metrics. Similarly, a loss is said to have been

incurred in our computationally-grounded framework, if hcr(Bβ, t) < drr(mµ, t).

Definition 3.10 (Hash-Restitution Time hrt(mµ, Bβ, t)) The Hash-Restitution Time

of a miner in a blockchain, denoted by hrt(mµ, Bβ, t), is the amount of time (or number of

blocks) between mµ first receiving a reward(mµ, t), and the first time t′ (or block) during which

hcr(Bβ, t
′) ≥ drr(mµ, t) holds true (i.e. hrt(mµ, Bβ, t) = t′ − t).

For the case when fdf(mµ, Bβ, t) < 1, we introduce the Hash-Restitution Time in Defini-

tion 3.10, which is a means to analyse the amount of time a miner had to wait for the hashcap-

to-coinage ratio to first meet the difficulty-to-reward ratio at which it created coins, i.e. the

amount of time mµ has to wait to be paid back in hash-based value.

3.2. Inequity in Nakamoto 45

Unlike previous metrics, hrt(mµ, Bβ, t) may not be immediately measurable for a miner that

receives a reward while fdf(mµ, Bβ, t) < 1. This is because it may not be easily determinable

when exactly in the future hcr(Bβ, t) is expected to rise, due to instability in mining power or

reward-scheme intrinsic reasons. In fact, for some PoW schemes, miners may never even be

fully paid back if hcr(Bβ, t) never follows a sufficiently long upwards trend.

However, once this value is known, it serves as an indicator in our framework for mµ to quan-

tify the opportunity cost it had to pay before its rewarded coins attained a hash-based value

that is equal to the hash-based cost mµ paid for them. In some cases, mµ may never wait

long enough, and transfer its coins.

Again, this metric is agnostic about both the specifics of the PoW blockchain it is used on,

and the coin-spending behavior of miners. Its sole purpose in our computationally-grounded

framework is to provide a measurement point that can be used to gain insight about how a

reward-scheme delays fully compensating miners in hash-based value.

3.2 Inequity in Nakamoto

In this section, we apply our computationally-grounded framework introduced in Section 3.1

to Bitcoin, the most prominent realization of Nakamoto, practically analysing and quantify-

ing the state of hash-based coin valuation in its network. Our analysis focuses on identifying

and highlighting sources of inequity in Nakamoto, and demonstrating how these sources have

affected Bitcoin’s miners and coinage in practice.

Bitcoin Adaptation. To model Bitcoin using our computationally-grounded framework,

we integrate the Bitcoin-specific policies on difficulty and reward using the three following

rules:

1. Only a single blockchain Bβ is assumed to be mined on without forks.

46 Chapter 3. Equitable Proof-of-Work Mining Rewards

2. For any miner mµ, difficulty(mµ, t) is equal to the current block mining difficulty for

the Bitcoin blockchain Bβ.

3. For any miner mµ, reward(mµ, t) is equal to the current Bitcoin block reward per its

reward halving schedule.

The first rule applied to our framework is a simplifying assumption to focus the analysis on

the best case scenario where consensus is working as intended. While this prevents the exam-

ination of the state of affairs during forks, it will highlight how even ideal conditions fail to

establish equity amongst miners.

The second rule enables our framework’s definition of difficulty to follow that of Nakamoto,

whereby mining a block is the only directly rewardable action in the protocol. We define

difficulty(mµ, t) to abstract away the out of scope details of Bitcoin’s difficulty adjustment

algorithm, since they hold no repercussions for our analysis.

Similarly, the third rule applies Bitcoin’s reward schedule, which begins with 5, 000, 000, 000

coins (satoshis) and halves the reward every 210, 000 blocks.

3.2.1 Inequitable Hash-Time-to-Issuance

The fact that a miner has to wait for the chance to be a block’s creator in Nakamoto creates

different hash-time-to-issuance costs for miners of relatively different sizes. This difference is

presented in Figure 3.1, which shows the linear relationship between a miner’s mµ relative

size and its expected hti(mµ, t) value in Nakamoto. While other literature [SRHS19] analyzes

this difference using the coefficient of variation of rewards received per block for a miner, our

hti(mµ, t) metric gives a more concrete sense of the differences in time-related opportunity

costs for miners of different relative sizes. These results extend directly to Bitcoin.

The cost implications of the aforementioned relationship in Nakamoto can be further elabo-

rated by comparing two data points from the above plot. For example, consider two miners,

one with 1% of the total network hashing power, and one with 0.01%. The first miner would

3.2. Inequity in Nakamoto 47

10−6 10−5 10−4 10−3 10−2 10−1 100

Fraction of Total Mining Power

10−1

100

101

102

103

104

105

106

Ha
sh

-T
im

e-
to

-Is
su

an
ce

(B
lo

ck
s) NC

Figure 3.1: Hash-Time-to-Issuance versus relative mining power in Bitcoin.

have to experience an average delay of 200 blocks before receiving compensation for each

hash it computes, while the second miner’s delay is 20, 000 blocks per hash. Under Bitcoin’s

10-minute average block interval, the relatively larger miner can spend its mining rewards

approximately every 1.39 days on average, while the smaller miner can only do so every 4.64

months approximately. This severely disproportional difference in reward delay between min-

ers is not directly apparent from analyses which utilize the coefficient of variation.

3.2.2 An Increasing Hashcap-to-Coinage Ratio

Because Bitcoin’s reward scheme does not adjust the number of coins issued in response to

the difficulty of mining, and mining difficulty has increased significantly since Bitcoin’s de-

ployment, the Hashcap-to-Coinage Ratio has increased exponentially several times. Even

with a stable mining difficulty, the reward-halving schedule causes the Hashcap-to-Coinage

Ratio to increase. In Figure 3.2, both the Hashcap-to-Coinage Ratio (Fig. 3.2a), and the

distribution of the hashcap (Fig. 3.2b) over coins are presented. The data presented in Fig-

ure 3.2 was estimated using Bitcoin’s block difficulty parameter as the hash-based cost of

production of reward coins.

48 Chapter 3. Equitable Proof-of-Work Mining Rewards

0 100000 200000 300000 400000 500000 600000 700000

Block number

100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013

Ha
sh

-to
-C

oi
n

Ra
tio

(a) Hashcap-to-Coin Ratio versus block number
in Bitcoin.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Hashcap

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
Co

in
sR

ew
ar

de
d

(b) Cumulative distribution of Hashcap across
coin supply in Bitcoin.

Figure 3.2: Hashcap-to-Coinage Ratio plots.

From a hash-based cost perspective, these increases have caused the running average hash-

based cost of production for a single coin to increase dramatically over time in Bitcoin. The

insight Figure 3.2a offers is that almost all of Bitcoin’s hash-based value was computed after

400, 000 blocks were created.

Because of Bitcoin’s reward scheme, which is adapted to this computationally-grounded frame-

work using rules #2 and #3, the difficulty-to-reward ratio of all miners has only worsened

over time as mining power has increased. To further understand the advantage earlier miners

had, one can see how much hashing power was exchanged for different portions of the coin

supply in Figure 3.2b. Remarkably, the coin supply of Bitcoin has an incredibly skewed dis-

tribution, where more than 80% of the total coin supply was rewarded in exchange for less

than 1% of the total number of hashes calculated to maintain the system.

3.2.3 Subsidy through the Fungibility Dilution Factor

The inequity between miners which participate at different times is not just restricted to coin

creation costs, but also extends to the hash-based value of received rewards. Because coins

are perfectly interchangeable in the ledger, they are are valued equally, even if some have

higher hash-based costs than others. To quantify the extent to which this affects the hash-

based valuation of mining rewards in Bitcoin, we present the Fungibility Dilution Factor of

coins at the time of issuance in Figure 3.3a, and across the coin supply in Figure 3.3b.

3.2. Inequity in Nakamoto 49

0 100000 200000 300000 400000 500000 600000 700000

Block number

0

20

40

60

80

100
Fu

ng
ib

ili
ty

D
ilu

tio
n

Fa
ct

or

(a) Fungibility Dilution Factor versus block num-
ber in Bitcoin.

10−13 10−11 10−9 10−7 10−5 10−3 10−1 101

Fungibility Dilution Factor

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
Co

in
ag

e
D

ilu
te

d

(b) Cumulative Fungibility Dilution Factor Dis-
tribution over Coinage.

Figure 3.3: Fungibility-Dilution Factor plots.

If the FDF lies around a value of 1 ± ϵ, where ϵ is some negligible value, then the hash-based

value of the mining rewards can be considered to correspond to the number of hash compu-

tations performed to attain them. Instead, in Figure 3.3a, it can be seen that Bitcoin’s FDF,

after running at an almost constant value of 1 for a few thousand blocks, oscillates dramati-

cally over time, leading the issued mining rewards to have a hash-based value3 that is tens of

times less than their hash-based cost.

However, due to the fluctuations of the FDF, the fungibility dilution factor of coins changes

after their issuance. Namely, Figure 3.3b presents the cumulative distribution of the FDF

over the coin supply so far. Remarkably, while the dilution factor has remained below 100 so

far for Bitcoin, it has caused over 70% of the coinage to have its hashcap amplified by over

100-fold in value, with nearly 50% even growing by at least 1-million fold.

Figure 3.3a was constructed by dividing the Difficulty-to-Reward ratio for each block by the

Hashcap-to-Coinage ratio as of that block. Figure 3.3b was constructed using the Difficulty-

to-Reward ratio for each block and the Hashcap-to-Coinage as of the latest block in the dataset.

50 Chapter 3. Equitable Proof-of-Work Mining Rewards

0 100000 200000 300000 400000 500000 600000 700000

Block Number

100

101

102

103

104

105

106

107

Re
st

itu
tio

n
Ti

m
e

(B
lo

ck
s)

Figure 3.4: Hashcap-Restitution time, in blocks, for each block reward in Bitcoin.

3.2.4 An Increasing Hash-Restitution Time

Given that Bitcoin’s fungibility dilution factor has remained well above 1 for most of its life-

time, the Hash-Restitution Time can be used to quantify how long an issued mining reward

will take to reach a hash-based value that is at least equal to its hash-based cost.

In Figure 3.4 we estimate the Hash-Restitution Time in blocks for the rewards of the first

500, 000 Bitcoin blocks. As for the remaining blocks, since they have not yet reached an eq-

uitable hash-based value, their values are projected based on the assumption that the mining

power remains the same as that of the last block used in the analysis.

Relatively shortly after the genesis block, Figure 3.4 shows that miners had to wait for a

number on the order of 10, 000 blocks, or approximately 2 months, for the hash-based value

of their rewards to reach their hash based costs. Starting from block 300, 000, the Hash-

Restitution Time goes up to the order of 100, 000 blocks, or approximately 2 years.

Whether this is done by design to achieve a kind of lock-in effect, or simply an unintended

consequence, the Hash-Restitution Time in Bitcoin seems to be uncontrolled, and trending

3at the time of reward issuance

3.3. Equitable Reward Constraints 51

towards impracticality for miners which participate relatively late in the protocol’s lifetime.

Beyond Bitcoin. While the analysis presented in this section only pertains to Bitcoin, the

same methods and reasoning are applicable to other designs with minor adjustments. For ex-

ample, to apply this approach to Ethereum, one would have to account for uncle blocks, fac-

toring in their reward and mining difficulty into the chain’s coinage and hashcap respectively.

3.3 Equitable Reward Constraints

Having defined our computationally-grounded framework, which we use to express equity,

and demonstrated the current state of inequity in Bitcoin, we establish in this section a set

of constraints for achieving equitable rewards in Proof-of-Work Mining. The main focus of

the constraints in this section is to prevent miners with relatively small hashing powers, and

miners which participate at relatively late, or early, stages of a blockchain’s lifetime, from

being forced to create coins at a relatively high cost of production.

Basic Approach. The main requirements that we use to establish the design constraints of

this section are proportionality, and timeliness, of rewards, such that:

• The reward scheme issues coin rewards that have a hash-based value that is propor-

tional to their miner’s hash-based cost of attaining them.

• The reward scheme issues coin rewards to all miners in an amount of time bounded by

the network’s block creation interval.

The reasoning behind these requirements is to prevent any underpayment or devaluation in

terms of hash-based value, allowing miners to receive coins with a hash-based value equal to

their contribution to the system, without unjustifiable delays in compensation.

In Sections 3.3.1, and 3.3.2, we motivate and present the design constraints in terms of the

computationally-grounded framework from Section 3.1, such that each constraint is expressed

as a set of restrictions that the protocol must place on the relevant framework metrics.

52 Chapter 3. Equitable Proof-of-Work Mining Rewards

However, to achieve the notions of equity that we aim for, we propose a unique coin issuance

approach. Namely, it can no longer be the case that a constant number of coins are issued

per block in a winner-takes-all fashion, while having block mining difficulty be a variable. In-

stead, in our approach, we propose that mining rewards become uncapped. In Section 3.3.3,

we examine the effects of adopting our unrestricted reward scheme on coin-supply growth,

and outline the conditions for relative coin supply stability.

3.3.1 Undiluted Reward Constraints

The first constraint, expressed in Equation 3.6, aims to maintain a fixed correspondence be-

tween the number of hashes performed by miners, and the number of coins they receive in

return.

hcr(Bβ, t) ≈ drr(mµ, t) (3.6)

Such a constraint means that, unlike Bitcoin, for any miner to receive a coin, it must perform

approximately hcr(Bβ, t) hash calculations. Essentially, this correspondence aims to stabilize

the Difficulty-to-Reward Ratio of all miners to be the Hashcap-to-Coinage Ratio of the entire

blockchain, such miner rewards are not diluted.

Stabilizing this correspondence is an endeavor that is in stark contrast to existing blockchain

reward schemes, which employ mechanisms that directly destabilize this relationship. For

example, Bitcoin’s so-called halving schedule fundamentally causes spikes in Bitcoin’s HCR.

These spikes are further exacerbated by changes in Bitcoin’s block mining difficulty, which

does not affect how many coins are rewarded per block. Whether Bitcoin’s HCR instability

is by design, or beneficial, our approach is to keep the Hashcap-to-Coinage ratio relatively

stable, and avoid directly granting any advantages to miners which participate during periods

of lower block mining difficulty.

Remarkably, when the HCR is unstable, the fungibility of coins distorts the hash-based cost

of production for the entire coin supply. In Bitcoin, this leads to a situation where a majority

of its coin supply is produced at a marginal cost compared to the remainder, yet the entire

3.3. Equitable Reward Constraints 53

coinage is treated as having equal face-value. This is inherently unfair to miners which par-

ticipate while the HCR is increasing, i.e. miners with a DRR higher than the HCR, as their

computational resources are being spent towards increasing the HCR, rather than towards

receiving more coins. Under our approach on the other hand, the goal is to not dilute miner

rewards, and stabilize the Fungibility Dilution Factor for all miners of the chain as expressed

in Equation 3.7.

fdf(mµ, Bβ, t) ≈ 1 (3.7)

Of course, these constraints do not cover cases where miners willingly forfeit rewards, or re-

ceive a penalty for misbehavior in consensus. In such circumstances, the hashes computed by

such miners will go unrewarded, theoretically increasing the HCR of the blockchain.

3.3.2 Prompt Restitution Constraints

Our second reward constraint is the prompt, and direct, distribution of coins to miners in

exchange for their hash calculations. This is in contrast to distributing rewards indirectly

on the long run using lotteries, or any other mechanisms similar to the round based winner-

takes-all Bitcoin dynamic.

More concretely, each miner is rewarded on average at least once per block for each of its

search attempts for a PoW, instead of having to wait for some expected number of blocks to

be created before being credited, following the constraint described by Equation 3.8.

hti(mµ, t) ≈ blocktime(Bβ, t) (3.8)

For example, a Bitcoin miner with one third of the total network mining power would have

to wait two blocks on average before receiving its block reward. On the other hand, an equi-

tably treated miner with the same hashing power would expect to receive a third of the total

coins rewarded to the network every block.

This constraint, in conjunction with that of Section 3.3.1, lead towards establishing a short

54 Chapter 3. Equitable Proof-of-Work Mining Rewards

0 50 100 150 200 250 300 350

Time Period

0

10000

20000

30000

40000

50000

60000

Co
in

Su
pp

ly

Constant Mining Power
Linearly Increasing Mining Power
Exponentially Increasing Mining Power
Coin Supply
Relative Supply Growth

0

2

4

6

8

10

12

Re
la

tiv
e

Su
pp

ly
G

ro
wt

h
%

Figure 3.5: Plot of Time versus Coin Supply and Relative Supply Growth (in Percentage)
under three different mining power growth scenarios in Reward-All. Points on dashed lines
represent Coin Supply and fall on the leftmost y-axis. Points on dotted lines represent Rela-
tive Supply Growth and fall on the rightmost y-axis. Under constant mining power over all
time periods (•) the relative supply growth per time period of coins goes to zero over time.
Similarly, under linear growth of mining power (+), where 1x more power is added per time
period, the relative supply growth per time period also goes to zero over time. However, un-
der exponential mining power growth (×), where 2.5% more power is added per time period,
the relative supply growth converges to the mining power growth over time.

and stable Hash-Restitution Time for all miners, as presented in Equation 3.9.

hrt(mµ, Bβ, t) ≈ 1 (3.9)

In stark contrast, as we demonstrated in Section 3.2, Bitcoin miners have no guarantees on

how many blocks they would have to wait before the hash-based value of their reward coins

makes up for the hashing power they expended to create them.

3.3.3 Equitable Coin Supply Growth

Achieving equitable rewards in this fashion means that miners accumulate rewards that are

proportional to their mining power, leaving the number of new coins that can be created at

any given moment virtually uncapped. Practically, however, the total amount of computa-

tional power invested by miners in the network restricts the growth of the supply of coins,

3.4. Summary 55

preventing the relative growth rate of the coin supply from spiraling out of control. More

precisely, over time, the relative growth rate of the coin supply tends towards the relative

growth rate of mining power over time. Consequently, as long as the amount of computa-

tional power invested in mining remains stable, the relative growth rate of coin supply slowly

converges to zero. Under such constant mining power, the coin supply grows only by a con-

stant number of coins per block similar to Bitcoin’s, converging towards a relative growth

rate of 0. Linearly growing mining power leads to the same convergence, but at a slower rate.

In Figure 3.5 we illustrate coin supply growth under different mining power growth rates. To

plot this figure, we simulated a simple proportional reward issuance scenario under three dif-

ferent mining difficulty settings. In the first setting, the amount of mining power stays con-

stant, while in the second, the mining power grows by one unit every time period. In the

third setting, the mining power is multiplied by 1.025 each time period, denoting a 2.5% in-

crease per period. As we start from a coin supply of zero, the initial relative growth in all

scenarios is substantial. However, as time passes, the relative rates of increase in coin supply

and mining power converge.

3.4 Summary

In this chapter we introduced a computationally-grounded framework for quantifying and

tuning the relationship between miner expenditures and compensation to assess and estab-

lish fairness. In this framework, we used hashing power as an objective cost basis for coin

creation, and used newly minted coins as an objective measure of compensation, while inten-

tionally avoiding external variables, such as hardware costs or currency exchange rates. We

used our framework to demonstrate mining reward inequity in Nakamoto, and to introduce

constraints for achieving equitable rewards.

In Section 3.1 we used hashing power as an objective cost basis for coin production, and used

newly minted coins as an objective measure of compensation. We then introduce objective

coin valuation metrics from both a local miner’s and a global blockchain’s perspectives. In

56 Chapter 3. Equitable Proof-of-Work Mining Rewards

all metrics we intentionally avoided external variables, such as hardware costs or currency

exchange rates.

In Section 3.2 we demonstrated the inequity in state-of-the-art PoW mining reward schemes

using Bitcoin as a primary example. We quantified the effects of winner-takes-all lottery dy-

namics on Bitcoin, highlighting the significant discrepancy in miner rewards for relatively

small and late miners. We showed that small miners and miners who participate during peri-

ods of relatively more expensive coin creation costs face several disadvantages.

Lastly, in Section 3.3 we presented our constraints for achieving equitable rewards. We ar-

gued that the stability of the hashcap-to-coinage ratio is akin to equity of rewards issued to

miners who participate at different times. Similarly, we argued that the stability of the hash-

time-to-issuance metric, which requires a more continuous reward issuance schedule for min-

ers of all sizes, enforces equity in compensation delays. Furthermore, we showed that when

adhering to such constraints, coin supply growth dynamics exhibit notably different behav-

iors from constant rewards, such that relative coin supply growth becomes proportional over

time to relative mining power growth.

In the next chapter we present our Reward-All protocol, which overcomes the reward in-

equities of Nakamoto.

Chapter 4

System Design

The main challenge arising from Chapter 3 is to satisfy our equitable reward constraints

while providing the same security and performance guarantees of Nakamoto. To accomplish

this, we designed Reward-All Nakamoto Consensus (Reward-All) to provide an incentive

model with equitable rewards while retaining Nakamoto’s Proof-of-Work block creation. We

leverage the analyses performed by prior work on security of block production in Nakamoto,

and focus our efforts on specifying and analyzing reward issuance in Reward-All. However,

rewarding an unrestricted number of miners in a permissionless setting is not straightforward.

We tackle this issue by allowing each miner to independently maintain an authenticated

record of its own mining attempts, and only present a proof of the contents of that record

when spending rewards as a blockchain transaction. However, such a record cannot be arbi-

trarily created, and must be a trustworthy account of the computational resources utilized by

a miner towards extending the canonical chain. Furthermore, this record must be provided in

a compact manner when issuing rewards in order for the system to remain efficient.

In this chapter, we detail our Reward-All design. Initially, we overview the high-level compo-

sition Reward-All in Section 4.1. Subsequently, we detail how mining is performed in Reward-

All, how mining work in Reward-All is proven, and how Reward-All awards coins to miners,

in Sections 4.2, 4.3, and 4.4 respectively. We then analyze the soundness and completeness of

our approach in Section 4.5. Lastly, we summarize this chapter in Section 4.6.

57

58 Chapter 4. System Design

4.1 Architectural Overview

We implement a variant of the Nakamoto mining process in Reward-All, while introducing

two new sequential steps that must be performed after mining for a miner to spend its coin

rewards in the ledger. The first post-mining step is called Smelting1, which is the process

by which the miner constructs a proof that it had performed some amount of mining work.

The second post-mining step for a reward to be confirmed by the network is called Minting,

whereby the miner broadcasts the smelted proof as a transaction in the network. The consen-

sus process essentially follows the same procedure as in Bitcoin’s Nakamoto, and is explained

alongside our mining process. However, we concentrate on shifting the energy utilization of

Proof-of-Work towards coinage, such that the majority of energy usage contributes towards

currency minting, while a relatively smaller amount goes exclusively towards establishing

consensus on the ledger contents. This means that more coins are created as more compu-

tational resources are spent by miners.

Consensus

Mining Smelting

Minting

Search
Space

Blocks
Slabs

Proofs

Block
Production

Reward
Issuance

Figure 4.1: Component diagram of Reward-All Nakamoto Consensus.

We introduce Reward-All in a top-down approach, whereby the data and processes that com-

prise Reward-All, illustrated in Figure 4.1, are gradually broken down and more finely ex-

plained. We begin by presenting overviews of Reward-All’s two main modules, and of the

analysis methods applied to understand their benefits and limitations. We start with Reward-

All’s block production in Section 4.1.1, briefly touching upon Reward-All’s specific mining

search space and block structure. Subsequently, we transition to the crux of the Reward-All’s
1The name smelting was chosen as a metallurgic metaphor, as it follows mining.

4.1. Architectural Overview 59

reward mechanism in Section 4.1.2, introducing slabs, and how they are used to drive the

minting process.

4.1.1 Block Production

Mining for a block in Reward-All is almost identical to mining in Nakamoto, where miners

explore a search space of nonces. The miner’s search objective is to solve a cryptographic

Proof-of-Work hashing problem in order for a proposed block to qualify as the next valid

block. However, while the end result of Reward-All’s consensus process is the same as that

of Nakamoto, many additions exist in Reward-All’s supporting components that enable an

equitable reward issuance process. Primarily, block production in Reward-All additionally

enables tracking each miner’s hash calculation expenditures. We provide a high-level compar-

ison between block production in Nakamoto and Reward-All in Table 4.1.

Nakamoto Reward-All
Consensus Nakamoto longest-chain protocol
Blocks Single chain with periodic difficulty adjustment and restricted block size
Mining Output Used to create blocks Block creation and local mining attempt tracking
Search Space Nonce Nonce + Sequence Block Number + Reference Block Number

Table 4.1: Block production comparison between Nakamoto and Reward-All. Consensus and
block regulation are identical, while the mining outputs and search spaces differ, whereby
additional metadata is used to locally track mining attempts.

Consensus. Essentially, Reward-All implements the longest-chain protocol characterized

by Bitcoin’s backbone protocol to reach consensus amongst miners, where miners are ex-

pected to consider the longest, or heaviest in the sense of most difficult to mine, chain of

blocks as the canonical chain.

Furthermore, as in Bitcoin’s model, miners are assumed to be interconnected using a peer-to-

peer communication protocol where messages, including blocks and transactions, are propa-

gated in a gossip-like fashion. Additionally, no assumptions are made on the smart-contract

60 Chapter 4. System Design

bearing capabilities of blocks, or what functionality transactions support, for consensus to

successfully take place.

Consequently, all existing literature which studies Nakamoto’s consensus mechanism in isola-

tion from its reward mechanism is applicable to Reward-All, such as [GKL15, ZP19, DKT+20].

This similarity is leveraged in the analysis of Reward-All carried out in this thesis.

Blocks. Reward-All blocks which can be published to the network to drive the consensus

process are akin to Nakamoto blocks. Similarly, for a block to qualify for publication, the

result of hashing its plaintext, i.e. its hash, must fall below a target integer value, referred to

as the block target.

Just as in Nakamoto, the block target in Reward-All must be adjusted to keep the block pro-

duction rate stable. While we only utilize Nakamoto’s periodic block difficulty adjustment

procedure in Reward-All, advanced difficulty adjustment methods proposed for Nakamoto,

such as those in [IWSK21], are similarly applicable to Reward-All.

Furthermore, blocks are as limited in size in Reward-All as they are in Nakamoto. As a con-

sequence, the entirety of their contents, including headers and transactions, must have a

byte-size that is small enough to be propagated between the entire miner network in an amount

of time that is relatively small compared to the average block production time.

Mining Output. Mining in Reward-All not only results in blocks, but also outputs Slabs,

which are the main tool for keeping track of miner expenditures in Reward-All. Aside from

this secondary output, Nakamoto and Reward-All mining are almost equivalent.

Primarily, to create slabs, a second target value, called the Minting Target, is used in Reward-

All’s mining process in addition to the block target. When the hash of a block falls below the

minting target, the block header data is stored by its miner as a slab. Subsequently, slabs

are then used during the reward issuance process to redeem a number of coins that is propor-

tional to how much work the miner has performed, maintaining a stable Hashcap-to-Coinage

ratio.

4.1. Architectural Overview 61

The minting target is a locally set value by each miner. In essence, the main practical restric-

tion is that Reward-All miners are expected to set minting targets which they can find a slab

for at least once on average every time a block is found by the network, or face penalties on

their reward coins.

Search Space. While mining for a nonce which results in a block, miners in Reward-All

have to keep track of additional metadata that enables the slabs which result from these at-

tempts to be uniquely identified and ordered. This ordering supports the process of redeem-

ing a collection of unique slabs for coins.

Consequently, in order to avoid potential losses in mining rewards, a Reward-All miner has to

ensure that its mining resources do not search for a Proof-of-Work nonce using the same aux-

iliary metadata for which it previously found a slab. While managing this metadata during

mining adds a layer of complexity compared to the Nakamoto search process, it supports the

enforcement of the equitable reward constraints from Section 3.3.

Example. We strengthen the explanation of block production in Reward-All via the follow-

ing example:

Alice measures her computer’s hashing throughput at 234 hashes per second. Us-

ing the blockchain’s block interval of 64 seconds, she sets her minting difficulty at

32 × 234 = 239 hashes, so that she expects to create 2 slabs per block on average.

Alice starts mining above the latest block. Alice mines for 17 days, at the end of

which the network had generated 22950 blocks, and Alice had accumulated 45900

slabs. This example is continued in Section 4.1.2, where Alice inspects the set of

metadata of her slabs.

62 Chapter 4. System Design

4.1.2 Reward Issuance

Reward-All is an alternative reward mechanism for Proof-of-Work consensus miners designed

to stabilize the hashcap-to-coinage ratio (HCR) of the blockchain, and adhere to the equi-

table reward constraints. The culmination of Reward-All’s reward issuance module is the

confirmation of an individual miner’s rewarded coins in the blockchain, where they become

spendable, as overviewed in Table 4.2.

Slabs Secondary output of mining process
Smelting Performed to aggregate slabs into compact proofs
Proofs Used to prove the production and storage of slabs by a miner
Minting Invoked using proofs to issue rewards

Table 4.2: Reward-All miner reward issuance overview. Slabs are used in the smelting process
to create proofs that can be included in blockchain transactions to mint new coins.

Slabs. Slabs are the primary method in Reward-All by which miners locally track their

own hash calculation expenditures during block production, as miners can only claim new

coins in the ledger by proving the number of unique slabs they have found while mining.

Notably, slabs have to be kept in a miner’s storage at least until they are redeemed for coins.

However, using a significantly low minting target can create a storage burden, while using

significantly high minting target can lead to penalties during minting, as will be explained in

Section 4.1.2.

Furthermore, as the minting target determines how easily these slabs can be found, it ad-

ditionally determines how many coins each slab should be redeemed for. To maintain the

stability of the HCR at 1 for example, each slab with a minting difficulty of 232 hashes on

average should equate to 232 coins.

Smelting. Smelting in Reward-All is the process by which a miner aggregates its slabs

into a single proof of the total amount of hash calculations it is expected to have performed.

This is the first post-mining step a Reward-All miner performs once it has acquired slabs.

4.1. Architectural Overview 63

With this proof, a prover is able to convince a verifier, with overwhelming probability, that it

has found some number of unique slabs which all have the same minting target.

When mining for physical minerals in the real world, metal ore is extracted, which is com-

prised of a metal, such as gold or silver, and many other unwanted elements. Using heat, ore

is smelted into a pure base metal form, free from unwanted elements. Similarly, smelting in

Reward-All involves distilling one of the results of mining in Reward-All, namely slabs, into

a basic element that will be later on used in Minting coins. Following the same spirit as met-

allurgic smelting Reward-All’s smelting process does not result in absolute purity. Instead,

its outcome is a cryptographic proof which can only be used to ascertain, with overwhelming

probability, that a fraction of a miner’s work log was calculated. Luckily, this fraction can

reach values as high as 99%, but at the expense of more computations and larger proof size.

In each invocation of this proving system, the prover is called by each miner looking to claim

a number of new coins as a reward, and the verifier is executed by each node replicating the

distributed ledger when validating a block that contains such proofs. To attest to the secu-

rity of this advantageous approach, its soundness and completeness are quantified using the

well-studied characteristics of operating curves with zero rejection tolerance in Section 4.5.

Proofs. Slab aggregation proofs in Reward-All are the main output of the smelting pro-

cess. Reward-All’s slab proving system is based on minimal cryptographic assumptions and

built with simplicity, resulting in every proof only being comprised of a constant number of

random samples of the slabs it aggregates.

In the implementation of Reward-All presented in this thesis, the sizes of proofs depend on

the number of unique slabs claimed to have successfully met the minting target, and on the

number of samples of such attempts revealed by the prover. These sizes grow logarithmically

in proportion to the number of slabs, and linearly in proportion to number of samples.

However, because of the sampling-based approach employed, proof sizes constitute a transac-

tion cost overhead in Reward-All. These costs, along with their effects on miners, are quanti-

fied in Section 6.2.1, and are the primary motivation for creating an efficient proving system.

64 Chapter 4. System Design

Minting. Minting is the process whereby miners redeem their slab aggregation proofs for

spendable coins in the blockchain. This process is carried out through publishing slab aggre-

gation proofs in blockchain transactions.

Notably, these proofs can be practically incrementally provided and rewarded in Reward-

All across multiple transactions. Depending on the number of samples provided so far which

correctly meet the minting target, an appropriate fraction of the coins claimed for reward be-

comes incrementally spendable by the prover.

However, unlike in Nakamoto, adhering to mining on the latest block in Reward-All is moti-

vated using a direct penalty, which is deducted during minting once the first proof sample is

published.

Example (Continued). Continuing our example from Section 4.1.1:

Alice, wanting to start spending her mining reward coins, performs the smelting

procedure using all of her 45900 slabs. The procedure outputs a proof containing

1730 sampled slabs, which is sufficient to allow her to spend 95% of her coins. Be-

cause the blockchain prices its coins in Kilohashes, such that HCR = 210, Alice

expects to receive2 229 coins per slab. Alice inputs her proof into the minting pro-

cedure, and opts to publish all proof samples simultaneously at a moderate trans-

action fee. The minting procedure outputs a large transaction, which Alice then

immediately broadcasts into the network. In block 515706, after 7 new blocks

had been created, Alice’s transaction is confirmed, and the breakdown of the to-

tal new coins in her account is as follows: Alice was to be credited with 95% of

45900 × 229 coins, equal to 23,410,256,117,760 coins (a large number!). Because

her proof only used reference block number 515699 as the most recent block, her

minting transaction was penalized with 6 × 2 × 229 = 6,442,450,944 coins. Alice’s

minting transaction resulted in a total of 23,403,813,666,816 coins being awarded

to her after the penalty is deducted from the proven amount. Alice rejoices ,.
2recall that her minting difficulty is 239 hashes per slab.

4.2. Mining Blocks 65

Hypothetically, if Bob were to acquire and operate the same mining equipment as Alice is

using, and mirror her decisions in choosing when to mine, smelt, and mint, Bob would receive

the exact same number of reward coins, as the issued rewards are not artificially restricted as

in Bitcoin.

4.2 Mining Blocks

In this section we dive into the details of the mining process, embodied by the procedures in

Algorithm 1, where we present three main functions.

Algorithm 1: Reward-All mining.
1 function mine(B)

/* retrieve next seq and ref block numbers */
2 (Nseq, Nref)← nextSeqRefPair();

/* iterate through nonce until target met */
3 for nonce ∈ {0, 1, 2, ...} do
4 header← createHeader(Nseq, Nref , nonce, B);
5 h← H(header);
6 if h < Tb then

/* store header for minting */
7 storeMintingTargetHeader(header);

/* return header which qualifies block for publication */
8 return header;
9 else if h < Tm then

10 storeMintingTargetHeader(header);
/* continue mining */

11 return mine(B);
12 function nextSeqRefPair()

/* return first unused (seq,ref) pair */
13 for Nseq ∈ {0, 1, 2, ...} do
14 Nref ← highestRefNumAtSeq(Nseq);
15 if Nref < mainChainLength then
16 return (Nseq, Nref);
17 function assertBlockIsValid(BN)
18 assert(H(BN .header) < Tb);
19 assert(BN .header.ancestorHash == H(BN−K));
20 assert(BN .header.parentHash == H(BN−1));
21 assert(validTransactions(BN));

The main procedure, mine, takes as input a block and attempts to find a PoW that would

66 Chapter 4. System Design

either append it to the main blockchain, or reward the miner for its attempt. The nextSe-

qRefPair procedure returns the appropriate metadata that can be used to search for blocks

and slabs. The assertBlockIsValid procedure verifies that a block meets the requirements for

extending its parent chain.

Unlike Nakamoto, mining in Reward-All produces two kinds of output, each of which is de-

signed to satisfy its own objective. The first objective is block proposal, which is enabled

by a classic Nakamoto Consensus process using PoW. Section 4.2.1 details the block pro-

posal process, which depends on the output of blocks from mining. The second objective is

work logging, whereby miners individually log the number of hashing computations each has

performed for itself while attempting to propose blocks. Section 4.2.2 presents work logging,

which is enabled by slab mining outputs.

4.2.1 Block Proposal

Miner Addr Miner Addr Miner Addr

H(BN−2K) H(BN−K−1) H(BN−K)

H(BN−K−1) H(BN−2) H(BN−1)

Nonce Nonce Nonce

Ref # Ref # Ref #

Seq # Seq # Seq #

BN−K BN−1 BN

K − 2

Figure 4.2: Illustrated Reward-All block headers. For K = 1, the chain commitments would
collapse to those of a regular blockchain, where each block only commits to its immediate
parent, as H(BN−K) = H(BN−1) for all N . For K > 1, the ancestor block hash would refer to
a block BN−K that precedes the immediate parent block in the chain.

Similar to mining in Nakamoto, miners in Reward-All collect transactions into blocks, and

proceed to solve PoW puzzles derived from the headers of these blocks to win the right to ap-

4.2. Mining Blocks 67

pend their blocks onto the blockchain. However, Reward-All blocks are structurally different

from those of Nakamoto, but the overall consensus process remains mostly the same.

1. First, while a Nakamoto block only commits to its immediate parent, a Reward-All

block also includes a commitment to its Kth ancestor, where K is a configurable Reward-

All parameter. As we illustrate in Figure 4.2, for a block BN , the commitment to the

parent block is denoted by H(BN−1), and the commitment to the ancestor is denoted

by H(BN−K). We leverage this subtle, yet significant, difference to handle rewards is-

sued for mining stale blocks more leniently than in Nakamoto, as we discuss in Sec-

tion 4.3.

2. Second, to solve said PoW puzzles, miners repeatedly compute the hashing function H

over block headers, each time with a different nonce, until they reach a hashing output

which meets the block target Tb. However, miners do not only cycle through nonces,

but also cycle through two additional integers, according to the criteria we explain in

Section 4.2.2. Nonetheless, to propose blocks, miners search for a header, that when

hashed, results in a value H(header) < Tb.

As in Nakamoto, the expected number of search attempts required to find a header that

meets the block target is defined as Db = TMAX/Tb, where TMAX is maximum (easiest) target

value. Once such a header is found, it is published by the miner, along with its corresponding

block, and appended to the blockchain by the network.

Furthermore, while not shown in Algorithm 1, when a miner is presented with two conflict-

ing blockchains, the miner is prescribed to follow the chain with the most accumulated PoW.

This longest-chain protocol specification serves as the backbone of the security analysis per-

formed in Chapter 5 against block withholding attacks on Reward-All.

However, unlike in Nakamoto, the miner who wins the right to propose the next block does

not receive a special block reward for doing so. Only all the transaction fees paid in that

block are credited to the block’s miner. We retain this fee mechanism to effectively motivate

non-empty block publication and further motivate mining on the latest block.

68 Chapter 4. System Design

4.2.2 Work Logging

To receive compensation for mining, a Reward-All miner must choose its own minting tar-

get Tm value prior to commencing with mining. As per Algorithm 1, this value determines

the threshold past which the miner retains a slab as a record of its PoW searching attempts.

While not shown in Figure 4.2, the minting target is part of the Reward-All block header.

Consequently, upon finding a header that meets the minting target, such that H(header) <

Tm, the miner stores it as a slab. Similar to blocks, the expected number of search attempts

required to find a slab that meets the minting target is defined as Dm = TMAX/Tm. This

means that Dm is not an exact measure of how many hashing attempts were made to find a

single slab, but is rather an increasingly more accurate estimate as more slabs are considered.

More precisely, for a collection of n slabs with minting difficulty Dm, the actual attempts

required to produce all n slabs are represented by n random samples {X1, ..., Xn} indepen-

dently drawn from a geometric distribution X with a mean of Dm, such that:

X ∼ Geom(Dm) (4.1)

X̄n ≡
X1 + ...+Xn

n
(4.2)

As the number of samples n approaches infinity, the mean of the samples, denoted by X̄n

approaches the mean Dm of the geometric distribution from which the samples are drawn,

while X̄n follows a normal distribution for sufficiently large n per the central limit theorem.

Furthermore, as we briefly mentioned in Section 4.2.1, in Reward-All, miners search for slabs

by modifying two fields in addition to the nonce: the reference block number, and the

sequence block number. Miners must use these two fields in order to organize slabs in a

way that allows them to be efficiently aggregated into a proof, and distributes their rewards

equally across each block in the chain.

First, miners set the reference block number such that slabs that meet the minting target are

uniformly distributed over a series of referenced blocks. Second, miners utilize the sequence

4.3. Smelting Proofs 69

number field, such that:

1. No two slabs which meet the minting target and use the same referenced block number

share sequence numbers.

2. The smallest non-negative available sequence number is always used first for new slabs.

Under these constraints, miners accumulate slabs that can be used to later prove the amount

of work that has been performed, as we describe in Section 4.3.

Lastly, each miner should set a minting target that it can expect to meet meet at least once

per block arrival. This is because a miner should meet the minting target on average at least

once per block in order to keep up with the blockchain growth rate. Doing so allows the

miner to avoid the minting penalty that will be described in Section 4.4. Once the miner

finds it necessary to spend its mining rewards, it uses its accumulated slabs to follow the

steps we describe in Section 4.3.

4.3 Smelting Proofs

Algorithm 2: Reward-All smelting.
1 function smelt(Ref, Seq, P)
2 headers← [];
3 for b ∈ {Ref.start,Ref.start + 1, ...,Ref.end} do
4 for s ∈ {Seq.start, Seq.start + 1, ..., Seq.end} do
5 header← fetchStoredMintingHeader(b, s);
6 headers.append(header);
7 tree← createMerkleCommitmentTree(headers);
8 proofs← [];
9 for i ∈ {0, 1, ..., P} do

10 samplePosition← H(i||tree.root) mod |headers|;
11 merkleProof← tree.inclusionProof(samplePosition);
12 proofs.append(merkleProof);
13 return (tree.root, proofs);

A miner, in possession of a collection of slabs as a result of mining, can create a proof, using

the smelt procedure from Algorithm 2, that convinces a verifier with overwhelming proba-

bility that the miner has performed some number of hashing calculations. The proof is com-

70 Chapter 4. System Design

prised of a random subset of slabs sampled from the set of slabs that the miner is proving to

have created.

For a miner to successfully smelt by following Algorithm 2, the collection of slabs it aims to

utilize must have a specific structure, which we describe in Section 4.3.1. Subsequently, given

an acceptable collection of slabs, we explain the second part of Algorithm 2, whereby miners

create the proof of their work logs properties, in Section 4.3.2.

4.3.1 Proving Conditions

Before smelting, a miner must first gather a uniformly distributed set of slabs that meet the

minting target. This uniform distribution of slabs must be made with respect to the contin-

uous series of the M reference block numbers selected by the miner for smelting. The miner

achieves this uniformity by selecting a continuous series of N sequence numbers, such that

it knows M slabs for each sequence number, and each of these M slabs must correspond to

exactly one reference block number in the selected reference block number series. This results

in N ×M unique slabs being selected to smelt, as illustrated in Figure 4.3. No sequence num-

ber previously included in a published proof may be selected as to avoid reward duplication.

Se
qu

en
ce

#

1000

2000

3000

4000

5000 Legend

Full

Partial

Empty

Block

Figure 4.3: Example smelting scenario. The row of a circle determines the sequence num-
ber range of its set of headers. The column, or block, determines the reference block number
used by all represented headers. The lower-left collection of headers, shaded in vertical lines,
can be proven up to any fraction of validity. The upper-right collection of headers, shaded in
dots, is 1% invalid, and may fail to be proven valid, as only 85% of the headers with sequence
numbers between 2000 and 3000 which refer to the earliest reference block in the proof are
valid. This is illustrated by partially shaded circle in the upper-right collection being only
85% filled.

4.3. Smelting Proofs 71

Furthermore, the ancestors referenced in all selected slabs for smelting must still be part

of the main blockchain. This entails that if a block re-organization replaces a suffix that

is longer than K blocks, then all stored slabs which point to ancestors affected by the re-

organization must not be selected. Under such rules, all Reward-All miners are penalized

when blocks older than the K-long suffix of the blockchain are replaced, while the proposers

of the K-long suffix blocks lose their transaction fee earnings.

Moreover, miners should opt to select a series of reference block numbers to smelt that ends

with a block number that is as recent as possible. This is motivated by the fact that proofs

which use reference block number series that end with blocks older than the most recent

block prior to proof confirmation are penalized, as briefly mentioned in Chapter 4.1. This

penalty grows with respect to how old the most recent reference block in the series is, and

with respect to how many sequence numbers are used in smelting. Specifically, if a miner’s

proof is included in block i while the proof contains block j as the last used reference block,

where j < i, then a penalty of ρ×(i−j−1)×N coins is applied to the amount rewarded from

the proof’s publication, where ρ is a preset constant in the system. Consequently, this moti-

vates miners to continue mining, repeat smelting, and update the transaction that publishes

their proof, until their proof publication transaction is confirmed. In Figure 4.4 we illustrate

an example of this penalty when enforced on a miner that published a minting transaction

with a two-block reference-confirmation difference (i.e. i− j − 1 = 2) and ρ = 1.

4.3.2 Proof Creation

Finally, the miner first creates a Merkle-tree commitment of the N × M slabs selected for

smelting. Then, using the root of this tree, the miner derives a deterministic pseudo-random

sequence of samples from the selected slabs. Subsequently, for each sampled slab, the miner

creates a Merkle-tree inclusion proof for that slab with respect to the created Merkle-tree

commitment. The intervals denoting the series of reference block numbers and sequence num-

bers, the minting target Tm, the Merkle-tree commitment root, along with the inclusion proofs

and the slabs they lead to, are then published as a transaction.

72 Chapter 4. System Design

+ + + + ! ! ✓
Figure 4.4: Example reward claim scenario from the perspective of a miner. Squares rep-
resent mined blocks. Circles represent weak headers whose reference blocks are represented
by the squares below them and whose parent blocks exist in the chain. In this scenario, a
miner successfully publishes a minting transaction in the block with the check-mark (✓). The
proof in this transaction only confirms the work done using blocks with a positive sign (+) as
reference blocks. No work is proven using blocks with an exclamation mark (!) as reference
blocks. Consequently, N ×M = 5×4 = 20 unique weak headers are used to generate the pub-
lished proof. As the minting transaction was confirmed three blocks after the last used refer-
ence block, a deduction of ρ × 2 × 5 headers worth of coins is applied to the minted amount
as a penalty. With ρ = 1, only 10 headers worth of coins are minted.

Smelting in Reward-All creates a computationally-sound statistical sampling proof (argu-

ment) with minimal cryptographic assumptions. Aside from the simple implementation ad-

vantages this approach offers, the cost of smelting using this approach in practice is negligible

in comparison to the cost of mining. This prevents smelting from disrupting mining power. A

downside to this approach is that proof sizes can be quite significant. For example, the num-

ber of samples required to receive 99% of the coins owed in exchange for the slabs presented

is 8828. However, proofs do not have to be revealed in one shot, but can be incrementally

revealed across multiple transactions.

In the next section we explain how these proofs are verified as blockchain transactions, and

how these transactions are leveraged in Reward-All for reward issuance.

4.4 Minting Coins

In this section we detail Reward-All’s minting process, whereby new coins are issued into the

decentralized ledger in favor of miners, using Algorithm 3, in exchange for the smelted slab

proofs from Section 4.3.

First, in Section 4.4.1 we explain the verification process of smelted proofs, which takes place

4.4. Minting Coins 73

Algorithm 3: Reward-All minting.
1 function mint(BN ,miner, Tm,Ref, Seq, s, treeRoot, proofs, λ)
2 M ← Ref.end− Ref.start + 1;
3 N ← Seq.end− Seq.start + 1;
4 for i ∈ {s, s+ 1, ..., s+ |proofs|} do
5 hi ← proofs[i].hi;
6 assert(hi.miner == miner);
7 assert(hi.Tm == Tm);
8 assert(blockInChain(hi.ancestor));
9 position← H(i||treeRoot) mod N ×M ;

10 SeqNum← position mod N ;
11 RefNum← ⌊position

N
⌋;

12 assert(hi.ref == RefNum and hi.seq == SeqNum);
13 assert(merkleRoot(position, proofs) == treeRoot);
14 assert(H(hi) ≤ Tm);
15 assert(hi.ancestor.num +K ≥ RefNum);
16 t← s+ |proofs|;
17 θ ←

t√
2−λ;

18 return θ ×N ×M ×Dm;

in every copy of the distributed ledger. Subsequently, we describe in Section 4.4.2 the coin

reward calculation process, which determines how many coins are issued in exchange for pro-

vided proofs, and prescribe an additional penalty calculation procedure, not shown in Algo-

rithm 2, for incentivizing mining on the latest block.

Much akin to minting metallic coins, minting in Reward-All involves transforming a smelted

element into transferable coins of known quantities. However, because a Reward-All miner

always knows in advance the number of coins it will be granted from the successful publica-

tion of its proofs, the Reward-All minting process can be considered as a reward spending, or

registration, mechanism, rather than a reward issuance mechanism.

4.4.1 Proof Publication

Once a miner has smelted a proof, it must first publish the information that describes and

commits to its collection of slabs. Specifically, the miner must publish a transaction which

contains the minting target used, the reference block number range, the sequence block num-

ber range, and the Merkle-tree commitment root. Once this transaction is published, any

74 Chapter 4. System Design

penalty to be deducted from the coins redeemable is calculated, and the maximum number of

coins that can be rewarded is derived.

Once a transaction with only the above four pieces of information is published, no reward is

yet issued, but the risk of being further penalized for the publication of data related to this

proof is removed. However, for this storage step to complete successfully, and for the transac-

tion to be accepted, the sequence number series information is compared with that of the last

previously saved entry if it exists. If the last used sequence number, if any, is not less than

the first sequence number used in the submitted proof, the proof is immediately rejected.

Past this point, the blockchain can begin accepting sample slabs, along with their Merkle-tree

inclusion proofs, for verification and incremental coin issuance.

The pseudo-random sequence of slabs to be sampled is deterministically recomputed as done

by the prover using the submitted commitment tree root. The samples must be published,

and verified, in that exact sequence, across one or more transactions.

Notably, to verify a minting transaction, a verifier deterministically computes the expected

sequence number and reference block number for each sample. This is done only using the

sample’s position in the proof, and the stored sequence number series and reference block

number series information for the proof. This entails that all slabs are expected to be unique,

such that reuse of duplicate slabs in smelting would lead to proof rejection. Consequently, we

omit these two pieces of information from the Merkle-inclusion proofs.

Furthermore, for each sampled slab, the verifier asserts that the identity of the miner of the

slab is the same as the prover. This is necessary to prevent different miners from laying claim

to the same set of slabs.

Lastly, for each sampled slab, the ancestor hash is verified to refer to a block BN , such that

N + K is greater than or equal to the reference-block number of the slab, and BN is part

of the blockchain the proof transaction was included in. This is done to enforce the penalty

associated with block reorganizations deeper than K blocks mentioned in Section 4.3.

4.4. Minting Coins 75

4.4.2 Reward Calculation

As the verifier validates more sampled slabs according to the generated sequence, it grants

more coins to the balance of the prover. We denote by θ the fraction of the N ×M slabs that

the verifier is confident are correct with overwhelming probability.

Specifically, let Λ be a predefined security parameter in the system, let s be the number of

sampled slabs successfully validated so far, and let W = N×M×Dm be the expected number

of mining attempts claimed by the prover. We express in Equation 4.3 the probability P (s, θ)

of drawing s random valid sampled slabs from a collection with a fraction of validity θ.

P (s, θ) = θs (4.3)

Given that the verifier has so far validated the first s random slabs from the pseudo-random

sequence of samples, the verifier calculates the maximum value of θ such that Inequality 4.4

holds true.

P (s, θ) ≤ 2−Λ (4.4)

Finally, the verifier allows up to θ ×W coins to be spent by the miner, and as the miner re-

veals more samples, this allowance is increased appropriately. Since miners with the ability

to perform more work, increasing either N × M or Dm, can reach higher values of W , they

can attain more rewards, allowing us to provide direct proportionality between mining power

and coin rewards in Reward-All.

In Figure 4.5 we plot the minimum number of samples s required for each value of θ. No-

tably, s and θ are independent of W . However, when smelting proofs that claim values of

θ ×W >> 2Λ, the expected amount of computations required for successful smelting using

invalid data is on the order of 2Λ. Consequently, only values of Λ, such as Λ = 128, which

result in a number of computations 2Λ that is infeasible to perform in practice are considered

in this dissertation.

Alternatively, and without smelting, the full slab collection can be submitted for full valida-

76 Chapter 4. System Design

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Validity θ

100

101

102

103

104

M
in

im
um

sa
m

pl
e

co
un

ts

λ = 128

Figure 4.5: Semi-log plot of s = log 2−λ

log θ
, such that θs = 2−λ, for λ = 128 and 0 < θ < 1. To

reach θ = 0.5, at least s = 128 samples are required, and for θ = 0.8, s = 398 samples must
be verified.

tion without any statistical sampling. In this case, the verifier runs all of the validations in

Algorithm 3 on the full set of N ×M slabs submitted. We discuss the feasibility and appro-

priateness of doing so in Chapter 6.

Notably, our mining, smelting, and minting processes enables an unrestricted number of min-

ers to receive and spend their rewards when necessary, albeit after paying the necessary trans-

action fees. While the last minting stage may seem like a bottleneck, miners which do not

broadcast their minting transactions, but continue to accumulate slabs, do not suffer any

losses in their rewards. Consequently, our novel construct enables miners to partake in a fee-

based priority queue for access to their owed rewards.

4.5 Proving System

In principle, the statistical sampling argument we introduced for reward validation in this

chapter is based on constructing a sampling plan with a strict operating characteristic curve [Wal45]

where no defective samples are tolerated. In this section, we outline the soundness and com-

pleteness guarantees of this approach.

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation, and let LR = {x : ∃y s.t. (x, y) ∈ R} be the

language defined by R. It is said (x, y) ∈ R, and y ∈ LR(x) iff:

4.5. Proving System 77

1. x = (B,miner, Tm, Seq,Ref,merkleRoot, θ) represents a tuple of a blockchain B, a

miner identity miner, a minting target Tm ∈ N, a pair of sequence numbers Seq ∈

N × N, a pair of block reference numbers Ref ∈ N × N, a Merkle-tree root merkleRoot,

and θ ∈ [0, 1).

2. y = (⃗blockHeaders, ⃗merkleProofs) represents a pair of lists, where ∀s ∈ {Seq.start, .., Seq.end},

∀r ∈ {Ref.start, ..,Ref.end}, with probability β ≥ θ, ∃b ∈ ⃗headers, and ∃p ∈
⃗merkleProofs, such that b is a valid block header, and p is an acceptable Merkle-tree

proof, as described in Algorithm 3.

Essentially, the procedures we presented in Sections 4.3 and 4.4 describe how a computationally-

bounded prover P , the miner, can convince a verifier V , the blockchain, that for a given x

the prover knows a y ∈ LR(x). This relation essentially captures the set of valid proofs that

can be created following the procedures from this chapter.

To connect this relation to Reward-All’s proving system, we first describe a simpler interac-

tive version of the proving system used in prior sections. We refer to this simple system as

π:

1. P → V : x

2. P ← V : c ∈ {1, ..., | ⃗blockHeaders|}

3. P → V : b ∈ ⃗blockHeaders, p ∈ ⃗merkleProofs

4. P ← V : accept iff the response corresponds to the challenge and passes the validations

in Algorithm 3.

Using π, we incrementally build up and analyze the non-interactive argument protocol from

Sections 4.3 and 4.4 in three steps. First, let πt be a protocol which accepts iff t sequential

iterations with independent randomness of π all accept, noting that π1 = π. Then, using

the security parameter Λ, we construct the protocol πt
Λ, which accepts iff πt accepts and

θt < 2−Λ. Finally, let Πt
Λ be the result of applying the Fiat–Shamir heuristic to πt

Λ. Note

78 Chapter 4. System Design

that Algorithm 3 releases a fraction θ of coins to a miner iff running Πt
Λ on its input and θ

leads to accept.

The probability that the randomly selected challenge c by the verifier corresponds to a block

header that the prover had correctly computed is equal to the fraction β of correctly com-

puted headers by the prover. It then follows that the probability that a verifier accepts in πt

is always equal to exactly βt. Similarly, the probability that the verifier does not accept in πt

is equal to 1− βt.

Soundness Error. A lapse in the soundness of the πt verifier’s conviction occurs if it ac-

cepts when β < θ, i.e. when the verifier is convinced that the prover knows at least a frac-

tion θ of the headers, while it only knows a smaller fraction β. The probability that this oc-

curs in πt, i.e. the soundness error of πt, is equal to βt. In the case of πt
Λ, and Πt

Λ, there is

an upper-bound of 2−Λ on the soundness error. This is because the verifier does not accept in

any case where βt ≤ θt < 2−Λ.

Completeness Error. A gap in the completeness of πt occurs when the verifier does not

accept despite the honest prover having β ≥ θ. A prover will fail to convince a πt verifier

that it knows y ∈ LR(x) with probability 1− βt, which is the probability the verifier sends a

challenge that the prover cannot answer. This result extends directly to Πt
Λ.

4.6 Summary

In this chapter we presented Reward-All’s novel system design, beginning with an overview of

its architecture, followed by a detailed description of each process and its data elements. Our

design of Reward-All minimally modifies Nakamoto to provide a novel incentive mechanism

whereby an unrestricted number of miners can receive rewards that are directly proportional

to their individual mining powers.

In Section 4.1, we first briefly introduced how block production in Reward-All is akin to that

in Nakamoto, enabling the same consensus process, but with differences that allow miners to

4.6. Summary 79

track their hashing calculations. Subsequently, we described from a high level how mining re-

wards are issued in Reward-All, where miners receive coins in exchange for publishing proofs

of their hash calculations.

In Section 4.2 we presented Reward-All’s mining process and described its main mining algo-

rithm. After detailing Reward-All’s modified block structure, we described how Reward-All’s

work logging takes place, enabling each miner to retain slab data that tracks the number of

hash calculations performed.

Subsequently, we described Reward-All’s smelting process in Section 4.3. Using its slab data,

a miner follows our smelting algorithm to derive a proof of the total amount of hashing it has

performed while mining. Our smelted proofs guarantee with overwhelming probability that a

target fraction of the claimed amount of hashing computations were performed by the miner.

Moreover, we detailed Reward-All’s minting process in Section 4.4, whereby miners incre-

mentally spend coins in the ledger in exchange for publishing their smelted proofs using one

or more blockchain transactions. Using a penalty-based approach, we diminish the value of

spendable coins from Reward-All miners that don’t prove they have performed hashing calcu-

lations to mine on the most recent block.

Lastly, in Section 4.5 we demonstrated that Reward-All’s coin issuance mechanism offers

computational soundness and completeness under reasonable assumptions and parameters.

We presented an analysis based on operating curves which quantified the security properties

of coin minting in Reward-All.

In the next chapter, we analyse the security of our protocol against block-withholding at-

tacks, the strongest threat to Proof-of-Work blockchains.

Chapter 5

Block Withholding Attack Analysis

Block withholding attacks are mining strategies whereby an adversary deviates from the pre-

scribed protocol by strategically withholding its newly found blocks from publication until

a point in time when the adversary can gain an advantage, as discussed in Section 2.3.3. In

summary, this class of attacks demonstrates that miners can negatively affect the chain even

if their relative share of the total mining power falls below the 51% threshold.

Dembo et al. prove that suffering such an attack is the worst case scenario for consensus

in longest-chain protocols, such as Nakamoto, Reward-All and even Proof-of-Stake proto-

cols [DKT+20]. Besides disrupting agreement on the canonical chain, gaming the consensus

process through block withholding can be used by the adversary to derive more rewards from

mining, in total through double-spending, or relative to other miners [ES14, ZP19].

In this chapter we utilize the framework proposed by Zhang et al. to quantify the resistance

of Reward-All against optimal block withholding attacks [ZP19]. We create four different

Markov-Decision-Process models for mining in Reward-All, such that solving each model

yields an optimal policy for satisfying a certain adversarial objective in the system. In each

case, we compare the performance of Reward-All with that of Nakamoto1. Our results demon-

strate that Reward-All can reach near-ideal resilience against censorship and profitability
1Zhang et al. assess the performance of other blockchains in their work [ZP19]. However, their results

cannot be used to infer a like-for-like comparison with the Reward-All results presented here as the cutoffs of
the block races they model cannot yield significant results for Reward-All.

80

5.1. Model Parameters 81

attacks, equal resilience to Nakamoto in chain quality attacks, and worse resilience than in

Nakamoto against double-spending attacks depending on transaction value and mining power.

We first overview in Section 5.1 the parameters we use to capture the Reward-All mining

process. Subsequently, we detail in Section 5.2 each MDP state variable, and their intended

purpose. Then, in Section 5.3, we describe the actions agents can take in our MDPs, and the

conditions under which each action can be taken. Then we present in Section 5.4 the tool we

implemented to solve our MDPs and yield the optimal adversarial mining strategies. After-

wards, we present in Section 5.5 the findings of our analysis for each of the four MDPs, and

discuss their ramifications for Reward-All. Lastly, we summarize this chapter in Section 5.6.

5.1 Model Parameters

In our analysis, we assume that a single adversarial miner with a fraction α ∈ [0, 1
2
) of the

computational resources available in the network attempts to construct a single withheld fork

of the compliant miner’s public chain. Our model does not explore adversaries with at least

half of the mining power, as such powerful attackers can, given enough time, create chains

that are longer and heavier than any chain created by compliant miners.

At the end of every time step in the MDP, a block is mined with probability α by the adver-

sarial miner, and 1− α by the compliant miners. This discretization accurately models block

arrivals, since they occur completely independently of one another, with inter-arrival times

following an exponential distribution. Once a block is mined, even if by a compliant miner,

the adversarial miner immediately learns of its existence, leaving no notion of propagation

delay between the adversarial miner and compliant miners. However, a fraction γ ∈ [0, 1] of

the compliant miners is set to favor mining on the adversarial miner’s chain when presented

with two chains of equal lengths. We refer to this fraction of compliant miners as the rushed

miners, and the remaining fraction (1 − γ) as distant miners. This allows our model to

account for cases where the adversary can propagate its own blocks to a fraction γ of the

compliant miners faster than the remainder of the compliant miners. We illustrate the basic

82 Chapter 5. Block Withholding Attack Analysis

transitions that utilize these probabilities in Figure 5.1.

* A R D

Compliant Miners

α

(1− α)(1− γ)

(1− α)γ

Figure 5.1: Visualisation of base state transition principles in our MDPs. Given a start-
ing state (*), a block is found by the Adversary with probability α, by the Distant miners
with probability (1 − α)(1 − γ), or by the Rushed miners with probability (1 − α)γ. To-
gether, rushed miners and distant miners represent the entire set of compliant miners that
find blocks with probability 1 − α, where rushed miners represent the γ fraction that receive
adversary blocks before compliant miners’ blocks, while the distant miners receive compliant
blocks first.

Remarkably, as in similar analyses of Nakamoto [ZP19], the expected time between block

arrivals, λ, plays no role in our analysis of Reward-All. Despite the fact that the amount of

time a Reward-All miner spends mining a block of a certain height determines how many

slabs it would find, the expected such number of headers over the long run is equal to n =

Tm

Tb
per block arrival. Consequently, the fraction of the total coins earned by the network

which is earned by the miner on average is equal to n×Dm

Db
, which is the miner’s share of the

hashing power α.

Furthermore, our analysis only considers valid unminted coins as rewards, and is carried

out without consideration of the effects of the work proving system employed, or its sound-

ness and completeness as analyzed in Section 4.5. Despite this simplification, our analysis

accurately represents the block creation process, as it does not conflict with slab accumula-

tion.

5.2 State Space

At any given time step, the state of the mining process is represented by the following vari-

ables:

1. a ∈ N: The length of the withheld chain mined by the adversarial miner.

5.2. State Space 83

2. h ∈ N: The length of the public compliant miners’ chain.

3. f ∈ {active, relevant, irrelevant}: The potential for a tie-breaking fork race to occur

in the public chain.

• active: tie-breaking rules are actively being used by compliant miners to reach

consensus and decide which chain fork to follow.

• relevant: the latest compliant miner block is not yet propagated to all compliant

miners, and tie-breaking rules are relevant to the adversary’s next decision.

• irrelevant: compliant miners agree on the latest compliant miner block, and tie-

breaking rules are not relevant to the adversary’s next decision.

4. ta ∈ N: The number of time steps the adversary has spent mining on its withheld chain

while a ≥ K.

5. th ∈ N: The number of time steps the compliant miner network has spent mining on

the public chain while h ≥ K.

6. tm ∈ N: The number of time steps during an active tie the γ-fraction of the compliant

miner network has spent mining on the adversary’s h-long prefix while h ≥ K.

The first three variables are used in MDP designs of Nakamoto to model the mining race be-

tween the adversary and the compliant miner network. We use these three variables for the

same purposes. In Figure 5.2, we illustrate how these variables can model an example sce-

nario.

In addition to the first three variables, we introduce three additional variables for reward cal-

culation in our Reward-All model which are not present in previous MDP models of Nakamoto.

Notably, to precisely calculate the rewards of the adversarial miner, we found that a com-

putationally infeasible to solve state representation is necessary. In that state space, a bit

vector is used to keep track of the mining race, such that a 1 is appended to a bit vector each

time an adversarial miner creates a block, while a 0 is appended for compliant miners’ blocks.

84 Chapter 5. Block Withholding Attack Analysis

a = 2
h = 0
f = i

0

1 2

a = 2
h = 1
f = r

1− α

0

1 2

3

a = 3
h = 1
f = a

α

0

1 2 4

3

a = 2
h = 1
f = r

(1− α)γ

1

2 4

5

Figure 5.2: A small sub-sequence of the states in the MDP representation of the mining race
between the adversarial miner and the compliant minters. Arrows denote transitions between
states, where the probability of each transition is denoted in terms of α and γ above each
arrow. Blocks are denoted by squares that contain their order of arrival. The leftmost block
is accepted by both the adversary and the compliant miners. The upper sequence of blocks
represents the adversary’s withheld chain of blocks, while the bottom sequence denotes the
compliant miners’ published chain. In the initial leftmost state, the adversarial miner has 2
blocks in its chain (a = 3), while the compliant miners have mined no block ontop of the
mutually accepted block (h = 0). As f = i, the adversary cannot initiate a tie-breaking
fork race. In the subsequent state, the next block to be found belongs to the compliant min-
ers, creating an opportunity for the adversary to initiate a tie-breaking race (f = r) between
blocks number 1 and 3. The third state represents one possible next outcome after the adver-
sary initiates the race, whereby the next block is found by the aversary, and the tie-breaking
race continues (f = a). In the next state, the rushed compliant miners find a block ontop
of the adversary’s partially revealed chain, and the adversary is able to carry out another at-
tack.

This bit vector would permit the calculation of how many time steps the adversary has spent

mining on each withheld block of a height greater than K. Using this information, the ex-

pected rewards at each step in the mining process can be modelled. However, this approach

would have only allowed the examination of very short block races that would not yield sig-

nificant results2.

Instead, we optimistically allocate all of the mining time the adversary spends mining while

a ≥ K to be towards producing one block. In one instance, that block is chosen to be block

number K + 1, and this time is represented using the variable ta. We present an example of

this in Figure 5.3. In another instance, that block is chosen to be block number K, and the

need for the variable ta is forgone. These optimizations allow us to forgo the exponentially

growing state space representation in exchange for polynomially-sized state spaces. Still, this

comes at the cost of over-rewarding the adversarial miner, and only allows the calculation of

2More precisely, it would allow us to only model settings where the value of 2C−K is relatively small,
where C is the upper bound on a and h.

5.3. Action Space 85

ta = 1
th = 0
tm = 0

0

1 2

ta = 2
th = 0
tm = 0

0

1 2

3

ta = 3
th = 1
tm = 1

0

1 2 4

3

ta = 0
th = 0
tm = 0

1

2 4

5

Figure 5.3: Extension of the example presented in Figure 5.2 where each state is annotated
with the values of the variables ta, th, and tm for K = 1. In this example, we choose all
mining time spent creating a chain longer than K to be attributed to creating the block of
height K+1. In the first state, the adversary had spent one time unit mining block 2. In the
second state, a = 2 ≥ K = 1 for one additional time unit, where the compliant miners find
block 3. Subsequently, as the adversary had started a tie-breaking fork race while h ≥ K,
both th and tm increase by one. Lastly, as the tie was broken in favor of the adversary, and
block 1 was confirmed by the compliant miners, the three variables are reset.

upper-bounds on how much of an advantage an optimal adversary could gain. Nonetheless,

as K increases, the effect of this overpayment decreases, and the positive differences between

the calculated upper-bounds and the true maximum values converge to zero.

In all cases, the variables th and tm are sufficient to calculate the rewards attained by the

compliant miners without the need for a bit vector representation. This is because, as will

be presented in Section 5.3, there are no state transitions in Reward-All and Nakamoto mod-

els which cause a prefix shorter than h of the compliant miner’s chain to be confirmed, or

removed, and only the entire public chain of length h may be accepted or replaced by the

adversarial miner.

5.3 Action Space

After learning of a block’s discovery, at the beginning of the next time step, the adversarial

miner can instantaneously take one of the Nakamoto actions below:

1. Adopt: The adversary discards its current withheld chain, and starts building a new

withheld chain based on the latest block found by compliant miners.

2. Override: The adversary publishes the first h + 1 blocks from its withheld chain, which

86 Chapter 5. Block Withholding Attack Analysis

leads all the compliant miners to abandon the h blocks they have mined so far in favor

of the (h+ 1)-long prefix of blocks released by the adversary.

3. Wait: The adversary keeps mining and waits for another block to arrive.

4. Match: The adversary publishes the first h blocks from its withheld chain, leading

the γ-fraction of the compliant miners to mine above them, while the remaining min-

ers continue mining on the h compliant miner blocks constructed so far. If at the end

of the current time step a block is discovered by the γ-fraction, the remaining min-

ers abandon their h blocks and mine along the γ-fraction. This action is only possible

when the last discovered block was mined by the compliant miner network.

These same four actions are the same as those found in models of Nakamoto. This is because

Reward-All follows the same block proposal process as Nakamoto, and only utilizes a differ-

ent reward calculation mechanism.

Similar to MDP designs for Nakamoto, our Reward-All MDPs also enforce a cutoff C which

restricts the maximum lengths of the chains that can be examined. Because of this, the ad-

versary’s ability to wait or match when either a = C or h = C is revoked, such that the

adversary may only adopt or, if possible, override. While this cutoff reduces the Reward-All

MDP state space from infinite to finite, it is instantiated with a sizeable value such that the

results it produces are within acceptable bounds of the true values.

Despite the extra dimensions the Reward-All MDP has, relative to the MDPs designed for

Nakamoto, we explore races that are longer than those explored in work related to Nakamoto.

This is because we implement and analyze the Reward-All MDPs using the C++ API of the

Storm Probabilistic Model Checker 3, which utilizes many optimizations [DJKV17].

In Table 5.1, we present the combined state-action transition and reward matrices for three

different reward functions, one for each Reward-All MDP that is different from the Nakamoto

mining MDP [SSZ16].

3https://www.stormchecker.org/

https://www.stormchecker.org/

5.3. Action Space 87

In
it

ia
lS

ta
te
×

A
ct

io
n

N
ex

t
St

at
e

P
ro

ba
bi

lit
y

R
I

R
S

R
C

(a
,h
,f
,t

a
,t

h
,t

m
)
×

ad
op

t
(1
,0
,i
,0
,0
,0
)

α
α

α
0

(0
,1
,i
,0
,0
,0
)

1
−
α

(a
,h
,f
,t

a
,t

h
,t

m
)
×

ov
er

ri
de

(a
−
h
,0
,i
,ω

K
(0
,a
−
h
−

1)
,0
,0
)

α
α

α
×
ψ

K
(t

a
,a
−
h
−

1)
+
V

ds
(h
,σ

)
(1
−
α
)
×

(t
h
+
(1
−
γ
)
×
t m
)

(a
−
h
−

1,
1,

r,
ω
K
(0
,a
−
h
−

1)
,0
,0
)

1
−
α

(a
,h
,i
,t

a
,t

h
,t

m
)
×

wa
it

(a
,h
,r
,t

a
,t

h
,t

m
)
×

wa
it

(a
+
1,
h
,i
,ω

K
(t

a
,a
),
ω
K
(t

h
,a
),
t m
)

α
α

α
×
ψ

K
(0
,a
)

0
(a
,h

+
1,

r,
ω
K
(t

a
,a
),
ω
K
(t

h
,a
),
t m
)

1
−
α

(a
,h
,a
,t

a
,t

h
,t

m
)
×

wa
it

(a
,h
,r
,t

a
,t

h
,t

m
)
×

m
at

ch

(a
+
1,
h
,a
,ω

K
(t

a
,a
),
t h
,ω

K
(t

m
,h

))
α

α
α
×
ψ

K
(0
,a
)

0
(a
,h

+
1,

r,
ω
K
(t

a
,a
),
t h
,ω

K
(t

m
,h

))
(1
−
α
)
×

(1
−
γ
)

(a
−
h
,1
,r
,ω

K
(0
,a
−
h
),
t h
,ω

K
(t

m
,h

))
(1
−
α
)
×
γ

α
×
ψ

K
(t

a
,a
−
h
)
+
V

ds
(h
,σ

)
(1
−
α
)
×

(t
h
+
(1
−
γ
)
×
ω
K
(t

m
,h

))

Ta
bl
e
5.
1:

M
D
P

tr
an

sit
io
ns

an
d
re
wa

rd
s.

Ea
ch

ro
w

in
th
e
fir
st

co
lu
m
n
co
nt
ai
ns

a
se
t
of

st
at
e-
ac
tio

n
pa

irs
.
T
he

se
co
nd

co
lu
m
n
co
nt
ai
ns

th
e
se
t
of

po
ss
ib
le

ou
tc
om

es
of

al
lo

ft
he

st
at
e-
ac
tio

n
pa

irs
of

th
e
sa
m
e
ro
w
.
T
he

th
ird

co
lu
m
n
co
nt
ai
ns

th
e
pr
ob

ab
ili
ty

of
ea
ch

ou
tc
om

e
be

in
g
re
ac
he
d.

T
he

la
st

th
re
e
co
lu
m
ns

co
nt
ai
n
th
e
re
wa

rd
s
of

ea
ch

ou
tc
om

e
as

a
co
ns
eq
ue
nc
e
of

ta
ki
ng

so
m
e
ac
tio

n
in

an
in
iti
al

st
at
e.

Fo
r
br
ev
ity

,t
he

fu
nc
tio

ns
ω
K
(u
,v
)
=

(i
fv
≥

K
th

en
u
+

1
els

e
u
),

an
d
ψ

K
(u
,v
)
=

(i
fv

<
K

th
en
u
+

1
els

e
u
)
ar
e
de
fin

ed
.

R
I
re
wa

rd
s
ar
e

In
ce

nt
iv

e
Co

m
pa

tib
ili

ty
re
wa

rd
s,

an
d
st
an

d
fo
r
th
e
nu

m
be

r
of

co
in
s
th
e
ad

ve
rs
ar
y
ca
n
m
in
t
in

ex
ch
an

ge
fo
r
m
in
in
g.
R

S

re
wa

rd
s
ar
e

Su
bv

er
sio

n
G

ai
n
re
wa

rd
s,

an
d
st
an

d
fo
r
th
e
to
ta
ln

um
be

r
of

ad
ve
rs
ar
y
co
in
s
co
nfi

rm
ed

by
th
e
ho

ne
st

ne
tw

or
k,

in
cl
ud

in
g

m
in
in
g
re
wa

rd
s
an

d
do

ub
le
-s
pe

nd
in
g
pr
ofi

t.
σ
de
no

te
s
ho

w
m
an

y
co
nfi

rm
at
io
ns

a
re
ci
pi
en
t
wa

its
be

fo
re

co
ns
id
er
in
g
a
tr
an

sa
ct
io
n
as

fin
al
.
V

ds
(h
,σ

)
de
no

te
s
ho

w
m
an

y
co
in
s
th
e
ad

ve
rs
ar
y
re
ce
iv
es

af
te
r
su
cc
es
sfu

lly
re
pl
ac
in
g
h
ho

ne
st

bl
oc
ks
,e

ac
h
co
nt
ai
ni
ng

tr
an

sa
ct
io
ns

to
be

do
ub

le
-s
pe

nt
.
R

C
re
wa

rd
s
ar
e

Ce
ns

or
sh

ip
Su

sc
ep

tib
ili

ty
re
wa

rd
s,

an
d
st
an

d
fo
r
sh
ar
e
of

m
in
in
g
re
wa

rd
s
th
e
ad

ve
rs
ar
y
ca
n
ca
us
e

th
e
ho

ne
st

ne
tw

or
k
to

lo
se
.

88 Chapter 5. Block Withholding Attack Analysis

5.4 Implementation

We modeled and solved the aforementioned MDPs using the Storm Probabilistic Model Checker

C++ API [DJKV17]. We implemented a command-line user interface tool that takes as in-

put the MDP type and its parameters, and outputs the result of solving the generated model

and experimentally validating its output using a simulation in which the adversarial miner

follows the optimal strategy output by our model checker.

5.4.1 Overview

Given a series of valid parameters, our tool constructs an explicit model of the MDP corre-

sponding to the provided input. For every possible MDP state, our model contains all ac-

tions that the adversary may take, along with their expected outcomes and rewards.

Each state is represented by a Storm Expression comprised of Storm Variables which cor-

respond to the aforementioned MDP state variables. The states are enumerated and ex-

plored using a breadth-first search, whereby the initial state represents the start of the at-

tack, whereby the adversarial miner and compliant miners agree on the canonical chain and

no blocks are withheld. The exploration proceeds to visit each possible state only once, enu-

merating all possible transitions to and from each state, and storing them using the Storm

Sparse Matrix data structure. Our tool then generates a Storm Sparse MDP Model object,

which the model checker engine can use to generate a strategy that optimizes or satisfies a

certain Storm Property based on the user’s input.

Given the optimal adversarial mining strategy by the model checker, our tool then proceeds

to run a mining simulation to validate that the results of solving the MDP are reasonably

applicable in practice. Reproducing the model checker outcome using simulation is essential

to validating that the generated model accurately depicts the real-world dynamics.

5.4. Implementation 89

5.4.2 Tool Parameters

The tool’s command-line interface takes several parameters which determine how to generate,

solve, and validate, a single MDP.

Reward Scheme. This command-line parameter determines the mining reward scheme,

where a parameter value of nakamoto employs winner-takes-all constant mining reward dy-

namics in the model, while a parameter value of reward-all utilizes our Reward-All dynam-

ics.

Target Metric. This command-line parameter determines the metric being optimized. Un-

der both Nakamoto and Reward-All rewards, four metrics can be examined. Depending on

which of the below values are used as the parameter value, the tool generates a different

model:

• quality indicates that a Chain Quality model should be generated, and solved to find

the optimal strategy for the Storm Property: R{“blocks”}max=? [F “exit”]. This

property leads the agent to maximize the “blocks” rewards it receives before reaching

the state labeled with “exit”.

• incentive indicates that an Incentive Compatibility model should be generated, and

solved to optimize the Storm Property: R{“revenue”}max=? [F “exit”]. This

property leads the agent to maximize the “revenue” rewards it receives before reach-

ing the state labeled with “exit”.

• subversion indicates that a Subversion Gain model should be generated, and opti-

mized for the Storm Property: R{“revenue”}max=? [LRA]. This property instructs

the agent to maximize the long-run average of the “revenue” rewards it receives.

• censorship indicates that a Censorship Resilience model should be generated, and

the following Storm Property optimized: R{“loss”}max=? [LRA]. This property in-

structs the agent to maximize the long-run average of the “loss” rewards it receives.

90 Chapter 5. Block Withholding Attack Analysis

A fifth model option, reachability, is available when using the Reward-All model. This

option generates a simple Discrete Time Markov Chain that allows the enumeration of all

reachable states under the given parameters.

Stale Forgiveness. This command-line parameter specifies the K parameter used in our

model, which allows our model to reward both the adversarial miner and the compliant min-

ers for chains of stale blocks are up to K blocks in length. This parameter may only take

non-negative integer values, and is always set to a value of 0 when modeling Nakamoto re-

wards.

Race Length. This command-line parameter, denoted by the variable T , determines the

maximum length of the adversary’s chain in the block-withholding attack represented by our

model. This parameter is necessary for generating finite models, and restricting the MDP

to only the set of states that are reachable during an attack with non-negligible probability.

Consequently, only positive integer values may be provided for this parameter.

Adversary Strength. This parameter, denoted by α, determines the adversarial miner’s

share of the total mining power. The tool accepts integers in the range [0, 100] as input, rep-

resenting the percentage of the adversary’s share.

Adversary Advantage. This parameter, γ, determines the fraction of compliant miners

which receive adversary blocks before they receive blocks from other compliant miners, i.e.

the percentage of miners which favor the adversarial miner’s chain during block races in our

model.

Expected Horizon. This parameter is relevant when generating chain quality or incen-

tive compatibility models. Denoted by H , this parameter determines the expected number

of block arrivals that are to take place before the attack is terminated by our model.

Transaction Confirmations. For subversion gain models, this parameter determines how

many confirmation blocks are required by recipients before the adversary is considered to be

able to double-spend a transaction in the generated model. The valid inputs for this parame-

ter are integers in the range [0, T].

5.4. Implementation 91

Transaction Value. In subversion gain model inputs, this parameter denotes the reward

value of each transaction successfully double-spent by the adversary in our model. The value

is interpreted as a percentage of the block reward received by the adversarial miner, and may

take on any non-negative integer value.

Overpay Adversary. This parameter only applies for Reward-All models when specifying

inputs for incentive compatibility and subversion gain MDPs. The parameter represents a

boolean flag that denotes whether the adversary is optimistically rewarded in our model for

mining more than K blocks in its attack chain. Given a value of y, this parameter instructs

the creation of a compact model with an advantage for the adversary, while a value of n in-

structs the tool to create an model that accurately rewards the adversary, yet at the cost of

exponential growth in model size that is in terms of the value of T −K.

Forgive Adversary. This parameter also only applies for Reward-All incentive compatibil-

ity and subversion gain models, and specifies whether the adversarial miner is rewarded for

all of its mining effort, regardless of whether it successfully overrides compliant miner blocks

or not. A value of y instructs the tool to generate a model that forgives the adversary for any

stale blocks, while a value of n instructs the generation of a more accurate model. Similar to

the optimistic over payment flag, this flag allows highly optimized models to be generated at

the cost of representing an adversarial miner with a more rewarding action space than possi-

ble.

Matching Estimate. For Reward-All Incentive Compatibility model inputs, this parameter

specifies whether rewards for compliant miners during block races between chains of length

K are estimated with every new block arrival instead of at the end of the block race resolu-

tion. For γ values of, 0, 0.5 and 1.0, setting this parameter to y enables the tool to generate

a more optimized model without sacrificing accuracy. For other values of γ, this parameter

should be set to n, as to accurately model the compliant miners’ rewards.

Generate Scheduler. This parameter determines whether the tool will retain the resulting

optimal adversary actions in all states and use them to run a simulation which validates the

model checker’s results. A value of y instructs the retention of the adversary, while a value of

92 Chapter 5. Block Withholding Attack Analysis

n skips this retention and does not run a simulation.

Choice Labels. This parameter determines whether the tool will explicitly label all choices

in the generated model with their action name. A parameter value of y creates choice labels

in our model, while a value of n skips their creation.

5.4.3 Output

On each run, the tool outputs the parameters used to generate and solve our model, a con-

cise description of the generated MDP, the results returned by the model checker, and the

validating simulation results if applicable. Furthermore, for the generation, solving, and val-

idation steps, the tool outputs the amount of time taken at each step. The following is an

example output transcript:

EXTENDED
Incentive Compatibility Analysis
K=140 T=256 A=0.25 G=0.5 H=1000000 O=1 F=1 E=1 S=1 C=0
Formula: R{"revenue"}max=? [F "exit"] R[exp]{"revenue"}max=? [F "exit"]
Explicit Model Construction:
Threatening states: 5142686
Seconds: 72
VM: 4525212 RS: 4471156
--
Model type: MDP (sparse)
States: 7921761
Transitions: 62745924
Choices: 17471240
Reward Models: revenue
State Labels: 2 labels

* exit -> 3 item(s)
* init -> 1 item(s)

Choice Labels: none
--

Model Checking:
Seconds: 973
I(a) = 0.25
1 - I(a) = 0.75
(1 - a) - I(a) = 1.657e-06
Simulation: (Fractional, Timed)
0.25,0.25 0.25,0.25 0.25,0.25 0.25,0.25 0.25,0.25

5.4. Implementation 93

0.25,0.25 0.25,0.25 0.25,0.25 0.25,0.25 0.25,0.25
0.25,0.25 0.25,0.25 0.25,0.25 0.25,0.25 0.25,0.25
0.25,0.25 0.25,0.25 0.25,0.25 0.25,0.25 0.25,0.25
Seconds: 36
Average Result: 0.25,0.25

The first three lines describe the model parameters that will be used to generate the MDP.

The subsequent line contains the property that will be optimized for our model, followed by

its corresponding equivalent Storm Formula, where the two are almost identical.

The Explicit Model Construction line is the heading that denotes the start of our model gen-

eration steps. The Threatening states count describes the number of states in our model

where the adversary can override the compliant miners’ chain or attempt to start a block

race. The Seconds line denotes the number of seconds spent generating our model. The VM

and RS counts describe the memory used by the tool.

The next set of lines describe the generated model. The model type, number of states, num-

ber of transitions, and number of choices correspond to the generated model attributes. The

reward models line specifies the named MDP transition rewards defined for the model. The

state labels line specifies how many special labels are used to mark special states, followed by

each label along with the number of states that have that label. In this output, two labels,

“exit” and “init”, are used to label four states collectively. The choice labels line describes

the number of labels used to mark special choices, if any.

The Model Checking header marks the start of the checking stage, whereby the Storm Model

Checker processes the provided model and property. The number of seconds taken to solve

our model is provided, along with the requested results. For our analysis, the adversarial

miner’s relative share of all mining rewards is printed, followed by the compliant miners’

share, and then the advantage gained by the adversarial miner under the optimal strategy

compared to what it would have attained by following the compliant strategy.

Lastly, the Simulation header marks the start of the simulation phase, and outputs the result

of each run. The results are separated by spaces, such that each result is a pair of numbers

denoting the adversary’s relative reward share, once using the adversarial miner’s relative

94 Chapter 5. Block Withholding Attack Analysis

mining power to directly calculate rewards as done in the MDP, and once using the amount

of time elapsed mining on each block to calculate rewards. As the two quantities match, this

indicates that the MDP accurately models reward allotment. The last two lines denote the

number of seconds spent running all simulations, and the average result of all runs combined,

respectively.

5.5 Results

Using our tool, we evaluated Nakamoto and Reward-All across the four different metrics pro-

posed by Zhang et al. [ZP19]. In this section we present our results, which demonstrate that

Reward-All chain quality matches that of Nakamoto, and that Reward-All can reach nearly

ideal incentive compatibility and censorship susceptibility under sufficiently long fork for-

giveness depths, but at the cost of a loss in subversion gain resilience that depends on block

difficulty and transaction values.

5.5.1 Chain Quality

Since block proposal and tie-breaking in Reward-All follow the same rules of Nakamoto,

Reward-All exhibits the same chain quality bounds under adversarial mining as Nakamoto.

Nonetheless, we reproduce the methods of Zur et al. to construct an MDP to quantify the

chain quality bounds of Nakamoto as in [ZET20]. Performing this analysis was a necessary

step towards our analysis of incentive compatibility in Reward-All, which we present next in

in Section 5.5.2.

We examine chains of maximum length C = 256 at an expected process termination horizon

of H = 106 confirmed blocks. The adversarial miner’s objective is to maximize its accepted

blocks before H blocks on average are accepted by both the adversarial miner and the com-

pliant miners. Our tool can support larger values of C and H for this analysis, however, they

do not yield significantly better results.

5.5. Results 95

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(1
−
α
)
−
Q
(α
)

γ = 0.0

γ = 0.5

γ = 1.0

Figure 5.4: Plot of loss in chain quality (1− α)−Q(α) in Nakamoto and Reward-All versus
adversarial mining power α, where Q(α) is the chain quality under α, for three values of γ.
Both protocols exhibit the same chain quality under the same parameters.

In Figure 5.4, we present the results of our analysis of the loss in chain quality versus the

relative mining power of an adversary that maximizes its relative share of blocks, yielding

results that are within ±0.01 of those of [ZP19, ZET20, SSZ16].

Our results for chain quality can be reproduced, for α ∈ [0, 0.45] and γ ∈ {0.0, 0.5, 1.0},

using the following command-line parameters in our tool:

nakamoto quality 0 256 α γ 1000000 y n

reward -all quality 0 256 α γ 1000000 y n

5.5.2 Incentive Compatibility

Despite the adversary’s ability to replace compliant miner blocks in Reward-All, the fact that

miners of forks of depth at most K are rewarded in Reward-All reduces the relative prof-

itability of selfish-mining. To quantify the incentive compatibility of Reward-All, we adapt

the approach of Zur et al. in [ZET20] to construct an MDP which models the mining pro-

cess while accounting for the time spent mining as described in Section 5.2. The adversarial

miner’s goal in this model is to maximize its RI rewards, specified in Table 5.1, before H

coins on average are rewarded.

We permit forks of length up to K = 140 to be rewarded, while modeling chains of maxi-

96 Chapter 5. Block Withholding Attack Analysis

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(1
−
α
)
−
I
(α
)

Reward-All
Nakamoto γ = 0.0

Nakamoto γ = 0.5

Nakamoto γ = 1.0

Figure 5.5: Plot of loss in incentive compatibility (1 − α) − I(α) in NC and Reward-All
versus adversarial mining power α, where I(α) is the incentive compatibility at α. Reward-
All results for all γ are within ±0.001 of each other for α ≤ 0.45.

mum length C = 256 at an expected process termination horizon of H = 106 confirmed

reward coins. We reach this value of K by performing a binary search for the least value of

K for which the optimal policy for maximizing relative rewards cannot attain more than a

0.011 improvement, even when γ = 1, for adversarial hashing powers of α ≤ 0.45. Our

choices for C and H permit us to create MDPs that lead to solutions that cannot be signifi-

cantly improved with higher H or C values [ZET20].

In Figure 5.5, we plot the results of our analysis of the loss in incentive compatibility for

Nakamoto and Reward-All with respect to the relative mining power of an optimal adver-

sary which maximizes its relative share of mining rewards. Our yielded numerical rewards for

Nakamoto are identical to those obtained in the analysis of its chain quality presented ear-

lier. This is because a miner’s relative share of the mining rewards in Nakamoto correspond

directly in our model to the miner’s relative share of the blocks accepted by both the adver-

sarial miner and the compliant miner network. On the other hand, our analysis of Reward-

All yields drastically improved results.

This improvement is mainly attributed to the fact that Reward-All rewards compliant min-

ers for the work they have performed towards mining blocks of height less than K within

the race. Consequently, despite the adversary’s ability to replace compliant miner blocks,

the compliant miner rewards are mostly retained. The adversarial miner could only increase

5.5. Results 97

its relative share of rewards when it manages to override compliant miner blocks that form

a blockchain suffix longer than K blocks. As K increases, it becomes increasingly more dif-

ficult for the adversarial miner to mine more blocks than the compliant miners, since α <

(1− α) (i.e. adversary blocks arrive less often than compliant miner blocks do on average).

Our results for incentive compatibility can be reproduced, for α ∈ [0, 0.45] and γ ∈ {0.0, 0.5, 1.0},

using the following command-line parameters:

nakamoto incentive 0 256 α γ 1000000 y n

reward -all incentive 140 256 α γ 1000000 y y y y n

5.5.3 Censorship Susceptibility

Because of the right to claim mining rewards for the mining effort spent towards compliant

miner blocks that were later replaced by the adversarial miner, Reward-All exhibits stronger

resilience against censorship than Nakamoto. To quantify the censorship susceptibility of

Reward-All, we follow the approach of Zhang et al. [ZP19], and construct an MDP that fo-

cuses on the time spent mining by the compliant miners. In this MDP, the adversary maxi-

mizes the long-run average of the RC rewards specified in Table 5.1.

We permit forks of length up to K = 206 to be rewarded, while modeling chains of maxi-

mum length C = 256. We reach this value of K by performing a binary search for the least

value of K for which the optimal policy for maximizing RC rewards cannot cause more than

a 0.011 loss of profits to the compliant miner network, even when γ = 1, for adversarial

hashing powers of α ≤ 0.45. Higher values of C do not significantly improve model results,

and create larger MDPs which are slower to solve.

This is a significant improvement over censorship susceptibility in Nakamoto, whereby an

equally powerful adversarial miner can cause the compliant miner network to lose a portion

equal to 0.8182 of its rewards. However, because of the disassociation between block discov-

ery and rewards in Reward-All, these results can be interpreted differently, such that com-

pliant miners in both Reward-All and Nakamoto can lose the same portion of their mined

98 Chapter 5. Block Withholding Attack Analysis

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
α

0.0

0.2

0.4

0.6

0.8

1.0

C
(α
)

Reward-All
Nakamoto γ = 0.0

Nakamoto γ = 0.5

Nakamoto γ = 1.0

Figure 5.6: Plot of the censorship susceptibility C(α) in NC and Reward-All versus adversar-
ial mining power α. In Reward-All, results for all values of γ are within ±0.001 of each other
for α ≤ 0.45.

blocks due to an adversarial miner that follows the optimal censorship policy.

Our results for censorship susceptibility can be reproduced, for α ∈ [0, 0.45] and γ ∈ {0.0, 0.5, 1.0},

using the following command-line parameters:

nakamoto censorship 0 256 α γ y n

reward -all censorship 206 256 α γ y n

5.5.4 Subversion Gain

The forgiveness mechanism in Reward-All for K-long forks creates an incentive to always

attempt double-spends in the system, as there is no punishment to failing to double-spend

when merchants wait for σ ≤ K block confirmations on transactions. However, because of

the equivalence in chain quality guarantees between Reward-All and Nakamoto, the probabil-

ity of success of a double-spend attempt remains the same in both systems. The goal of the

adversary in this MDP is to maximize the long-run average of its RS rewards from Table 5.1.

We consider block races with a cutoff of C = 256 blocks, and a fork forgiveness depth of

K = 206 blocks. This value of K allows us to evaluate security against double-spending

while ensuring that the adversary does not have an advantage of more than 0.011 in either

incentive compatibility or censorship susceptibility scenarios, as discussed in Sections 5.5.2

5.5. Results 99

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
α

0.0

0.2

0.4

0.6

0.8

1.0

S
(α
,σ
,V

d
s)

Reward-All γ = 0.0

Reward-All γ = 0.5

Reward-All γ = 1.0

Nakamoto γ = 0.0

Nakamoto γ = 0.5

Nakamoto γ = 1.0

Figure 5.7: Plot of the subversion gain S(α, σ = 6, Vds = 3) in NC and Reward-All versus
adversarial mining power α.

and 5.5.3. Similarly, higher values of C do not significantly affect our results.

In Figure 5.7, we present the analysis of the profitability of attempted double-spending in

Nakamoto and Reward-All. Remarkably, a significant regression in Reward-All compared to

Nakamoto in our analysis can be seen. Specifically, for the same value of γ, Nakamoto out-

performs Reward-All across all values of α. This is because the adversary incurs no mining

reward losses in Reward-All when it fails to produce a withheld chain of length shorter than

K and gives up its current forking attempt.

However, the Nakamoto and Reward-All results in Figure 5.7 do not constitute a straight-

forward comparison. This is because the reward Vds for each successful double-spend is spec-

ified in terms of multiples of the total rewards issued per block. In Nakamoto, the to-

tal rewards issued per block do not increase with how much mining power is invested into

the network. In Reward-All, on the other hand, more rewards are granted as the network

grows. Consequently, to attain a like-for-like comparison, one must first specify a total hash-

ing power for Reward-All, and subsequently convert the Vds value used in the Reward-All

analysis to a comparable value for the Nakamoto analysis.

To elaborate, consider the case where both networks have the same block arrival rate, and

the same hashing power of 150 × 1018 hashes per second, which is approximately within the

same order of magnitude of the current Bitcoin network hashing rate. Each Nakamoto block

100 Chapter 5. Block Withholding Attack Analysis

would reward 6.25× 108 units per block, while each Reward-All block would reward approxi-

mately 150× 1018 units on average. For the results presented in Figure 5.7 to be comparable,

one would have to assume that 1 Nakamoto coin is equal in value to 24 × 1010 Reward-All

coins. If the value of Reward-All coins increases compared to Nakamoto coins, one would

have to consider an equally lower Vds value for Reward-All to evaluate and compare double-

spending incentives against Nakamoto. Similarly, one would have to consider higher Vds val-

ues for Reward-All if its value equally decreases against Nakamoto coins.

Our results for subversion gain can be reproduced, for α ∈ [0, 0.45] and γ ∈ {0.0, 0.5, 1.0},

using the following command-line parameters:

nakamoto subversion 0 256 α γ 6 300 y n

reward -all subversion 206 256 α γ 6 300 y n y n

5.6 Summary

In this chapter we quantified Reward-All’s resilience against block withholding attacks, show-

ing its advantages and feasibility under practical parameterizations. Our analysis focused on

quantifying chain quality, incentive compatibility, censorship resilience, and subversion gain

in Reward-All, as per the definition of Zhang et al. for these metrics [ZP19].

In Section 5.1 we first presented the main parameters for initializing our models. Using two

main parameters, we described how we capture block arrival times and adversarial block

propagation in our MDPs.

Then, in Section 5.2 we described our MDP state variables, which hold the information re-

quired to represent the mining process when modelling each block withholding attack. Pri-

marily, we detailed three new state-variables in addition to those already utilized in analyz-

ing Nakamoto to model attacks in Reward-All.

Subsequently, we introduced the different actions in Section 5.3 that an agent in one of our

MDPs can perform, the state transitions these actions create in the MDPs, and the condi-

5.6. Summary 101

tions which must be met for each action to be valid.

Next, in Section 5.4, we presented our MDP solving tool, which is based on the Storm Model

Checker. We presented how we implemented each MDP model in the tool, and described how

to execute each model with different parameters.

Lastly, we demonstrated in Section 5.5 that the reward structure of Reward-All can offer sig-

nificant advantages in terms of the protocol’s incentive compatibility and censorship suscep-

tibility compared to Nakamoto Consensus, without any loss in chain quality. We furthermore

quantified the costs of these advantage in terms of the loss in resilience against subversion

gain, and elaborated on how the increasing block difficulty in Reward-All’s leads to subver-

sion gain resilience improvements.

In the next chapter we evaluate the costs of using our prototype Reward-All implementation.

Chapter 6

Evaluation

In this chapter we evaluate the practicality of Reward-All, comparing its efficacy against that

of Nakamoto. We focus on our reward issuance process, quantifying its overheads and advan-

tages in terms of its parameters. To show that Reward-All is feasible, we implemented a full

local miner node prototype capable of demonstrating that a permissionless peer-to-peer over-

lay network of Reward-All miners can run and manage replicas of a cryptocurrency ledger

while their rewards are proportional to their computational investment in the Nakamoto con-

sensus process.

First, in Section 6.1 we present our implementation considerations and solutions from a high-

level design perspective, leaving low-level details to Appendix A. We introduce our multi-

threaded Reward-All implementation architecture, which ensures different threads do not

block each other’s progress, and present additional components designed to overcome the

technical challenges of realizing Reward-All mining, smelting, and minting in practice. Then,

in Section 6.2, we present the overheads associated with the sizes, in bytes, of the smelted

proofs in Reward-All, and the trade-offs between waiting time and rewards received that min-

ers can exploit under different conditions. Furthermore, we derive the coefficient of variation

of mining rewards in Reward-All, and compare it to that of Nakamoto. Interestingly, this

coefficient is a constant value of 1 in Reward-All, outperforming all state-of-the-art mining

reward proposals in stability. Lastly, we summarize this chapter in Section 6.3.

102

6.1. Implementation 103

6.1 Implementation

To implement our prototype, we wrote 6581 lines of Python code across 71 files. Our im-

plementation’s data structures share many similarities with the Ethereum cryptocurrency

ledger, sharing its design choice of multi-use addresses and Merkle-Patricia Trie based ledger

commitments [W+14].

Our main challenge was that Reward-All mining procedures require additional complexity

compared to those of Nakamoto, particularly when searching for a nonce to produce a block,

when monitoring whether hash attempts are successful, and when validating newly created

coins. These concerns stem from the fact that in Reward-All we introduce additional meta-

data in the mining search space, and a minting target that parallels the block mining target.

As we presented in Chapter 4, both of these components are crucial to creating slabs, the

crux of our smelting and minting processes.

We prioritize minimizing the overhead slab creation places on the mining process in our im-

plementation, such that miners using our implementation do not suffer a disadvantage in

their hashing throughput when producing and storing slabs compared to miners who would

only mine blocks and forgo slab production. This efficiency ensures that miners cannot in-

flate their block production rate at the expense of their slab production. Furthermore, we

ensure that slab validation during minting is not computationally demanding.

6.1.1 Multi-threaded Architecture

In our design, we identify three main threads as time-sensitive, and mutually blocking, lead-

ing us to prevent their execution from being blocked by each other through multi-threading.

As we illustrate in Figure 6.1, these three threads enable the user interface, primary Reward-

All functionalities, and peer-to-peer networking communication. Our design is mainly struc-

tured around two input/output handling threads for the console interface and networking, in

addition to one critical application logic thread for our primary logic. This concurrent divi-

sion of labor allows us to reduce the impact of auxiliary operations on mining performance,

104 Chapter 6. Evaluation

User Console
Interface

Interface
Thread

Mining*

Smelting

Minting

Primary
Thread

Gossip
Protocol

Networking
Thread

Reward-All Node

Peer

Figure 6.1: Reward-All implementation architecture diagram. The User and Peer are pro-
cesses external to the system, which communicate with the node via the interface and net-
working threads respectively. While not pictured, bidirectional inter-process communica-
tion channels exist between all three threads. * The Mining process launches child threads
as needed.

which is our fundamental concern.

Primary Thread. Our architecture’s efficiency relies primarily on the user input of the

minting target (Tm), which determines how frequently mining is interrupted on the primary

thread to store slabs. If the local miner outputs slabs in between each block arrival so fre-

quently that the average hashing throughput of its mining procedure is disrupted, then we

consider Tm as relatively low compared to the average target the local miner can effectively

meet once per block arrival on average.

This frequent interruption can be disruptive because the mining procedure launches indepen-

dent threads for each batch of mining attempts. Each thread terminates after producing a

slab or block, and returns its output to the Primary Thread for storage before another thread

is started to continue mining with new metadata. Smelting, and minting, tasks, however, op-

erate directly on the Primary Thread without significantly disrupting performance.

Nonetheless, our implementation serves as a prototype, and can benefit from additional fea-

tures and optimizations for use in a live network. Notably, a means to perform distributed

mining across multiple machines is necessary. For a single user operating multiple indepen-

dent mining hardware units, using different identities for each unit would create a minting

cost overhead, as each unit would require its own minting transaction. When using the same

6.1. Implementation 105

identity across machines, however, the mining metadata has to be coordinated between them,

and the resulting slabs smelted together for minting. Consequently, our prototype is only

most suitable for a user to operate an independent peer that only utilizes one machine in the

network.

Networking Thread. We created our implementation to permit a local miner to act as

a node in a distributed peer-to-peer network of Reward-All miners. The Networking Thread

essentially communicates with a set of peers, which are specified by the user, in order both

to decide on the canonical chain that the local miner should base its mining efforts on, and

to guide its peers towards mining on that same chain. Consequently, the main role of this

thread is to gossip with peers on ledger data, propagating and retrieving transactions and

blocks.

To remain efficient, a local miner only solicits full block data from its peers when such data

is relevant to extending or changing its local view of the canonical chain. Similarly, a miner

only provides full block data when solicited by its peers, and instead advertises a summary of

newly acquired blocks when available. For example, when the local miner finds or receives a

new block, it only advertises the block’s header to its peers, and only provides the block’s full

contents to peers which solicit it. Similarly, only transaction hashes are advertised, and full

details are provided to a peer upon solicitation.

To facilitate this prototype’s deployment in practice, however, some improvements can be

made to its networking. For example, a peer reputation system, such as that of Bitcoin nodes,

which allows a local miner to maintain a rating of its peers based on their behavior is neces-

sary. Such ratings can be then used to drop connections with misbehaving peers, which e.g.

provide invalid block data or do not answer solicitations for advertised data. Furthermore,

peer discovery mechanisms are also required in order to enable the overlay network to au-

tomatically form new connections rather than depend on manual user specification of node

addresses.

106 Chapter 6. Evaluation

Interface Thread. This thread mainly reads the local miner’s state, and renders it as a

textual user-interface in the console. It furthermore reads user-input and translates it into

internal instructions which our three main threads can process. While this thread’s role is

fairly straightforward, the challenges we faced in its design are three-fold.

First, it should not slow down other procedures in order to read the local miner’s state. A

naive implementation that performs regular polling in order to provide a live view to the user

would be too disruptive. Instead we only push state updates when changes occur.

Second, it should be responsive to user commands without disrupting the execution of other

procedures. Rather than naively immediately executing operations based on user input, which

can leave the ledger in an incoherent state, we pass instructions to their destination threads

using queues, and delegate when to best act on instructions to the destination threads.

Third, rendering the interface must not be computationally expensive. Not only is rendering

high-resolution images and rich graphical user-interfaces unnecessary to our implementation’s

utility, but so is repeatedly refreshing the interface, which uses precious CPU time. Conse-

quently, we only render the latest state in the console as a Text User-Interface (TUI) every

500 milliseconds. This not only reduces the workload on the local miner, but also enables the

TUI to be efficiently used by clients connected remotely to the local miner’s console.

6.1.2 Data Flows

In this section we present how we store, retrieve, and process the data that enables Reward-

All coin issuance throughout our implementation. Of particular interest are two of our mech-

anisms. The first is for minimizing the interruption of mining to store the generated slab

data, even when operating under relatively low minting targets that would result in frequent

mining interruptions in a naive procedure. The second is for preventing reward duplicity

when minting coins, such that reference and sequence numbers that were previously used for

coin issuance by the same miner cannot be reused.

6.1. Implementation 107

Mining Slabs Aggregation
Merkle

Trees
Smelting

Partial

Proofs
Reconstruction

Proving

Data
Minting

Restricted

Batches

Figure 6.2: Reward-All implementation data flow diagram. In addition to the processes spec-
ified in the original system design, we introduce five additional components in this diagram:
The aggregation process, their resulting merkle trees data outputs, partial proofs that
result from smelting, the reconstruction process, and the restricted batches resulting
from minting.

Aggregation and Reconstruction. In our implementation we introduce two additional

intermediate processes between mining, smelting, and minting. The first is Aggregation,

whereby the resulting slabs from mining are encoded as Merkle tree commitments before be-

ing accessible for smelting. The second is Reconstruction, whereby the partial proofs that

result from smelting encoded Merkle trees are amended to include the necessary proving data

by our Reward-All protocol. One additional parameter, the compression commitment

height N , determines the efficiency and performance of these two additional steps both in

reducing the number of times a local miner commits slab data to its storage and in maximiz-

ing mining throughput.

Aggregation. During the aggregation process, a batch of slabs of some predetermined size 2N

slabs, where N is the compression commitment height, is first found in memory by the miner.

Then, only the Merkle-tree root commitment to the 2N slabs is passed to the storage, along

with the reference and sequence number range metadata of the slab batch.

Reconstruction. During reconstruction, we recompute each batch selected in a smelted proof

in order to amend the proof with the Merkle-tree inclusion data necessary to open the com-

mitment data behind the targeted set of slabs. For each batch, where N is the compression

commitment height, 2N slabs are deterministically recomputed using the same reference and

sequence number ranges, such that the full tree behind the stored slab batch Merkle-tree

108 Chapter 6. Evaluation

roots is recreated.

As N increases, the savings associated with storage space and throughput increase. However,

the reconstruction process also becomes more computationally intensive. For significantly

large minting targets, such as those which can be met on average only once per block by the

local miner, increasing N may lead the reconstruction costs to outweigh the storage savings.

While these two processes reduce the frequency of mining interruptions, we furthermore im-

plement a measure to reduce the duration, or impact, of each mining interruption. Namely,

we pre-generate a series of reference and sequence block number pairs to be used for the next

series of mining attempts. This amortizes the storage lookup costs necessary for reference

and sequence block number generation over a series of mining interruptions. The length of

the series is configurable in the implementation.

Restricted Batches. As mentioned in Section 4.4, slab data that was previously used to

smelt a proof and mint a set of coins may not be reused to mint a different set of coins in

order to prevent reward duplicity. We differentiate between different batches of slabs using

only two pieces of information: the miner address, and the sequence block number.

While two or more different batches of slabs may share the above information, but have dif-

ferent reference block numbers or nonces, and consequently require independent amounts of

work to create, using only the above fields, we efficiently prevent reward duplication through

one rule:

For each miner, every new batch of slabs must utilize a starting sequence block

number larger than all previously used ending sequence block numbers.

Minting transactions that conform to this rule are referred to as restricted batches, as il-

lustrated in Figure 6.2. Notably, under this rule, miners should not use starting sequence

block numbers that would lead to a loss of the value of previously unused slabs with lower

sequence block numbers.

6.2. Results 109

Se
qu

en
ce

#

1K
2K
3K
4K
5K
6K

Figure 6.3: Example restricted minting scenario. Empty circles denote non-existent weak
headers. Full circles denote valid weak headers. Squares denote reference blocks. The row
of a circle determines the sequence number range its headers fall in. The column, or block,
determines the reference block number used by all represented headers. Three shaded regions
denote three individual batches of weak headers published in minting transactions in their
corresponding block shaded in the same style.

To illustrate this rule, we provide an example scenario in Figure 6.3. One miner in this case

publishes three minting transactions in the three shaded blocks. The shading of the block

corresponds to which batch of slabs it rewards. In each minting transaction, the miner pub-

lishes proofs for 6, 000 slabs, and receives no penalty as the transactions are confirmed in

the blocks immediately following the last used reference block numbers. If the minting trans-

action for the second batch of slabs were confirmed before the first, the miner would not be

able to publish a minting transaction for the first batch, not considering the penalty.

6.2 Results

To gain insight into Reward-All, we take several different evaluation approaches. Namely, we

measure reward issuance costs, simulate different parameterization scenarios to understand

how transaction fees can affect minting, and mathematically derive a model of Reward-All

coin creation stability.

6.2.1 Proof Sizes

In our sampling-based approach, proof sizes are expected to grow in proportion to the frac-

tion of validity required from the proof. To assess proof sizes in concrete terms, we use the

110 Chapter 6. Evaluation

SHA3 hashing function with an output of length 32-bytes (256 bits) with the security pa-

rameter λ = 128 in the proving system. Consequently, each sampled slab is comprised of

160 bytes for the header, in addition to a the Merkle-tree inclusion proof data. As only full

binary Merkle-trees are considered within our implementation, which are augmented with

dummy-nodes if they are not full, the number of bytes required for the Merkle-tree inclusion

proof of each sample is equal to ⌈log2 |headers|⌉, where |headers| is the total number of

headers the proof is referring to.

In Figure 6.4, we plot the proof-size evaluation results on a semi-log scale using Equation 6.1.

With 250 slabs, proving that 50% of slabs are valid requires 220 kilobytes of data, while

proving that 95% of a collection of 265 slabs requires 3.6 megabytes of data. Effectively, this

approach renders fractions of validity close to 1 impractical, which means that no miner can

be fully compensated for its entire collection of slabs using a sampling based proof.

B = 32× log 2−λ

log θ
× (⌈log2 |headers|⌉+ 5) (6.1)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of Validity θ

103

104

105

106

107

Pr
oo

fb
yt

e
siz

e
B

⌈log2 |headers|⌉ = 20

⌈log2 |headers|⌉ = 35

⌈log2 |headers|⌉ = 50

⌈log2 |headers|⌉ = 65

⌈log2 |headers|⌉ = 80

Figure 6.4: Semi-log plot of proof byte sizes versus claimed fractions of validity for different
header collection sizes, derived from Equation 6.1 for λ = 128.

On the other hand, it can be more cost-effective to fully reveal an entire collection of slabs

rather than samples of it, depending on the number of slabs |headers| in the collection and

the target fraction of validity θ. As long as Inequality 6.2 holds, the data required to reveal

the entire collection would be no more than that required for the sampling based proof, but

6.2. Results 111

would permit full validation of the entire slab collection.

160× |headers| ≤ B (6.2)

For example, revealing as little as 5 slabs would only cost 800 bytes. If a miner’s share of the

mining power is significant (e.g. 0.1%), and its minting target is equal to its power, it will

be, under certain transaction fee conditions, more economical to publish full slabs.

6.2.2 Reward Times

To evaluate mining reward times, we evaluate the expected number of blocks an α-strong in-

dependent miner in Reward-All would have to wait before it can receive compensation for its

work. We refer to this waiting time as the expected reward delay. Notably, at all times,

Reward-All cannot perform worse than Nakamoto because a miner can use the space in the

block it generates for its own minting purposes.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Minimum Net Fraction Received (θ × Θ)

100
101
102
103
104
105
106
107
108
109
1010

M
in

im
um

wa
it

tim
e

(B
lo

ck
s) r = 1

r = 0.1

r = 0.01

r = 0.001

r = 0.0001

Figure 6.5: Semi-log plot of minimum number of headers required in Reward-All for different
net payout fractions. r = cb

α×Db
denotes the ratio between cb, the cost per byte, and α×Db =

Dm, the maximum minting difficulty of a miner.

Consequently, our focus lies on evaluating the fraction of validity and transaction-fee thresh-

olds under which Reward-All has a smaller expected reward delay than Nakamoto for an α-

strong miner. In Figure 6.5, we plot the minimum number of slabs a miner would have to

accrue before it is able to publish a proof which rewards it with at least a fraction θ × Θ of

112 Chapter 6. Evaluation

the coins it is owed, which we refer to as the net reward fraction. This excludes penalties

or external expenses such as mining costs.

As a reminder, θ denotes the fraction of validity which the proof claims, i.e. the portion of

slabs which are proven valid with overwhelming probability. Θ denotes the fraction of proven

coins that will be rewarded to the miner after transaction fees are deducted.

We examine the relationship between the net reward fraction and the minimum number of

slabs under different values of r, which is the ratio between the cost per byte in transaction

fees cb and the miner’s minting difficulty per slab Dm that determines the reward per slab.

Since the minting difficulty Dm should not exceed α × Db to avoid penalties, as discussed

in Chapter 4, we use r is to infer a direct comparison between the expected reward delay in

Reward-All and in Nakamoto for different α-strong miners under the same block mining diffi-

culty Db and different transaction fees.

To compare the expected reward delay between Nakamoto and Reward-All, we first choose

the parameters α and cb. As an example, consider α = 0.01632% of the mining power,

and cb = 102, which is approximately the current cost per byte in Bitcoin for transaction

inclusion within the next block. The expected reward delay in Bitcoin for this miner is ap-

proximately 1
α
≈ 6127 blocks, which amounts to nearly 42.5 days. Then, we derive the ratio

r between the transaction fee per byte and the expected rewards per block for an α-strong

miner. Since the reward per block in Bitcoin is currently1 R = 6.25 × 108 coins (Satoshis),

therefore r = cb
α×R
≈ 0.01.

Using our calculated value of r for the α-strong miner, we can infer the expected reward de-

lay in Reward-All using Figure 6.5. When r = 0.01, the miner can claim 10% of its owed

coins after accumulating 1632 slabs, 20% with 2322 slabs, 30% with 3151, or 40% with

4736, which would amount to Dm multiplied by 163, 464, 945, and 1894 coins respectively.

More optimistically, with r = 0.001, miners can expect to claim up to 68% of their reward

every block with Θ = 0.68, and up to 96% when r = 0.0001 by setting Θ = 0.96. In such

1As of April 5th 2022

6.2. Results 113

a setting, it becomes economic for miners to publish full slabs that meet their minting target

as they are found, opting for full validation (θ = 1) of their reward claims, and paying the

fraction 1−Θ of the coins minted as transaction fees.

In hindsight, an eager independent miner can pay a portion of its mining rewards to reduce

its expected reward delay in Reward-All, while such an option is not present in Nakamoto

without joining a mining pool. The cost of this perk largely depends on the overhead of the

proving system, which is non-negligible in our specification of Reward-All, and may lead the

miner to choose to collect transaction fees instead of utilizing its mined block to mint its own

coins.

6.2.3 Reward Variance

We derive the coefficient of variation of the distribution of mining rewards per block in Reward-

All as follows. Let RA(α) denote the random variable which represents the fraction of un-

minted mining rewards attained by an individual miner in Reward-All with a share α

of the total network’s hashing power. As the block discovery process is identical to that of

Nakamoto, the time interval between block arrivals follows an exponential distribution,

such that blocks continuously arrive independently of each other at an average constant rate

λ. Such a distribution is denoted by Exp(λ), and is used to define RA(α) accordingly in

Equation 6.3:

RA(α) = Exp(λ)× α (6.3)

It follows that since the expected value E[Exp(λ)] = 1
λ
, therefore the expected value of

RA(α) is as follows in Equation 6.4:

E[RA(α)] = E[Exp(λ)]× α =
α

λ
(6.4)

Furthermore, as the variance Var[Exp(λ)] = 1
λ2 , the variance of RA(α) is derived in Equa-

tion 6.5 as follows:

Var[RA(α)] = Var[Exp(λ)]× α2 =
α2

λ2
(6.5)

114 Chapter 6. Evaluation

Lastly, Equation 6.6 presents the formula for the coefficient of variation of RA(α), which is

defined as the ratio of the standard deviation of the variable to its mean:

CV[RA(α)] =

√
Var[RA(α)]

E[RA(α)]
= 1 (6.6)

The coefficient of variation of per block mining rewards in Nakamoto is [SRHS19]:

CV[NC(α)] =

√
α× (1− α)

α
(6.7)

10−4 10−3 10−2 10−1 100
α

10−1

100

101

102

Co
effi

cie
nt

of
Va

ria
tio

n

NC
Reward-All

Figure 6.6: Log-scale plot of coefficients of variation in Nakamoto and Reward-All versus
mining power α.

In Figure 6.6, we present a plot which demonstrates how the constant coefficient of varia-

tion in mining rewards of Reward-All compares to the variable coefficient of Nakamoto at

different individual mining powers α. Consequently, it can be seen that Reward-All outper-

forms Nakamoto in reward variability for α < 0.5, and a tie is found at α = 0.5. How-

ever, Nakamoto miners with α > 0.5 of the mining power exhibit less reward variance than

Reward-All miners with the same hashing power.

6.3 Summary

In this chapter we presented our implementation of a Reward-All full-node, and our corre-

sponding evaluation of Reward-All. For brevity, we delegated low-level technical discussions

6.3. Summary 115

around implementation code to Appendix A. We introduced the challenges to implementing

Reward-All, and our corresponding solutions which enable miners to minimize the overheads

associated with slab production and storage. Furthermore, our evaluation focused on quan-

tifying proof sizes and the variables that affect them, the costs which miners would have to

incur before being able to mint their coins, and the long-term stability of the flow of mining

rewards for miners of different relative mining powers.

First, in Section 6.1 we introduced our implementation’s multi-threaded architecture, high-

lighting our use of threading to protect mining performance from being hindered by other

tasks in the application. We overviewed our three main threads, which executed our proce-

dures for our user-interface, core Reward-All logic, and networking. Moreover, we presented

how data flows across different components of our implementation, explaining the main chal-

lenges associated with supporting the Reward-All coin issuance model. We first discussed

how we handle relatively low minting targets to minimize storage space and mining interrup-

tions. Then we described our measures that efficiently prevent reward duplicity.

Later, in Section 6.2.1, we examined the byte-sizes of proofs in our Reward-All implemen-

tation, and highlighted a clear boundary equation using which Reward-All miners can de-

cide whether it is more economical to use our probabilistic proving system, or publish their

full slabs onto the chain. Furthermore, we examined the trade-off Reward-All miners can

make between spending rewards early, and spending discounted rewards, under different

transaction-fee conditions, showing that Reward-All offers a reward time advantage not present

in Nakamoto. Lastly, we systematically derived the coefficient of variation of per-block Reward-

All mining rewards for miners with different relative mining powers. We showed that Reward-

All establishes a constantly stable stream of reward for miners of all sizes over the long term,

outperforming the Nakamoto reward stability for miners with less than half of the mining

power, yet falling behind the stability offered by Nakamoto for miners with more than half of

the total network mining power.

In the next chapter we discuss the challenges and limitations of our Reward-All protocol, and

propose solutions to overcoming their drawbacks.

Chapter 7

Discussion

In this chapter we discuss the most notable operational aspects of Reward-All, as well as out-

line approaches and methods for tackling the challenges they pose. Our main areas of con-

cern are the security and feasibility of operating a Reward-All blockchain in practice, focusing

on the qualities of mining, smelting, and minting.

We first examine in Section 7.1 how negligent miners, which dedicate their mining resources

to creating slabs, rather than contributing to block creation difficulty, can be dissuaded.

Then, in Section 7.2 we consider the incentives for miners to form pools in Reward-All, and

how pool members can mine blocks independently, but combine only their slabs to cut down

costs. Subsequently, we explore how to maximize the potential gain from the smelting pro-

cess in Section 7.3 while minimizing minting penalties and costs. Lastly, we look at the unique

coin supply properties Reward-All issuance establishes in Section 7.4, where we investigate

total coin supply transparency, transaction inclusion incentives, and real-world coin valua-

tion.

7.1 Negligent Mining Deterrence

One remarkable difference between Nakamoto and Reward-All is that a miner which utilizes

its power only towards creating slabs for minting, without aiming to append a valid block to

116

7.1. Negligent Mining Deterrence 117

the main blockchain accepted by the network, may still receive mining rewards.

While this problem is similar to mining empty blocks in Nakamoto, such that the main dis-

incentive for this behavior is the miner missing out on collecting transaction fees, the main

difference in Reward-All is that miners who do not contribute towards increasing the block

mining difficulty of the main blockchain can still be rewarded.

We refer to such miners as negligent, as they ignore strengthening the security of the chain

that their rewards are tied to against block replacement. Despite the penalty introduced in

Section 4.3 against miners which reference fairly outdated blocks, and the loss in potential

transaction fee earnings, negligent mining is not completely eliminated.

Solution. Our proposed solution to this problem would be to introduce a specialized keep-

alive mechanism, which is of independent interest. We summarize this mechanism as follows:

1. Miners append additional metadata to their slabs. This additional data is a commit-

ment to the following:

(a) The miner’s network identity, which is a freshly generated public identity.

(b) The Merkle-tree root of the miner’s set of peers. This set must be of a globally

fixed sufficiently large size (e.g. 128).

(c) The miner’s keep-alive target. This value is similar to the minting and mining tar-

gets, but is used only as the threshold for which keep-alive messages are sent to

peers. The miner must be able to meet this target periodically.

2. Whenever the miner meets the keep-alive target while mining, it sends a keep-alive

message to its peers, which contains the Proof-of-Work, and the metadata above. Each

peer validates its membership in the set of peers in the metadata, and that the PoW is

mined on the latest block in the canonical chain.

3. Miners attempt to maximize the cumulative difficulty contribution of their peers, such

that when a connection with a larger keep-alive target can be established in exchange

for dropping that of a lower keep-alive target, the opportunity is taken.

118 Chapter 7. Discussion

In essence, we believe this should force negligent miners to contribute to the canonical chain’s

mining difficulty the minimum amount of work necessary to stay connected to the overlay of

compliant miners and synchronized with the latest canonical block. With this mechanism in

effect, mining on older blocks can no longer be attributed to neglecting to synchronize the

latest block state, and may only be useful for intentionally-adversarial chain forking.

7.2 Pooled Mining Incentives

For individual Nakamoto miners with small mining powers, joining a mining pool offers a

solution to the problem of having to wait too long for rewards. Even in Reward-All, miners

are incentivized to join mining pools, because the minting costs are shared by the entire pool,

which would drastically improve the cost-efficiency of minting for small Reward-All miners.

In Nakamoto, large mining pools are attractive because they offer steadier rewards than

their smaller counterparts. However, reward variance in Reward-All is constant (q.v. Sec-

tion 6.2.3), allowing a mining pool with as little as 0.1% of the network hashing power to

enjoy an r-value1 ≈ 1.632 × 10−4 under today’s Bitcoin transaction fees, as explained in

Section 6.2.2.

Therefore, while redeeming mining rewards in Reward-All does not discourage mining pools,

as in [MKKS15], it does reduce the incentive to form significantly large ones. Of course, our

discussion ignores the potentially added income from sharing transaction fees in the mining

pool, which can form an additional incentive for pools to form.

Solution. Alternatively, we propose the formation of minting pools, rather than mining

pools, whereby miners conjoin together their batches of slabs during smelting, and submit a

unified set of batches for minting. When doing so, the posted proof for minting validates all

conjoined batches simultaneously, rather than one by one.

1Recall that r is the ratio between the cost per byte in transaction fees and the reward per slab.

7.3. Full Smelting Opportunity 119

In order to make grouped minting practical, our proving system must be altered in order to

support slab batches from different miners with different minting targets. However, each in-

dividual batch conjoined may still only contain slabs all having the same minting target for

simplicity. To accomplish this, we change our sampling strategy as follows. Each conjoined

batch is given a weight equal to the batch’s minting target multiplied by the number of slabs

in the batch. A batch’s weight, divided by the sum of all batch weights, decides the proba-

bility that the next sample will be drawn from that batch. After selecting a batch, a random

slab is uniformly drawn as previously done in our scheme. Furthermore, the verifier must also

ensure that no previously smelted slabs are being reused for every conjoined batch. This can

be accomplished for each batch as previously described in Section 4.4.

Under this scheme, miners are free to independently collect and validate transactions, avoid-

ing centralization. They mainly coordinate with each other when smelting the master proof

for their conjoined batches. Even at that stage, miners are free to change who they partner

with for minting, or to mint independently.

7.3 Full Smelting Opportunity

Recalling our earlier assumptions from Section 6.2.3, we modeled the canonical chain as hav-

ing an average inter-block arrival rate of λ, with each arrival being independent of all others,

such that the distribution of inter-block arrivals follows an exponential distribution Exp(λ).

Similarly, slabs are found by a miner at a constant rate on average, whereby individual inter-

arrival times also follow an exponential distribution. Denoting the slab arrival rate by λ̂, we

denote the exponential distribution of their inter-arrival times as Exp(λ̂).

Because of how these distributions behave, the ratio between λ̂ and λ is equal only to how

many slabs a miner expects to find before a new block is found on average. Consequently,

miners will not always be able to smelt a proof which captures all of the slabs they have

found so far, without incurring the penalty described in Section 4.4.2.

More specifically, because miners have to specify a reference block hash that is currently part

120 Chapter 7. Discussion

of the canonical chain, when the miner generates, for a given sequence number, a slab that

utilizes the canonical chain tip as a reference block, it must move on to another sequence

number. This means that, for each sequence number, a miner may not remain on par with

the chain’s height, and will slowly start to fall behind.

Notably, the unused portion of slabs does not go to waste, but can instead be used for a sep-

arate smelting operation. This leads to a “lock-in” effect for Reward-All miners, which deters

them from discontinuing mining, as miners which abandon mining have one of two choices:

(i) perform smelting and minting using the slabs accrued so far, incurring a penalty for se-

quence numbers which fall behind in terms of the latest reference block used, or (ii) discard

slabs accrued so far, losing out on their reward value. Such a lock-in effect is not present in

Nakamoto, where miners may stop at any time without such an explicit loss in rewards owed.

Solution. We can mitigate this issue using the following reference block hash and sequence

number scheduling strategy: given a starting reference block B and starting sequence num-

ber N , select the minimum possible sequence block number followed by the oldest possible

reference block as the next mined slab parameters.

50 51 52 53

Penalty Blocks

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Sm

elt
in

g
O

pp
or

tu
ni

ty
(H

ea
de

r%
)

2
4
8
16
32
64
128
256

Figure 7.1: Semi-log plot of the number of penalty blocks a miner is willing to accept versus
the expected fraction of accumulated headers the miner can utilize for smelting under differ-
ent header to block ratios. These values are measured for our reference and sequence number
scheduling strategy.

7.4. Coin Supply Dynamics 121

In Figure 7.1 we plot the effectiveness of utilizing our strategy, where we measure the ex-

pected fraction of accumulated slabs a miner will be able to utilize while smelting under dif-

ferent scenarios.

Our first observation is that as the ratio λ̂
λ
between the miner’s slab mining rate and the

block mining rate increases, the miner is able to utilize more of its accumulated slabs at a

time on average, reaching almost half at a time without penalty when λ̂
λ
= 256.

Second, we observe that as the difference in block height between the canonical chain tip and

the miner’s ending reference block increases, and consequently the minting penalty increases,

the miner is able to utilize a larger portion of its accumulated slabs when smelting. This is

because the miner is able to utilize a larger range of sequence numbers.

7.4 Coin Supply Dynamics

Transparency. Interestingly, our Reward-All mining mechanism introduces a layer of un-

certainty about the true total coin supply. Nothing restricts miners who continue to partici-

pate in mining from proving their successful weak mining attempts later rather than sooner.

This means that miners may choose to keep their coins secret without penalty, as long as

they continue to mine. Nonetheless, assuming that the effect of negligent mining on block

difficulty is negligible, the mining difficulty can be used to estimate the total number of hashes

computed by miners as we have done for Bitcoin in Chapter 3, establishing an upper-bound

on the total number of Reward-All coins all miners may mint.

Fees vs rewards. Because we employ a statistical-sampling based proving system, an over-

head is introduced to minting coins. When transaction fees are high, a miner may find it

more economic to refrain from proving that it should mint a set of coins as mining rewards,

or only mint a certain fraction. Even if the miner in question gets to propose a block, if it

chooses to occupy that block’s space with its own minting transactions, it would do so at

the cost of forgoing transaction fees that would it could have earned from including other

122 Chapter 7. Discussion

parties’ transactions. This means that it may be more profitable to collect transaction fees

instead of minting mining rewards when transaction fees are expensive, or it may not be cost-

effective or economic to mint rewards that are relatively small compared to the current trans-

action fees. Introducing a more cost-effective proving system to Reward-All, possibly based

on more complex cryptographic tools such as succinct zero-knowledge proofs, than our ap-

proach would reduce this overhead.

Coin valuation. Communities and advocates of many prominent cryptocurrencies en-

courage users to hold on to their coins and not sell them based on the belief that the price

of their coins will increase later on in time. This belief is mainly based on the fact that the

supplies of these coins exhibit a form of scarcity in their issuance that is fueled by a lack of

correspondence between the total amount of computational power invested in mining and

the number of coins issued as a reward per block. In Reward-All, such a correspondence ex-

ists, and therefore the notion that holding onto coins will yield a profit would not be as well

arguable based on coin scarcity. On the other hand, it does not make sense for a miner to

exchange a unit of currency it has earned for something of less value than its cost of min-

ing and endure a loss. This creates a natural price floor for Reward-All coins. However, fu-

ture advances in technology will result in cost-efficiency improvements and/or computational

power increases. This implies that over time, the cost of producing a single coin in Reward-

All would decrease as technology improves, leading to a form of inflation influenced by ad-

vances in hardware.

7.5 Summary

In this section we discussed several important challenges in Reward-All coin issuance, and

outlined our approach to overcoming them in practice.

First, in Section 7.1 we introduced the problem of negligent mining, whereby Reward-All

miners receive rewards despite not contributing to block mining difficulty, a phenomenon not

7.5. Summary 123

present in Nakamoto. In addition to the penalties imposed on said miners during minting, we

outlined a solution that enables compliant miners to filter out negligent peers, disconnecting

them from the network unless they contribute to block difficulty.

Second, in Section 7.2 we highlighted how high minting transaction costs can impact Reward-

All miner behavior, encouraging the participation in centralized mining pools. As a more

decentralized alternative, we proposed minting pools, whereby miners independently mine

blocks, yet conjoin their batches of slabs during minting in order to share the validation costs.

Third, in Section 7.3 we presented how slab accumulation speed may fall behind block pro-

duction, forcing miners to use outdated reference block hashes and endure harsh penalties

which lead to a lock-in effect that acts as an incentive against abandoning mining. As a coun-

termeasure, we presented our reference block and sequence block scheduling strategy, and

quantified its effectiveness in maximizing the number of accumulated slabs that can be smelted

at a time under different penalties and relative minting targets.

Lastly, in Section 7.4, we discussed various aspects about Reward-All’s coinage, whereby full

transparency into the total amount of coins may not be possible, transaction fees may cause

miners to favor earning transaction fees rather than minting, and potential profiteering from

holding onto a large set of coins would be practical.

In the next chapter we conclude this thesis with a summary of each chapter, an outline of

future research directions, and our final closing remarks.

Chapter 8

Conclusion

In this thesis we designed, analyzed, and implemented Reward-All Nakamoto Consensus,

a novel reward mechanism which provides equitable Proof-of-Work (PoW) mining rewards

while using Nakamoto Consensus. In this chapter we conclude our work. First, in Section 8.1,

we reexamine our methods, and assess our results, proceeding chapter by chapter. Then,

in Section 8.2 we outline our directions for future work. Lastly, we come to an end in Sec-

tion 8.3 with our final commentary.

8.1 Review

Chapter 1. We highlighted the drawbacks of Nakamoto’s winner-takes-all lottery, whereby

only a single miner is periodically elected to receive a fixed number of reward coins, and a

stale-block can reallocate that reward to a different winner with non-negligible probability.

Consequently, we established five main objectives for Reward-All to accomplish in order to

overcome these drawbacks without losing the core benefits of Nakamoto:

1. Establishing a fixed mining cost per coin.
2. Minimizing value leakage from mining rewards to existing coin holders.
3. Normalizing reward variance across mining powers.
4. Retaining the mutual peer distrust of Nakamoto.
5. Minimizing the impact of stale blocks on miner rewards.

124

8.1. Review 125

Chapter 2. As we set out to reinvent a core blockchain functionality, we reviewed central

notions of blockchain design, spanning ledger data structures, blockchain consensus protocols,

and mining reward mechanisms. Central to our objectives were our examinations of related

work in compliance payoff mechanisms, i.e. other alternatives to Nakamoto for issuing min-

ing rewards. Notably, state-of-the-art mechanisms which similarly aim to provide fairness for

miners fell short in at least one of thee primary ways compared to Reward-All.

1. They only allowed up to N winners to succeed in a recurring lottery similar to that of

Nakamoto, which still drives a competitive process with significant reward instability.

2. They did not account for the limited bandwidth of the underlying blockchain, which

would cause miners to permanently lose rewards during congestion.

3. They did not issue rewards in proportion to the mining power used by miners, which

would lead to unfair coin production costs.

Chapter 3. We established a computationally-grounded approach to measuring and man-

dating equity in reward issuance, creating a framework for modeling computational expen-

ditures, mining compensation, and coin value, all in terms of the number of PoW attempts

made during mining. Under our framework, we proposed a set of reward issuance constraints

which ensure both the proportionality of reward amounts to mining expenditures, and the

timeliness of delivering mining rewards to miners. In contrast to Nakamoto, where only a

fixed number of coins are issued, our approach permits the relative growth rate of the coin

supply to converge over time to the relative growth rate of the network’s mining power. No-

tably, only one related work partially satisfies our criteria, issuing rewards in proportion to

the block mining difficulty, but following a halving schedule similar to that of Nakamoto, and

having no notion of timeliness as in Nakamoto [Trz].

Chapter 4. We overcame the challenge of rewarding a potentially unrestricted number

of miners simultaneously by proposing a system design whereby miners individually track

their own computational expenditures in a verifiable manner by producing slabs in addition

126 Chapter 8. Conclusion

to blocks while solving PoW challenges. Our slabs not only enable miners to accrue rewards

as they mine, and spending these rewards when required, but also provide resilience against

reward loss due to stale-blocks. However, many other designs achieve similar properties to

Reward-All:

1. Receiving mining rewards is not conditional on being elected leader [DB19, DB20].

2. Stale blocks do not rescind all rewards associated with them from their miners [SZ15].

Nonetheless, Reward-All to date is the only design where a miner’s rewards are based on its

individual PoW solving throughput. Furthermore, the limited bandwidth of the underlying

blockchain does not lead to permanent loss of miner rewards, but only requires that miners

sustain their mining throughput until they spend their rewards.

Chapter 5. To assess Reward-All’s resilience, we extend the state-of-the-art in block with-

holding attack analysis methods to create four models of different attacks on Reward-All.

Our results demonstrate that Reward-All provides miners with near-ideal resilience in two

out of four attacks, equal resilience to Nakamoto in one attack, and worse resilience than in

Nakamoto against double-spending attacks. However, as block creation difficulty increases

in Reward-All, so does its double-spending resilience, permitting it to potentially exceed

Nakamoto for sufficiently high-valued transactions. Despite utilizing the state-of-the art in

probabilistic model checking tools, our analysis yields only upper-bounds on the advantages

an adversary can attain using block-withholding attacks. This is primarily due to the added

complexity of modeling Reward-All, which requires an exponentially growing state-space to

accurately depict in a model. Nonetheless, this only means that Reward-All actually per-

forms better than the results of our analysis in practice.

Chapter 6. To demonstrate and assess the practicality of operating Reward-All in prac-

tice, we created a prototype implementation of a Reward-All miner, where we introduced

an architecture which efficiently enables both PoW expenditure logging by miners, and re-

ward calculation in the blockchain. Our efforts were focused on realizing Reward-All without

8.1. Review 127

adding overheads to the mining process, preventing any miners which opt to forgo accruing

rewards from inflating their ability to publish blocks in the chain. However, we only pro-

duced a prototype capable of showcasing what mining in Reward-All is like, and not a fully-

fledged mining client capable of running in a live production environment. Our evaluation

focused on the costs of spending reward coins in the blockchain under different transaction-

fee conditions, and on the stability of attaining rewards. Following our computationally-

grounded approach, we quantify the trade-offs miners can make in Reward-All between re-

ward waiting times and relative transaction fees, which enables miners to access rewards ear-

lier in Reward-All than in Nakamoto, but at the cost of higher transaction fees. Remarkably,

miners in Reward-All enjoy a constant coefficient of variation in their per-block rewards, re-

gardless of their relative shares of the total network mining power, leading all Reward-All

miners to enjoy equal reward stability, unlike their Nakamoto counterparts which retain sig-

nificantly less stability as their relative share of the network mining power decreases. How-

ever, our methods did not include simulations where multiple clients running our implemen-

tation maintained a Reward-All blockchain over time, which could have provided useful in-

sight into the stability of our design over time.

Chapter 7. Furthermore, we critically analyze and propose solutions to limitations in our

design. Namely, we outline an approach for miners to force their peers to contribute to the

difficulty of creating blocks, an aspect that is not directly addressed by our Reward-All de-

sign due to the resilience of rewards against stale-blocks. Furthermore, as an incentive for

miners to pool together to reduce costs still exists, we highlight the possibility to form more

decentralized minting pools, where miners individually mine for blocks, but only coordinate

to share minting costs. Moreover, we address the implications of slab production, which does

not always enable a Reward-All miner to create a proof that covers its entire work log, and

motivates miners to continue mining. To mitigate this, we propose a method for Reward-

All miners to regulate their slab creation in order to be always able to prove half of their

slabs on average without penalty. In addition, we discuss notable aspects about Reward-All

coins. Namely, they do not guarantee complete knowledge of their total supply as those of

128 Chapter 8. Conclusion

Nakamoto, are more economical for miners to collect as fees rather than as rewards, and do

not promote hoarding since they can become cheaper to produce rather than purchase.

8.2 Future Directions

We summarize our primary avenues for future work as follows:

• Design. In our design, we directly employed PoW Nakamoto to drive the consensus

process. However, Nakamoto has been widely criticized due to its intensive ongoing en-

ergy consumption requirements. A revised design could amend Reward-All to utilize

storage space, which is a much less energy dependent resource that is favored by many

new projects, such as Chia [CP19]. However, many new challenges arise when consid-

ering such an alternative consensus design for Reward-All. For example, the notion of

slabs in Reward-All needs redefinition to work with storage space, as the idea of grind-

ing a random sampling process is no longer the driving factor behind puzzle solutions.

• Analysis. Due to the limitations we faced in modelling mining races under our ap-

proach as Markov Decision Processes, we employed several optimizations in the state-

space which explicitly over-rewarded the adversary, producing worse results than are

actually attainable in practice. Following the methods of Hou et al. [HZJ+19], deep

reinforcement learning techniques can be applied to analyze the security of mining in

Reward-All against block withholding attacks without our over-rewarding optimiza-

tions. Such an analysis should yield more accurate results, and potentially lower values

of K when configuring Reward-All for near-ideal resilience against α-strong adversaries.

• Implementation. The entire set of tradeoffs we uncovered in our evaluation revolved

around the significant costs associated with minting, whereby a large set of proof data

is published by miners in order to spend reward coins. Consequently, our use of a prob-

abilistic sampling approach for slab validation is what leads to these expenses, and

using a more optimized approach would improve Reward-All’s cost-efficiency. An al-

ternative is to investigate the applicability of succinct non-interactive zero-knowledge

8.3. Closing Remarks 129

arguments to minting in Reward-All. The main challenges will be to retain the flexibil-

ity of configurable slab creation targets, the efficiency of the smelting process, and the

transparency of minting (i.e. a public-coin argument is necessary).

8.3 Closing Remarks

In retrospect, the design space of incentive mechanisms for mining in blockchains remains

widely unexplored, and full of potential prospects. As one moves away from the rigid ap-

proach of Nakamoto’s restricted reward mechanism, where miners are incentivized to com-

pete for coins rather than to cooperate in securing the blockchain, much more powerful con-

structs become possible to create. This is partly due to the fact that, in principle, there are

no natural grounds for issuing a fixed number of coins per block, or for halving the block re-

ward every 210, 000 blocks. The main repercussion of these two arbitrary design choices is

not a gold-like scarcity in coin supply, but rather a starved ecosystem deprived of the nec-

essary incentives to sustain its functionality. Over the long run, we believe that the natu-

ral choice for cryptocurrency systems that aim to serve as mediums of exchange or stores of

value would be to issue newly minted coins coins in proportion to the amount of demand for

their creation, with permissionless mining used as the signal for that demand.

Bibliography

[ABFG14] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs

of space: When space is of the essence. In International Conference on Security

and Cryptography for Networks, pages 538–557. Springer, 2014.

[ABLZ18] Nicola Atzei, Massimo Bartoletti, Stefano Lande, and Roberto Zunino. A formal

model of bitcoin transactions. In International Conference on Financial Cryp-

tography and Data Security, pages 541–560. Springer, 2018.

[AZV17] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking bitcoin: Rout-

ing attacks on cryptocurrencies. In 2017 IEEE symposium on security and pri-

vacy (SP), pages 375–392. IEEE, 2017.

[B+02] Adam Back et al. Hashcash-a denial of service counter-measure, 2002.

[BBPS19] Marianna Belotti, Nikola Božić, Guy Pujolle, and Stefano Secci. A vademecum

on blockchain technologies: When, which, and how. IEEE Communications Sur-

veys & Tutorials, 21(4):3796–3838, 2019.

[BJO09] Kevin D Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: Theory

and implementation. In Proceedings of the 2009 ACM workshop on Cloud com-

puting security, pages 43–54, 2009.

[BKLZ20] Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. Flyclient: Super-

light clients for cryptocurrencies. In 2020 IEEE Symposium on Security and

Privacy (SP), pages 928–946. IEEE, 2020.

130

BIBLIOGRAPHY 131

[BL20] George Bissias and Brian N Levine. Bobtail: Improved blockchain security with

low-variance mining. In ISOC Network and Distributed System Security Sympo-

sium, 2020.

[Blo] Blockchair. Bitcoin explorer – blockchair. https://blockchair.com/bitcoin.

Accessed: 2022-04-27.

[BMC+15] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A

Kroll, and Edward W Felten. Sok: Research perspectives and challenges for

bitcoin and cryptocurrencies. In 2015 IEEE symposium on security and privacy,

pages 104–121. IEEE, 2015.

[BSAB+19] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick Mc-

Corry, Sarah Meiklejohn, and George Danezis. Sok: Consensus in the age of

blockchains. In Proceedings of the 1st ACM Conference on Advances in Finan-

cial Technologies, pages 183–198, 2019.

[CCM+20] Manuel MT Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melko-

nian, Michael Peyton Jones, and Philip Wadler. The extended utxo model. In

International Conference on Financial Cryptography and Data Security, pages

525–539. Springer, 2020.

[CDE+16] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed

Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. On

scaling decentralized blockchains. In International conference on financial cryp-

tography and data security, pages 106–125. Springer, 2016.

[CDG+02] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S

Wallach. Secure routing for structured peer-to-peer overlay networks. ACM

SIGOPS Operating Systems Review, 36(SI):299–314, 2002.

[CP19] Bram Cohen and Krzysztof Pietrzak. The chia network blockchain, 2019.

https://blockchair.com/bitcoin

132 BIBLIOGRAPHY

[CPR19] Xi Chen, Christos Papadimitriou, and Tim Roughgarden. An axiomatic ap-

proach to block rewards. In Proceedings of the 1st ACM Conference on Advances

in Financial Technologies, pages 124–131, 2019.

[DB19] Yuhao Dong and Raouf Boutaba. Elasticoin: Low-volatility cryptocurrency with

proofs of sequential work. In 2019 IEEE International Conference on Blockchain

and Cryptocurrency (ICBC), pages 205–209. IEEE, 2019.

[DB20] Yuhao Dong and Raouf Boutaba. Melmint: trustless stable cryptocurrency.

Cryptoeconomic Systems, 2020.

[DGH+87] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,

Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for repli-

cated database maintenance. In Proceedings of the sixth annual ACM Sympo-

sium on Principles of distributed computing, pages 1–12, 1987.

[DJKV17] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk.

A storm is coming: A modern probabilistic model checker. In International Con-

ference on Computer Aided Verification, pages 592–600. Springer, 2017.

[DKT+20] Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod

Viswanath, Xuechao Wang, and Ofer Zeitouni. Everything is a race and

nakamoto always wins. arXiv preprint arXiv:2005.10484, 2020.

[DV18] Alex De Vries. Bitcoin’s growing energy problem. Joule, 2(5):801–805, 2018.

[EGSVR16] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse.

Bitcoin-ng: A scalable blockchain protocol. In 13th {USENIX} symposium on

networked systems design and implementation ({NSDI} 16), pages 45–59, 2016.

[ES14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vul-

nerable. In International conference on financial cryptography and data security,

pages 436–454. Springer, 2014.

BIBLIOGRAPHY 133

[Eya15] Ittay Eyal. The miner’s dilemma. In 2015 IEEE Symposium on Security and

Privacy, pages 89–103. IEEE, 2015.

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. Algorand: Scaling byzantine agreements for cryptocurrencies. In Pro-

ceedings of the 26th Symposium on Operating Systems Principles, pages 51–68,

2017.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone proto-

col: Analysis and applications. In Annual international conference on the theory

and applications of cryptographic techniques, pages 281–310. Springer, 2015.

[GKS20] Ulrich Gallersdörfer, Lena Klaaßen, and Christian Stoll. Energy consumption of

cryptocurrencies beyond bitcoin. Joule, 4(9):1843–1846, 2020.

[Hei14] Ethan Heilman. One weird trick to stop selfish miners: Fresh bitcoins, a solution

for the honest miner. In International Conference on Financial Cryptography

and Data Security, pages 161–162. Springer, 2014.

[HKZG15] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse at-

tacks on bitcoin’s peer-to-peer network. In 24th USENIX Security Symposium

(USENIX Security 15), pages 129–144, 2015.

[HM19] Shihab S Hazari and Qusay H Mahmoud. Comparative evaluation of consensus

mechanisms in cryptocurrencies. Internet Technology Letters, 2(3):e100, 2019.

[HZJ+19] Charlie Hou, Mingxun Zhou, Yan Ji, Phil Daian, Florian Tramer, Giulia Fanti,

and Ari Juels. Squirrl: Automating attack analysis on blockchain incentive

mechanisms with deep reinforcement learning. arXiv preprint arXiv:1912.01798,

2019.

[IWSK21] Dragos I Ilie, Sam M Werner, Iain D Stewart, and William J Knottenbelt. Un-

stable throughput: When the difficulty algorithm breaks. In 2021 IEEE Interna-

tional Conference on Blockchain and Cryptocurrency (ICBC), pages 1–5. IEEE,

2021.

134 BIBLIOGRAPHY

[JSZ+19] Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal,

Peter Gazi, Sarah Meiklejohn, and Edgar Weippl. Pay to win: cheap, crowd-

fundable, cross-chain algorithmic incentive manipulation attacks on pow cryp-

tocurrencies. Cryptology ePrint Archive, 2019.

[KAC12] Ghassan O Karame, Elli Androulaki, and Srdjan Capkun. Double-spending fast

payments in bitcoin. In Proceedings of the 2012 ACM conference on Computer

and communications security, pages 906–917, 2012.

[KD21] Rami Khalil and Naranker Dulay. Adaptive layer-two dispute cutoffs in smart-

contract blockchains. In 2021 3rd Conference on Blockchain Research & Appli-

cations for Innovative Networks and Services (BRAINS), pages 129–136. IEEE,

2021.

[KK21] Dimitris Karakostas and Aggelos Kiayias. Securing proof-of-work ledgers via

checkpointing. In 2021 IEEE International Conference on Blockchain and Cryp-

tocurrency (ICBC), pages 1–5. IEEE, 2021.

[KKKS20] Hyunjun Kim, Kyungho Kim, Hyeokdong Kwon, and Hwajeong Seo. Asic-

resistant proof of work based on power analysis of low-end microcontrollers.

Mathematics, 8(8):1343, 2020.

[KKS+17] Yujin Kwon, Dohyun Kim, Yunmok Son, Eugene Vasserman, and Yongdae Kim.

Be selfish and avoid dilemmas: Fork after withholding (faw) attacks on bitcoin.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-

nications Security, pages 195–209, 2017.

[KLK+19] Yujin Kwon, Jian Liu, Minjeong Kim, Dawn Song, and Yongdae Kim. Impos-

sibility of full decentralization in permissionless blockchains. In Proceedings of

the 1st ACM Conference on Advances in Financial Technologies, pages 110–123,

2019.

BIBLIOGRAPHY 135

[KLS16] Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. Proofs

of proofs of work with sublinear complexity. In International Conference on

Financial Cryptography and Data Security, pages 61–78. Springer, 2016.

[KMZ20] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of

proof-of-work. In International Conference on Financial Cryptography and Data

Security, pages 505–522. Springer, 2020.

[KN12] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-

of-stake. self-published paper, August, 19(1), 2012.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual

International Cryptology Conference, pages 357–388. Springer, 2017.

[KSL+21] Lucianna Kiffer, Asad Salman, Dave Levin, Alan Mislove, and Cristina Nita-

Rotaru. Under the hood of the ethereum gossip protocol. In Proceedings of

the 2021 International Conference on Financial Cryptography and Data Security

(FC’21), 2021.

[LABK17] Wenting Li, Sébastien Andreina, Jens-Matthias Bohli, and Ghassan Karame.

Securing proof-of-stake blockchain protocols. In Data Privacy Management,

Cryptocurrencies and Blockchain Technology, pages 297–315. Springer, 2017.

[LSZ15] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain

protocols. In International Conference on Financial Cryptography and Data

Security, pages 528–547. Springer, 2015.

[MJP+20] Michael Mirkin, Yan Ji, Jonathan Pang, Ariah Klages-Mundt, Ittay Eyal, and

Ari Juels. Bdos: Blockchain denial-of-service. In Proceedings of the 2020 ACM

SIGSAC conference on Computer and Communications Security, pages 601–619,

2020.

[MKKS15] Andrew Miller, Ahmed Kosba, Jonathan Katz, and Elaine Shi. Nonoutsource-

able scratch-off puzzles to discourage bitcoin mining coalitions. In Proceedings of

136 BIBLIOGRAPHY

the 22nd ACM SIGSAC Conference on Computer and Communications Security,

pages 680–691, 2015.

[MO16] Tal Moran and Ilan Orlov. Proofs of space-time and rational proofs of storage.

IACR Cryptol. ePrint Arch., 2016:35, 2016.

[N+08] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system.(2008),

2008.

[NH19] Till Neudecker and Hannes Hartenstein. Short paper: An empirical analysis of

blockchain forks in bitcoin. In International Conference on Financial Cryptogra-

phy and Data Security, pages 84–92. Springer, 2019.

[NKMS16] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn min-

ing: Generalizing selfish mining and combining with an eclipse attack. In 2016

IEEE European Symposium on Security and Privacy (EuroS&P), pages 305–320.

IEEE, 2016.

[OM14] Karl J O’Dwyer and David Malone. Bitcoin mining and its energy footprint,

2014.

[Orl20] José I Orlicki. Sequential proof-of-work for fair staking and distributed random-

ness beacons. arXiv preprint arXiv:2008.10189, 2020.

[PKF+18] Sunoo Park, Albert Kwon, Georg Fuchsbauer, Peter Gaži, Joël Alwen, and

Krzysztof Pietrzak. Spacemint: A cryptocurrency based on proofs of space. In

International Conference on Financial Cryptography and Data Security, pages

480–499. Springer, 2018.

[PL22] Daniel Perez and Benjamin Livshits. Broken metre: Attacking resource me-

tering in evm. In 29th Annual Network and Distributed System Security Sym-

posium, NDSS 2022, San Diego, California, USA, February 27 - March 2022,

2022, 2022.

BIBLIOGRAPHY 137

[PPA+15] Sunoo Park, Krzysztof Pietrzak, Joël Alwen, Georg Fuchsbauer, and Peter Gazi.

Spacecoin: A cryptocurrency based on proofs of space. IACR Cryptology ePrint

Archive, 2015:528, 2015.

[PS17] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings of the

ACM Symposium on Principles of Distributed Computing, pages 315–324, 2017.

[RD17] Ling Ren and Srinivas Devadas. Bandwidth hard functions for asic resistance. In

Theory of Cryptography Conference, pages 466–492. Springer, 2017.

[Ros11] Meni Rosenfeld. Analysis of bitcoin pooled mining reward systems. arXiv

preprint arXiv:1112.4980, 2011.

[SRHS19] Pawel Szalachowski, Daniël Reijsbergen, Ivan Homoliak, and Siwei Sun.

Strongchain: Transparent and collaborative proof-of-work consensus. In 28th

USENIX Security Symposium (USENIX Security 19), pages 819–836, 2019.

[SSZ16] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish min-

ing strategies in bitcoin. In International Conference on Financial Cryptography

and Data Security, pages 515–532. Springer, 2016.

[SW08] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Inter-

national conference on the theory and application of cryptology and information

security, pages 90–107. Springer, 2008.

[SZ15] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing

in bitcoin. In International Conference on Financial Cryptography and Data

Security, pages 507–527. Springer, 2015.

[Trz] Karol Trzeszczkowski. Ergon - stable peer to peer electronic cash system.

[Trz21] Karol Trzeszczkowski. Proportional block reward as a price stabilization mecha-

nism for peer-to-peer electronic cash system, 2021.

138 BIBLIOGRAPHY

[VG17] Valentin Vallois and Fouad Amine Guenane. Bitcoin transaction: From the cre-

ation to validation, a protocol overview. In 2017 1st Cyber Security in Network-

ing Conference (CSNet), pages 1–7. IEEE, 2017.

[W+14] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[Wal45] Abraham Wald. Sequential tests of statistical hypotheses. The annals of mathe-

matical statistics, 16(2):117–186, 1945.

[WHF19] Fredrik Winzer, Benjamin Herd, and Sebastian Faust. Temporary censorship

attacks in the presence of rational miners. In 2019 IEEE European Symposium

on Security and Privacy Workshops (EuroS&PW), pages 357–366. IEEE, 2019.

[WWK19] Matthew Walck, Ke Wang, and Hyong S Kim. Tendrilstaller: Block delay attack

in bitcoin. In 2019 IEEE International Conference on Blockchain (Blockchain),

pages 1–9. IEEE, 2019.

[XZL+19] Yang Xiao, Ning Zhang, Jin Li, Wenjing Lou, and Y Thomas Hou. Distributed

consensus protocols and algorithms. Blockchain for Distributed Systems Security,

25, 2019.

[XZLH20] Yang Xiao, Ning Zhang, Wenjing Lou, and Y Thomas Hou. A survey of dis-

tributed consensus protocols for blockchain networks. IEEE Communications

Surveys & Tutorials, 22(2):1432–1465, 2020.

[ZET20] Roi Bar Zur, Ittay Eyal, and Aviv Tamar. Efficient mdp analysis for selfish-

mining in blockchains. In Proceedings of the 2nd ACM Conference on Advances

in Financial Technologies, pages 113–131, 2020.

[ZL20] Shijie Zhang and Jong-Hyouk Lee. Analysis of the main consensus protocols of

blockchain. ICT Express, 6(2):93–97, 2020.

BIBLIOGRAPHY 139

[ZP17] Ren Zhang and Bart Preneel. Publish or perish: A backward-compatible defense

against selfish mining in bitcoin. In Cryptographers’ Track at the RSA Confer-

ence, pages 277–292. Springer, 2017.

[ZP19] Ren Zhang and Bart Preneel. Lay down the common metrics: Evaluating proof-

of-work consensus protocols’ security. In 2019 IEEE Symposium on Security and

Privacy (SP), pages 175–192. IEEE, 2019.

Appendix A

Implementation Addendum

This appendix is designed to give the reader a solid understanding of Reward-All’s codebase,

providing a technical documentation detailed enough to enable the reader to augment or

modify the implementation. To accomplish this, the documentation is presented at a high

degree of detail across different sections.

A.1 Overview

At a glance, our Reward-All implementation provides the following key functionalities:

Data Authentication. Our implementation enables a basic blockchain datastructure to

encapsulate all executed transactions. Just as in popular blockchains, such as Bitcoin [N+08]

and Ethereum [W+14], our chain structure enables a Reward-All full-node to maintain an

append-only ledger with strong cryptographic guarantees on data immutability and tamper

evidence.

Private Key Management. Our Reward-All full node allows its users to create and man-

age locally stored private keys, along with their corresponding public account addresses. We

utilize a hash-based signature scheme which relies on minimal cryptographic assumptions,

and provides post-quantum security guarantees.

140

A.1. Overview 141

Account-based Ledger. We designed an account-based system for our implementation that

utilizes multi-use addresses for sending and receiving coin transactions. Similar to Ethereum [W+14],

we utilize the hexadecimal representation of the hash of an account’s public key to be the

public account address.

Reward-All Issuance. We implemented the full suite of procedures required for mining,

smelting, and minting. Our full-node client efficiently stores and retrieves the necessary slab

data for smelting, as well as enables the creation and broadcast of minting transactions.

Peer-to-Peer Networking. Another key feature of our Reward-All implementation is the

support for a full-node to exchange blockchain data with its peers to reach consensus on the

canonical chain tip. This involves procedures for listening for connections from, and estab-

lishing new connections to, peers running the same full-node implementation.

Textual Interaction. To provide a cross-platform compatible visual interface, we imple-

mented a text-based graphical user interface that can be used in Linux, Windows, and Mac

OS machines.

142 Appendix A. Implementation Addendum

A.2 Data Structures

This section describes each datastructure

employed in our Reward-All prototype. In

Appendix A, Table A.1 lists the specifica-

tions of all structures, providing a compact

reference table upon which the remainder of

this section will elaborate.

The presentation is split across 6 parts, ti-

tled Trees, Authentication, Ledger, Rewards,

Networking, and UI Instructions, respec-

tively. The first two parts introduce the

commitment and signature scheme primi-

tives used throughout the implementation.

Subsequently, the latter two parts intro-

duce the structures used for coin and work

accounting. Finally, the last two parts in-

troduce the structures used in peer-to-peer

communication, and those used in local in-

traprocess communication.

Table A.1: Datastructure specification ref-
erence table. 21 data classes, followed by 4
field enumerators, are presented in the table
below in a compact form.

Structure

Field Format

Account

address bytes32

outgoing transaction count uint6-++4

balance uint128

highest sequence number uint64

Accounted Batch

creator bytes32

commitment bytes32

starting reference block number uint64

ending reference block number uint64

starting sequence number uint64

ending sequence number uint64

target uint256

proofs uint16

Block Header

miner bytes32

ancestor block hash bytes32

parent hash bytes32

subheader hash bytes32

nonce uint128

sequence number uint64

reference block number uint64

Block Subheader

height uint64

parent block hash bytes32

parent tree hash bytes32

state trie root bytes32

transaction tree root bytes32

timestamp uint64

work uint256

Block Body

transaction ref list List[bytes32]

Block

header BlockHeader

subheader BlockSubheader

body BlockBody

Hash Tree

root bytes32

root height uint8

leaf height uint8

leaves Optional[List[bytes32]]

Header Batch

commitment bytes32

miner bytes32

starting reference block number uint64

ending reference block number uint64

starting sequence number uint64

ending sequence number uint64

target uint256

Header Batch Proof

batch commitment bytes32

challenge uint16

block header BlockHeader

membership proof Bytes32List

External XMSS Key

public seed bytes32

public tree root bytes32

Internal XMSS Key

public key ExternalXMSSKey

ots index uint32

height uint32

private key bytes32

private random hashing key bytes32

full tree nodes List[List[bytes]]

Peer Message

subject PeerMessageSubject

length uint16

A.2. Data Structures 143

contents bytes

Peer

host str

port uint16

peer type PeerType

current conversation PeerConversation

advertised to block hash Optional[bytes32]

latest block height uint64

latest block hash Optional[bytes32]

latest block work uint256

common prefix length uint64

reputation Optional[uint8]

stream reader Optional[StreamReader]

stream writer Optional[StreamWriter]

lookup key Optional[bytes32]

peer name Optional[str]

Proposed Block Subheader

height uint64

parent block hash bytes32

parent tree hash bytes32

state trie root bytes32

transaction tree root bytes32

genesis timestamp uint64

parent work uint256

Proposed Block

header BlockHeader

subheader ProposedBlockSubheader

body BlockBody

Trie Node

jump uint8

links List[bytes32]

mask bytes

One-time Signature

public key ExternalXMSSKey

message hash bytes32

message randomizer bytes32

wots index uint32

auth path List[bytes32]

sig ots List[bytes32]

Targeted Work Plan

id uint64

miner bytes32

root height uint8

target uint256

Transacted Batch Proof

ancestor block height uint64

subheader hash bytes32

parent hash bytes32

nonce uint128

membership proof List[bytes32]

Transacted Batch

commitment bytes32

starting reference block number uint64

ending reference block number uint64

starting sequence number uint64

ending sequence number uint64

target uint256

proofs List[TransactedBatchProof]

Transactions

sender address bytes32

reference block hash bytes32

sequence number uint64

destination address bytes32

value transferred uint128

transaction fee uint128

batches List[TransactedBatch]

signature Optional[OneTimeSignature]

Enumerator

Enumeration Value

Peer Type

INCOMING auto()

OUTGOING auto()

Peer Message Subject

GREET uint8(0)

ADVERTISE BLOCK uint8(1)

SOLICIT BLOCK uint8(2)

PROVIDE BLOCK uint8(3)

Peer Message Template

GREETING PeerMessage(GREET, ’RA’)

GREETING RESPONSE PeerMessage(GREET, ’NC’)

Peer Conversation

INTRO auto()

EXCHANGE auto()

UIInstructions.Mining

CREATE PROFILE 0x00

MINE PROFILE 0x01

UIInstructions.Batching

CREATE BATCH 0x02

SMELT BATCH 0x03

UIInstructions.Wallet

CREATE ACCOUNT 0x04

CREATE TRANSACTION 0x05

UIInstructions.UI

STATE UPDATE 0x06

EXPLORE 0x07

UIInstructions.Network

CREATE SERVER 0x08

ENABLE SERVER 0x09

CREATE PEER 0x0A

ENABLE PEER 0x0B

144 Appendix A. Implementation Addendum

A.2.1 Trees

We use two tree structures to commit to data in our Reward-All implementation, Binary

Merkle Trees and Merkle-Patricia Tries. While we use the former for committing to ordered

sets of data, we employ the latter in key-value store functionalities. The names of the classes

are Hash Tree and Trie Node.

Hash Tree. Unlike standard Binary Merkle Tree implementations, our Hash Tree data

structure supports the option to retain only partial trees in memory, whereby only nodes

with heights modulo some integer N are stored. When generating inclusion proofs, we effi-

ciently reconstruct the necessary intermediate nodes from the existing data. This added fea-

ture is necessary for efficiently managing slab data. Furthermore, we assume that the leaves

are 32-byte commitments to the data, leaving the implementation unaware of any specific

leaf data-type. Using these trees, we commit to the following data:

• In each block, we commit to the full list of transactions included in the block. This al-

lows efficient proving and verification of the inclusion of a transaction in a block.

• In each block, we commit to the full list of preceding blocks in the chain. This allows

efficient block ancestry proofs to be created.

• For each batch of size 2N of slabs, we commit to the series of slabs, for some integer N

defined by the user. This allows us to provide an efficient smelting process.

• In each minting transaction, we commit to the full list of slabs claimed to have been

mined by the prover. This enables secure and efficient sample slab verification.

The Hash Tree datastructure embodies a Binary Merkle Tree as follows.

• The root field refers to the root of the tree.

• The root height field denotes how far away the root node is from the leaves of the tree.

A.2. Data Structures 145

• The leaf height field denotes the starting height of the leaves, which defaults to zero.

• The leaves field is a list of leaf hashes.

Moreover, the datastructure provides the following class and instance methods.

• The from range roots class method allows the instantiation of a Hash Tree using a list

of Merkle Mountain Range roots, returning a Hash Tree instance without leaves.

• The from leaves class method allows creating a Hash Tree instance using a list of leaves,

returning a fully defined Hash Tree instance.

• The from leaves with height limit class method returns a list of fully defined Hash Tree

instances from a list of leaves using a tree height limit h, such that the nth instance

only commits to the nth series of length 2h from the list of leaves.

• The relative root height instance property returns the difference between the root height

and the leaf height.

• The to node list instance method returns the full list of internal nodes of the Hash

Tree.

Trie Node. The Trie Node datastructure is our recursive implementation of the Merkle-

Patricia Trie, whereby each structure instance corresponds to a single node that can take the

role of a leaf, extension node, or branch node. We assume that the radix of the trie is 16,

which allows us to support hexadecimal keys of arbitrary length. Similarly, our Trie Nodes

only store commitments to the data they encapsulate. However, only a single Merkle-Patricia

Trie is maintained in our implementation, with the Trie’s referred to as the State Trie. We

use the State Trie to easily keep track of different versions of blockchain data, storing only

pointers to updated information as needed, and minimizing data replication across forks. We

use that Trie to store commitments to the following data:

• At each account address, we store a commitment to the state of the account. This en-

ables us to later use the account state commitment to retrieve the underlying data.

146 Appendix A. Implementation Addendum

Furthermore, this allows us to look up an account’s state in a given block using the

State Trie’s root node as a starting point.

• At each slab batch address, we store a commitment to the state of the slab batch. Sim-

ilarly, we use the commitment to look up minted slab batch data as of a certain block,

verifying efficiently how many smelted proofs were provided so far for the slab batch.

When a leaf is encoded:

• The jump value is equal to zero.

• The links field is a list of only the value stored in the leaf.

• The mask field is empty.

When the structure encodes an extension node:

• The jump field in this instance encodes the number of nibbles that are to be matched

with this node during traversal.

• The links field specifies a list of only one item, the next node in the tree that will be

reached after traversing the current node.

• The mask field lastly encodes the prefix of the key that is to be matched for successful

traversal.

When the structure encodes a branch node:

• jump is set to zero in this case.

• links is used to retain a list of the hashes of all of the children of this node. When links

contains one more element than the number of ones in mask, the last element in links

denotes the value mapped to the key of the branch node.

A.2. Data Structures 147

• The mask field in this case encodes a 16-bit bitmask that indicates which hexadecimal

value each link branches to, such that the total number of ones in mask is equal to the

number of elements in links, or smaller by one.

Furthermore, the datastructure provides the following methods.

• The create trie nodes internal class method takes as input a list of key, key length, and

value tuples, a node storage method, and a radix, and returns the root Trie Node in-

stance that results from creating a Merkle-Patricia Trie using the tuples with the pro-

vided radix. During the instance creation, the provided save node method is used to

store every intermediate node.

• The create trie class method takes as input a list of key, value pairs, a save node method,

a key length value, and a radix, and utilizes the internal create trie nodes class method

to return the resulting Merkle-Patricia Trie while saving its intermediate nodes.

• The create ref trie class method takes as input a list of 32-byte references and a save

node method, and returns the root Trie Node instance from creating a Merkle-Patricia

Trie where the references act as both Key and Value.

• The create kv trie class method takes as input a list of keys, a list of values, and a save

node method, and returns the root Trie Node instance from creating a Merkle-Patricia

Trie with the provided keys and values.

• The get node with trail class method takes as input a ancestor node hash, a key, and a

get node method and returns the Trie Node stored under the provided key and ancestor

node hash.

• The update trie nodes internal class method takes as input an ancestor node hash, a

key, a value, a get node method, and a save node method, and returns the root Trie

Node resulting from updating the value stored under the ancestor node hash’s Trie us-

ing the provided key to the newly provided value.

148 Appendix A. Implementation Addendum

• The update trie with changes class method forwards its inputs to the update trie nodes

internal class method, but additionally saves the resulting root Trie Node instance us-

ing the provided save node method.

A.2.2 Authentication

To keep the number of cryptographic primitives used in the implementation minimal, we im-

plemented the Winternitz One-Time Signature Plus (WOTS+) and Extended Merkle Sig-

nature Scheme (XMSS) algorithms in our Reward-All full-node. Both schemes leverage only

hashing in order to enable a public-private key pair to authenticate messages. While these

schemes produce significantly larger signatures than modern Elliptic Curve schemes, they are

much simpler to implement and describe, while providing security against quantum attacks.

External XMSS Key. The external XMSS key structure encodes an XMSS based public

key. We use this structure to represent accounts for which the local miner does not have a

private key, and match signed transactions to their accounts.

• The public seed field contains a randomly generated seed value that is to be used for

pseudo-random number generation when creating and validating signatures related to

the public key address.

• The public tree root encodes the XMSS Merkle-tree root commitment that is used to

authenticate messages signed by this public key.

Additionally, the following methods are provided.

• The account address instance property returns the chain account address that results

from hashing both of the public tree root and the public seed fields.

A.2. Data Structures 149

One-time Signature. In this structure we encode the necessary authentication data which

proves that a message was signed by the private key behind a specified public key. The en-

coded data corresponds to a WOTS+ signature, along with the XMSS authentication path

data that associates the signature with the public key.

• The first field, public key, stores an External XMSS Key as previously described.

• The message hash represents the hash digest of the signed message.

• The message randomizer field represents a pseudo-randomly generated value used to

protect the signature scheme against cryptographic attacks.

• The wots index field specifies the Merkle-tree index of the used one-time signature pair

leaf.

• The auth path contains the Merkle authentication path which proves that the WOTS+

leaf is part of the root commitment.

• Lastly, the sig ots fields contains the WOTS+ signature data corresponding to the mes-

sage digest.

Aside from its storage fields, the One Time Signature class also provides the following meth-

ods.

• The is valid instance method returns true if and only if the instance’s fields represent a

valid one-time signature by their specified public key on their specified message hash.

• The create signature and update private key class method takes as input an Internal

XMSS Keypair instance, and a message hash, and returns both a One Time Signature

instance on the provided message hash, and the resulting Internal XMSS Keypair in-

stance after creating the signature.

150 Appendix A. Implementation Addendum

Internal XMSS Key. The internal XMSS key datastructure corresponds to a stored XMSS

private key. We use this structure to create one-time signatures, making sure to update the

private key’s state after every signature, as to remain in line with XMSS specifications.

• The public key field is used to store the public key corresponding to this private key, as

the public seed value is necessary for signing.

• The ots index field stores which WOTS+ leaf should be used to sign the next message.

This value is to be incremented by at least one each time a new message is signed, due

to the one-time nature of the WOTS+ scheme.

• The height field indicates the height of the Merkle-tree used to store the WOTS+ key

pairs. In essence, 2height messages can be signed using this XMSS key.

• The private key field stores the randomly generated set of bytes that are used in the

XMSS scheme to deterministically generate all of the WOTS+ private keys.

• The private random hashing key is used to deterministically generate randomizers for

each signed message.

• Lastly, the full tree nodes field stores a full list of commitments which represent the full

Merkle tree that the public tree root commits to.

In addition, the class contains the following methods.

• The from signing instance class method takes as input a native XMSS object, and re-

turns a new Internal XMSS Key instance populated with the native object’s data.

• The to signing instance instance method returns a new native XMSS object using the

Internal XMSS Key instance’s fields.

• The from private class method takes as input an ots index, a public seed, a private key,

and a private random hashing key, and returns a new Internal XMSS Key instance us-

ing the provided input.

A.2. Data Structures 151

• The create class method returns a new Internal XMSS Key instance using freshly gen-

erated random data.

• The account address property returns the public key account address value.

• The sign instance method takes as input a message hash and returns both a One Time

Signature instance on the provided message hash, and an updated Internal XMSS Key-

pair instance.

A.2.3 Ledger

We designed our Reward-All implementation to support an account-based transaction scheme.

To accomplish this, we created several datastructures which decouple the data associated

with accounts and transactions in each block from the data that is processed in the full-node

for mining.

Account. This data structure specifies, for a public account address, all outgoing transac-

tions, and total accrued balance. We use the data in this structure to check whether suffi-

cient balance exists in an account when transferring coins to another one, and to credit the

recipient with the appropriate amount of coins.

• The address field stores a 32-byte cryptographic commitment to the account’s public

key.

• The outgoing transaction count field stores the number of outgoing transfers made by

this account.

• The balance field stores the account’s total coin balance.

• The highest sequence number stores the highest sequence number used by this account

for minting.

152 Appendix A. Implementation Addendum

Transaction. Our Reward-All implementation of a transaction is designed to support two

basic functionalities: transferring coins from a source account address to a destination, and

minting new coins. Consequently, an instance of this datastructure may carry a significant

amount of slab proving data.

• The sender address field refers to the source of the coin transfer, or the account to

which newly minted coins will be credited.

• The reference block hash field is used to refer to a reference block which must be present

in the blockchain that executes this transaction.

• The sequence number field is used to order this transaction with respect to the sender

address. At its time of execution, each transaction’s sequence number must be equal to

the account’s current outgoing transaction count value.

• The destination address specifies the account address of the recipient of the transferred

coins.

• The value transferred field specifies how many coins will be transferred from the source

to the destination.

• The transaction fee field is used to specify how many coins will be transferred from the

source address to the miner who mines a block that executes this transaction.

• The batches field is used to specify the batches of slabs that will be used in minting in

this transaction.

• The signature field is a one-time signature on the above fields by the source address.

Aside from storage, the Transaction class has the following methods.

• The unsigned instance method returns a new Transaction instance populated with the

current instance’s data, but with the signature field omitted.

A.2. Data Structures 153

• The signed instance method takes as input a One Time Signature instance, and returns

a new Transaction instance populated with the current instance’s data, and amended

the provided input signature, after validating that signature corresponds to the un-

signed version of the Transaction instance.

Block Header. We designed the header of a block to contain the data required for mining,

smelting and minting. To support our Reward-All coin issuance model, we store block header

instances which meet the local miner’s minting difficulty, or commitments to batches thereof.

The data in this structure adds up to only 160 bytes, sparing our implementation from hav-

ing to store or provide transaction data for every slab.

• The miner field contains the account address of this block’s miner.

• The ancestor block hash is used to refer to the hash of the Kth ancestor of this block.

• The parent hash refers to the hash of the block’s immediate parent.

• The subheader hash is used to commit to the block’s subheader.

• The nonce field contains the nonce used for mining.

• The sequence number and reference block number fields refer to the additional mining

metadata required by Reward-All.

Block Subheader. The block subheader is what contains the data necessary for ledger

progression. In this structure, we include the data authentication primitives using which a

block commits to an immediate parent, to all of its ancestors, to a state trie root, and to the

transactions it appends to the ledger. Furthermore, we implement our implementation’s main

difficulty adjustment algorithm in this structure using the methods in [IWSK21]. Essentially,

this allows our subheader structure to be a self-contained indicator of where each block lies in

the chain.

• The height field refers to the block’s height in the chain.

154 Appendix A. Implementation Addendum

• The parent block hash field commits to the block’s immediate parent.

• The parent tree hash is used to commit to the Merkle tree which contains all of the

blocks mined so far in the chain.

• The state trie root field commits to the root of a Merkle-Patricia Trie which maps each

account address to a commitment of its account state.

• The transaction tree root field commits to a Merkle tree of all the transactions executed

in this block.

• The timestamp field is used for timestamping the block.

• The work field stores the cumulative work done so far to mine this block’s chain.

The class also provides the below methods.

• The difficulty at class method takes as input a block height and age, and returns the

corresponding mining difficulty of the Subheader instance.

• The difficulty instance method takes as input a genesis block, and returns the corre-

sponding mining difficulty of the Subheader instance.

• The hashing target at class method takes as input a block height and age, and returns

the corresponding mining target of the Subheader instance.

• The hashing target instance method, takes as input a genesis block, and returns the

corresponding mining difficulty for the Subheader instance.

Block Body. This datastructure contains only a list of individual commitments to all of

the transactions that a block executes. We use this list to create the transaction tree commit-

ment in the subheader.

• The transaction ref list is a list of commitments to the transactions contained in a

block.

A.2. Data Structures 155

Block. Lastly, this structure combines the above decoupled structures to form a cohesive

block of transactions.

• The first field is the block’s header, which contains a Block Header datastructure.

• The second field is the block’s subheader, containing a Block Subheader.

• The last field is the block’s body, specifying a Block Body structure.

What’s more, the class contains the following method.

• The from byte chunks class method takes as input a header, subheader, and body, all

encoded as byte strings, and returns a new Block instance populated with the results of

parsing each byte string.

A.2.4 Rewards

The implementation’s Reward-All reward datastructures are designed to support Reward-

All’s mining, smelting and minting from a local miner’s perspective and from a global blockchain

viewpoint.

Accounted Batch. This datastructure operates from a global blockchain viewpoint, repre-

senting a batch of slabs that is attributed to an account in the chain.

• The creator field refers to the address of the account.

• The commitment field is the Merkle-tree root of the entire batch of slabs.

• The starting reference block number, ending reference block number, starting sequence

number, and ending sequence number fields outline the reference blocks used for mining

and the number of slabs per reference block, as specified in Reward-All.

• The target field is the slab mining target.

156 Appendix A. Implementation Addendum

• The proofs field denotes the number of sample slabs successfully validated.

The datastructure class provides a set of methods as well.

• The smelted value instance method takes as input the number of proofs verified, and

returns the number of coins that can be redeemed in exchange from this batch.

• The total value instance property returns the total number of coins that can be re-

deemed from fully validating the batch.

• The width instance property returns the number of reference blocks used in this batch.

• The height instance property returns the number of sequence numbers used in this

batch.

• The total size instance property returns the total number of slabs in this batch.

• The nth challenge instance method takes as input a parameter n and returns the nth

slab that should be sampled from this batch to answer the nth challenge.

• The address instance property returns the batch address of this instance used for stor-

ing this batch in the chain.

• The address of class method takes as input a batch creator address, a starting sequence

number, and an ending sequence number and returns their corresponding batch ad-

dress.

Header Batch. This structure is only used by a local miner to store its batches of slabs.

The header batch datastructure is equivalent in specification to the Accounted Batch datas-

tructure, but without the proofs field, the address instance property, or the address of class

method.

A.2. Data Structures 157

Header Batch Proof. The header batch proof structure is also used locally. It is instanti-

ated for each proof created to validate a slab batch.

• The batch commitment field refers to the Merkle-tree root commitment of the header

batch.

• The challenge field denotes that the proof corresponds to the nth challenge on the batch.

• The block header field stores the header used to answer the challenge.

• The membership proof field stores the Merkle inclusion proof that ties the block header

to the commitment of the header batch.

Proposed Block Subheader. This datastructure is used by a local miner to hold the

Block Subheader for the block it is actively proposing through mining.

• Its height, parent block hash, parent tree hash, state trie root and transaction tree root

fields serve the same purpose as those of the Block Subheader datastructure.

• However, the genesis timestamp and parent work fields are used to store the informa-

tion necessary to derive the cumulative work done in the block’s chain at a given times-

tamp.

• The genesis timestamp field stores the timestamp of the genesis block of the chain be-

ing mined on.

• The parent work field stores the cumulative work done as of the parent block being

mined on.

The class includes one method as well.

• The to full header instance method takes as input a timestamp and returns a Block

Subheader instance populated with this instance’s fields, the provided timestamp, and

the additional work required to mine this subheader’s block at the specified height and

timestamp.

158 Appendix A. Implementation Addendum

Proposed Block. Similar to the Block datastructure, this structure combines three fields

to denote the block being currently proposed.

• The header field represents the Block Header datastructure of the proposed block.

• The body field represents the Block Body datastructure of the proposed block.

• The subheader field points to the Proposed Block Subheader structure of the proposed

block.

Targeted Work Plan. This structure is used in Reward-All’s implementation to locally

mining plans, which denote which miner slabs are attributed to, and their difficulty.

• The id field denotes the mining plan’s unique numeric number.

• The miner field contains the miner’s account address.

• The root height field denotes the level at which the work data is compressed.

• The target denotes the slab mining target.

Alongside these fields, the following method is defined.

• The difficulty instance property returns the slab mining difficulty of the work plan.

Transacted Batch. This datastructure serves the same global purpose in the blockchain

as the Accounted Batch. However, it is used by transactions to mint new coins through an-

swering more challenges with new proofs.

• The commitment, starting reference block number, ending reference block number, start-

ing sequence number, ending sequence number, and target fields are defined in the same

way as those of the Accounted Batch structure.

A.2. Data Structures 159

• However, the proofs field in this structure contains a list of Transacted Batch Proof in-

stances.

Like the Header Batch datastructure, the same six methods are provided.

Transacted Batch Proof. The Transacted Batch Proof is similar to the Header Batch

Proof structure, but is used globally in the blockchain.

• The ancestor block height contains the ancestor block height of the slab.

• The subheader hash field contains a commitment to the subheader of the slab.

• The parent block hash field contains a commitment to the slab’s parent block.

• The nonce is the nonce found to allow the header to qualify as a slab.

• The membership proof field includes the Merkle inclusion proof of this header within

the root commitment of the batch.

A.2.5 Networking

The network datastructures are a simple collection of classes and enumerators designed to

enable the implementation’s peer-to-peer gossip protocol to function.

Peer Message Subject. We use this enumerator to determine the topic of a network mes-

sage.

• Greet is the subject for peer introduction.

• Advertise Block is the subject for declaring that some block exists.

• Solicit Block is the subject for requesting a certain block.

• Provide Block is the subject for transferring a block’s data.

160 Appendix A. Implementation Addendum

Peer Message. This datastructure encodes a message sent by a peer.

• Its first field, subject, is an element from the Peer Message Subject enumerator.

• Its length field denotes the size in bytes of the message.

• The contents field contains the message.

Two methods are accessible in this structure.

• The create class method takes as input a Peer Message Subject instance and a byte

string, and returns a new Peer Message instance using the provided parameters.

• The create str class method takes as input a Peer Message Subject instance and a string,

returning a new Peer Message instance using the input.

Peer Message Template. This enumerator contains two basic frequently used Peer Mes-

sage instances as elements.

• The Greeting template has a subject of Greet and encodes the string ’SA’ as a message.

• The Greeting Response template also has a subject of Greet, and encodes the string

’AS’ as a message.

Peer Conversation This enumerator describes, for a given peer, which conversation it is

currently in.

• The Intro element denotes that the peer is in a greeting phase.

• The Exchange element denotes that the peer is in a data exchange phase.

A.2. Data Structures 161

Peer Type. We use this enumerator to determine whether the peer is from an incoming or

outgoing connection.

• Incoming denotes that the peer initiated the connection to the local machine.

• Outgoing denotes that the local machine initiated the connection to the peer.

Peer. This datastructure combines all of the networking structures above to define a com-

munication channel with a peer.

• The host and port fields contain the network connection information.

• The peer type field contains this peer’s Peer Type element.

• The peer’s current conversation field contains an element from the Peer Conversation

enumerator denoting what conversation the peer’s current messages fall under.

• The advertised to block hash field stores the latest block hash advertised by the local

machine to this peer.

• The latest block height, latest block hash, and latest block work fields store the informa-

tion provided by this peer about the latest block it holds.

• The common prefix length field stores the number of blocks in the locally known canon-

ical chain that are accepted by the peer as canonical.

• The peer’s reputation field numerically grades how well the peer behaves.

• The stream reader and stream writer fields store the network streams used for reading

and writing messages.

• The peer name internal field is used to store the peer information in human readable

form.

• Lastly, the peer’s lookup key internal field is used to store a commitment to the peer’s

information that uniquely identifies it for in-memory lookups.

162 Appendix A. Implementation Addendum

What is more, the following methods are provided.

• The peer name instance property returns the internal peer name field value, or the host

and port concatenated in string format if the peer name field is not defined.

• The lookup key instance property returns the internal lookup key field value, or a hash

of the host and port values if the internal lookup key field value is undefined.

• The from name class method takes as input a peer name string and a peer type, and

returns a new Peer instance by parsing the provided name as a host and port.

• The from rw pair class method takes as input a network stream reader, a network stream

writer, and a peer type, and returns a new Peer instance using the provided parame-

ters.

• The connect instance method initiates a network connection to the peer.

• The receive messages instance method takes as input a message queue and attempts to

read incoming messages into the queue.

• The send message instance method takes as input a Peer Message instance and at-

tempts to send the message to the peer.

• The close instance method closes the peer’s network stream writer.

• The is closing instance method returns whether the peer’s network stream writer is be-

ing closed.

• The send or pop instance method takes as input a peer message instance and a cache

instance and attempts to send the message to the peer, removing the peer using its

lookup key if from the provided cache if the message delivery fails.

• The set lcp instance method takes as input a length parameter and sets the peer’s com-

mon prefix length to the provided parameter.

A.2. Data Structures 163

A.2.6 UI Instructions

As the application is composed of multiple threads and coroutines, several queues are used

for communication between different procedures. Elements passed in user-interface queues

carry a respective UIInstructions enumerator value as an instruction type. These enumera-

tors are categorized under Mining, Batching, Wallet, UI, and Network instructions.

Mining

• Create Profile denotes that the instruction is for creating a new local mining profile.

• Mine Profile denotes that the instruction is for starting or stopping mining using a lo-

cal mining profile

Batching

• Create Batch denotes that the instruction is for creating a new batch of slabs for smelt-

ing.

• Smelt Batch denotes that the instruction is for toggling smelting on an existing batch

of slabs.

Wallet

• Create Account denotes that the instruction requests a new internal account to be cre-

ated.

• Create Transaction denotes that the instruction is for creating a new transaction to be

published.

164 Appendix A. Implementation Addendum

UI

• State Update denotes that the instruction carries a new application state to be rendered

in the user-interface.

• Explore denotes that the instruction carries a ledger exploration query.

Network

• Create Server denotes that the instruction is for creating a new local server entry.

• Enable Server denotes that the instruction is for toggling listening for connections us-

ing a local server.

• Create Peer denotes that the instruction is for creating a new remote peer entry.

• Enable Peer denotes that the instruction is for toggling a connection with a remote

peer.

A.3. Data Tables 165

A.3 Data Tables

This section presents the database tables

created to support Reward-All’s prototype

implementation. Table A.2 shows the full

scheme in brief form, while the remainder

of this section elaborates on the purpose of

each table and its fields.

Similar to Section A.2, the remainder of

this section is split across Trees, Authen-

tication, Ledger, Rewards, and Networking

discussions. Each discussion introduces the

set of data schemes designed to support

the efficient storage and retrieval of their

related datastructures.
Table A.2: Data storage scheme reference
table. 14 table schemes, followed by 15 in-
dices distributed across 8 tables, are shown
below in a compact form. Each table and
field name is prefixed by a number for easy
lookup. Index fields are defined numerically
in terms of the field numbers of the tables
they reference.

Table Name

Field Format Key Unique

0. Accounts

0) account hash text 3 3

1) data blob

1. Accounted Batches

0) batch hash text 3 3

1) data blob

2. Aggregates

0) root text 3 3

1) tree blob

3. Weighted Work Batches

0) commitment text 3 3

1) miner text

2) starting ref. block number int

3) ending ref. block number int

4) starting seq. number int

5) ending seq. number int

6) target text

7) work plan id int 10

8) ending block hash text 5

4. Weighted Work Batch Proofs

0) batch commitment text 3

1) challenge small uint

2) targeted header blob

3) membership proof blob

5. Blocks

0) height big int

1) parent tree blob

2) block hash text 3 3

3) genesis hash text

4) header blob

5) subheader blob

6) body blob

7) main chain tiny int

8) is tip tiny int

6. Internal Keypairs

0) id integer 3 3

1) account address text 3

2) data blob

7. Local Servers

0) id int 3 3

1) host text

2) port int

8. Remote Peers

0) id int 3 3

1) host text

2) port int

9. Trie Nodes

0) node hash text 3 3

1) node blob

10. Targeted Work Plans

0) id int 3 3

1) miner text

2) root height tiny int

3) target text

11. Targeted Work Headers

0) work plan id int 10

1) header hash text

2) ancestor block hash text 5

3) parent hash text

4) subheader hash text

5) nonce int

6) sequence number int

7) reference block number int

12. Transactions

0) transaction hash text 3 3

1) transaction sender text

2) transaction destination text

3) transaction fee big int

4) data blob

13. Transaction Inclusions

0) id int 3 3

1) transaction hash text 12

2) block hash text 5

166 Appendix A. Implementation Addendum

Indexed Table

Index Name Fields Unique

3. Weighted Work Batches

plan batches 7

4. Weighted Work Batch Proofs

proofs 0

proof challenges 0, 1 3

5. Blocks

block height 0

main chain 7

main blocks 7, 0

is tip 8

7. Local Servers

local servers 1, 2 3

8. Remote Peers

remote peers 1, 2 3

10. Targeted Work Plans

plans 1, 3 3

11. Targeted Work Headers

work 0, 2, 5, 6, 7 3

work height 0, 5, 7

13. Transaction Inclusions

block transactions 2

transaction blocks 1

inclusions 1, 2 3

A.3.1 Trees

We defined the below two tables for efficient node storage and lookup of our Binary Merkle

Tree and Merkle-Patricia Tree datastructure implementation instances.

Aggregates Table. This table is designed to hold the Hash Tree datastructure as blobs,

indexing them by the commitments to their roots.

• The root field stores the Merkle Tree root of the structure and acts as the unique pri-

mary key of the table.

• The tree field stores Hash Tree instances as blobs.

Trie Nodes Table. Similar to the Aggregates Table, but intended for Merkle-Patricia Trie

nodes, this table stores Trie Nodes as blobs indexed by their hash commitments.

• The node hash field stores the commitment to the Trie Node.

• The node field stores a Trie Node instance as a blob.

A.3. Data Tables 167

A.3.2 Authentication

Long term efficient storage and retrieval of authentication credentials in our Reward-All im-

plementation is only reserved for the local miner’s private keys. Consequently, only Internal

Keypairs have a dedicated table.

Internal Keypairs Table. The Internal Keypairs table stores the local miner’s private

keys as blobs.

• The id field is a numeric unique key created to index the keypair.

• The account address field stores the public account address related to the keypair.

• The data field stores an Internal XMSS Key datastructure instance as a blob.

A.3.3 Ledger

As our implementation must allow efficient context switching between chain forks, our account-

based ledger storage scheme is designed to heavily leverage Merkle-Patricia Trie nodes for

efficient hash-indexed storage and retrieval.

Accounts Table. The accounts table maps hash commitments of Account datastructures

to their instances. Under this approach, given a hash of the account information, the full ac-

count data can be retrieved.

• The account hash field stores the hash of the instance data, and acts as the unique pri-

mary key of the table.

• The data field stores a blob of the Account datastructure instance.

168 Appendix A. Implementation Addendum

Transactions Table. The Transactions table scheme, while similarly designed mainly a

store for datastructure instances, also includes information about the transfer.

• The transaction hash field contains a hash of the transaction datastructure, and acts as

the unique primary key of the table.

• The transaction sender field stores the transaction’s sender account address.

• The transaction destination field stores the transaction’s destination account address.

• The transaction fee field stores the number of coins paid as a fee to the transaction’s

miner.

• The data field stores the Transaction datastructure instance as a blob.

Blocks Table. The blocks table is used to permanently store blocks that have been mined

as part of a chain.

• The height field denotes the block number in its chain.

• The parent tree field stores the root of the Merkle tree that commits to all blocks that

precede this block.

• The block hash field stores the cryptographic commitment to the block and acts as the

primary unique key of this table.

• The genesis hash field stores the seed hash of this chain.

• The header field stores the Block Header structure instance of this block as a blob.

• The body field stores a blob of the block’s Block Body structure instance.

• The main chain field stores a binary value denoting whether the local miner considers

this Block as part of the canonical chain.

• The is tip field stores a binary value denoting whether this block is the last block in its

chain in view of the local miner.

A.3. Data Tables 169

In addition to the table’s 8 fields, 4 additional indices are defined in its scheme to enable effi-

cient block-related queries.

• The block height index creates an ordering only on the height field.

• The main chain index orders blocks based on their canonical status using only the

main chain field.

• The main blocks index creates an ordering that utilizes both the height and main chain

fields, allowing efficient lookups of canonical blocks using their height.

• The is tip index similarly uses only the is tip field to separate chain tips from other

blocks.

Transaction Inclusions Table. Transactions are considered to have been included in a

block when an entry linking the transaction hash to the block hash is inserted into this table.

• The id field acts as the unique primary key for the inclusion relationship between a

transaction and a block.

• The transaction hash field is a foreign key entry used to reference a unique transaction

from the Transactions table.

• The block hash field is similarly a foreign key that references a block from the Blocks

table.

Other than these 3 fields, 3 indices are included in the scheme.

• The block transactions index uses the block hash field to enable efficient lookups of

block’s entire transaction set.

• The transaction blocks index uses only the transaction hash field to efficiently allow

queries to find all blocks which include a transaction.

• The inclusions index is used to ensure that all pairs of transaction hash and block hash

entries are unique.

170 Appendix A. Implementation Addendum

A.3.4 Rewards

The rewards tables are designed to hold the data that supports both global and local mining,

smelting, and minting operations.

Targeted Work Plans Table. This table stores the information required by a local miner

to pursue its mining operations. Each entry represents a targeted work plan, which details the

account address of the beneficiary miner, as well as the minting target.

• The id field is the table’s unique numeric primary key used to identify different work

plans.

• The miner field stores the account address of the beneficiary miner which resulting

slabs are attributed to.

• The root height field is used to determine the Merkle tree height threshold at which

slabs are stored.

• The target field denotes the slab mining target.

Additionally, one index is defined for this table.

• The plans index ensures that all miner, and target pairs are unique.

Targeted Work Headers Table. This table stores the resulting slabs that are produced

by the local miner under each targeted work plan.

• The work plan id field is a foreign key that reference the work plan id that resulted in

creating this work header.

• The header hash field stores the hash of the mined slab.

A.3. Data Tables 171

• The ancestor block hash field stores the hash of the Kth ancestor block of the mined

slab.

• The parent hash field stores the hash of the immediate parent block of the slab.

• The subheader hash field stores the hash of the slab’s Block Subheader.

• The nonce field stores the nonce found to satisfy the required proof of work.

• The sequence number stores the slab’s sequence number.

• The reference block number stores the slab’s reference block number.

Two indices are also defined for this table.

• The work index combines the work plan id, ancestor block hash, nonce, sequence num-

ber, and reference block number into a unique index that ensures no replicated work is

stored.

• The work height index orders the work plan id, nonce, and sequence number fields for

efficient smelting lookups.

Weighted Work Batches Table. This table is used to primarily store smelting metadata

that enables a local miner to combine its locally stored slabs into a smelted proof.

• The commitment field stores the root of the Merkle tree commitment to the batch of

slabs, and acts as the unique primary key of the table.

• The miner field stores the account address of the miner of the slabs.

• The starting reference block number, ending reference block number, starting sequence

number, and ending sequence number specify the slab reference blocks and number of

slabs per block.

• The target field stores the slab mining target.

172 Appendix A. Implementation Addendum

• The work plan id stores a foreign key reference to the Targeted Work Plan that re-

sulted in these headers.

• The ending block hash field stores a foreign key reference to the Block which appears at

the height of the ending reference block number used.

In addition, one index is defined for this table.

• The plan batches index orders the table using the work plan id field, such that all batches

related to a work plan can be efficiently retrieved.

Weighted Work Batch Proofs Table. This table is designed to support the local miner’s

incremental smelting procedure.

• The batch commitment field is a foreign key that references which Weighted Work Batch

the proof is created for.

• The challenge field stores the challenge number that the proof answers.

• The targeted header field stores a blob of the sampled slab.

• The membership proof field stores the Merkle-tree inclusion proof of the targeted header

in the batch commitment.

Furthermore, two indices are defined for this table.

• The proofs index orders the table using the batch commitment field for efficient lookups

of all proofs stored for a batch commitment.

• The proof challenges index ensures that all batch commitment, and challenge pairs are

unique, such that no redundant challenge answers are stored.

A.3. Data Tables 173

Accounted Batches Table. This table scheme provides a simple hash-based lookup table

that allows access to global minting data.

• The batch hash field contains the hash commitment of the stored Accounted Batch in-

stance.

• The data field stores a blob of the Accounted Batch instance.

A.3.5 Networking

The implementation’s networking tables are designed to store the information required for a

local miner to sustain long-term relationships with the peers it has discovered in the network.

Local Servers Table. The local servers table is designed to store the addresses and ports

using which the local miner listens for connections.

• The id field is the table’s unique primary key used to identify listening points.

• The host field defines the network interface address on which the local miner listens for

a connection.

• The port field defines the port number on which connections are listened for.

Additionally, one index is specified for this table.

• The local servers index dictates that all host, and port pairs are unique in the table.

Remote Peers Table. This table stores remote connection points using which the local

miner can connect to remote peers.

• The id field is the table’s unique primary key used to identify remote peers.

174 Appendix A. Implementation Addendum

• The host field defines the network interface address where the remote peer is located.

• The port field defines the port number on which the remote peer accepts connections.

Moreover, one index constrains this table.

• The remote peers index ensures uniqueness on all host, and port pairs.

A.4 Data Storages

Data tables in Reward-All’s prototype are not directly queried by its algorithms, but are in-

stead interfaced with using different storage classes. Each storage class exposes a set of meth-

ods for reading and writing data to the local miner’s data tables.

One main storage class, named Storage, creates an instance of and allows access to each stor-

age class, such that all methods need only access to a single instance of Storage, rather than

separate access to each storage class. This single Storage instance is shared by all threads

and procedures in Reward-All’s process.

Storage is first instantiated with a database connection created by the main launching pro-

cess. This connection is accessed using the Serialized Write DB class, which allows concurrent

read queries to be performed, but ensures that write queries occur in a serialized manner.

This is achieved by requiring that a lock is acquired by any thread that executes a query not

prefixed with the word ’SELECT’, and keeping queries confined to single statements.

Using its serialized connection, Storage instantiates all 9 storage classes, each of which will

be discussed in the remainder of this section. In the same reductionist spirit as before, the

classes are split across Trees, Authentication, Ledger, Rewards, and Networking discussions.

A.4. Data Storages 175

A.4.1 Trees

The core storage classes for tree structures in our implementation offer very direct storage

and retrieval methods.

HT Storage. The Hash Tree Storage class provides access to the Aggregates table.

• The create class method takes a database connection as a parameter and returns a new

instance of HT Storage after ensuring that the database contains the Aggregates table

if it is not already defined therein.

• The store aggregate instance method takes a Hash Tree instance as a parameter and

inserts it into the Aggregates table.

• The store aggregate list instance method takes a list of Hash Tree instances and inserts

them into the Aggregates table.

• The get aggregate instance method returns the Hash Tree instance corresponding to the

provided root hash parameter.

• The get membership proof instance method takes a root hash and a leaf index param-

eters, and returns the Merkle tree inclusion proof for the element located at the leaf

index within the Merkle tree corresponding to the provided root hash.

PT Storage. The Pointer Storage class provides access to the Trie Nodes table.

• The create class method takes a database connection as a parameter and creates the

Trie Nodes table if it does not already exist in the database, returning a new instance

of the PT Storage class.

• The store pointer instance method takes a node hash and node parameter and stores

the node under the node hash.

176 Appendix A. Implementation Addendum

• The store pointer map instance method takes as input a dictionary of hashes that maps

to Trie Node instances and stores each entry in the dictionary into the Trie Nodes ta-

ble.

• The get node instance method takes a node hash as input and returns the Trie Node

stored under said hash in the Trie Nodes table.

A.4.2 Authentication

Only a single storage class for Authentication is present in our Reward-All implementation.

Keypair Storage. The Keypair Storage class provides access to the Internal Keypairs ta-

ble.

• The create class method takes as input a database connection and adds the Internal

Keypairs table into the database if it does not exist, then returns a new Keypair Stor-

age instance.

• The add internal address instance method takes an Internal XMSS Keypair instance

and inserts it into the table.

• The update internal address instance method takes an Internal XMSS Keypair instance,

and updates the data stored at its account address, returning True if the update was

successful.

• The get internal account addresses instance method returns a list of the account ad-

dresses of all stored keypairs in the table.

• The get internal account keypair instance method takes as input an account address

and returns the Internal XMSS Keypair instance stored for that address.

A.4. Data Storages 177

A.4.3 Ledger

Compared to the other storage classes, the ledger storage classes are the most involved.

Account Storage. This class handles access to both the Accounts and Accounted Batches

tables.

• The create class method takes as input a database connection and ensures that both

the Accounts and Accounted Batches tables exist before returning an new Account

Storage instance.

• The get account instance method, given the hash of an account, returns the Account

instance stored in the accounts table under that hash.

• The get accounted batch instance method similarly returns the Accounted Batch struc-

ture instance stored in the accounted batches table given the batch hash as a parame-

ter.

• The add account instance method takes an account and an account hash as input and

inserts the account into the accounts table under the given account hash.

• The add accounted batch instance method similarly adds an Accounted Batch structure

instance to the accounted batches table using the Accounted Batch instance and its

hash as input.

Transaction Storage. The Transaction Storage class enables interaction with both the

Transactions table, and the Transaction Inclusions table.

• The create class method takes a database connection as input and creates both the

Transactions and Transaction Inclusions tables, along with the Block Transactions In-

dex, the Transaction Blocks Index, and the Inclusion Index. It returns a new instance

of the Transaction Storage class.

178 Appendix A. Implementation Addendum

• The get transaction instance method takes a transaction hash as input and returns the

Transaction datastructure instance stored for that hash.

• The get block transactions instance method takes a block hash as input and returns all

the Transaction datastructure instances stored that have been recorded as included in

that block.

• The store transactions instance method takes a list of Transaction structure instances

and stores them in the transactions table.

• The store transaction inclusions instance method takes a block hash and a list of trans-

action hashes as input, and stores a record in the transaction inclusions table between

the block hash and each transaction hash.

• The get transaction confirmation block hash instance method takes a transaction hash

and returns the canonical block hash which includes the transaction.

• The get confirmed account transactions instance method takes an account address as

input and returns the list of Transaction structure instances denoting all transactions

that have been sent by the account in the canonical chain.

Block Storage. The Block Storage class enables access to the blocks table.

• The create class method takes as input a database connection, and ensures that the

blocks table, as well as the block height, main chain, main blocks, and is tip indices, all

exist in the database, before returning a new Block Storage instance.

• The get tips instance method takes as input a boolean flag, and returns only the last

block of the main chain if that flag is true, or returns all known chain tip blocks if the

flag is false.

• The block exists instance method takes as input a block hash, and a boolean flag and

returns true if the flag is set to true and a block with said hash is included in the main

A.4. Data Storages 179

chain, or true if the flag is false and a block with the input hash is known by the local

miner but is not in the main chain. Otherwise it returns false.

• The block known instance method takes as input a block hash and returns true if the

local miner has a block with said hash stored in the blocks table.

• The block in main chain instance method takes as input a block hash and returns true

if a main chain block with said hash is stored in the blocks table.

• The get block instance method takes as input a block hash and a boolean flag and re-

turns the main chain Block datastructure instance stored in the blocks table under

the input block hash if the flag is true, the fork chain Block instance stored under the

hash if the flag is false, or the Block instance with the given block hash regardless of its

canonical status if the flag is not set.

• The get block parent tree instance method takes as input a block hash and returns the

parent tree data stored for the block with that hash.

• The get block height instance method takes as input a block hash and a boolean flag

and, if the flag is true, it returns the height of the main chain block with said block

hash. Otherwise, if the flag is false, it returns the height of the non-canonical chain

block with said block hash.

• The get main chain block at height instance method takes as input a block height and

returns the stored Block datastructure instance with that height in the canonical chain

from the blocks table.

• The get main chain block hash instance method takes as input a block height and re-

turns the hash of the block at that height in the main chain from the blocks table.

• The get block genesis hash instance method takes as input a block hash and a boolean

flag and returns the genesis hash of the block with the given block hash from the blocks

table. If the flag is true, only main chain blocks are queried. If the flag is false, main

chain blocks are excluded from the query. If the flag is unset, all blocks are queried.

180 Appendix A. Implementation Addendum

• The add block instance method takes as input a Block instance, a list of hashes as a

parent tree, and a boolean flag. The method appends appends the block as the new tip

of its corresponding chain the blocks table. If the block is of height 0, it is treated as a

genesis block. Otherwise, it is appended as the new tip of its chain. If the flag is set to

true, it is treated as a main chain block.

• The make chain auxiliary instance method takes as input a starting height parameter

and proceeds to set all main chain blocks with a height equal to or greater than the

starting height as not belonging to the main chain.

• The make block main tip instance method takes as input a block hash and sets the

main chain block stored with that hash as the new main chain tip.

A.4.4 Rewards

Given that the ledger storage classes provide sufficient functionality to carry out minting

tasks, the implementation’s reward storage classes encompass only the mining and smelting

functionalities.

Targeted Work Storage. The Targeted Work Storage class enables access to the targeted

work plans and targeted work headers tables, which store mining directives and their prod-

ucts.

• The create class method takes as input a database connection. Its primary task is cre-

ating the targeted work plans and targeted work headers tables according to there

schemes, and creating the unique plan index, the unique work index, and the work

height index. It ends by returning a new instance of the Targeted Work Storage method.

• The row to work plan internal class method takes as input an entry from the work

plans table and returns a Targeted Work Plan datastructure instance.

A.4. Data Storages 181

• The row to work header internal class method takes as input and instance from the tar-

geted work headers table and returns a Block Header structure instance.

• The create work plan instance method takes as input a miner account address, a Merkle

tree storage root height, and a slab target and inserts into the targeted work plans ta-

ble an entry with the parameter values.

• The get all work plans instance method returns a list of Targeted Work Plan datastruc-

ture instances populated by all of the entries in the targeted work plans table.

• The get work plan by id instance method takes as input a numeric work plan id and

returns a Targeted Work Plan structure instance with the data stored for that id in the

targeted work plans table.

• The get work header count instance method takes as input a numeric work plan id and

a boolean main chain flag and returns the number of slabs mined under the work plan.

If the main chain flag is set to true, only valid slabs are counted. Otherwise, all slabs

for the work plan are counted.

• The get work header hashes instance method takes as input a work plan id, reference

block number and sequence block number ranges, and a main chain boolean flag. It

returns a list of all slab hashes mined under the work plan and within the two block

number ranges. Similarly, the main chain flag constrains to query to only valid slabs if

set to true.

• The get work header instance method takes as input a Targeted Work Plan instance,

reference and sequence block numbers, and a main chain flag, and returns the slab des-

ignated by these parameters as a Block Header datastructure instance.

• The save work header instance method takes as input a Targeted Work Plan instance

and a Block Header instance and saves the latter as a slab in the targeted work headers

table.

• The get ref seq schedule instance method takes as input a Targeted Work Plan instance,

182 Appendix A. Implementation Addendum

an ending reference block number, and a schedule size N and returns the next N se-

quence and reference block number pairs to be used for mining under the specified plan

and until the specified ending reference block number.

• The size instance method returns the total combined size in bytes of both the targeted

work headers and targeted work plans tables.

Batch Storage. This class enables access to the two main smelting tables, the weighted

work batches and weighted work batch proofs tables.

• The create class method takes as input a database connection and uses it to ensure

that the weighted work batches and weighted work batch proofs tables are present in

the database, along with the plan batch index, the batch proof index, and the batch

proof commitment challenge index. It returns a new Batch Storage instance.

• The row to batch internal class method takes as input an entry from the weighted work

batches table and parses it as a Header Batch datastructure instance, returning the

instance.

• The row to batch proof internal class method takes as input an entry from the weighted

work batch proofs table and returns a corresponding Header Batch Proof datastructure

instance.

• The save batch instance method takes as input a Header Batch instance, a work plan

id, and a block hash. It stores the Header Batch in the weighted work batches table

under the input work plan id and using the block hash as the ending block hash of the

entry.

• The get batches instance method returns all stored entries in the weighted work batches

table as Header Batch instances.

• The get batch instance method takes as input a batch commitment and returns the cor-

responding Header Batch structure instance of its entry in the weighted work batches

table.

A.4. Data Storages 183

• The get batch work plan id instance method takes as input a batch commitment and

returns its corresponding work plan id.

• The get batch ending block hash instance method takes as input a batch commitment

hash and returns the ending block hash corresponding to its entry in the weighted work

batches table.

• The get batch proofs instance method takes as input a batch commitment and returns

all of its corresponding entries from the weighted work batch proofs table as Header

Batch Proof instances.

• The get batch proof count instance method takes as input a batch commitment and re-

turns the number of entries that correspond to it in the weighted work batch proofs

table.

• The save batch proof instance method takes as input a Header Batch Proof datastruc-

ture instance and stores it as an entry in the weighted work batch proofs table.

• The size instance method returns the total combined size in bytes of both the weighted

work batches and weighted work batch proofs tables.

A.4.5 Networking

Networking related storage is only managed by the Networking Storage class.

Networking Storage. This class facilitates access to both the remote peers and local

servers tables.

• The create class method takes as input a database connection and creates both the

local servers and remote peers tables if they do not exist in the database. The local

server index, and remote peers index, are also instantiated by the method. The method

returns a new Networking Storage instance.

184 Appendix A. Implementation Addendum

• The add local server instance method takes as input a host and a port and creates a

new corresponding entry in the local servers table.

• The get local servers instance method returns a list of all entries in the local servers

table.

• The get local server instance method takes as input a server id and returns its corre-

sponding host and port entry from the local servers table.

• The add remote peer instance method takes as input a host and a port and creates a

new corresponding entry in the remote peers table.

• The get remote peers instance method returns a list of all entries in the remote peers

table.

• The get remote peer instance method takes as input a peer id and returns its corre-

sponding host and port entry from the remote peers table.

A.5 Data Caches

Verifying and applying block state transitions requires repeated queries to several tables, es-

pecially the Trie Nodes table. Because of this, a cache layer was introduced to reduce block

state transition burdens on the database.

All employed caches in the implementation are instances of the same class, the Hash Cache,

which is designed to map a 32-byte hash value to any object instance. This is accomplished

using the native python dictionary class, with the minor additions of an explicit store value

method and a is empty method.

Pointer Cache. This cache instance is used to map hash commitments of Trie Nodes to

their respective Trie Node structure instances.

Accounts Cache. This cache instance is used to map hash commitments of Accounts to

their respective Account structure instances.

A.6. Data Managers 185

Accounted Batches Cache. This cache instance is used to map hash commitments of Ac-

counted Batches to their respective Accounted Batch structure instances.

Work Plans Mining Cache. This cache instance is used to keep track of which work plans

are currently being mined on.

Batches Smelting Cache. This cache instance is used to keep track of which slab batches

are currently being smelted.

Local Servers Cache. This cache instance is used to track which local servers are currently

being used to listen for connections.

Remote Peers Cache. This cache instance is used to track which remote peers are cur-

rently connected.

Heavier Chain Tips Cache. This cache instance is used to track which chain tips with

more accumulated work than the local miner’s canonical chain are currently sought after.

A.6 Data Managers

Data Manager classes in our implementation are akin to stored procedures for databases.

They provide more complex data storage functionality than what the relational database

query language is able to directly offer. These classes are defined to contain a set of class

methods that execute pieces of application logic that are either heavily reused across dif-

ferent executive functions or require too much direct data manipulation to carry out. This

keeps the executive portion of the implementation free from redundancy and complex low-

level code.

A.6.1 Pointer Manager

This class manages storing and retrieving Trie Nodes from Cache and Storage instances.

186 Appendix A. Implementation Addendum

• The cache null pointer class method takes as input an optional Cache instance and

returns the hash commitment of an empty Merkle-Patricia Trie root, storing it in the

cache instance if provided.

• The cache ref pointers class method takes as input a list of reference and an optional

Cache instance, and returns the hash commitment of the root of a Merkle-Patricia Trie

that maps the references to themselves, storing all Trie nodes in the cache instance if

provided.

• The cache key pointers class method takes as input a list of 32-byte keys, a list of 32-

byte values, and an optional Cache instance, and returns the hash of the root of the

Merkle-Patricia Trie that maps all provided keys to the provided values, storing the

Trie nodes in the Cache if provided.

• The get node internal class method takes as input a node hash, a Storage instance, and

a Cache instance, and returns the Trie Node corresponding to the provided node hash,

searching first in the Cache instance, and subsequently in the Storage instance if the

cache lookup failed.

• The get pointer with trail internal class method takes as input a node hash, a 32-byte

key, a Storage instance, and a Cache instance, and returns both the value stored under

the provided key in the Merkle-Patricia Trie whose root commitment is the provided

node hash as well as all Trie Nodes visited from root to leaf during the lookup in the

provided Storage and Cache instances.

• The get pointer class method takes as input a node hash, a 32-byte key, a Storage in-

stance, and a Cache instance, and returns the value stored under the provided key in

the Merkle-Patricia Trie whose root commitment is the provided node hash using the

input Storage and Cache instances.

• The update pointers with changes class method takes as input a node hash, a 32-byte

key, a 32-byte value, a Storage instance, and a Cache instance, and updates the Merkle-

Patricia Trie whose root commitment is the specified node hash to store the input value

A.6. Data Managers 187

at the provided key parameter, saving all resulting Trie Node modifications in the Cache.

• The get cached pointers internal class method takes as input a node hash, and a Cache

instance, and returns all of the internal trie nodes and leaves that are stored in the

cache under the Merkle-Patricia Trie whose root hash is the provided node hash.

• The commit cached pointers class method takes as input a node hash, a Storage in-

stance, and a Cache instance, and copies the nodes of the Merkle-Patricia Trie stored

in the Cache instance under the provided node hash to the provided Storage instance,

returning the leaves of the Trie.

A.6.2 Account Manager

This class provides many functionalities that allow the creation, update, storage, and re-

trieval of account data from cache and storage.

• The create internal account class method takes as input a Storage instance and inserts

a freshly generated private key into the instance’s Keypair Storage.

• The save account class method takes as input a state pointer hash, an Account in-

stance, a Storage instance, and a Cache instance, and returns the hash of the result-

ing Merkle-Patricia Trie root after storing a hash of the Account instance under the

account address as a key in the Merkle-Patricia Trie whose root is the provided state

pointer hash, saving the newly resulting Trie Nodes in the provided cache.

• The save accounted batch class method takes as input a state pointer hash, an Ac-

counted Batch instance, a Storage instance, and a Cache instance, and returns the hash

of the resulting Merkle-Patricia Trie root after storing a hash of the Accounted Batch

instance under its address as a key in the Merkle-Patricia Trie whose root is the pro-

vided state pointer hash, saving the newly resulting Trie Nodes in the provided cache.

• The create account class method takes as input a state pointer hash, an account ad-

dress, a Storage instance, and a Cache instance, and returns the hash of the resulting

188 Appendix A. Implementation Addendum

Merkle-Patricia Trie root after storing, under the account address as a key, a hash of a

new Account instance with the provided address and no transaction history or balance

in the Merkle-Patricia Trie whose root is the provided state pointer hash, saving the

newly resulting Trie Nodes in the provided cache.

• The create accounted batch class method takes as input a state pointer hash, an ac-

count address, a set of slab batch parameters, a Storage instance, and a Cache instance,

and returns the hash of the resulting Merkle-Patricia Trie root after storing, under the

batch address as a key, a hash of a new Accounted Batch instance with the provided

parameters and no proof history in the Merkle-Patricia Trie whose root is the provided

state pointer hash, saving the newly resulting Trie Nodes in the provided cache.

• The get account class method takes as input an account hash, a Storage instance, and

a Cache instance, and returns the Account structure instance saved in the Cache in-

stance, or retrieved from the Storage instance if the cache lookup fails.

• The get accounted batch class method takes as input an accounted batch hash, a Stor-

age instance, and a Cache instance, and returns the Accounted Batch structure in-

stance saved in the Cache instance, or retrieved from the Storage instance if the cache

lookup fails.

• The get or create account class method class method takes as input a state pointer

hash, an account address, a Storage instance, and a Cache instance, and returns the

cached or stored Account instance with the given address under the Merkle-Patricia

Trie tree root with the input state pointer hash. If the account does not exist in the

given Trie, the account is inserted into the Trie, and an updated Trie root hash is addi-

tionally returned.

• The get account at address class method takes as input a state pointer hash, an account

address, a Storage instance, and a Cache instance, and returns the cached or stored

Account instance with the given address under the Merkle-Patricia Trie tree root with

the input state pointer hash.

A.6. Data Managers 189

• The get or create accounted batch class method takes as input a state pointer hash, an

account address, a set of slab batch parameters, a Storage instance, and a Cache in-

stance, and returns the cached or stored Accounted Batch instance with the given pa-

rameters saved under the Merkle-Patricia Trie tree root with the input state pointer

hash. If the batch does not exist in the given Trie, the batch is inserted into the Trie,

and an updated Trie root hash is additionally returned.

• The update account class method takes as input a state pointer hash, an Account in-

stance, a Storage instance, and a Cache instance, and updates the Merkle-Patricia Trie

whose root is the provided state pointer hash such that the hash of the provided Ac-

count instance is stored under the account address as a key, returning the resulting Trie

root after the update, and saving all new intermediate nodes in the cache instance.

• The update accounted batch class method takes as input a state pointer hash, an Ac-

counted Batch instance, a Storage instance, and a Cache instance, and updates the

Merkle-Patricia Trie whose root is the provided state pointer hash such that the hash

of the provided Accounted Batch instance is stored under the batch address as a key,

returning the resulting Trie root after the update, and saving all new intermediate

nodes in the cache instance.

• The commit cached accounting updates to storage class method takes as input a list of

hashes, referring to cached Account or Accounted Batch instances, a Storage instance,

and a Cache instance, and copies all Accounts and Accounted Batches saved under the

supplied hashes in the input Cache instances to their respective tables in the provided

Storage instance.

A.6.3 Block Manager

The Block Manager provides a set of methods for safely saving and retrieving valid Blocks

and their data.

190 Appendix A. Implementation Addendum

• The get main chain tip class method takes as input a Storage instance and returns the

last block in the locally stored canonical chain.

• The get main chain genesis class method takes as input a Storage instance and returns

the genesis block of the locally stored canonical chain.

• The create genesis block class method takes as input a Storage instance and a times-

tamp and locally creates a new genesis block with the supplied timestamp.

• The append block internal class method takes as input a Storage instance, a Block in-

stance, the block’s genesis block, the block’s parent block, the parent block’s parent

tree, the list of Transaction instances of the Block, and a main chain flag. The method

verifies that the provided block is valid with respect to the chain it extends, appending

it after the specified parent either as a canonical or auxiliary block, and returning True

if all validations are successful.

• The append main chain block class method takes as input a Storage instance, a Block

instance, and a list of Transactions, and appends the provided Block to the locally

stored canonical chain, returning True if the block is valid.

• The append auxiliary block class method takes as input a Storage instance, a Block in-

stance, and a list of Transactions, and appends the provided Block to a locally stored

auxiliary chain, returning True if the block is valid.

A.6.4 Work Manager

This class provides a small set of routines for mining and smelting functionalities.

• The create work plan class method takes as input a miner address, and a Storage in-

stance, and creates a new local mining plan with default parameters in the database.

• The check batch chain validity class method takes as input a batch commitment hash,

and a Storage instance, and returns True if the last used reference block hash for the

provided batch is part of the canonical chain.

A.7. Threads 191

A.7 Threads

From a high-level point of view, the codebase offers a single executable python script, which

runs a multi-threaded application comprised of three main threads that operate under a sin-

gle process. Each thread runs a set of coroutines, which are a set of asynchronous functions

that can operate concurrently in the same thread that hosts them.

The first thread, referred to as the primary thread, hosts the main set of coroutines which of-

fer the main blockchain functionality. These coroutines encompass not only mining, smelting,

and minting, but also local wallet management, new block proposal, and main chain selec-

tion.

The second thread hosts the set of coroutines associated with the networking procedures that

enable the peer-to-peer overlay to gossip about the state of the blockchain. These coroutines

take care of listening for, and establishing connections with remote peers, along with process-

ing incoming and outgoing network messages.

The last thread hosts the Text-User-Interface (TUI) rendering procedures, which collectively

ensure that the terminal allows the user to visually interact with information displays that

are up to date with the current internal application and blockchain state.

This mixture between parallel threads and concurrent coroutines permits the implementation

to follow a design whereby shared memory concerns, such as deadlocks and race-conditions,

can be easily avoided.

A.7.1 Primary Thread

Initially, the primary thread encompassed all of the implementation coroutines. However, as

networking and user-interface operations became increasingly complex and demanded lengthy

input and output waiting times, they were phased out of the primary thread. Consequently,

the primary thread still encompasses all of the main application logic, executing all of min-

ing, smelting, minting, block proposal, consensus, and user-interface state update procedure

192 Appendix A. Implementation Addendum

as python coroutines in a single asynchronous event loop.

In the remainder of this section, each of the six primary thread coroutines are presented and

explained in terms of its requirements and role in our implementation.

User-Interface State Coroutine. This coroutine runs regularly every 500 milliseconds

by default1, and mainly updates the application-state information that is used to render the

user-interface.

The first main task in this procedure is to process all messages present in the ui explorer

fetch queue. These messages denote queries by the ledger exploration interface, which allows

the end-user to retrieve information on blocks, accounts, and transactions.

The second main task is querying the application storage and retrieving the up-to-date state

information that needs to be displayed to the user. On each invocation of this coroutine, a

new key-value store instance is created, and passed through the ui state update queue. This

key-value store is comprised of the following keys:

• db: The full database size in bytes.

• latest block: The Block instance representing the tip of the canonical chain.

• genesis block: The Block instance representing the genesis block of the canonical chain.

• work plans: A list of Targeted Work Plan instances representing all stored local miner

work plans.

• work plan header counts: A list of the number of slabs found for each work plan.

• work size: The byte size of the slab and work plan storage tables.

• batches: A list of Header Batch instances representing all stored smelted slab batches.

• batch in main chain: A list of boolean flags for each batch denoting whether it is valid

with respect to the canonical chain.
1The DEFAULT_TUI_REFRESH_TIME constant determines this value.

A.7. Threads 193

• batch proofs: A list generated proof count for each smelted batch.

• batches size: The storage size in bytes occupied by smelted slab batches and their proofs.

• explored data: The ledger explorer data resulting from processing the latest ui explorer

fetch queue message.

• internal addresses: A list of public account addresses of all stored internal keypairs.

• local servers: The list of all stored local servers.

• remote peers: The list of all stored remote peers.

• consensus peers: The number of connected remote peers that share the same canonical

chain tip with the local miner.

• connected peers: The number of connected remote peers.

Mining Coroutine. This coroutine performs two main functions within the primary thread.

Firstly, it processes messages from the ui instruction mining queue. Second, it launches min-

ing tasks for Targeted Work Plan instances waiting in the work plan queue.

Messages from the ui instruction mining queue are either for creating new mining profiles,

or toggling active mining on existing profiles. In the first case, a new Targeted Work Plan

is created for the specified miner. In the latter, the state of an existing work plan is toggled

between active and inactive, which adds or removes it from the work plan cache.

Each Targeted Work Plan instance present in the work plan cache periodically appears in

the work plan queue. For each instance in said queue, the coroutine launches a mining tasks,

which decides the next reference and sequence numbers to be used for mining under the work

plan, and launches a separate thread which actively searches for slabs and blocks using that

information. The work plan instance is put back in the queue once a slab or block is found,

and the process is repeated as long as the work plan is active.

194 Appendix A. Implementation Addendum

Smelting Coroutine. This coroutine similarly performs two main functions, processing

messages from the ui instruction batching queue, and launching smelting tasks for batches in

the smelt vault queue.

ui instruction batching queue messages instruct the coroutine to either designate a collection

of slabs as a new batch, creating a new corresponding Header Batch instance and saving it in

storage, or to toggle whether proofs for an existing batch are being actively smelted.

Header Batch instances that require new proofs to be generated are marked as active by sim-

ply having an entry in the batches smelting cache, and periodically appearing in the smelt

vault queue. Each time the instance appears in the queue, the coroutine creates a new smelt-

ing task that, upon completion, places the instance back in the queue and returns the next

proof to be created upon completion. As long as the slab batch is marked as active, this pro-

cess is repeated.

Wallet Coroutine. The Wallet Coroutine is dedicated to processing instructions received

from the user-interface related to internal keypairs. The instruction types supported by this

coroutine are either transaction signing using known internal accounts or new account cre-

ation.

When a transaction is signed, the signing key is updated to utilize an updated nonce for its

next signature, and the resulting signed transaction is then passed to the local miner’s trans-

action memory pool. Otherwise, when a new account is created, a new random internal key-

pair is saved to storage.

Block Proposal Coroutine. This coroutine handles the main task of ensuring that a pro-

posed block is always available for the local miner as a basis on which to launch any new

mining tasks. It ensures that a global variable named current block proposal contains a Pro-

posedBlock instance that greedily attempts to mine the highest-fee transactions currently

present in the miner’s pending transactions memory pool on top of the local miner’s current

canonical chain tip.

A.7. Threads 195

Consensus Coroutine. This coroutine regularly monitors the block introduction queue

for newly appended blocks to the local miner’s storage. For each new block passed into the

queue, the coroutine revisits its view of the canonical chain, either adopting the block as the

new canonical chain tip, or ignoring it as an auxiliary block. The procedure only adopts a

new canonical chain if the local miner has all of its blocks and it is indeed the heaviest chain.

A.7.2 Networking Thread

Reward-All’s networking thread enables a set of simple peer-to-peer communication corou-

tines that allow the local miner to advertise and share its blocks with interested parties.

Networking Instructions Coroutine. The Networking Instructions Coroutine handles

user-interface instructions related to networking, which fall under one of only four possible

types of instructions.

The first type is server creation, where the user-interface provides the local address and port

on which to listen for connections. Upon receipt of this instruction, the coroutine creates a

new storage entry with the provided information.

The second type is peer creation, where the remote address and port to which to connect is

provided. This instruction leads the coroutine to create a new database entry for the pro-

vided remote peer information in storage.

The third type is server toggling. This instruction refers to a pre-existing local server entry,

and leads the coroutine to either start listening for new connections using the local server in-

formation if the local server is not being actively listened on, or to close all active connections

made using the local server if it is already active.

Lastly, the fourth instruction type is peer toggling, which initiates a new connection or termi-

nates the existing connection with a known remote peer.

196 Appendix A. Implementation Addendum

Network Messages Coroutine. This coroutine processes all incoming messages from

peers connected over the network. Peers may be in one of two conversation phases, the Greet-

ing phase or the exchange phase. In the former, peers are only allowed to greet each other

through simple handshake messages. After the handshake is complete, a peer is considered by

the local miner to be in the Exchange conversation phase, which allows the peer to transmit

chain-related messages.

The first incoming message type is for block advertisement, which is used by a peer to an-

nounce its canonical chain tip to its neighbors. If the advertised block is invalid, already

known, or does not contain more work than the local miner’s canonical chain tip, the mes-

sage is ignored. Otherwise, the advertised block is cached and the local miner begins to so-

licit its ancestors if they are not already known.

The second message type is for block solicitation, in which a peer asks for a specific block

from the local miner’s canonical chain. If the block is known by the local miner to be in the

canonical chain, the local miner responds with the block’s contents.

The third message type is block provision, whereby a peer provides a requested block to

the local miner. If the block is not sought after by the local miner, the message is dropped.

Otherwise, the block is appended to the local miner’s chain database, and the Network Syn-

chrony Possible event is fired.

Synchrony Coroutine. The Synchrony Coroutine is designed to drive the consensus pro-

cess between a local miner and its peers through sending block solicitations and advertise-

ments. This coroutine waits for the Network Synchrony Possible event to be fired, and once

the event is set, it examines the local miner’s view of its blocks and peers. The list of chain

tips that are sought after by the local miner is first pruned to include only those with the

most amount of work. Subsequently, each remote peer is sent a block advertisement for the

local miner’s latest block, and is solicited for the next block in the chain.

A.7. Threads 197

A.7.3 Text User-Interface Thread

This thread is in charge of rendering and receiving instructions from Reward-All’s Text User-

Interface (TUI), which is built using python’s ‘urwid‘ library, and enables users to interact

visually with the application from within the console. Unlike the other threads, the TUI

thread does not use coroutines, due to urwid’s design. Instead, only urwid’s main rendering

loop is periodically iterated.

To create this loop, the thread first defines the user-interface layout using urwid’s object.

Then, the color palette of the interface is also defined, along with the input handling logic

for any interaction which the layout objects could not capture or interpret. Using these three

elements, the loop is then defined to render the interface on the default output screen pro-

vided by the host console. To keep the user-interface contents up to date with the application

state, a periodic state update task is run by the loop, by default twice every second.

Layout Construction. The TUI layout consists of three main components arranged in a

vertical stack, and each taking up the full width of the application window.

• The header, which shows the current block height, storage usage, and local time.

• The main body, which shows the currently selected view.

• The footer, which displays the keyboard shortcuts for switching between views.

The header and footer take up one line of text each to render, while the main body takes up

the remaining vertical space in the application window to show the currently selected view.

There are eight views to choose from.

Addresses View. This view shows a list of all locally stored internal addresses, as well as en-

ables the creation of a new random internal address.

198 Appendix A. Implementation Addendum

Figure A.1: Addresses

Blockchain View. This view shows the current state of the canonical chain. It lists the chain

length, average inter-block arrival time, the current mining difficulty, the latest block hash,

and the number of peers that share the same canonical chain tip.

Figure A.2: Blockchain

Explorer View. The explorer takes as input an identifier and returns the data associated with

it. If the identifier is purely numeric, the explorer returns the block stored at the height spec-

ified by the identifier. Otherwise, if a hexadecimal identifier, the explorer returns the ac-

count, transaction, or block, associated with the identifier.

A.7. Threads 199

Figure A.3: Explorer

Log View. This view shows the local miner’s log data, which contains information relevant for

debugging and introspection of application behavior.

Figure A.4: Log

Mine View. This view shows the list of targeted work plans stored by the local miner, and

allows the creation of new work plans. For each work plan listed, the view allows the user to

toggle mining using the specified work plan. Furthermore, given an account address, the view

enables the creation of a new work plan.

200 Appendix A. Implementation Addendum

Figure A.5: Mining

Network View. This view shows two lists, one containing all local servers supported by the

local miner, and all remote peers known by the miner. For each local server, the user can

toggle accepting connections, and for each remote peer, the user can toggle the connection

with that peer. Moreover, given a local server or remote peer address and port, a new entry

can be created.

Figure A.6: Network

Proving View. This view shows a list of all slab batches stored by the local miner, as well as

enables the creation of new batches. For each batch shown, the view allows toggling smelting

on the selected batch.

A.7. Threads 201

Figure A.7: Smelting

Wallet View. This view enables the user to create a new transaction and insert it into the

local miner’s transaction pool. Given the transaction sequence number, sender address, desti-

nation address, transfer amount, and fee, the new transaction can be defined. Optionally, the

user can provide the address of a smelted batch in the vault field to leverage newly minted

coins in the transaction.

Figure A.8: Wallet

Input Handling. For all inputs not handled by the loop’s main Frame object, the Han-

dle Control Input method gets invoked. We designed this method to handle switching be-

tween different parts of the interface, and exiting the application altogether. The following

202 Appendix A. Implementation Addendum

key combinations, and their lower case variants, are valid:

• ALT + Q Exits the application.

• ALT + A Switches to the addresses view.

• ALT + B Switches to the blockchain view.

• ALT + E Switches to the explorer view.

• ALT + L Switches to the log view.

• ALT + M Switches to the mining view.

• ALT + N Switches to the network view.

• ALT + P Switches to the smelting view.

• ALT + W Switches to the wallet view.

State Updates. All of the information displayed in the TUI is based on the current ap-

plication state. However, the TUI’s access to reading the current state is indirect, where the

only exception is the application log data, which the TUI reads directly. The rendered infor-

mation gets updated using the sync tui with state method, which gets periodically executed

every 500 milliseconds by default. The method begins by updating the current log view with

all new entries added to the log record queue. Subsequently, the method fetches the latest

state update provided in the ui state update queue, and uses it to update the data displayed

in the remaining views.

	Abstract & Copyright Notice
	Dedications, Acknowledgements & Declarations
	Introduction
	Winner-Takes-All Dynamics
	Unsustainable Compensation
	Reward Instability
	Objectives
	Contributions
	Publications
	PoSH in Practice
	Adaptive layer-two dispute cutoffs in smart-contract blockchains
	Towards Equity in Proof-of-Work Mining Rewards
	Reward-All Nakamoto Consensus

	Thesis Structure

	Background
	Ledger Design
	Coins, Addresses, Transactions
	Transaction Termination
	Append-only Updates

	Blockchain Consensus
	Network Topologies
	Longest-chain Protocols
	Stale Blocks

	Mining Incentives
	Compliance Payoffs
	Fault Penalties
	Deviation Advantages

	Summary

	Equitable Proof-of-Work Mining Rewards
	Computational Coinage Framework
	Miner Metrics
	Blockchain Metrics
	Coin Metrics

	Inequity in Nakamoto
	Inequitable Hash-Time-to-Issuance
	An Increasing Hashcap-to-Coinage Ratio
	Subsidy through the Fungibility Dilution Factor
	An Increasing Hash-Restitution Time

	Equitable Reward Constraints
	Undiluted Reward Constraints
	Prompt Restitution Constraints
	Equitable Coin Supply Growth

	Summary

	System Design
	Architectural Overview
	Block Production
	Reward Issuance

	Mining Blocks
	Block Proposal
	Work Logging

	Smelting Proofs
	Proving Conditions
	Proof Creation

	Minting Coins
	Proof Publication
	Reward Calculation

	Proving System
	Summary

	Block Withholding Attack Analysis
	Model Parameters
	State Space
	Action Space
	Implementation
	Overview
	Tool Parameters
	Output

	Results
	Chain Quality
	Incentive Compatibility
	Censorship Susceptibility
	Subversion Gain

	Summary

	Evaluation
	Implementation
	Multi-threaded Architecture
	Data Flows

	Results
	Proof Sizes
	Reward Times
	Reward Variance

	Summary

	Discussion
	Negligent Mining Deterrence
	Pooled Mining Incentives
	Full Smelting Opportunity
	Coin Supply Dynamics
	Summary

	Conclusion
	Review
	Future Directions
	Closing Remarks

	Bibliography
	Implementation Addendum
	Overview
	Data Structures
	Trees
	Authentication
	Ledger
	Rewards
	Networking
	UI Instructions

	Data Tables
	Trees
	Authentication
	Ledger
	Rewards
	Networking

	Data Storages
	Trees
	Authentication
	Ledger
	Rewards
	Networking

	Data Caches
	Data Managers
	Pointer Manager
	Account Manager
	Block Manager
	Work Manager

	Threads
	Primary Thread
	Networking Thread
	Text User-Interface Thread

