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Abstract

Sleep is an important biological processes that has been studied extensively to date. Research

in sleep typically involves mice experiments that use heavy benchtop equipment or basic neural

loggers to record ECoG/EMG signals which are then processed offline in workstations. These

systems limit the complexity of experiments that can be carried out to only simple open loop

recordings, due to either the tethered setup used, which restricts animal movements, or the

lack of devices that can offer more advanced features without compromising its portability.

With rising popularity in exploring more physiological features that can affect sleep, such as

temperature, whose importance has been highlighted in several papers [1][2][3] and advances

in optogenetic stimulation, allowing high temporal and spatial neural control, there is now an

unprecedented demand for experimental setups using new closed loop paradigms.

To address this, this thesis presents compact and lightweight neural logging devices that are

not only capable of measuring ECoG and EMG signals for core sleep analysis but also capable

of taking high resolution temperature recordings and delivering optogenetic stimulus with fully

adjustable parameters. Together with its embedded on-board automatic sleep stage scoring

algorithm, the device will allow researchers for the first time to be able to quickly uncover the

role a neural circuit plays in sleep regulation through selective neural stimulation when the

animal is under the target sleep vigilance state.

Original contributions include: the development of two novel multichannel neural logging de-

vices, one for core sleep analysis and another for closed loop experimentation; the development

and implementation of a lightweight, fast and highly accurate automatic on-line sleep stage

scoring algorithm; and the development of a custom optogenetic coupler that is compatible

with most current optogenetic setups for LED-Optical fibre coupling.
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Chapter 1

Introduction

Sleep is an essential biological processes that is ubiquitous to all animals researched to date,

with different animals displaying different sleep behaviours ranging from polyphasic sleep in

rodents, such as mice, to uni-hemispheric sleep in birds and dolphins [4][5].

Although significant progress has been made in the field, many questions regarding the functions

of its underlying biological circuitry still remain unanswered [6]. It is known that sleep plays

an important role in memory consolidation [7] and in more recent years, a few studies have also

reported that some sleep disorders may be linked with several neurodegenerative diseases such

as Parkinson and Lewy body dementia [8][9].

Currently, animal sleep studies are conducted by measuring ECoG(Electrocorticography) and

EMG(Electromyography) signals predominantly in mice, largely due to their similarity in ge-

netics and brain cellular structure to humans [10]. In fact, according to the National Human

Genome Research Institute, out of the 4000 genes studied, only 10 have been found in one

species but not in another [11]. Mice share ≈ 85% of DNA with humans [11]. Although there

are other mammals who share a higher percentage of DNA such as a chimpanzee at 96% [11].

The ethics, the physical housing and the welfare required for these animals make them imprac-

tical to be used in larger scale studies that require a higher sample size. Furthermore, mice can
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also be easily genetically modified, which when combined with their high breeding rate, make

them indispensable in sleep studies that require selective gene expression in order to uncover

their role in sleep regulation.

However, due to their physical characteristics, there is a limit on the maximum size and weight

of the neural recording device that can be used, which unfortunately has not been met by

many of the commercially available loggers today. Most of the neural recording devices on the

market are high channel count devices designed for short recordings in larger rodents, therefore

are often too heavy and bulky to be used in sleep studies with mice.

Furthermore, other than just core ECoG/EMG recording, there is a demand for a device that

can be used to carry out more advanced experimentation in order to solve some of the biggest

remaining questions in sleep research.

For example, whether sleep is controlled by a global process or as a result of local sleep circuits

and what other physiological factors are linked with sleep. These questions can be answered

by using; optogenetic stimulation, to investigate function roles of sub-circuits in different

regions of the brain through high punctuate stimuli; automatic sleep stage scoring algo-

rithm, which when combined with optogenetic stimulation would allow low stress partial/full

sleep deprivation, which is an alternate method for investigating effects of sub neural-circuits

of sleep[12][13]; and temperature sensing, as temperature has been shown to vary in sync

with the sleep-wake cycle [14] and affects neural activities when altered [15][16].

Whilst the features mentioned can be achieved using multiple systems together, this is im-

practical, costly and not scalable. Research in sleep would benefit greatly from an all-in-one

inclusive platform that is cost effective and reliable.

To achieve this, this thesis presents two novel neural logging devices that have been specially

designed for sleep studies using mice: A core neural logging device with enough battery life

(≥3 days) to capture both normal sleep-wake cycles and abnormal ones in diseased models

(transgenic mice); An enhanced device that has a shorter battery life (≥2 days) but can measure
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cortical temperature and provide optogenetic stimulation that can be used together with its

on-board auto sleep stage scoring algorithm to achieve partial/full sleep deprivation.

The core aims of this project are summarized by following objectives:

• To develop an ultra compact, lightweight core device for sensing and logging ECoG/EMG

signals in mice with usability and reliability matching or exceeding other state of the art.

• To validate the device with in-vivo experiments and to design a hardware efficient sleep

stage scoring algorithm.

• To enhance the features of the core device by integrating ECoG/EMG recording with

cortical temperature sensing, optogenetic stimulation and automatic sleep stage scoring,

in order to create a platform that can be used for more complex closed loop sleep exper-

imentation.

Each of the objectives stated above is addressed by a technical chapter and the structure of the

thesis is as follows;

• Chapter 2

A brief introduction to sleep analysis in mice is presented along with a more detailed ra-

tionale behind measuring cortical temperature and incorporating optogenetic stimulation.

A review on current state of the art is also shown.

• Chapter 3

This chapter is the first technical chapter and presents the development of the core device

in detail from defining its target specifications to the end device.

• Chapter 4

This chapter is the second technical chapter and focuses on the electrical and in-vivo

testings of the core device presented in chapter 3 as well as the development of the

automatic sleep stage scoring algorithm.
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• Chapter 5

This chapter is the final technical chapter. The development and testing of each of

the advanced features of the enhanced device: from the custom optogenetic coupler for

optogenetic stimulation; to cortical temperature sensing using a thermocouple; and finally

embedded device implementation of the automatic sleep stage scoring algorithm are shown

here.

• Chapter 6

This is the final chapter of the thesis and contains a summary of the work presented along

with contributions made to the field and suggestions for future work.

1.1 Author’s Contributions

Please note that all work shown in this thesis, apart from animal surgeries, was conducted solely

by the author including electrical characterisations and in-vivo animal experiments, whereby

they were carried out in accordance with the UK Home Office Animal Procedures Act (1986).

All surgeries were performed instead by other members of the group with the necessary training

and competency in regulated procedures.
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Chapter 2

Background

2.1 Literature Review

All mammals studied so far require sleep [17] and a lot of their behaviours are driven by this

biological process. The importance and necessity of sleep can be seen by the different sleeping

patterns animals have adopted due to various ecological factors. One profound example is

the interaction between a predator and its prey, whereby different hypotheses suggest that

animals under the risk of predation can have a polyphasic sleep pattern (multiple shorter sleep

bouts) such as in rats and mice; sleep when predators are active to avoid detection and energy

conservation [18]; spend less total duration in REM sleep [19], due to the associated paralysis

and increased arousal threshold [20]; have frequent short REM bouts, whereby the short period

of wakefulness observed after a REM bout heightens its awareness [21]. Other than risk of

predation, some avian and aquatic animals also have different modalities of sleep. Such as

uni-hemispheric sleep in dolphins, whereby one cerebral stays active due to need to resurface

to breathe [22].

From the above it can be seen that despite the risk involved, animals do not forgo sleep but

alter their sleep behaviours instead, which highlights that it a necessary function rather than a
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voluntary one. In order to analyse sleep, there must be a standard metric of defining whether

an animal is asleep and also the degree of depth. However, due to the wide range of different

sleep behaviours, this can be difficult. Nevertheless, the current consensus is that the process

of sleep has the following characteristics;

• Rapidly reversible upon stimulation

• Elevated arousal threshold

• Reduced metabolism and sensory responsiveness to external stimuli

• Rebound sleep to recover sleep debt if sleep deprived

• Species-specific posture

The criteria shown above have been found in all animals studied to date. These criteria are

behavioural and vigilance state can be determined by either measuring them directly or by

recording corresponding changes in physiological parameters. Whilst the former can be done

non-invasively and is less susceptible to noise, it can lack the granularity that can be achieved

by monitoring physiological parameters. For example, it is easy to separate wakefulness from

sleep in a rodent visually but much harder to do the same with sleep into the separate NREM

and REM stages. There are a few physiological parameters that undergo changes during sleep,

such as body core temperature [1], blood pressure and breathing rate. But one that has shown

the most distinct and consistent difference is perhaps neural activities in the brain. In 1924, a

German psychiatrist, Hans Berger invented a method for non-invasive measurement of electrical

activity in the brain and coined it as electroencephalography (EEG) [23]. From his recordings

on human test subjects, he observed a clear difference in the brain activity between wakefulness

and sleep.

Using the method developed by Hans, Nathaniel Kleitman, a physicist, who is also known as

the “the father of modern sleep research” [24], discovered the presence of bouts of high electrical

activity and rapid eye movements during sleep. The discovery, later known a REM sleep, was
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significant. As prior to this, it was believed that neural activity was quiet during sleep. Since

then, EEG has remained as one of the most popular tools for measuring neural activity in sleep

research and other fields neuroscience.

2.1.1 The need for Neural Datalogging Devices

Using EEG, three primary vigilance states, Wake, NREM (Non-Rapid Eye Movement) and

REM have been found in mammals. In humans particular, the NREM stage is subdivided into

four further stages. EEG signals have an amplitude that typically ranges from 100uV when

measured on the top of the scalp, to 1mV when measured on the surface of the cortex (ECoG)

and can be broken down into five different frequency bands, Delta (1-4Hz), Theta (5-10Hz),

Alpha (10-12Hz), Beta (12-40Hz) and Gamma (40-100Hz), spanning a frequency range from 1

to 100Hz.

EMG (Electromyography) is a technique that is similar to EEG but measures electrical signals

from the muscle instead of neurons. Referring back to the definition of sleep, one criterion is

the reduced response to stimuli and this is measured using EMG to separate wake from the

sleep stages. Delta and theta bands, which originate from the cortical and thalamic regions of

the brain [25] are used to further separate NREM (Low EMG, High Delta) from REM (Low

EMG, High theta/delta ), as they are two of the most prominent oscillations observed during

a typical sleep-wake cycle.

For mammals, sleep classification is usually done with one EEG channel and EMG channel by

experienced researchers. But for humans a more comprehensive set of parameters outside of

brain waves such as the heart rate, breathing rate, oxygen level, eye and leg movements are

monitored and used together for sleep/wake classification and detailed analysis of the sleep

pattern. Guidelines from the local sleep profession body such as the American Academy of

Sleep Medicine (AASM) are also referred to when scoring.

From the above, it goes without saying that EEG/ECoG is critical for scoring and analysis of
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vigilance states during sleep. Due to this, it is important that sleep researchers have access to

apparatus that can accurately record these signals. It must be pointed out that specifications of

such a device is heavily depending on the target subject. For example, for human subjects the

emphasis is on the safety and quality of the signal acquired. Due to this, high end bench-top

equipment are often used along with noise compensation techniques such as DRL (Driven Right

Leg). The setup employed is non-invasive with signals measured from the scalp via a headcap

and is not designed for long recordings (> one day).

On the other hand, a device designed for rodents such as mice, would have emphasis on pre-

serving the natural behaviour of the animal. Therefore, the device would need to be portable

(wireless/battery powered), lightweight and compact. Recording is also invasive with signals

measured from the brain surface (ECoG) so that the recording setup would stay attached even

when the animal try to actively remove it.

Regardless of the target, a low noise amplifier is necessary to amplify the low amplitude EEG

signal and a filter is also required to band limit that signal to the EEG frequency range. Whilst

there are many EEG equipment designed for human use, such as Open BCI [26], TMSI [27],

Unicorn-Bi [28]. The same can not be said for devices targeting smaller animals. This has an

impact on the progress of research in the sleep field when considering that the most widely used

animals are mice and their importance to sleep research is highlighted in the following section.

2.1.2 Contributions of Mice in Sleep Research

Because of varying sleep behaviours, to fully understand the neuronal circuits that drive sleep,

it is essential to study sleep patterns of different animals. After decades of research, sleep

behaviours of vast number of animals from different taxa have been recorded and analysed,

such as non-human primates [29], zebra fish [30] and common fruit flies [31]. However, out of

these animals, the one that has had the greatest impact on the field is arguable the laboratory

mouse. Apart from dramatically increasing data output as mice can be bred quickly and
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require lower maintenance when compared to other animals, one other key advantage is that

they can also be easily genetically modified. This makes them invaluable in studying the role

certain genes play in sleep regulation. Mice have been used extensively to improve general

understanding of sleep but also sleep in humans due to similarity in genetics and brain cellular

structure [10]. Some of the areas that have benefited from using mice are;

Sleep Regulation

By targeting neuronal populations in different regions of the brain, novel neural circuits that

regulate different aspects of sleep have been discovered. Some examples include; Glutamic acid

decarboxylase 67-positive GABAergic neurons (VTAGad67+) in the VTA being a key regulator

in NREM sleep and chemogenetic activation promoted NREM sleep [32]. The role glutamatergic

neurons in the Supraolivary mellu (SOM) plays in REM atonia [33]. And finally, regional NREM

sleep markers indicating independent local sleep control by the thalamic reticular nucleus (TRN)

[34].

Sleep Disorders

Using genetic modification to knock out certain genes, researchers have been able to mimic

various sleep disorders observed in humans. The models developed could then be used to

develop future treatments. In [35] it is shown that Nf1 mutant mice produce sleep disturbances

similar to patients suffer from Neurofibromatosis type and in [36], phenotype similar to human

narcolepsy patients were exhibited from orexin (neuropeptide) knockout mice.

Because of the importance of mice in sleep research, a lack of suitable devices (shown later) is an

issue that must be addressed. However, there are some challenges in designing a rodent specific

neural device for sleep research. Other than limitations on the size and weight mentioned in

the previous section. From the range of experiments shown above, it can be seen that a typical

standard recording length looking at one full circadian cycle (24 hours) is not enough. For

example, sleep deprivation experiments may require recording of neural signals both during the

deprivation and the recovery sleep after. Another example is the alteration of the sleep-wake

cycle in selective gene knock out mice to mimic certain disease models [14]. Furthermore, apart
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from core neural recording. To answer some of the more fundamental questions of sleep, more

advanced methods must be employed. One such method is to apply external stimuli to disrupt

selective neural circuits to see their functions in sleep. The other is to record physiological

parameters other than just ECoG that may also be linked with sleep. Both approaches are

explored below.

2.1.3 Investigating sub-neural sleep circuits using Optogenetic Stim-

ulation

In 1979 Francis Crick published a paper outlining challenges in controlling neuronal activities

in the brain with a high temporal resolution [37] and later suggested that light could be used

as a tool to achieve this. It was not until 2005, almost three decades later, where this technique

was finally demonstrated by Boyden in [38]. Since then, countless refinements into what is

known today as optogenetic stimulation have been made into the field. The main principle of

optogenetic stimulation is to use light to stimulate only light sensitive ion channel expressing

neurons to achieve selective inhibition and activation of neurons. These light sensitive proteins,

also known as opsins, respond to different wavelengths of light and optical powers. Therefore,

high punctate stimulation can be achieved either by delivering and localizing the stimulus to

a particular region in the brain or by specific gene expression through transfection with viral

vectors or using genetically modified animals. As well as a high spatial resolution, a high

temporal resolution can also be achieved by modulating the light stimulus with a particular

frequency or to a particular pattern.

Although optogenetic is not the only neuromodulation (alteration of neural activity) method

available, some other popular techniques exist such as; Chemogenetic stimulation, whereby

modulation is achieved by inserting designer receptors that can be exclusively activated by

designer drugs into neurons; and electrical stimulation, whereby modulation is achieved via

current injection. It offers some advantages over these methods. Firstly, compared to chemo-
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genetic, optogenetic allows a more precise control over the stimulation window, as excitation

is controlled by a light source that can be abruptly turned on/off. Whereas in chemogenetic,

excitation persists until the stimulating ligand has all been cleared. Secondly, compared to

electrical stimulation, optogenetic stimulation has a higher spatial resolution as it can tar-

get specific neuronal sub-populations in regions where heterogenous population of neurons are

in a close proximity to each other. Whereas in electrical stimulation, all immediate neurons

surrounding the electrode are stimulated. Lastly, optogenetic stimulation allows concurrent

stimulation and recording to occur, whereas due to stimulation artefacts the same can not be

done with electrical stimulation.

In the context of sleep, as a neuromodulation method and with its advantages over traditional

stimulation methods, optogenetic stimulation is an invaluable tool in investigating functional

roles different neural circuits play in sleep regulation. For example it is found in [39], that stim-

ulation of the locus coeruleus (LC) with 5ms pulses of 5 Hz blue light causes immediate sleep-

to-wake transitions whereas inhibition reduces wakefulness. And in [40] it has been reported

that stimulating glutamatergic/NOS1 neurons in the VTA leads to an increase in wakefulness,

whereas stimulating GABAergic VTA neurons produces a prolonged NREM sleep. Both neural

populations are in the VTA but have an opposite role in sleep regulation.

However, optogenetic stimulation has some limitations. Firstly, the method relies on the right

viral vector being injected precisely at the target location and at the correct concentration.

Therefore, there is a degree of uncertainly as to whether the process was successful. Which can

be an issue as the viral vector can be costly to make and the expression of ChR2 can take weeks

to occur. Secondly, for experiments that require a prolonged stimulation, local heating from the

optical source could affect neural activity. Lastly, there are several challenges in incorporating

optogenetic stimulation into a compact neural recording device for mice, such as the power

requirement of the light source and the method of optical light delivery, these are explored

further later.

Despite some of its disadvantages, it is still one of the most popular methods for neuromodu-
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lation. The ability to dissect and understand how each neural circuit regulates sleep not only

helps us to build a more complete picture of the sleep process but it also provides clues to one of

the biggest question in sleep that has not yet been answered, which is whether sleep regulation

is a global process that it controlled top down, or as a result of independent local processes.

2.1.4 Importance of Temperature in Sleep

During sleep, various physiological parameters undergo changes [41]. One such parameter is

temperature, which has been shown by many studies to be linked with sleep initiation and varies

with the sleep-wake cycle. It is known that prior to sleep, core body temperature decreases in

preparation and temperature drop is facilitated by selective vasodilation of distal skin regions

causing increased heat loss, leading to rapid onset of sleep [42]. Following sleep onset, core body

temperature drops further and has a reported mean difference of 0.31 degrees when compared

with wakefulness [43]. As sleep enters the repeating cycles of sleep and wake stages, rhythmic

temperature fluctuations that vary with the cycle can be seen in both the core and brain [14].

Overall cortical temperature change of three degrees and up to two degrees of difference between

NREM and Wake stages have been observed in mice [14].

From the above,it can be seen that temperature can be used as a marker for both sleep onset and

current sleep stage. However, temperature plays a more active role than just as the resultant

of changing biological processes associated with sleep. It has been shown that there exists

a sleep circuit in the hypothalamic area that responds to external warmth and causes body

cooling and NREM sleep [44]. And animal behaviours are influenced to actively build better

insulating nests in colder environments in preparation for sleep [45]. Furthermore, changing

cortical temperature can result in shifting of the EEG frequencies [15][16].

Currently, the exact mechanism behind sleep and temperature remains unclear. The inclusion

of a temperature sensor would offer more insight into which neural circuitry is controlling

temperature and the extent it has on the sleep-wake cycle. However as shown by various
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studies, temperature measurements are taken from the core, skin and cortical areas. Therefore,

to be compatible with all, the sensor chosen should fit the smallest target region in a mouse,

which is the brain.

2.1.5 Sleep Stage Scoring

Apart from enabling more advanced experiments by incorporating a stimulator and increas-

ing the number of physiological parameters being measured. Another way of contributing to

research in this field is to increase the data output by automating key processes used in data

analysis. One such process is sleep stage scoring, which is the classification of each epoch, a

short segment of the data ranging from 1-30s, into a vigilance state. This process is briefly

mentioned in the previous section whereby for animals, scoring is done visually by inspecting

band powers of ECoG and the amplitude of EMG. Whereas for humans, scoring is done accord-

ing to guidelines set by a professional body and using polysomnography data that also contains

other physiological parameters.

This section will focus on sleep scoring for mice and the advantages and considerations that

must taken in automating the process.
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Figure 2.1: Example of a manually scored data using ECoG spectrogram and EMG amplitude.
Colored squares in the sleep stage denote Wake (Blue), NREM (Green) and REM (Red) epochs
(5s). Wake = high EMG, NREM = high delta (1-4Hz), low EMG and REM = high thet a(5-
10Hz)/delta and low EMG.

Although the process used for sleep scoring in mice is seemingly straightforward (Wake = High

EMG, NREM = High Delta, Low EMG, REM = High T/D, Low EMG), as shown by figure 2.1.

In reality biological signals can be noisy which can complicate the scoring process. For EEG,

noise has a lesser affect on scoring, as multiple power bands are used. But this is not the case

for EMG, as it is used exclusively to separate wake from the other sleep states. Furthermore,

state transitioning is not instantaneous and due to both of these factors, some epochs can have

characteristics of other sleep states. Such as epochs with low EMG and low delta or high EMG

and high delta. For these epochs, researchers often have to rely on their past experience or by

inspecting surrounding epochs. Due to this, it can take even an experienced researcher up to

two hours to score a one day recording.

One proposed method of reducing ambiguous epochs, is to incorporate an accelerometer which

would be used as a backup to noisy EMG. As the accelerometer does not measure physiological

(muscle activity) signal, it would produce cleaner data. However, some information is lost due

to this, such as breathing rate which can be extracted from the EMG signal.
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For maximal time saving, an automated script should be developed. It should be mentioned,

that due to the lack of ground truth when it comes to sleep classification, as labels are subjective

and scoring can vary between researchers, the accuracy of a sleep scoring algorithm is typically

measured with respect to how much it agrees with the manual scoring. Therefore, for maximum

accuracy the algorithm should be tested with data-sets from multiple human scorers.

One thing that must be considered when designing an automated script, is whether the scoring

should be in real time (on-line) or offline. It is easier to conduct off-line scoring, as it would

be done off the device where all the data is readily available and no constraint on the timing

and computational resources. However, there is one feature that can be achieved with online

scoring that makes it necessary, which is the ability for it to be combined with optogenetic

stimulation for closed loop stimulation.

A lot of research have shown the sleep deprivation has many physiological and behavioural

effects such as memory consolidation and cognitive performance. [46][47][48]. Therefore, one

approach to working out the fundamental functions of sleep is via sleep deprivation. The com-

bination of optogenetic stimulation and on-line scoring would help this approach by providing

a low stress method of partial/full sleep deprivation. This is significant because currently, most

methods of sleep deprivation inadvertently introduce some stress to the animal. From a review

[49], some of the methods used for total sleep deprivation include; “gentle handling”, a manual

deprivation method whereby an experienced researcher has to continuously apply external stim-

uli to keep the animal awake; or automated methods using a treadmill/rotating cylinder [50].

For partial (REM) sleep deprivation, one method is known as the “flower pot method”. This

method involves in the animal being restricted on a platform above a body of water and during

the REM stage, the loss of muscle tone causes the animal to dip its nose into the water, waking

it up. The stress introduced from methods described above could affect the data collected as it

has been shown in several papers that stress has association with sleep rebound [51][52], which

is a process that always occur after sleep deprivation. This problem has been highlighted in

[12].
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2.1.6 Summary

In this section the importance of measuring ECoG/EMG and using mice in sleep research

have been highlighted. Therefore, for a device to be beneficial, it must be able to record

ECoG/EMG signals, designed with the limitations imposed by a small rodent in mind and

last long enough (≥3 days) to record a normal circadian cycle or an altered one from using

a diseased model. Furthermore, to facilitate experimentation that; uses external stimulation

or sleep deprivation to look at effects of sub neural circuits in different brain regions; and to

explore the relationship between sleep and cortical/core temperature, optogenetic stimulation,

cortical temperature sensing and online sleep scoring should also be incorporated. To do this,

the subsequent sections will explore current systems and methods that are employed for each

of the required feature.

2.2 Automatic Sleep Stage Scoring Algorithms

In this section, sleep stage scoring algorithms using different techniques are presented.
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2.2.1 Logic Rules Based Algorithms

Figure 2.2: Example of a logic rules based algorithm. A. Threshold values are obtained by
looking at the distribution of each classification feature and calculating a value that would split
the data into two groups, figure adapted from [53]. B. Each vigilance state is defined by a set
of conditions based on the threshold values and the logic rules are arranged in a hierarchical
structure. At each decision node, a specific feature of an epoch is compared with the threshold
value of that node and the epoch is either classified to a specific vigilance state or passed down
to another decision node, figure adapted from [53].

One of the earliest types of sleep stage scoring algorithm is thresholding as demonstrated in

1984[54]. Threshold based algorithms use thresholds derived from features that have been

manually selected for having a strong discriminating ability in separating the different sleep

vigilance states, to come up with simple binary logic rules that can be used to score the

data. It has been shown early on, that a single EMG channel and band powers from a single

ECoG channel, specifically delta and theta, are enough to score the epochs [55]. If values of

selected features for all epochs are plotted onto a graph, then easily separable localised clusters

representing each sleep vigilance state should be visible. Threshold values used to separate the

clusters are extracted manually from the selected features and then used to define the structure

43



of a decision tree, which consists of nodes arranged in a hierarchical structure. During scoring,

each node compares the average value of a particular feature of the current epoch to the defined

threshold and then either assigns the epoch to a sleep vigilance states or passes it to the next

node for further classification. Because of its simplicity and low computational cost, many

algorithms [56][53][57][58] based on this method have been proposed and majority of them use

either different combinations of ECoG band powers or statistics based on ECoG signals along

with the EMG amplitude as the classification features.

For example, in [56], mean global agreements of 94% and 91% against two human scorers were

achieved when using mean theta, delta values and T/D ratio to score the epochs into one of

the three sleep stages (NREM, REM and Wake)

It must be noted that, due to the absence of a clear ground truth as mentioned previously,

accuracy of a sleep stage scoring algorithm is typically defined by comparing its scoring to

one from an experienced scorer. In this instance, the accuracy is measured as a mean global

agreement, however a better measurement may be the sensitivity (the ability of the algorithm

to correctly identify a particular vigilance state) and specificity ( the ability of the algorithm

to correctly identify epochs not belonging to a particular vigilance state ) of each vigilance. As

this would not only take false positives and negatives into account but also the sparseness of

each state, for example REM, which typically only accounts to 5-10% of the total distribution.

This can be seen in [58], whereby an average accuracy of 80± 8% was achieved when using

powers of σ, δ, θ, β ECoG bands and EMG to score epochs into one of four sleep stages (NREM,

REM, Wake and Transition-to-REM). However, the scoring accuracy for the REM stage is 72%,

almost 10% lower.

Some algorithms may use multiple thresholds for the same feature such as in [53] and [59]

where a low and a high threshold are defined. To improve the accuracy, some algorithms also

include pre and post processing steps such as in [53], whereby artefacts in the ECoG and EMG

signals due to heavy movements are removed prior to scoring. In [56], further scoring steps

using statistics of the scored stages, such as the mean and the standard deviation of each
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feature, are used to re-score stages that were labelled as indeterminate by the scoring rules

used in the previous stage. Although threshold based algorithms are easy to implement and

can achieve a relatively high accuracy, there are a few drawbacks. Firstly, the thresholds need

to account for the variability in the ECoG and EMG signals due to different placements of

ECoG electrodes, different mouse strains, different surgical setups and changes in the sleep-

wake distribution between the light and dark periods. Some algorithms attempt to address

this by either training with sample data taken from both light and dark periods such as in

[57], whereby one hour is taken from each phase; or/and use a proportion of the recorded data

for training [58]. Other algorithms use the whole data for determining the thresholds such as

in [53]. Whilst this is viable for offline scoring as the whole dataset is readily available, this

method can not be used for online scoring. Furthermore, threshold based algorithms classify

epochs through hard assignment, therefore epochs that are ambiguous: having features that fit

into multiple sleep vigilance states or having feature values just above or below the thresholds,

can be misclassified.

45



2.2.2 Probability Based Algorithms

Figure 2.3: Examples probability based algorithms. A. Shows how classification errors can
result from using a hard-labelling algorithm (k-Means) against a soft-labelling algorithm (EM
Clustering) [60]. B. Example of template construction for template matching algorithms. Train-
ing epochs are scored first by a human scorer, then specific features are extracted from each
epoch. A template for each vigilance state is made by averaging features of epochs scored with
the same state [61].

An alternate to hard assignment is soft assignment, whereby each epoch has a certain proba-

bility of belonging to each of the sleep vigilance stage. Classification is performed by choosing

the stage with the highest probability and in doing so, ambiguous epochs are less likely to be

misclassified. An example of this is template matching, whereby templates for sleep vigilance

states are made during the training phase by averaging and storing selected statistical measures

of scored epochs. In [61], a template is made for each vigilance state and each consists of four
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12-bin histograms representing average distributions of the ECoG amplitude, zero crossing,

harmonic frequency and harmonic amplitude. Scoring is done by choosing the closest matching

template by calculating and ranking the summed differences between the distributions of each

template with the distributions of the epoch to be scored. Apart from template matching, one

other type of probability based algorithm is the naive Bayes classifier, which uses the Baye’s

therorem and assumes that features used for classification are independent from each other

(naive). Scoring is done by maximizing the posterior probability, ie finding the most probable

class an epoch belongs to, for a given set of features for a particular model. There have been

several algorithms proposed that uses naive Bayes algorithm [62][63][64]. One algorithm that

stands out is [64]. The algorithm has two training phases and during the first phase, each sam-

ple epoch is represented by normalized indices corresponding to the different selected features.

In the second phase, each epoch is then scored by calculating the product of probabilities (one

for each index) for each vigilance state and choosing the most probable state. The products are

calculated by using templates that contain an initial set of Gaussian parameters conditioned

to each feature. Parameters in those templates are updated according to a specific update rule

every time an epoch is scored during training until they converge. The new templates can then

be used for scoring. This algorithm is unsupervised, therefore unaffected by subjective bias

and has a short training time of 2-4 hours. This makes it ideal for on-line scoring, as no prior

training via manual scoring on each individual animal is required.
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2.2.3 Machine Learning Based Algorithms using Non-Linear Clas-

sifiers

Figure 2.4: Examples of machine learning based algorithms. A. Shows the 3D scatter plot
of epochs onto the three largest eigenvectors ( shown by the arrows ) after performing PCA,
figure adapted from [65]. B. Example of SVM ( support vector machine ). Epochs are split into
two classes by a decision boundary whose shape is dependent on the support vectors shown on
either side, figure adapted from [66]

As opposed to using a softer assignment scheme, another method is to focus instead on op-

timizing the separation of the data into groups. This can be achieved by either using better
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classification features or using more sophisticated non linear methods to separate the clusters

other than single value thresholds. Two popular methods are principle analysis (PCA) [63][65]

and support vector machine (SVM) [67][66]. As shown previously, an epoch is typically rep-

resented as a vector of feature values, if the epoch is plotted onto a graph then each feature

would correspond to an axis. In principle analysis, the aim is to reduce the feature space

dimensions by finding axes (principle components) that are both orthogonal and point in direc-

tions of greatest variances. For example in [63], seven principle components corresponding to

seven different classification features are found using PCA, three with the highest variances are

kept and used to train a naive Bayesian classifier. On the other hand, SVM based algorithms

work by finding a hyperplane that maximises the margin, which is the distance between the

hyperplane and data points on either sides of the plane. The shape of the hyperplane is usually

dictated by data points that are closest to it and these points are known as support vectors.

An example of this is [66], whereby 3 SVM stages are used to classify the sleep stages. Each

SVM stage targets a specific vigilance state and splits the epochs to either belonging to the

corresponding stage or not. Epochs are scored with the Wake SVM stage first then the REM

SVM and finally the NREM SVM stage.

2.2.4 Deep Learning Based Algorithms

Figure 2.5: Example of a convolution neural network. The network takes input features from
four epochs and consists of one convolution layer (green), two pooling layers (blue) and two fully
connected layers (red). More complex features are recognized in deeper layers from integrating
features from previous layers, figure adapted from [68].
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So far all the algorithms discussed require manual selection of the classification features. Re-

cently there has been a huge increase in popularity in using deep neural networks for classifi-

cation. One type that is particular popular is the convolution neural network (CNN), which is

able to adaptively find the best classification features if enough training data are given. CNN

works by using small size kernels (filters) to pick out certain features from the input data via

convolution. Each kernel is designed to detect a specific feature and these kernels are arranged

in hierarchical layers (convolution layers) with the output from the previous layer connected to

the input of the next layer. With this arrangement, features of increasing complexity can be

detected. For example, if the input data is an image, then in the first layer simple edges would

be detected followed by shapes in the second layer, and finally objects in deeper layers. This

arrangement shares some similarities with the organisation of neurons in the visual cortex and

how each neuron responds only to a certain stimulus in a small visual region, also known as

the receptive field. In the classification stage the output from the convolution layers (feature

maps) are combined using different weights and a class is assigned based on the result. The

loss function, which describes the error between the predicted and the actual labels, is used to

update the kernels and weights in incremental steps that lead to the decrease in the total error.

Algorithms based on CNN can be very accurate, as kernels may pick up features that might not

be easily identifiable manually. However to train a CNN model, vast amount of training data

and processing power to process these data are required. Due to this, it is only in recent years

algorithms based on CNN [69][70][71][72][68][73][74] are being proposed due to the increase in

the processing power of computers.

These algorithms differ from each other mainly in the type of input data, the number of layers

and kernels chosen. Some algorithms leave it to the network to decide the classification features

completely by using raw ECoG signals as the input [73]. Other algorithms leverage the CNN’s

forte in detecting features in 2D images, by first converting the ECoG data into wavelet images

by using wavelet transform [72] or power spectrograms via fast Fourier transform [74]. In

[73] instead of preprocessing the input data, the CNN is arranged into three separate blocks

with different kernel widths to target the EMG amplitude, low and high frequency ECoG
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features separately. Training is also split into two stages, whereby the kernels are optimized

first followed by the classification accuracy. Although, CNN is good at extracting spatial

features, it is not designed to handle temporal data. In manual sleep scoring, when deciding

the state of the current epoch, researchers would also look at the state of surrounding epochs.

Due to this, some algorithms [71][73] have combined CNN with LSTM. LSTM, unlike CNN

which is feedforward, is a recurrent neural network. This means that there is feedback from

the output of the network, ie the network retains memory of past sleep states. In [71], LSTM

is used to capture the change in the integral value of EMG with different sleep states in order

to separate wake from the other two sleep stages. CNN is then used to separate NREM from

REM. In [73], LSTM is used as part of the scoring stage and captures sleep state transitions

by retaining information on 25 consecutive epochs.

2.2.5 Summary

Four different types of sleep scoring algorithms are presented. Whilst threshold hold based

algorithms are the easiest to implement and has the lowest computational cost, the manually

chosen threshold values are prone to subjective bias and ambiguous epochs tend to be misclas-

sified due to the hard assignment method used. Misclassification can be reduced by either using

probability based algorithms, whereby each epoch has a certain probability of belonging to any

vigilance state or using algorithms with more sophisticated clustering techniques such as SVM.

The highest accuracy is achieved when using deep learning based algorithms such as CNN,

partially due to its ability to automatically select the best classification features, however, it

requires a vast amount of training data and can be a lot harder to implement. Therefore, when

designing the custom algorithm, different techniques should be explored and compared.
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2.3 State of the Art for Neural Logging Headstages

ECoG and EMG signals are essential not only for sleep stage scoring, as shown in the last section

whereby the majority of the automatic sleep scoring algorithms utilize these two signals, but

for neural science research in general. Due to this, many neural sensing/logging devices have

developed. In this section, an overview of these devices and their shortcomings will be shown.

Currently, there are two main setups used to record neural signals from mice, tethered and

untethered. A tethered setup [75][76][77][78] usually involves a headstage that connects to

the animal and also to a long data transmission cable. This cable in turn connects to a

data acquisition unit that is connected to a computer. A low torque commutator is often

used between the cable and the data acquisition unit in order to allow the cable to rotate

freely. The main advantages with this setup are: the headstages can be very lightweight as

they usually only contain the amplifier circuitry; the majority of the vertical weight is held

by cable; and the recording length is not limited by battery life or storage space. However,

even with a commutator, animal movements are still impacted, causing movement artefacts in

the recording. Furthermore, long cables are also more likely to pick up noise and can become

damaged from animals chewing on them. Due to the reasons above, researchers have started to

switch to untethered devices. Untethered devices are standalone devices that connect directly

to the animal. Data measured are either stored on board and downloaded at the end of the

experiment or sent wirelessly to a receiver that is connected to a computer. Tables 2.1-2.2 show

currently available untethered recording devices that target small rodents (last 4 shown in bold

are taken from literature).

From the tables it can be seen that the battery life is dependent on the number of channels,

sampling rate and the data acquisition type. Wireless devices with higher number of channels

and sampling rate have a shorter battery life due to the constant current consumption from the

ADC and the radio. One reason for the higher sampling rate seen in some of the devices, is that

these devices also target LFP signals which has a wider frequency range than ECoG. As this
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project only focuses on ECoG/EMG signals and it has been shown by various of sleep stage

scoring algorithms that one ECoG channel is enough for sleep stage scoring, power can be saved

by having fewer channels and a lower sampling rate (Nyquist). It is also shown that out of all

devices, only Pinnacle 8274-SL [79], Biopac Epoch EPTX-10210 [80], Vyssotski Neurologger 2A

[81], TaiNi[82] and NAT-1 [83] devices are of a reasonable weight whilst still having a battery

life of ≥24 hours.

However, whilst having a long battery life, Biopac EPTX-10210 device requires a separate

receiver to be placed underneath the home cage of each experimental animal, which could be

difficult to accommodate for due to how closely the animals are housed and also expensive when

scaled up. Furthermore, as it is a fully implantable device, its battery can not be replaced and

it does not support wireless recharging, making it a very costly long term system. Pinnacle

8274-SL on the other hand, is at the weight limit of what a mouse can support and the TaiNi

device uses a custom ASIC, which makes it very costly. Vyssotski Neurologger 2A has a good

balance of device weight and size, but it has a major drawback of the lack of support for real

time data verification. This feature is important, as in the event of a failed recording, either

from the animal knocking the device off the headstage connector, noisy ECoG/EMG signals or

device failure, the user would not be informed or is unable to check until the end of the exper-

iment when the data have been downloaded off the device. This can result in a significant loss

in time. The support for wireless communication also allows greater control and the device can

offer more advanced features as shown in later chapters. Lastly, the NAT-1 device which on top

of ECoG recording, also supports an external IR detection expansion board that can be used

with the ANY-maze software to track specific animal movements and events. Although novel,

the device is not commercially available and also does not offer real time data verification.

53



JAGA Penny

[84]

W2100-HS4

[85]

Pinnacle

8274-SL

[79]

Biopac

EPTX-10210

[80]

Neurologger

2A

[81]

No.

Channels
16 8 3 4 4

Bandwidth

(Hz)
0.1-300 1-5000

EEG:0.5

EMG:10
0.1-100 n/a

Resolution 16 16 12 n/a 10

Sampling Rate

(Hz)
1k 25k 256 n/a 100-400

Data

Acquisition
Wireless Wireless Wireless Wireless 1GB

Device

Weight

(g)

1.8 2.1
3.8

(Total)

2.3

(Total)
1.4

Battery

Weight

(g)

1.2-12 1.7-8.5 n/a n/a 0.6

Battery

Life

(h)

1.5-24 1-7.6 144+ 2 months 33

Device

Size

(mm)

24x15.4x3 12.5x12.5x5.5 17.1x16.2x11 7x9x29 22x15x5

Table 2.1: Available neural logging devices from literature and industry
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Deuteron

MouseLog-16C

[86]

TaiNi

[82]

NAT-1

[83]
[87] [88]

No.

Channels
16 16 4 16 4

Bandwidth

(Hz)
0.35-10k 0.2-500 n/a 0.34-100 n/a

Resolution n/a n/a 12 16 16

Sampling Rate

(Hz)
31.25k 19.5k 250 n/a 500

Data

Acquisition
32GB Wireless 4GB 8GB Wireless

Device

Weight

(g)

1.6 0.9 1.7 n/a
8.5

(Total)

Battery

Weight

(g)

3.0 0.6 0.6 n/a n/a

Battery

Life

(h)

4 72 70 >48 6-8

Device

Size

(mm)

13x18 20x12x14 18x22x10 20x10 28x17x7

Table 2.2: Available neural logging devices from literature and industry (continued)
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2.3.1 Summary

From this section, it is evident that there exists a trade-off between channel count, weight

and battery life. With most currently available loggers either being too heavy, bulky or not

able to record for long enough to capture a full sleep-wake cycle. Furthermore, loggers with

onboard data storage, although having a longer battery life, typically do not offer real time

data verification. This means that in an event of a failure, whether due surgical or hardware

problems, users would not be informed of this until the end of the experiment, when the data

has been downloaded. This can result in a significant loss of time.

To solve the former issue, aggressive strategies must be used when it comes to saving space

and power, such as reducing the number of components to the bare minimum and choosing

components with the smallest footprint and quiescent current. The numeber of channels should

also be kept low, as only one EEG and EMG are required for sleep analysis. For the latter

issue, a wireless communication protocol should be used to allow users to probe the device for

real time data verification and also to control the device.

2.4 Optogenetic Stimulation

2.4.1 Optical Light Delivery

The most commonly used opsins in optogenetic research is the Channelrhodopsin (ChR-2)

which has an activation wavelength of 473nm (blue) [89] and a EPD50 (power density for 50%

activation) of 1.3mW/mm2 [90]. The effects on the sleep circuitry, when neurons expressing

these opsins are stimulated, are typically observed from the neurological and behavioral record-

ings of the animal. To do this, the experimental setup used must accommodate for in-vivo

optogenetic stimulation whilst having minimal impact on the mobility of the animal. Two

common setups for achieving this are untethered and tethered.
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A tethered setup for optogenetic experiment is similar to the one used for neural signal record-

ing. A fibre optic cannula, which consists of a metal tube (ferrule) connected with an optical

fibre cleaved to the required length at one end, is implanted into the region of interest in the

animal during the surgery. This optic cannula connects to a fibre optic cable, which couples

light from the light source to the optical fibre with minimal loss. The cable then connects to

a commutator, which allows low torque rotational movements and the commutator is in turn

connected to the light source driver, which drives either a LED or or a laser source, as shown in

figure 5.2. Different stimulation patterns, in terms of frequency, duty cycle and optical power,

can then be set by controlling the driver via the connected computer.
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Figure 2.6: Example of a tethered optogenetic setup. The fibre-optic cannula is implanted into
the animal with the top ferrule exposed. The ferrule connects to a fiber-optic path cord via a
mating sleeve. The patch cord is connected to the output of a commutator which allows the
patch cord to rotate. Another patch cord is used to connect the input of the commutator to a
LED/Laser light source, which is typically controlled by an external PC.

An untethered setup on the other hand, typically consists of a wireless device that has the light

source, stimulus control and delivery method all integrated into one platform. In both setups, a

camera may be used to record the behaviour of the animal during the experimental along with

a device that is standalone or as part of the tethered system to record ECoG/EMG signals.
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Although, there has been a growing popularity in using untethered optogenetic devices, tethered

stimulation still remains as the most popular method due to the setup not limited by the

amount of optical power that can delivered, the ease in changing the target opsin by using light

sources of different wavelengths and the reliability of a wired connection over a wireless one

for control. However, there are some advantages of untethered systems over a tethered one,

such as scalability, due to the small size of the device, and improved mobility of the animals.

Both are important factors in preserving natural behaviours of animals and allow group social

experiments to be carried out. Due to these reasons, many untethered systems have been

proposed in both literature and industry.

These devices are usually paired with one or multiple miniature LEDs and although are available

in various sizes and weights, they can either be grouped by their light delivery method into

three groups: cortical, optical fibre and direct LED implantation or they can be grouped by

their degree of invasiveness: external portable devices and fully implantable devices.
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Figure 2.7: Light delivery methods used by different devices. (A-C) LED-fibre coupling
[91][92][93]. (D) Cortical stimulation [94]. (E-F) Fully implantable devices, figures adapted
from [95][96]. (G-I) Implantation of devices based on different technologies in the cortex (op-
tical fibre, cortical LED and fully implantable probe).

2.4.2 Cortical LED Devices

Devices that use cortical LEDs, deliver the optical stimulus to the brain by either cutting a

window/thinning an area of the mouse skull [97][98] and/or attaching a LED directly above

it via dental cement [99]. This method of light delivery does not suffer from the coupling loss

seen in LED/laser-fibre coupling, however it has been shown in [99] that the parietal skull of

an adult mouse (6 months) can attenuate the optical power by as much as 51%. Additionally,

the optical power is also reduced as it penetrates deeper into the brain, with the maximum
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penetration depth dependent on two factors, the absorption and the scattering coefficients,

which are quantitative measures of how the light photons are absorbed and scattered as they

encounter different brain tissue types. Both coefficients are dependent on the wavelength of

light used, however across the range of 360nm to 1100nm, the scattering coefficient is greater

than the absorption coefficient by at least 1-2 orders of magnitude [100]. The dominating

scattering effect causes the transmitted optical power (473nm) to drop to only 50% after passing

through a cortical tissue slice that is only 100 µm and 10% if the thickness is increased to 1mm

[101]. Due to this, to target deep brain regions the cortical LED must provide enough optical

power and this is shown in [97] whereby the LED used requires an input power of 250mW

and in [94], a commercial device, the maximal input power is 1W. Light delivery via cortical

implantation is often used in portable optogenetic devices, which are miniature devices that are

a few centimeters in size, weigh a few grams and typically made with exclusively off the shelf

components and attached to the head externally [97][98][99][94]. For example, in [97] a cortical

optogenetic stimulation device that consists of three stacked PCB boards no bigger than the

size of a US penny and weighs only 3g is presented. The optional radio module is connected

to a MCU module and together they control an optics module that can hold up to 16 LEDs in

real time. The module is implanted onto the top of the skull with the LEDs directly above a

thinned out window. The device is powered wirelessly by a RF energy harvesting module that

operates at 120 kHz and receives 2W of power constantly from the transmitter. In [99], the

stimulator shown is a 14mm by 14mm PCB that consists only of a MCU, power management

circuitry, an IR receiver and LED receptacles. Target areas in the skull are cut and 470nm ,

0603 LEDs are implanted and sealed with only the plugs exposed, which can then connect with

the receptacles on the device. When powered with a 10mAh LiPo battery, it weighs 2.4g in

total and can last up to 67 minutes. Whilst the weight is within the limit to be used on mice,

its duration is too short, where it has been shown that stimulation lasting hours [40] may be

required.
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2.4.3 LED-Fibre Coupled Devices

Coupling of the light source to an optical fibre is another popular method of delivering the

stimulus in portable optogenetic stimulators [102][103][104][93][91]. Using this method, the

transmission loss is reduced as the fibre can be implanted right next to the region of interest,

however some optical power is lost due to coupling. With a tethered setup, coupling efficiency

is maximised by using lens that collimate (collimators) the light into the fibre. Higher coupling

efficiencies can be achieved with well collimated light sources such as lasers than a more diffused

light source such as a LED, whose light intensity usually follows a Lambertian curve. However,

due to the size and weight limitations of portable devices, coupling using standard lasers and

lenses is not feasible. Whilst miniature waveguides and laser diodes can be manufactured [105],

advanced micro-fabrication technology is required for this. Furthermore, according to [106],

when the cross sectional area of the optical fibre core is smaller than the area of the emitter

of the LED, using a collimator would not increase the coupling efficiency. Therefore, the most

efficient method when using a LED with an emitter surface area greater than a fiber core’s, is to

directly butt the end of the optical fibre to the surface of the LED [106]. As most optical fibres

have core diameters in the µm range, this is likely to be the case if standard LEDs are used as

the light source. The coupling efficiency is primarily depending on two factors: the amount of

light that can physically enter the optical fibre core and the acceptance angle. The first factor

is self explanatory and is dependent on the diameter of the fibre core. The second factor is

the maximum angle light can enter the optical fibre and still propagate through it via internal

reflection, it is linked with the numerical aperture of the optical fibre. Therefore in order to

maximise coupling efficiency when using a diffuse source (LED) in direct butting, optical fibres

with the largest core diameter and highest numerical aperture should be chosen. It has been

shown in [107] that an efficiency of 0.12%-17% is possible (fibre cores 62.5µm - 400µm, NA =

0.22 - 0.37) and in [103] and efficiency of 10.6% (500µm, NA = 0.63) was achieved.

Portable stimulators using LED-optical fibre coupling, although a different light delivery method,

are very similar to stimulators using cortical LEDs. For example in [103], the device consists
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of a PCB that houses a MCU and a IR receiver on one side and a LED on the other. The

main PCB attaches with an optics component which is made from milling a HPDE block and

contains a slot for the LED to sit in and a circular channel for the ferrule to slot in to couple the

LED to the optical fibre. The whole assembled module is 15x15mm, weighs 2.8g, can deliver up

to 0.8 mW of optical power and lasts >35 minutes when powered by a 20 mAh LiPo battery.

In [104], the same stacking arrangement is used, but instead of a LiPo battery, the device is

powered by two solid state batteries and the optics PCB is drilled directly to create a channel

to house the LED on one side and the ferrule on the other. The devices is 12x7mm in size

and weighs <1.6g. One thing to note is that all these stimulators [102][103][104][93][91] all use

coupling via direct butting.

As well as delivering the light stimulus to the target region, users must also be able to con-

trol the stimulation pattern at any given time. In all portable stimulators, this is achieved

either by using an infrared transmitter to transmit pulses to represent the different optogenetic

parameters, which are then received by an infrared receiver [91][98][99][94][103] or via RF com-

munication [97][93]. Infrared communication, although having a much lower bandwidth, uses

less power and is easier to implement. However, a direct line of sight between the transmitter

and receiver is required. The robustness can be increased by using multiple IR LEDs placed

at different angles [99] and multiple devices can be controlled at once by using unique IDs

or modulating the IR signal with different carrier frequencies [99], the latter also reduces the

effect of background IR interference. Other than the communication methodology, another

factor that must be taken into account is how the device is powered. All the portable stim-

ulators referenced so far are either powered by a miniature battery [103][104][93] or receive

power wirelessly via inductive coupling [102][97]. Wireless powering allows the device to op-

erate indefinitely, however due to the limited range (<few cm)[102], a custom arena [97] with

the power transmitter placed directly below, is often required along with super capacitors as a

backup power [97][102] to ensure that the device can receive enough power uninterruptedly at

any given time, location and orientation within the arena. This not only reduces the scalability

but also prevents experiments that require animals in their natural habitat (home cage) from
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being carried out. On the other hand, using a battery adds weight and increases the overall

dimensions of the device, which may affect the behaviour of the animal.

2.4.4 Fully implantable Devices

Fully implantable stimulators are devices that implant µ-LEDs directly to the target region via

a miniature probe. These probes are usually manufactured using advanced micro-fabrication

technology, whereby µ-LEDs (<100µm) are deposited along with metal interconnects that have

been patterned using lithography, onto a substrate that have been cut with a laser to create a

needle like structure that is only a few tens to hundreds µm thick [96][108][109][95]. Substrates

used include PET (Polyethylene terephthalate) [96] and polyimide based copper clad laminate

[95]. The manufactured probe is usually hermetically sealed with PDMS and/or parylene to

protect it from the environment in the brain and if a flexible substrate is used, it is injected

to the target region through the use of a releasable [96] or a biodegradable needle [95] to

provide mechanical support during insertion. With advanced microfabrication, not only are the

manufactured probes small and lightweight (<1g), precise control over the shape of the probe,

such as adding a taper at the end to reduce tissue damage during insertion; or the size, color

and the direction of the emitted light from LED [96] is possible. The latter allows experiments

that require concurrent stimulation of two populations of neurons in the same region to occur

by implanting LEDs with different wavelengths. Although dual stimulation is also possible with

portable optogenetic stimulators (head-mounted miniature devices) [91], they can not reach the

same spatial resolution as fully implantable optogenetic probes, whereby multiple LEDs can

be implanted at different depths along the shank [108]. Furthermore, it is possible to combine

stimulation with recording and other sensors to create an integrated multifunctional probe [110].

For example in [96] a multilayer probe is shown: one layer has µm sized platinum electrodes

for physiological recording, another layer has a serpentine platinum resistor for temperature

sensing and the third layer has a microscale photodector for detecting light intensity. These

layers are stacked with the optogenetic layer to create an integrated device that is only 20µm
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thick [96]. To communicate externally and receive power whilst conserving the size and weight,

these fully implantable optogenetic devices either connect externally with thin microwires or

are manufactured/connected to a flexible PCB that contains an antenna and a simple RF power

harvesting circuit [111]. Recently, some literature have also proposed using NFC (Near-field

communication) for communication and wireless power transfer as it is less sensitive to physical

obstructions [95][112]. To ensure adequate power is delivered to the device, schemes such as

using an array of antennas that track the location of the animal [111] or wrapping the cage

with coils in a configuration that has a relatively uniform in plane and out of plane power [95]

are employed.

By connecting the probe to a flexible PCB, the device is able to fit into areas in the body that

would not be possible with a more rigid structure and this feature has been utilised in several

literature, such as targeting the sciatic nerve in the peripheral nervous system to investigate

pain pathways [109] or targeting the subcutaneous adipose tissue to investigate the relationship

between fat thermogenesis and obesity [113].

Although, fully implantable devices have many advantages as shown, the specialised equipment

required for manufacturing and the costs involved put it out of reach for most laboratories. For

example the multi-functional probe presented in [96], requires 3-8 weeks from preparation to

manufacturing and implantation [114]. There are some portable stimulators that also implant

LEDs directly to the target region, such as [115] whereby a 8mm long, 0.55m wide PCB shank

coated with epoxy and off-the-shelf LEDs (Cree,DA2432) attached to the far end, is used to

deliver an optical power of up to 32mW. In [116] optical power is delivered via the same Cree

LED, but it is instead attached to the end of a pair of 36 gauge magnetic wires twisted to

form an implantable extension and coated in acrylic. These stimulators are cheaper and easier

to manufacture but lack many of the benefits associated with fully implantable probes and

devices.
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2.4.5 Localised Heating Effect

One potential problem that can arise with all optogenetic stimulators is the effect of localized

heating from the heat generated by the LED and also light absorption by the surrounding tissue.

For LED-fibre coupled devices, only the latter effect is important as the light is delivered

remotely. Although, there is not a strict agreement on what the maximum local change in

temperature should be, most literature aim to keep the increase to be < 1◦C, as an increase of

(2-3◦C) can alter EEG frequencies [16]. The temperature is typically monitored by measuring

the local temperature using either a thermocouple [97] or a thermistor [104] and either using

a heat sink [97] or choosing the stimulation pattern carefully [116], so that channel rhodopsin

(ChR2) can be activated whilst keeping the temperature change below the threshold. For

example in [97], a large copper pad underneath the optics module keeps the temperature increase

at the tissue interface side to be <0.6◦C (30 Hz, 15 pulse width, 250 mW input power, not

implanted). In [115], a low duty cycle (20 % duty cycle, 10mW power) is used to keep the local

temperature increase to be <0.3◦C. In [116], by using higher efficiency LEDs and keeping the

duty cycle <20% (20mW/mm2), the local change in temperature was kept under 0.5◦C even

after 120s of stimulation. For fully implantable devices, heat dissipation is kept low through the

usage of µ-LEDs, which require very little current to deliver enough optical power to active the

surrounding neurons. For example in [108], a current of <8µA is enough to deliver 0.15µW of

optical power, which corresponds to an intensity of 1mW/mm2 at the LED surface (150µm2).

2.4.6 Summary

From the review of different types of optogenetic devices, it has been shown that whilst fully

implantable devices can achieve high spatial resolution with multispectral illumination through

the usage of completely customizable µ-LEDs, and stimulate surrounding neurons with a very

lower power, the technology and processes required for manufacturing such devices are beyond

the scope of this project. For targeting deep brain neurons in a portable device, the best optical
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stimulus delivery method is via butting an optical fibre directly to the surface of the emitter of

a LED.

2.5 Temperature Sensing

In order to measure cortical temperature, the temperature sensor needs to be able to withstand

the humid environment in the brain and also be as small as possible to minimize the tissue

damage during insertion. There are three main types of sensors currently available that are

suitable; Thermistors, RTDs and Thermocouples.

2.5.1 Sensor Types

NTC Thermistor

A NTC (Negative Temperature Coefficient) thermistor is a resistive temperature element whose

resistance has an inverse relationship with temperature, eg as the temperature increases its

resistance decreases. It is usually made from oxides of silicon, cobalt, iron and platinum. NTC

thermistors are available in three main types [117], they can either come in a bead form with

fast temperature responses and high stability; as a disk and chip for higher power dissipation; or

hermetically sealed in glass for maximum protection from the environment. NTC thermistors

are highly non-linear, therefore they should either be used in a setup that would linearize their

output, such as a simple voltage divider or a look-up table in software should be used. The

relationship between resistance and temperature of a NTC thermistor can be described by

Eq.2.1, whereby R0 is the resistance at T0 (usually 25◦C) and β is a value that describes the

shape of the resistance against temperature curve between two temperatures.

R = R0 ∗ exp(
β

T
− β

T0

) (2.1)
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Figure 2.8: Relationship between resistance (normalized to the resistance at 25◦C) and tem-
perature for NTC thermistors with different β values. Figure taken from Murata’s datasheet
[118].

RTD

A RTD (Resistance Temperature Dectector) is another sensor element whose resistance also

changes with temperature. However, unlike a NTC thermistor, the resistance of a RTD increases

linearly with temperature.

RTDs are usually made from platinum using either wire wound or thin film deposition technol-

ogy, due to its inertness and linear response over a wide temperature range.

Platinum RTDs are usually named with the PT prefix + the base resistance at 0◦C, eg PT100

has a resistance of 100 Ω at 0◦C. The resistance of a RTD at a given temperature is described
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by Eq. 2.2, whereby R0 is the resistance at 0◦C and α is the temperature coefficient at 0◦C.

R = R0 ∗ (1 + αt) (2.2)

Temperature is typically measured from a RTD by injecting it with an excitation current then

measuring the resultant voltage. However when doing this, two sources of error can occur. The

first one being that the resistance of a RTD could change due to the self heating effect from

the injected current, this effect can be minimized by limiting the current to less than a few

milliamps. The second being that the resistance in the lead wires could affect the measurement.

For applications requiring a high accuracy, 3 or 4 wire RTDs instead of the 2 wire version can

be used to mitigate this error. Figure 2.9 shows that for a three wire RTD the error can be

removed by VA - VB and for a four wire RTD, the voltage across the RTD can be directly

measured.
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Figure 2.9: Different setups used to compensate for the measurement error due to the lead wire
resistance (shown in red).

Themocouple

A thermocouple is a temperature sensing element that consists of two wires made of dissimilar

metals and welded together at one end to form a bead. Themocouples work by utilizing the

seebeck effect, whereby a potential difference is developed between two metals whenever there

is a temperature gradient between the tip and the open end. The magnitude of this potential

difference is dependent on the temperature gradient and the relative seebeck coefficient, which

is different for each dissimilar metal pair.
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Thermocouple

Type

Conductor

+

Conductor

-

Temperature

Range (◦C)

Seebeck

Coefficient (uV/◦C)

T Cu Cu-Ni -185 to +300 41

K Ni-Cr Ni-Al 0 to +1100 41

E Ni-Cr Cu-Ni 0 to +800 61

J Fe Cu-Ni 0 to +750 52

Table 2.3: Seebeck coefficients (25◦C) of different thermocouple types [119][120].

Thermocouples are able to operate over a wide temperature range and do not require a power

source. However, due to the seebeck coefficient being in the range of uV/◦C, they are prone to

noise and an amplifier is usually required to amplify the output signal [121]. One key aspect

of thermocouples is that the temperature measured is the relative temperature and not the

absolute. To measure the absolute temperature, the interface end would need to be at 0◦C,

which would be impractical. Fortunately, most amplifiers that specifically target thermcouples

have a ”cold junction compensation” feature built in, whereby the junction (interface end)

temperature is measured by an internal sensor and used to compensate the reported reading

from the thermocouple.

Like thermistors, the relationship between the voltage of a thermocouple and its temperature

is also non-linear. This is because the seebeck coefficient can change with temperature. This

non-linearity is dependent on the properties of the dissimilar metal pair used, which also con-

trol the temperature range and the environment the thermocouple should be used in. Some

of these metal pairs have been standardised and separated into different groups. The most

common available types are shown in table 2.3 along with their seebeck coefficients (at 25◦C)

and operating temperature range.

Figure 2.10 shows the linearity of the seebeck coefficient for the different thermocouple types.

J type thermocouple is shown to be the most linear, but over the temperature range between

30◦C-40◦C, which is the physiological range, the change in seebeck coefficient is very small for
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all thermocouple types.

Figure 2.10: Effects of temperature on the seebeck coefficient of different thermocouple types
[122]. T(Cu,Cu-Ni), K(Ni-Cr,Ni-Al), E(Ni-Cr,Cu-Ni) and J(Fe,Cu-Ni) represent thermocouples
made with different dissimilar metal pairs.

2.5.2 Summary

A summary of the different temperature sensor technologies is shown in table 2.4. Currently,

there are not many devices on the market available that can measure both cortical and core

temperatures in mice. Most of them are long term data loggers or telemetry devices (>3

months) designed to be implanted into the abdominal region in order to measure the core

body temperature, such as the nano-T from DST [123] or the HD-X10 from DSI [124]. In

literature, there are also only a handful of studies that have looked at the cortical temperature

under various physiological conditions. These studies either directly implant a thermocouple

[125][126][127] or a thermistor [128][14] in the brain or affix them to a probe first for mechanical

support.

Although, thermistors have a higher sensitivity than thermocouples. For cortical measurements,
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size and stability are of more importance. Thermocouples are usually available in smaller

diameters, which cause less tissue damage, and do not require an active driving source, thus not

subjected to self heating effects. Due to this, thermocouples are the most suitable temperature

sensors.

Thermocouple

Type

Thermocouple

(Beaded)
RTD Thermistor

Temperature Range ◦C -210 to 1760 -240 to 650 -40 to 250

Linearity Fair Good Poor

Sensitivity Low Medium High

Response Time Medium to Fast Medium Medium to Fast

Stability Fair Good Poor

Accuracy Medium High Medium

Durability High Medium Low

Cost Low High Medium

Size(mm) 0.33-1.13 [129] 1.5-10 [130] 0.8-8 [130]

Table 2.4: Summary of the different temperature sensors [131]

2.6 Conclusion

As highlighted in previous sections that there is a need for neural logging devices that are not

only able to do basic ECoG/EMG core recording in mice, but also offer optogenetic stimulation

and temperature sensing for more advanced experiments.

The first step in designing an embedded device is to first consider the technology to use and

there are three main types as shown below;

• ASIC

By designing an application specific chip through integrating all the functionalities and
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key components of the system onto one IC, the highest performance, efficiency and small-

est footprint can be achieved. However, ASIC development is a very lengthy and costly

process. Not to mention, external components are still required for the data storage or

wireless communication based on standard protocols.

• Mixed Design

Using an IC that specifically targets biopotential measurements such as an amplifier

chip from Intan Technologies or the ADS129x series from Texas Instruments with off

the shelf external components can dramatically reduce the development time, whilst still

achieving a good performance. However, the cost of these chips can be expensive for

example, a single 16-channel amplifi IC (RHD2216,Intan Technologies) costs $286 [132].

Also designers have less control and flexibility over the system if using a pre-designed

headstage IC.

• General Purpose

For a low volume production, devices using solely general purpose off the shelf components

typically have the lowest development and manufacturing cost. Designers also have full

control over every individual part of the system. However, the performance and efficiency

of these systems are unlikely to match those designed with an ASIC.

For this project, one key aim has been to design a device that can be cheaply manufactured

and quickly deployed for internal use, therefore the device should be designed using solely off

the shelf components and manufactured using standard PCB manufacturing technology.

Due to this and the high energy requirement of optogenetic stimulation. The device should be

split into two variants, with one focusing on core ECoG/EMG recording for simple experiments,

that can be powered using coin cell batteries. The other, more advanced variant (closed-loop)

would be powered using a battery that can support higher energy drain, in order to support

the power requirement of optogenetic stimulation and temperature sensing.

From the individual summary of each section above and consulting experienced researchers,
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the following list of specifications were derived;

2.6.1 Target Specifications

For both loggers:

Weight

It is advised that a mouse should not carry more than 10% of its body weight. A typical wild

type adult male (C57bl/6) mouse weighs 25-30g, therefore the combined weight of the device

including batteries should not exceed 3g.

Size

Most devices shown in tables 2.1-2.2 have a width and length of <2cm and a height of <1cm.

Battery Life

Mice are nocturnal animals and are therefore more active during the night. As mice have a

polyphasic sleep pattern, meaning that they sleep multiple times a day, they have a sleep-wake

distribution that differs between the day and the night. To capture this uneven distribution,

a minimum recording time of 24 hours is required. However, in order to capture altered sleep-

wake cycles from using diseased models or ECoG activity during and after sleep deprivation, a

longer recording time is required (2-3 days).

Power Consumption

The combined weight constraint of 3g limits the battery weight to ≤1g. This limits the battery

type to coin cell batteries. The coin cell battery with the highest capacity under 1g is the zinc

air 312, which has a nominal capacity of 160mhA at 1.4V. Therefore, for a 2 day recording, the

maximum current consumption should be less than 3.33mA.

Sampling Rate and Number of Channels

A logger’s power consumption is typically proportional to the number of channels and sampling

rate. Because the device will only be used to measure ECoG/EMG signals with a bandwidth

of 100Hz, 4 channels (2 ECoG, 2 EMG) would suffice and would accommodate for different
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ECoG acquisitions schemes. The sample rate can be set to the Nyquist frequency at 200Hz,

which is the minimal non-aliasing frequency.

Filter Bandwith

To avoid aliasing and saturation from DC-offset, a bandpass filter of 0.5-100Hz should be used.

Data Acquisition Type and Storage

Due to the constraint on power, data can not be streamed continuously and must be stored

onboard. With 4 channels sampled at 200Hz and 12-bit resolution, the minimum required

storage for a two day recording is 2Gb (200*4*12*3600*48) after rounding to the nearest avail-

able memory size. To allow real time data verification and control over the device, wireless

communication should be supported. With four channels the required bandwidth is only 9600

bps (200*4*12), therefore a low data rate but energy efficient wireless communication should

be used. BLE (Bluetooth Low Energy) is the most suitable technology due to its low energy

requirement, support for embedded devices and it has a maximum theoretical bandwidth of 1

Mbps.

For the closed loop variant:

Temperature Sensing

Temperature sensing using a T-type thermocouple and cold-junction compensation amplifier.

Accuracy must be under <1◦C (smallest change in temperature observed between NREM and

Wake in mice [14]).
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Optogenetic Stimulation

Optognetic stimulation using direct butting of an optical fibre to the surface of a blue light LED

(470nm) and a driver that is capable of producing different stimulation patterns is required.

Specifications for the two variants are summarized by tables below;

Power Supply 2.7V On Board Memory 2Gb

Current Consumption 3.33mA Data Streaming BLE

Number of Channels 4 Size 20mm*20mm*10mm

Filter 3dB Bandwidth 1-100Hz Weight 3g

Input Dynamic Range 52dB Battery Life 48hr

Noise Floor of AFE 0.5uVrms ADC Resolution 9bit

ADC Sampling Rate 200Hz

Table 2.5: Target specifications for the core logger

Power Supply 2.7V On Board Memory 2Gb

Current Consumption 3.33mA Data Streaming BLE

Number of Channels 4 Size 20mm*20mm*10mm

Filter 3dB Bandwidth 1-100Hz Weight 3g

Input Dynamic Range 52dB Battery Life 48hr

Noise Floor of AFE 0.5uVrms ADC Resolution 9bit

ADC Sampling Rate 200Hz Temp Accuracy 1◦C

Opto light delivery LED-Fibre Direct Butting

Table 2.6: Target specifications for the closed loop logger
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Chapter 3

The Development of an ultra

lightweight neural logger for rodent

physiology

3.1 Introduction

In the previous chapter, a list of specifications and the technology to be used were identified.

In this chapter, a detailed breakdown of each functional block of the first of the two variants,

the core logger, is presented starting with the device architecture.

3.2 Device Architecture

Due to space and power constraints, the device architecture had to be as simple as possible. This

was achieved by firstly identifying the most important features and the minimum components

required to implement them. Referring back to the target specifications, the device must be

able to measure ECoG/EMG signals and record for ≥2 days, store the data on board and
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allow real time data verification via BLE. To meet these requirements, the components shown

below are necessary;

• SoC - A low power SoC (System on a chip) with the following onboard: a multichannel

ADC to sample and digitize the ECoG/EMG signals; a bluetooth module to stream data

to a client device; a serial interface ( SPI/I2C ) to communicate and store data onto a

non-voltatile memory; a MCU for processing.

• Amplifier - A low noise amplifier to amplify the signal from uV to mV range.

• Bandpass Filter - A bandpass filter to filter out DC offset and high frequency EMI

noise. The low pass part also acts as an anti-aliasing filter.

• Non-volatile memory - A non-volatile memory with enough storage to store the sam-

pled data

• Voltage regulator and battery - A high efficiency voltage regulator and a high energy

density battery to maximise the device battery life.

After selecting the core components, an iterative process of comparing components from dif-

ferent manufacturers and altering the device architecture was used in order to meet the target

specifications. The end system architecture is shown in figure 3.1.

The analogue front end consists of four simple active bandpass filters with high and low pass cut

off frequencies of 0.1 and 100Hz. All filters are buffered at both inputs and are each connected

to one of the four ECoG/EMG electrodes and one of the two reference electrodes. A voltage

reference is used to bias the brain via the Vref electrode. The filters have a pass-band gain of

48 dB and output differential signals that are connected directly to the multiplexer in the SoC.

As there is only one ADC module in the SoC, the internal multiplexer is used to select each

of the four input channels for sampling. The differential signal from the selected channel

is then further amplified by the internal PGA (Programmable Gain Amplifier), which has a
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gain of 12 dB, before being sampled by the 9 bit differential SAR (Successive Approximation

Register) ADC at 200 Hz. The SoC is controlled by a custom Android app via the internal

BLE module and is also connected to an external NAND flash memory unit via SPI and an

external accelerometer via I2C.

A micro-HDMI connector is used for debugging, programming and downloading the data. The

whole device is powered by a high efficiency boost converter which boosts the 2.8V from the

two zinc air 312 batteries to 3.3V.

Figure 3.1: An overview of the core device architecture

3.3 Analogue Front-End

3.3.1 Signal Flow

The signal flow from the input to the amplifier to the output of the internal PGA in the ADC

was looked at, in order to calculate the gain and the minimum ADC resolution required.

Defining the minimum input voltage to be 1µVrms, which is 6dB above the target input referred

noise, with a maximum expected ECoG signal of 1mVpp (≈ 0.4mVrms), the minimum required

ADC resolution is thus log2400 = 9 bits. The SoC used has an ADC module with an internal

PGA and a reference voltage of 1.2Vpp. If the maximum input voltage is set to 1.2mVpp,
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which is just slightly higher than the maximum expected ECoG signal, the total gain should

be set to 60dB (1.2Vpp/1.2mVpp). Using the internal PGA, which can be set to a maximum

gain of 4 (12dB), the required gain for the band pass filter is therefore 250 (48dB) and with a

100Hz bandwith (0.1-100Hz), the required GBW (Gain Bandwidth Product) is 25kHz.

3.4 Active Bandpass Filter

Due to the limited board space, the amplifier should be as simple as possible. Figure 3.2 shows

the amplifier structure chosen, which requires only four passive components. The low pass

corner is set by R2 and C2 and the high pass corner is set by C1 and R1. Each channel in

the AFE contains one amplifier and is connected to a reference and a signal electrode. The

relationship between the output and input of the amplifier is given by Eq.3.1 which shows that

the output is biased at the reference voltage the amplifier is connected to. This bias voltage is

removed by the differential SAR ADC which is connected to both the output of the amplifier

and the reference. Both inputs to the amplifier are buffered by a voltage follower as both the

ADC and the inverting input of the amplifier require a low source impedance.

V out = (V ref − V sig)( R2C1s
(R2C2s+1)∗(R1C1s+1)

) + V ref (3.1)

where (s = jω, ω=rad/s)
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Figure 3.2: Analogue front end amplifier schematic. The amplifier is a second order band-pass
filter with corner frequencies at 0.1 and 100Hz (component values shown in table 3.1). The
input to the inverting terminal is buffered as the signal may have a high source impedance. The
reference signal is also buffered as it connects to the ADC, which requires a low impedance.
The two outputs connect to two separate channels of the ADC in a differential configuration,
with the amplifier output as the positive and the buffered reference as the negative.

C1 R1 C2 R2

Value 22uF 10kΩ 620pF 2.49MΩ

Table 3.1: Component values used for the amplifier.

3.5 Opamp Selection

With a bandwidth of 100Hz and a gain of 48dB, the opamp used must have a minimum GBW

of 25kHz. Three opamps that met this requirement and each optimized either for noise, power

or size were chosen and compared.
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Table 3.2: Parameters of different opamps considered.

Name LT6014 LTC6079 LPV511

Isupply (uA) 145 54 0.88

Vsupply (V) 2.7-18 2.7-5.5 2.7-12

Voffset (uV) 20 7 200

Ibias (pA) 100 0.2 110

Ioffset (pA) 100 0.1 10

Noise (nV/sqrt(Hz)) 9.5 18 320

Noise LF (uVpp) 0.2 1

I noise (pA/sqrt(Hz)) 0.15 0.00056 0.02

GBW (KHz) 1400 750 27

Channels 2 4 1

Package DFN(8) DFN(16) SC70(5)

Size 3*3mm 3*5mm 2*1.25mm

Although LT6014 has the lowest input noise voltage density, it also has the highest current

consumption. The AFE requires a total of 10 opamps, 4 amplifiers and 6 voltage followers,

therefore with a current consumption of 145µA per opamp, the total required is 1.5mA which

is nearly half of the current budget. On the other hand, LP511 whilst having the lowest current

consumption and footprint per opamp, its input noise voltage density is too high. Therefore

LTC6079 was chosen for having the best balance in noise, power and footprint.

3.5.1 Reference Generation Circuit

A voltage reference, REF3312 is used to bias the brain at 1.2V. It has a PSRR of 55dB at

1kHz, a low supply current of 3.9µA and is available in small SC70 (2x1.25 mm) and UQFN

(1.5x1.5 mm) packages.
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3.6 SoC

The device is powered by Nordic Semiconductor’s NRF52832 SoC, which contains a BLE mod-

ule, a 12-bit 8 channel SAR ADC and 32 general purpose I/O pins. At its core is a low power

(58µA/MHz) Cortex M4 CPU running at 64MHz. It is available in a small WLCSP package.

However, instead of using the SoC, the device uses a third party SoM (System on module),

ISP1507 from Insight. This module contains the NRF52832 SoC, the RF (BLE) antenna, high

and low frequency crystals and other necessary passive components. This helps to simplify the

design process as time would not need to be spent on impedance matching for the BLE antenna

or oscillator design for the internal clock.

Figure 3.3: The architecture of ISP1507 [133]. Both the low and high frequency clocks are
included in the module along with passives for the DC-DC converter (step down) and RF
antenna (BLE).
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3.7 Non-Volatile Memory Storage

To save power, the device stores data onto an on-board non-volatile memory (NVM) instead of

streaming it in real time. Currently, for embedded systems, the most widely used non-volatile

memory technology is the EEPROM, however there have been a growing popularity in FRAM

technology recently [134][135].

EEPROM is a technology that uses floating gate mosfet transistors (FGMOS) to make memory

cells. Read and write operations are achieved by manipulating the charges stored inside the

floating gate electrically.

FRAM on the other hand, stands for ferroelectric RAM. It has a structure that is similar to

DRAM but uses ferroelectric layer over the traditional dielectric layer [135]. Compared to

EEPROM, FRAM is faster and uses less power, as it does not require a high voltage, which is

typically generated from a charge pump, to write to memory cells.

Because of its low power, FRAM was considered initially but currently its density and cost per

GB are still far behind EEPROM, making it unsuitable for this project.

3.7.1 NAND-Flash

EEPROM memory cells can be organised in different structures and two popular ones are the

NAND and NOR. NAND memory cells are more space efficient but only addressable in blocks,

whereas each individual NOR memory cell can be addressed separately. This means NAND

flash is more suitable as a data storage as it is available in higher capacities, whereas NOR is

more suitable as a code storage as it allows faster random memory access [136].

As well as different memory structures, flash memory can also differ in the communication

interface used, which can be either serial or parallel. Parallel flash devices are usually available

in higher densities and offer faster read/write operations than serial flash as they have multiple
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address and data lines. However, a serial flash device typically has a lower standby current,

uses less I/O pins, has a higher maximum clock and is available in smaller packages.

Due to the limited board space and I/O pins in the SoC, the most suitable NVM storage would

therefore be a serial NAND flash. However, before choosing the right serial NAND flash, it is

important to consider how the memory will be managed. NAND flash memory can either be

unmanaged also known as raw NAND or managed with a flash controller such as SD cards or

USB flash drives.

The primary functions of a flash controller summarized from [137] are shown below;

• Wear-leveling - The data written is spread out to different blocks in a way to ensure that

all blocks are written to a similar amount of times, in order to increase the life expectancy

of the device.

• FTL (Flash Translation Layer) - is often included in the flash controller to allow commu-

nication with devices that typically interface with block drives, such as a PC. FTL maps

logical addresses from the host to physical ones on the device, therefore abstracting the

memory organisation of the device from the host.

• Bad Block Management - NAND flash devices usually contain bad blocks that can no

longer be reliably written to or read from. These bad blocks are marked by the flash

controller and either exist due to the manufacturing process or acquired later.

• ECC (Error Code Correction) - NAND flash data is susceptible to a process known as

”bit flipping”, where the state of a bit is flipped. ECC is a technique used to correct this,

it works by adding redundant data to the data written to generate a ECC code which is

then stored. When a read is performed, the ECC code is generated again and compared

with the stored ECC code [138][139] and any bit errors are then corrected.

Managed devices are easier to interface with and have lower development time. However, raw

NAND devices are often available in much smaller packages and allow a greater control over

86



the memory organisation.

3.7.2 SD card vs Raw NAND Flash

In order to decide which memory type was best suited for the device, an experiment was set up

to compare the power consumption between the two. A development board was programmed

to write 512 bytes of data into a SD card every 500ms for 10 minutes. A DC power analyzer

(N6705C,Keysight) was used to record the current during these write events. After the record-

ing, the same experiment was repeated for three other SD cards and one raw NAND flash. For

the raw NAND, due to its page size, 2048 bytes of data was written instead of 512 bytes and

the interval was set to 2 seconds. The current profiles are shown in figure 3.4 for SD cards and

figure 3.5 for the raw NAND.

Figure 3.4: Current consumption profile during a single write event for each SD card.
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Figure 3.5: Current consumption profile during a single write event for the raw NAND flash
from Micron (MT29F4G01).

From the figures, the current profiles seem to have the same general shape. During a write event,

the current would increase by a small amount initially due to the SPI communication, followed

by a huge increase to 30-60 mA for a few micro-milli seconds due to the write operation, before

returning back to baseline. However, there are some differences between the two devices. SD

card write events on average lasted longer, between 5ms (Digi-Chip) to 20ms (SanDisk 16GB),

than NAND flash write events which only lasted on average for 4ms. Furthermore, the current

would stay high for a few ms after the write operation in a SD card instead of returning back

to baseline immediately as observed in the raw NAND flash. This could be due to the SD card

performing some memory related management after each write event. Due to this, the average

current drawn by the raw NAND flash (6mA) during a write event was much lower than the

one drawn by the SD card (20mA). As a result, raw NAND was chosen over managed NAND

(SD cards).
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Table 3.3: Average current consumption during a single write event for each SD card.

Average current (mA)

SanDisk 16GB

Class 10
19

Toshiba 16GB

Class 4
21

Digi-Chip 8GB

Class10
22

Integral 8GB

Class 4
23

3.7.3 Micron Serial NAND Flash

The NAND memory used in the device is the 4Gb Micron serial NAND (MT29F4G01). It

has one of the smallest footprints of that capacity on the market (8mmx6mm QFN) , can be

interfaced with via SPI and has a maximum SPI clock of 133MHz. The memory organisation

taken from the data sheet [140] is shown in figure 3.6.

Figure 3.6: Memory organisation of the NAND flash. Data is always moved from the main
memory to the cache register first in both read and write operations. Figure taken from [140].
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The memory of the NAND flash is organised into blocks, pages and columns. There are 2048

blocks. Each block contains 64 pages and each page contains 4352 columns. 4096 out of 4352

columns are the main data columns and the remaining 256 are for spare data. Each column

contains 8 bits, this gives a total main memory of (4096*64*2048*8) ≈ 4Gb.

To manage the NAND flash, a bad block table and pseudo flash translation layer have been im-

plemented and they are discussed in more detail in the firmware and data downloader sections.

Wear leveling and ECC management on the other hand, have not been implemented as the

NAND flash has its own ECC management system and wear leveling is not a critical feature

for this device’s primary application. As the device will mainly be used for long recordings

and after every recording the whole NAND flash will be erased, so blocks in theory should be

written to a similar number of times. Any bad block would also be recorded in the bad block

table and thus be avoided during a recording.

3.8 Power-Management

Due to the weight and size limitations, only small coin cell batteries with limited capacities

could be used. As a result, research into finding batteries with the highest energy density was

conducted in order to meet the 1-3 recording day requirement. From the literature, metal-air

based batteries has been quoted to have the highest energy density, lithium air cells in particular

have been estimated to have a similar energy density to gasoline [141][142][143]. Currently, only

zinc air batteries are readily available. Whilst not as energy dense as other metal-air based

batteries, it is still higher than all other coin cell batteries on the market as shown by table 3.4.
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Technology Code Capacity Voltage Weight Size

Alkaline LR41 41mAh 1.5V 0.6g 7.8mm * 3.5mm

Silver Oxide SR921 42mAh 1.55V 0.6g 9.5mm * 2mm

Lithium CR1025 30mAh 3V 0.6g 10mm * 2.5mm

Zinc Air ZA312 180mAh 1.4V 0.6g 7.9mm * 3.6mm

Table 3.4: Specifications of different coin cell batteries [144]

As well as having a high energy density, zinc air batteries also have a flat discharge curve.

However, one disadvantage with zinc air batteries is that the cell voltage is dependent on the

amount of air available. If the drain current is too high that the rate at which oxygen is

replenished can not keep up, the cell voltage can collapse. Furthermore, the capacity of the

battery is greatly affected by its current drain rate. These characteristics are shown in figure

3.7
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Figure 3.7: Different zinc air battery characteristics. Figure C illustrates how the cell voltage
can collapse if the pulse amplitude or width is large enough to cause the average drain current
to exceed the maximum allowed. Figures taken from [145].

92



To minimize the effect of large current pulses, decoupling capacitors which act as mini energy

banks, have been placed next to components with large transient currents such as the Micron

NAND flash, which during a write event can briefly draw up to 30mA [140].

The device is powered by two zinc air batteries connected in series, which gives an output

voltage of 2.8V. As the system runs on 3.3V, a step up voltage converter (TPS613221A), is

used to boost the voltage. TPS613221A is used as it has a low quiescent current of 6.5 µA

and is efficient even at low loads with an efficiency of 92% at 1mA load. It also has a soft

start feature that minimizes the in-rush current due to capacitive load, when the device is first

switched on. This is an important feature, as a high in-rush current could result in a dip in

the cell voltage, which would cause the regulator to draw more current and decrease the cell

voltage further, eventually leading to a total collapse of the cell voltage if the current drawn

could not be sustained.

3.9 Accelerometer

An accelerometer IC was added in later versions of the core device in order to supplement the

EMG data in measuring movements. This was done as EMG signals are more prone to noise due

to it being a biopotential signal. Furthermore, as EMG wires would need to be inserted into the

muscle of the animal (see Chapter 4), the quality of the signal would heavily be dependent on

individual surgical techniques. An accelerometer on the other hand, would stay on the device

and is therefore more robust. Accelerometers measure acceleration relative to freefall instead

of absolute acceleration. Due to gravity constantly exerting a force on the accelerometer, this

results in the output data to be non zero even if the animal was at rest. Therefore movements

should be extracted by looking at the rate of change of acceleration instead of the absolute

value.

When choosing the most suitable accelerometer IC to be used, the followings were considered:

current consumption, resolution, package size, dynamic range and number of axis. The size
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and current consumption were prioritized over the resolution and dynamic range as mice do not

have a high acceleration rate and for this project a high precision accelerometer is not required.

The device uses MMA8652FC IC which is a low power, 3 axis, 12-bit accelerometer IC with a

32 sample FIFO buffer. The latter is a very important feature as it decreases the frequency at

which the accelerometer needs to be serviced. This is explained in further detail in the firmware

section.

Current

Consumption

(uA)

@200Hz

Sensitivity

(g)

Sampling

Rate

(Hz)

Resolution

(bits)
Interface

FIFO

Buffer

(Samples)

Size

(mm)

49 ±2,4,8 1.56 - 800 12 I2C 32 2x2x0.95

Table 3.5: Specifications of MMA8652FC

As shown by table 3.5, the accelerometer can be interfaced easily via I2C, the current consump-

tion is also very low at only 49µA when sampled at 200Hz and it is available in a small 2x2

DFN package.

3.10 Device Physical Characteristics

The core device is shown in figure 3.8. It is a flex-rigid PCB that is split into two boards, a

main board with the digital and analogue circuits, and a battery board with the zinc air battery

holders and the voltage regulator. For experimental use, the two boards are folded and held

together with paraffin film. The dimensions of the device are 20mmx17mmx10mm (WxLxH)

and weighs 3.3g including the batteries and 2.2g without.
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Figure 3.8: Top, bottom and folded views of the core version of the device. Paraffin film is used
to provide additional protection to the device,
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3.10.1 Schematic

The conceptual schematic for the core device is shown in figure 3.9, for a detailed breakdown

please see appendix C.

Figure 3.9: Schematic for the core device which is split into AFE, power management and
digital sections. Please note that the ground for the ECoG is biased at 1.2V in the brain.

3.10.2 PCB Layout

The PCB layout for the device is shown in figure 3.10. The device is made up two four layer PCB

boards connected together by a two layer flex connector, which contains the 3.3V power and

ground planes (shown in blue and green). To minimise noise injection into sensitive analogue

components, the voltage regulator is kept on a separate board with the battery holders, and

the ground plane on the main board is split into analogue and digital grounds. SPI lines are

kept away from the analogue circuitry and are as short as possible to minimize switching noise

pickup.
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A low pass filter formed from a ferrite bead and a capacitor is also placed in between the

analogue and digital power supply for additional noise filtering. A cutout in the PCB planes

at the bottom of the SoM, where the BLE antenna resides, is made to ensure BLE operations

are not affected.

Appendix C shows a more detailed breakdown of the different parts of the PCB.

Figure 3.10: PCB layout for the core device. The blue and green layers are the power and
ground planes. See appendix C for a more detailed breakdown.

3.11 Device Firmware

The device firmware was developed using Keil IDE (V5.25.2) and Nordic Semiconductor’s

SDKv13 (Software Development Kit).

Both versions of the logger have a very similar core firmware which resides in the flash memory

of the SoC. The firmware consists of three major parts: the BLE service, the main program

loop and the interrupt handlers. The following sections will go through each part of the device

firmware in more detail.
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3.11.1 Device Control and Data Organisation

To understand the firmware, it is important to first discuss how the device is controlled and

the organisation of the data.

Device Registers

The device is controlled by 16 registers, 8 of which are common to both versions of the device.

Whenever the value of any of the registers is altered, the state update function is called and

the device operation is changed. The main function of each common register is shown below;

• Device Control Register and Channel Select Register

Device Control Register is a one byte register used to start/stop operation on the device.

If set, ADC sampling starts and ECoG/EMG plus accelerometer data are written to the

NAND flash periodically.

Channel Select Register is a two byte register used to control which EMG and ECoG

channel should the data from the device stream from for temporary data checking.

• Mouse Info Register, Event Register and System Event Register

These are registers used to store information related to each experiment. Mouse info

register is 150 bytes in size and stores the age, sex, weight, ID and other extra information

about the animal. Event Register is 1502 bytes in size and can store 15 experimental

events, such as drug injections and changes in the experimental setup. System event

register is used to store system events such as the starting/stopping of sampling and error

messages from peripheral failures. Up to 20 events can be stored within the allocated 102

bytes of space and each event is time stamped.

• Start Date Register and Device Runtime Register

These registers are used to store the date and time of the device. Device run-time is

stored as seconds elapsed from the start of sampling and is updated every second.
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• Device Password Register

This register stores the password of the device. This feature is useful when there are

multiple devices running at the same time as it stops users from accidentally disabling

the wrong device. The register is 4 bytes in size and can therefore store 4 numerical digits.

Communication Structure

To control the registers wirelessly via BLE, the communication structure shown in figure 3.11

is used. The structure is 20 bytes in size, as this is the maximum default data payload for a

BLE packet after discounting headers and error handling bits. The first byte is the read or

write byte and the second byte denotes the address of the target register. The rest of the bytes

are used either for data payload or for further sub registers.

Most registers can fit within one BLE packet however there are some registers with much

greater data payload and need to be split into multiple packets when transmitted, such as the

event register. For those registers, an assemble/disassemble function is used to split/merge the

packets first before sending/receiving.

Figure 3.11: BLE packet data structure. Two registers, device control and experiment start
date are shown as examples. Headers and error handling bits are not shown.
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Date Storage and NAND Management

The data stored on the NAND flash is split into three types: experimental data, system data

and bad block table, each data type occupies different blocks. Whenever there is a write event

to the NAND flash, a label is appended to the data, before it is written to its corresponding

block according to its type. The memory organisation of the NAND flash is shown in figure

3.12.

Figure 3.12: Memory organisation of the NAND flash. The different data types are shown
along with the blocks they are stored in and the memory required.

System data is stored in page 0 of blocks 101-103 and contains data from the device’s registers.

There are 16 registers including ones that are internal to the device (not accessible) and they
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take up in total 900 bytes of memory and are stored in blocks 101-102. Only block 101 is required

to store all of the data but block 102 is also used as a backup in case of data corruption.

The user experimental data from the Event Register is stored separately from other registers in

block 103 and contains time stamped data added manually by the user during an experiment.

The bad block table is stored in page 0 of blocks 2044-2047 and contains a map of the status of

each block in the NAND flash. Each bit is used to represent whether a block is healthy or not,

as there are 2048 blocks, 256 bytes are used. Blocks 2045-2047 are used as the backup blocks.

The experimental data occupies the rest of the memory and is split into two data types,

ECoG/EMG and accelerometer data. They are stored in the main memory area and on sepa-

rate NAND pages. The spare page area is used to store data labels, error checksum data as well

as sleep scoring and temperature data in the closed loop version of the device due to their low

data rate. During sampling, an ADC sample takes up Channel Count ∗ ADC Resolution ∗ 1
8

bytes of memory, for ECoG/EMG this is 4 ∗ 16
8
= 8 bytes, for accelerometer this is 3 ∗ 8

8
= 3

bytes. This means that one NAND page ( 4096 bytes ) can store 512 ECoG/EMG events or

1365 accelerometer events.

3.11.2 BLE Stack and Service

A BLE stack is a software implementation of all the layers defined in the BLE protocol. Using

a first/third-party BLE stack significantly simplifies the design process of a BLE device as

the application only has to be able to interface with the stack. Nordic Semiconductor offers

a first party BLE stack called the softdevice that can be programmed together with the user

application. The user application sits on top of softdevice in the flash memory. The softdevice

used in this project is the S132 as it is compatible with Nordic SDK13 ( Software Development

Kit ).
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Figure 3.13: BLE GATT profile implemented by the custom BLE service. There is one service
and three characteritistics. Each characteristic has a read/write permission, a data value field
and a client descriptor field that can be set to either notification or indication.

To interface with S132 softdevice, a custom BLE service has been implemented. It runs in the

background and its main functions are to set up the generic attribute profile (GATT) and also

to forward any BLE events from the softdevice to the main application.

The GATT profile describes the data structure that should be used for BLE communication

between two devices. It is defined in terms of services and characteristics, whereby a service can

be treated as a process and characteristics are attributes of that process. For examples, a tem-

perature sensor would have two services: a battery indication service that has one characteristic

containing the current battery level; a sensor readout service that has two characteristics with
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one reporting the current temperature and the other reporting the humidity. The value of a

characteristic can be write protected and is either read manually or is automatically pushed

forward to the client device if notification or indication is set in the CCCD (Client Characteris-

tic Configuration Descriptor). If indication is enabled, the client must acknowledge every time

it has received an update.

Figure 3.13 shows the BLE GATT profile implemented, it consists of a single service with three

characteristics, their functions are shown below.

• ECoG/EMG Data Characteristic

Read only characteristic for transferring ECoG/EMG data to the client device via BLE

notification. When notification has been enabled by the client, ECoG/EMG data are sent

every time the data buffer is full.

• Device Register Characteristic

Read and write enabled characteristic for controlling the device registers. To write to

a register in the device, the client would write a ’write’ request using the custom BLE

structure described previously. To read from a register, the client would write a ’read’

request and wait for a notification with the requested register value.

• Real Time Clock Characteristic

Read only characteristic for notifying the client device the elapsed time since the start

of the recording. A notification event with the current run time is pushed to the client

every second.

The BLE service implemented also forwards BLE events from the softdevice to the main ap-

plication. There are three types of BLE events and they are processed by the main application

as shown below.

• Client Descriptor Control Event

This BLE event informs the main application that the client has enabled or disabled the
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CCCD of a characteristic. Different processes can occur depending which characteristic it

is. For example, if the client disabled the CCCD for the ECoG/EMG Data characteristic,

then the device would stop pushing sampled data onto the client.

• BLE Connection Status Event

This BLE event informs the main application that there has been a change to the connec-

tion status with the client. As background operations associated with establishing and

closing a BLE connection is handled by the softdevice. This event is used by the main

application for the sole purpose of checking credentials when it has been informed that a

client has connected to it. The device uses the password stored in the Device Password

Register to check credentials and if it fails or if credentials are not provided during the

allocated time (5s), the device would terminate the connection.

• Device Register Control

This BLE event informs the main application that the client wishes to write to or read

from a register. These requests are stored in a queue and are handled in the main program

loop.

3.11.3 Main Program Loop

The main program loop is where the majority of the processing is done. It begins by first

checking whether the device is plugged into the data downloader. If it is, program execution

is halted and the SPI lines are set to high impedance to allow data to be downloaded from

the NAND flash without any loading effects. Otherwise program execution continues, internal

peripherals, BLE softdevice and external peripherals (NAND flash and accelerometer) are ini-

tialized and checked. If there are no errors, the indicator LED on the device would flash twice.

Then the program enters a perpetual loop where it keeps processing application flags and BLE

events stored in the BLE events queue.

The flags serviced in the main loop are set in hardware interrupt handlers which are functions
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that respond to hardware interrupts. Hardware interrupts are events that alter the normal

program flow and are generated by internal/external peripherals. When a hardware interrupt

occurs, the normal program execution is paused and execution begins in the associated hardware

interrupt handler.

Figure 3.14: The main program flow chart and all processes that can trigger an interrupt
handler, whereby an application flag may be set.

After initialization, application flags are constantly serviced by the four handlers shown in

figures 3.15 - 3.16.
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Figure 3.15: Program flow of the device register handler, which is used to update device registers
by processing BLE events from the BLE events queue.

Figure 3.16: Program flow of the three main handlers. Data write handler is used to organise
and write different types of data to the NAND flash. Data notification handler is used to split
and package the data before sending it via BLE notification. Peripheral read handler is used
take data from peripherals connected to the device via I2C/SPI.
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Figure 3.15 shows the device register handler. At every iteration a BLE event is loaded from

the BLE queue. The BLE event is unpacked to get the operation type and the address of the

register. The corresponding register is then either read from or written to and the program

state is updated by calling corresponding functions.

Figure 3.16 shows the data write handler, data notification handler and the peripheral read

handler.

The data write handler is triggered by flags that are set whenever there has been an update

made to any device register or when the ECoG/EMG or accelerometer data buffer is full. It

takes in the data and its type as arguments and appends the matching identifier to the data.

It then calculates the NAND flash memory location to write the data to and checks whether

the location is valid. A NAND write event is issued only if the location is not system reserved

and is within a healthy block as indicated by the bad block table. For ECoG and accelerometer

write events, the address is automatically incremented by a page. For device register write

events, the handler erases and programs each system block consecutively in that order. This is

to ensure that in the case of a power failure, at least one of the system blocks will retain the

data from the previous write event. It is important to note, that users are strongly advised to

stop sampling on the device before removal. This is because a final ECoG, accelerometer and

device register write occurs when sampling is disabled even if the data buffer is not full which

ensures that no data is lost.

The peripheral read handler requests data from the accelerometer when the data ready flag is

set. The data is then stored in a temporary accelerometer data buffer.

The data notification handler is triggered by the notification flag, which is set whenever

ECoG/EMG data buffer is full and BLE notification is enabled. The handler splits the in-

put data into segments and takes out the data corresponding to the requested data type and

channel before sending it via BLE notification.

The main advantage of using handlers in the main loop to service the flags, instead of performing

107



operations within the hardware interrupts, is that it keeps the interrupt execution time short.

This is important as interrupts with the same interrupt priority can end up blocking each other

if the execution time is too long. However, there are two major disadvantages. Firstly, the

handlers share the same internal resources such as memory and peripherals. Therefore there

has to be a way to manage critical resources.

Secondly, timing becomes more complex with increasing number of flags. This is due to the

fact that some of the flags are more time-critical than the others and must be serviced more

regularly, eg data ready flags from high frequency peripherals with a small internal memory.

More flags also results in longer total execution time which decreases the frequency at which

the flags are serviced at.

Resource Management

To avoid multiple processes trying to access the same resource at the same time, all the handlers

in the loop operate synchronously, this means that the next process can not begin until the

previous one has finished. For example, all the flags that result in a NAND write event are

checked sequentially, so only one single NAND access can occur at any given time.

However the trade-off for this is that the whole process is not as optimized for speed, as

pipelining can not be used. This is due to the fact that two handlers maybe using different

peripherals but can not be started concurrently due to the blocking nature of the function call.

For example, the device is unable to perform NAND write and send data via BLE notification

at the same time, despite both operations using different peripherals.

Timing

To ensure the flags are serviced frequent enough to avoid data overflow, two main methods have

been implemented, decreasing the amount of times the flags need to be triggered and reducing

the loop execution time.
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Most of the flags are set when the corresponding data buffer is full. Therefore with a bigger

buffer size, the interval between each flag event is increased, allowing for longer loop processing

time. The two most time critical processes, NAND data write and accelerometer data read,

both have specifically chosen data buffer sizes. The minimum addressable size in the NAND

flash is a page and it can store 512 ECoG/EMG or 1364 accelerometer samples as shown in the

data organisation section. Therefore, in order to reduce power consumption by minimizing the

number of write operations, the data buffer is set to be the same size as a NAND page. With

a sampling rate of 200Hz, there is only one NAND write every 2.56 seconds for ECoG/EMG

data and only one every 6.81 seconds for accelerometer data. The external accelerometer IC on

the other hand, is currently set to only trigger the data ready flag once its internal 15 sample

fifo buffer is full, which translates to once every 75ms. This means that as long as the total

loop execution time is below 75ms, then data overflow would not occur.

The total execution time for the loop is approximately the total execution time of all handlers.

The handler with the longest execution time is the notification handler as it stays blocking

until all of its data has been sent out. In order to reduce its execution time, the input data

has been split into smaller packets and only 128 bytes are sent out each time. This results in

the execution time in the region of tens of milli-seconds instead of hundreds, but at a cost of

increased data latency.

Figure 3.17 illustrates the loop execution in the worst case scenario, whereby at the start of a

new cycle, all flags have been set. Each flag is processed sequentially by a different handler in

the order shown. The most time consuming processes are the ”ECoG/Accel Write” flag, which

takes 5ms to send 4096 bytes of data + overhead ( 8MHz SPI ); and the ”Data Send” flag,

which takes ≈ 20 ms to send 128 bytes, when using an interval connection time of 10 ms via

BLE ( 6 packets of 20 bytes per interval connection are sent ). The worst case total execution

time is ≈ 31.5 ms, which is much shorter than the frequency the most time critical ”Accel Data

Ready” flag needs to be serviced at (75ms).
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Figure 3.17: Main loop execution delay when all flags have been set. The order of processing,
the accumulative delay due to execution of previous flags are shown. Green, purple, red and
orange arrows denote the time to next flag event tnext, total execution time ttotal, handler
processing time tproc and MCU sleep time tsleep. In the worst case scenario, the total execution
time is ≈ 31.5ms.

3.11.4 Interrupt Handlers

Referring back to figure 3.14. There are five main hardware interrupt handlers and their

functions are shown below;

• ADC Timer Handler - This handler is called whenever the timer used to set the ADC

sampling frequency expires, which is every 5ms. When it is called, it starts sampling on

the ADC peripheral, retrieves the results and stores them in the ECoG data buffer. It also

transfers accelerometer data from the temporary buffer, which contains data stored by

the peripheral read handler, to the accelerometer data buffer. This is done to synchronize

the timing between ECoG and accelerometer data as they are both sampled at 200Hz but

are driven by different clock sources, which can lead to a drift in the timing.
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Once the data buffer is full, the corresponding data full flag is set and is later serviced by

the data write and notification handlers in the main program loop.

• RTC Timer Handler - This handler is called every second by the RTC (Real Time

Clock) timer. Its main function is to keep time and to update all processes that require

periodic updates.

• BLE Event Handler - As mentioned previously, it is called every time the BLE softde-

vice forwards a BLE event to the main application. It appends the BLE event onto the

BLE event queue and updates the BLE event counter. The BLE queue is serviced in the

main program loop by the device register handler.

• SPI/I2C Handlers - Handlers used as the callback functions for SPI/I2C events. They

are primarily used to indicate when a transfer has finished. The SPI handler is also

used to circumvent the limitation of NRF52832 on the max number of bytes that can be

transferred per transfer event, which is 255 bytes. It is set up to have direct access to the

SPI peripheral, which allows it to queue and start one SPI transfer after another. Each

segment of data to be transferred is loaded automatically via DMA without any MCU

involvement, thus saving power.

• GPIOTE Handler - Handler used as the callback function for GPIO (General-purpose

input/output) events. The accelerometer data ready flag is set when the handler detects

a logic high to low transition on the accelerometer data ready pin. This flag is then

serviced by the peripheral read handler in the main program loop.

With multiple interrupts running in a system, two critical issues can occur, interrupt blocking

and interrupt jitter.

Interrupt blocking arises due to poor interrupt priority assignment. This can result in a higher

priority interrupt blocking a lower one from being executed, if the condition for clearing it is

in a lower priority interrupt.
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On the other hand, interrupt jitter, which is defined as the change in the interrupt latency

(time taken before an interrupt is serviced), can occur when a higher priority interrupt takes

too long to be serviced and ends up delaying the execution of lower priority interrupts. If a

timing critical interrupt such as the ADC timer is blocked, this can result in the sampling

frequency being altered momentarily.

To avoid these issues, interrupt priority assignment must be properly managed. Critical in-

terrupts should have higher priorities and interrupt execution time should be kept as short as

possible by moving processing to the main loop and using flags as indicators as shown earlier.

Figure 3.18 shows the priority and timing of all interrupts and illustrates how higher priority

interrupts could block lower ones. Radio interrupts take the longest to process (up to ≈ 300

µs), all other interrupts take only a few µs. Interrupts can be time critical (must be serviced

at specific times with no delay) or not. Interrupts that are time critical are the radio and ADC

timer.

The timing of radio operations must adhere to the BLE standards, therefore BLE interrupt by

default has the highest priority and is fixed. The ADC timer is the next most critical process

and must occur every 5 ms to ensure the sampling rate is at 200 Hz, therefore it has been

assigned the highest next available priority after the radio. It can however be blocked by the

radio, which would cause its timing to be off by up to 300 µs. Although this amounts to an

error of 6%, the chance of this occurring is very slim. For maximum accuracy, although not

currently implemented, this problem can be fixed by setting a shortcut between the timer and

the ADC, so that the ADC can be triggered without the involvement of the MCU (a feature

supported by NRF52832).

For other interrupts, either due to the use of a buffer or the time to the next interrupt being

far greater than any accumulative delay from other interrupts, are not time critical and can be

serviced later. For example, the GPIOTE interrupt which is triggered when the accelerometer

has collected enough samples. The accelerometer IC used has an internal buffer that has been

set to hold 15 samples, therefore it can be delayed up to 75 ms (200Hz). The RTC interrupt
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triggers every 1 second, therefore its timing is not really affected by a delay measured in µs.

Figure 3.18 also shows the sleep wake cycle of the MCU. The MCU only wakes up when an

interrupt has been triggered, it will then check and process any flags that has been set before

returning back to sleep. Because a ADC interrupt is triggered every 5ms, the MCU will always

wake up every 5ms. As interrupt execution time is kept very short, the time the MCU stays

awake is dependent on the loop execution time. The marked events (1-6) with descriptions

shown below, are events that could occur during a typical recording.

At t=0 ms(1), MCU wakes up due to the radio interrupt and RTC interrupt is blocked by the

radio.

At t=5 ms, the ADC is triggered by the interrupt and the ”ECoG data buffer full” flag is

set (assuming the buffer was one away from being full). The MCU processes the interrupt and

the flag which takes ≈ 5 ms. During processing multiple SPI transfers are triggered as shown

by the burst of SPI interrupts.

At t=30ms, the ADC is triggered by the interrupt again and the ”Accel data buffer full” flag

is set (assuming the buffer was one away from being full). The MCU processes the interrupt

and the flag as before, however during processing the next ADC interrupt occurs. Therefore

the total MCU processing time is slightly lengthened.

At t=75 ms, the first GPIOTE interrupt occurs and the ”Accel data ready” flag is set. However

it is blocked by the ADC interrupt. The MCU wakes up to process the interrupt and the flag,

taking ≈ 1 ms.

At t=130 ms, the next radio advertising event occurs, which blocks the ADC interrupt. The

MCU wakes up to process both interrupts.
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At t=150ms, the user decides to connect to the device to stream ECoG data live. This causes

the BLE to switch from sending advertising packets to sending connection packets every 10 ms

(assuming connection interval=10 ms) and triggering a BLE radio interrupt. A BLE request

(notification enable) is added to the BLE queue and ”Data send” flag is set. At the same

time GPIOTE and ADC interrupts occur and ”Accel data ready” flag is set. ADC interrupt

is blocked by the radio and GPIOTE interrupt is blocked by both. MCU wakes up to process

the interrupts, handle BLE request and send the ECoG data (assuming ECoG buffer is full).

Taking a total of 21.8ms; 0.3 ms for the radio interrupt, 1 ms for ”Accel data ready” flag, 0.5

ms for ”BLE request” and 20 ms for ”Data send” flag. During processing ADC interrupt occurs

which lengthens the total processing time.
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Figure 3.18: Timing and priority of interrupts and CPU state. Red flags denote the setting
of an application flag. Red vertical lines indicate the blocking of a lower priority interrupt
by a higher one. Red, orange and brown arrows denote the time to the next interrupt event,
application flag being set or both. Specific events (1-6) are marked and explained in more detail
in the section above.

3.12 Android App

To communicate with the device via BLE, a client software is required. The main aims of the

app are to provide an easy and intuitive way of controlling the device wirelessly and also to

allow real time data streaming so that users can verify the operation of the device at any given

time. To meet those aims, an Android application was developed in Android Studio due to

the availability and portability of smart phones and the dominant market share held by the

Android operating system.

115



3.12.1 Android Project Structure

An Android project in Android Studio typically consists of a manifest file, app components,

resources and Gradle build scripts.

The manifest is a file that contains all the essential information about the app such as per-

missions that the app would require in order to access protected resources on the system, the

app package name and a list of all the app components. It is also used to inform the app store

dependencies, app compatibility and requirements.

App components are modular blocks that dictate what the app does and how it interacts with

users and the Android system. There are two main types of app components used in the

custom App, activities and services. An activity is an independent window that presents a

user interface and an Android app typically consists of multiple activities working in unison.

A service on the other hand, is a process that typically runs in the background. It is used to

manage long running operations and can last for the duration of the app.

App resources are files and content used primarily for the physical appearance and layout of

the app. They consist of media files, such as audio and image files; hard coded text strings;

and XML ( Extensible Markup Language ) files which contain the dimensions and positioning

of every graphical element.

Gradle build scripts are Groovy language based scripts used to build an Android project to

generate an apk file. Dependencies, SDK version and other configurations are specified in the

build files and used during compilation.

3.12.2 App Structure

The app has a total of one service and five activities that are common to both versions of the

device. Similar to the logger, all the BLE activities are handled by a BLE service that runs

in the background. The BLE service is responsible for the two following tasks: setting up and
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handling the communication between the app and the device; processing and passing BLE data

from/to different activities.

BLE requests are processed asynchronously and singly by the Android system, due to this the

BLE service has been implemented such that when it receives a BLE request, it will either

process it immediately or automatically put it into the BLE queue, if the BLE module is busy

with an ongoing request. There are two main BLE requests handled by the service, read/write to

a characteristic and enable/disable to a CCCD (Client Characteristic Configuration Descriptor)

. Each BLE request in the queue contains three fields, one to specify the operation ( read/write

), one for the target characteristic and one for the data to be sent in write requests. If the BLE

request fails, it is reported by the service immediately. If not, the service waits for the call back

function to indicate the completion of the request. Figure 3.19 shows the program flow of the

BLE service.
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Figure 3.19: Program flow of the Android BLE service. BLE requests can be split into either
reading/writing data or enabling/disabling notification via writing to the CCCD (Client Char-
acteristic Configuration Descriptor) of a characteristic. Requests are handled by the GATT
(Generic Attribute Profile) and are automatically put into the BLE queue if the BLE GATT
is busy with another request. Each BLE request is processed singly and the next instruction
is not loaded until a callback function (asynchronous), signally completion has been triggered.
Result of the request is passed to the application via a broadcast receiver.

From the figure, the implemented call-back function is triggered by the six different BLE events,

which are generated either by a change in the BLE connection state, the completion of a

read/write request to a characteristic or notification/indication data coming from a CCCD.
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Any data acquired is passed onto activities by the service via broadcasting.

As only one active BLE request can be handled at any given time, it is only upon the completion

of any BLE request ( apart from the BLE connection state change ), can the next BLE request

be automatically loaded from the queue and processed. BLE connection state change event is

excluded as it is a passive process that can not be triggered manually, therefore it does not

indicate the state of processing of other BLE requests.

All activities rely on the BLE service for communication with the device and therefore share a

very similar core structure that consists of four main parts, a BLE broadcast receiver, a data

processing function, a BLE service connection handler and a button event listener.

The BLE service connection handler manages the connection to the BLE service. All activities

must bind to the BLE service first before any BLE related communication can take place.

The BLE broadcast receiver and data processing functions receive and process data broadcasted

from the BLE service. If the data received is a connection state change broadcast, especially a

disconnect or a communication error event, then all activities are cleared and the app relaunches.

If the data received is from a characteristic read or a notification event, then the data is passed

to a data process function and used to update different parts of the activity depending on the

register specified.

The button event listener listens to button presses from the user and responds by sending

commands to the device via writing to the device register characteristic and also updating the

graphical interface.

The first activity launched when starting the app is the device search. Users are first prompted

for Bluetooth and location permissions, then a filtered list consisting only of nearby logger

devices is shown. Loggers that are already running have names that are highlighted in red and

loggers that are idle have names that are highlighted in green. This allows the user to quickly

identify if their logger is currently used in an experiment without having to connect to it. Once

a logger has been selected and the correct password has been entered, the second activity (
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device main menu ) is launched. These two activities are shown in figure 3.20.

Figure 3.20: Graphical interface for the search and main menus of the app.

From the main menu, there are five sub-menu buttons, each of them is linked to an independent

activity that is launched when pressed. Three of are common to both versions of the device

and their functions and implementation are shown below.

• Device Control Menu - This activity is used to start/stop sampling on the device

as well as sending optional experimental configurations such as the mouse information

( age, sex, weight and id ) and the temperature sampling rate ( closed loop version ).

When the start sampling button is pressed, the start date and time, mouse information

and temperature sampling rate are sent to the device by writing to the device register

characteristic. Sampling can be started immediately or a delayed start of 10 seconds can
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be triggered by holding down the start sampling button. This allows time for synchroni-

sation if multiple recording equipment are used. To stop users from accidentally ending

the recording prematurely, users are prompted for reconfirmation when the stop sampling

button is pressed. Device password can also be changed in this activity.

RTC characteristic’s notification is enabled to receive periodic updates to the device run

time. Device register characteristic’s notification is also enabled so that the current device

status and configurations sent at the start of the experiment can also be viewed here at

any given time.

Figure 3.21: Device control menu GUI and its implementation

• Device Log Menu - This activity is for viewing and adding custom user events. Device

register characteristic’s notification is enabled so that at the start of the activity all pr-
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existing user custom events are requested and delivered via notification events. Users can

also add new events, the activity will update the device by writing to the device register

characteristic. Each event must be ≤ 100 characters in size and must be time and date

stamped.

Figure 3.22: Device log menu GUI and its implementation

• Device Chart Menu This activity is for streaming and plotting the data from the

device. Whenever the probe button is pressed, device data characteristic’s notification is

enabled. Live ECoG and EMG data is then streamed for one minute and plotted onto

separate charts before the notification is disabled again. Short time Fourier transform

with a bin size of 512 samples separates ECoG data into delta ( 1-4 Hz ) and theta ( 5-10

Hz ) bands. Users can also change ECoG/EMG channel at any time.
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Figure 3.23: Device chart menu GUI and its implementation.

3.13 Data Downloader

The data from the device can be downloaded off the NAND flash via a data downloader which

consists of a PCB board that is based around a FTDI module and a custom PC software coded

in QT.
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3.13.1 Downloader Hardware

One of the easiest and most popular ways for an external peripheral to interface the PC is via

the USB. However as the Micron NAND flash only supports SPI interface, a bridge would be

required to link the two interfaces together. FTDI ( Future Technology Devices International

Limited ) specializes in making USB bridges for legacy devices and one of their modules,

UM232H, is a USB high speed (480 Mb/s) module that can support multiple SPI devices and

has a maximum SPI clock speed of 30MHz. This allows users to download data from multiple

loggers quickly by using just one data downloader board.

Figure 3.24: Downloader board with four docks. Micro D type HDMI connectors are used to
connect to the core version of the device.

The downloader board shown in figure 3.24 consists of two board types: a main board that

is used as a dock for the FTDI module and up to two daughter boards; a daughter board

that can be further separated into one for downloading the data and one for debugging and

programming. The daughter board used for data download allows up to two devices of any

version to be connected to it. Whereas only one device can be connected to the debug board.

Mico D type HDMI connectors are used to connect to the core version of the device. This means

that with two daughter boards docked, up to four loggers can be connected to the downloader

at once.
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3.13.2 Downloader Software

The downloader software is a custom software written in C++ and developed in QT, which is

a cross platform toolkit used for rapid GUI application development. Applications made using

QT are native to the target platform, therefore there is minimal impact on the performance.

Similar to the Android app, the program was developed by following the MVC model whereby

the code elements are separated from the GUI created from QT classes known as QWidgets.

These classes control the rendering of the screen and also handle any user interaction. Signals

and slots, which are QT’s implementation of events and callback functions, are used to pass

information between the GUI and the processing in the back end. The graphical interface is

shown in figure 3.25.

Figure 3.25: Graphical interface of the downloader app
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The GUI has been designed to be as intuitive and simple as possible. To download data, users

would first pressing the connect button in the top left corner which would cause the FTDI

module to scan for each device docked on the downloader. The main form would then update

to show all the available devices. Then users can choose to either download/erase data from

a specific device via buttons in each individual cell or all of them sequentially via buttons on

the top of the window. The check-boxes in each individual cell allow users to select what type

of data to download ( multiple check boxes can be enabled at once ). Data can be saved to

any location via the browse button. Pressing the more information button would show all the

recorded information regarding the experiment in a separate window, this information is also

saved as a text file along with the downloaded data.

The processing in the back-end of the program is largely centered around the SPI-libMPSSE

library provided by FTDI. The libaray provides useful SPI related functions and handles the

communication to the USB driver, which then in turn communicates with the FTDI module.

The FTDI module then commmunicates with the NAND flash. The hardware and software

stack is shown in figure 3.26.
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Figure 3.26: The software and hardware stack of the FTDI module [146].

The back-end processing is handled by mainly four functions: GUI request handler, data down-

load, data erase and device discovery.

• UI Request Handler - A handler function that passes information between the GUI and

the back-end by responding to signals (requests) generated from them.

There are five main signals that are emitted by the GUI: download request, erase request,

connection request, disconnection request and cancel operation request. These requests

are generated when the user presses the corresponding buttons on the GUI form and are

passed to the back-end by the UI Request handler.

The back-end in turn also emits the following signals, operation status, program state and

device information. These signals are picked up by the GUI via the UI request handler
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and used to update the form with information downloaded from the NAND flash, as well

as informing the user the progress of an operation and whether it was successful or not.

• Device Discovery - The device discovery function is triggered by the connection request

signal emitted by the GUI. It initializes the libMPSSE library and connects to to FTDI

module. Once connected, it scans for all docked devices by toggling each CS line on the

FDI module in succession and reading the NAND flash ID for verification. Data from

system blocks ( block 101-103 ) is downloaded and the bad block table ( blocks 2044-2047

) is also loaded into the program. System data are sent to the GUI via the UI request

handle and are displayed in the Events tab shown in figure 3.25

• Data Download - The data download function is triggered by the download request signal

emitted by the GUI. It extracts the download size, in number of blocks, from the system

block data. Then it downloads the data off the NAND flash, one page at a time in a

loop, until the number of blocks downloaded is the same as the download size. At every

iteration of the loop, the data identifier is first read to determine the data type, which

dictates the formatting to be used when writing to the text file. Pages with an invalid data

marker, system and bad blocks are all excluded from the data download. Periodically the

operation status signal ( percentage of blocks downloaded ) is sent to the GUI via the UI

request handle. The signal is used to update the progress bar in the main form.

• Data Erase - The data erase function is triggered by the erase request signal emitted by

the GUI. It erases blocks one at a time in a loop, until all blocks have been erased. If

the erase operation fails on any block, the corresponding entry in the bad block table

is updated. The table is copied to the bad block blocks at the end of the operation.

Periodically, the operation status signal ( percentage of blocks erased ) is sent to the GUI

via the UI request handle, which is used to update the progress bar in the main form.
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3.14 Conclusion

In this chapter, a novel neural logger is presented along with a detailed structure of each

individual part of the device. Emphasis on the cost, weight, size and recording time can be

seen from the design choices, whereby the simplest structure for the AFE has been chosen and

the device consists solely of off-the-shelf components with the smallest PCB footprints. Zinc

air batteries, which have the highest energy density are used alongside a high efficiency step

up converter to maximise the battery life. With these implementations, the proposed core

logger would addresses the issues (size, weight and duration) that many of the current available

loggers have, that make them unsuited for sleep research with mice. Furthermore, the support

for BLE communication and the custom GUI app developed, make it easy to use, accessible

to anyone with an android device and allow real time data verification without the need of a

bulky external receiver as seen in some other neural loggers.
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Chapter 4

Device validation and the development

of a hardware efficient sleep stage

scoring algorithm

4.1 Introduction

In order to validate the performance of the device developed in Chapter 3, a two stage test

was conducted, which consisted of bench-top electrical tests to characterise the device and in-

vivo experiments to confirm the device’s ability in measuring ECoG/EMG signals when placed

under a physiological setting. The results of these tests are presented in the first half of the

chapter.

In the second half of the chapter, the focus is shifted onto the development of the automatic

sleep stage scoring algorithm. Two algorithms: one based on thresholds and decision tree; the

other based on z-score mixture and Gaussian Mixture Model, are shown and evaluated.
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4.2 Device Specifications

To characterise the performance of the device the following electrical tests were conducted and

the results are presented in this section.

4.2.1 AC Characteristic

Referring back to chapter 1, the band-pass filter used in the analogue front end has a theoretical

high and low pass corners of 1 and 100 Hz.

Due to non-idealities in the components, the actual corner frequencies could differ from the

theoretical values. To see if this was the case, the AC characteristic of the filter was mea-

sured by performing a frequency sweep with a 0.4mVpp differential signal from 0.1 to 1 kHz.

(33510B,Agilent).

Figure 4.1 shows the measured versus the predicted AC response. It is evident that the roll

off (≈ 16 dB/decade) is less than expected for a 2nd order bandpass filter (20 dB/decade).

Furthermore, the low and high pass cut-off corners are ≈ 2 Hz and 120Hz instead of 1 and

100Hz. The flat band region is also not very apparent. These are likely due to a combination

of component tolerances and measurement error (not enough data points and instrumentation

error).
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Figure 4.1: Measured vs predicted AC response of the band-pass filter in the AFE. The roll-off
is 16dB/decade with a low pass corner at 2 Hz and a high pass at 120 Hz.

4.2.2 Noise Floor

In order to calculate the input referred noise, the inputs of the AFE were shorted together to

the 1.6V common mode voltage from the signal generator (Agilent, 33510B) and the output

was amplified by 40dB by a low noise amplifier (SRS,SR560) before being measured. Figure

4.2 shows the output noise spectral density of the AFE plotted using Matlab’s periodiogram

function. The input referred noise for 1-100Hz is 0.495µVrms.
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Figure 4.2: Output noise spectral density of the band-pass filter in the AFE.

4.2.3 Device Weight Breakdown

The weight of each main contributor is shown in table 4.1. To save weight, the PCBs are only

0.5mm thick as opposed to the standard 1.6mm, this saves ≈ 0.8g. Furthermore, the battery

holders are a custom part made from trimming off the legs of Keystone’s ZA13 battery holders

so that they could fit the smaller ZA312 batteries. Removing the legs saves 0.15-0.2g.

Main

Board

Head

Stage

Micro

HDMI

Battery

Board

Battery

Holders

Zinc Air

312
Total

Weight 0.60g 0.30g 0.30g 0.40g 0.50g 1.20g 3.30g

Table 4.1: Device Weight Breakdown
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4.2.4 Device Power Consumption

The device power consumption was measured using a DC power analyzer (N6705C, Keysight) in

terms of its total average current consumption in its four different operating states (Advertising,

Connected, Recording and Streaming), shown in table 4.2. This was done to take into account

the change in voltage after the boost converter and that the capacity of a battery is measured

in mAhr.

Advertising Connected Probing Recording

I ( mA ) 0.86 1.12 2.2 1

Table 4.2: Average current consumption under different device states.

The analogue front end draws 1.68mW (2.8V*0.6mA) at all times and accounts for most of the

power drawn during the BLE advertising state, which is the state the device operates in when

it is not recording and performing any BLE operation apart from BLE advertisement.

When the logger is connected to a BLE central device (Connected State), BLE packets are

exchanged every set interval. This connection interval is much shorter than the advertising

interval therefore there is an increase in power consumption due to the radio being used more

frequently.

The increase in power consumption during the recording state is due to the operation of the

ADC, timers and write events to the NAND flash.

The device enters the streaming state when ECoG/EMG data are requested from the logger

in real time. This state has the highest power consumption as the device first needs to be in

the recording state to acquire the ECoG/EMG data, before streaming the data out at a higher

throughput than when in the connected state.

For the majority of the time, the device is in the recording state, therefore its average power

consumption can be taken to be ≈ 1mA.

134



To minimize the power consumption, the following techniques have been utilised:

• The MCU enters the sleep mode when it does not have any flags to process in the main

loop, which reduces its current consumption from >20mA down to only ≈ 0.2mA.

• All timers are driven by the low frequency clock at 32.768kHz, which has a low current

consumption of 0.2µA as opposed to 250µA if using the more accurate high frequency

clock at 64MHz.

• The ADC uses DMA to transfer the acquired samples which has a constant current

consumption of ≈ 1mA once enabled due to a hardware bug in the MCU. To rectify this,

the ADC is reset after every sampling event.

• During SPI communication, data transfer is done automatically via DMA, which has a

lower current consumption than involving the MCU.

• As mentioned in Chapter 3, write events to the NAND flash are kept to a minimum by

writing the maximum of data allowed each transaction (one NAND page) as each NAND

write event has an average current consumption of 6mA regardless the amount of data

written.

4.2.5 Battery Life

To characterize the battery life of the core device, both the battery and regulator voltages were

logged using a DC power analyzer (N6705C, Keysight) over a period of three days as shown by

figure 4.3.
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Figure 4.3: The battery and regulator voltages over three recording days (recording mode).

From the figure it is evident that the battery life exceeds three days when powered by two zinc

air batteries as the voltages stayed stable at 2.55V for the batteries and 3.33V for the regulator

throughout of the recording. However, the theoretical maximum recording time is actually less

due to the on-board memory becoming full after ≈ 63 hours. This value was derived by dividing

the total memory (500Mb) by the memory required to store one second of data, which is 2200

bytes, 1600 bytes (4*200*2) for ECoG/EMG and 600 bytes (3*200) for the accelerometer.

4.2.6 Regulator Efficiency

The efficiency of the regulator, defined as 100∗Pout/Pin, of TPS613221A was measured for each

device state and shown in table 4.3.

Advertising Connected Probing Recording

Effiency 89% 91% 92% 91%

Table 4.3: Regulator efficiency under each operating state.

Table 4.3 shows that the efficiency increases with the current load, which is the trend observed
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in most DC-DC converters. The efficiency of 92% when the device is drawing ≈ 1mA in the

recording mode matches the quoted value in the data sheet (figure 3, [147]).

4.2.7 BLE Range

The BLE signal strength was measured indoor with an Android phone (Huawei Honor 9 Lite)

at several distances from the device by using the RSSI (Received Signal Strength Indicator)

system function and inside an environment with minimal obstacles and shielded from other

radio interfaces.

Figure 4.4 shows the relationship between signal strength and distance. In free space, the trans-

mit power would drop with increasing distance according to the inverse square law (20dBm/Decade).

And this can be seen by the line of best fit which has a gradient of 21dBm/Decade which is just

slightly higher. Using a transmit power of +4dBm the maximum detectable distance was 4m,

which should allow users to be able to communicate with the device from outside the animal

holding room, therefore minimizing animal disturbances.
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Figure 4.4: BLE power against distance on a Log-Log graph. The line of best fit is shown
in blue and has a gradient of 21dBm/Decade, which is slightly higher than the theoretical
(20dBm/Decade) in vacuum as expected.

4.2.8 Data Download Speed

Although the downloader allows up to four loggers to be docked at once, data are downloaded

from them sequentially. To minimise delays between experiments, the download speed should

therefore be as quick as possible. As the data downloader uses a USB-SPI bridge, its download

speed is dependent on the frequency of the SPI clock and the USB latency.

SPI clock frequency is adjustable and can be set to a maximum of 30MHz, however at higher

frequencies, timing errors due to parasitics start to occur even when the drive strength is set

to the maximum of 16mA.

USB latency on the other hand is much harder to control, as it is primarily due to the time

interval between the transfer of packets, which is handled internally by the operating system and

the USB driver. However, its accumulated effect can be minimized by sending fewer instructions
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and requesting larger amount of data (bulk transfer). Due to this, data are downloaded from

the logger one page at a time, which is the maximum amount that can be requested from the

Micron NAND flash with a single SPI command.

To investigate the relationship between SPI clock frequency, USB latency and download speed,

a one day recording was downloaded from the logger at different SPI clock frequencies and the

times taken are shown in figure 4.5 .

Figure 4.5: Time taken to download a 24h recording at different SPI clock frequencies on a
Log-Log graph. The line of best fit (blue) is shown. For SPI clock frequencies (<8MHz) the
download time is more dependent on the SPI clock speed (gradient ≈1). At higher SPI clocks,
download speed start to be limited by the USB latency as shown by the decrease in the gradient.

For lower SPI clock frequencies (<8MHz), download speed increases dramatically with higher

SPI clocks as the SPI transfer rate is the limiting factor. For higher SPI clock frequencies,

USB latency becomes the limiting factor, hence increasing the SPI clock has very little impact

on the download speed. To avoid timing errors, the maximum frequency should be caped at

15MHz. At this clock frequency, it would take ≈ 205 seconds to download a 24h recording and

538 seconds to download the entire NAND flash.
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4.3 In-vivo Experiments

Although extensive electrical characterizations and benchmarking of the device have been pre-

sented in previous sections. To validate the logger’s suitability for core sleep analysis, in-vivo

experiments must also be conducted. To prepare the animal for in-vivo experiments, a surgery

must be performed at least one week prior in order to allow time for the animal to recover. The

protocol for the surgery can be found in Appendix B and also in [148],

To be compatible with the current surgical setup used in the laboratory, the device uses the

same 7-pin male 1.27 mm pitch connector (GRPB071, Sullins Connector Solutions) to connect

with the animal. Before surgery, a headstage connector must be prepared first by soldering

wires (AS634, Cooner Wire) of roughly 1.5 cm in length to the connector and M1 screws,

which are used as the electrodes, at positions shown by figure 4.6.

Figure 4.6: The assembled headstage connector, with seven total pins consisting of two as
references, four for ECoG/EMG channels and one for biasing (Vref). Channels that are in use
are soldered to an electrode (M1 screw) via a micro-wire (AS634, Cooner Wire). In a typical
setup, the biasing pin (Vref) is soldered to the first reference (used for ECoG1,ECoG2), due to
limited spacing on a mouse brain. One/Two channels (pins 3-4) are then used for ECoG and
one channel for EMG (pin 5 or 6). The last pin is used as the reference for EMG (pin 7).

Surgery is then performed according to the protocol with locations of the ECoG electrodes at

VREF( 1.5, 1.5 ), ECoG1 ( 1.5,-1.5 ) and ECoG2( -1.5 , -1.5 ) from bregma ( x,y in mm ).
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Figure 4.7: Locations of the electrodes. Bregma and lambda are shown by the top and bottom
black dots.

4.3.1 Example Recordings

Figures 4.8 - 4.9 show two 24-hour recordings taken from two different wild type animals (male,

C57BL/6J, 6 months old) in their home cages, data analysed using Spike2 (V7.18, Cambridge

Electronic Design).

It is evident from the figures that there is an inverse relationship between EMG and delta signals,

as periods of high EMG activities tend coincide with periods of low delta powers (Wake) and

vice versa. Furthermore, whenever a high theta to delta ratio episode occurs during a period of

low EMG values (REM), it is normally followed by a brief episode of increase in EMG amplitude.

Both of the above are typical characteristics observed during NREM, Wake and REM sleep

stages and have been captured by the device. Please note that the accelerometer channel

appears to be clipped due to its dynamic range currently being set to ±2g, a higher dynamic

range would resolve this. However this clipping of data, caused from sudden movements, does

not affect the result when performing sleep scoring due to the large difference in amplitudes

when the animal is moving versus when idling.
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Figure 4.8: 24 hour recording from test animal 1. Seven traces are shown, which from the top
are Stage (manually scored by a researcher), EEG spectrogram, Accelerometer (Z axis), T/D,
Theta, Deltra and EMG. Colours in the stage channel represent Wake (Blue), NREM (Green)
and REM (RED) stages.

Figure 4.9: 24 hour recording from test animal 2. Seven traces are shown, which from the top
are Stage (manually scored by a researcher), EEG spectrogram, Accelerometer (Z axis), T/D,
Theta, Deltra and EMG. Colours in the stage channel represent Wake (Blue), NREM (Green)
and REM (RED) stages.

142



4.4 Sleep Stage Scoring Algorithm

As mentioned in the background chapter, sleep stage scoring is a necessary process that is

carried out for every sleep recording data. Currently, many researchers still carry out this

process manually, which can be very laborious and time consuming.

As a result, many automatic and semi-automatic sleep scoring algorithms have been proposed

ranging from simple threshold based algorithms [53][149] to more complex deep learning based

algorithms [73][71].

For this project, the algorithm is not only used for offline scoring but it also used to detect

sleep stages in real time in the closed loop version of the device (Chapter 5). As this would

allow low stress partial sleep deprivation to be carried out when combined with optogenetic

stimulation, as discussed in the literature review.

As such, it would need to support both offline and online scoring, be as accurate and as resource

light as possible, so that it could be ported onto the MCU which has limited memory and pro-

cessing power. None of the proposed algorithms at the time met all of these requirements, they

were either not robust enough due to requiring manual tuning of parameters, which can intro-

duce subjective bias, or too complex to be implemented onto an embedded device. Therefore a

custom algorithm had to be developed. The following sections will show the development of the

algorithm from the initial threshold based method using a simple logic rules to a probabilistic

approach based on Gaussian Mixture Model.

4.4.1 Threshold Based Classifier

Due to the simplicity of using thresholds for scoring, an initial algorithm based on simple

thresholds was developed.
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Feature Extraction and Logic Scoring Rules Derivation

To develop the algorithm, key features used to differentiate between the different stages had to

be first identified. From literature, locomotion data is typically used to separate wake from the

sleep stages. ECoG band powers are either used directly or as a ratio to separate NREM from

REM. One method with a high discriminating power uses EMG amplitude as the locomotion

data and theta and delta power to separate the sleep stages. NREM is defined as having a

high delta power and REM as having a high theta over delta ratio. This can be visualised by

looking at three 24h recordings from separate scorers shown in figure 4.10.

The figure shows each scored epoch (5s) and its average EMG amplitude, delta power and

T/D ratio. It can be seen that the clusters are localized in the feature space and thus can

be separated by setting a threshold for each of the feature. Figure 4.11 illustrates how simple

logic rules can be used to classify the epochs. From the example data, epochs scored as Wake

can be separated from the sleep (NREM and REM) epochs by just using the EMG threshold

alone. As most of the Wake epochs have an EMG amplitude that is above 20 µV. NREM and

REM epochs can be separated by using two further thresholds, delta power and theta/delta

ratio. All epochs above the delta threshold are scored as NREM. For epochs that are below

the delta threshold, if their theta/delta ratio is above the threshold, they are scored as REM,

otherwise they are scored as NREM. The scoring rules described are consistent across all the

test data-sets, with the only difference being the threshold values.
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Figure 4.10: Example 24h recordings showing the scored epochs (5s) with their EMG ampli-
tudes, delta powers and T/D ratios. Colored circles represent Wake (blue), NREM (green) and
REM (cyan) stages.
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Figure 4.11: A. shows the scored epochs with their EMG amplitudes, delta powers and T/D
ratios (scoring features). B. shows an EMG threshold (plane) of 20µV separating Wake epochs
from NREM and REM. NREM and REM can be further separated by using Delta power
(500µV) and TD ratio (4) thresholds. 146



From the above, the processes required to score a raw recording can be summarized into three

main steps. Firstly, scoring features are extracted from the raw data. Then the thresholds are

determined. Finally, the processed data is split into epochs and scoring rules described can

then be applied to score the epochs.

Due to various variations (intraspecies, surgical technique and electrode condition), recordings

may have very different dynamic ranges. Therefore, thresholds have to be determined for each

dataset and this can be done either manually or automatically.

Threshold values can be obtained manually by looking at values of features during sleep. Figure

4.12 shows there are clear distinctive periods of high and low delta, EMG and T/D ratios. These

periods are also known as bouts. A wake bout is defined as a period of high EMG amplitude

and low delta power. A NREM sleep bout is defined as a period of low EMG amplitude and

high delta power. A REM sleep bout is defined as a period of low EMG amplitude and high

T/D ratio. As the scoring rules are conditioned on each of the scoring features of an epoch to

either be above or below the corresponding threshold. Their values can be derived by choosing,

via inspection, an amplitude that would best separate the population of a particular feature

into two levels, this is shown in figure 4.13
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Figure 4.12: Example 12h recording shown in Spike2 (Cambridge Electronic Design). Raw
ECoG, Delta, EMG and T/D ratio are shown. Colours in the stage channel represent Wake
(Blue), NREM (Green) and REM (RED) stages. The wake and sleep bouts are highlighted by
the black rectangles.
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Figure 4.13: Top graph shows the derivation of thresholds via inspection, after feature ex-
traction. Red arrows indicate the different threshold levels. Bottom four graphs are example
sleep/wake bouts showing all possible outcomes using the logic rules derived from the test data.
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Algorithm implementation

The scoring process above can be automated and an algorithmic implementation is shown

below. First, ECoG data is filtered digitally into theta (1-4Hz) and delta bands (5-10Hz) and a

5s moving RMS filter is applied to the EMG data. Then threshold values are obtained manually.

Finally, a loop is used to score the epochs (5s), one at a time, until all epochs have been scored.

At each iteration of the loop, one epoch worth of the filtered data (1000 samples) is taken and

used to calculate the average delta power, T/D ratio and EMG amplitude. Logic rules are then

used to score the epoch by comparing the averages to the manually set thresholds, as shown

by figure 4.14.

Figure 4.14: The implementation of the threshold based algorithm and the structure of the logic
scoring rules. Scoring features (EMG amplitude, Theta, Delta powers and TD ratio) are first
extracted, then one epoch (1000 samples) at a time is scored by comparing the average values
of its scoring features with the thresholds. Comparisons and decisions are made according to
the logic rules shown. EMG TH, Delta TH, TD TH denote the respective threshold value.
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Automatic Threshold Detection

Although manual threshold detection simplifies the implementation of the algorithm, it can

become time consuming with increasing number of data-sets. Furthermore, manual detection

is only possible for off-line scoring as the whole data-set is available. However, for on-line scoring

this is not practical as the scoring needs to be done in real time. A much better approach would

be to make the extraction of thresholds automatic. However due to the variability in signal

strength as described earlier, normalization must be applied first. Normalization is used to

both scale the data as well as to allow threshold values to be defined in terms of a statistical

measure rather an absolute/normalized absolute value.

Figure 4.15: Box plots showing the distribution of each feature in each of the three stages as a
percentile of the overall population.

Although there are various ways of normalizing the data (linear, min-max, spline, z-score). Nor-
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malization via percentiles was chosen as it can be easily implemented with just a histogram and

a counter that tallies up the normalised counts in bins until the required percentile is reached.

Additionally, each threshold is represented by just one statistical parameter (percentile).

Consider that each scoring feature typically has a bimodal normal distribution and in a normal

mouse, sleep/wake percentages are very similar in a typical sleep-wake cycle, the value (in

terms of percentile) that lies in between the two normal distributions of each feature should

be the same for all data-sets. To investigate whether this is true, sleep scored data from a 24h

recording was used. The epochs were grouped by stage and each feature was converted from

its absolute value to a percentile of the whole population. The results were then plotted onto

separate box plots as shown by figure 4.15.

From the figure, 50% of epochs scored as REM had a delta value that was higher than the 75%

of the total population. Or in other words, if the delta value at the 25th percentile was used as

a threshold, then 50% of REM epochs would have been included. The figure also shows that

there is a clear difference in the distribution of features between the three stages, for example

most of the epochs scored as wake have EMG values that correspond to higher percentiles of

the overall population than epochs scored as the other two stages and most of epochs scored as

NREM or REM have a delta or theta values that correspond to higher percentiles than epochs

scored as wake. Utilising this, the threshold values can be defined in terms of percentiles instead

of absolute values.

For an off-line recording the percentiles can be calculated from the whole data-set but for an on-

line recording, they are calculated from a sample population. Therefore, the sample population

must have a very similar distribution of features to the overall population and this is dependent

on two factors, the training duration and the starting time of training.

To see their effects on the accuracy of the threshold, a 24h test data, with 12h lights on and 12h

lights off was used. The delta threshold in percentile for the test data was 40%. This percentile

was converted into an absolute value for each smaller sample taken from a different starting

time point: 0 to 16h in increments of 4h; and a different duration, 0 to 8h in increments of 2h.
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The absolute values were reconverted back to percentiles of the whole population. The results

are shown by the top graph in figure 4.16, where each curve represents a different starting time

and the x axis represents the end time (start time + duration).

Figure 4.16: The effects of starting time and duration on the representativeness of the threshold
percentile.

If the sample population has a similar distribution to the overall population then the new

percentile should be the same as the original (40%) or close to it. The graph shows that the

starting time has a bigger effect on the result than the duration with the 12h curve giving the

best average value. This is due to the circadian rhythm of mice [150], whereby they are more

active during the dark period than the light period, with the total ratio of Wake to NREM

being approximately 50-55% to 40-45%. This distribution typically occurs at the transition

between the light and dark periods.

The bottom graph in figure 4.16 shows the NREM percentage in each sample population.

When the NREM percentage in the sample population is higher than the overall population,

the converted sample percentile is higher than the original population percentile as there are
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more epochs with higher delta values, the opposite is true when the NREM percentage in the

sample population is lower than the overall population.

4.4.2 Accuracy

To choose the optimum normalized threshold values (as percentiles), four manually scored

training data-sets (each from a different researcher) were used and the scoring results were

compared against human scorers. Parametric sweeps on percentiles, starting time and duration

were performed to find the combination with the highest average sensitivity and specificity for

the three different vigilance states. Sensitivity is defined as the percentage of the population

with the condition being correctly identified as shown by Eq 4.1.

Sensitivity = TP
TP+FN

(4.1)

TP = True Positive FN = False Negative

Specificity is defined as the percentage of the population that does not have the condition being

correctly identified as shown by Eq 4.2.

Specificity = TN
TN+FP

(4.2)

TN = True Negative FP = False Positive

The thresholds were then used to score 4 test data sets and the average sensitivity obtained is

shown in table 4.4.
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Wake NREM REM

Sensitivity (%) 84 82 75

Specificity (%) 90 88 70

Table 4.4: The average accuracy of the threshold based algorithm across 4 data sets

Evaluation

Although the threshold based algorithm is very simple to implement and has a low time com-

plexity of O(n) [151] (linear binary decision tree) and requiring few memory to store the feature

averages and decision tree model, it has several disadvantages.

First, its accuracy is below similar threshold based algorithm quoted in literature [53][149],

where an accuracy of ≥ 90 has been reported.

Secondly, the accuracy of the algorithm is dependent on the statistics of the sample population

being similar to both the population and the sleep-wake distribution of the data the algorithm

used for training.

Thirdly, the algorithm uses linear thresholds. Referring back to figure 4.11, there are epochs

that can not be easily differentiated using linear thresholds. Epochs that have characteristics

of more than one vigilance state, eg an NREM epoch with an EMG value just above the EMG

threshold but a very high delta value, would often get miss-classified. Although, this error

can also occur with human scorers, the algorithm does not have the experience or knowledge

a human scorer would have for dealing with ambiguous epochs. Additional scoring rules could

be added to reduce miss-classification such as REM can not occur directly after a wake stage.

Lastly, although percentiles were used for normalisation and defining threshold values. Other

techniques could also have been explored which may have produced a more consistent scoring

accuracy such as z-score as the data is normally distributed.

To address the above issues, a probability based algorithm was explored.
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4.4.3 Probability Based Scoring

Gaussian Mixture Model

Plotting the distribution of data in each feature onto a histogram as shown in figure 4.17,

reveals that there are usually two separate populations corresponding to the high and low values

observed in the wake and sleep bouts. This bi-model distribution is especially clear in the EMG

and delta features and is present in all 8 test data used. The two separate populations can be

made more prominent by splitting the data into fixed size blocks first and then calculating the

average for each block before plotting, as averaging reduces the variance.

Figure 4.17: Histogram plot of each feature. A. Histograms using raw data. B. Histograms on
data that has been averaged every 80 seconds.
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Graph B of figure 4.17 shows that the sub-populations follow a normal distribution which is

characterized by a mean and variance. These two parameters can be extracted by using the

Gaussian mixture model [152], which is a model that assumes the underlying data is generated

from a mixture of different weighted Gaussian distributions. Each feature would give 2 sets of

Gaussian parameters, one for the low value population and one for the high value population.

With three separate features, a total of 6 sets of Gaussian parameters would be obtained.

Calculating the likelihood

The Gaussian parameters obtained could then be used to normalize the data by calculating the

z-score of each feature for each epoch;

za,b =
xa,b−µa,b

σa,b
(4.3)

σ = standard deviation µ = population mean x = epoch average value

a = feature b = high or low population

A vigilance state is defined in terms of the average value of each feature in an epoch, therefore

after z-score normalization, its likelihood should similarly be definable from a mixture of z-

scores. Each vigilance state would have a separate rule that defines which features to be used,

the weightings and the sub-population to use for the normalization ( low or high ). The epoch

is then assigned to the vigilance state with the highest likelihood.

Taking the above into account and adapting the logic rules used in the threshold based algo-

rithm, the sleep scoring algorithm was modified to implement the following scoring rules when

calculating the likelihood:

Wake is defined as having a high EMG amplitude. As a result, its likelihood should be at its min-

imum when xEMG < µEMG,low, µEMG,high and at its maximum when xEMG > µEMG,low, µEMG,high.

This is equivalent to the summation of the two z-scores (zEMG,low + zEMG,high) and therefore

its likelihood can be described by equation 4.4.
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L(Wake) = 1 ∗ (zEMG,low + zEMG,high) (4.4)

NREM is defined as having a low EMG amplitude and high delta power. As a result, its likeli-

hood should be at its minimum when xEMG > µEMG,low, µEMG,high and xdelta < µdelta,low, µdelta,high

and at its maximum when xEMG < µEMG,low, µEMG,high and xdelta > µdelta,low, µdelta,high. As

there are two features considered, this is equivalent to the weighted subtraction of the total

EMG z-scores from the total delta z-scores and its likelihood is described by equation 4.5.

L(NREM) = 0.4 ∗ (zdelta,low + zdelta,high)− 0.6 ∗ (zEMG,low + zEMG,high) (4.5)

REM is defined as having a low EMG amplitude and high T/D ratio. As a result, its likelihood

should be at its minimum when xEMG > µEMG,low, µEMG,high and xTD < µTD,low, µTD,high and

at its maximum when xEMG < µEMG,low, µEMG,high and xTD > µTD,low, µTD,high. As there are

two features considered, this is equivalent to the weighted subtraction of the total EMG z-scores

from the total T/D z-scores and its likelihood is described by equation 4.6.

L(REM) = 0.9 ∗ (zTD,low + zTD,high)− 0.1 ∗ (zEMG,low + zEMG,high) (4.6)

The weights used in the scoring rules were obtained from performing a parametric sweep on all

weights with four test data and taking the weights that had the highest accuracy.

As well as the above scoring rules, an additional rule based on the physiological observation

that direct Wake to REM transition does not occur naturally, especially in wild type mice, was

added to reduce the number of stages miss-classified as REM.

With the scoring rules implemented, the off-line probability based algorithm is shown in figure
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4.18.

Figure 4.18: Offline implementation of the probability based algorithm. Scoring features
(EMG,Theta,Delta) are first extracted using digital filters as before. Then GMM is used to
extract parameters (mean,variance) from each population (low,high) of each feature. Finally,
epochs are normalized and scored one at a time (5s) by using the new z-score based scoring
rules and the extracted Gaussian parameters.

Online-Scoring

Similar to the threshold based algorithm, for online scoring the Gaussian distribution parame-

ters are calculated from a smaller training sample. However, compared to the former method,

sample parameters extracted using GMM are less likely to be affected by difference in the

sleep-wake distributions. As unlike the wake to sleep percentage, the means and variances of

the low and high value populations in each feature do not vary much with the circadian cycle.
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Figure 4.19: Figure showing the difference in the percentage error in each sample population
when using GMM thresholds as opposed to percentile thresholds. Five sample populations
taken from different time points (0-16h) and different duration (2-8h) are shown.

Figure 4.19 shows the difference in the percentage error between the two methods when calcu-

lating the delta threshold in each sample population. For GMM the low value threshold was

used. Percentage error is defined by Eq.4.7.

% Error = 100 ∗
Sample Threshold− Actual Threshold

Actual Threshold
(4.7)

As evidently shown by the graphs, the percentage error when using percentile thresholds is

much higher than using GMM for all sample sizes and starting times, with a max error of ≥

50%. Whereas using GMM, the max error is only ≤ 15% and taking into account that the

high delta mean is typically a few times higher than low delta mean, this error is even more

insignificant. To maximise the recording time, the shortest suitable training time should be

used, which is 4 hours as the error decreases asymptotically for duration >4 hours.

The on-line adaptation of the algorithm is shown in figure 4.20. The algorithm is split into two

steps, training and scoring.
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The training stage lasts for 4 hours, during which ECoG and EMG samples are collected and

stored. ECoG signal is filtered into delta power and T/D ratio. A RMS window is applied to

the EMG signals. At the end of the training, GMM is used to extract the Gaussian distribution

parameters.

The scoring stage is similar to the training stage, but instead of 4 hours, only 1000 samples

are collected which corresponds to 5s (epoch length). The average delta power, T/D ratio and

EMG RMS amplitude are calculated. Then the derived z-score scoring rules are used to assign

the epoch to the vigilance state with the highest likelihood.

Figure 4.20: Online implementation of the probability based algorithm.

Accuracy

A total of 21 sets of scored data from 3 separate scorers were used to test the on-line version

of the algorithm. The first 4 hours of each data were used to train the algorithm and Gaussian
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distribution parameters were extracted by using the GMM function in Matlab.

Figure 4.21: The sensitivity of the probability based algorithm to each vigilance state on 21
test data sets; 7 each from 3 separate scorers.
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Figure 4.22: The specificity of the probability based algorithm to each vigilance state on 21
test data sets; 7 each from 3 separate scorers.

Scorer 1 Scorer 2 Scorer 3 Total

Wake NREM REM Wake NREM REM Wake NREM REM Wake NREM REM

Sensitivity 0.91 0.97 0.91 0.94 0.93 0.95 0.97 0.92 0.83 0.94 0.94 0.90

Specificity 0.98 0.92 0.99 0.96 0.96 0.98 0.86 0.89 0.98 0.93 0.92 0.98

Table 4.5: The total and average accuracy of each vigilance state for each scorer.

From table 4.5 and graphs 4.21 - 4.22, it is evident that sensitivity and specificity are generally

lower for REM than other vigilance states due to its sparsity (5-10 %). There is also an inverse

relationship between sensitivity and specificity. Accuracy is the lowest for scorer 3 as a different

scoring method based on the raw ECoG signal shape and EMG amplitude was used instead.
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Evaluation

The accuracy of the probability based algorithm using GMM is much higher than the percentile

threshold based algorithm using simple logic rules. The average sensitivity and specificity are

above 90% for all vigilance states. The algorithm is able to compete with not only similar

probability based algorithm [64] but also other more complex deep learning based algorithms

proposed in literature [73][71].

Furthermore, it is also more suited for online scoring as it is less dependent on the distribution

of sleep to wake percentage, therefore training can start at any time. The algorithm would

perform well so long as each feature used for scoring has two distinct populations, a property

that is likely to be true even across different strains of mice with different sleep patterns.

The trade-off is that to extract the Gaussian distribution parameters using Gaussian mixture

model, Expectation-Maximisation algorithm is typically used, which is more complex than

simply calculating the percentiles in the threshold based algorithm.

4.5 Conclusion

The electrical and in-vivo test results presented in the first half of the chapter have shown that

the core device proposed in chapter 3 has met one of the aims of the project, which is to develop

a compact and light weight ECoG/EMG logging device for sleep studies with mice. The device

developed has a size (20x17mm) that is similar to some of the smallest loggers on the market

but is able to record 4 ECoG/EMG channels at 200Hz for ≈ 63 hours at a combined weight of

only 3.3g, which is far lighter than most of the loggers with a similar recording time. Its ability

to measure ECoG/EMG signals with high enough resolution for the data to be sleep scored

using standard scoring rules has been demonstrated by the two example recordings shown.

In the second half of the chapter, it has been shown that a highly accurate sleep scoring

algorithm can be created by using parameters obtained from GMM to normalize each epoch
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then scoring them with scoring rules that are based on the weighted sum of z-scores.
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Chapter 5

Towards a closed loop device:

Integrating temperature sensing, online

sleep scoring and optogenetic

stimulation

5.1 Introduction

The previous two chapters focused on the core device and the sleep stage scoring algorithm. This

chapter will showcase the method used to integrate each of the advanced features; optogenetic

stimulation, sleep stage scoring and temperature sensing with the device developed in chapter

3 to create an all inclusive closed loop platform.

The following sections will go through in order; the design of the custom optogenetic coupler,

followed by the hardware implementation of the sleep stage scoring algorithm and finally the

development and calibration of the temperature sensor.
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5.2 Optogenetic Stimulation

This section will go through the development of the custom optogenetic coupler and also the

method used to control the optogenetic stimulus.

5.2.1 Optogenetic Coupler

From chapter 2, it is stated that the best method to couple light from a macro LED to an

optical fibre is by direct abutment.

Most commercially available LEDs have a surface area that is much greater than the area of

the of the core of an optic fibre, therefore to ensure maximum amount of light enters the core,

the LED with the smallest footprint and highest optical power should be chosen. Cree DA2432

LED has the smallest footprint found (240x320 um) but is capable of delivering an optical

power of 30mW in the 470nm range at 20mA.

The simplest way to couple the LED to an optic fibre is by gluing the optic fibre perpendicularly

to the surface of the LED. However, this is a very unreliable method and prone to errors due

to the size of the components. Instead, a holder should be used to hold the LED PCB at one

end and allow the fibre to be pushed all the way to the top of the LED on the other end.
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Figure 5.1: The custom optogenetic coupler with the optic cannula inserted, the optical fibre
can be seen protruding out the cannula

Rather than holding the optic fibre with the tube, a holder for an optic cannula was designed

instead. This is due to most optogenetic experiments are carried out by first implanting an

optic cannula, which consists of a metal or ceramic housing (ferrule) connected to an optical

fibre cut to a certain length into the brain. Therefore, by designing it to fit an optic cannula,

which is much bigger than an optic fibre (1.25-2.5mm), the holder is compatible with the current

optogenetic set up, more easily manufacturable, can deliver light to the optical fibre by simply

pushing the holder into the optic cannula and is removable as only the optic cannula needs to

stay implanted permanently.

The optogenetic coupler shown in figure 5.1 consists of a hollow cylindrical tube (DI=1.35mm,

DO=2.5mm, H=3mm) connected to a square base (7.5mm, H=1.5mm) with a square cut out

(6mm) to fit the LED board. The tube and the base are joined together with a 3mm fillet to

increase mechanical stability. The coupler was manufactured by a MJF 3D printer.

To ensure maximum overlap area, the coupler has been designed so the centre of the tube aligns

with the centre of the PCB where the LED is mounted. The tube also has a transition fit with

the optic cannula so it is tight enough to prevent the coupler from coming off but also loose
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enough to ensure the optic cannula can be pushed all the way in as close to the LED as possible.

The optical power of the coupler with Cree DA2432 LED at 20mA coupled to a 200 µm core,

0.22 NA optical fibre was on average 0.8mW, when measured with a optical power meter

(Thorlabs, PM100D), which gives a coupling efficiency of 2.7%.

Figure 5.2: Illustration showing the custom coupler connecting with the optic ferrule implanted
in the animal.

5.2.2 Driving the LED

As shown by multiple reviews [153][154][155], optogenetic systems are usually characterized by

the following parameters, optical power, stimulation frequency and the duty cycle. Varying

these parameters allows different optical patterns to be made.

The current required to drive the LED in the custom optognetic coupler at maximum optical

power exceeds the maximum rated current output of the MCU. Therefore, a LED driver is

required and out of the many available drivers, LP5522 from Texas Instruments is the most

suitable. It is one of the few drivers that has a programmable blinking sequence and allows

an on-time of 1-255ms and a off-time of 10-2500ms to be programmed by using just a GPIO

pin. It is available in a small DSBGA-6 (1.2x0.81mm) package and can drive up to 20mA with
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a quiescent current of only 0.2uA. During programming, the device stores the sequence to the

CTRL pin as the blinking pattern and plays it back repeatedly during the run mode. This

feature along with the programmable on and off times allow sequences of different duty cycles

and frequencies to be generated easily. Additionally, its output current can be varied by using

an external resistor with the following relationship Iout = 480/RIset.

To control its output current, a digital potentiometer (TPL0102) is used, which contains two

256 taps 100kΩ variable resistors with very low linearity errors (± 0.5 LSB INL, ± 0.25 LSB

DNL). By connecting the two resistors together, an output current of 2.4mA to 20mA, which

corresponds to an optical power of 3.6mW to 30mW using Cree’s DA2432 LED, could be

delivered.

5.3 Implementation of the Sleep Stage Scoring Algo-

rithm

The testing and development of the sleep scoring algorithm were done in Matlab (R2020b),

which has a host of data analysis and processing functions. Some of the functions used must be

implemented manually in the MCU. Referring back to figure 4.20, which shows the breakdown

of the probability based algorithm. There are two main processes to implement, the digital

filters and the Gaussian Mixture Model. The rest of the algorithm can be implemented with

standard C instructions.

5.3.1 Digital Filters

To extract the delta and theta bands, the ECoG signals must be filtered fist. The easiest way to

do this is to filter the signal digitally by multiplying the frequency components in the frequency

domain by a window that suppresses the unwanted frequencies. The shape of the window is

dependent on the frequency response of the filter which can be transformed into the impulse
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response via the z-transform, and one key property of z-transform states that multiplication

in the frequency domain is equivalent to convolution in the time domain. Therefore a discrete

signal can be filtered by convolving its samples with the impulse response of a filter in the time

domain as shown by Eq.5.1.

y(n) = h(n)⊛ x(n) =
∑+∞

k=−∞ h(k) ∗ x(n− k) (5.1)

y(n) = output x(n) = input h(k) = filter impulse response

Eq.5.1 can also be re-written using the difference equation, which describes the relationship

between the input and output of a signal.

y(n) =
∑N

k=0 bk ∗ x(n− k)−
∑M

l=1 al ∗ y(n− l) (5.2)

y(n) = output x(n) = input a(l) = feed-back coefficient b(k) = feed-forward coefficient

N = feed-forward order M = feed-back order

Digital filters can be grouped into two categories which are based their response to an impulse

signal; FIR and IIR.

FIR (Finite Impulse Response) filters have an impulse response that settles down to zero in a

finite duration of time. They do not have a feedback path, therefore are always stable and most

FIR filters also have a linear phase response. The major downside is that more computation

and memory are often required to implement a FIR filter as a higher order (more coefficients)

is required to achieve similar performance to a IIR filter. Due to the lack of a feedback path,

the difference equation for a FIR filter can be reduced down to Eq 5.3, whereby the output

signal is just the weighted sum of the current and past input samples.

y(n) =
∑N

k=0 bk ∗ x(n− k) (5.3)
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IIR (Infinite Impulse Response) filters on the other hand have an impulse response that is not

finite in duration. They are usually the digital implementation of analog filters. Due to having

a feedback path, stability must also be considered when designing a IIR filter. However they

can usually be implemented with far fewer coefficients, hence requiring less computation and

memory. For a IIR filter, the output signal is the weighted sum of the past output samples and

the present and past input samples.

For a FIR filter, the number of coefficient required, also known as taps, is dependent on the

sampling frequency and the transition width between the pass band and the stop band. Higher

number of taps is required for high sampling frequency and small transition width.

Currently, there is not a clear consensus in the definition of the ECoG band frequencies. Due

to this, a sharp transition between the pass and stop bands is not required. Furthermore the

sampling frequency used in the device is very low at only 200Hz. As a result, the number of

taps required is so low that FIR filters, because of their ease of design and implementation,

were chosen over IIR filters.

5.3.2 Filter Design

For sleep scoring, only the delta (1-4Hz) and theta (5-10) frequency bands from the ECoG

signals are required. Therefore the number of taps could be reduced if the sampling rate was

down-sampled. However to avoid aliasing, a low pass filter would need to be used to precondition

the signal first.

Taking the above into consideration, a total of three FIR filters, one low pass and two band

pass would be required. These filters were designed using Matlab’s filter designer tool with the

design method set to equiripple.

To relax the filter requirement, the transition band width was set to be 0.5Hz for the two band

pass filters. The anti-aliasing low pass filter was set with a corner frequency of 10Hz and the

down-sample rate was set to be 8x, which would reduce the effective sampling rate from 200Hz
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to 25Hz. The stop-band attenuation was set to 60dB for all filters. The filter magnitude and

impulse responses are shown in figures 5.3 - 5.5 and 5.6 - 5.8.

Figure 5.3: Magnitude response of the low pass anti-aliasing filter. (Fc = 10, Fstop = 12, Fs
= 200Hz, Astop = 60dB, Apass = 1 and N=199)

Figure 5.4: Magnitude response of the δ filter. (Fpass = 1-4, Fstop1 = 0.5, Fstop2 = 4.5, Fs
= 25Hz, Astop = 60dB, Apass = 1 and N=100)

Figure 5.5: Magnitude response of the θ band-pass filter. (Fpass = 5-10, Fstop = 4.5, Fstop2
= 10.5, Astop = 60dB, Apass = 1, Fs = 25Hz and N=100)
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Figure 5.6: Impulse response of the low pass anti-aliasing filter.

Figure 5.7: Impulse response of the δ band-pass filter.

Figure 5.8: Impulse response of the θ band-pass filter.

Decimating the ECoG signal before band-pass filtering significantly reduces the amount of taps

required, eg without decimation the number of taps required for the δ FIR filter is 791 and the

impulse responses show that all filters are stable.
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5.3.3 Fixed-Point Representation

The filter coefficients from the filter designer are represented by 64-bit double numbers. Arith-

metic involving floating point numbers are usually done in software through emulation or via

a FPU (Floating Point Unit) in hardware. When done in software, the operation can take

hundreds of cycles. On the other hand, enabling the FPU usually results in a slight increase in

the power consumption.

Nordic NRF52832 has an onboard FPU, although enabling it increases the floating point cal-

culation speed by 20 folds, the operation still takes a significant amount of time. Furthermore,

the FPU can only handle single precision floating point numbers. Due to this, it is far better

to implement the FIR filter in its entirely with only fixed point integers. Having said that,

fixed point representation can lead to severe degradation in the performance of the filter due

to quantization, rounding and overflow errors. Sections below show how each of these errors

can be addressed.

Coefficient Quantization Error

Filter coefficients are converted into integers by scaling them with a scaling factor. To minimise

the error from quantization, the scaling factor should be as large as possible so that all digits

in the fractional part of a coefficient are represented, however this is not always possible. For

example the value of the first coefficient of the low pass FIR filter shown in figure 5.3 has 39

decimal points. A 32 bit signed integer, has a max negative value of -2,147,483,648 and thus it is

not possible to store the coefficient without any loss of precision. Multiplying the coefficient by

65536 (216) then rounding, results in a difference of 3.3233e-06. This difference is insignificant

in this particular case.
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Overflow Error

Although having a large scale factor reduces the quantization error, it also makes it more likely

for an overflow to occur when calculating the product or the weight sum, as shown in Eq.5.3.

Summarizing from [156], the number of bits required for each parameter to avoid overflow is

shown below;

• Input - The input variable must have enough bits to store the maximum input value. As

the reference voltage for the ADC is ± 600mV, this translates to 11 signed bits (log2 1200).

• Multiplier - The maximum number of bits required to store the multiplication between

a L-bit wide input with a M-bit wide coefficient is L+M.

• Accumulator - The accumulator has to store the sum of weighted input samples. For

a FIR filter with N-taps, there are N number of (L+M)-bit wide products to sum. The

number of bits required is therefore, N converted to number of bits + L+M = log2 N +

L + M. However, the values of the coefficients are known, therefore the required number

of bits can be reduced to L + log2 O, where O is the absolute sum of the coefficients.

• Output - The output must have enough bits to store the result of the accumulator. As

the result is scaled down by the same scale factor used to scale up the coefficients. The

number of bits required is therefore L + log2 O - log2 γ where γ is the scale factor.

Taking the above into account, for a fixed point FIR filter, the word-length for the coefficients

should first be decided by looking at the effect of quantization error on the filter performance.

Then the word length for rest of the filter parameters can be derived based on that. This can

be done via the Fixed Point Designer toolbox in Matlab.
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Figure 5.9: The quantized and the reference magnitude response of the low pass FIR filter
shown in figure 5.3

Figure 5.9 shows the quantized version of the low pass FIR filter shown in figure 5.3. The

filter was quantized by multiplying all coefficients by 214 before rounding them. As evidently

shown, the difference in the overall magnitude response between the reference and the quantized

version is very minimal and this difference is even more insignificant when the word-length is

extended along with the scale factor from 14 to 16 bits. In fact, all three FIR filters show very

little difference in the magnitude response when quantized using a 16-bit word-length.

To simplify the design, the word-length for the other filter parameters can be set to be the

same as the accumulator with the maximum word-length, as the accumulator requires the most

number of bits. The input word-length is the same for each filter, therefore the difference in

the accumulator word length is dependent on the absolute sum of the coefficients in each filter.

In this particular case, the number of bits required is 18-bits for all accumulator. Therefore

the word-length should be at least 18+11(input word-length)=29 bits. The data type with the

closest bit width is the 32-bit integer.

Implementation

Using the above, the FIR filters were implemented on the MCU using signed 32-bit integers

with the coefficients stored in the program memory space.
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For the calculation of the convolution sum, a circular array, which is an array that automatically

replaces its oldest sample with the new one once full, is used. The circular array has been

implemented by using a pointer that would point to the next available memory address in a

linear array, every time a new sample is acquired. Once the pointer reaches the last memory

address, it automatically wraps around to point to the first memory address.

5.3.4 Implementing the Gaussian Mixture Model

Gaussian Mixture Model is normally implemented via the Expectation-Maximisation algorithm

which is a clustering algorithm that is used to find latent variables in a dataset by maximising

the likelihood function. The algorithm is split into two steps, expectation and maximisation,

which feed into each other in a loop. In the case of GMM, during the expectation step, the

probability of each data point belonging to a particular Gaussian distribution is calculated from

using parameters that are based on currently assumed distribution model. These probabilities

are then used in the maximisation step to update the parameters, which are then used in the

expectation step again. The algorithm terminates when a termination criterion has been met,

such as the number of loops has exceeded a certain amount or the change in parameters is

below the threshold.

EM algorithm can be said to be a generalised form of K-means, which is another clustering

algorithm that works by trying to partition the data into k number of clusters by assigning

each data point to the cluster with the closest mean. The main differences between the two

algorithms are that EM algorithm uses soft assignment and takes into account the variability

of the data, whilst K-means algorithm uses hard labeling and assumes that the data is of a

spherical shape. In EM algorithm, the measure of a sample belonging to a particular group is

given as a probability and a sample can be assigned to multiple groups. Whereas in K-means

each sample is hard assigned to one cluster at every iteration.

Although both algorithms are very similar, K-means algorithm is slightly easier to implement.
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Furthermore, for the probability based sleep scoring algorithm, only the mean and variance

for each distribution are required and not the mixing proportion, therefore K-means algorithm

would have a slightly faster run-time. There are a few variants of k-means algorithms such as

K-medians and K-medoids, that use different distance and cluster update rules, however these

algorithms require more computational power [157] than standard K-means. Additionally, K-

means outputs the population means as part of the clustering process.

Due to the reasons above, the extraction of the Gaussian parameters on the MCU is done

through a custom version of the K-means algorithm.

Custom K-means algorithm

The goal of the custom K-means algorithm is to separate each ECoG feature into two clusters

and output the mean and variance of each cluster. To speed up convergence, the centroids are

initialized with the average low and high values observed in past recordings.

The input to the algorithm is the filtered ECoG data collected during the training stage of the

sleep scoring algorithm, which lasts for 4 hours. At 200Hz sampling rate, this equates to a

total of 3600*200*4 = 2880000 samples. However, the input data size is actually much smaller,

due to the fact that the bi-modal Gaussian distribution present in each ECoG features can be

made more pronounced by averaging the data in blocks of 80 seconds as mentioned previously.

Averaging is done in real time instead of at the end of the training step so that the amount

of data to be stored is reduced from 2880000 to only 180. Reducing the amount of data also

reduces the run-time of the K-means algorithm significantly.

The custom K-means algorithm has the following modifications over other implementations.

Firstly, labels are not stored at any given time, as only the distribution parameters are of

interest, this saves N memory (N = input data length). Secondly, during the cluster assignment

step, the input samples and its squares are summed, then the mean and variance are calculated

at the end of the algorithm according to equation Eq.5.4.
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x̄ =
∑n

i=1
xi

n
, σ2 =

∑n
i=1

x2

i

n−1
− x̄2 (5.4)

x̄ = sample mean σ2 = variance n = sample population

One disadvantage with k-means algorithm is the algorithm can converge to a local optimum

solution instead of a global one depending on the initial conditions. Many techniques have

been proposed to address this such as repeat-start, farthest-points heuristic [158] and random

partition [159]. The custom K-means algorithm uses the repeat-start method, whereby if the

number of points belonging to one cluster is less than 10% of the points in the other cluster then

the algorithm is restarted. This is due to the physiological fact that the sleep to wake ratio ,

which is linked to the high and low populations, should not differ this much. After restart, the

threshold associated with the population with the lower number of samples is either increased

(low threshold) or decreased (high threshold), the step size taken is dependent on the ECoG

feature. Doing so should result in the algorithm converging faster. As the uneven cluster

assignment is likely to have arisen due to the values for both populations being much higher or

much lower than the assumed averages used to initialize the clusters.

180



Algorithm 1: Custom k-means algorithm for finding the mean and variance for the

low and high population of a ECoG feature

1 K-Means Algorithm;

Input : {x1, x2, ...xN}, step, {cinitial,1, cinitial,2}

Output: {x̄1, x̄2}, {σ1, σ2}

2 Initialization:

3 {m1,m2} ← 0

4 {xTotal,1, xTotal,2} ← 0

5 {x2
Total,1, x

2
Total,2} ← 0

6 {c1, c2} ← {cinitial,1, cinitial,2}

7 while termination criterion have not been met do

8 for n← 1 to N do /* cluster assignment step */

9 j ← argmin ∥xn − cj∥;

10 xTotal,j ← xTotal,j + xn;

11 x2
Total,j ← x2

Total,j + x2
n;

12 mj ← mj + 1;

13 end

14 cj ← xTotal,j/mj; /* update the centroids */

15 if mj < N/10 then

16 cj ← cinitial,j + step; /* step=step if j==1, step=-step if j==2 */

17 end

18 end

19 x̄j ← cj;

20 σ2
j ← x2

Total,j/(mj − 1)− x̄2
j ;

21 return x̄j, σ
2
j ;
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5.4 Temperature Sensing

In this section the temperature sensor used to interface with the thermocouple is shown along

with the calibration method used to ensure accurate readings can be taken.

5.4.1 Interfacing with the thermocouple

As mentioned in chapter 2, in order to interface with a thermocouple, an amplifier IC with

built-in cold junction compensation should be used. One such IC is the AD8495 from Analog

Devices. The amplifier IC specifically targets K-type thermocouples by having the gain set to

122.4, which would give an output of 5mV/◦C, which can easily be measured by the 9-bit ADC

in the MCU. Although the IC targets K-type thermocouples, it can also be used with T-type

for measuring temperatures under 100◦C [160] with minimal error, which is ideal as the device

will only be used to measure temperature in the physiological range (30-40◦C).

The main source of error in AD8495 is non-linearity. Seebeck coefficient changes with tempera-

ture, however the gain of the AD8495 is fixed. Due to this, a maximum non-linear error of ±2◦C

over the temperature range of -25◦C to +400◦C and with the junction reference temperature

over the range of 0◦C to +50◦C is expected [122]. Although seemingly big, over the physiolog-

ical range, the error is negligible as shown by figure 5.10. Due to this, the measurement error

is expected to be dominated by inherent error from the thermocouple.
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Figure 5.10: The output error in ◦C of AD8495 due to non-linearity [122]

The disadvantages with AD8495 are its high quiescent current consumption of 200uA and the

large footprint required for its 3x4.9mm MSOP package.

5.4.2 Temperature Calibration

In order to calibrate the temperature sensor, either a highly accuracy heat source or a pre-

calibrated temperature sensor should be used as the reference.

Temperature calibration was conducted against DST nano-T temperature logger from Star

Oddi as it has a very high accuracy and resolution of ±0.2◦C and 0.032◦C.

To carry out the calibration, a 40AWG T-type thermocouple from Omega (5TC-TT-TI-40) was

cut to length (10cm) with the ends stripped to expose the two metal wires (copper, constantan).

Then, a headstage was prepared by soldering the thermocouple onto pins 8 and 11 of the

11-pin headstage connector. The connector was inserted into the device with the tip of the

thermocouple submerged under water in a beaker along with the temperature logger. The
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beaker with the loggers was then put into the an incubator (Techne Hybridiser HB-1D) set to

50◦C and both loggers were left to record the temperature until the water in the beaker reached

50◦C uniformly.

Figure 5.11: (Top) Reference temperature (DST nano-T). (Bottom) Temperature measured by
the thermocouple (raw) and after smoothing with a 50-point moving average filter.

From the raw recording in figure 5.11, it is evident that the thermocouple was picking up a lot

of noise, as the temperature did not fluctuate this much as shown by the recording from the

reference temperature logger. Due to this, a 50-point moving average filter was applied to the

signal and the resultant signal looks very similar to the recording from the reference logger.

184



Figure 5.12: The error between the thermocouple and the temperature logger over the temper-
ature range of 20-45◦C.

The temperature error between the reference and thermocouple is shown in figure 5.12 . From

the graph, the maximum error across the temperature range is 0.5◦C and the average absolute

error is 0.13◦C before calibration. The error seems to increase with temperature with temper-

atures above 40◦C having a positive average error and temperatures below having a negative

average. This trend follows the non-linearity curve (40-50◦C) shown in figure 5.10.

Using the recordings from both loggers, calibration was performed by first converting the mea-

sured thermocouple temperature values (smoothed) back into voltages using equation V (mv) =

5 ∗ T . The voltages were then plotted against the recording from the reference logger and the

1st order line of best fit was calculated. The new conversion equation based on the parameters

from the line of best fit is T = 0.201V − 1.24. Using this new equation the max expected error

over the range 25-45◦C is 0.36◦C and the average error is 0.07◦C. The calibration also corrects

for the increase in error with higher temperatures as shown by figure 5.13.
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Figure 5.13: (Top) Relationship between the measured thermocouple voltage and the reference
temperature. (Bottom) Thermocouple temperature error after calibration.

5.4.3 Temperature Filtering

Due to the high frequency noise observed during the testing of the temperature sensor, two

noise filtering techniques have been implemented. The first one is oversampling, whereby

temperature is sampled at n times the sampling rate and the samples are averaged to produce

the final output. The second one is a simple n-point moving average filter which has been

implemented by reusing the functions used for the digital filters.

Although the measured temperature values were a lot more stable after implementing the

above, it came at the cost of reduced thermocouple response time. To investigate how much

the response time was affected, a thermocouple that was initially at room temperature was

put into an incubator (Techne Hybridiser HB-1D) set to 50◦C until its temperature reached

equilibrium with the surrounding. It was then taken out and left to cool to room temperature.

The experiment was repeated three times with a different n-point moving average filter used

each time. The temperature measured by the thermocouple was continuously logged by the
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device during each trial.

Figure 5.14 shows the effect of the moving average filter on the response time (defined as the

time taken to reach 63% of the final temperature). The results are summarized in table 5.1.

It is suspected the the difference in the response time between heating and cooling is due to

the active air flow in the incubator, which may have also caused the heating response time for

the 5 and 10-point moving average filter to be similar. Nevertheless, it is evident that using

a moving average filter reduces the response time, however the increase is insignificant as the

change in cortical temperature is usually small(≤2◦C) and gradual during a typical sleep-wake

cycle [161].

Figure 5.14: Heating and cooling response time for different n-point moving average filter.

Filter Type Heating Response (s) Cooling Response (s)

Raw 6 10

5-Point Moving Average 20 14

10-Point Moving Average 17 22

Table 5.1: Measured heating and cooling responses due to different n-point moving average
filters.
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5.5 Hardware Changes

5.5.1 Device Architecture

The device architecture of the enhanced logger, shown in figure 5.15, is the same as the core

version apart from the changes in the power management circuitry and the addition of the

three ICs mentione previously: AD8495 for temperature measurements; TPL0102 and LP5522

for optogenetic stimulation.

5.5.2 Mechanical Changes

The micro-HDMI connector has been replaced by a slim-stack connector (Molex 559090274)

which saves 0.3g of weight and the 7-pin headstage conenctor has been replaced by the 11-pin

version with 4 extra pins to connect the thermocouple (pins 8,11) and optogenetic coupler (pins

9,10)

5.5.3 Power Management

To meet the increased current demand, the device is powered by a 50mAh rechargeable LiPo

battery (15x10mm,1g) that has a much higher maximum current drain of 1C (50mA) and the

voltage regulator has been replaced by a buck converter module, TPS82740b, which has an

efficiency of 91% (Vin = 4.2V, Iout = 1mA) [162] in order to reduce the voltage from 4.2V to

3.3V.

The LiPo battery is non removable unlike the zinc air batteries used in the core version, however

it is automatically recharged when the device is docked onto the external downloader board.

As the footprint of a mechanical switch is too large, to avoid the device from being on at

all times, a digital switch (TPS22916) is used to control the power to the rest of the device.
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A D flip flop (SN74AUP1G74DCUR), configured in toggle mode by connecting its inverting

output to its data input, controls the digital switch. The D flip flop is in turn controlled by

an omnipolar (responds to both N and S poles) magnetic hall sensor (BU52055GWZ) which

outputs a high signal whenever it detects a magnetic field strength that exceeds the threshold

(±4.1mT). Toggling is achieved whenever the D flip flop senses a clock pulse from the hall sensor

due to the presence and removal of a magnetic field, ie the tapping of a magnetic pointer.

Figure 5.15: Device architecture of the enhanced logger

5.5.4 Battery Life and Power Consumption

The characterize the battery life of the enhanced device, the battery voltage was logged using

a DC power analyzer (N6705C, Keysight) over a period of three days at a sampling interval of

0.1s as shown by figure 5.16.
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Figure 5.16: The battery life of the enhanced device

With the temperature sensor on, the 50mAh battery lasted 35 hours which gives an average

current consumption of 1.43mA. If optogenetic stimulation is enabled, the battery life is reduced

according to the duty cycle and optical power specified. When tested with a duty cycle of 20%

at 10Hz and 20mW, the battery life was reduced by ≈ 50%.

5.5.5 PCB layout and Schematic

The PCB layout was redesigned with the AFE moved onto a separate board from the digital

circuitry in order to reduce cross-talk and is shown in figure 5.17. The conceptual schematic

of the enhanced device is shown in figure 5.18. More detailed breakdown of the PCB and

schematic can be found in Appendix C.
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Figure 5.17: PCB of the closed loop device. The analogue section and the key components in
the digital section are shown (MCU, Digital Pot IC, Accelerometer IC and NAND flash).
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Figure 5.18: Schematic of the closed loop logger, which is split into analogue (AFE), power
management and digital sections.

5.5.6 Physical Device

The device measures at 15x15x10mm and weighs 2.3g. It is lighter than the core device by 1g

due to the removal of zinc air battery holders, micro-HDMI connector and also reduced PCB

board size.

Main

Board

Battery

Board

Head

Stage

LiPo

Battery
Total

Weight 0.5g 0.35g 0.45g 1.00g 2.30g

Table 5.2: Device Weight Breakdown
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5.5.7 Data Downloader

The device connects to the data downloader via the slim stack connector instead of the micro-

HDMI connector. Like the core device, the data downloader also supports up to four enhanced

devices to be docked, but each dock can only be occupied by one version of the device. When

the enhanced device is docked, the output of the battery is cut from the rest of the device

including the power management system via the same (TPS22916) digital switch (2 switches in

total), in order to charge the battery in isolation. Charging is done via a LiPo charge controller

(MCP73831T) which charges the battery at a constant voltage to 4.2V first, before charging it

at a constant current of 20mA (set by a 50kΩ resistor). The average charge time for a 50mAh

battery is ≈ 2 hours.
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Figure 5.19: Top, bottom and folded views of the closed loop device
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5.6 Android App and Firmware Changes

5.6.1 Temperature Logging

The output of AD8495 is analogue and can be measured by enabling one extra ADC channel in

the ADC timer interrupt handler. However, in order to save power, this channel is only enabled

when the counter used to track the number of ADC sample events is the same as Tinterval/5ms.

Power to AD8495 is also toggled on/off, however due to its startup time of ≈1.5ms, it is enabled

one sample (5ms) prior.

Referring back to device registers in Chapter 3. To control and allow variable temperature

sampling rate, a Temperature Register that is 3 bytes in size has been added, whereby the first

byte is the enable/disable byte and the next two bytes are used to store the sampling interval

in seconds, allowing a range from 2s to 65535s.

The temperature samples are stored in a 5 byte structure in the spare area of the NAND pages

used to store ECoG/EMG samples (not accelerometer). The first byte denotes the number

of temperature samples stored in the spare area and the following four bytes store the actual

samples (2 bytes per sample).

Only up to 2 samples need to be stored as it takes ECoG data 2.56 seconds to fill a NAND

page and with a minimum temperature sampling interval of 2s, only 2 sample events can occur

in that time period.

The stored temperature data is read by the downloader if the data identifier is ECoG and the

number of temperature events is greater than 0.

5.6.2 Optogenetic Feature

The device has two operational modes for optogenetic stimulation: a manual stimulation mode

that allows users to specify the stimulation pattern and number of repeats; and an auto stimu-
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lation mode that detects and stimulates the chosen sleep stage or stages by using the embedded

sleep scoring algorithm.

These two operation modes are controlled via three registers: Opto Register, Sleep Scoring

Register 1 and Sleep Scoring Register 2. Opto Register is a 20 byte register that stores the

stimulation pattern (start time, power, frequency, duty cycle, duration, interval and number of

repeats).

Sleep Scoring Register 1 is a 5 byte register that stores parameters associated with sleep scoring

and stimulation target (training start time, epoch size, target sleep stage and the duration).

Sleep Scoring Register 2 is an internal 569 byte register that stores the averages of the three

features (180 bytes per feature), the means and variances of the high and low populations (2

bytes per parameter) and the number of samples trained.

Whenever the Opto Register or the Sleep Scoring Register is written to via BLE, the device

would update the operation of the optogenetic stimulation. If enabled, the device would ini-

tialize the LED driver and digital variable resistor according to the stimulation parameters

specified. If only sleep scoring is enabled, the acquired ECoG samples in the ADC timer in-

terrupt are passed to the sleep scoring algorithm (blocking operation) for training or scoring.

Intermediate results are stored in the Sleep Scoring Register 2. The output scored stages, like

the temperature samples, are also stored in the spare area in the NAND pages used to store

ECoG/EMG samples. Sleep stages have a minimum epoch size of 2 seconds and are stored and

read in the same method as the temperature samples. If auto stimulation is also enabled, sleep

stage scoring algorithm would compare the scored stage with the target stimulation stage(s), if

they match then the LED driver is enabled for the duration specified in the register. If manual

stimulation is enabled instead, the device would enable/disable the LED driver according to

the stimulation pattern via a timer. To save power, the RTC timer is used to keep track of the

stimulation time and when to start/stop stimulation.

The three registers are controlled from the Android application via the Opto Settings and Sleep
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Scoring menus as shown by figures 5.20-5.21

• This activity is used for controlling the auto-stimulation. Stimulation parameters are

checked to make sure that they each fit within their specified range before being sent off.

The broadcast receiver shows the status of the sleep scoring, the stimulation parameters

stored and the means and variances if the algorithm has finished training, via regular

notification updates (1s).

Figure 5.20: Menu for controlling auto stimulation

• This activity is used to control manual stimulation. Pressing the check button would

show a preview of the specified stimulation pattern. The broadcast receiver updates the

graph to show the progress of the stimulation in real time via regular notification updates

(1s).
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Figure 5.21: Menu for controlling manual stimulation

5.7 In-vivo Measurements

To validate each of the advanced features when placed under a physiological setting, in-vivo

experiments were conducted and the results are shown in this section.

5.7.1 Temperature Measurements

In order to perform in-vivo temperature measurements, a new surgical method that is based of

the surgery for standard headstage implantation was developed and shown below.
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The headstage used for temperature recording is prepared prior by attaching a thermocouple

to a standard ECoG/EMG headstage. The steps involved are as follows: Firstly, 1-2 cm of the

insulation of the thermocouple is stripped and the positive copper wire is soldered to pin 8 and

the negative constantan wire is soldered to pin 11. The thermocouple is then bent around the

outside of a fibre optic connector cap (CAPL,Thorlabs) so that the bead end is protruding out

of the end of the cap by 1-3mm depending on the target insertion depth. The whole assembly

can then be glued together using a mixture of superglue and dental cement. Using the connector

cap gives mechanical stability to thermocouple and allows it to be held and positioned precisely

with the stereotaxic instrument (Angle Two, Leica). The rest of the surgery can then be carried

out according to the standard protocol shown in Appendix B, with the thermocouple inserted

into the target location in the brain via the same steps used to insert an optic cannula.

Figure 5.22: An adult mouse with the headstage connector and thermocouple assembly at-
tached.

Two animals were prepared, one with the thermocouple inserted into the somatosensory region

in the cortex and the other inserted into the mid region of the thalamus. From the temperature
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recordings shown in figures 5.24 and 5.23, it is immediately apparent that the temperatures

are below the physiological expected values by 2-3◦C. Although there can be differences in

temperature between the core and different regions of the brain [125], the temperatures shown

are too low. It is unlikely this is due to instrumentation error as it was pre-calibrated before

testing and figure 5.23 shows the thermocouple was able to measure the temperature change

when the animal was put into a heatbox at (37◦C).

Figure 5.23: 7 hour temperature recording of the animal with the thermocouple inserted into
the thalamus.
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Figure 5.24: 24 hour temperature and EMG recording of the animal with the thermocouple
inserted into the cortex. A modified version also shown in [163].

5.7.2 Optogenetic Stimulation Test

As stated in the literature review, that neuronal populations in different regions of the brain

seem to play a different role in regulating sleep, one such example is the GABAergic neurons

in the VTA region [40], which promoted NREM sleep when stimulated. With the support for

optogenetic stimulation, experiments targeting specific neuronal populations to uncover their

functions in sleep could be conducted.

However to do this, the system must be able to deliver enough power to the required depth to

trigger a response from the neurons. To test whether the device could achieve this, the same

experiment targeting GABAergic neurons [40] was conducted, due to the clear increase in the

delta power that could be observed from the ECoG recording.

Three Vgat-Cre mice (one female, two males) were injected with 150nl of AAV-EF1A-flex-

ChR2-YFP construct twice in the left VTA ( ML:0.35 mm, AP:-3.30 mm,) at two different
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depths (DV:4.3 mm, 4.4 mm) to ensure the construct reaches the target area. The construct

uses Adeno-associated virus (AAV) which would cause all GABAergic neurons to express the

channelrhodopsin-2 (ChR2) gene in a Vgat-Cre transgenic mouse, so that they would respond to

light stimulus. The construct is tagged with a flourescent protein (YFP), which emits a yellow-

greenish light (520-550nm) when stimulated by a light in the blue-green spectrum (490-510nm)

and is used to identify which neurons have been infected via histological analysis.

After the injection, an optic cannula with a pre-cut optic fibre length of 4.3mm was implanted

into each of the animal at the same location. A headstage was also implanted. The surgery for

the above was carried out according to the protocol shown in Appendix B. After the surgery the

animals were left to recover for four weeks to allow maximal expression of the ChR2 channels.

Figure 5.25: An animal with the custom optogenetic coupler plugged into the optic cannula.

Each animal was subjected to an optogenetic stimulus of 20Hz for 120s [40] at 0.8mW and with

20ms pulses. One of the mice had an ECoG signal that was indiscernible from noise and was

therefore discounted. The other two mice however, did not produced any noticeable increase

in delta power from the baseline during the stimulation. Due to this, it was suspected that
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the optical power might have been too low to elicit a response. To investigate this, a tethered

optogenetic system was used to deliver higher power optical stimulus from 1 to 5 mW.

Two sets of optogenetic protocols were used. The first one was with the same opto parameters

as described in the paper but repeated at three different powers (1mW,5mW,2mW) and with

a 10 minute delay in between. In the second experiment, the animal was stimulated twice at

5mW for 20 minutes with a 40 minute delay in between, to see effect of prolonged stimulation.

Each experiment was repeated twice, however out of the four recordings only two showed a

noticeable increase in delta power from baseline during and immediately after the stimulus.

Figure 5.26 shows an increase in delta power after being stimulated with 5mW during the

second stimulus. Figure 5.27 shows a significant increase in delta power during the second 20

minute stimulation.

Due to the small sample size, a conclusive conclusion can not be made. Nevetheless, an increase

in delta power over the baseline was observed when using 5mW for two of the recordings and

not for other powers, therefore this does suggest that the device might need to increase its

optical power output, either by increasing the coupling efficiency or using a LED driver that

can source more current.
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Figure 5.26: Delta power when stimulated with a 10Hz, 470nm opto stimulaton at three different
optical powers. The blue regions denote the periods where the stimulation was on.

Figure 5.27: Delta power when stimulated with a 10Hz, 470nm opto stimulaton at 5mW for 20
minutes. The blue regions denote the periods where the stimulation was on.

204



5.7.3 Online Sleep Scoring

To see if the online implementation of the sleep scoring algorithm on the device is as accurate

as the offline implementation (MATLAB). Two recordings, shown in figures 5.28 and 5.29, were

conducted and the data were scored in real time.

Figure 5.28: Example 24 hours recording 1. The offline and online scored stages are shown at
the top of the figure. The coloured blocks represent Wake (Blue), NREM (Green) and REM
(Red) stages.
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Figure 5.29: Example 24 hours recording 2. The offline and online scored stages are shown at
the top of the figure. The coloured blocks represent Wake (Blue), NREM (Green) and REM
(Red) stages.

From the figures, it is evident that there is a high agreement between the two implementations

of the algorithm. Using the implementation in MATLAB as the ground truth, the average

sensitivity and specificity are shown in table 5.3.

Wake NREM REM

Sensitivity 0.88 0.82 0.23

Specificity 0.89 0.80 0.95

Table 5.3: Sensitivity and specificity of the device implementation of the sleep stage scoring
algorithm

Although, sensitivity and specificity for Wake and NREM sleep states are both >80%, the

sensitivity for REM is very low at only 23%.
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5.8 Conclusion

In the context of a portable neural device, a closed loop system consists of a sensor, a controller

and a stimulator. Up until now, these components have been developed and presented in

separate chapters. In this chapter, it has been shown how the work developed in earlier chapters

could be integrated together to create a platform that is capable of more than just basic neural

recording. Using the core logger developed in chapter 3 as the base, advanced features were

added to the device consecutively.

Firstly, optogenetic stimulation support was added to the device through the addition of a LED

driver to power the Cree LED (DA2432) onboard of the custom 3D printed LED-Optical fibre

coupler. The custom coupler when paired with an optic cannula containing an optical fibre of

200 µm core and 0.22 NA, was able to deliver 25.5mW/mm2 of optical power at 2.7% coupling

efficiency.

Then, the automatic sleep stage scoring algorithm presented in chapter 4 was implemented

onto the device in a hardware efficient manner by using fixed point FIR filters and a custom

slimmed down version of the K-means algorithm.

Finally, temperature sensing capability was added to the device by including a thermocouple

amplifier IC (AD8495) with cold junction compensation feature and pairing it with a T-type

thermocouple. The sensor was calibrated with a high accuracy commercial temperature logger

(nano-T, DST) to obtain an accuracy of 0.36◦C (against reference) and noise filtering via

oversampling and moving average was added to the device.

Due to time constraint, closed loop in-vivo experiments could not conducted. However, with

all the advanced features implemented and validated, the device is now ready for more complex

experiments as a closed loop, neural logging and stimulation device.
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Chapter 6

Conclusion and Future Work

The project can be evaluated by how well it has met its original objectives stated in the

introduction. From the conclusions of chapter 3 and chapter 4, it is fair to say that the first

objective has been met.

A logger that specifically targets sleep studies in mice with its ultra compact and light weight

characteristics has been shown. Its capability to record ECoG/EMG signals for sleep scoring,

which is an important and necessary process in sleep studies, has been verified with in-vivo

experiments. Additionally, its electrical and physical characteristics have been measured and it

has met all the main target specifications apart from the weight where it is only over by 10%,

as shown by table 6.1.

As for the second objective, chapter 4 and chapter 5 have shown that not only is the sleep stage

scoring algorithm developed very accurate, with a sensitivity and specificity >90% in all three

vigilance states, it is also hardware and energy efficient. Although, further tuning of the online

version of the algorithm is required, it requires only 951 (540 + 399 + 12) bytes of memory

(filter coefficients, feature averages and Gaussian parameters); has a fast execution time as all

calculations are simple fixed point arithmetic; and energy efficient as the FPU is not required.

Unfortunately, as for the final objective, it has only been partially met. Although, the closed
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loop device presented in chapter 5 is capable of generating different patterns of optogenetic

stimulation at a power of 0.8mW when a custom coupler is used and measure temperature with

a max error of 0.36◦C in the range of 20-45◦C after calibration. The in-vivo results have shown

that there are still a lot more experiments that need to be conducted in order to ascertain

the device’s usefulness when placed under a physiological setting. Currently, there are still

three key main issues that must be addressed; Whether the measured temperature values are

physiological, Whether the current optogenetic system could deliver enough optical power and

is the on-line scoring algorithm accurate enough for selective sleep stage detection.

Temperature Measurements

As mentioned in Chapter 5, the temperature measured during the in-vivo recordings was lower

than physiologically expected by 2-3 ◦C. Whilst the cause of this is currently unknown, there

are two possible explanations for this. Firstly, the inserted thermocouple currently connects

to the logger via metal pins on the headstage which have some areas exposed to the outside

environment even when connected. This could result in a local cooling effect leading to lower

measured temperature. Secondly, the thermocouple temperature reading is compensated (cold

junction compensation) at the thermocouple amplifier IC on the device. There could be a

temperature difference between there and where the headstage connects to the device. If the

above are true, one possible fix is to insulate the exposed part of the headstage and make sure the

other end of the headstage is fully inserted into the connector on the device. Another possible

fix is to explore other methods of temperature sensing that are not reliant on the temperature

gradient between the sensing and measuring ends. An example would be thermistors, as they

usually have the entire sensing element (temperature dependant resistor) right at the tip of the

device.

As mentioned previously, it has been shown in [14] that there are cyclic oscillations in the

cortical temperature that seem to be linked with the different sleep vigilance states during

a sleep-wake cycle. The temperature recording shown in figure 5.23 , although lower than

209



expected, also seem to display this pattern, especially in the later half of the recording. To verify

whether the recorded temperature is physiological after the issue mentioned above has been

addressed, the best test would be to do a concurrent recording of ECoG/EMG and temperature.

Then to score the data and see whether any oscillations in the cortical temperature can be seen

and if they match with the reported values from literature.

Optogenetic Stimulation

Although the in-vivo experiment on stimulating GABAergic neurons in the VTA failed to

produce the intended results (increase in delta power) [40], it is too early to come to a conclusion

on the efficacy of the optogenetic system. As the experiment was conducted with a very low

N-number (three) and there are other possible factors that could have caused this, such as the

viral vector being injected to the incorrect site or the concentration was too low, resulting in

only a few neurons expressing the ChR2 gene.

Apart from repeating the same experiment, an alternative is to look at experiments that cause

a behavioural change instead. One example would be different head turning directions when

different pathways in the striatum are stimulated unilaterally [164]. As not only is the produced

effect a lot more noticeable, it is also a lot easier to target the larger striatum area than the

smaller VTA area.

On-Line Sleep Stage Scoring

Although the sleep stage scoring algorithm has been successfully implemented on the device, the

scoring produced differs from the offline implementation, especially for the REM stage, where

there is only ≈ 20% agreement. This is most likely due to both the sparseness of the REM

stage and the weightings used in the scoring rules not optimized for the online implementation.

As instead of GMM, the online implementation uses a custom K-means algorithm to extract

the means and variances of the scoring features. This would result in each dataset either
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overestimating or underestimating the parameters extracted. Furthermore, the custom K-

means uses a bigger bin size when storing the block average, which can result in a rounding

error. To solve this, the weightings should be retrained for the off-line script with possibly

more bias towards the REM stage. GMM should be implemented to allow comparisons on the

scoring accuracy and cost (memory and speed) to be made.

6.0.1 Table of Device Specifications

Power Supply 2.7V On Board Memory 4Gb

Current Consumption 1mA Data Streaming BLE

Number of Channels 4 Size 21mm*17mm*10mm

Filter 3dB Bandwidth 2-120Hz Weight 3.3g

Input Dynamic Range 52dB Max. Recording Time 63hr

Noise Floor of AFE 0.5uVrms ADC Resolution 9 bit

ADC Sampling Rate 200Hz

Table 6.1: Specifications of the core logger
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Power Supply 2.7V On Board Memory 4Gb

Current Consumption 1-22mA± Data Streaming BLE

Number of Channels 4 Size 15mm*15mm*10mm

Filter 3dB Bandwidth 2-120Hz Weight 2.3g

Input Dynamic Range 52dB Battery Life 35hr

Noise Floor of AFE 0.5uVrms ADC Resolution 9bit

Temp Accuracy 0.56◦C ∗ ADC Sampling Rate 200Hz

Temp Sampling Interval 2-65535 s Optogenetic Max Power 0.8mW

Optogenetic Max Frequency 100Hz∓

± Current consumption depends on features enabled

∗ Accuracy defined as max error + accuracy of DST nano-T from Star Oddi.

∓ Min LED off time of 10ms, max duty cycle decreases with increasing frequency

Table 6.2: Specifications of the closed loop device

6.1 Original Contributions

The work carried in this project has resulted in the following original contributions;

1. A Ultra Compact and Lightweight Neural Logger for Sleep Studies in Mice

Seven core loggers are currently available in the laboratory and have been used internally

by two members of the research group in over 50 successful recordings. All the data in

the recently submitted paper to Nature Science, which looks at the fluid flow in the brain

during sleep and sedation, were collected using the core logger.

2. A Hardware Efficient Sleep Stage Scoring Algorithm

The offline version of the sleep stage scoring algorithm in MATLAB has been used in-

ternally to sleep score the collected data, reducing the time taken from > 40minutes to

under 2 minutes for a 24 hour recording. A custom script for Spike 2 has also been

developed, which plots the scored data alongside the raw and filtered ECoG and EMG
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recordings, allowing easier visualisation. All the data in the aforementioned brain fluid

flow paper were also sleep scored using the script. Furthermore, as shown by the hard-

ware implementation, the script is very lightweight and can be ported into any system or

platform.

3. Custom Optogenetic Coupler

The optogenetic coupler shown in chapter 5 can be manufactured using a 3D printer and

can be used to easily, and cheaply couple any SMD LED to an optical fibre. The coupler

can be used in all compatible devices that support optogenetic stimulation and when

combined with the closed loop logger, will allow researchers to have multiple untethered

optogenetic systems running in parallel, dramatically increasing the data collection rate

and quality.

4. Cortical Temperature Measurement via a Thermocouple

The enhanced logger with its ability to measure cortical temperature, is currently used

internally in a project to investigate whether changes in the core body temperature ob-

served during a sleep-wake cycle, are reflected in the brain via changes in the cortical

temperature. If there are any discrepancies, then uncovering the neuronal circuit that

causes the difference will no doubt further our understanding of the role temperature

plays in sleep regulation.

6.2 Future Directions

There are two mains paths the project could explore to develop further. The first one is on the

technology front of the device. Currently, the device uses off the shelf components and standard

PCB manufacturing technology. This was done initially to reduce the development time and

manufacturing cost. However, as the core ECoG recording functionality has been verified with

in-vivo experiments for both versions of the logger, major changes to the core device architecture

is not expected and the device is ready for the next phase of the development, which is further
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miniaturization via the development of an ASIC. Whilst it will be difficult to incorporate the

NAND flash due to its capacity, all other circuits can be integrated into one chip. In doing so,

not only will the device be more energy efficient, which will extend its battery life. It maybe

even possible to further reduce the size of the device down to a single PCB that is the size of

the LiPo battery (10*15mm) or the NAND flash (8x8mm). This reduction in size will also save

approximately 0.4g of weight and the device will have even less impact on the natural behaviour

of the animal. The typical development time for a ASIC with similar functionalities is around

18-24 months. However, with the current device as a reference, this development time may be

significantly reduced.

Another possible improvement that can be made is on the surgical preparation and procedure

required to implant the headstage for the device, which currently can take a trained researcher

2 hours to perform. Referring back to the surgical protocol shown in Appendix A, current

bottlenecks are in the preparation of the headstage, as it requires micro wires to be prepared

and soldered to the small M1 screws and the connector; and the insertion of the prepared

headstage, as each individual screw needs to be gently screwed into the skull whilst avoiding

the connected wires from tangling. The surgical process can be significantly simplified if the

headstage connector was replaced by a flexible PCB that is conformal to the shape of the skull,

has holes at fixed locations for the insertion of the screws and connected to a connector at one

end as shown in [165][166]. The flexible PCB cap would remove the need to prepare headstages

in advance and also simplify the implantation process.

Other than developing the technology for the device further, another direction would be to

explore the application of the device in the context of research. The device’s ability to provide

closed loop optogenetic stimulation is useful in many studies looking at uncovering different

parts of the neuronal sleep circuitry, such as the role REM plays in sleep regulation. This

is currently carried out by first sleep depriving the animal through gentle handling and then

looking at the effects on the sleep rebound. To carry this out, the researcher would either

need to check the behaviour of the animal at a set interval or look at the live ECoG and EMG
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recording manually to determine the vigilance state of the animal. The former method can only

differentiate between sleep and wake whilst the latter can differentiate between wake and the

different sleep stages, allowing selective sleep stage deprivation. Using the logger and extending

on previous work done in the laboratory [40], whereby it is shown that stimulating glutamatergic

neurons in the VTA region of the brain can produce wakefulness, instead of manual sleep

deprivation, the aforementioned experiment can be automated by using the embedded on-line

sleep stage scoring algorithm to detect the REM stage and then enabling the LED driver to

deliver the optogenetic stimulus to these REM sleep active neurons. This allows data to be

collected with much higher efficiency and reliability as multiple systems with fast response time

can run concurrently.
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Appendix A

Mouse Surgery Protocol

Below describes the protocol used in the laboratory to surgically prepare mice before ECoG

and optogenetic experimentation can take place. The protocol shown is a revised summary of

the protocol stated in the laboratory handbook, which was written by ex-members of the group

(Zhiwen Ye and Elly Steinberg).

In most cases, an ECoG headstage is implanted regardless of the experimentation type. If the

animal is to be used for optogenetic experimentation, a viral injection and optogenetic cannula

implantation would also occur on top of the standard ECoG headstage implantation. Steps

that are exclusive to optogenetic stimulation are highlighted in bold and should be skipped if

only standard ECoG headstage implantation is required.

A.1 Materials Required

A.1.1 Equipment

• Small Animal Anesthesia System

• Controllable Heat Box
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• Small Animal Stereotaxic Instrument

A.1.2 Drugs

• Carprofen (diluted with saline to 0.5mg/ml)

• Buprenorphine (diluted with saline to 0.015mg/ml)

• Lacrilube

A.1.3 Surgical Materials

• Autoclaved surgical tools (1x tweezers, 1x large scissors, 1x small scissors, 1x forceps, 1x

screwdriver)

• Hand drill with a 0.5mm drill bit

• Drapes (one to cover the surgical area and one to cover the animal)

• One heat pad

• Suture (sterile packet), Cotton swabs and Alcohol pads

• Super Glue and Dental cement

• Iodine and Perioxide (3% v/v)

• A pre-soldered headstage with ECoG/EMG wires and M1 screws attached. The screws

and wires have to be cleaned with ethanol and sterile saline.

A.1.4 Optogenetic Experimentation

The following are also required for mice that will be used in optogenetic experi-

ments
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• A Hamilton syringe

• Viral solution stored in a reaction tube submerged in an ice bath

• A fibre optic cannula with the optical fibre cut to the required length

A.2 Protocol

Steps highlighted in bold are for optogenetic experimentation

1. Prepare the viral injection by back-filling the Hamilton syringe with mineral

oil first then the viral solution. The amount of viral solution taken should

always be at least 1µl more than the required amount.

2. Put the heat pad in the location where the animal would rest on when mounted onto the

stereotaxic frame. Cover the heat pad and the surrounding area with a surgical drape

and put all the surgical materials onto the drape. Make sure to keep everything sterile

by wearing sterile gloves.

3. Weigh the animal and prepare the required dosage for Buprenorphine (0.1 mg/kg) and

Carprofen (5 mg/kg) with two separate syringes.

4. Place the animal into the anesthetic induction chamber and expose it to 4% isoflurane

until the loss of righting reflex. Remove the animal and shave its head with a shaver to

expose the scalp. Inject the animal with Buprenorphine and Carprofen.

5. Transfer the animal to the stereotaxic frame. Mount the animal by pushing its nose into

the holder with its front teeth hooked over metal loop and fixing the head with ear bars.

Make sure the airway is not obstructed by pushing the tongue to the side with a soft

cotton bud. Make sure the holder is connected the output of the isoflurane vaporiser and

the isoflurane concentration is at a level that allows the animal to maintain a breathing

218



rate of 60 breaths/minutes (usually 1.5%). Rub Lacrilube into the eyes of the animal

with a cotton swab to protect its eyes from drying out.

6. Cover the mouse with a surgical cape with a cut out to expose the head area. Swab the

surgical area with iodine. Care must be taken to avoid the eyes or the ears.

7. Cut open the skin to expose the skull by using scissors and making a straight incision

from the mid point between the ears to the mid point just above the eyes.

8. Hold the perioestal membrane that covers the skull to the sides with surgical metal clips.

Use a cotton bud to swab the skull with peroxide then clean up the residue with saline

and a dry cotton bud. Repeat this until the suture line is visible in white on the skull.

9. Using the Angle 2 (Leica Biosystems) arm to mark out the coordinates for the three

ECoG screws and the viral injection site with a surgical marker pen.

10. Drill holes at all marked sites from the skull to the surface of the cortex. If bleeding

occurs, clean it with a cotton tip.

11. Using Angle 2, guide the micro-pump arm containing the viral syringe to the

site and slowly lower the tip until it is at the right depth. Check with the

Mouse atlas, which should be in sync with Angle 2. Inject the viral solution at

the chosen rate (0.2- 0.5 l/minute) and repeat at different depths if required.

Wait 2-3 minutes after each injection.

12. Remove the viral syringe. Insert the fibre optic cannula with the cap into

the custom holder. Hold the custom holder with the micro-pump arm and

lower until the fibre tip is above the region of interest by (0-0.5mm), so that

the light cone can fully cover the region. Apply a mixture of dental cement

and super glue around the cannula ferrule. Make sure enough ferrule is left

so that it can still connect to the laser end ferrule connector. Slowly retract

the arm whilst holding the ferrule with tweezers, until the cap separates away

from the cannula.

219



13. Gently screw the screws into holes so that the tips are touching the cortex. Care should be

taken so that the ECoG and EMG wires are not tangled together. Push a hole through

the neck muscle tissue, pull through and hook each EMG wire into place. Make sure

adjacent wires are not touching each other.

14. Fold the wires underneath the headstage. Use a mixture of dental cement and superglue

to make a mound to cover the screws and wires, leaving only the headstage connector

and pins exposed. Make sure none of the mixture is on the skin or the eyes.

15. Suture the loose skin around the base of the headstage with two or three stitches. Turn

off the anesthetic and wait until the breathing rate of the animal has increased.

16. Transfer the animal to a heat box set to 34 ◦C. Leave the animal in the heat box until

it has recovered normal body movements, then transfer it to a home cage. The animal

should be monitored closely for the next seven days and their water should contain 0.1%

Baytril.
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Appendix C

Schematics and PCB layouts
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C.1 Core Logger

Figure C.1: Overview of the PCB layout for the core logger. The board is a rigid-flex PCB with
four layers in the rigid sections and two layers (Inner 1 and Inner 2) in the flexible interconnect
in the middle. Inner 1 layer is mainly used as the power plane (light blue) and is split into two
separate power domains, analogue and digital, by a cutout that extends fully in the vertical
direction across the main board. Inner 2 layer (green) is mainly used as the ground plane and
is split by a similar cutout but it does not extend all the way. A cutout in the antenna region
(bottom) of the SoM is present on all layers to avoid interference with the BLE signal.

C.1.1 PCB-Analogue

The analogue section consists of a voltage reference (REF 3312) and amplifiers using LTC6079

and LTC6078 opamps.
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Figure C.2: Analogue PCB layout and schematic. Purple and brown boxes denote the analogue
front end and connectors on the schematic and their corresponding layout on the PCB.

C.1.2 PCB-Digital

The digital section consists of a NAND flash (MT29F4G01), an accelerometer IC (MMA8652FC)

and the NRF52832 based SoM (ISP 1507AX).
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Figure C.3: PCB layout and schematic of the digital section. Pink, blue and yellow boxes
denote the SoM, NAND flash and accelerometer on the schematic and their corresponding
layout on the PCB.

C.1.3 PCB-Power Management

The power management consists of the two zinc air ZA13 battery holders connect is series (cut

to fit ZA312) and a DC-DC boost converter (TPS613221A).
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Figure C.4: PCB layout and schematic of the power management circuitry. Purple and blue
boxes denote the boost converter and battery holders on the schematic and their corresponding
layout on the PCB. The power management circuitry is on a separate PCB to avoid noise
injection from the switching supply.
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C.1.4 Core Device Versions

Over the course of the project, the device has gone through several iterations and redesigns.

The major revisions are shown below.

• Prototype Two major prototypes were made. One to test the analogue front end and

had various amplifier circuits. The other was to test the functionality of Nordic NRF52832

SoC and the BLE capability. The bare die version of the SoC and a custom chip antenna

were used. BLE performance was subpar due to poor impedance matching.

• V1.0 was the first miniaturized version of the logger and had both the analogue and

digital circuits on one device. The bare die SoC was replaced by the ISP 1507 module.

The device was split into two boards and the NAND flash was on a separate board that

housed a single battery holder. Unfortunately even with a high capacitance capacitor,

the device could not be powered with only one zinc air battery.

• V2.0 The PCB layout was completely redone. Device now powered by two batteries

instead of one. The battery holders and the power management circuit were moved to a

different board to the SoC and the NAND flash. The boards were connected via three

one pin low profile connectors and the device had a four pin connector (SM04B,JST) to

connect to an external temperature sensor board.

• V2.1 The three one pin connectors were replaced by a flexible connector. Amplifier

outputs to micro HDMI connector for debugging were removed due to noise coupling

with nearby SPI lines.

• V2.3 Current version of the device. The four pin temperature board connector was

replaced by the MMA8652FC accelerometer IC.
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C.2 Enhanced Device

Figure C.5: Overview of the PCB layout for the closed-loop logger. The board is a rigid-
flex PCB with four layers in the rigid sections and two layers (Top and Inner 2) in the flexible
interconnect. Inner 1 (brown) layer is used mainly as the power plane (brown) but also contains
some routing. The power plane is split into multiple domains, main supply (DVDD), battery
voltage (VDD) and output from the voltage regulator (Vreg). The main supply is further split
analogue and digital section on separate PCBs and joined together via a trace on the bottom
layer across the flexible region. Inner 2 layer (light blue) is used mainly as the ground plane
but also contains some routing. The ground plane is split into digital and analogue sections
and is joined together by a thin trace across the flexible region on the same layer. A cutout in
the antenna region (bottom) of the SoM is present on all layers to avoid interference with BLE
signal.

C.2.1 PCB-Analogue Front End

The analogue section consists of a voltage reference (REF 3312), a thermocouple amplifier IC

(AD8495) and ECoG/EMG amplifiers using LTC6079 and LTC6078 opamps.
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Figure C.6: PCB layout and schematic of the analogue section. Black, green and blue boxes de-
note the analogue front end, thermocouple amplifier and headstage connector on the schematic
and their corresponding layout on the PCB.

C.2.2 PCB-Digital

The digital section consists of a NAND flash (MT29F4G01), an accelerometer IC (MMA8652FC)

a digital pot (TPL0102), a LED driver (LP5522) and the NRF52832 based SoM (ISP 1507AX).
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Figure C.7: PCB layout and schematic of the digital section. Pink, dark purple, light purple,
green and red boxes denote the NAND flash, optogenetic driver, accelerometer, SoM and the
connector ( Data downloader ) on the schematic and their corresponding layout on the PCB.
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C.2.3 PCB-Power Management

The power management section consists of two digital power switches (TPS22916), a D-flip

flop (SN79AAUP1G74), a magnetic sensor (BU52055) and a step down voltage converter

(TPS82740).
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Figure C.8: PCB layout and schematic of the power management circuitry. Brown, purple,
green and black boxes denote the digital power switch, step down voltage regular, magnetic
sensor and D flip-flop on the schematic and their corresponding layout on the PCB.
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