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Abstract

This dissertation explores the Minimal Model Program (MMP) in positive and mixed
characteristic in dimension three with a particular focus on outputs of the program. In
purely positive characteristic we combine the program with a detailed study of conic
bundles to prove a birational boundedness result. We show that given a suitable set of
log Calabi-Yau varieties, we can construct a bounded family containing fibres birational
to any member of the chosen set.

For threefolds over a base of dimension at least one, we resolve the Abundance Conjecture
for klt pairs in joint work with F. Bernasconi and I. Brivio. Showing in particular that
every klt minimal model in mixed characteristic admits an Iitaka Fibration. This is then
applied to prove an Invariance of Plurigenera result for suitable families of surfaces.

Finally we consider outstanding questions around Mori fibrations in mixed characteristic.
We show that every klt threefold MMP terminates and that any two Mori fibre space
outputs of an MMP from the same starting pair are connected by a series of Sarkisov
links. As part of this we prove a mixed characteristic Finiteness of Minimal Models result.
While the proof is focused in dimension three, the arguments work in any generality given
that the requisite MMP results are known.
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Notation

• Rings will often be denoted by R. They will always be excellent and admitting a
dualising complex. We will often use the ring interchangeably with its spectrum,
e.g. Let R be a ring and X → R be an R scheme.

• If R is a local ring we denote the residue field of the closed point by k and the
fraction field by K, unless otherwise stated.

• Schemes will always be excellent and Noetherian though we often state this ex-
plicitly. They will typically be denoted W,X, Y, Z. S and T are often used also,
particularly for surfaces and the base of a pair respectively. In applications they
will essentially always be quasi-projective over an excellent ring.

• If X is a scheme over a local ring we often write Xk for the closed fibre and XK for
the generic fibre.

• If X is an integral scheme we will write K(X) for the fraction field

• A variety is a quasi-projective, integral scheme over a field.

• Given a scheme X we write:

– WDivK(X) for the group of Weil divisors tensored by K = Z,Q or R with the
natural K module structure.

– ClK(X) for quotient of WDivK(X) of by the submodule generated by principle
divisors

– D 'K D
′ if [D] = [D′] inside ClK(X)

– D is K-Cartier if [D] ∈ ClK(X) is contained in the subspace generated by
{[L] : L is Cartier}.

• Given a proper morphism of schemes X → T :

– A curve will always be an integral, one dimensional scheme proper over a closed
point of T .

– A K one cycle is formal sum of curves with coefficients in K = Z,Q or R. If
no K is stated, we default to R.

– N1(X/T ) for the space of one cycles modulo numerical equivalence

– N1(X/T ) for the space of R-Cartier divisors modulo numerical equivalence

– NE(X/T ) is the closure of the cone of effective one-cycles. We sometimes call
such one-cycles psuedo-effective, in analogy to divisors.
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Notation

– Two K-Cartier divisors are numerically equivalent, written D ≡ D′ if they
induce the same functional on N1(X/T ).

• We say a proper morphism of schemes f : X → Y is a contraction has if f∗OX = OY .
When dimX > dimY such morphisms are also sometimes called fibrations.

• If f : X 99K Y is a birational map such that for any divisor E on Y , f−1 is an
isomorphism near the generic point of E then f is a birational contraction. The
notation is unfortunate, but we reassure ourselves that if X, Y are normal and f is a
morphism then f is a contraction in the above sense also. If f−1 is also a birational
contraction we say that f is small.

• If f : X 99K Y is a birational contraction with f−1 also a birational contraction we
say that f is small.

• Given a fibration X → T and a property P we say it is a family of P varieties if
the fibre over each closed point k is a k-variety with property P .

• We largely consider X admitting a projective morphisms X → T of quasi-projective
R-schemes. When X → T is part of the description of X in this fashion, we often
say D is nef/ample/semiample etc, to mean that D is nef/ample/semiample over T .
Since T need not contain any proper curves over R this should cause no confusion.

• We say an open immersion U ↪→ X is big if its image contains every point of
codimension 1.
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Chapter 1

Introduction

Algebraic Geometry is the study of geometric shapes described as solutions to polyno-
mials, or perhaps more generally the study of geometric objects which are locally the
spectra of rings.

While this set of definitions offers a rich and fruitful area of study and a firm mathematical
foundation from which to approach, they are not particularly useful for describing the
objects of interest. One would not expect to see a variety given by some list of equations,
nor as a list of rings and gluing information, except perhaps in the very simplest of
examples.

One of the key aims of modern birational geometry is to provide a language and structure
to better understand and describe the geometric objects appearing as part of the wider
study of algebraic geometry. This is a role taken on directly by flagship conjectures
like the Minimal Model Program (MMP), but is also supported by the myriad of ideas
developed in the study of birational geometry. Notions like klt, for instance, which were
developed to better understand the singularities appearing in the MMP have quickly
spread throughout the larger field of algebraic geometry.

We might summarise the key claim of the (klt) MMP as follows.

Conjecture 1. Let (X,∆) be a klt pair, projective over T . Then there is a KX + ∆
negative birational map of projective T -schemes X 99K X ′ inducing a klt pair KX′ + ∆′

such that either

1. KX′ + ∆ is nef; or

2. There is a KX′ + ∆′ negative contraction X ′ → Z of relative Picard rank 1.

In the first case X ′ is said to be a minimal model. In the latter we call X ′ → Z a Mori
fibre space. We require some assumptions on T , in their most general we would ask for
T integral, excellent, Noetherian and admitting a dualising complex.
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Introduction

At its most reductive, the MMP can be understood to claim that projective varieties
(more generally integral projective schemes) can be built from three types of geometric
objects - each with their own distinct properties. These are Fano, Calabi-Yau and general
type (or canonically polarised) varieties. For birational geometers it is natural to describe
these in terms of their canonical bundle, these types of variety have KX negative (anti-
ample), KX numerically trivial or KX positive (ample) respectively.

This kind of numerical description is central to birational geometry. The numerical
statement, KX is positive, translates directly to an algebraic statement, KX is ample.
Indeed the following characterisation, due to Kleiman following Nakai-Moishezon, is the
prototypical result for this kind of theorem.

Theorem. [Laz04, Corollary 1.4.11] Let D be a R-Cartier divisor on a scheme X, pro-
jective over T . Let NE(X/T ) be the closure of the cone spanned by effective classes inside
N1(X/T ). Then D is ample over T if and only if there is ε > 0 such that D.C > ε for
any class C ∈ NE(X/T ).

Not every such condition is so easily interpreted, however. It is not clear even that KX

being numerically trivial ought to ensure that KX is Q-linearly trivial. Many results
and theorems within the field therefore provide a means of turning numerical statements
about divisors or pairs into algebraic ones. A more sophisticated example is the Basepoint
Free Theorem.

Theorem. [KM98, Theorem 3.3] Let (X,∆) be a klt pair over a field of characteristic
0. Let M be a nef divisor and suppose that M − (KX + ∆) is big and nef. Then M is
semiample.

Here nefness is an entirely numerical condition, and bigness has both numerical and coho-
mological characterisations, whereas semiampleness is an entirely algebraic phenomenon.
We can also understand singularity conditions like klt and log canonical to be numeri-
cal conditions, though of a very different flavour to the intersection based conditions we
impose upon divisors.

In characteristic zero, one of the most important tools for proving these kinds of results
is Kawamata-Viehweg (KV) vanishing; a result which is known to fail in positive and
mixed characteristic. Much of the difficulty of recreating the success of the MMP in
characteristic zero comes from the need to find alternative methods of generating these
kinds of translations from numerical conditions to algebraic. More philosophically, KV
vanishing and similar results provide a clear impetus for the focus on the the canonical
divisor, and more generally on klt pairs. It is less obvious in other settings exactly what
the role of KX should be.

In positive characteristic this role is taken on by applications of the Frobenius morphism.
Ideas due to Keel [Kee99], provide a powerful semiampleness criteria along with a weaker,
but often still useful, result on the existence of morphisms in the larger category of
Algebraic Spaces.

In a different direction, a suite of Frobenius based singularities provide, amongst other
important applications, a way to recover certain vanishing type theorems. These are
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1.1 Boundedness

often called F -singularities and they consist of local versions, F -pure and F -regular, as
well as global versions, F -split and globally F -regular.

Together these ideas are sufficient to prove the bulk of MMP for threefolds in positive
characteristic, at least for p > 5. This is done in [HX15], [Bir16a], [BW17]. It was the
state of the art at the beginning of my PhD in 2018. ?? therefore focuses on some of the
consequences of the MMP in this setting.

In mixed characteristic, the ideas of Keel are generalised immediately by [Wit20] through
clever study of universal homeomorphisms in place of the Frobenius morphism. The
full statement is as follows and captures both the mixed characteristic and the positive
characteristic behaviour.

Theorem. [Wit20, Theorem 1.2] Let X → T be a projective morphism of excellent,
Noetherian schemes. Let D be a nef line bundle on X with D|XQ semiample. Let E[D]
be the union of integral subschemes of X on which D is not big. Then D is semiample
(resp. EWM) if and only if D|E[D] is so.

The F -singularities are less smoothly generalised, however. The BCM singularities of
[MS21] are similar in some sense to F -regularity and provide important adjunction
type results as in [MST+19]. On the other hand the globally +-regular singularities
of [BMP+20] are inspired by, and analogous to, globally F -regular singularities. In par-
ticular they provide suitable vanishing type results for the proof of the existence of flips.

The rest of the thesis is devoted to exploring some of the remaining questions regarding
the MMP for threefold klt pairs in mixed characteristic, with an emphasis on the structure
and properties of the outputs of the MMP. In particular we prove Abundance Conjecture
holds in this setting and show that Mori Fibrations are connected by Sarkisov links. A
more thorough overview of the MMP is given in section 2.2. The results contained therein
are largely known, but perhaps not in exactly the same generality as is presented there.

In addition, the theory of log pairs and the corresponding F -singularities are introduced
in section 2.1. The log pairs are needed throughout the thesis. Only the notion of F -split
is needed in ??, however the globally F -regular condition provides important context.
The local versions are considered in so far as they are equivalent to the global ones affine
locally. No novel material appears in this section.

1.1 Boundedness

Once the MMP has been established for a particular class of objects, there is a natural
follow up question of boundedness or birational boundedness. Loosely speaking, given
that algebraic objects are constructed from certain building blocks, we might start to
wonder how many of such building blocks there are, and how many different ways they
might be put together.

More concretely we ask if certain sets of objects are bounded, that is if they fit into a

13



Introduction

flat family over some quasi-projective scheme. As well as being as an interesting area of
study in its own rights, such result are often viewed as the first step towards construction
of a moduli space.

Perhaps the most famous boundedness conjecture is the Borislav-Alexeev Boundedness
Conjecture. This claims the following.

Conjecture 2. Let d ∈ N and ε > 0. Fix a field κ. Then the set of projective varieties
X admitting an ε-log canonical pair (X,∆) with −(KX + ∆) big and nef form a bounded
a family.

In characteristic zero, it is proven in [Bir16b, Theorem 1.1].

There are similar results and conjectures for varieties of general type, see for instance
[HMX18]. Log Calabi-Yau varieties, however, are somewhat more subtle. Even in dimen-
sion 2 there are issues: complex K3 surfaces are bounded but projective ones are not.
We can understand the issue to be that the projective K3 surfaces consist of infinitely
many lines inside the space of complex differential ones.

In somewhat greater generality we might expect to be able to replace the bigness condition
of the BAB conjecture with some form of rational connectedness on the underlying variety
X, at least in characteristic zero. In positive characteristic it is unclear such a result would
hold, even for dimension 2 as rational connectedness fails to rule out the possibility that
X is a K3 surface. To the best of my knowledge it is unknown if rationally connected
K3 surfaces are bounded or not.

?? attempts to circumvent these issues by imposing the additional criteria that X be
F -split. As well as preventing the aforementioned issue in dimension 2, it also provides
a sufficient vanishing type result to make use of inductive style arguments. Roughly
speaking, one runs an MMP to reduce to the case that X is a Mori Fibration, and applies
the lower dimensional boundedness results on the general fibres and the base to infer the
result on the total space. We prove the following.

Theorem A. ?? Fix 0 < δ, ε < 1. Let Sδ,ε be the set of threefolds satisfying the following
conditions

• X is a projective variety over an algebraically closed field of characteristic p > 7, 2
δ
;

• X is terminal, rationally chain connected and F -split;

• (X,∆) is ε-klt and log Calabi-Yau for some boundary ∆; and

• The coefficients of ∆ are greater than δ.

Then there is a set S ′δ,ε, bounded over Spec(Z) such that any X ∈ Sδ,ε is either birational
to a member of S ′δ,ε or to some X ′ ∈ Sδ,ε, Fano with Picard number 1.
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1.2 Abundance

In practice we were only able to prove a birational boundedness result with this method.
Furthermore it was necessary to bound the coefficients of the pair below to prevent
pathologies appearing in the Mori fibration. This in turn necessitates working with
terminal underling varieties. The condition that X is terminal allows us to reduce to
the case that X is a terminal Mori fibre space. While we might normally achieve this by
taking a terminalisation X̃ → X, we cannot do so while also ensuring that the coefficients
of ∆̃ are still bounded below. In fact while bounding the coefficients below is used to
prove a canonical bundle formula for Mori fibre spaces of relative dimension 1 it is in
many ways the relative dimension 2 case that forces the assumption X is terminal.

If (X,∆)→ S is a klt Mori fibre space with coefficients bounded below by 2
p

then we may
freely take a terminalisation and run an MMP to obtain a tame conic bundle, which is
what we require for our boundedness proof. If however the relative dimension is 2 then
after taking a terminalisation and running an MMP we may end with a Mori fibration of
relative dimension 1, where we cannot easily control the singularities of the base. This
happens whenever X is singular along a curve C which maps inseparably onto the base
and we expect this is the only way it might happen.

The result we prove is rather pleasantly independent of the base field, so long as the
characteristic is sufficiently large. This mirrors well the understanding that F -split va-
rieties should in some sense ’look like’ they come from characteristic 0. These kinds of
boundedness results are one possible path towards a more concrete description of this
analogy.

1.2 Abundance

In keeping with the earlier theme of birational geometers seeking to turn numerical criteria
into algebraic ones, the Abundance Conjecture claims the following.

Conjecture 3. Let (X,∆) be a klt pair. Then if KX + ∆ is nef, it is semiample.

In many ways the conjecture provides the link between the modern formulation of the
MMP and the original goal of classification. The fibration induced by the abundance
conjecture is by definition KX +∆ trivial, yielding a log Calabi-Yau fibration over a lower
dimensional base. The conjecture remains open in most settings. Even in characteristic
zero the result is fully known only in dimension three and below, though several key cases
are known in greater generality. In particular the case that ∆ is big is covered by the
Basepoint Free Theorem.

The case of surfaces defined over a field was proven in increasing generality in [FT12,
Tan14, Tan20] while the case of threefolds over a perfect field of characteristic p > 5 is
still open, though the non-vanishing conjecture has been settled in [XZ19, Wit18a] and
various cases have been verified ([DW19a,Zha20]).

In ?? we prove the case of a klt threefold over base of dimension at least 1. There is
a further assumption that the base has no points of characteristic p ≤ 5 but this is a
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Introduction

limitation of the current MMP results, not the method of proof.

Theorem B. ?? Let R be an excellent ring of finite Krull dimension, equipped with a
dualising complex and whose residue fields of closed points have characteristic p > 5. Let
π : (X,B) → T be a projective morphism of quasi-projective R-schemes such that π(X)
is positive dimensional. Suppose (X,B) is a three-dimensional klt pair with R-boundary.
If KX +B is π-nef, then it is π-semiample.

They key idea is to first show that there is a fibration in the category of algebraic spaces
with the correct numerical properties. This follows from abundance on the generic fibre
of X → T . Next we apply the MMP to reduce to the case that the fibration is equidi-
mensional. The motivation being that such fibrations are generally well behaved with
respect to semiampleness, at least in the category of schemes. Finally we restrict to a
horizontal slice of X over the base and infer the result here.

The Keel-Witaszek theorem is a key ingredient in both the first and the last step, pro-
viding the relevant criteria to show that KX + ∆ is EWM and then semiample.

Although the key focus of this Chapter is mixed characteristic schemes, the proof as given
applies more widely to schemes over a positive dimensional base containing points of
positive characteristic. In particular it covers some cases of purely positive characteristic.

As a further application of ??, we study the invariance of plurigenera for families of
klt surface pairs in mixed characteristic. It is well-known that invariance of plurigenera
might fail over DVR of positive or mixed characteristic as shown in [KU85,Suh08,Bri20].
However it was proven in [EH21] that an asymptotic version of invariance of plurigenera
holds for log smooth surface pairs if the Kodaira dimension is not one. Using techniques
of [HMX18], we use the MMP and the abundance ?? to show an asymptotic invariance of
plurigenera for families of klt surface pairs (possibly even defined over imperfect fields),
extending the work of Egbert and Hacon.

Theorem C. ?? Let R be an excellent DVR such that the residue field k has characteristic
p > 5. Let (X,B) be a three-dimensional klt R-pair. Suppose that the following conditions
are satisfied:

(1) (X,Xk +B) is plt with Xk integral and normal;

(2) if V is a non-canonical centre of (X,B + Xk) contained in B−(KX +B), then
dim(Vk) = dim(V )− 1.

Suppose further that at least one of the following holds:

1. κ(KXk +Bk) 6= 1; or

2. Bk is big over Proj(KXk +Bk)
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1.3 Mori Fibrations in Positive Characteristic

Then there is m0 ∈ N such that

h0(XK ,m(KXK +BK)) = h0(Xk,m(KXk +Bk))

for all m ∈ m0N.

In this setting p > 5 cannot be avoided, even with more general MMP results. The proof
relies on adjunction type results which are unknown in low characteristic. Indeed they
are known to fail in characteristic 2 by [CT19], even over a closed field.

Our new result covers a broader class of singularities as well as allowing for points with
imperfect residue fields. It is natural to discuss this problem in terms of the Kodaira
dimension. In this sense we provide a full characterisation of the Kodaira dimensions for
which the result holds.

The failure of invariance of plurigenera whenXk has Kodaira dimension 1 is closely related
to super-singularity of elliptic fibres of the Iitaka fibration induced by Abundance. We
might therefore reasonably expect there to be additional characterisations in terms of
F -splitness to describe when such invariance results hold. For example we might hope
that if X → R is a flat, terminal family over a DVR and the Iitaka fibration Xk → Zk is
relatively F -split then Invariance of Plurigenera holds on X. These ideas are not explored
further in this thesis.

1.3 Mori Fibrations in Positive Characteristic

Where the Abundance Conjecture is needed to establish the existence of KX trivial
fibrations for minimal models, Mori fibrations come readily equipped with a KX negative
fibration. Conversely however they come with a more complex relationship between
outputs of the MMP.

Terminal minimal models are connected by flops, due to the arguments of [Kaw08]. Mori
fibrations however are expected to be linked by several different kinds of birational trans-
formations. We prove this in dimension 3.

Theorem D (??). Let R be an excellent ring of finite Krull dimension, equipped with a
dualising complex and whose residue fields of closed points have characteristic p > 5. Fix
an integral quasi-projective scheme T over R. Let g1 : Y1 → Z1 and g2 : Y2 → Z2 be two
Sarkisov related, klt Mori fibre spaces of dimension 3, projective T . If the Yi have positive
dimension image in T , then they are connected by Sarkisov links.

These links are characterised diagrammatically as follows.

Suppose that f : X → Z, g : Y → W are two Mori Fibre Spaces over R. A Sarkisov link
s : X 99K Y is one the following.
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Introduction

X ′ Y X ′ Y ′ X Y ′ X Y

X W X Y Z Y Z W

Z Z W W T

I II III IV

p q

Such that the following holds:

• There is a klt pair (X,∆) or (X ′,∆′) as appropriate such that the horizontal map
is a sequence of flops for this pair

• Every vertical morphism is a contraction

• If the target of a vertical morphism is X or Y then it is an extremal divisorial
contraction

• Either p, q are both Mori Fibre Spaces (this is type IVm) or they are both small
contractions (type IVs)

A key insight, due to [HM09], is that the existence of these links can be seen in the
structure of Shokurov polytopes. The classic example here is the following.

Let S be the blowup of P2
κ at two points. Write E1, E2 for the exceptional curves and let L

be the strict transform of the line between the blown up points. Then the effective cone is
spanned by E1, E2, L and after fixing suitable A ∼ −KX we can run a D ∼ KX +A+D
MMP for any D in the triangle, T , formed by L,E1, E2. We can then decompose T
according to the output of the D MMP as follows, where F1 is the blowup of P2 at a
single point.

L+E1

2
L+E2

2

E1 E2

L

P1

P1

P1

P1

P1 × P1

F1 F1

κ

P2

S
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1.3 Mori Fibrations in Positive Characteristic

The decomposition of T describes the geometry of the Mori fibre spaces.

1. Triangles inside T with a side along the boundary correspond to Mori fibre spaces

2. Shared sides of interior triangles correspond to blowups

3. All the morphisms (blowups and Mori fibrations) are induced by Abundance for
pairs on the corresponding polygon

The Sarkisov links between the various Mori fibrations can be seen in the decomposition
by composing the birational transformations coming from interior lines meeting at an
exterior vertex.

The ample divisor A ∼ −KX plays an important role here. Indeed the key result needed
to recreate this kind of decomposition is the following Finiteness of Minimal Models
result.

Theorem E (??). Let R be an excellent ring of finite Krull dimension, equipped with
a dualising complex and whose residue fields of closed points have characteristic p > 5
and take X a threefold over R. Let A be an ample Q-Cartier divisor and C be a rational
polytope inside LA(V ). Suppose there is a boundary A+B ∈ LA(V ) such that (X,A+B)
is a klt pair. Then the following hold:

1. There are finitely many birational contractions φi : X 99K Yi such that

E(C) =
⋃
Wi =Wφi(C)

where each Wi is a rational polytope. Moreover if φ : X → Y is a wlc model for any
choice of ∆ ∈ E(C) then φ = φi for some i, up to composition with an isomorphism.

2. There are finitely many rational maps ψj : X 99K Zj which partition E(C) into
subsets Aψj(C) = Ai.

3. For each Wi there is a j such that we can find a morphism fi,j : Yi → Zj and
Wi ⊆ Aj.

4. E(C) is a rational polytope and Aj is a union of the interiors of finitely many
rational polytopes.

The keys ideas of the proof come from [BCHM10]. The main difficulty in mixed char-
acteristic is the lack of appropriate Bertini type theorems. There are sufficient results
to prove the result over local rings, with some modifications to the original proof. Some
work is needed, however, to translate a local version of the result to a more general one.

Though it does seem it should be possible, we take a slightly different approach. First
introducing a notion of an rlt pair, one which is replaceable by a klt pair locally over the
base. This allows us to essentially extend the local Bertini result to a global one, at the
cost of a slightly more complicated type of pair. With this accounting system in place,
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Introduction

the finiteness result is essentially no harder to prove over an arbitrary base than over a
local ring. The proofs given rely only on the MMP, and will generalise immediately to
higher dimensions if the appropriate MMP results are known.

These rlt pairs are also useful for working with Sarkisov links. Once again there are not
sufficiently strong Bertini type results to produce a klt pair corresponding to the flops of
a Sarkisov link, instead an rlt pair is needed.

In this chapter we also give a short proof of termination for klt threefold pairs in mixed
characteristic; showing that any MMP from a pair with KX + ∆ not psuedo-effective
eventually terminates with a Mori Fibration.

Theorem F (??). Let R be an excellent ring of finite Krull dimension, equipped with a
dualising complex and whose residue fields of closed points have characteristic p > 5. Let
f : (X,∆)→ T be a threefold dlt pair over R, then any KX + ∆ MMP terminates.

1.4 The Augmented Base Locus

In addition to the earlier results related to the MMP and its applications we also study
some more technical birational geometry results. The focus is largely on nef line bundle
on mixed characteristic schemes which are semiample in characteristic 0.

The augmented base locus is well studied for schemes over a field. It is defined as follows.

Definition 1.4.1. Let L be a line bundle on a projective Noetherian scheme X. Then
base locus is given as

B(L) =
⋂

s∈H0(X,L)

Z(s)red

where Z(s) is the zero set of s equipped with the obvious scheme structure. The stable
base locus is then

SB(L) =
⋂
m≥0

B(mL).

Fix an ample line bundle A. The augmented base locus is given as

B+(L) =
⋂
m≥0

SB(mL− A)

and is independent of the choice of A.

An important characterisation of the augmented base locus, first noted for smooth va-
rieties of characteristic 0 by Nakayame [Nak00], is that for a nef line bundle L the aug-
mented base locus B+(L) agrees with the exceptional locus E(L).

Since then the result has been shown to hold for projective schemes over a field, first in
positive characteristic by Cascini-McKernan-Mustaţǎ [CMM14], and then for R-divisors
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1.4 The Augmented Base Locus

over any field by Birkar [Bir17]. Similar results are given for non-nef divisors in [ELM+09]
and for Kähler manifolds in [CT15].

We make use of methods developed in [Wit20] together with ideas from the positive
characteristic proof to show that B+(L) = E(L) for a nef line bundle on a projective
scheme over an excellent Noetherian base, so long it holds true on the characteristic zero
part of the scheme. In particular the result holds in the following cases.

Theorem 1.4.2 (??). Let X be a projective scheme over an excellent Noetherian base S
with L a nef line bundle on X. Suppose that one of the following holds:

1. SQ has dimension 0;

2. L|XQ is semiample;

Then B+(L) = E(L).

We also extend the semiampleness result of [Wit20] to show that there is an equality of
stable base loci when the characteristic 0 part is semiample.

Theorem 1.4.3 (??). Suppose that X is a projective scheme over an excellent Noetherian
base with L a nef line bundle on X. Then SB(L) = SB(L|E(L)) so long as L|XQ is
semiample.
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Chapter 2

Preliminaries

2.1 Singularity Theory

We begin by collecting relevant notions of singularities for the minimal model program
in mixed and positive characteristic. These include classic notions coming from the char-
acteristic 0 setting, as well as algebraic singularity conditions developed in the positive
characteristic setting.

2.1.1 Singularities of pairs

Here K will be taken to mean either R or Q. If no field is specified, it is taken to be R,
i.e. a log pair is always a log pair with R boundary.

Definition 2.1.1. A sub-log pair (X,∆) with K boundary is an excellent, Noetherian,
integral, normal scheme X admitting a dualising complex together with an K-divisor ∆
such that (KX + ∆) is K-Cartier. If ∆ is effective, we say (X,∆) is a log pair.

In practice we study these almost exclusively in the following context.

Definition 2.1.2. A sub R-pair (X,∆)/T with K-boundary will be the following data:

• A sub log pair (X,∆) with K boundary;

• An excellent, normal ring R of finite dimension which admits a dualising complex
and whose residue fields have characteristic at least 5;

• A quasi-projective R-scheme T ; and

• A projective contraction f : X → T .

23



Preliminaries

The dimension of such a pair is the dimension of X. Equally the pair is said to Q-factorial
if X is.

If ∆ ≥ 0 we call it an R-pair with K boundary.

Note that f : X → T is a contraction ensures that X → T is surjective and T is integral
and normal. We include this assumption for notational simplicity. All results extend to
the case f is not a contraction by taking a Stein factorisation, though for some results
this may require assumptions on the dimension of T be replaced with corresponding
assumptions on the dimension of f(X).

In practice we will often have T = R. In this case we may omit T from the notation
and say only that (X,∆) is an R-pair. If further R = κ is a field, we often say one that
(X,∆) is a pair over a field or just that (X,∆) is a pair, depending on context. Finally
if ∆ = 0 we just say that X/T is an R-pair.

We will often ask that X → T has positive dimensional image, or equally that T is
positive dimensional. Partly, this is because many results for threefolds are not known in
greater generality than this, for example much is unknown when X is a variety over an
imperfect field. Also many of the arguments will rely on lifting results from the general
fibre, which only works for positive dimensional bases.

Since KX + ∆ is R-Cartier, we may pull it back along any morphism π : Y → X. If π is
birational then there is a unique choice of ∆Y =

∑
−a(Y,E,X,∆)E which agrees with

∆ away from the exceptional locus of π such that π∗(KX +∆) ∼R= KY +∆Y . In a slight
abuse of notation we write f ∗(KX + ∆) = (KY + ∆Y ).

Suppose that there are normal, integral schemes Yi with fi : Yi → X birational and there
is a some normal, integral scheme Z with gi : Z → Yi. If Ei are divisors on Yi with a
common strict transform E on Z then a(Z,E,X,∆) = a(Z,E, Yi,∆Yi) = a(Yi, Ei, X,∆)
since we have g∗i f

∗
i r(KX + ∆) = g∗i r(KYi + ∆Yi).

We may view, then, the values of a(Y,E,X,∆) as being independent of the model Y and
write a(E,X,∆) instead.

For every prime divisor E on a birational model, Y , of X we have an associated DVR
OY,E, the stalk at the generic point of E which gives a valuation, νE on the function field
K(X). If f : Y → X is a birational morphism and D a prime divisor on Y together with
a choice of generator inside K(X) then pulling back D and looking at its coefficient at E
is equivalent to asking for the valuation under νE.

In general, the converse is false. Not every valuation can be applied to KX in this fashion.

For example suppose X is a proper normal variety over a field which is not Q-Gorenstein.
Let U be the smooth locus and P a point at which X is not Q-Gorenstein. We may
blowup X at P to give Y → X with E lying over P . Then U is smooth and birational to
Y , but we cannot take the valuation of KU with respect to E since no multiple of KU is
Cartier on X. If we wish to think of the a(X,∆, E) as coming from valuations we must,
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2.1 Singularity Theory

therefore, consider only those with non-empty center on X.

Definition 2.1.3. Let A be an integral domain with Frac(A) = K and R a DVR in K
with maximal ideal mR. Then the center of R in A is mR ∩A. We extend the definition
to normal, integral schemes in the natural fashion.

If X is of finite type over a locally Noetherian scheme T then X is proper over T if
and only if every T -valuation has non-empty centre on X, by the valuative criterion of
properness [Sta, Tag 0208].

Equally for a prime divisor E on a birational model Y of X, we can think of it as having
non-empty centre on X if there is a dominating model Z → X, Y such that the generic
point of E is contained in the image of Z on Y . This is the same as asking for the
valuation it induces to have non-empty centre on X. In fact we can realise the centre of
the valuation as the closure of the strict transform of E.

For simplicity, we will always think of a divisor E with non-empty centre on X as lying
on a model Y which dominates X. Since the valuation does not depend on the birational
model, we can always choose a higher model to ensure this is a valid assumption.

Definition 2.1.4. Let π : Y → X be a proper birational morphism of integral, normal
schemes. A divisor E on Y is said to be exceptional if π is not an isomorphism at the
generic point of E, or equally if the centre of E is not a divisor on X.

Given a sub-pair (X,∆) we define the discrepancy

Disc(X,∆) := inf{a(E,X,∆) such that E is exceptional and has non-empty center on X}

and the total discrepancy

TDisc(X,∆) := inf{a(E,X,∆) such that E has non-empty center on X}

We then use this define a suite of singularities.

Definition 2.1.5. Let (X,∆) be a (sub)-log pair then we say that (X,∆) is

• (sub) terminal if Disc(X,∆) > 0

• (sub) canonical if Disc(X,∆) ≥ 0

• (sub) plt if Disc(X,∆) ≥ −1

• (sub) ε-klt if TDisc(X,∆) > ε− 1

• (sub) ε-lc if TDisc(X,∆) ≥ ε− 1

Remark 2.1.6. Klt is short for Kawamata log terminal and lc is short for log canonical.

For ε = 0 we say klt, lc respectively. We also say X has singularities of type P to mean
(X, 0) has such. An equivalent formulation of lc is that Disc(X,∆) ≥ −1 as this condition
ensures that ∆ has coefficients bounded above by 1.
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Lemma 2.1.7. Let (X,∆) be a (sub)-log pair with Disc(X,∆) ≥ −1, then X is lc.

Proof. Suppose for contradiction X has Disc(X,∆) ≥ −1 but not TDisc(X,∆) ≥ −1.
Let D be in the support of ∆ with CoeffD(∆) > 1. Since X is normal we may localise
at Q a point of codimension 2 inside the smooth locus of X and D which meets no
other component of ∆. This reduces us to the case that X is smooth of dimension 2
and the support of D is a smooth curve, C. Now by assumption we have that D =
(1 + ε)C for ε > 0. If we blow up the closed point, we get an exceptional divisor E
with a(E,X,∆) = −ε. Blowing up the intersection of E and the strict transform of
∆ gives E2 with a(E2, X,∆) = −2ε. Continuing in this fashion we can find En with
a(En, X,∆) = −nε < −1 for some suitably large n.

Since Disc(X,∆) ≥ −1 no such En can exist, so the result holds by contradiction.

Note that if (X,B) and (X,∆) are log pairs with ∆ ≥ B then clearly a(E,X,∆) ≤
a(E,X,B). So (X,B) cannot have singularities which are worse, in the above sense,
than (X,∆). Moreover if (X,∆) is sub ε-lc and (X,B) is sub ε-klt then so is any sub-log
pair (X,D) with D ≤ δB + (1− δ)∆ for any 1 > δ > 0.

When we have resolution of singularities there is another, more practical version of these
definitions.

Definition 2.1.8. We say (X,∆) is log regular if X is a regular scheme and ∆ =
∑
diDi

is a divisor with normal crossing support

If (X,∆) is a sub-log pair and π : Y → X is projective, birational morphism with excep-
tional locus E such that (Y, π−1

∗ ∆ + E) is log regular then π : Y → X is a log resolution
of (X,∆). In this case, we sometimes say π : Y → (X,∆) is a log resolution.

When R is a closed field we often say log smooth instead of log regular.

Remark 2.1.9. In principle it is enough for a log resolution to be proper for the purposes
of these valuative notions of singularity. In practice we will often want projective log
resolutions for other reasons and we do not separate the notions.

Lemma 2.1.10. Suppose that (X,∆) is log regular. Let E be a prime divisor with center
V 6= E on X, write P for the generic point of V . Let ∆ =

∑
diDi. Then

1. a(E,X,D) ≥ codim(P,X)− 1−
∑

i:P∈Di dj

2. TDisc(X,∆) = min{0,−di}

3. Disc(X,∆) = min{1, 1− di, 1− di − dj: Di ∩Dj 6= ∅}

Proof. Let Y → X be a birational morphism such that E is a divisor on Y , let Q be
its generic point. Localise at P in X so we may suppose that P is closed and given
by the vanishing of x1, ...xn where n = codim(P,X). Similarly we may suppose E is
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2.1 Singularity Theory

given as the vanishing of a local coordinate y1 on Y . Since (X,∆) is log regular we may,
after reordering, suppose D1, ..Dk contain P and each is given as the vanishing of a local
coordinate xi. Further can write f ∗xi = yai1 ui where ui does not vanish at Q and ai ∈ Z>0.

We then have
f ∗dxi = aiy

ai−1
i uidy1 + yai1 dui

by the chain rule where dui = wi are regular at Q.

Putting ci = di for i ≤ k and ci = 0 otherwise gives

f ∗
dxi

xdii
= aiy

(1−ci)ai−1
1 u1−ci

i dy1 + y
(1−ci)ai
1 wi.

However then we see that the only possible poles of

f ∗
dx1 ∧ ... ∧ dxn
xc11 ...xnc

n

at Q come from

yAi1 dy1 ∧ w1 ∧ ... ∧ wi−1 ∧ wi+1 ∧ ... ∧ wn
with

Ai = −1 +
n∑
1

(1− cj)aj ≥ −1 +
n∑
1

aj −
k∑
1

djaj ≥ n− 1−
k∑
1

dj,

giving (1).

For any E with center V we have a(E, x,D) ≥ codim(V,X) − 1 −
∑

V⊆Di di and since
di ≤ 1 for every i the smallest value occurs when V = E has codimension 1 and we obtain
TDisc(X,∆) = min{0,−di}. Similarly if E is required to be exceptional we must have
the smallest values when V has dimension 2 so that Disc(X,D) ≥ min{1, 1− di, 1− di−
dj such that Di ∩Dj 6= ∅}.

Suppose however we blow up V ⊆ Di of codimension 2 and label the exceptional divisor
E. It is an easy calculation that a(E,X,D) = 1−di if V 6⊆ Dj for all j else a(E,X,D) =
1 − di − dj where V ⊆ Dj giving 2. Similarly by blowing up V of codimension 2 not
contained in any Di we see that there is some E with a(X,E,D) = 1 so (3) holds.

Corollary 2.1.11. Let (X,∆) be a (sub)-log pair and π : Y → X a log resolution of
(X,∆). Let −di be the coefficients of ∆Y and d = min di. Then (X,∆) is

• (sub) terminal iff d > −1 and di + dj > −1 if Di ∩Dj 6= ∅.

• (sub) canonical iff d ≥ −1 and di + dj ≥ −1 if Di ∩Dj 6= ∅.

• (sub) plt iff d ≥ −1 and di + dj > −2 if Di ∩Dj 6= ∅.
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• (sub) ε− klt iff d > ε− 1 .

• (sub) ε− lc iff d ≤ ε− 1.

In particular we see that klt and lc may be checked in terms of the total discrepancy
coming from a single log resolution. Terminal and canonical may also be checked in
terms of discrepancy of a single resolution if ∆ = 0. If X is Q-factorial then (X,∆) is plt
only when b∆c is disjoint by [BMP+20, Lemma 2.28]. In this setting we may say, with
notation as above, that (X,∆) is plt if and only if b∆c is disjoint, b∆Y c = π−1

∗ b∆c and
d ≥ −1.

These calculations also give rise to an additional notion of singularity.

Definition 2.1.12. An R pair (X,∆) is called dlt if it lc and there is a closed subscheme
Z ⊆ Z such that:

• X \ Z is regular,

• ∆|X\Z is simple normal crossing

• If E is an exceptional divisor with centre in Z then a(E,X,∆) > −1.

Roughly speaking this says a dlt pair is an lc pair with is klt away from the locus where
it is log smooth.

Note that if (X,∆) is plt then it is also dlt.

Remark 2.1.13. We can also characterise dlt with reference to a log resolution as follows.
A pair (X,∆) is dlt if there is a log resolution π : Y → X of (X,∆) with KY + ∆Y =
π∗(KX +∆) such that CoeffE(∆Y ) < 1 for every E exceptional. The converse implication
holds if sufficiently strong resolution results are known.

This definition is not independent of the resolution. Consider for example X a smooth
surface with ∆ = C1 +C2 with connected log smooth support. This is trivially dlt, however
if we blow up a point P in C1 ∩ C2 then the pullback of KX + ∆ has coefficient 1 at the
exceptional divisor.

Allowing sub-pairs, being klt, lc etc pulls back naturally along birational morphisms. The
following lemma allows us to push forward along them as well.

Lemma 2.1.14 (Negativity Lemma). [BMP+20, Lemma 2.14] Let f : X → Y be a pro-
jective birational morphism of normal, excellent, integral schemes. Let D be an R Cartier
divisor on X with −D nef over Y . Then D is effective if and only if f∗D is.

Lemma 2.1.15. Suppose (X,∆), (X ′,∆′) are log pairs equipped with projective birational
morphisms f : X → Y and f ′ : X ′ → Y with f∗∆ = f ′∗∆

′.

Suppose further that −(KX + ∆) is f nef and (KX′ + ∆′) is f ′ nef. Then a(E,X,∆) ≤
a(E,X ′,∆′) for any E with non-trivial center on Y .
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If in fact −(KX + ∆) is f -ample and f is not an isomorphism above the generic point of
centreX(E), then

a(E,X,∆) < a(E,X ′,∆′).

Proof. Let Z be a normal, integral scheme with projective, birational morphisms g : Z →
X and g′ : Z → X ′, write h = f ◦ g = f ′ ◦ g′. Let D = g∗(KX + ∆)− g′∗(KX′ + ∆′) which
is exceptional by construction. Further since nefness is preserved under pulllback, −D is
nef over Y and hence we may apply the negativity lemma to see that D is effective. Thus
g∗(KX + ∆) ≤ g′∗(KX′ + ∆′). In particular if E is any divisor on Z, then a(E,X,∆) >
a(E,X,∆′).

Suppose now E is a valuation with non-trivial center on Y . There is some Z → Y with
E a divisor on Z. We may then resolve the indeterminacy of Z → X and Z → X ′ and
assume wlog that Z lies over X,X ′ also and the first part of result follows.

In the latter case, we see that E is covered by curves C with D.C < 0. Hence we must
have that E is in the support of D and a(E,X,∆) > a(E,X,∆′).

This is exactly the result that shows these notions of singularity are preserved under a
(KX + ∆) MMP.

2.1.2 Frobenius singularities

This section will focus on Frobenius singularities in positive characteristic. These will
only be needed for schemes over a field, though one can make sense of these definitions
in a more general context. We will often work with varieties over a field κ, which here
will mean just mean integral, quasi-projective κ-schemes.

2.1.2.1 Frobenius singularities of pairs

Definition 2.1.16. Given a κ algebra R over positive characteristic we denote the Frobe-
nius morphism by F : R → R sending x → xp. Any R module M then has an induced
module structure, denoted F∗M where R acts as r.m = F (r)m = rpm. Finally R is said
to be F -finite if F∗R is a finite R module. This is a particularly important notion in the
case that R = κ.

These definitions naturally extend to schemes over κ.

Note that all perfect fields are F -finite. Moreover any finitely generated algebra over an
F -finite field is itself F -finite. In particular varieties over an F -finite field are F -finite.

In this context we can view the Frobenius morphism as a map of R modules F : R→ F∗R.
We will also write F e : R→ F e

∗R for the eth iterated Frobenius.
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We have the following well known result due to Kunz.

Theorem 2.1.17. [Sta, Tag 0EC0][Kun69] Let R be a reduced Noetherian local ring of
characteristic p > 0, then R is regular if and only if F∗R is a flat R module.

It is natural then to try and understand the singularities of a scheme via flatness condi-
tions on F∗R. In the first instance we have the following definitions.

Definition 2.1.18. Let X be a normal variety over an F -finite field. We say X is:

• F -pure if the Frobenius morphism OX → F∗OX is pure, or equivalently locally split.

• (Globally) F -split if the Frobenius morphism OX → F∗OX is split.

Here for a morphism f : R → S to be pure means the induced map M → M × S is
injective for every R module M . When S is a finite R module, f is pure if and only if it
is split. That is there is a morphism g : S → R of R modules with g ◦ f = id.

Remark 2.1.19. This purity condition is closed related to both flatness and effective
descent. Roughly speaking every flat morphism is an effective descent morphism, but in
general an effective descent morphism need only be pure. In fact purity turns out to be a
sufficient condition also [Sta, Tag 08WE].

In particular regular varieties are F -pure.

While these are useful definitions in their own right, for the purposes of the MMP we
would like ones which can be more naturally applied to pairs (X,∆).

Take X a normal variety over an F -finite field. To mirror the notion of a boundary
we introduce pairs (L, φ) where L is a line bundle and φ : F e

∗L → OX . By applying
duality on the regular locus, which contains all the codimension 1 points, we observe that
HomOX (F e

∗L,OX) = H0(X,L−1((1 − pe)KX)). Therefore such a pair corresponds to a
divisor ∆φ ≥ 0 with (1 − pe)(KX + ∆φ) ∼ L. Reversing this procedure is slightly more
involved. If (1− pe)(KX + ∆) ∼ L (we sometimes write this KX + ∆ ∼Z(p)

L−1) we may

obtain φ∆ : F e
∗L → OX , however we could also write say (1− p2e)(KX + ∆) ∼ L′ where

L′ 6∼ L. We introduce, therefore, the following notion of equivalence.

First, we say that two such pairs, (L, φ) and (L′, φ′) are equivalent if:

• There is an isomorphism ψ : L → L′ such that following diagram commutes; or

F e
∗L F e

∗L′

OX

φ

F e∗ψ

φ′
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• L = Lpe
′
+1 and φ′ : F e+e′

∗ Lpe
′
+1 → OX is the precisely the map given by

F e+e′

∗ (L ⊗ Lpe
′

)
F e∗φ−−→ F e

∗L
φ−→ OX .

We then expand the notion of equivalence to allow any finite combination of the above
equivalences, more precisely we take the transitive closure of our initial relation.

The need for first part of this is clear. The second comes from the following lemma

Lemma 2.1.20. Suppose that (L, φ) and (L′, φ′) are pairs as above. Then we have the
following map

ψ = φ′ ◦F φ : F e+e′

∗ (L ⊗ (L′)pe) ∼= F e′

∗ (F e
∗L ⊗ L′)→ F e′

∗ L′ → OX

and the associated divisor is ∆ψ = pe−1

pe+e′−1
∆φ + pe(pe

′−1)

pe+e′−1
∆φ′.

Proof. The statement is local, so we may suppose that L = L′ = OX and X = SpecR.
Fix Φ : F∗R → R the generating map of HomR(F∗R,R) as an F∗R module. Hence we
have φ = x.Φe and φ′ = x′.(Φ)e

′
. Hence we clearly have

ψ(r) = φ′ ◦ F e′

∗ (φ)(r) = Φe′ ◦ (x′(F e′

∗ (x.Φe))(r) = Φe+e′(x(x′)p
e

)r).

Hence we see that the divisor is

∆ψ =
1

pe+e′ − 1
(div(x) + pediv(x′))

=
pe − 1

pe+e′ − 1
∆φ +

pe(pe
′ − 1)

pe+e′ − 1
∆φ′ .

Since we must have ∆(x.Φk) = 1
pk−1

div(x) under the identification HomR(F e
∗R,R) ∼= F e

∗R.

We write φn for φn−1 ◦F φ. Note that by the above calculation, ∆φn = ∆φ, which is why
we require the second part of the equivalence relation.

Remark 2.1.21. We might ask if this construction still makes sense for e = 0. Obviously
we cannot divide by pe − 1 but if we run through the correspondence, we are simply
identifying Hom(L,OX) with Hom(OX ,L−1). So a morphism φ : L → OX induces a
divisor Dφ with OX(Dφ) ' L−1. Then we get the formula

∆φ′◦Fφ =
1

pe′ − 1
Dφ + ∆φ′

Similarly when e′ = 0 we get ∆φ′◦Fφ = ∆φ′◦φ = ∆φ+ pe

pe−1
Dφ′ and if e = e′ = 0 we recover

the usual composition formula Dφ′◦φ = Dφ +Dφ′.
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Suppose φ : LL′−1 → OX then φ corresponds to a divisor D ∼ L′L−1 in the usual sense.
The result is than that ψ = φ ◦F φ′ : F e′

∗ (LL′−1 ⊗ L′) = F e′
∗ (L) → F e′

∗ (L′) → OX has
∆ψ = 1

pe−1
D+ ∆φ′ from above. Equally of course we may view φ as a morphism L → L′.

Note that Lemma 2.1.20 and Remark 2.1.21 can be applied in the opposite direction.
Suppose that φ, ψ have ∆φ ≥ δψ. Let E = ∆φ − ∆ψ. Then we get an induced map
F e
∗ i(pe−1)E : F e

∗Lφ → F e
∗Lψ. Now ψ◦F i(pe−1)E has induced boundary 1

pe−1
(pe−1)E+∆ψ =

∆φ. Hence in fact φ = ψ ◦F i(pe−1)E.

In particular then, every φ is of the form F e
∗L → F e

∗ω
⊗(1−pe)
X → OX where F e

∗L →
F e
∗ω
⊗(1−pe)
X is the pushforward of the inclusionOX((1−pe)(KX+∆φ))→ OX((1−pe)(KX))

induced by (1− pe)∆φ = Dφ. This can also be seen directly from the construction of Dφ

if one takes care.

We see then that φ is dual to the map OX → F e
∗OX → F e

∗OX((pe−1)∆φ). We can study
the same kinds of pairs by working with such maps instead. This is the setup of [SS10]
for example.

Lemma 2.1.22. Two pairs (L, φ) and (L′, φ′) are equivalent if and only if ∆φ = ∆φ′. In
particular then there is a bijection between equivalence classes of such pairs and ∆ ≥ 0
with (KX + ∆) Z(p)-Cartier.

Proof. From above we have that if (L, φ) and (L′, φ′) are equivalent then ∆φ = ∆φ′ so
we prove only the converse statement.

By taking higher powers of these maps we may assume wlog that e = e′. This does not
change ∆φ or ∆φ′ by Lemma 2.1.20, moreover the equivalence classes of (L, φ) and (L′, φ′)
are unchanged by definition.

However if D = ∆φ −∆φ′ then (pe − 1)D ∼ 0 defines an isomorphism

i : OX((pe − 1)(KX + ∆φ))→ OX((pe − 1)(KX + ∆φ′)).

Let ψ = φ′ ◦ i so we have ∆ψ = D + ∆φ′ = ∆φ but this says exactly that ψ = φ ◦ u for
some automorphism u of L and hence (L, ψ) ∼ (L′, φ′).

To extend this framework to allow for sub pairs we can instead work with morphisms
F e
∗L → K(X) where we view K(X) as a constant sheaf on X. Given such a morphism
φ, we can always find E ≥ 0 Cartier such that when we twist by E we obtain

φ′ := F e
∗ (L((1− pe)E))→ OX

and thus associate a divisor ∆φ′ with (1− pe)(KX + ∆φ′) ∼ L((1− pe)E. We then take
∆φ = ∆φ′ − E.

Lemma 2.1.23. With the notation as above, ∆φ does not depend on the choice of E.
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Proof. Suppose E1, E2 are two choices of E, suppose wlog that E1 ≤ E2. Write φi :=
F e
∗ (L((1− pe)Ei))→ OX for their twists. Let i be the inclusion L((1− pe)E2)→ L((1−
pe)E1). Then by Lemma 2.1.20 since φ2 = φ1 ◦ F e

∗ i we have that ∆φ2 = ∆φ1 + (E2 −E1)
so that ∆φ2 − E2 = ∆φ1 − E1.

Definition 2.1.24. A sub Z(p)-pair is a κ-pair (X,B) where κ is F -finite, (KX + B) is
Z(p)-Cartier and the coefficients of B are less than 1. We write φB : F eB

∗ Le,B → K(X)
for the associated morphism dropping the dependence on B when it remains clear. If B
is effective (X,B) is called a Z(p) pair and we view φB as being a morphism to OX .

Let (X,B) be a (sub) Z(p) pair, then (X,B) is

• (sub) F -pure if OX ⊆ Im(φe) for some e

• (sub) F -split if 1 ∈ Im(H0(X,φe)) for some e

• (sub) F -regular if for every D ≥ 0 there is some e with OX ⊆ φe(F e
∗ (Le(−D))

• globally (sub) F -regular if for every D ≥ 0 there is some e with 1 ∈ Im(H0(X,φe|F e∗ (Le(−D)))

Remark 2.1.25. We can also extend the definitions to log pairs in the sense of Defini-
tion 2.1.1. Roughly we speaking we say (X,∆) satisfies the definition if there is B ≥ ∆
such that (X,B) is a sub Z(p) pair satisfying the definition in question. Alternatively one
can work with reflexive sheaves in the place of line bundles. By Lemma 2.1.26 the two
are equivalent.

Being F -split is also sometimes called globally F -split, to distinguish it from the case of
local splittings.

Some immediate consequences of Lemma 2.1.20 and Remark 2.1.21 are the following.

Lemma 2.1.26. Let (X,∆) and (X,B) be globally F -split pairs. Then for 0 ≤ t << 1
we have that (X, t∆ + (1 − t)B) is F -split and for 0 ≤ λ ≤ 1 we have that (X,λ∆) is
F -split also. Moreover if (X,∆) is in fact globally F -regular then

1. (X,λ∆) is globally F -regular for all 0 ≤ λ ≤ 1.

2. (X, t∆ + (1− t)B) is globally F -regular for 0 ≤ t << 1.

3. For any D ≥ 0, (X,∆ + tD) is globally F -regular for 0 ≤ t << 1.

4. B = ∆ +D then (X,∆ + tD) is globally F -regular for 0 ≤ t < 1.

Proof. Let (X,∆) and (X,B) be globally F -split pairs. By composing the associated
morphisms φ∆ : F e

∗L∆ → OX and φB : F e′
∗ LB → OX as in Lemma 2.1.20 we obtain a

split morphism ψ = φ∆ ◦F φB with associated divisor (1− pe−1

pe+e′−1
)∆ + pe−1

pe+e′−1
B. Taking

e′ >> e yields the result.
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To see that (X,λ∆) is F -split for λ ≥ 0, we can assume λ ∈ Z(p). Then by Lemma 2.1.20
and the discussion following it, we see that we have a factorisation

φ∆ : F e
∗L → F e

∗Lλ∆ → OX

for e >> 0. This yields the result.

Now suppose that (X,∆) is globally F -regular. Then part (1) follows exactly as above.
We now prove (2). To this end, let H be a Cartier divisor whose support contains B.

From the definition of globally F -regular and previous parts we have small ε, δ > 0 with
(X, ε∆ + (1− ε)B+ δH) F -split. We claim that (X, ε∆ + (1− ε)B) is globally F -regular.
Certainly it is F -split so let φ : L → OX be the associated morphism. This pair is globally
F -regular on U = X \ H, since H ≥ B. So if we fix D ≥ 0 then we have a splitting
of φU : F e

∗LU(−D) → OU , say iU : OU → F e
∗LU(−D). We now seek to extend iU to an

appropriate splitting on X.

By [Har77, Chapter II, Lemma 5.14(b)] iu extends to a section i : OX → (F e
∗L)⊗OX(mH)

such that the following composition

OX
i−→ (F e

∗L(−D))⊗OX(mH)
φ⊗OX(mH)−−−−−−−→ OX(mH)

is natural inclusion OX → OX(mH) induced by H. Tensoring by OX(−mH) yields

OX(−mH)
i⊗OX(−mH)−−−−−−−→ F e

∗L(−D)
φ−→ OX .

Again this is the natural inclusion of OX(−mH) into OX . Finally we tensor by F e′
∗ L to

yield
F e′

∗ L(−mH)→ F e′+e
∗ L(−D)→ F e′

∗ L.
By assumption, for e′ >> 0 the morphism F e′

∗ L(−mH) → F e′
∗ L → OX splits. Hence so

too does F e′+e
∗ L(−D) → F e′

∗ L → OX . Thus (X, ε∆ + (1− ε)B) is globally F -regular as
claimed.

Now for (3) fix a D ≥ 0. Then

F e
∗L(−D)→ F e

∗L(−D)→ OX

splits for e >> 0. The associated divisor is precisely (X,∆ + 1
pe−1

D) so (X,∆ + tD) is

F -split for small t. By (1) with B = ∆ + tD, we may shrink t and assume the pair is
globally F -regular.

The final part follows straight from (2) since t∆ + (1− t)B = ∆ + (1− t)D.

Locally to a point of codimension 1 these definitions are particularly well-behaved.

Lemma 2.1.27. Let R be a regular DVR with parameter t, then a sub Z(p) pair (R, λt)
is sub F -pure iff λ ≤ 1 and sub F -regular iff λ < 1.
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Proof. After choosing an isomorphism L ' R we may suppose that λt defines a morphism
F e
∗R → R. By Remark 2.1.21 this factors F e

∗R →< t >→ R if and only if ∆φ ≥ pe

pe−1 t.
This happens for e >> 0 if and only if λ > 1. This gives the F -pure case.

Since every divisor D on R is of the form µt, for µ a unit, the F -regular result follows
also.

In particular we see that the coefficient of ∆φ at E depends only on φ near E.

Corollary 2.1.28. Suppose φ : F e
∗L → k(X) has associated divisor ∆ then CoeffE(∆) =

inf{t : (X,∆ + tE)is F sub pure at the generic point of E}.

While these definitions do not pullback along birational morphisms as obviously as the
usual MMP singularities, it is still possible.

Lemma 2.1.29. Suppose that f : X → Y is a birational morphism with X normal and
(Y,∆) Z(p) pair then there is ∆′ on X making (X,∆′) a Z(p) pair such that (KX + ∆′) =
f ∗(KY + ∆). If (Y,∆) is sub F -split so too is (X,∆′).

Proof. Take the corresponding map φ : F e
∗L → K(Y ), we may freely view L as a subsheaf

of K(Y ) via some i : L ↪→ K(Y ) and so extend φ to a map φ̄ : F e
∗K(Y ) → K(Y ).

Taking the inverse image gives f−1(φ̄) : f−1F e
∗K(Y )→ f−1K(Y ) and f−1(i) : f−1F e

∗L →
f−1K(Y ). Since f is birational we obtain an isomorphism f−1K(Y )→ K(X). We then
have the following situation.

f−1F e
∗ (L)⊗f−1F e∗OY OX F e

∗K(X) K(X)

f−1F e
∗ (L) f−1F e

∗K(Y ) f−1K(Y )
f−1(i)

f−1(φ̄)

∼ ∼

Note however that f−1F e
∗ (L) ⊗f−1F e∗OY OX = F e

∗ f
∗L and hence we obtain the desired

map φ̃ : F e
∗ f
∗L → K(X). This induces a divisor ∆′ on X with (pe − 1)(KX + ∆′) ∼

f ∗L ∼ (pe − 1)f ∗(KY + ∆). The coefficient of ∆′ at a codimension one point can be
recovered from φ̃ by working locally around that point. wherever f is an isomorphism, φ
and φ̃W agree and therefore the coefficients of ∆ and ∆′ agree on this locus also.

Hence in fact we have an actual equality of divisors f ∗(KY +∆) = (KX +∆′) as required.
Moreover commutativity of the earlier diagram gives that whenever 1 ∈ Im(H0(Y, φ))
then it is also in the image of H0(X, φ̃), and hence (X,∆) is sub F -split.

Note that a pair (X,∆) is sub F -pure if and only if there is an open cover {Ui} with
(Ui,∆|Ui) sub F -split. Hence in fact this shows we may also lift sub F -pure pairs in the
same fashion.

Similarly a pair (X,∆) is (globally) sub F -regular if and only if for every D ≥ 0 there
is ε < 0 with (X,∆ + εD) sub F -pure (F -split). Further if f : Y → X is birational with
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D ≥ 0 on Y there is always some D′ ≥ 0 on X with f ∗D′ ≥ D. Therefore pulling back
(X,∆ + εD′) to (Y,∆′ + εf ∗D′) we see that (Y,∆′ + εD) is sub F -pure (F -split)and so
(Y,∆′) is (globally) sub F -regular.

Theorem 2.1.30. Let (X,∆) be a sub F -pure pair. Then (X,∆) is sub-lc. Moreover if
(X,∆) is sub F -regular then in fact it is sub-klt.

Proof. Let Y → X be a proepr birational morphism of integral normal schemes and ∆Y

the induced boundary on Y . From above we see that (Y,∆Y ) is sub F -pure. However
by Corollary 2.1.28 we see that this ensures CoeffD(∆Y ) ≤ 1 for every prime divisor D
on X. Hence (Y,∆Y ) is sub-lc and therefore so too is (X,∆). An identical calculation
completes the F -regular case.

In general we cannot push forward the local forms of these singularities, however the
global ones often can be pushed forward, even along morphisms which are not birational.

Lemma 2.1.31. Suppose that (X,∆) is sub F -split and f : X → Y has f∗OX = OY and
KX + ∆ ∼Z(p)

f ∗L. If every component of ∆ which dominates Y is effective then there is
∆Y with (Y,∆Y ) sub F -split and KY + ∆Y ∼Z(p)

L.

Proof. This is the inverse construction of Lemma 2.1.29. By assumption the pair (X,∆)
corresponds to a morphism φ : F e

∗ f
∗L → K(X). Since the dominant part of ∆ is effective

we may view this as a morphism φ : f ∗L → f ∗OX(D) where D is some divisor on Y with
(1− pe)∆ ≥ −f ∗D.

This then pushes forward to a non-zero morphism φY : F e
∗L → OY (D) ⊆ K(Y ) which

canonically induces a pair (Y,∆Y ). Note further that we have natural isomorphisms

H0(X,F e
∗ f
∗L) H0(X, f ∗OY (D))

H0(Y, F e
∗L) H0(Y,OY (D))

H0(φe)

' '

H0(φeY )

so that (X,∆) is sub F -split if and only if (Y,∆Y ) is so.

If in fact (X,∆) is globally F -regular then so too is (Y,∆Y ). Indeed if D is a divisor
on Y , then there is ε > 0 with (X,∆ + εf ∗D) globally F -split but then (Y,∆ + εD) is
globally F -split also.

By Corollary 2.1.28 if f : X → Y is birational then the conditions are automatically
satisfied and the induced ∆Y is just the pushforward f∗∆. Therefore if X is sub F -split
so is every X ′ birational to X. Further if X is F -split and X ′ is obtained by taking a
terminalisation or running a KX +B MMP for any B then X ′ is F -split.
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2.1.2.2 Global Frobenius Singularities

Pairs (X,∆) which are globally F -split or globally F -regular can always be modified
slightly to assume a particularly nice form.

Lemma 2.1.32. Suppose that (X,∆) is a globally F -split pair, then we have ∆′ ≥ ∆
such that (X,∆′) is globally F -split and KX + ∆ ∼Z(p)

0.

If instead (X,∆) is globally F -regular, then we have ∆′ ≥ ∆ such that (X,∆′) is globally
F -regular and −(KX + ∆) is ample.

Proof. Suppose (X,∆) is a globally F -split Z(p) pair. Let φ : F e
∗L → OX be the cor-

responding morphism with 1 ∈ Im(H0(φ)). Then by assumption we have a section
s : OX → F e

∗L which is a splitting of φ.

However we get an induced section F e
∗OX → F e

∗L given locally by r → r× s(1), hence in
fact s factors s : OX → F e

∗OX → F e
∗L. The composition F e

∗OX → F e
∗L → OX induces an

F -split pair (X,∆′) with KX + ∆′ ∼Z(p)
0. Moreover we have ∆′ ≥ ∆ by Remark 2.1.21.

Now suppose that (X,∆) is a globally F -regular Z(p) pair. First, from above, we may
take B with (X,∆ +B) F -split and KX + ∆ +B ∼Z(p)

0.

Now choose H ≥ B an ample divisor. Then we have that the composition F e
∗L(−H)→

F e
∗OX

φ−→ OX splits. As before the section OX → L(−H) factors OX → F e
∗OX(−H) →

F e
∗L(H). The split morphism F e

∗OX(−H)→ OX induces a globally F -split pair (X,∆ +
D) with KX + ∆ + D ∼Z(p)

δH where δ = 1
pe−1

. Moreover the first part of the lemma

applied to (X,∆ +D) yields the F -split pair (X,∆ +D+ δH), again by Remark 2.1.21.

We now apply Lemma 2.1.26 to (X,∆ + B) and (X,∆ + D + δH) to see that (X,∆ +
tD + (1 − t + δ′)B) is F -split. By the same lemma we can choose t small enough that
(X,∆ + tD) is globally F -regular. Applying the lemma one more time to these two new
pairs, we see that (X,∆ + tD+ (1− t)B) is globally F -regular. By construction this pair
has KX + ∆ + tD + (1− t)B ∼Z(p)

−tH as required.

Lemma 2.1.33. Let (X,∆) be a globally F -split pair. Then H i(X,KX + ∆ +A) = 0 for
A an ample Q-Cartier divisor and i > 0. In particular H i(X,A) = 0 for i > 0. Moreover
if (X,∆) is globally F -regular then we may suppose only that A is big and nef instead.

Proof. Suppose first that (X,∆) is F -split and A is ample. Then we have a split map
F e
∗L → OX where L = OX((1 − pe)(KX + ∆)). Tensoring by OX(KX + ∆ + A) yields
F e
∗OX(KX + ∆ + peA)→ OX(KX + ∆ +A). Taking cohomology then gives a surjection
H i(X,KX + ∆ + peA)→ H i(X,KX + ∆ +A) for i ≥ 0 where the left hand side vanishes
for e >> 0 and i > 0 by Serre vanishing. Hence in fact H i(X,KX + ∆ + A) = 0 as
claimed. From above, we can assume that KX + ∆ ∼ Z(p)0, so we have A′ ample with
KX + ∆ + A′ = A and the second part follows.
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Now suppose that (X,∆) is globally F -regular. Choose E ≥ 0 with nA − E ample for
n >> 0. Then we have F e

∗L(−E)→ OX split. Again we tensor by KX + ∆ +A to yield
a split map F e

∗OX(KX + ∆ + peA − E) → OX(KX + ∆ + A). From the first part, the
cohomology of OX(KX + ∆ + peA− E) vanishes for e >> 0 and the result follows.

If (X,∆) is F -split (resp. globally F -regular) in the sense of Remark 2.1.25 one needs
to be slightly more careful. In this case we have a Z(p) pair (X,B) with B ≥ 0 and
L = OX((1−pe)(KX+B)) which is F -split (resp. globally F -regular). Then the morphism
F e
∗L → OX must factor F e

∗L → F e
∗OX((1− pe)(KX + ∆)→ OX , as in Lemma 2.1.26 and

the result follows exactly as above.

2.2 The Minimal Model Program

2.2.1 Overview of the Minimal Model Program

In it’s original incarnation the Minimal Model Program seeks to modify a smooth complex
variety to a simpler (or minimal) birational model. The last few decades have seen a shift
away from this paradigm, however.

The Minimal Model Program now consists of a suite of useful tools in its own right,
focused on the birational modification of pairs R-pairs (X,B)/T over a suitable base,
and having mild singularities - typically Q-factorial and klt, or more generally dlt or log
canonical singularities might be permitted. We will focus mainly on the klt case here.

The acronym MMP is often used to refer to both the specific process of running a series
of birational modifications to a pair as well as the overall research area. For the avoidance
of confusion MMP will be refer to the process and Minimal Model Program to the area
of study.

The key structural result of the Minimal Model Program is the Cone Theorem. In its
most general form we might expect the following.

Conjecture 2.2.1 (Cone Theorem). Take an excellent ring R admitting a dualising
complex. Let (X,∆)/T be a dlt Q-factorial R-pair of dimension n. Then there is a
countable collection of curves {Ci} on X such that:

1.

NE(X/T ) = NE(X/T )KY +∆≥0 +
∑
i

R[Ci]

2. The rays Ci do not accumulate in (KY + ∆)<0.
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3. For each i there is dCi with

0 < −(KX + ∆).Ci ≤ 2ndci

and dCi divides L ·k Ci for every Cartier divisor L on X.

If the field is algebraically closed we can take dCi = 1 for every i, but not in general even
if the field is perfect. See for example [Tan18a, Example 7.3].

An MMP is then run by contracting extremal KX + ∆ negative curves. The existence of
such contractions is a key application of the Basepoint Free Theorem.

Conjecture 2.2.2 (Basepoint Free Theorem). Let (X,∆)/T be a klt R-pair. Suppose
that D is a Q-Cartier divisor, nef over T , such that D − (KX + ∆) is big and nef over
T . Then D is semiample.

When we contract an extremal ray via φ : X → X ′ we have three mutually exclusive
possibilities.

1. Mori Fibration: dimX ′ < dimX and φ is a KX + ∆ negative fibration of relative
Picard rank 1

2. Divisorial Contraction: φ contracts exactly one prime divisor on X

3. Flipping (or Small) Contraction: φ contracts a locus of codimension at least 2

The first case is considered an output of the MMP and the process terminates here. If
the second occurs then the process may continue unobstructed. The final case, however,
always yields a very singular X ′. In particular since the dimension of N1(X/T ) falls but
no Weil Divisor is contracted, X ′ cannot be Q-factorial.

The solution to this is to construct a flip. This is a pair (X+,∆+) admitting a small
KX+ + ∆+ positive contraction φ+ : X+ → X ′ of relative Picard rank 1 such that the
∆+ is the strict transform of ∆ under the induced map X 99K X+.

Conjecture 2.2.3 (Existence of flips). Let (X,∆)/T be a klt R-pair and suppose φ : X →
Z is a (KX + ∆) negative flipping contraction. Then there exists a flip.

X X+

Z

φ

φ+

Divisorial contractions always reduce the Picard rank, so there can only be finitely many.
Flips, however, do not have such a clearly associated invariant and it is not immediately
clear that there can be no infinite sequence of flips. Nonetheless this is expected to be
true.
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Conjecture 2.2.4 (Termination of flips). Let (X,∆)/T be a Q-factorial klt R-pair. Then
there is no infinite sequence of (KX + ∆) flips X 99K X1 99K ... over T .

Together these conjectures form the key results of the Minimal Model Program and are
sufficient to run a terminating MMP from any klt pair. The output (Y,B) of any such
MMP can be one of two things.

1. Minimal Model: KY +B is nef

2. Mori Fibre Space: Y admits a KY +B negative Mori Fibration

A closely related conjecture is the following

Conjecture 2.2.5 (Special termination). Let (X,∆)/T be a Q-factorial dlt R-pair. Then
there is no infinite sequence of (KX + ∆) flips X 99K X1 99K ... over T whose flipping or
flipped locus meet b∆c.

By [Fuj07, 4.2.1], this holds in dimension n if termination of flips holds in dimensions
≤ n− 1.

For threefolds over a positive dimensional base, the current state of the art is the following:

Theorem 2.2.6. [BMP+20] Let (X,∆)/T be a Q-factorial three-dimensional dlt pair
over a ring R. Suppose that the closed points of R have residue field of characteristic
p = 0 or p > 5. Suppose further that dimT > 0. Then the Cone and Basepoint Free
Theorems hold.

Moreover there exists a (KX + ∆)-MMP over T that terminates. If KX + ∆ is pseudo-
effective then every MMP terminates.

In particular there is a sequence of birational maps of three-dimensional integral, normal
and Q-factorial schemes:

X =: X0

ϕ0
99K X1

ϕ1
99K · · ·

ϕ`−1

99K X`

such that if ∆i denotes the strict transform of ∆ on Xi, then the following properties
hold:

1. For any i ∈ {0, . . . , `}, (Xi,∆i) is dlt, Q-factorial and projective over Z.

2. For any i ∈ {0, . . . , ` − 1}, ϕi : Xi 99K Xi+1 is either a (KXi + ∆i)-divisorial
contraction over Z or a (KXi + ∆i)-flip over Z.

3. If KX + ∆ is pseudo-effective over Z, then KX` + ∆` is nef over Z.

4. If KX + ∆ is not pseudo-effective over Z, then there exists a (KX` + ∆`)-Mori fibre
space X` → Y over Z.
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Over a positive characteristic field slightly less is known, even if the field is algebraically
closed.

Theorem 2.2.7. [BW17, Theorem 1.7][Bir16a][Wal18, Theorem 1.6][HNT17, Proposi-
tion 6.7] Let (X,∆) be a Q-factorial three-dimensional dlt pair, projective over a closed
field κ. Suppose that κ has characteristic p > 5, then the Cone and Basepoint Free
Theorems hold.

Moreover there exists a (KX + ∆)-MMP over κ that terminates. Moreover if KX + ∆ is
effective then every MMP terminates.

Note that by [Wit18b, Theorem 2], if (X,∆) is klt and KX + ∆ is pseudo-effective then
in fact KX + ∆ is effective. These results extend more generally to the case that κ is a
perfect field by base change.

Terminating MMP’s can also be run for certain fourfolds birational to their base or
semistable over a curve [HW20]. Some of the conjectures of the MMP and the existence
of log terminal models are also known for threefold pairs over an imperfect field [DW19b]
or over perfect characteristic five fields [HW19]. Finally many results are also known in
the log canonical setting due to [Wal18], [HNT17].

2.2.2 Birational Modifications

A particularly useful application of the Minimal Model Program is to find modifications
with suitably mild singularities. We will explore some of these modifications and their
consequences in this section. In particular we always assume the existence of log resolu-
tions as well as the conjectures of subsection 2.2.1.

We can largely avoid termination arguments, i.e. termination of klt flips and special
termination. This is done where possible, largely for the sake of generality. For the results
of this section to hold, it suffices to know only that an MMP with scaling terminates for
klt R-pairs (X,B)/T with KX +B pseudo-effective and B big.

In fact slightly less is likely fine - that such pairs have a log terminal model (see Defi-
nition 2.2.28). If R is not of finite type over a field then some care is needed. In some
places we would like to take a log terminal model for pairs which are only rlt (see ??).
It is not immediate that such models exists, even if they do for each witness, though in
practice one would not expect this to be an issue. Some modifications to Theorem 2.2.12
would also be needed with such assumptions.

In any case, the required results are all known in the settings of Theorem 2.2.7 and
Theorem 2.2.6, which is where we will apply them. They also hold on any excellent
surface pair by [Tan18b], which is needed for some inductive arguments. Finally, they
are also satisfied if R is a field of characteristic 0 by [BCHM10]. This will never be needed
but provides a natural motivation for assumptions.

A vital ingredient in these results is the negativity lemma, Lemma 2.1.14.
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The approach for all the modifications is the same - take a log resolution, choose a suitable
pair on the resolution, run an MMP for this new pair. We typically then conclude it is a
crepant modification, in some sense, using the negativity lemma. We begin with the case
of terminalisation.

Lemma 2.2.8. Let (X,∆)/T be a klt R-pair Then there is a terminal pair (Y,∆Y )
admitting a birational morphism, called a terminalisation, π : Y → X with π∗(KX +∆) =
KY + ∆Y .

Proof. Let f : Y ′ → X be a log resolution extracting every divisor with discrepancy at
most 0. Write f ∗(KX + ∆) + E = KY ′ + ∆Y ′ where E is exceptional and E,∆Y ′ ≥ 0
share no support. Blowing up further, if needed, we can assume that ∆Y ′ has disjoint
support, so that (Y ′,∆Y ′) is terminal.

Then we can run a KY ′ + ∆Y ′ MMP over X to get φ : Y 99K Y ′ where π : Y → X has
(Y,∆Y ) terminal and KY + BY π nef. By negativity, G = π∗(KX + ∆) −KY + ∆Y has
G ≥ 0, since G is exceptional and −G is π-nef. On the other hand G = φ∗E, so G ≥ 0.
Thus G = 0 and we have KY + ∆Y = π∗(KX + ∆) as required.

Perhaps the most useful form of modification is a dlt modification. The main difficulty
versus a terminalisation arises from the need to run an MMP for a pair which is not klt.
The following proof comes from [Fuj09, Theorem 10.4], but is largely due to Hacon.

Theorem 2.2.9. Let (X,∆) an R pair with coefficients bounded above by 1. Write ∆′ for
the divisor with CoeffE(∆′) = Min(CoeffE(∆), 1). Then there is a birational morphism
f : Y → X, called a dlt modification, such that the following holds:

• Y is Q-factorial,

• a(E,X,∆) ≤ −1 for every f exceptional divisor E,

• If ∆Y = f−1
∗ ∆′ +

∑
E exceptional E then (Y,∆Y ) is dlt, and

• KY + ∆Y + F = f ∗(KX + ∆) where F =
∑

E : a(E,X,∆)<−1−(a(E,X,∆) + 1)E.

Here Nklt(Y,∆Y ) = f−1(Nklt(X,∆)), Supp(F ) = f−1(Nlc(X,∆)) and f∗F = ∆ − ∆′.
Moreover if (X,∆) is plt then this is a small morphism.

Proof. Take a log resolution π : Y → X of (X,∆) admitting an ample exceptional divisor
−C, which exists by [KW21, Theorem 1]. Note that by the negativity lemma, as −C is
nef we have that C ≥ 0, justifying the choice of sign.

Roughly speaking we would like to say that π∗(KX + ∆) = KY + π−1
∗ ∆′ +E and run an

MMP for the dlt pair (Y, S+π−1
∗ ∆′) where S = Supp(E). Indeed, if such an MMP exists,

then we can replace Y with the output so that N = π∗(KX + ∆)− (KY +E + π−1
∗ ∆′) =
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π−1
∗ (∆ − ∆′) + (E − F ) has π∗N = ∆ − ∆′ ≥ 0 and −N nef. That is, N ≥ 0 by the

negativity lemma and the result follows immediately taking F = N .

When this MMP is not known to exist, the same result is achieved by making small
perturbations by suitable ample divisors. In general we do not have sufficiently strong
Bertini theorems to create klt pairs from such perturbations. However they are always
rlt by ??. This is sufficient to run a terminating MMP, see further ??.

To this end, let

D =
∑

Eexceptional
a(E,X,∆)>−1

E

and

G =
∑
E

a(E,X,∆)≤−1

−a(E,X,∆)E

Let S be the support of G, so that π∗(G− S) = ∆−∆′ ≥ 0. Let A be sufficiently ample
on X, so that H = −C + π∗A is ample. Note that for small s > 0 we still have that
sS − C + π∗A = Hs is ample.

Then (Y, (1− rs)S + (1− t)D+ rHs + π−1
∗ ∆<1) is rlt for small r, s, t > 0 by ??. We may

choose t sufficiently small that a(E,X,∆) > t− 1 for each E in the support of D. Write
π∗(KX + ∆) = KY +B, and then choose N as follows.

−N = KY + S + (1− t)D + π−1
∗ ∆<1 + rH − π∗(KX + ∆ + A)

= S + (1− t)D + π−1
∗ ∆<1 − rC −B

From the choice of t, we have that for each E in the support of D that CoeffE(N) =
(t− 1) + a(E,X,∆) < 0.

Let f : Y ′ → X be the output of an MMP for (Y, (1− rs)S + (1− t)F + rHs + π−1
∗ ∆<1).

By construction Y ′ is Q-factorial and is also a minimal model for the pair (Y, S + (1 −
t)F + π−1

∗ ∆<1 + rH). In particular, letting S ′, F ′, H ′, H ′s, D
′ be the strict transforms of

the corresponding divisors on Y , we have that (Y ′, S ′ + (1 − t)D′ + f−1
∗ ∆<1) is dlt and

M = KY + S ′ + (1− t)D′ + f−1
∗ ∆<1 + rH ′ is nef over X.

Note then that N ′ = f ∗(KX + ∆ + A) −M , so that −N ′ is nef over X. On the other
hand f∗N ≥ 0 and hence by negativity N ′ ≥ 0.

Every component of D′ has negative coefficient inside N ′ by construction. Thus in fact
D′ = 0, since N ′ ≥ 0, and in particular every exceptional divisor on Y over X has discrep-
ancy at most −1. Hence we have contracted every E exceptional with a(E,X,∆) > −1
and therefore S ′ = Exc(π). Moreover the pair (Y,∆Y = S ′ + f−1

∗ ∆<1) is dlt by construc-
tion.

Consider then

F = f ∗(KX + ∆)− (KY + ∆Y ) = B′ − S ′ − f−1
∗ ∆<1 = N ′ − rC ′ ≥ 0.
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If E is exceptional over X then we have CoeffEF = CoeffE(B′−S) = −(a(E,X,∆) + 1).
Suppose then E is not exceptional. Then we get CoeffEF = CoeffE(B′ − f−1

∗ ∆≤1) =
Coefff∗E(∆−∆′). If Coefff∗E∆ ≥ 1 then this yields −(a(E,X,∆) + 1), otherwise we get
CoeffEF = 0.

If X is plt, then b∆Y c = F = 0 and there are no exceptional divisors.

Remark 2.2.10. Note that in the construction above we can choose r sufficiently small
that coeffE(F ) > 0 ensures that coeffE(N ′) > 0 also. So we may assume N ′ and F have
the same support. In particular if C is a curve on Y contracted over X if it meets F it
must be contained in it. Otherwise N ′.C > 0, contradicting nefness of −N ′.

The main consequence of this is that if F dominates x ∈ X then it contains the fibre over
x also.

The case that (X,∆) is klt is particularly important and is called a (small) Q-factorialisation.
One would like to be able to say that the dlt modification is small if (X,∆) is dlt. This
requires quite strong resolution of singularity assumptions, however. If (X,∆) is dlt and
admits a log resolution which is an isomorphism overt the snc locus, then it admits a
small Q-factorialisation.

A useful application of DLT modifications is the study of the non-klt and non-lc loci. In
particular we have following generalisation of the Cone Theorem as well as a connected-
ness result for suitable pairs.

Theorem 2.2.11 (Nlc Cone Theorem). Let (X,B)/T be an R-pair. Then write NE(X/T )nlc
for the cone spanned by curves contained in the non log canonical locus of X. Then we
have the following decomposition

1.
NE(X/T ) = NE(X/T )KY +∆≥0 +NE(X/T )nlc +

∑
i

R>0[Ci]

2. The rays Ci do not accumulate in (KY + ∆)<0.

3. For each i there is dCi with

0 < −(KX + ∆).Ci ≤ 2ndci

and dCi divides L ·k Ci for every Cartier divisor L on X.

4. For each Ci we have R>0[Ci] ∩NE(X/T )nlc = 0.

Proof. If (X,B) is dlt then it is the limit of klt pairs (X, n
n+1

B) and the Cone Theorem
follows immediately from the klt case.

Suppose next that ∆ = B + F where (X,B) is dlt and F has support contained in bBc.
Note that if C is an irreducible curve with F.C < 0 then C ⊆ F . Therefore any effective
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curve C can be written C = C0 +CF where F.C0 ≥ 0 and CF ⊆ F . Thus by compactness
of the unit ball in a finite dimensional vector space, any [γ] ∈ NE(X/T ) can be written
[γ] = [γ0] + [γF ] with F.γ0 ≥ 0 and [γF ] ∈ NE(F/T ) in the same fashion.

Take any KX+∆ negative extremal ray L. Take a non-zero [γ] ∈ L, then as L is extremal
we have [γF ], [γ0] ∈ L. If [γF ] 6= 0 then L ⊆ NE(F/T ). Otherwise if [γF ] = 0 then L
is KX + B negative. Hence we can conclude the result from the Cone Theorem for dlt
pairs.

Suppose finally that X is not dlt. Let π : Y → X be a dlt modification of (X,B) with
(Y,BY ) dlt and KY + BY + F = π∗(KX + B). Take any KX + B negative extremal
ray, L, such that L ∩ NE(X)nlc = {0}. Take any class γ with [γ] ∈ L \ {0} and
choose [γ′] ∈ NE(Y/T ) with f∗[γ

′] = [γ]. Then by the projection formula we have that
(KY +BY + F ).γ′ = (KX +B).f∗γ

′ = (KX +B).γ < 0.

From above, we can write γ′ = C0 + CF +
∑
λiCi where λi > 0, (KY + BY + F ).C0 ≥ 0

CF ∈ NE(F/T ) and the Ci each generate (KY + BY + F ) negative extremal rays with
−(KY +BY + F ).Ci ≤ 2ndci . From our choice of R we must have f∗C0 = f∗CF = 0 and
hence it follows that [f∗Ck] ∈ R \ {0} for some k. Thus (KX + B).f∗Ck = (KY + BY +
F ).Ck ≥ −2ndci .

Since each R is the pushforward of a (KY + BY ) negative extremal ray, there are only
countably many generating curves Ci and they cannot accumulate in (KX + ∆)<0 else
they would accumulate on Y also.

Theorem 2.2.12 (Weak Connectedness Lemma). Let (X,∆)/T be an R-pair with f∗OX =
OT . Then if −(KX + ∆) is big and nef. Suppose that Nklt(X,∆) is vertical over T then
for any t ∈ T , f−1t ∩ Nklt(X,∆) is connected. Otherwise Nklt(X,∆) dominates T and
it is connected.

In particular Nklt(X,∆) is always connected in a neighbourhood of any t ∈ T .

Proof. If (X,∆) is klt over T then the result is trivial so assume otherwise.

Writing −KX + ∆ = A+E for suitably small E such that Nklt(X,∆) = Nklt(X,∆ +E),
we may replace ∆ with ∆ + E and assume that −(KX + ∆) is ample.

We prove this by induction. Suppose first that (X,∆) has dimension 1, then R is a
field. If −(KX + ∆) is big and nef then so is −KX . Then we have degKX = −2 by
[Tan18b, Corollary 2.8] giving that deg ∆ < 2. The non-klt locus of (X,∆) is precisely
the support of b∆c and hence can contain at most one point.

Now suppose that the result holds when the total dimension of X is less than n, take X
of dimension n.

Let f : (Y,∆Y )→ (X,∆) be a dlt modification. Then −L := KY +∆Y +F = f ∗(KX+∆)
with (Y,∆Y ) dlt and L nef and big. We may further write L = A + E with A ample
and E effective and exceptional over X. In particular E has support contained inside
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SY = b∆Y c. Note that SY maps surjectively onto Nklt(X,∆) so it is sufficient to show
that SY is connected.

Take a general GY ∼ εA+ (1− ε)L− δSY , then for small δ we may assume GY is ample.
It may not quite true that we can choose GY such that (X,∆Y + GY ) is dlt. However
∆Y +GY = ∆Y −δSY + εA+(1− ε)L so the pair is rlt and we may still run a terminating
KY +∆Y +GY MMP. Moreover the pair (Y,∆Y +GY ) generalised dlt, which is preserved
by this MMP. In particular (Y,∆Y ) remains dlt during this MMP. By the same logic, if
in fact (Y,∆Y ) is plt then it remains so throughout the MMP.

Write KY +∆Y +GY ∼ −PY = −(εE+F +δSY ) and note Supp(PY ) = SY . In particular
KY + ∆Y + GY is not pseudo-effective. Let Y 99K Y ′ be a (Y,∆Y + GY ) LMMP. If
dimT < dimX then this terminates in a Mori fibre space Y ′ → Z. Otherwise we have
that Y ′ such that −PY ' KY +∆Y +GY is nef over T. These two possibilities correspond
to the verticality conditions. If Nklt(X,∆) dominates T , so does PY and we must end with
a Mori Fibration. Otherwise Nklt(X,∆) is vertical over T , then −PY is psuedo-effective
and we end with −PY ′ nef.

We claim that on the induced pair (Y ′,∆Y ′), Nklt(Y ′,∆Y ′) = Supp(b∆Y ′c) = Supp(PY ′)
has the same number of connected components as Nklt(X,∆). Indeed PY has the same
number of components, so suppose for contradiction there is an MMP step which reduced
the number of connected components. Replacing Y with the first point of failure, we can
assume there is a step π : Y 99K Ŷ such that PŶ has one fewer connected components.

Since Supp(PY ) = b∆Y c, we can subtract components of PY from ∆ and assume that
b∆Y c contains only two components S1, S2 which are disjoint on Y but whose strict
transforms meet on Ŷ . However (Y,∆Y ) is then Q-factorial plt, and thus so too must
(Ŷ ,∆Ŷ ) be. In particular b∆Ŷ c consists of disconnected divisors, a contradiction.

The only possibility then is that π : Y → Ŷ is divisorial and contracts a connected
component of PY . Let PY =

∑
P i
Y be the decomposition into connected components.

Then we can assume P 1
Y is the contracted component, in which case it is a prime divisor.

Thus P 1
Y .C < 0 for any contracted curve, since Ŷ is Q-factorial. On the other hand

P j
Y .C = 0 for any such C, since P j

Y does not meet P 1
Y . Thus PY .C < 0. This is a −PY

MMP however, so this cannot be the case. Hence, as claimed, the number of connected
components of PY ′ is the same as PY .

Suppose first that −PY ′ ' KY ′ + ∆Y ′ + GY ′ is nef over T . Then PY ′ ≥ 0 has −PY nef
over T . Thus for any t ∈ T , if PY ′ meets the fibre over t it must contain the entire fibre.
Otherwise there would be some curve C mapped to t and meeting PY but not contained
in it, contradicting nefness of −PY .

Otherwise we assume that Y ′ → Z is a Mori Fibration. Suppose then that dimZ = 0.
Then Y ′ is a variety over a field with ρ(Y ′) = 1. In particular if D,D′ are effective and H
ample, then Hn−2.D.D′ > 0, so certainly D∩D′ 6= ∅. Thus PY ′ cannot have disconnected
support.

Otherwise have that dimZ > 0. Let F be the generic fibre. We must have PY ′|F > 0

46



2.2 The Minimal Model Program

since Y ′ → Z is a PY ′ ∼ −(KY ′ + ∆Y ′ +GY ′) positive contraction. However PY ′ has the
same support as b∆Y ′c so at least one connected component must dominate Z. Suppose
then, for contradiction, there is a second connected component. We claim it must also
dominate Z. Indeed let S1, S2 be the two connected components and assume that S1

dominates Z. Then S1.C > 0 for any contracted curve C. If we choose C contained
entirely in S2 we see that it meets S1, so no such curve exists and S2 is not vertical.

Consider then (F,∆F = ∆Y ′|F ). Since F → Y ′ is flat, the pullback of ∆Y ′ is just the
inverse image, and in particular b∆T c contains the pullback of both connected compo-
nents. Suppose L is the extremal ray whose contraction induces the Mori fibration. Then
we have −(KY ′ + ∆Y ′ + GY ′).L > 0, but since L is spanned by a nef curve, as contract-
ing it defines a fibration, and GY ′ is effective, we must have GY ′ .L ≥ 0. Hence in fact
−(KY ′ + ∆Y ′).L > 0 also, and so −KF + ∆F is ample. Then, however, the non-klt locus
of (L,∆L) must be connected by induction, a contradiction.

In practice we have essentially run a KY +BY −δSY +M MMP for M = −f ∗(KX+B) big
and nef which preserves dltness of KY +BY . Working with generalised pairs instead, one
can push this result quite far for pairs with rational coefficients. Thinking of (Y,BY +M)
as a generalised dlt pair and instead running a KY +BY +M 'T −F MMP we obtain the
same result for the nlc locus. This proof works even if M is only nef, however termination
in this case requires special termination for dlt pairs. This then generalises Remark 2.2.10.
Many of these ideas are explored for positive characteristic pairs in [FW20].

2.2.3 Adjunction

Dlt modifications are also closely related to the study of adjunction. We work under
the same assumptions as subsection 2.2.2, however the main focus is on the setting of
Theorem 2.2.6. In particular we have the following easy application.

Theorem 2.2.13. Let (X,S +B) be a log-pair where S is a prime divisor not contained
in the support of B ≥ 0. If (X,S + B) is plt near S if and only if (SN , BSN ) is klt,
where SN → S is the normalisation of S and BSN is the different [Kol13, Definition 4.2].
Similarly (X,S +B) is lc near S if and only if (SN , BSN ) is lc.

Proof. The question is local on X so we may assume it is affine with X = Spec(R), and
hence that X is an R-pair. Now, one direction is [Kol13, Lemma 4.8], so suppose that
(SN , BSN ) is klt. Let π : Y → X be a dlt modification, so that π∗(KX+S+B) = KY +SY +
BY + F . Suppose that E is a a divisor exceptional over X with a(E,X, S +B) ≥ 1. Let
T be the normalisation of SY . Now we have that the induced pair (T,BT )→ (SN , BSN )
is crepant. Since (T,BT ) is sub-klt it cannot be that SY meets E by [Kol13, Claim 4.7.3].
On the other hand, the non-klt locus of (Y, SY +BY ) is connected in a neighbourhood of
the fibre over any point by Theorem 2.2.12. Hence π(E) does not meet S.
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The lc case is identical, using Remark 2.2.10 in place of Theorem 2.2.12 to see that if
π(F ) meets S then F meets SY .

Remark 2.2.14. If it is known that one can run an lc MMP, then a similar argument
can be made for the lc case that does not use log resolutions. Assume for contradiction
that (X,S + B) is not lc. Then there is Y → X extracting E lying over s ∈ S with
a(E,X, S+B) > 1. Let F be the reduced exceptional divisor and run a KY +π−1

∗ (S+B)+F
MMP. This does not contract E because the discriminant at E cannot increase, so we can
replace Y with the output and assume that KY + π−1

∗ (B+S) +F +G = π∗(KX +B+S)
for G ≥ 0 exceptional with −G nef over X. By assumption Supp(E) ⊆ Supp(G). Then as
G is nef it contains the fibre over s, and hence meets π−1

∗ S, contradicting [Kol13, Claim
4.7.3].

The plt/klt case is slightly more involved, but can also be proven with a modification of
the arguments of Theorem 2.2.12 so long as we can run suitable klt MMPs. We may
assume as above there is π : Y → X extracting E with a(E,X,B + S) = 1 lying over
s ∈ S such that KY + π−1

∗ (B + S) + F is nef over Y . Then we can run a −(F + π−1
∗ S)

MMP by perturbing KY + π−1
∗ (B + S) as in Theorem 2.2.12. Thus we may assume that

−(F +π−1
∗ S) is nef. This yields a contradiction, however, as then F +π−1

∗ S contains the
fibre over s, and some component of F meets S.

In practice we often wish to know more than this, that if (X,S + B) is plt then in fact
(S,BS) is klt. From above it is enough to know that S is normal. While normality of plt
centres is in general an open problem, it is known that the result holds up to universal
homeomorphism for prime Q-Cartier centres.

Lemma 2.2.15. [HW20, Lemma 2.1]

Let (X,D + B) be a plt log-pair with D prime and Q-Cartier. Then the normalisation
DN → D is a universal homeomorphism.

More is understood in the case X has dimension 3.

Theorem 2.2.16. [BMP+20, Corollary 7.17] Let (X,S + ∆) be a plt log-pair. Suppose
that ∆ has standard coefficients all less than 1. Take any x ∈ S with char k(x) > 5 S is
normal at x. In particular the same holds if KX + S is Q-Cartier.

When S is the special fibre of X over a DVR yet more can be said. In this case normality
is closely related to Cohen-Macaulay-ness and rationality of klt singularities over the
residue field. The important characterisation to keep in mind is the following.

Theorem 2.2.17. [Kov17, Theorem 1.16] Let X be a scheme admitting a dlt pair (X,∆),
then X has rational singularities if and only if X is Cohen-Macaulay.

The first result, due to [HW20], lets us extend the previous theorem. Roughly speaking
it says that if X → R is a fibration such that (X,Xk) is plt and the normalisation of
Xk is Cohen-Macaulay then Xk is normal. In particular this holds if klt singularities are
Cohen-Macaulay over k, in dimension dimXk.

48



2.2 The Minimal Model Program

The key observation we will use is the following.

Lemma 2.2.18. Let R be a complete, excellent DVR and suppose X → R is an integral,
normal R scheme. Let X be the special fibre, and XN → X be the normalisation map.
If XN admits a formal lift over R then XN → X is an isomorphism.

Proof. The morphism XN → X is necessarily finite. Thus by [Sta, Tag 09ZT] there is an
algebraic lift X̄ of XN , endowed with a corresponding finite morphism X̄ → X . On the
other hand X̄ → X is an isomorphism over the generic point of X inside X , and hence a
birational morphism. Since X is normal, X̄ → X must be an isomorphism. In particular,
so too is XN → X.

The normality of a special fibre, therefore, is equivalent to liftability of the normalisation.
We then have the following liftability characterisation.

Lemma 2.2.19. [Zda18, Lemma A.23]

Let U → X be an open immersion of k-schemes. Let Z = X \ U and suppose that Z
has codimension at least 3 in X. Then if X is S3 at every point of Z, the morphism of
deformation functors DefX → DefU is smooth, and in particular DefX(A) → DefU(A) is
surjective for any local, Artinian ring A.

Lemma 2.2.20. Let R be a complete DVR with residue field of characteristic p > 5 and
suppose X → R is an integral, normal R scheme. Let X be the special fibre, and XN → X
be the normalisation map. If (X , X) is a plt R-pair, and XN is Cohen-Macaulay, or even
just S3, then X is normal.

Proof. Then by Lemma 2.2.18 it suffices to check that XN admits a formal lift. By
Lemma 2.2.19, since XN is S3, we need only check this away from a closed subset of
codimension at least 3. By localising at codimension 2 points of X and applying Theo-
rem 2.2.13, however, we see that X is normal in codimension 2. Therefore XN → X is
an isomorphism away from a closed subset of codimension 3 and the result follows, since
X lifts.

Note that XN is always klt under these assumptions. This result does not use the
results of the MMP, however if R is not complete then the existence of log resolutions is
needed to ensure that the plt condition is preserved by base change to the completion.
Alternatively if plt inversion of adjunction is known, then base change to the completion
preserves pltness - since the fibre is not changed.

While this is a very useful characterisation, it cannot be applied to the case that (X,Xk+
B) is a plt pair over a DVR with X not Q-Gorenstein unless B has standard coefficients.
However we also have a very similar set of results coming from vanishing of certain
cohomology classes. For this we need the following liftability result.
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Proposition 2.2.21. Let S be a local Artinian ring and T ↪→ S be a closed immersion
defined by a square-zero ideal I. Let f : Y → T , and h : X → T be flat morphisms and let
g : Y → X be a morphism of T -schemes. Suppose that g∗OY = OX , R1g∗OY = 0 and Y
has a flat lifting f ′ : Y ′ → S. Then there exists a flat lifting X ′ over S and a morphism
g′ : Y ′ → X ′ making the following commutative diagram:

Y Y ′

X X ′

T S.

g

f

g′

f ′

h h′

Moreover, g′∗OY ′ = OX′ and R1g′∗OY ′ = 0.

Proof. This is essentially the construction of [CvS09, Theorem 3.1].

As Y ′ has the same underlying topological space of Y , we may see the sheaf OY ′ as a
sheaf on the topological space Y . Now we define X ′ to coincide with X as a topological
space and the natural map g′ coinciding with g. The schematic structure on X ′ is given
by the sheaf g∗OY ′ . This construction fits naturally in a commutative diagram as above
and we are only left to check that X ′ is a flat lifting of X over S.

Since this can be checked locally, we may assume that X,X ′ are affine. The defining
short exact sequence of the extension is

E : 0→ I → S → T → 0

Since OY ′ is flat over S, this induces a corresponding short exact sequence of OY ′ modules
on Y ′.

Lf ′∗E : 0→ f ′∗I → OY ′ → OY → 0

We now push this forward by g′ onto X ′. Since the pushforward is a topological in nature
we have Rg′∗OY = Rg∗OY . Similarly since I has the natural structure of an R module,
induced by I2 = 0, we have an identification f ∗I = f ′∗I as group sheaves. Thus we obtain
the following.

0→ h∗I → g′∗OY ′ → OX → R1g∗OY ⊗ h∗I → R1g′∗OY ′ → R1g∗OY →

By assumption R1g∗OY = 0 and so we have

Rg′∗Lf
′∗E : 0→ h′∗I → OX′ → OX → 0

viewed here as a sequence of OX′ modules.

Moreover we have Rg′∗Lf
′∗E = Lh′∗E , and thus we see that there is a canonical identifi-

cation OX′ ⊗ R = OX . That is X ′ ×S T = X. We also see that Tori(OX′ , R) = 0, since
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Lh′∗E is nothing but OX′ ⊗L E . Since OX = OX′/IOX′ is flat over R, by assumption, we
must have by [Sta, Tag 0AS8] that OX′ is a flat S module, as required.

Theorem 2.2.22. Let R be a DVR and let X be a normal projective R-scheme such that
Xk is normal. Let f : X → Z be a contraction over R and suppose that

fk : Xk
g1−→ Y1

h1−→ Zk

is the Stein factorisation of fk. If R1g1,∗OXk = 0, then Zk is normal and h1 is an
isomorphism. In particular fk,∗OXk = g1,∗OXk = OZk .

Proof. Since we are only interested in the special fibre, we can replace R with its com-
pletion at its maximal ideal m without any loss of generality. Write Ri = R/mi where m
is the maximal ideal of R, then let Xi = X ×Ri, Zi = Z ×Ri and fi = f ×Ri : Xi → Zi.

Then f1 factors as f1 : X1
g1−→ Y1

h1−→ Z1 where Rig1,∗OX1 = 0, so by Proposition 2.2.21 we
can lift g1 : X1 → Y1 to gi : Xi → Yi over Ri such that the following diagram commutes.

X1 X2 . . .

Y1 Y2 . . .

Z1 Z2 . . .

g1 g2

h1 h2

Here the hi are defined as follows. The underlying topological map is just h1 and the
map OZi → hi,∗OYi comes from the map OZi → fi,∗OXi and the identification fi,∗OXi =
hi,∗gi,∗OXi ' hi,∗OYi . Each hi is finite, and thus by [Sta, Tag 09ZT] we have that the
compatible system {Yi → Zi} lifts to a finite morphism Y → Z over R. By [Sta, Tag

0A42] there is a factorisation f : X
g−→ Y

h−→ Z, where g∗OX = OY , because gi,∗OXi = OYi
for all i. Similarly h is a finite morphism.

Therefore f : X
g−→ Y

h−→ Z is the Stein factorisation for f , but since f is a contraction
of normal schemes we conclude that h has to be an isomorphism. In particular, h1 is an
isomorphism and Zk = Yk, thus concluding.

Remark 2.2.23. The key observation in previous proof is that we can think of Yi as the
lift of Y1 over Zi rather than simply over Ri. This construction can be thought of as a
generalisation of Proposition 2.2.21.

Although Kawamata-Viehweg Vanishing fails in positive characteristic, we often have
sufficiently strong vanishing type results in low dimensions.

Lemma 2.2.24. Let R be an excellent DVR. Let (X,XK + ∆) be a plt R-pair. Suppose
that
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1. Xk is normal;

2. dimZk ≥ 1;

3. there is a contraction f : X → Z over R such that −(KXk + ∆k) is fk-big and
fk-nef;

4. X has dimension at most 3, or k is perfect of characteristic p ≥ 7 and X has
dimension at most 4.

Then Zk is normal and fk,∗OXk = OZk . Further, if f is birational and B := f∗∆, then
(Z,Zk +B) is plt and (Zk, Bk) is klt.

Proof. Since Xk is normal, the pair (Xk,∆k) is klt by adjunction. Then we can replace
R with its completion to prove the first claim, as this leaves the special fibre unchanged.
Let

fk : Xk
f̄k−→ Z̄k

hk−→ Zk

be the Stein factorisation. We can assume dimZk > 0 else there is nothing to prove.
Since −(KXk +∆k) is f̄k-big and f̄k-nef, we conclude Rif̄k,∗OXk = 0 for i > 0 by [Tan18b,
Theorem 3.3] if dimX = 3 and [BK20, Theorem 25] otherwise. By Theorem 2.2.22 hk is
an isomorphism, fk,∗OXk = OZk and Zk is normal.

Suppose now f is birational. As (X,∆ + Xk) is plt, so is (Z,B + Zk) as the plt centre
Xk is not contracted. Hence (Zk, Bk) is klt by adjunction.

Remark 2.2.25. If dim(Zk) = 0 and dimX ≤ 3, then H1(Xk,OXk) = 0 if k is perfect
([NT20, Proposition 2.20]) or p ≥ 7 ([BT22, Theorem 5.7]). Under these assumptions,
the proof of Lemma 2.2.24 still holds, though it is typically less interesting in this setting.

We are now able to prove the normality of the special fibre in a plt family which is not
Q-Gorenstein, assuming that klt pairs have rational singularities over the residue field
and the base is complete.

Theorem 2.2.26. Let R be a complete, excellent DVR with residue field, k, of charac-
teristic p > 5. Suppose that every klt pair of dimension dimXk has rational singularities.
If (X,∆ +Xk) is a plt R-pair then Xk is normal and (Xk,∆k) is a klt pair.

Proof. Let f : (Y,∆Y ) → (X,∆) be a small Q-factorialisation. Then (Y,∆Y + Yk) is a
Q-factorial plt pair and hence Yk is normal by Lemma 2.2.20, since Y N

k has klt, and hence
Cohen-Macaulay, singularities by assumption. In particular Yk = Y N . Then since XN

k

is also klt, it has rational singularities and so by Theorem 2.2.22, X is normal also and
hence (Xk,∆k) is a klt pair.

In particular the result holds when X has dimension 3, even if R is not complete, without
any further assumptions besides those on the characteristic.
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Corollary 2.2.27. Let R be an excellent DVR with residue field, k, of characteristic
p > 5. Suppose (X,∆ + Xk) is a plt R-pair and that X has dimension 3. Then Xk is
normal and (Xk,∆k) is klt.

Proof. Let f : (Y,∆Y ) → (X,∆) be a small Q-factorialisation. Then (Y,∆Y + Yk) is a
Q-factorial plt pair and hence Yk is normal by Theorem 2.2.16. By construction f is
(KY + ∆Y )-trivial so Lemma 2.2.24 ensures the result.

The result also holds in dimension 4 when the residue field is perfect of char p > 5, under
the assumption that resolutions exist by [HW20] together with [HW17, Theorem 1.1],
[ABL20, Corollary 1.3].

2.2.4 Rational Polytopes of Boundaries

In this section we recall relevant information about rational polytopes and their applica-
tion to different kinds of birational models.

A non-exhaustive list of important kinds of birational models is as follows.

Definition 2.2.28. Let φ : X 99K Y be a birational contraction. Take a divisor D and
write D′ = φ∗D.

We say it is D-non-positive (resp. D-negative) if there is a common resolution p : W →
X, q : W → Y where

p∗D = q∗D′ + E

and E ≥ 0 is q exceptional (resp. E ≥ 0 is q exceptional and contains the strict transform
of every φ exceptional divisor in its support).

If (X,∆)/T is a psuedoeffective lc R-pair then φ is a weak log canonical (wlc) model
if φ is a KX + ∆ non-positive birational contraction over T with KY + ∆Y nef, where
∆Y = φ∗∆. As φ is non-positive (Y,∆Y ) is always lc and if (X,∆) is klt then so is
(Y,∆Y ).

If in fact φ is KX + ∆ negative, Y is Q-factorial, and (Y,∆Y ) is dlt then φ is a log
terminal model. Again if (X,∆) is dlt then the dlt condition on (Y,∆Y ) is automatic as
φ is negative. If KY + ∆Y is semiample then φ is said to be a good log terminal model.

If instead φ : X 99K Y is a rational map then it is an ample model for D if there is
H ample on Y such that p∗D ∼R q∗H + E where E ≥ 0 is such that E ≤ B for any
p∗D ∼R B ≥ 0.

Wlc models are not in general unique, but they are crepant. In particular we have the
following.
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Lemma 2.2.29. Suppose that (X,B) is a pseudo-effective log canonical pair, projective
over T . Let φi : (X,B) 99K (Yi, Bi) be wlc models for (X,B) over T . Then KY1 + B1 is
semi-ample over T if and only if KY2 +B2 is so.

Proof. Let f : Z → X be a projective birational contraction of normal schemes together
with proper birational contractions gi : Z → Yi. We can write

KZ + ∆Z = g∗i (KYi +Bi) + Ei,

where Ei are effective and gi-exceptional divisors. Consider

g∗1(KY1 +B1)− g∗2(KY2 +B2) = E2 − E1.

In particular, E2 − E1 is g2-nef and therefore by the negativity lemma, Lemma 2.1.14,
we conclude that E2 − E1 ≤ 0. By symmetry, we conclude that E2 = E1. Therefore
g∗1(KY1 +B1) = g∗2(KY2 +B2). In particular, KY1 +B1 is semi-ample over T iff KY2 +B2

is so.

Ample models, on the other hand, are always unique. If X 99K Y and X 99K Z are two
ample models, then on some common resolution W of both maps we have f : W → Y ,
g : W → Z and h : W → X. Now there are ample divisors AY , AZ with f ∗AY + EY ∼R
h∗D ∼R g

∗AZ + EZ . But by definition EZ = EY and hence f ∗AY ∼R g
∗AZ , so there is

an isomorphism i : Z → Y with i ◦ f = g as required.

If (X,∆) is a pair then we say φ : X 99K Y is an ample model of (X,∆) if it is an ample
model for KX + ∆. We can often replace pairs with linearly equivalent versions.

Lemma 2.2.30. [BCHM10, Lemma 3.6.8] Let φ : X → Y be a rational map. Suppose
(X,∆) and (X,∆′) are two pairs and D,D′ two R-Cartier divisors on X. Take t > 0 a
positive real number.

• If D ≡ tD′ and φ∗D, φ∗D
′ are both R-Cartier then φ is D negative (resp D non-

negative) if and only if it is D′ negative (resp. non-negative)

• If both pairs are lc and KX + ∆ ∼R t(KX + ∆′) then φ is a wlc model for (X,∆) if
and only if it is a wlc model for (X,∆′).

• If both pairs are dlt and KX + ∆ ≡ t(KX + ∆′) then φ is a log terminal model for
(X,∆) if and only if it is a log terminal model for (X,∆′).

• If D ∼R tD then φ is an ample model for D if and only if it is an ample model for
D′.

An import tool for studying different outputs of the MMP and associated models on a
scheme are rational polytopes of divisors. We recall the definition of the various polytopes
we will need.

54



2.2 The Minimal Model Program

Definition 2.2.31. Let X be a normal, Q-factorial, integral scheme and let f : X → T
be a projective morphism such that the image of X in T is positive dimensional. Fix a
Q-divisor A ≥ 0. Let V be a finite dimensional, rational affine subspace of WDivR(X)
containing no components of A.

We have the following subsets of WDivR(X).

VA = {A+B : B ∈ V };

LA(V ) = {∆ = A+B ∈ VA : (X,∆) is an lc pair};
NA(V ) = {∆ ∈ LA(V ) : KX + ∆ is nef over T}.

Given a birational contraction φ : X 99K Y we also define

Wφ(C) = {∆ ∈ E(C) : φ is a weak log canonical (wlc) model of (X,∆)}

and given a rational map ψ : X 99K Z

Aφ(C) = {∆ ∈ E(C) : φ is the ample model of (X,∆)}

Remark 2.2.32. The polytope LA(V ) does not depend on the morphism X → T , however
all the other polytopes introduced above do. We typically consider the projective morphism
X → T as part of the data of X and omit any reliance on it from the notation.

Recall that as long as there is a projective log resolution of (X,A) together with (the
support of) V the set LA(V ) is a rational polytope by the work of Shokurov [Sho92], in
particular this is true when dimX ≤ 3. Further if (X,A + B) is klt and (X,A + B′) is
lc then (X,A+ tB + (1− t)B′) is klt for any 0 ≤ t < 1, so the set of klt pairs is open in
LA(V ). In fact if LA(V ) contains a klt pair, the entire interior consists of klt boundaries
and the same is true for any sub-polytope.

The cone theorem, even the slightly weaker form proved in mixed characteristic in
[BMP+20], implies that NA(V ) is a rational polytope. We record the result in dimension
3.

Lemma 2.2.33. [BMP+20, Proposition 9.31] Suppose that R is an excellent threefold
whose closed points have residue fields of characteristic p = 0 or p > 5. Fix a Q-divisor
A ≥ 0 such that (X,A)/T is a Q-factorial klt three-dimensional R-pair. Then NA(V ) is
a rational polytope.

The further study of these objects will largely be deferred till ??, where we will introduce
a slightly more flexible notion of a pair in order to better work with such polytopes.

We include now, however, one important application. We can prove abundance for pairs
with R-boundaries given the appropriate results for Q-boundaries.

Proposition 2.2.34. Suppose that R is an excellent threefold whose closed points have
residue fields of characteristic p = 0 or p > 5. Let X → T be a threefold R pair where
dimT ≥ 1. Suppose that for every Q-divisor such that (X,B) is klt and KX + B nef,
then KX + B semiample. Then KX + ∆ is semiample for every R-divisor ∆ such that
(X,∆) is klt and KX + ∆ is nef.
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Proof. Let ∆ =
∑n

1 tiBi and V be the R-linear span ofBi in WDivR(X). By Lemma 2.2.33
we have that N0(V ) is a rational polytope. Hence there are rational boundaries Di ∈
N0(V ) such that ∆ =

∑
λiDi where

∑
λi = 1. Since (X,∆) is klt, by choosing

Di sufficiently close to ∆ we may suppose that each (X,Di) is a klt pair with Q-
boundary and KX + Di f -nef. By assumption KX + Di is f -semiample and thus so
is KX + ∆ =

∑
λi(KX +Di).
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Chapter 3

Boundedness of Globally F -split
varieties

This chapter focuses on boundedness results for globally F -split varieties admitting a Log
Fano pair. This work also appears in [Sti20]. In this chapter we generally work over a
field. By variety we will always mean an integral quasi-projective scheme over a field.

In this direction, we prove the following.

Theorem 3.0.1. Fix 0 < δ, ε < 1. Let Sδ,ε be the set of threefolds satisfying the following
conditions

• X is a projective variety over an algebraically closed field of characteristic p > 7, 2
δ
;

• X is terminal, rationally chain connected and F -split;

• (X,∆) is ε-klt and log Calabi-Yau for some boundary ∆; and

• The coefficients of ∆ are greater than δ.

Then there is a set S ′δ,ε, bounded over Spec(Z) such that any X ∈ Sδ,ε is either birational
to a member of S ′δ,ε or to some X ′ ∈ Sδ,ε, Fano with Picard number 1.

In addition to the main result we prove along the way, essentially in ?? and ??, the
following result. This in turn drew heavily on the arguments of Jiang in [Jia14].

Theorem 3.0.2. Fix 0 < δ, ε < 1 and let Tδ,ε be the set of threefold pairs (X,∆) satisfying
the following conditions

• X is projective over a closed field of characteristic p > 7, 2
δ
;

• X is terminal, rationally chain connected and F -split;

• (X,∆) is ε-klt and LCY;
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• The coefficients of ∆ are greater than δ; and

• X admits a Mori fibre space structure X → Z where Z is not a point.

Then the set {Vol(−KX)} is bounded above.

Remark 3.0.3. Together with the observation that taking a terminalisation and running a
KX-MMP can only increase the anti-canonical volume, we reduced weak BAB for varieties
in S∆,ε to the case of prime Fano varieties of ε-LCY type. Over a fixed field, however,
this is essentially superseded by the result of [Das18], which gives weak BAB for varieties
X with KX + ∆ ≡ 0 for some boundary ∆ taking coefficients in a DCC set and making
(X,∆) klt.

3.1 Preliminaries

We will be interested in LCY varieties in which general points can be connected by
rational curves in the following senses.

Definition 3.1.1. Let X be a variety over a field κ. Then X is said to be:

• Uniruled if there is a proper family of connected curves f : U → Y where the generic
fibres have only rational components together with a dominant morphism U → X
which does not factor through Y .

• Rationally chain connected (RCC) if there is f : U → Y as above such that u2 : U×Y
U → X ×k X is dominant.

• Rationally connected if there is f : U → Y as above witnessing rational chain con-
nectedness such that the general fibres are irreducible.

• Separably rationally connected if f as above is separable.

If X → X ′ is a dominant morphism from X uniruled/RCC/rationally connected then we
may compose U → X → X ′ to see that X ′ is uniruled/RCC/rationally connected.

Theorem 3.1.2. [PZ21, Theorem 1.2] Let X be a normal, Cohen Macaulay variety with
WO-rational singularities over a perfect field of positive characteristic. Then X cannot
simultaneously satisfy all the following conditions.

1. X is uniruled.

2. X is F -split.

3. X has trivial canonical bundle.

If in fact X is smooth then we may replace KX ∼ 0 with KX ≡ 0.
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Corollary 3.1.3. Let X be a uniruled, F -split surface over a closed field of positive
characteristic. If KX ≡ 0 then X has worse than canonical singularities.

Proof. Suppose for contradiction that X has canonical singularities. Then we can replace
X with its minimal resolution and suppose that X is smooth. In particular it is Cohen-
Macaulay and has WO-rational singularities and we may apply ?? to obtain the result.

Lemma 3.1.4. [Jia18, Lemma 2.5] Suppose X is projective and normal, D is an R-
Cartier divisor and S is a basepoint free normal and prime divisor. Then for any q > 0,

Vol(X,D + qS) ≤ Vol(X,D) + q dim(X)Vol(S,D|S + qS|S).

Lemma 3.1.5. [Kol13, Proposition 4.37] Suppose that (S,B) is a klt surface and (KS +
B +D) ∼ 0 for D effective, integral and disconnected, then D has exactly two connected
components.

Theorem 3.1.6. [Tan17, Theorem 1] Let (X,∆) be a log canonical (resp. klt) pair where
∆ is an effective Q-divisor. Suppose D is a semiample divisor on X then there is an
effective divisor D′ ∼ D with (X,∆ +D′) log canonical (resp. klt).

Corollary 3.1.7. Suppose that (X,∆) is a sub klt pair together with D a divisor on X
and π : (X ′,∆′) → X a log resolution of (X,∆). Further assume that there is some D′

on X ′ with π∗D
′ = D, −(KX′ + ∆′+D′) π-nef, (X,∆′) sub klt and D′ semiample. Then

there is E ∼ D on X effective with (X,∆ +E) sub klt. If in fact (X,∆) is ε-klt then we
may choose E such that (X,∆ + E) is also.

Proof. We may write ∆′ = ∆p − ∆n as the difference of two effective divisors. Since
(X ′,∆′) is log smooth we must have that (X ′,∆p) is klt. Thus by the proceeding theorem
we have that there is some E ′ ∼ D′ with (X ′,∆p +E ′) klt. Then we must also have that
(X ′,∆′+E ′) is sub klt Write E = π∗E

′, then R = π∗(KX + ∆ +E)− (KX′ + ∆′+E ′) ≡f
−(KX′ + ∆′+D′) is π-nef and exceptional. Hence by the negativity lemma we have that
−R is effective, and π∗(KX + ∆ + E) ≤ (KX′ + ∆′ + E ′) giving that (X,∆ + E) is klt.

If (X ′,∆) is ε-klt then so is (X ′,∆p). Let δ = min(1− ε− ci) where ci are the coefficients
of ∆p and take m ∈ N such that 1

m
< δ. Applying the previous theorem to mD′ instead

of D′, yields E ′′ ∼ mD with (X ′,∆′+E ′′) klt. Taking E ′ = 1
m
E then continuing as above

gives the required divisor.

Theorem 3.1.8. [PW17, Corollary 1.6] Let f : X → Z be a projective fibration of relative
dimension 2 from a terminal variety with f∗OX = OZ over a perfect field of positive
characteristic p ≥ 11, such that −KX is ample over Z. Then a general fibre of f is
smooth.

Theorem 3.1.9 (Bertini for residually separated morphisms). [CGM86, Theorem 1] Let
f : X → Pn a residually separated morphism of finite type from a smooth scheme. Then
the pullback of a general hyperplane H on Pn is smooth.
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3.1.1 Boundedness

Definition 3.1.10. We say that a set X of varieties is birationally bounded over a base
S if there is a flat, projective family Z → T , where T is a reduced quasi-projective scheme
over S, such that every X ∈ X is birational to some geometric fibre of Z → T . If the
base is clear from context, say if every X ∈ X has the same base, we omit dependence on
S.

If for each X ∈ X the map to a geometric fibre is an isomorphism we say that X is
bounded over S.

If S = SpecR we often just say (birationally) bounded over R. In practice we characterise
boundedness over Z via the following result, coming from existence of the Hilbert and
Chow schemes.

Lemma 3.1.11. [Tan19, Proposition 5.3] Fix integers d and r. Then there is a flat
projective family Z → T where T is a reduced quasi-projective scheme over Z satisfying
the following property. If

1. κ is a field;

2. X is a geometrically integral projective scheme of dimension r over κ; and

3. there is a closed immersion j : X → Pmκ for some m ∈ Z such that j∗(O(1))r ≤ d.

Then X is realised as a geometric fibre of Z → T

Corollary 3.1.12. Suppose X is a set of varieties over closed fields and there are positive
real numbers d, V such that for every X ∈ X,

• X has dimension at most d; and

• There is M on X with φ|M | birational and Vol(M) ≤ V .

Then X is birationally bounded over Z. If in fact each M is very ample then X is bounded.

Conversely, if S is Noetherian then we may always choose H relatively very ample on
Z → T with trivial higher direct images. The restriction of H to any geometric fibre is
therefore very ample, and of bounded degree.

Theorem 3.1.13. [Ale94, Theorem 6.9] Fix ε > 0 and an algebraically closed field of
arbitrary characteristic. Let S be the set of all projective surfaces X which admit a ∆
such that:

• (X,∆) is ε-klt;
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• −(KX + ∆) is nef; and

• Any of the following holds KX 6≡ 0, ∆ 6= 0, X has worse than Du Val singularities.

Then S is bounded.

Alexeev shows boundedness over a fixed field, however it is not immediately clear if such
varieties are collectively bounded over Z. We briefly show that his methods can be ex-
tended, via the arguments of [Wit15] to give a boundedness result in mixed characteristic.

Theorem 3.1.14. Fix ε a positive real number. Let S be the set of projective surfaces X
such that following conditions hold:

• X has dimension d over some closed field κ;

• (X,B) is ε-klt for some boundary B;

• −(KX +B) is nef; and

• X is rationally chain connected and F -split (if κ has characteristic p).

Then S is bounded.

Proof. We consider first Ŝ := {X ∈ S : KX 6≡ 0}. Take any such X ∈ Ŝ, then by Alexeev
[Ale94, Chapter 6] we have the following:

• The minimal resolution X̃ → X has ρ(X) < A, for some constant A, depending only
on ε and admits a birational morphism to P2 or Fn for n < 2

ε
. In particular there is

a set Tε bounded over Z such that every X̃ is a blowup of some Y ∈ Tε along a finite
length subscheme of dimension 0. That is the set of minimal desingularisations is
bounded over Z.

• We may run a KX-MMP to obtain X ′ a Mori fibre space.

• There is an N , independent of the field of definition, such that NKX′ is Cartier for
any Mori fibre space X ′ obtained as above.

• Vol(−KX′) is bounded independently of the base field.

• If X ′ is such a Mori fibre space X ′ → P1 and F a general fibre then −KX +(2
ε
−1)F

is ample.

It is sufficient then to show S ′ = {X ′ an ε− LCY type, Mori fibre space } is bounded in
mixed characteristic, then Ŝ is bounded by sandwiching as in Alexeev’s original proof and
the full result follows. In turn by ?? it is enough to find V such that every X ′ ∈ S ′ has
a very ample divisor, H, satisfying H2 ≤ V . We do this first for positive characteristic
varieties.
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Fix, then, m > 2
ε
−1 and suppose X ′ → P1 is a Mori fibre space in positive characteristic.

Then A = −KX′ + mF is ample and NA is Cartier. Further we have A′ = 7NKX′ +
27N2A = (7N − 27N2)KX′ − 27N2mF is very ample by [Wit15, Theorem 4.1]. Since F
is base point free, we may add further multiples of F and consider the very ample Cartier
divisor Â = (27N2 − 7N)(−KX′ + 2F ). Then

Â2 = Vol(X ′, Â) ≤ (27N2 − 7N2)(Vol(X ′,−KX′) + 2Vol(F,−KF ))

which is bounded above, since Vol(X ′,−KX′) is bounded and Vol(F,−KF ) = 2.

Similarly if X ′ has ρ(X ′) = 1 and −KX′ ample then −nKX′ is a very ample Cartier
divisor with vanishing higher cohomology for some n fixed independently of X ′. Then
(−nKX′)

2 = n2Vol(X,−KX′) is bounded and the result follows similarly.

Suppose then that X ∈ S with KX ≡ 0, then it must have worse than canonical singu-
larities by ??. Let π : Y → X be a minimal resolution, with KY + B = π∗KX ≡ 0 and
B > 0, then Y is still ε-klt, so Y ∈ Ŝ. Consequently X has Q-Cartier Index dividing N
also. Moreover, there is H on Y very ample with H2 bounded above. Let H ′ = π∗H, so
that NH ′ is ample and Cartier on X. Applying [Wit15, Theorem 4.1] again we see that
A ≡ 27N2H is very ample, since KX ≡ 0, with A2 bounded above.

The arguments in characteristic 0 are essentially the same, making use of Kollár’s effective
base-point freeness result [Kol93, Theorem 1.1, Lemma 1.2] instead of Witaszek’s result,
and the existence of very free rational curves on smooth rationally connected surfaces
instead of ??.

Remark 3.1.15. In particular we have an affirmative answer to Question 1 in dimension
2.

3.2 Conic Bundles

In this section the ground field will always be algebraically closed of characteristic p > 0.
In some results we put additional restrictions on the characteristic. We start with some
useful results on finite morphisms and klt singularities.

Definition 3.2.1. Take a finite, separable and dominant morphism of normal varieties
f : X → Y .

If D is a divisor on Y then f is said to be tamely ramified over D if for every prime
divisor D′ lying over D the ramification index is not divisible by p and the induced residue
field extension is separable.

Moreover f is said to be divisorially tamely ramified if for any proper birational morphism
of normal varieties Y ′ → Y we have the following. If X ′ → X is the normalisation of
the base change X ×Y Y ′, and f ′ : X ′ → Y ′ the induced map, then f ′ is tamely ramified
over every prime divisor in Y ′.
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If instead f is generically finite, we say it is divisorially tamely ramified if the finite part
of its Stein factorisation is so. Equally if either of X or Y is not normal, f : X → Y is
said to be divisorially tamely ramified if the induced morphism on their normalisations
is.

If f is generically finite of degree d < p then it is always divisorially tamely ramified. If
D′ lies over a D then both the ramification index, rD′ and the inertial degree, eD′ are
bounded by d, in fact d =

∑
f(D′)=D rD′eD′ by multiplicativity of the norm. This remains

the case on any higher birational model.

Lemma 3.2.2. Let f : Y → X be a dominant, separable, finite morphism of normal
varieties over char p. Suppose that KX is Q-Cartier then KY = f ∗KX + ∆ where ∆ ≥ 0.
Further if f is divisorially tamely ramified, then for Q ∈ Y a codimension 1 point lying
over P ∈ X we have CoeffQ(∆) = rQ − 1 where rQ is the degree of f |Q : Q→ P .

Proof. By localising at the codimension 1 points of X we reduce to the case of Riemann-
Hurwitz-Hasse to see that ∆ exists as required and CoeffQ(∆) = δQ where δQ ≥ rQ − 1
with equality when p - rq. In particular when f is divisorially tamely ramified, we ensure
δQ = rQ − 1.

Lemma 3.2.3. [Kol97, Proposition 3.16] Let f : X ′ → X be a dominant, divisorially
tamely ramified, finite morphism of normal varieties of degree d over char p. Fix ∆ on
X with KX + ∆ Q-Cartier. Write KX′ + ∆′ = f ∗(KX + ∆) then the following hold:

1. 1 + TDisc(X,∆) ≤ 1 + TDisc(X ′,∆′) ≤ d(1 + TDisc(X,∆)).

2. (X,∆) is sub klt (resp. sub LC) iff (Y,∆′) is sub klt (resp. sub LC).

Proof. By restricting to the smooth locus of X, which contains all the codimension 1
points of X, we may suppose that KX is Cartier and apply the previous lemma. Hence
we get ∆′ = f ∗(KX +∆)−KX′ where for Q ∈ X ′ lying over P ∈ X we have CoeffQ(∆′) =
rQ(CoeffP (∆))− (rQ − 1).

Suppose that we have proper birational morphisms π : Y → X and we write Y ′ for the
normalisation of Y ×X X ′ so that we have the following diagram.

Y ′ Y

X ′ X

π′

g

π

f

Let E ′ be a divisor on Y ′ exceptional over X ′ and E the corresponding divisor on Y .

At E ′ we can write

KY ′ = π′∗(KX′ + ∆′) + a(E ′, X ′,∆′)E ′ = g∗π∗(KX + ∆) + a(E ′, X ′,∆′)E ′
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essentially by definition. Conversely however we have KY ′ = g∗KY + δE′E
′ which may

be rewritten as

KY ′ = g∗(π∗(KX + ∆) + a(E,X,∆)E) + δE′E
′.

In particular equating the two descriptions, as δE′ = rE′ − 1 by ??, we have that

rE′a(E,X,∆) + (rE′ − 1) = a(E ′, X ′,∆′)

and thus a(E,X,∆) + 1 = 1
rE′

(a(E ′, X ′,∆′) + 1) with 1 ≤ rE′ ≤ d.

Since, by a theorem of Zariski [Kol96, Theorem VI.1.3], every valuation with center
on X ′ is realised by some birational Y ′ → X ′ occurring as a pullback of a birational
morphism Y → X, this is sufficient to show that 1 + TDisc(X,∆) ≤ 1 + TDisc(X ′,∆′) ≤
d(1 + TDisc(X,∆)). The second part then follows.

Definition 3.2.4. A conic bundle is a threefold sub pair (X,∆) equipped with a morphism
f : X → Z where Z is a normal surface, f∗OX = OZ, the generic fibre is a smooth rational
curve and (KX + ∆) = f ∗D for some Q-Cartier divisor on X. We will call it regular
if X and Z are smooth and f is flat; and terminal if X is terminal and f has relative
Picard rank 1. Further we call it (sub) ε-klt or log canonical if (X,∆) is.

If each horizontal component of ∆ is effective and divisorially tamely ramified over Z
then the conic bundle is said to be tame.

For P a codimension 1 point of Z we define

dP = max{t : (X,∆ + tf ∗(P )) is lc over the generic point of P}.

The discriminant divisor of f : X → Z is DZ =
∑

P∈X(1− dP ). The moduli part MZ is
then given by D −DZ −KZ.

In positive characteristic the discriminant divisor is not always well defined for a general
fibration, it may be that dP 6= 1 for infinitely many P . This can be caused by either
a failure of generic smoothness or inseparability of the horizontal components of ∆ over
the base.

Suppose, however, that (X,∆)→ Z is a tame conic bundle. We may take a log resolution
X ′ → X as this does not change dP and is still a tame conic bundle by the ??. Thus we
may suppose that ∆ is an SNC divisor and hence near P , ∆+f ∗P is also SNC for all but
finitely many P , by generic smoothness of the fibres and as the horizontal components
are divisorially tamely ramified over Z. Hence in fact BZ is well defined in this case.

Lemma 3.2.5. Let f : (X,∆) → Z be a tame conic bundle, and X ′ → X either a
birational morphism from a normal variety or the base change by a divisorially tamely
ramified morphism from a normal variety g : Z ′ → Z. Then there is ∆′ with (X ′,∆′) a
tame conic bundle over Z or Z ′ as appropriate. Moreover in this case X ′ → X is also
divisorially tamely ramified.
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Proof. If π : X ′ → X is a birational morphism with KX′ + ∆′ = π∗(KX + ∆) then the
only horizontal components of ∆′ are the strict transforms of horizontal components of
∆. Take such a component D′ then, normalising if necessary, it factors D′ → D → Z
with D → Z divisorially tamely ramified but then it must itself be divisorially tamely
ramified.

Suppose then g : Z ′ → Z is generically finite. From above, and by Stein factorisation we
may freely suppose that g is finite. Then the base change morphism g′ : X ′ → X is a
finite morphism of normal varieties and we may induce ∆′ with g′∗(KX + ∆) = KX′ + ∆′.
Again the horizontal components of ∆′ are precisely the base changes of the horizontal
components of ∆.

It suffices to show then that if D is a horizontal divisor on X such that D → Z is
divisorially tamely ramified then D′ → Z ′, the base change, is also divisorially tamely
ramified. Certainly D′ → Z ′ is still separable. Suppose C is any curve on Z and C ′ a
curve on Z ′ lying over it. In turn take any CD′ lying over C ′ on D′. Then CD′ is the
base change of some CD. Since CD → C is separable, so too is CD′ → C ′. Equally as the
ramification indices of C ′, CD are not divisible by p, neither can the ramification index of
CD′ over CD be. This same argument holds after base change by any higher birational
model of Z, and by [?kollar1999rational, Theorem VI.1.3] every valuation with centre
on Z ′ is can be realised on the pullback of some such model. Thus D′ → Z ′ is divisorially
tamely ramified and hence (X ′,∆′)→ Z ′ is tame.

It is enough to show that X ′ → X is divisorially tamely ramified after base changing by
a higher birational model of Z. In particular, after taking a flatification we may assume
f : X → Z is flat. Now suppose D is a divisor on X, lying over some curve C on Z. We
have f ∗C =

∑
Ei with E0 = D. Let Cj be the curves lying over C in Z ′, then if Ei,j

are the divisors lying over Ei, for some fixed i, they are in one-to-one correspondence
with the Cj. We have g′∗f ∗C =

∑
ri,jEi,j =

∑
j ri

∑
iEj and thus none of the ri,j, in

particular the r0,j are divisible by p. Moreover the E0,j → E0 must be separable since
the Cj → C are.

The same holds after taking a higher birational model of X, and thus X ′ → X is diviso-
rially tamely ramified as claimed.

In practice we deal exclusively with tame conic bundles arising in the following fashion.

Lemma 3.2.6. Suppose that (X,∆) is klt and LCY, equipped with a Mori fibre space
structure over a surface Z and the horizontal components of ∆ have coefficients bounded
below by δ. Then if X is defined over a field of characteristic p > 2

δ
, f : (X,∆)→ Z is a

tame conic bundle.

Proof. Since δ < 1, the characteristic is larger than 2 and the general fibre is necessarily
a smooth rational curve, in particular X is a conic bundle. Let G be the generic fibre,
so that (G,∆G) is klt and G is also smooth rational curve. Then if D is some horizontal
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component of ∆ the degree of f : D → Z is precisely the degree of D|G. However
deg δD|G < deg ∆|G = −2 and thus degD < p. Replacing D by its normalisation, D′

does not change the degree, so D′ → Z has degree < p and thus is divisorially tamely
ramified.

Remark 3.2.7. One might be tempted to ask if this bound could be further improved for
ε-klt pairs, (X,∆). In this case we have (G,∆G) is ε-klt and so one might attempt to use
a bound of the form p > 1−ε

δ
to prevent any component of ∆ mapping inseparably onto

the base. It does not seem however that such a bound would ensure that every component
is divisorially tamely ramified and there may be wild ramification away from the general
fibre.

Theorem 3.2.8. Let f : (X,∆) → Z be a sub ε-klt, tame conic bundle. Then for some
choice of M ∼Q MZ we have (Z,DZ +M) sub ε-klt. If in fact ∆ ≥ 0, we may take DZ ,M
to be effective also.

Remark 3.2.9. The implicit condition that (X,∆) is a threefold pair is necessary only
in that it assures the existence of log resolutions. This result holds in dimension d so long
as the existence of log resolutions of singularities holds in dimensions d, d− 1.

We will prove this in several steps. First we consider the case that ∆h, the horizontal part
of ∆, is a union of sections of f . In this setting we have an even stronger result. After
moving to a higher birational model, we have that (Z,DZ) is klt and MZ is semiample.

Lemma 3.2.10. Suppose that f : (X,∆)→ Z is a sub ε-klt conic bundle with ∆h effective
and with support that is generically a union of sections of f , then there is π : Z ′ → Z a
birational morphism with (Z ′, DZ′) sub ε-klt and MZ′ semiample. In particular for some
choice of M ∼MZ′ we have (Z,DZ + π∗M) sub ε-klt.

Proof. This result is well known and essentially comes from [PS09]. Details specific
to positive characteristic can be found in [DH16, Section 4], [Wit18b, Lemma 3.1] and
[CTX13, Lemma 6.7]

We sketch, some key points of the proof.

Since generically X → Z is a P1 bundle and the horizontal part of ∆ is a union of sections,
we induce a rational map φ : Z 99KM0,n, the moduli space of n-pointed stable curves of
genus 0. By taking an appropriate resolution we may suppose that (X,∆) is log smooth,
Z is smooth and φ is defined everywhere on Z. Blowing down certain divisors on the
universal family over M0,n and pulling back to Z we may further assume that X → Z
factors through a P1 bundle over Z via a birational morphisms.

Then working locally over each point of codimension 1 and applying 2 dimensional in-
version of adjunction, we see that in fact DZ is determined by the vertical part of ∆,
indeed ∆V = f ∗DZ , and that MZ is the pullback of an ample divisor on M0,n by φ. In
particular MZ is semiample and DZ takes coefficients in the same set as ∆v and therefore
they are bounded above by 1− ε.

From the following lemma, we see that in fact we may further suppose that (Z,DZ) is
log smooth. Since if π : (Z ′,∆′) → Z is a log resolution of (Z,DZ) we have KZ′ + ∆′ =
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π∗(KZ+DZ), π∗MZ = MZ′ and KZ′+DZ′+MZ′ = π∗(KZ+DZ+MZ) = KZ′+∆′+MZ′ ,
giving DZ′ = ∆′ as required. In particular then ?? gives that (Z,DZ + MZ) is sub ε-
klt.

Lemma 3.2.11. Suppose that Z is as given above and Z ′ → Z is the birational model
found in the proof with MZ′ semiample. Suppose further that Y is a normal variety
admitting a birational morphism π : Y → Z ′. If MY is the moduli part coming from the
induced conic bundle XY → Y then π∗MZ′ = MY .

Proof. Let φ : Z ′ →M0,n and χ : Y 99KM0,n be the rational maps induced by the base
changes of X → Z. By assumption φ is a morphism.

Although χ is a priori defined only on some open set, it must factor through φ whenever
it is defined, and hence extends to a full morphism χ = φ ◦ π.

Write then that MZ′ = φ∗A and MY = χ∗A′. A more careful study of the proof of the
previous result would give A = A′ and the result follows. However for simplicity one can
also note that MZ′ = π∗MY = π∗χ

∗A′ = φ∗A′, so that MY = π∗φ∗A′ = π∗MZ′ .

We now reduce from the general case of ?? to the special case of ?? to prove the theorem.
This requires the following lemma, due essentially to Ambro.

Lemma 3.2.12. [Amb99, Theorem 3.2] Suppose that f : (X,∆) → Z is a tame conic
bundle. Let g : Z ′ → Z be a finite, divisorially tamely ramified morphism of normal
varieties and (X ′,∆′) → Z ′ the induced fibration. Then (X ′,∆′) → Z is tame and
g∗(KZ +DZ) = KZ′ +DZ′ for DZ′ the induced discriminant divisor of (X ′,∆′)→ Z ′.

Proof. By ??, (X ′,∆′) → Z ′ is tame and hence DZ′ is well defined by the discussion
proceeding ??.

It remains to show that g∗(KZ + DZ) = KZ′ + DZ′ . To see this fix Q a prime of Z ′ and
write rQ for the degree of the induced map onto some P a prime of Z.

From the proof of ?? we see that if KZ′ + B = g∗(KZ + DZ) then 1 − CoeffQ(B) =
rQ(CoeffP (DZ)− 1). In particular then it suffices to show that dQ = rQdP . We consider
two cases.

Suppose that c ≤ dP . Then we have (X,∆+cf ∗P ) log canonical over P . Hence (X ′,∆′+
g′∗f ∗P = ∆ + cf ′∗g∗P ) is also log canonical by the ??. But f ′∗g∗P ≥ f ′∗rQQ so it must
be that dQ ≥ rQc. Hence in fact dQ ≥ rQdP .

Conversely if c ≥ dP then,(X,∆ + cf ∗P ) is not log canonical over P . In particular
replacing X with a suitable birational model X ′′ → X we suppose that there is some
prime E of X with fE = P and CoeffE(∆ + cf ∗P ) < −1. Similarly there is E ′ on
X ′ with g′(E ′) = E and f ′(E ′) = Q which also has CoeffE(∆′ + cg′∗f ∗P ) < −1 but
CoeffE(cg′∗f ∗P ) = CoeffE(cf ∗rQP ) and hence c ≥ rdQ. Thus we have the equality
dQ = rQdQ.
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Note that in the setup above g∗(KZ + DZ + MZ) = KZ′ + DZ′ + MZ′ so we must have
that MZ′ = g∗MZ .

Lemma 3.2.13. Suppose that f : X → Z is a tame conic bundle. Then there is a
finite, divisorially tamely ramified morphism g : Z ′ → Z with g∗(KZ + DZ + MZ) =
KZ′ +DZ′ +MZ′ and a birational morphism h : Z ′′ → Z ′ such that MZ′′ is semiample.

Proof. Let D be any horizontal component of ∆ which is not a section of f then f
restricts to a divisorially tamely ramified morphism D → Z. After replacing D with its
normalisation and Stein factorising, we may suppose that D → Z is finite with D normal.
Taking the fibre product of X → Z with the normalisation D̃ of D we find X ′ → D̃
satisfying the initial conditions but with the one component of ∆ is now generically a
section.

In this fashion, we eventually get to Z ′ → Z with g∗(KZ +DZ +MZ) = KZ′ +DZ′ +MZ′

and all the horizontal components of ∆ being generically sections. Hence we may apply
?? to give the result.

Proof of ??. Take f : (X,∆) → Z as given. Then we have g : Z ′ → Z and h : Z ′′ → Z
as above. Write d for the degree of g. Fix BZ′′ ∼ MZ′′ making (Z ′′, DZ′′ + BZ′′) sub
klt. Write BZ = 1

d
g∗h∗BZ′′ . It is sufficient to show that (Z,DZ + BZ) is sub ε-klt since

BZ ∼MZ is always effective and DZ ≥ 0 whenever ∆ is.

Let Y → Z be a log resolution of (Z,DZ+BZ) and take Y ′, Y ′′ appropriate fibre products
to form the following diagram.

Y ′′ Z ′′

Y ′ Z ′

Y Z

π′′

h′ h

π′

g′ g

π

We have that MY ′′ = π′′∗MZ′′ , so write BY ′′ = π′′∗BZ′′ and 1
d
g′∗h

′
∗BY ′′ = BY . Then we

must have that π∗BY = BZ and KY + DY + BY ∼ π∗(KZ + DZ + BZ). Note further
that π∗BZ and BY differ only over the exceptional locus, hence BY has SNC support.
Indeed DY + BY has SNC support. Further since (Y ′′, DY ′′ + BY ′′) is sub ε-klt and
g′∗h

′
∗(DY ′′ + BY ′′) = d(DY + BY ) it must be that DY + BY have coefficients strictly less

than 1− ε, thus (Y,DY +BY ) is sub ε-klt and therefore so is (Z,DZ +BZ).

3.2.1 Generic smoothness

We will also need to consider the pullbacks of very ample divisors on the base of a suitably
smooth conic bundle. This is done to obtain an adjunction result which is required in the
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next section. We work here under the assumption the ground field is closed of positive
characteristic p > 2.

Lemma 3.2.14. Let (X,∆)→ Z be a regular conic bundle. Then there is some, possibly
reducible, curve C on Z such that for any P ∈ Z the fibre, FP , over P is determined as
follows:

1. If P ∈ Z \ C then Fp is a smooth rational curve.

2. If P ∈ C \ Sing(C) then Fp is a the union of two rational curves meeting transver-
sally.

3. If P ∈ Sing(C) then Fp is a non-reduced rational curve.

Further if H is a smooth curve meeting C transversely away from Sing(C) then f ∗H is
smooth.

Proof. This is essentially [Sar83, Proposition 1.8]. We sketch the proof as our statement
is slightly different.

Since X is smooth −KX is relatively ample and defines an embedding into a P2 bundle
over Z. Fix any point P in X then in some neighbourhood U around P , XU is given
inside P2 × U by the vanishing of xtQx. Here Q is a diagonalisable 3 × 3 matrix taking
coefficients in κ[U ], unique up to invertible linear transformation, so we may take C to
be the divisor on which the rank of Q is less than 3. That Q has rank 3 on some open
set follows from smoothness of the generic fibre.

Then the singular points of C are precisely the locus on which Q has rank less than 2.
By taking a diagonalisation of Q we may write XU as the vanishing of

∑
Aix

2
i for some

Ai ∈ κ[U ] and we obtain the classification of fibres by consideration of the rank.

Suppose then H is a smooth curve as given. Away from C, f ∗H is clearly smooth, so
it suffices to consider the intersection with C, however we can see it is smooth here by
computing the Jacobian using the local description of X given above.

Theorem 3.2.15 (Embedded resolution of surface singularities). [Cut09, Theorem 1.2]
Suppose that V is a non-singular variety over an algebraically closed field of dimension
3, S a reduced surface in V and E a simple normal crossings divisor on V then there is
a sequence of blowups π : Vn → Vn−1 → ...V such that the strict transform Sn of S to Vn
is smooth. Further each blowup is the blowup of a non-singular curve or a point and the
blown up subvariety is contained in the locus of Vi on which the preimage of S+E is not
log smooth.

Corollary 3.2.16. Suppose (X,∆) → Z is a regular, tame conic bundle and we fix a
very ample linear system |A| on Z. Then there is a log resolution (X ′,∆′)→ (X,∆) such
that for any sufficiently general element H ∈ |A|, its pullback G′ to X ′ has (X ′, G′ + E)
log smooth for E the reduced exceptional divisor of π.
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Proof. By the previous theorem we may find birational morphism π : X ′ → X which is a
log resolution of (X,∆) factoring as blowups X ′ = Xn → Xn−1 → ....X0 = X of smooth
subvarieties contained in the non-log smooth locus of each step.

We show first a general G′ is smooth. At each stage we blow-up smooth curves Vi in the
non-log smooth locus. Let Gi be the pullback of H to Xi, suppose for induction it is
smooth. That G0 is smooth is the content of ?? and so the base case of the induction
argument holds.

We may assume that fi,∗Vi = VZ,i is a curve for fi : Xi → X → Z else a general H avoids
it and so a general Gi+1 is smooth also. Note that each vertical component of ∆ is log
smooth near the generic point of their image, since X is a regular conic bundle, so Vi
must be contained in the strict transform of some horizontal component of ∆. Since Vi
is not contracted, it follows that Vi → VZ,i is separable as (X,∆, Z) is tame. Thus as a
general H meets VZ,i transversely, a general Gi meets Vi transversely and hence a general
Gi+1 is smooth. By induction then G′ = Gn is smooth.

Suppose that V is a curve contained in the locus on which π−1 is not an isomorphism
that is not contracted by f . Then for a general point P of V , we claim that the fibre
over P is log smooth. As before we argue by induction, the the base case trivially true.
Suppose then that we blowup a curve Vi lying over V on X and VZ on Z. Then Vi must
meet the fibre over P transversally. Indeed Vi → V → VZ is separable, as above, forcing
Vi → V to be separable also. But then Vi meets a general fibre transversally as claimed.

Suppose now that E is an integral exceptional divisor of X ′ → X. Let V = π∗E, then as
before general G meets V transversely if V is a curve, or not at all otherwise. Suppose
V is a curve, then for a general point P of V , the fibre over P is a system of log smooth
curves. Finally then the intersection of a general G′ and E is a scheme of pure dimension
1 contained in the disjoint union of such systems of log smooth curves, in particular it is
log smooth.

Suppose then we fix two exceptional divisors E1, E2 meeting at a curve V . Again we
suppose that V is not contracted by f ′ = f ◦ π. Write π∗V = VX and f ′∗V = VZ .
Then VX → VZ is separable as before and for a general G′ meeting V transversely,
the intersection of G with π∗V ′ is a log smooth system of rational curves, and then
G.V ⊆ G.π∗VX is log smooth, or equally it is finitely many points with multiplicity
1.

Theorem 3.2.17. Let (X,∆)→ Z be a regular, tame conic bundle and |A| a very ample
linear system on Z. Then there is a log resolution (X ′,∆′) → (X,∆) such that for a
general H ∈ |A|, the pullback G′ to X ′ is smooth with (X ′,∆′ +G′) log smooth.

Proof. Write E for the reduced exceptional divisor. For a general H ∈ |A| we let G = f ∗H
be the pullback to X. We then take X ′ as in ??.

Clearly a general G′ avoids the intersection of any 3 components of Supp(∆′) + E, and
from above (X ′, G′ + E) is log smooth. Suppose D is a vertical component of ∆. Then
either G can be assumed to avoid it, or to meet it at a smooth fibre. By the usual
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arguments, since the only non-contracted curves we blow up map separably onto their
image, G′ meets D′ the strict transform of D on X ′ along a log smooth locus. Further
this locus meets any exceptional divisor either transversally or not at all. Now suppose
D2 is any other component of Supp(∆′) + E which does not dominate Z. Then if either
D2.D

′ has dimension less than 1 or is contracted over Z then a general G′ avoids it, so
suppose otherwise. In which case D2 must be exceptional over X with image V ⊆ D
on X. However D2.D

′ is just the strict transform of V inside D′ and, for a general G′,
G′.D2.D is log smooth as required.

It remains then to consider the horizontal components of ∆. LetD be any such component
and D′ its strict transform. Since (X,∆, Z) is tame, so is (X ′,∆′, Z). In particular then
D′ → Z is divisorially tamely ramified and so residually separated over Z away from
finitely many points of Z. Hence by Bertini’s Theorem, ??, the pullback of a general
H, which is just the intersection of a general G′ with D′ is smooth. Further as D′ → Z
is divisorially tamely ramified, if V is any curve on D′ not contracted over Z a general
G′|D′ meets it transversally. Hence for any other component D2 of Supp(∆′) +E we have
(X ′, D′ +D2 +G′) log smooth for a general G′ and the result follows.

Corollary 3.2.18. Suppose (X,∆, Z) is a terminal, sub ε-klt, tame conic bundle. Take
a general very ample H on Z, with G = f ∗H, then (G,∆|G = ∆G) is sub ε-klt.

Proof. Throwing away finitely many points of Z we may freely suppose that the conic
bundle is regular.

By the previous theorem there is a log resolution π : (X ′,∆′)→ (X,∆) with (X ′,∆′+G′)
smooth. Write πG : G′ → G for the restricted map. Then (KX′ + ∆′+G′)|G′ = π∗G(KG +
∆G) = KG′ + ∆′|G. However ∆′|G is log smooth with coefficients less than 1 − ε by
construction, and hence (G,∆G) is ε-klt by assumption.

3.3 F -Split Mori Fibre Spaces

The aim of this section is to prove the following theorem.

Theorem 3.3.1. For a field κ of positive characteristic we let Sκ be the set of (X,∆),
ε-LCY threefold pairs with X terminal, globally F -split and rationally chain connected
over κ. We further require that (X,∆) admits a KX Mori fibration f : (X,∆)→ Z where
either

1. Z is a smooth rational curve, there is H on Z very ample of degree 1 and a general
fibre G of X → Z is smooth.

or

2. p > 2 and (X,∆) → Z is a tame, terminal conic bundle such that there is a very
ample linear system |A| on Z with A2 ≤ c. In which case G the pullback of a
sufficiently general H ∈ |A| is smooth with (G,∆G = ∆|G) ε-klt by ??.
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Then the set of base varieties

S ′ = {X such that ∃∆ with (X,∆) ∈ Sκ for algebraically closed κ}

is birationally bounded over Z.

Remark 3.3.2. In practice this will be applied to pairs over fields of characteristic p >
7, 2

δ
with boundary coefficients bounded below by δ. The constraints on p come from ??

and ??, via ??.

This chapter is devoted to the proof, but the outline is as follows. We fix a general, very
ample divisor H on the base and write G = f ∗H. Then argue that A = −mKX + nG is
ample, for m,n not depending on X,∆ or G. This is done by bounding the intersection
of KX with curves not contracted by f and generating an extremal ray in the cone of
curves. We then show that in fact we may choose these m,n such that A defines a
birational map, by lifting sections from G using appropriate boundedness results in lower
dimensions. The F -split assumption is used to lift sections from G with Lemma 2.1.33,
it will also be needed to apply Definition 2.1.2 by ensuring that the bases Z are suitably
bounded.

If, for some t > 0, the non-klt locus of (X, (1 + t)∆) is contracted then since (KX + (1 +
t)∆) ∼ −tKX it follows that every −KX negative extremal ray is generated by a curve
γ with KX .γ ≤ 6

t
. In particular as we have G.C ≥ 1 for any −KX negative curve C it

must be that −KX + 7
t
G is ample. Clearly for any (X,∆)→ Z there is such a t, however

we wish to find one independent of the pair. For this we may use a result due to Jiang,
the original proof is a-priori for characteristic 0, but the proof is arithmetic in nature and
holds in arbitrary characteristic.

Theorem 3.3.3. [Jia18, Theorem 5.1] Fix a positive integer m and ε > 0 a real number.
Then there is some λ depending only on m, ε satisfying the following property.

Take (T,B) any smooth, projective ε-klt surface. Write B =
∑
biBi and suppose KT +

B ≡ N − A for N nef and A ample. If B.N,
∑
bi, B

2 ≤ m then (T, (1 + λ)B) is klt.

First we show that results of this form lift to characterisations of the non-klt locus of
(X, (1 + t)∆), then show how the result above may be applied here.

Lemma 3.3.4. We use the notation of Definition 2.1.2. Suppose Z is a surface and there
is t such that (G, (1 + t)∆G) is klt. Then every curve in the non-klt locus of (X, (1 + t)∆)
is contracted by f .

Proof. Let π : X ′ → X be a log resolution of (X,∆ +G) with KX′ + ∆′ = π∗(KX + ∆),
then (X ′,∆′ + G′) is log smooth and ∆′ and G have no common components, where G′

is the pullback of G. Now X ′ → X must also be a log resolution of (X, (1 + t)∆), and
hence if we write KX′ + B = π∗(KX + (1 + t)∆) then it is also true that (X ′, B +G′) is
log smooth and that B and G′ have no common components. Hence (G′, B|G′) is sub klt
by assumption and in particular it has coefficients strictly less than 1.
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Suppose Z is a non-klt center of (X, (1 + t)∆) and E is a prime divisor lying over Z
inside X ′. Then E has coefficients strictly larger than 1 in B. Since (X ′, B + G′) is log
smooth, it must be that E|G′ is an integral divisor and it is trivial if and only if E and
G′ do not meet. But then E|G′ = bE|G′c = 0 and so E does not meet G′. Hence neither
does H meet f∗π∗E = f∗Z. In particular if C is a curve in the non-klt locus, then there
is an ample divisor H on Z not meeting f∗C. This is possible only if f∗C is a point.

Lemma 3.3.5. Using the notation of Definition 2.1.2 suppose that Z is a curve and write
Y for the generic fibre of f : X → Z. If there is t such that (Y, (1 + t)∆Y ) is klt, then
every curve in the non-klt locus of (X, (1 + t)∆) is contracted by f .

Proof. This follows essentially as above. Take a log resolution π : (X ′,∆′) → (X,∆).
Write Y ′ for the generic fibre of X ′ → Z. Then (Y ′,∆′|Y ′)→ (Y,∆Y ) is a log resolution.
Again write KX′ + B = π∗(KX + (1 + t)∆). Then again if B has a component D with
coefficient at least 1 then D cannot dominate Z, else it would pull back to G′ to give a
contradiction. Hence the non-klt locus of (X, (1+t)∆) must be contracted as claimed.

Lemma 3.3.6. Using the notation of the previous lemmas. There is some λ independent
of (X,∆) and G for which the non-klt locus of (X, (1 + t)∆) is contracted for all t ≤ λ.

Proof. We consider two cases.

Suppose first Z is a curve, so the generic fibre Y is a regular del Pezzo surface and (G,∆G)
is ε-klt LCY. Then, by the work of Tanaka [Tan19, Corollary 4.8], (−KG)2 ≤ 9. We write
∆G =

∑
λiDi and since G is regular we have Di.KG ≥ 1. Hence

∑
λi ≤ ∆G.(−KG) ≤ 9

and ∆2
G = (−KG)2 ≤ 9. We conclude the result holds by ?? with N = −KG and

A = −2KG.

Suppose then that Z is a surface. Then by ??G is a smooth surface, geometrically over
a general very ample divisor H on Z. Further by ??, (G,∆G) is ε-klt and by assumption
KG + ∆G ∼ kF where F is the general fibre over H and H2 = k ≤ c. Finally note that
∆V
G ∼f,Q 0.

We may write ∆G =
∑
λiDi +

∑
µiFi where Fi are fibres over H and Di dominate H.

Since Fi is a fibre and G is smooth, each Fi is reduced by the genus formula and contains
at most 2 components since −KX .Fi = −2. Further ∆G.F = (−KG).F = 2 and hence
∆2
G = (−KG + kF )2 = (−KG)2 − 2kKG.F + (kF )2 ≤ (−KG)2 + 4c which in turn is

bounded above by 8 + 4c due to [?buadescu2001algebraic, Proposition 11.19], since G
is a smooth geometrically ruled surface.

It remains then to show that the sum of the coefficients of ∆G is bounded. Note that∑
λi ≤

∑
λiDi.F = ∆G.F = 2. We therefore need only bound

∑
µi.

Suppose for contradiction that w =
∑
µi > 3 + k. Let B =

∑
λiDi + (1− 3+k

w
)
∑
µiFi ∼

−KG − (F 1 + F 2 + F 3), for general fibres F i.

Then (G,B) is klt and so by ??, D = F 1 +F 2 +F 3 has 2 connected components, a clear
contradiction.
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Boundedness of Globally F -split varieties

Therefore we may choose A small and ample with A.∆G < c and write N = kF + A to
satisfy the conditions of ??. The result then follows as ∆G.N = kF.∆G + A.B ≤ 3c is
still bounded.

Corollary 3.3.7. There is some n such that for any (X,∆) → Z and G as in ?? we
have −KX + nG is ample.

Proof. Take any n ≥ 7
λ

for λ as in the previous lemma. Then any curve, C, on X is
either contracted by X → Z, in which case −KX .C > 0 = G.C. Else C is not contracted
and we may apply the Nlc Cone Theorem, ??, to (X, (1 + λ)∆). It follows that C is in
the span of curves Γi with (−KX + (1 + λ)∆).Γi = −λKX .Γi ≥ −6. In either case, since
G is Cartier, n > λ

7
ensures (−KX + nG).C > 0.

Theorem 3.3.8. Let (X,∆) → Z and G be as in Definition 2.1.2. Then there is t not
depending on the pair (X,∆) nor on G with −3KX + tG ample and defining a birational
map.

Proof. Consider first the case that dimZ = 1. Then G is a smooth del Pezzo surface, so
−3KX is very ample Globally generated? - Tanaka. Let G1, G2 be other general fibres
and consider

0→ OX(−3KX+kG−G1−G2)→ OX(−3KX+kG)→ OG1(−3KG1)⊕OG2(−3KG2)→ 0.

Since X is globally F -split H i(X,A) = 0 for all i > 0 and A ample by Lemma 2.1.33. In
particular then H1(X,OX(−3KX + kG − G1 − G2)) vanishes when k ≥ 3n + 2 for n as
given by the proceeding corollary. Therefore we may lift sections of −3KGi to see that
−3KX + kG defines a birational map for any k ≥ 3n+ 2.

Suppose instead that dimZ = 2, so G is a conic bundle. Choose a general H ′ ∼ H on
Z and let G′ be its pullback. Consider Ak = (−KX + kG)|G′ = (−kG′ + (k − 1)dF ) for
d ≥ 1, where F is the general fibre of G′ → H ′. Then Ak is ample for k > n and is
Cartier since G is smooth. In particular by the Fujita conjecture for smooth surfaces
[Ter99, Corollary 2.5], KG′ + 4Ak is very ample. Choosing suitable k, k′ we may write
KG′ + 4Ak = −3KG′ + 4(k − 1)dF = (−3KX + k′G)|G′ . Consider now

0→ OX(−3KX + (k′ − 1)G)→ OX(−3KX + k′G)→ OG′(−3KG′ + 4(k − 1)dF )→ 0.

Again the higher cohomology of −3KX + (k′ − 1)G vanishes and we may lift sections
to H0(X,OX(−3KX + k′G)) from general fibres. In particular −3KX + k′G separates
points on a general G′ so −3KX + (k′ + 1)G separates general points and thus defines a
birational map.

We may then pick some suitably large t for which the result holds as k, k′ were chosen
independently of (X,∆)→ Z and G,G1, G2.

Lemma 3.3.9. Let (X,∆)→ Z, S and G be as in Definition 2.1.2 and t as in ??. Then
there is some constant C with (−3KX + tG)3 ≤ C and (X,∆) ∈ S.
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3.4 Weak BAB for Mori Fibre Spaces

Proof. The anticanonical volumes Vol(X,−KX) are bounded by some V by ?? which is
proved in the next section.

Suppose first dimZ = 1. Then Vol(G,−KG) = (−KG)2 ≤ 9 and so by Lemma 3.4

Vol(X,−3KX + nG) ≤ Vol(X,−3KX) + 3tVol(G,−3KG) ≤ 27(V + 9t)

as required.

Suppose instead then that dimZ = 2. So G is a conic bundle over some H on Z with
H2 ≤ c. Hence we get

Vol(G, (−3KX + tG)|G) = (−3KG + (t+ 1)H2F )2 = 9K2
G − 2(t+ 1)H2(KG.F )

where F is a general fibre of G→ H. Hence F is a smooth rational curve and KG.F = −2
and Vol(G, (−3KX + tG)|G) ≤ 72 + 4(t+ 1)c. Then as before we may apply ?? to get

Vol(X,−3KX + tG) ≤ Vol(X,−3KX) + 3nVol(G, (−3KX + tG)|G)

and boundedness follows.

Proof of Definition 2.1.2. Suppose (X,∆) ∈ S. Then A = −3KX + tG is birational with
bounded volume by the preceding results. Thus S ′ is birationally bounded by ??.

3.4 Weak BAB for Mori Fibre Spaces

This section is devoted to providing a bound on the volume of −KX under suitable
conditions. Namely we show that the claim holds if X belongs to a suitable family of
ε-LCY Mori fibre spaces whose bases are bounded. We consider first the case that X
that is a tame conic bundle over a surface.

Theorem 3.4.1. Pick ε, c > 0. Then there is V (ε, c) such that if f : (X,∆)→ S is any
projective, tame conic bundle over any closed field of characteristic p > 5, (X,∆) is ε-klt
and S admits a very ample divisor H with H2 ≤ c, then Vol(−KX) ≤ V (ε, c).

We may further assume that H and G = f−1H are smooth. Moreover H may be taken
so that (G,∆|G) is ε-klt also by ??.

If Vol(−KX) = 0 the result is trivially true, so we may suppose that −KX is big. In
particular we may write −KX ∼ A+ E where A is ample and E ≥ 0. Note that

−KX − (1− δ)∆ ∼ −δKX ∼ δA+ δE

for any 0 < δ < 1. Choose δ such that (X, (1 − δ)∆ + δE) and (G, (1 − δ)∆|G + δE|G)
are ε-klt and write B = (1− δ)∆ + δE. Then (X,B) is ε-log Fano by construction. The
proof follows essentially as in characteristic zero, which can be found in [Jia14], but we
include a full proof for completeness as some details are modified.
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Boundedness of Globally F -split varieties

Lemma 3.4.2. [Jia14, Lemma 6.5] With notation as above, Vol(−KX |G) ≤ 8(c+2)
ε

.

Proof. Suppose for contradiction Vol(−KX |G) > 8(c+2)
ε

and choose r rational with Vol(−KX |G) >

4r > 8(c+2)
ε

.

Write F for the general fibre of G → H. Then G|G = H2F = kF and for suitably
divisible m and any n we have the following short exact sequence.

0→ OG(−mKX |G − nF )→ OG(−mKX |G − (n− 1)F )→ OF (−mKF )→ 0

In particular then h0(G,−mKX |G−nF ) ≥ h0(G,−mKX |G− (n− 1)F )− h0(F,−mKF ).
Hence by induction we have h0(G,−mKX |G−nF ) ≥ h0(G,−mKX |G)−n ·h0(F,−mKF ).

Note however that, letting n = mr we have

lim
m→∞

2

m2
(h0(G,−mKX |G)− n · h0(F,−mKF )) = Vol(−KX |G)− 2rVol(−KF ) > 0

since F is a smooth rational curve. Hence −mKX |G − mrF admits a section for m
sufficiently large and divisible. Choose an effective D ∼Q −KX |G − rF .

Consider now

(G, (1− k + 2

r
)B|G +

k + 2

r
D + F1 + F2)

for two general fibres F1, F2. This has

−KG + (1− k + 2

r
)B|G +

k + 2

r
D + F1 + F2

∼− (KX |G + kF ) +
k + 2

r
)B|G +

k + 2

r
(−KX |G − rF ) + F1 + F2

∼− (1− k + 2

r
)(KX +B)|G

and hence we may apply the Connectedness Lemma for surfaces, Theorem 2.2.12, to see
that its non-klt locus is connected. Note that we have r > c + 2 ≥ k + 2 and so as
−(KX +B) is ample, this pair satisfies the assumptions of the Connectedness Lemma.

Since both F1 and F2 are contained in the non-klt locus, there must be a non-klt center
W dominating H. Thus it follows that (F, (1− k+2

r
)B|F + k+2

r
D|F ) is non-klt. However

(F, (1−k+2
r

)B|F ) is ε-klt so we must have deg(k+2
r
D|F ) ≥ ε. Finally sinceD|F ∼ −KX |F =

−KF we have deg(D|F ) = 2 and hence 2(c+2)
r
≥ 2(k+2)

r
≥ ε, contradicting the choice of

r.

Proof of ??. Take V (ε, c) = 144(c+2)
ε2

suppose for contradiction that Vol(−KX) > 144(c+2)
ε2

.

Choose t with Vol(−KX) > t · 24(c+2)
ε

> 144(c+2)
ε2

and consider the following short exact
sequence.

0→ OX(−mKX − nG)→ OX(−mKX + (n− 1)G)→ OG(−mKX |G − (n− 1)G)→ 0
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Arguing as before we see that h0(X,−mKX−tmG) grows like r
6
m3 with r ≥ Vol(−KX)−

3tVol(−KX |G) > 0 by the previous lemma. In particular we may find D ∼Q −KX + tG.

Let π : Y → X be a log resolution of (X, (1− 3
t
)B+ 3

t
D). We may write KY + ∆Y +E =

π∗(KX + (1− 3
t
)B + 3

t
D) where (Y,∆Y ) is klt and E is supported on the non-klt places

of (X, (1− 3
t
)B + 3

t
D).

As shown by Tanaka in [Tan17, Theorem 1], since |L| = π∗f ∗|H| is base point free there
is some m with (Y,∆Y + 1

m
(L1 + L2 + L3)) still klt for every choice of Li ∈ |L|. In

particular, fixing some general z ∈ Z we may take Hi ∈ |H| meeting Z for 1 ≤ i ≤ 2m
such that for any I ⊆ {0, 1, ..., 2m} with |I| = 3 the following hold:

• (Y,∆Y +
∑

i∈I
1
m
π∗f ∗Hi) is klt;

•
⋂
i∈I Hi = z.

Thus we must have

Nklt(X, (1− 3

t
)B +

3

t
D) = Nklt(X, (1− 3

t
)B +

3

t
D +

1

m
f ∗Hi)

for each i.

Let F be the fibre over z and G1 =
∑2m

i=1
1
m
Hi. Then clearly multF (G1) ≥ 2 and hence

(X,G) cannot be klt at F . By construction we have

Nklt(X, (X, (1− 3

t
)B +

3

t
D)) ∪ F = Nklt(X, (X, (1− 3

t
)B +

3

t
D +G1)).

Similarly we may further take G2 ∼ f ∗H not containing F such that

Nklt(X, (X, (1− 3

t
)B +

3

t
D) +G1 +G2) = Nklt(X, (X, (1− 3

t
)B +

3

t
D +G1)).

Now −(KX + (1− 3
t
)B + 3

t
D +G1 +G2) ∼ (1− 3

t
)(KX +B) is ample, so we may apply

Theorem 2.2.12 to see there is a curve in the non-klt locus of (X, (1− 3
t
)B+ 3

t
D) meeting

F . In particular then the non-klt locus dominates S. Hence we must also have that
(F, (1− 3

t
)B|F + 3

t
D|F ) is not-klt for the generic fibre F , however (F,B|F ) is ε-klt and F

is a smooth rational curve. Therefore by degree considerations, since −KX |F ∼ D|F we
must have t ≤ 6

ε
, contradicting our choice of t.

Theorem 3.4.3 (Ambro-Jiang Conjecture for surfaces). [Jia14, Theorem 2.8] Fix 0 <
ε < 1. There is a number µ(ε) depending only on ε such that for any surface S over any
closed field k, if S has a boundary B with (S,B) ε-klt weak log Fano then

inf{ulct(S,B;G) where G ∼Q −(KS +B) and G+B ≥ 0} ≥ µ(ε)
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Here ulct(S,B;G) = sup{t : (S,B + tG) is lc and 0 ≤ t ≤ 1} and in particular it is at
most the usual lct, if G is effective.

Though the proof is given for characteristic zero, it is essentially an arithmetic proof
that the result holds for P2 and Fn for n ≤ 2

ε
. The arguments of the proof work over any

algebraically closed field and as the bound is given explicitly in terms of ε it is independent
of the base field.

By applying this result to a general fibre of a Mori fibration over a curve we obtain the
desired boundedness result.

Theorem 3.4.4. Pick ε > 0. Suppose that f : X → P1 is a terminal threefold Mori fibre
space with smooth generic fibre over a closed field of characteristic p > 0. If there is a
pair (X,∆) which is ε-LCY then Vol(−KX) ≤ W (ε) for some W (ε) depending only on ε.

Proof. By ??, there is some t(ε) ≥ 1 depending only on ε with −KX + tF ample, where
F is a general fibre.

Let µ = µ(1) as given in ?? and take W (ε) = 27(t(ε)+2)
µ

. Suppose for contradiction

Vol(−KX) > W (ε) and choose s rational with Vol(−KX) > 27s > W (ε). Clearly s >
(t(ε)+2)

µ
> t(ε) + 2.

For any n and for sufficiently divisible m, we have the following short exact sequence.

0→ OX(−mKX − nF )→ OX(−mKX − (n− 1)F )→ OF (−mKF )→ 0.

This gives h0(X,−mKX − nF ) ≥ h0(X,−mKX)− nh0(F,−mKF ) and subsequently

lim
m→∞

6

m3
(h0(X,−mKX)− smh0(F,−mKF ) = Vol(−KX)− 3sVol(−KF ).

Since F is a smooth del Pezzo surface we have Vol(−KF ) ≤ 9. So by construction
−mKX − smF is effective for large, divisible m.

Choose D ≥ 0 with D ∼Q −KX − sF and consider (X, t(ε)+2
s
D + F1 + F2) for F1, F2

general fibres. By construction we have

−(KX +
t(ε) + 2

s
D + F1 + F2) ∼ −(KX −

t(ε) + 2

s
KX − t(ε)F )

∼ (1− t(ε) + 2

s
)(−KX + tF ) +

t(ε)(t(ε) + 2)

s
F

which is ample since F is nef and −KX + t(ε)F is ample. Then Theorem 2.2.12 gives that
the non-klt locus is connected, and clearly contains F1, F2, so it must contain a non-klt
center W which dominates P1. Thus it must be that (F, t+2

s
D|F ) is not klt. However F

is smooth, and equivalently terminal, with −KF ∼ D|F ample, so by ?? it follows that
t(ε)+2
s
≥ lct(F, 0;D|F ) ≥ µ = µ(1). Thus we have s ≤ t(ε)+2

µ
contradicting our choice of s

and proving the result.
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3.5 Birational Boundedness

We are now ready to prove the main theorems using the results of the previous sections.

Lemma 3.5.1. Suppose that (X,∆) is an ε-klt LCY pair in characteristic p > 5, with
∆ 6= 0 and X both rationally chain connected and F -split. Then there is a birational map
π : X 99K X ′ such that X ′ has a Mori fibre space structure X ′ → Z and ∆′ = π∗∆ on X ′

making (X ′,∆′) klt and LCY. Further both X ′ and Z are rationally chain connected and
F -split and if X is terminal, so is X ′.

Proof. Since (X,∆) is klt so is (X, 0) and hence we may run a terminating KX MMP
X = X0 99K X1 99K ... 99K Xn = X ′. At each step Xi 99K Xi+1 we may pushforward
∆i to ∆i+1, which is still klt since KX + ∆ ≡ 0. Similarly since Xi is F -split and
rationally chain connected, so is Xi+1 as these are preserved under birational maps of
normal varieties. Since KX cannot be pseudo-effective, X ′ has a Mori fibre space structure
X ′ → Z, where Z is also rationally chain connected and F -split. If X is terminal we may
run a KX MMP terminating at a terminal variety, hence X ′ is terminal also.

Proof of ??. Take any (X,∆) ∈ S and replace it by a Mori fibre space (X ′,∆′)→ Z by
??. Then Z is F -split and rationally chain connected. If Z is a surface then p > 2

δ
ensures

that (X ′,∆′)→ Z is a tame conic bundle by ??. In particular Z admits a boundary ∆Z

such that (Z,∆Z) is ε-LCY by ??. Hence by BAB for surfaces, ??, there is |A| a very
ample linear system on Z with A2 ≤ c for some c independent of X,∆, Z.

On the other hand, if Z is a curve then it is a smooth rational curve and p > 7 gives that
the general fibre of X → Z is smooth by ??. Let then S ′δ,ε,V be set of such Mori fibre
space (X ′,∆′)→ Z with Z not a point and Vol(−KX) ≤ V (ε, c). By Definition 2.1.2 this
is birationally bounded.

Proof of ??. Take (X,∆) ∈ Tδ,ε and let X → Z be the associated Mori Fibre Space
structure. If Z is a curve then we conclude that Vol(−KX) is bounded by ?? in light of
??. If instead Z is a surface then the set of possible such Z is bounded by ?? and ?? as
above. Hence we conclude the claim by ??.

79





Chapter 4

Abundance

The key focus of this section is to show the validity of the abundance conjecture for
mixed characteristic threefolds. It contains the main results of [BBS21] and the work was
completed in collaboration with F. Bernasconi and I. Brivio.

We work under the assumption that the residue fields of closed points of R have charac-
teristic p 6= 2, 3 or 5 and that T has a point of positive characteristic.

Theorem 4.0.1 (??). Suppose that (X,B)/T is a klt R-pair of dimension 3 with positive
dimensional image containing a positive characteristic point. If KX +B is nef, then it is
semiample.

A well-known and immediate consequence of abundance is the finite generation of the
canonical ring.

Theorem 4.0.2. Suppose that (X,B)/T is an R-pair of dimension 3 with Q-boundary
where T is positive dimensional and contains a positive characteristic point. Then the
canonical OT -algebra

R(π,∆) :=
⊕
m∈N

π∗OX(bm(KX + ∆)c)

is finitely generated.

In characteristic 0, finite generation of the canonical ring follows from finite generation in
the log general type case ([BCHM10]) and by a result of Fujino and Mori [FM00, Theorem
5.2]. However, their result requires a canonical bundle formula which is not available in
the positive or mixed characteristic settings.

Theorem 4.0.3 (??). Let (X,B) be a three-dimensional klt R-pair. Suppose that the
following conditions are satisfied:

(1) (X,Xk +B) is plt with Xk integral and normal;
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(2) if V is a non-canonical centre of (X,B + Xk) contained in B−(KX +B), then
dim(Vk) = dim(V )− 1.

Suppose further that at least one of the following holds:

1. κ(KXk +Bk) 6= 1; or

2. Bk is big over Proj(KXk +Bk)

Then there is m0 ∈ N such that

h0(XK ,m(KXK +BK)) = h0(Xk,m(KXk +Bk))

for all m ∈ m0N.

4.1 Preliminaries

In this section we fix S to be an excellent Noetherian base scheme.

4.1.1 Algebraic spaces

We refer to [Sta, Tag 0ELT] for the definition of algebraic spaces and their general theory.
We record here a few key results to be used later. First, Stein factorisation exists for
algebraic spaces.

Theorem 4.1.1 (Stein factorisation, [Sta, Tag 0A1B]). Let S be a scheme and f : X → Y
be a proper morphism of Noetherian algebraic spaces over S. Then there is a morphism
f ′ : X → Y ′, together with a finite morphism π : Y ′ → Y , factorising f into f = π ◦ f ′
such that

• f ′ is proper and surjective;

• f ′∗OX = OY ′;

• Y ′ = Spec
Y

(f∗OX);

• and Y ′ is the normalisation of Y in X.

We call f = π ◦ f ′ the Stein factorisation of f .

In particular if X is normal in ??, then so is Y ′. Moreover if X, Y are schemes then this
agrees with the usual notion of Stein factorisation. We also have the following descent
result for proper contractions of algebraic spaces.
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Lemma 4.1.2. Let f : W → X and g : W → Y be projective contractions of Noethe-
rian integral normal algebraic spaces over S. Suppose that every proper curve C ⊂ W
contracted by f is contracted by g. Then there is a unique contraction h : X → Y with
g = h ◦ f .

Proof. First, note that any h : X → Y such that g = h ◦ f is necessarily a contraction.
Consider (g ×S f) : W → X ×S Y and let φ : W → Γ be the contraction part of its Stein
factorisation. Thus Γ is an integral, normal algebraic space which is proper over S. If
γ : Γ→ X is the induced morphism, it is then enough to show that γ is an isomorphism.

Let x ∈ X be any point, and let F := γ−1(x). Then φ−1(F ) = f−1(x) is contracted by g,
hence by φ, so γ is quasi-finite.

Let ξ ∈ X be the generic point. As f is a contraction, we have H0(Wξ,OWξ
) = κ(ξ). As

φ is a contraction and Stein factorisation commutes with flat base-change, we have that
φξ : Wξ → Γξ is a contraction as well, thus H0(Γξ,OΓξ) = H0(Γξ, φξ,∗OWξ

) = κ(ξ). By
[Sta, Tag 0AYI] we then have that γ is a contraction, and by [Sta, Tag 082I] we conclude
it is an isomorphism.

Remark 4.1.3. The notion of an integral algebraic space, [Sta, Tag 0AD3], is somewhat
subtle. However we will only ever apply ?? in the case where W,X are integral schemes,
in which case W,X, Y are also integral as algebraic spaces.

It will prove useful to know that proper algebraic spaces are schemes on a big open set.

Lemma 4.1.4. Let S be a Noetherian scheme and X be a proper algebraic space over S.
Then there is a big open immersion of a scheme U → X. If X is normal, we can choose
U to be regular.

Proof. By [Sta, Tag 0ADD], for each codimension 1 point P ∈ X there is an open subspace
UP containing P which is a scheme. Take the open subspace U =

⋃
codimX(P )=1 UP , of

X. By [Sta, Tag 01JJ] we observe that in fact U is a scheme. Note that U is a sheaf on
the Zariski topology since by definition it is a sheaf on the finer fppf topology, [Sta, Tag
025Y].

If X is normal, then so too are the UP , in particular after shrinking them as needed we
may suppose that each UP is regular and thus that U is regular.

4.1.2 Semiample and EWM line bundles

In this subsection we recall some basic results about semiample and EWM line bundles
we will need later on.

Definition 4.1.5. Let ϕ : X → S be a proper morphism. A line bundle L on X is said
to be semiample over S if there exists m > 0 such that L⊗m is globally generated over S,
i.e. the natural morphism ϕ∗(ϕ∗L

⊗m)→ L⊗m is surjective.
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Theorem 4.1.6. Let X be a normal projective S-scheme and let L be a line bundle on
X. Then the following are equivalent.

1. L is semiample over S;

2. there is a contraction f : X → Z/S such that f is the S-morphism induced by
|Lm/S| for all sufficiently divisible m;

3. There is a contraction f : X → Z/S such that L ∼Q f ∗A for A ample Q-Cartier
Q-divisor on Z.

Proof. The direction (1) =⇒ (2) =⇒ (3) is the content of [Laz04, Theorem 2.1.26].
That (3) =⇒ (1) follows straight from the definition of ample.

The morphism f is the same in both (a) and (b) of ?? is called the semiample contraction
of L.

Definition 4.1.7. Let ϕ : X → S be a proper morphism of schemes. A nef line bundle
L on X is said to be EWM over S if there exists a proper S-morphism f : X → Y to
an algebraic space Y proper over S such that an integral closed subscheme V ⊂ X is
contracted (that is, dim(V ) < dim(f(V ))) if and only if L|V is not big.

By ??, we can suppose f is a contraction and we call this the EWM contraction associated
to L, which is unique up to isomorphism by ??.

The definition of semiample (resp. EWM) extends naturally to Q-Cartier divisors (resp.
R-Cartier divisors). We say that an R-Cartier divisor D is semiample if there exist ri > 0
and Li semiample Cartier divisors such that D ∼R

∑
i riLi. A natural extension of

condition (c) in ?? is that D is semiample if and only if there is a morphism f : X → Z
of S-schemes such that D ∼R f

∗A, where A is an ample R-divisor over S. Note that any
semiample R-Cartier divisor is EWM.

4.1.2.1 Semiampleness Criteria

We recall the Keel-Witaszek Theorem, which will be a crucial tool in the proof of abun-
dance.

Theorem 4.1.8. [Wit20, Theorem 6.1], [BMP+20, Theorem 2.44] Let L be a nef line
bundle on a scheme X projective over an excellent Noetherian base scheme S. Then L is
semiample (resp. EWM) over S if and only if both L|E(L) and L|XQ are so.

We will need the following descent result on semiampleness for normal schemes.

Lemma 4.1.9. Let f : X → Y be a proper surjective morphism of integral, excellent
schemes over S. Suppose that Y is normal and L is a line bundle on Y such that f ∗L is
semiample over S. Then L is semiample over S.
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Proof. The proof is similar to [Kee99, Lemma 2.10]. We may freely assume that X is

normal. Let X
ϕ−→ Z

ψ−→ Y be the Stein factorisation of f , where ϕ is a contraction and
ψ is a finite map. We first show that ψ∗L is semiample. Take m > 0 such that f ∗Lm is
base point free. By the projection formula H0(X, f ∗Lm) = H0(Z, ψ∗Lm) and so ψ∗Lm is
base point free.

We can thus assume that f is a finite morphism of degree d. By [Sta, Tag 0BD3], there
exists a norm function Normf : f∗OX → OY of degree d for f which induces a group
homomorphim Normf : Pic(X) → Pic(Y ) by [Sta, Tag 0BCY]. Take m > 0 such that
f ∗Lm induces the semiample contraction, and let y ∈ Y be a point. Then there is a
section s : OX → f ∗Lm not vanishing at any of the points in f−1(y). By [Sta, Tag 0BCY]
and [Sta, Tag 0BCZ] we then construct a section Normf (s) : OY → Lmd not vanishing at
y, concluding.

We will need a similar, but slightly weaker result for algebraic spaces. First we make the
following observation.

Lemma 4.1.10. Let f : Y → X be a contraction of integral normal proper S-schemes.
Let L be a line bundle on X nef over S. Let V ⊂ X (resp. V ′ ⊂ Y ) be an integral closed
subscheme. Suppose f(V ′) = V . Then f ∗L|V ′ is big over S if and only if L|V is big over
S and dim(V ) = dim(V ′).

Proof. Let d be the dimension of V ′. Since f ∗L is nef, it is big on V ′ if and only if
(f ∗L)d · V ′ > 0. Hence by the projection formula ([Kol96, Proposition VI.2.11]) it is big
on V ′ if and only if Ld · V > 0. In turn this occurs if and only if dim(V ) = d and L is
big on V .

Lemma 4.1.11. Let S be an excellent Noetherian scheme and suppose f : Y → X is a
contraction of integral normal projective S-schemes. A line bundle L on X is EWM if
and only if f ∗L is so.

Proof. Suppose first that L is EWM and let g : X → Z be the associated EWM contrac-
tion. We claim that h = g ◦f contracts an integral subscheme V of Y if and only if f ∗L|V
is not big. By ??, f ∗L|V is not big if and only dim(f(V )) < dim(V ) or L|f(V ) is not big,
concluding.

Now suppose that f ∗L is EWM. Let g : Y → Z be the associated EWM contraction. By
?? there exists a morphism h : X → Z with g = h◦ f . Take V ⊂ X integral of dimension
d. We can choose an integral V ′ lying over V of dimension d by cutting f−1(V ) with
hyperplanes and taking a dominant component. By ?? we see that L is not big on V if
and only if V ′ is contracted by h, concluding.

Remark 4.1.12. Clearly, if L is an EWM line bundle on X and T is any integral closed
subscheme, then L|T is EWM.
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4.1.2.2 Semiample line bundles over DVRs

We now specialize to the case in which X → R is a family of normal projective varieties
over a DVR and we study how the spaces of global sections of L behave in family. Given
a Q-Cartier Q-divisor L on a normal variety X over a field k, we denote by κ(L) its Iitaka
dimension (see [Laz04, Definition 2.1.3]).

Lemma 4.1.13. Let R be a DVR and let π : X → R be a flat projective morphism. Let
L be a Q-Cartier divisor on X, semiample over R. Then κ(Lk) = κ(LK).

Proof. Let f : X → Z be the semiample contraction of L over R, let δ : Z → Spec(R)
be the structure morphism, and note that δ is flat, hence equi-dimensional. Let d be the
dimension of the fibers of δ, and let A be an ample Q-divisor on Z such that L ∼Q f

∗A.
By the projection formula ([Sta, Tag 01E8]) and asymptotic Riemann-Roch ([Kol96,
Theorem VI.2.15]), for each t ∈ Spec(R) we have

h0(Xt,mLt) = h0(Zt, ft,∗OXt ⊗OZt(mAt))

= rk(ft,∗OXt)
(mAt)

d

d!
+O(md−1)

for all m > 0 sufficiently divisible. Thus we conclude κ(Lt) = d for each t ∈ Spec(R).

Lemma 4.1.14. Let R be a DVR and let π : X → R be a projective, normal, integral
R-scheme such that Xk is normal. Let L be a Q-Cartier Q-divisor on X, semiample over
R and let f : X → Z be the semiample contraction induced by L. Then the following are
equivalent:

(1) fk,∗OXk = OZk ;

(2) h0(Xk,mLk) = h0(XK ,mLK) for all m ≥ 0 sufficiently divisible.

Proof. Let A be an ample Q-divisor on Z such that L ∼Q f
∗A. By the projection formula

we have
h0(Xt,mLt) = h0(Zt, ft,∗OXt ⊗OZt(mAt)) (4.1)

for all sufficiently divisible m and all t ∈ Spec(R). By flat base change we have fK,∗OXK =
OZK .

(1) ⇒ (2). Suppose that fk,∗OXk = OZk . Then the right hand side of Equation (??)
coincides with χ(Zt,mAt) when m � 0 by Serre vanishing. Hence we conclude by
invariance of the Euler characteristic in a flat family.

(2)⇒ (1). By Grauert’s theorem ([Har77, Corollary III.12.9]) the natural restriction map
H0(X,OX(mL)) → H0(Xk,OXk(mLk)) is surjective for all m ≥ 0 sufficiently divisible.
Hence fk is the semiample contraction of Lk by ??, in particular fk,∗OXk = OZk .

Remark 4.1.15. Suppose that Zk is normal in ?? and let Xk → Yk
g−→ Zk be the Stein

factorisation of fk. If k is a field of characteristic 0 then g is birational and finite, hence
an isomorphism.
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On the other hand if k is a positive characteristic field then g may be a non-trivial purely
inseparable morphism of normal varieties. This an obstruction to lifting sections of mLk
(see [Bri20] for an explicit construction with L = KX + B). For this reason, a crucial
step in ?? will be showing fk,∗OXk = OZk for the semiample contraction of the canonical
divisor.

4.1.3 MMP in families

We fix R to be an excellent DVR with residue field k of characteristic p > 5. We collect
some results on the MMP in families over R that we will use in ??. In particular we
study the behaviour of the diminished base locus B−(KX + ∆) under the steps of the
MMP.

Definition 4.1.16. If X → S is a projective morphism and D is a Q-Cartier divisor on
X, the diminished locus of D over S is

B−(D/S) =
⋃

AQ-divisor ample /S

B(D + A/S).

If S is clear from the context, we will simply write B−(D).

Lemma 4.1.17. Let (X,∆)/T be a klt R-pair. Let f : X 99K Y be a step of a (KX + ∆)-
MMP over T and write ∆Y = f∗∆. Let

W
q

  

p

~~
X

f // Y

be a resolution of indeterminacies of f . Then q−1B−(KY + ∆Y ) ⊂ p−1B−(KX + ∆).

Proof. By the negativity lemma, we deduce p∗(KX+∆) = q∗(KY +∆Y )+G, where G ≥ 0
and therefore we clearly have the following containment of stable base loci: q−1SB(KY +
∆Y ) ⊂ p−1SB(KX + ∆). Similarly, note that for every sufficiently small ample A on X,
a (KX + ∆)-MMP step is a (KX + ∆ + A)-MMP step. As A is ample and f birational,
we can write f∗A ∼Q H +E, where H is ample and E effective. Therefore q−1SB(KY +
∆Y + 1

n
H) ⊂ q−1SB(KY + ∆Y + 1

n
f∗A) ⊂ p−1SB(KX + ∆ + 1

n
A). As B−(KY + ∆Y ) =⋃

n≥0 SB(KY + ∆Y + 1
n
H) by [ELM+06, Proposition 1.19] we conclude.

We recall that, given a log pair (X,∆), a non-canonical centre V of (X,∆) is the centre
of a divisorial valuation E with discrepancy a(E,X,∆) < 0. The following is a generali-
sation of [HMX18, Lemma 3.1] for arithmetic and positive characteristic threefolds.

Proposition 4.1.18. Let R be an excellent DVR with residue field k of characteristic > 5.
Let X → Spec(R) be a projective contraction and suppose that (X,B) is a Q-factorial klt
threefold pair with Q-boundary. Suppose the following conditions are satisfied:

(1) (X,B +Xk) is plt with Xk integral;
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(2) if V is a non-canonical centre of (X,B + Xk) contained in B−(KX +B), then
dim(Vk) = dim(V )− 1.

Let f : X 99K Y be a step of a (KX +B)-MMP over R. Then:

1. If f is a contraction of fibre type, then so is fk;

2. if f is birational, then:

(i) f is a divisorial contraction;

(ii) if Γ := f∗B, then conditions (1) and (2) also hold for (Y,Γ).

In particular, if f is a projective birational morphism then h0(Xt,m(KXt + Bt)) =
h0(Yt,m(KYt + Γt)) for all t ∈ Spec(R) and all m ≥ 0 sufficiently divisible.

Proof. If f is a contraction of fibre type, hence fk is not birational by upper semi-
continuity of the dimension of the fibres for proper morphisms ([Sta, Tag 0D4Q]).

From now on, we assume that f is birational. Suppose for contradiction that f is a flip
and consider the following diagram:

X

g   

f // Y

g+��
Z,

where g is a (KX + B)-flipping contraction. Note that Yk is irreducible since f does not
extract divisors, thus fk is birational. As (X,B +Xk) is plt, so is (Y,Γ + Yk) hence both
Xk and Yk are normal by Corollary 2.2.27.

We now derive the contradiction. Since f is a flip, there exists a prime divisor D on Yk
such that its centre P on Xk is a closed point. Since fk is not an isomorphism at N we
have

a(D;Xk, Bk) < a(D;Yk,Γk) ≤ 0

by Lemma 2.1.15. Hence P is a non-canonical centre of (Xk, Bk). Note that P ⊆ Exc(g) ⊆
B−(KX + B) since D is exceptional over Zk. Moreover P is also a non-canonical centre
of (X,B +Xk) as

0 > TDisc(P,Xk, Bk) ≥ Disc(P,X,Xk +B),

by easy adjunction ([Kol13, Lemma 4.8]). So P is an isolated non-canonical centre of
(X,Xk +B) contained in B−(KX +B), thus contradicting (2).

Thus f , and therefore fk, is a divisorial birational projective contraction. Condition (1)
holds on (Y,Γ + Yk) immediately, so it remains to check condition (2).
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Suppose that V is a non-canonical centre of (Y,Γ+Yk) and take a model Z dominating X
and Y , and containing an exceptional divisor E such that V = centreY (E) and a(E, Y,Γ+
Yk) < 0. Then by Lemma 2.1.15 it must be that a(E,X,Xk +B) ≤ a(E, Y, Yk + Γ) < 0,
hence the image, W , of E on X is a non-canonical centre of (X,B + Xk). By ?? if
V ⊆ B−(KY + Γ) then we have W ⊆ B−(KX +B) as well. In which case W is horizontal
and hence so is V , therefore (2) holds as claimed.

Since a (KX+B)-MMP over R is a (KX+Xk+B)-MMP, we have that the map (Xk, Bk)→
(Yk,Γk) is a (KXk +Bk)-negative birational contraction and thus h0(Xt,m(KXt +Bt)) =
h0(Yt,m(KYt + Γt)) for all t ∈ Spec(R) and all m ≥ 0 sufficiently divisible by ??.

To explain the conditions we need to impose on the non-canonical locus of the family, we
revisit an example due to Kawamata (see [Kaw99, Example 4.3]).

Example 4.1.19. Let R be an excellent DVR and consider the following diagram of
R-flat families:

X X+

Z

Spec(R)

φ

g

f

g+

where

1. X is a terminal threefold and the central fibre X0 is klt with a singular point p;

2. g is an extremal KX -negative flipping contraction;

3. X+ is regular.

A local model is given by the Francia flip explained in [Kaw99]. As explained by Kawa-
mata, one can construct such a situation and the map f∗OX (mKX )→ f∗OX0(mKX0) is
not surjective.

Note that this situation is excluded by condition (2) of ?? and ??. Indeed B−(Xk, KXk)
clearly contains the flipped locus of g, which must contain the non-canonical singular
points p of Xk. As X is terminal, p is not the restriction of a horizontal non-canonical
centre of X .

4.2 Abundance for mixed characteristic threefolds

Given a klt pair (X,∆) with a projective R-morphism f : X → T so that KX + ∆ is
f -nef, then the abundance conjecture asserts that KX + ∆ is f -semiample. In the case
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where (X,∆) is a klt threefold pair and KX + ∆ (or even just ∆) is big this is immediate
by Theorem 2.2.6. We address the remaining cases in this section.

The starting point of our proof is the abundance theorem for surfaces over excellent bases,
which we now recall.

Theorem 4.2.1. Let π : (S,B)/T be a klt R-pair of dimension 2. If KS + B is a π-nef
Q-Cartier Q-divisor, then it is π-semiample.

Proof. If T is a field then this is [FT12, Theorem 1.2] for perfect fields and [Tan20]
for imperfect fields. Suppose from now on that dim(T ) > 0. If KS + B is big over T
then this follows immediately from the base-point-free theorem ([Tan18b, Theorem 4.2])
with D = 2(KS + B). Hence we may suppose that dim(T ) = 1 and KS + B is not
big. In this case we have (KS + B)|SK(T )

∼Q 0 by the abundance theorem for curves
([BMP+20, Lemma 9.22]) and the result follows by ??.

The following is [CT20, Lemma 2.17]. We include the proof for completeness as the result
is used often.

Lemma 4.2.2. Let f : X → Y be a contraction of integral, normal and excellent schemes.
Suppose L is an f -nef Q-Cartier Q-divisor with L|XK(Y )

∼Q 0. If Y is Q-factorial and f
is equi-dimensional then L ∼Y,Q 0.

Proof. Since L|XK(Y )
∼Q 0 we may write L ∼Y,Q D ≥ 0 such that D|XK(Y )

= 0. If C is
any component of D then f(C) is a prime divisor, since f is equi-dimensional. Thus,
since Y is Q-factorial, it is enough to know that L ∼Q,Y 0 after localisation about any
codimension one point of Y . In particular we may suppose that Y = Spec(R) for some
DVR R with closed point P .

Let {Gi}ni=1 be the irreducible components of the special fibre F = f ∗P , so that by
construction D =

∑n
i=1 aiGi for certain ai ≥ 0.

We introduce r := min {t | D − tF ≤ 0}. We are left to show that D − rF = 0. If
not, up to rearranging the order of Gi, we have D − rF = −

∑n
i=2 liGi ≡Y 0, with

l2 > 0, li ≥ 0 and G1 meeting G2. Note that (rF −D) is effective curve not containing
G1 but intersecting it. Hence there must be a curve C on G1 with (rF −D) ·C > 0, but
rF −D ∼T −D and D is nef, a contradiction. Therefore D − rF = 0 as claimed.

The following gives a sufficient condition for a nef divisor to be EWM together with a very
controlled version of resolution of indeterminacy of an EWM morphism (cf. [BMP+20,
Lemma 9.25]).

Lemma 4.2.3. Let X → T be a projective contraction of normal, integral, quasi-projective
R-schemes. Let L be a Q-Cartier Q-divisor on X, nef over T such that L|XK(T )

and L|XQ

are semiample. Assume dim(X) ≤ 3 and L is not big. Then L is EWM and there is a
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commutative diagram of proper algebraic spaces over T :

W X

Y Z,

g

φ

f

π

such that

1. f is the EWM contraction associated to L;

2. φ and π are proper birational contraction;

3. g is equi-dimensional, W is a T -projective scheme, and Y is a T -projective regular
scheme of dimension ≤ 2;

4. g agrees with the map induced by φ∗L over the generic point of Z;

5. there exists a Q-Cartier Q-divisor D on Y such that φ∗L ∼Q g
∗D.

Proof. Note that if dim(T ) = 0 there is nothing to prove, hence we can assume dim(T ) ≥
1. By [BMP+20, Lemma 9.24] and its proof we can find a diagram of schemes over T :

W X

Y ,

g

φ

such that φ is birational and there exists a Q-Cartier Q-divisor D on Y such that (c)-(e)
hold. By ?? and ?? it is sufficient to show that D is EWM to conclude. If dim(Y ) ≤ 1,
the result is trivial and if dim(Y ) = 2, we apply [BMP+20, Lemma 2.48].

If f is equi-dimensional, it is possible to prove a suitable semiampleness result.

Proposition 4.2.4. Let X → T be a projective contraction of normal quasi-projective
schemes over R, where dim(X) ≤ 3. Let L be an EWM Q-Cartier Q-divisor on X such
that its associated EWM contraction f : X → Z is equi-dimensional. If L|XK(T )

and L|XQ

are semiample, then L is semiample.

Proof. Without loss of generality we may assume dim(T ) ≥ 1. If L is big and f is equi-
dimensional, then L is necessarily ample and we conclude. We can thus suppose L is
not big. We can then apply ?? and thus there exists a commutative diagram of proper
algebraic spaces over T

W X

Y Z,

g

φ

f

π

such that the following hold:
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1. W,X, Y are normal T -projective schemes and dim(Y ) ≤ 2;

2. the vertical maps f and g are equi-dimensional;

3. the horizontal maps φ and π are proper and birational;

4. there exists a Q-Cartier Q-divisor D on Y such that φ∗L ∼Q g
∗D.

Since Z is normal, there is an open immersion of a regular scheme U → Z containing
every codimension 1 point of Z by ??. By (b), XU → U satisfies the assumptions of ??
and thus L|XU ∼U,Q 0.

If dim(Z) = 1, then we conclude immediately, so we can suppose Z is a surface. Therefore
Z \U consists of finitely many points. Then we may choose S to be a general hyperplane
on X such that S meets each fibre over Z \ U at only finitely many points.

Note that L|S is clearly big and moreover if C is any curve on S with L · C = 0, then C
must be contracted by X → Z as f is the EWM contraction associated to L. In particular
C is contained in some fibre of f and by construction C is not contained in a fibre over
Z \ U , as S contains no such curves. Thus in fact C ⊆ XU . Therefore E(L|S) ⊆ XU and
so S|E(L|S) is semiample since L|XU is. As L|SQ is semiample by assumption, we conclude
that L|S is semiample by [Wit20, Theorem 6.1].

Let S ′ be the strict transform of the surface S on W , which must dominate Y . Let
φS′ , gS′ be the restrictions of φ, g to S ′. Then (φ∗L)|S′ = φ∗S′(L|S) = g∗S′D and since L|S
is semiample and Y is normal, we must have that D is semiample by ??. In turn this
implies that L is semiample as φ∗L = g∗D.

The following is a useful MMP technique to reduce to the case of equi-dimensional mor-
phisms.

Proposition 4.2.5. Let (X,B)/T be a Q-factorial klt threefold R-pair. Suppose that

1. KX + B is a nef EWM Q-divisor over T with h : X → Z be the associated EWM
contraction;

2. Z has dimension 2.

Then there exists a (KX + B)-trivial birational contraction (X,B) 99K (X ′, B′) over Z
such that X ′ → Z is equi-dimensional.

Proof. Let z ∈ Z be a closed point such that the fibre h−1(z) is not one-dimensional.
By upper semi-continuity of fibre dimensions for proper morphisms ([Sta, Tag 0D4Q])
h−1(z) must contain an irreducible divisor F .

Take t > 0 with (X,B + tF ) klt and run a (KX + B + tF )-MMP over T . We now
show that this is an MMP over Z as well. Let C be a curve generating an extremal
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(KX +B+ tF )-negative ray. As (KX +B) is nef over T , then F ·C < 0. Therefore C ⊆ F
and since F is contracted by h to a point, so too is C. By definition X → Z contracts
only (KX +B)-trivial curves. From this we can conclude that the (KX +B + tF )-MMP
over T is also a (KX +B + tF )-MMP over Z by ??.

Since this is an MMP of a pseudo-effective klt pair over T it terminates by Theorem 2.2.6.
In fact we claim it terminates when the strict transform of F is contracted.

If X 99K X ′ does not contract F then its transform on X ′ remains the divisorial part of
a fibre, so to establish this claim it is sufficient to show that such divisorial part is never
nef. By abundance (??) on the generic fibre (X ′K(Z), B

′
K(Z)) we can apply ?? to find a

commutative diagram

W X ′

Y Z,

g

φ

f ′

π

where g is equi-dimensional, Y is a regular projective surface over T and φ, π are proper
birational. Let F ′ be the strict transform of F on W . Then g(F ′) = γ must be an
irreducible curve by equi-dimensionality and π∗(γ) = z. Choose a general curve C in F ′

such that g(C) = γ. Since is D big, we write D ∼R A + E, for A ample and E effective
by Kodaira’s lemma. By Bertini theorems ([BMP+20, Theorem 2.15]) we can choose a
general H ∼R A meeting γ transversally. Then g∗H ∩C is a finite set of points and g∗H
is not contracted by φ as H is general. We have KX +B ∼R φ∗g

∗(A+E) ∼R φ∗g
∗H + S

where S ≥ 0. As C is general in F ′ we have

φ∗g
∗H · φ∗C > 0 and (KX +B) · φ∗C = g∗D · C = D · γ = 0 as π∗γ = z,

so we have S · C < 0. Since C is general in F ′ we must have that F is contained in the
support of S and F · φ∗C < 0.

Since there are only finitely many closed points z ∈ Z for which the fibres are not one
dimensional, we can repeat the above process a finite number of times and we terminate
with a crepant model (X ′, B′) which is equi-dimensional over Z.

We are now ready to prove the abundance theorem for klt threefolds over a positive-
dimensional base which is not of pure characteristic 0.

Theorem 4.2.6. Let (X,B)/T be a Q-factorial klt threefold R-pair which contains a
point of positive characteristic. If KX +B is π-nef, then it is π-semiample.

Proof. By Stein factorisation we can assume π to be a contraction of normal schemes, so
dim(T ) ≥ 1. If X is not Q-factorial, then we may freely replace it with a Q-factorialisation
by Theorem 2.2.9 and Lemma 2.2.29. Moreover by Proposition 2.2.34 we can suppose
that ∆ is a Q-boundary (we reduce to this case where we can apply the results of [Wit20]
which apply only to Q-Cartier Q-divisors). As the dimension Xk(T ) is at most 2, we
conclude by [BMP+20, Lemma 9.22] and ?? that κ(KXk(T )

+ Bk(T )) ≥ 0. We now divide
the proof according to the value of κ(KXk(T )

+Bk(T )) + dim(T ).

93



Abundance

Case 1. κ(KXk(T )
+Bk(T )) + dim(T ) = 3.

In this case, KX +B is big and we can conclude by applying the basepoint free theorem
(Theorem 2.2.6) to L := 2(KX +B).

Case 2. κ(KXk(T )
+Bk(T )) + dim(T ) = 2.

By ??, KXk(T )
+Bk(T ) and KXQ +BQ are semiample Q-divisors. As KX +B is not big, by

?? then KX +B is EWM and we denote by f : X → Z the associated EWM contraction.
By ?? and Lemma 2.2.29 we may replace X so that X → Z is equi-dimensional. We
then apply ?? to deduce that KX + ∆ is π-semiample.

Case 3. κ(KXk(T )
+Bk(T )) + dim(T ) = 1.

The hypothesis dim(T ) ≥ 1 implies κ(KXk(T )
+Bk(T )) = 0. Then π : X → T is flat, since T

is a Dedekind scheme and X is integral by [Har77, Proposition 9.7]. Since KXk(T )
+Bk(T )

is semiample by ??, we conclude KX +B is semiample by ??.

Remark 4.2.7. While in this section we worked on threefolds over mixed characteristic
rings whose residue fields have characteristic different from 2, 3 and 5, this is just due to
the current state of the art on the MMP. The arguments in the section for κ(KXk(T )

+
Bk(T )) + dim(T ) ≤ 2 work as long as the MMP results are known to hold. In particular,
abundance holds for mixed characteristic threefolds over a Dedekind domain with residue
characteristics different from 2, 3 by [XX22].

4.3 Applications to invariance of plurigenera

In this section, R will always be an excellent DVR with residue field k of characteristic
p > 5 and fraction field K.

The purpose of this section is to generalise the asymptotic invariance of plurigenera
proven in [EH21, Theorem 3.1] to families of non-log-smooth surface pairs, as well as
DVRs with non-perfect residue field. Similar results in characteristic zero are proven in
[HMX13, HMX18]. The first case we discuss is the asymptotic invariance for families of
good minimal models.

Theorem 4.3.1. Let (X,B) be a three-dimensional R-pair with Q-boundary. Assume
that (X,B + Xk) is plt and KX + B is semiample over R. Suppose one of the following
holds:

1. κ(KXk +Bk) 6= 1; or

2. Bk big over ProjR(KXk +Bk).

94



4.3 Applications to invariance of plurigenera

Then there exists an m0 ∈ N such that

h0(XK ,m(KXK +BK)) = h0(Xk,m(KXk +Bk))

for all m ∈ m0N.

We start by showing the normality of the central fibre of the image of the (KX + B)
semiample contraction.

Proposition 4.3.2. Let (X,B) be a three-dimensional klt R-pair with Q-boundary. Sup-
pose that (X,B + Xk) is plt. If f : X → Z is a birational morphism over R such that
−(KX +B) is f -nef, then Zk is normal and fk,∗OXk = OZk .

Proof. By Corollary 2.2.27 the central fibre Xk is normal. As f is birational over R, so
is fk and thus −(KXk +Bk) is fk-big and fk-nef. We conclude by Lemma 2.2.24.

The previous is useful for small (KX +B)-trivial birational morphisms, and in particular
to reduce the non Q-factorial case to the Q-factorial one.

Lemma 4.3.3. Let Y → Spec(R) be a projective contraction such that (Y, Yk + ∆) is a
plt threefold R-pair. Let f : Y → X be a (KY + ∆)-trivial small birational contraction
over R with B = π∗∆. Then

h0(Xk,m(KXk +Bk)) = h0(Yk,m(KYk + ∆k))

for all m sufficiently divisible.

Proof. As f is small, the central fibre Yk is irreducible. By the basepoint free theorem
Theorem 2.2.6, KY +Yk+∆ ∼Q f

∗(KX+Xk+B). Then by ??, Yk and Xk are both normal.
As f is the semiample contraction associated to KY + ∆ over X and it is birational, we
conclude by ??.

We now discuss the delicate case of invariance for plurigenera where the Kodaira dimen-
sion is one and the boundary is big.

Proposition 4.3.4. Let (X,B)/R be a Q-factorial klt R-pair with Q-boundary of dimen-
sion 3 such that (X,B +Xk) is plt. Suppose that

1. KX +B is semiample and let f : X → Z its Iitaka fibration over R;

2. κ(KXk +Bk) = 1;

3. Bk is big over Zk.

Then there exists an m0 ∈ N such that

h0(XK ,m(KXK +BK)) = h0(Xk,m(KXk +Bk))

for all m ∈ m0N.

95



Abundance

Proof. As KX is not pseudoeffective over X, we now run a KX-MMP over Z with scaling
of A which terminates by Theorem 2.2.6 with a Mori fibre space X → Z ′/Z since Bk is
big over Zk. Since each step is (KX + B)-trivial and does not contract Xk, (X,B +Xk)
remains plt and so Xk stays irreducible and normal by Corollary 2.2.27.

Consider a step of this MMP φ : X 99K X ′ and let B′ := φ∗B. We have

X X ′

Y

Z,

g

φ

h

where h may either be an isomorphism or a small birational contraction. As g is (KX+B)-
trivial, by ?? we have that Yk is irreducible and normal as well. Let now (Y,Ξ) be the
induced pair on Y : we then have

h0(Xk,m(KXk +Bk)) = h0(Yk,m(KYk + Ξk)) = h0(X ′k,m(KX′k
+B′k))

where the first equality also follows from ?? and ?? and the latter is ??. Also the sections
of m(KX +B) are preserved by this MMP for large divisible m > 0.

Hence we can now suppose X admits a Mori fibre space X → Z ′/Z, with Bk big over Zk.

We claim that Z ′ = Z. Indeed, suppose for contradiction that there exists a divisor D
on Z ′ which is contracted by Z ′ → Z. Since dimZ = 2, D must be contained in Z ′k. But
then f−1D is a surface inside Xk, which is irreducible by assumption. It cannot be that
Xk is contracted to a point over Z, thus no such D exists and we have Z = Z ′.

In particular −KX′ is ample over Z and hence by Lemma 2.2.24 we have that fk,∗OXk =
OZk and the result follows from ??.

We can now prove the asymptotic invariance of plurigenera in a family of minimal models.

Proof of ??. By ?? we can suppose X is Q-factorial. We have κ(KXk +Bk) = κ(KXK +
BK) = κ, since the Iitaka dimension is deformation invariant for semiample line bundles
by ??. Let f : X → Z/ Spec(R) be the relative Iitaka fibration, so that KX +B ∼Q f

∗A
for some ample Q-divisor. We now divide in various cases.

If κ = 0, then KX + B ∼Q 0 and hence we conclude by ??. If κ = 1, then this is ??.
Finally in the case κ = 2 we conclude by ?? and ??.

Putting these results together with ?? and the abundance theorem ?? we deduce an
asymptotic invariance result for plurigenera on suitable families.
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Imposing the conditions of ??, we are able to prove the invariance of plurigenera for
families of klt surfaces from ??.

Theorem 4.3.5. Suppose that (X,B) is a three dimensional klt R-pair with Q-boundary.
Suppose that all of the following are satisfied:

(1) (X,Xk +B) is plt with Xk integral and normal;

(2) if V is a non-canonical centre of (X,B + Xk) contained in B−(KX +B), then
dim(Vk) = dim(V )− 1.

Suppose further that at least one of the following holds:

1. κ(KXk +Bk) 6= 1; or

2. Bk is big over Proj(KXk +Bk)

Then there is m0 ∈ N such that

h0(XK ,m(KXK +BK)) = h0(Xk,m(KXk +Bk))

for all m ∈ m0N.

Proof. By ?? we can suppose X is Q-factorial. We may run a (KX + B)-MMP over R
which terminates by Theorem 2.2.6. We call (Y,Γ) the end-product of this MMP. Since
(X,B) satisfies conditions (1)-(2) of ?? we deduce h0(Xk,m(KXk+Bk)) = h0(Yk,m(KYk+
Γk)) for all sufficiently divisible m. In the case where κ(KXk + Bk) = 1, the condition
that Bk is big over Proj(KXk +Bk) is also preserved by the MMP.

If KX + B is pseudo-effective then KY + Γ is nef over R. Therefore, by ??, KX + B is
semiample and the result then follows from ??. If KX +B is not pseudoeffective over R,
then there is a Mori fibre space structure (Y,Γ)→ Z. This ensures that neither KY + Γ
nor KYk + Γk are pseudo-effective and thus the result holds trivially.

Remark 4.3.6. The p > 5 assumption is essential to the adjunction type results used in
??. Even if the MMP was known in lower characteristic, our arguments in this section
would not extend immediately.
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Chapter 5

Finiteness of Minimal Models

This chapter addresses remaining questions around Mori Fibrations in mixed character-
istic. It comprises the bulk of [Sti21b].

All the results besides termination also apply to pairs of pure characteristic. Much of the
content is the same as [Sti21b]. Here R will always be an excellent ring with dualising
complex. We also require that the residue fields of closed points are all of characteristic
p > 5 or p = 0, but this is a limitation only of current MMP results in mixed characteristic.

We keep the notation of Definition 2.1.2, however in this chapter we will always work over
a base T that is positive dimensional. This is mostly out of an abundance of caution.
The results of [DW19a] should be sufficient to carry out the arguments needed for ??
over an F -finite field. Care would also need to be taken with ?? in this setting, since
termination of an MMP with scaling is needed for ?? and ??. This should follow from
??, however. Over a perfect field of positive characteristic this theorem is already known
due to [Das20] and in characteristic 0 due to [SC11]. The result is also known in higher
dimensions over characteristic fields by [BCHM10].

First it is shown that in fact the threefold MMP over a positive dimensional base always
terminates, extending the termination result of [BMP+20] to pairs which are not pseudo-
effective.

Theorem 5.0.1 (??). Let f : (X,∆) → T be a threefold dlt pair over R, then any
KX + ∆ MMP terminates.

Next, it is shown that any two threefold Mori fibres spaces which are the output of the
same MMP are related by Sarkisov links.

Theorem 5.0.2 (??). Fix an integral quasi-projective scheme T over R. Let g1 : Y1 → Z1

and g2 : Y2 → Z2 be two Sarkisov related, klt Mori fibre spaces of dimension 3, projective
T . If the Yi have positive dimension image in T , then they are connected by Sarkisov
links.

The proof of this second theorem follows closely the work of [HM09]. The main technical
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work comes in proving a suitable version of Finiteness of Minimal Models.

Theorem 5.0.3 (??). Let X be an integral, normal threefold over R equipped with a
projective morphism X → T , where T is quasi-projective over R and the image of X in T
is positive dimensional. Let A be an ample Q-Cartier divisor and C be a rational polytope
inside LA(V ). Suppose there is a boundary A+B ∈ LA(V ) such that (X,A+B)/T is a
klt R-pair. Then the following hold:

1. There are finitely many birational contractions φi : X 99K Yi such that

E(C) =
⋃
Wi =Wφi(C)

where each Wi is a rational polytope. Moreover if φ : X → Y is a wlc model for any
choice of ∆ ∈ E(C) then φ = φi for some i, up to composition with an isomorphism.

2. There are finitely many rational maps ψj : X 99K Zj which partition E(C) into
subsets Aψj(C) = Ai.

3. For each Wi there is a j such that we can find a morphism fi,j : Yi → Zj and
Wi ⊆ Aj.

4. E(C) is a rational polytope and Aj is a union of the interiors of finitely many
rational polytopes.

In fact these results hold for a slightly more general class of singularities - rlt pairs, which
are essentially pairs which are replaceable by linearly equivalent klt pairs locally over
the base. This generalisation is necessary due to the lack of appropriate Bertini type
theorems over a general ring. Even if one starts with Mori Fibre Spaces coming from a
klt MMP, the Sarkisov links may involve rlt pairs. A full definition of rlt is given in ??
and a description of Sarkisov links in ??.

5.1 Termination

In this section we study termination for threefold pairs over positive dimensional bases.
In this setting we will show that every KX + ∆ MMP terminates for a dlt pair (X,∆)/T .
As always in this chapter, we consider only positive dimensional bases. If X → T is
projective and U ⊆ T is an open set we will write XU = X ×T U and ∆U = ∆|XU

Termination for pseudo-effective pairs in this setting is assured by the following theorem,
together with non-vanishing on the generic fibre.

Theorem 5.1.1. [BMP+20, Proposition 9.20] Let (X,∆)/T be a threefold dlt R-pair.
Suppose that

(X,∆) =: (X0,∆0) 99K (X1,∆1) 99K

is a sequence of (KX + ∆) flips. Then neither the flipped nor the flipping locus are
contained the support of ∆n for all sufficiently large n.
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We rely heavily on ??. The key remaining argument is if X → T is a klt pair then there
is an open set on which every contraction is horizontal. We prove this by reducing to the
case that (X,∆) is terminal. In mixed and positive characteristic this then follows from
the liftablity of −1 curves, see [KU85]. This argument does not work in purely positive
characteristic but provides motivation for our approach. Instead we adapt a termination
argument for terminal pairs, largely due to Shokurov [Sho86].

We will also need the following construction, essentially due to [Mum61].

Lemma 5.1.2. Let π : X → Y be a projective contraction from a regular scheme to a
normal scheme, both of dimension 2. Let E1, ..., En be the exceptional curves. Choose a
divisor D on Y and write D′ for the strict transform of D. Then there are unique mi ≥ 0
with D′ +

∑
miEi ≡Y 0. If D is Q-Cartier then we have π∗D = D′ +

∑
miEi.

Proof. By [Kol13, Theorem 10.1], the intersection form [Ei.Ej] is negative definite. Hence
there is a unique choice of mi with D′ +

∑
miEi ≡Y 0. It remains to show that mi ≥ 0.

By [Kol13, Lemma 10.2] there is E =
∑
riEi effective on X with −E ample over Y .

Then E.Ei < 0 for each i ensures that ri > 0 for all i.

Now suppose for contradiction that mk < 0 for some k. Then we may suppose that mk/rk
is minimal, otherwise if mj/rj is minimal we just replace k with j as we must still have
mj < 0. We must have, for every j, that D′.Ej ≥ 0 as it does not contain any Ej and
thus as D′ ≡Y −

∑
miEi we have

0 ≥ (
∑
i

miEi).Ej =
∑
I

mi

ri
(riEi.Ej) ≥

mk

rk

∑
i

(riEi.Ej) > 0

This is a contradiction and hence in fact mi ≥ 0 for each i. That this agrees with the
pullback when D is Q-Cartier is immediate from uniqueness.

Lemma 5.1.3. Let X be an Q-factorial scheme together with a projective morphism
f : X → Y with geometrically connected fibres to an excellent normal scheme of dimension
2. Suppose V is a closed subscheme of X with f(V ) contained in a divisor D. Then there
is a divisor D′ on X lying over D, numerically trivial over Y and containing V .

Proof. Let π : Y ′ → Y be a resolution of Y and X ′ be the normalisation of the dominant
component of the fibre product X ×Y Y ′. From above we have F on Y lying over D with
F ≡Y 0. We have induced maps g : X ′ → Y ′ and φ : X ′ → X. Now g∗F is numerically
trivial over Y , and hence over X. Thus as X is Q-factorial there is D′ with φ∗D′ = F .
It is clear from the construction that f∗D

′ = π∗F = D. Suppose that C is a curve lying
over D, then we must have D′.C = 0. If C is not contained in D′ then since f has
connected fibres we may suppose that D′ meets C, up to replacing C with another curve
in the same fibre, but then D′.C > 0, a contradiction. Hence D′ contains every curve,
and hence every fibre, over D. In particular it contains V .

101



Finiteness of Minimal Models

Definition 5.1.4. Let X be a terminal threefold log pair quasi-projective over R. We
define the difficulty

d(X) = #{E : a(E,X) < 1}

this is finite by [KM98, Proposition 2.36], since log resolutions exist by [BMP+20, Propo-
sition 2.12].

Clearly if Y ↪→ X is an open immersion then d(Y ) ≤ d(X) since every valuation with
centre on Y is also a valuation with centre on X. If X 99K X ′ is a KX flip then
d(X ′) ≤ d(X) by Lemma 2.1.15 We claim in fact this inequality is strict.

Lemma 5.1.5. (see [KM98, Lemma 6.21])

Let X/T be a terminal threefold R-pair and X 99K X ′ a KX flip, then d(X ′) < d(X).

Proof. It suffices to find a divisor E with a(E,X) < 1 and a(E,X ′) ≥ 1. Let C ′ be an
irreducible component of the flipped curve. Then X ′ is terminal, so it is smooth at the
generic point P of C by [Kol13, Corollary 2.30]. Let Y → X be the blowup of C ′ and
E the dominant component of the exceptional divisor. By localising at P we see that
a(E,X ′) = 1, since this is the blowup of a smooth point on a surface.

Let C be the centre of E on X. Then C is a component of the flipping curve and so we
have a(E,X) < a(E,X ′) by [KM98, Lemma 3.38] concluding the proof.

Theorem 5.1.6. Let (X,∆)/T be a terminal threefold R-pair. Then there is an open
set U ⊆ T such that every KXU + ∆U negative contraction is a horizontal divisorial
contraction.

Proof. Write ∆ =
∑n

1 akDk, we argue by induction on n. Suppose first that n = 0 and
for contradiction there is no such U . Thus we have a sequence of non-empty open sets
Ui ⊆ Ui−1 such that there is a KXUi

negative extremal ray Li supported away from Ui+1.
We write Xi = X × Ui.

If Li induces a divisorial contraction fi : Xi → X ′i then ρ(Xi+1) ≤ ρ(X ′i) < ρ(Xi) since fi
is an isomorphism over Ui+1. Similarly if Li induces a flip fi : Xi 99K X ′i then d(Xi+1) ≤
d(X ′i) < d(Xi). Since both are positive integers there can be only finitely many such Ui,
a contradiction.

Now suppose n > 0. Let ∆n−1 =
∑n−1

1 aiDi then by induction there is an open set U ⊆ T
such that every KXU +∆n−1

U negative contraction is a horizontal divisorial contraction. If
Dn is not horizontal, we can shrink U so it doesn’t meet the image of Dn and the result
follows immediately. This gives the result if dimT = 3.

Otherwise let S be the normalisation of Dn. If dimT = 2 then there is an open set V
of T on which SV → T is finite, and hence of relative Picard rank 0. In particular SV
contains no curves. If dimT = 1 then by [Tan18b, Lemma 2.13] there is an open set V
of T such that SV has relative Picard rank 1.
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In either case, replace U with U ∩ V , then X,S with XU , SU and ∆ with ∆|XU . It
suffices to show that every extremal KX+∆ negative contraction is a horizontal divisorial
contraction. Suppose for contradiction L is an extremal ray inducing one that is not. We
must have Dn.L < 0 from our choice of U . Thus induced contraction restricts to a
nontrivial birational morphism S → S ′ say. However S has Picard rank at most 1, so the
only possibility is this map contracts S entirely. In particular this defines a horizontal
divisorial contraction, a contradiction. The claim follows.

We can extend this immediately to klt pairs.

Theorem 5.1.7. Let (X,∆)/T be a terminal threefold R-pair. Then there is an open
set U ⊆ T such that every KXU + ∆U negative contraction is a horizontal divisorial
contraction.

Proof. Let π : (Y,∆Y )→ (X,∆) be a terminalisation, which exists by [BMP+20, Propo-
sition 9.17]. Then by ?? there is an open set U ⊆ T over which every KYU +∆YU negative
contraction is divisorial. We claim the same holds for KXU + ∆U negative contractions.

Indeed if f : XU → Z is any such contraction then KYU + ∆YU is not nef over Z. In
particular we get a contraction g : YU → Z, which is necessarily a horizontal divisorial
contraction. In particular g is not an isomorphism over the generic point ν of T . However
then neither can f be, else KYν + ∆Yν would be nef over Zν . Thus f is a horizontal
divisorial contraction as claimed.

Corollary 5.1.8. Let f : (X,∆) → T be a Q-factorial threefold dlt pair over R, then
any KX + ∆ MMP terminates.

Proof. It is enough to show there is no infinite sequence of flips. Note that ?? ensures
that the flipping and flipped curves are eventually disjoint from b∆c. Therefore, replacing
∆ with ∆− b∆c, we may assume (X,∆) is klt.

By ??, there is always some divisor D on T such that all the flips take place over D. If
T is Q-factorial then (X,∆′ = ∆ + tf ∗D) is klt for small t > 0 and a KX + ∆ MMP is
also a KX + ∆′ MMP. Since all the flips are contained in the support of ∆′ the sequence
must terminate. Otherwise we must have dimT = 2 so we use ?? in place of pulling back
D and conclude exactly as above.
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5.2 Relatively Log Terminal Pairs

Here we introduce relatively log terminal pairs, which are essentially pairs which are
replaceable by a klt pair locally over the base, and verify that the main results of the
MMP extends to this setting. A suitable Bertini type theorem is also established. In this
section T will always be positive dimensional, in any case the results would be superfluous
if T were the spectrum of a field.

Definition 5.2.1. We say an R-pair (X,∆)/T is relatively log terminal (rlt) (resp. rel-
atively log canonical (rlc)) if there is a finite open cover Ui of T such that on each
Xi = Ui ×X we have (KX + ∆)|Ui ∼R KXi + ∆i where (Xi,∆i) is a klt (resp. lc) pair.
In this case we say that (X,∆) is witnessed by (Xi,∆i). We also sometimes say ∆ is
witnessed over Ui.

If S ⊆ WDiv(X) then we say (X,∆) is rlt (resp. rlc) with witnesses in S if ∆i ∈ S|Ui
for each i for some choice of witnesses.

Remark 5.2.2. T is always quasi-compact so this is equivalent to asking for KX + ∆ ∼
KXp + ∆p with (Xp,∆p) klt for each p ∈ T where Xp = X × Tp for Tp the localisation at
p.

Being rlt can be quite a sensitive condition. In particular it’s not true that if B ≤ B′ and
(X,B′) is rlt that (X,B) must be rlt. For example, for any choice of B and sufficiently
ample H, on X klt and Q-factorial, we have that (X,B +H) is rlt, though B might not
be. It fits well in the context of polytopes however as if Bi are rlt then so is

∑n
1 λiBi for

any choices of λi ≥ 0 with
∑
λi ≤ 1.

The pseudo-effective cone is the closure of the big cone, and D is big if and only if its
pullback to the generic fibre of X → T is. Hence if Ui is any open cover of T , then D is
pseudo-effective if and only if D|Ui is. In particular an rlc pair is pseudo-effective (resp.
big) if and only if its witnesses are.

The definitions of various birational models for klt or lc pairs in Definition 2.2.28 extend
naturally to the rlt case.

Definition 5.2.3. Let φ : X 99K Y be a rational map. If Ui is an open cover of T we
write φi : Xi 99K Yi = Y ×Ui. If (X,∆) is a pseudo-effective rlc pair witnessed by (Xi,∆i)
then φ is a weak log canonical (wlc) model of (X,∆) if φi is an (X,∆i) wlc model for
each i. Equally if (X,∆) is rlt then φ is a log terminal model of (X,∆) if and only if
each φi is a log terminal model of (Xi,∆i).

By Lemma 2.2.30 these definitions are independent of the choice of witnesses. In partic-
ular if (X,∆) is lc then the definition of wlc models agrees with usual one, equally if it
is klt then the definition of log terminal model is unchanged.

Remark 5.2.4. The usual definition of ample model works here with no modification, it
is equivalent to asking for it to be an ample model for the witnesses.
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We will need the following Bertini type result which provides one of the key motivations
for the introduction of rlt pairs.

Lemma 5.2.5. Let (X,∆)/T be an rlt R-pair. Take A ≥ 0 big and nef, then (X,∆ +A)
is rlt. Moreover if D is a divisor on X sharing no components with the augmented base
locus B+(A) nor any witness of (X,∆) then we may assume no witness of (X,∆ + A)
shares a component with D.

Proof. Write A ∼ A′+E for A′ ample and E ≥ 0. We may assume E is arbitrarily small,
by writing A ∼ δA′+ (1− δ)A = δE and replacing A′ with δA′+ (1− δ)A. Thus we may
suppose (X,∆ +E) is rlt such that no witnesses shares a component with D and reduce
to the case A is ample.

Pick a point P ∈ T and localise. Write XP = X × TP , ∆P for the witness over P and
DP for the restriction of D. Let π : Y → XP be a log resolution of (XP ,∆P + D).
Let D′ = Supp(π−1

∗ D) and take −E effective, exceptional and anti-ample over XP . So
A′ = π∗AP − E is ample. Write KY + ∆′ = π∗(KXP + ∆P ).

By [BMP+20, Theorem 2.11] we can choose A′ ≥ 0 with (Y,∆′+A′+E) klt and (Y,∆′+
A′ +E +D′) lc. In particular this choice of A′ cannot share a component with D′. Now
(XP ,∆P +π∗A

′) is klt and π∗A
′ shares no components with D. Then this pair lifts to klt

pair over some neighbourhood of P . The result follows by quasi-compactness.

The MMP for these pairs lifts naturally from the klt case. We work in the setting of
[BMP+20], however the rlt (resp. rlc) case always follows from corresponding results for
klt (resp. lc) pairs.

Theorem 5.2.6 (rlc Cone Theorem). Let (X,∆)/T be an rlc Q-factorial threefold pair
R-pair with R boundary. Then there is a countable collection of curves {Ci} on X such
that:

1.
NE(X/T ) = NE(X/T )KY +∆≥0 +

∑
i

R[Ci]

2. The rays Ci do not accumulate in (KY + ∆)<0.

3. There is an integer M such that for each i there is dCi with

0 < −(KX + ∆).Ci ≤Mdci

and dCi divides L ·k Ci for every Cartier divisor L on X.

Proof. For ease of notation we will often view cycles on Xi as cycles on X without
renaming.

Suppose that (X,∆) has witnesses (Xi = X ×Ui,∆i) for some open cover Ui of T . Then
Ui is still quasi-projective over R and the Cone Theorem holds for each (Xi,∆i). Let γi,j
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be the KXi + ∆i negative extremal curves. These are also KX + ∆ negative, though they
need not be extremal on X.

Suppose now that R is a KX + ∆ negative extremal ray. Let r ∈ R be a non-zero cycle.
Then r is the limit of some effective cycles rk. We write rki for the part of r supported
over Ui. Then ri = lim rki is still pseudo-effective, moreover r − ri = lim rk − rki is also.
Since R is extremal we must have for each i that either ri = 0 or r = tiri for some ti > 0.
There must be some i with ri 6= 0, else we would have r = 0. However ri then generates
an extremal KXi +∆i negative ray, hence r = tiri = tγi,j for some j and some t > 0. Thus
the γi,j generate all the KX + ∆ negative extremal rays. (1) and (3) follow immediately
by Theorem 2.2.12. Since there are finitely many Ui if the rays accumulated on X we
could chose a subsequence consisting of extremal rays coming from some Xi which would
then accumulate on Xi, thus 2 also holds.

Theorem 5.2.7 (rlt Basepoint Free Theorem). Let (X,∆)/T be a Q-factorial threefold
rlt R-pair with R-boundary. Let L be a nef Cartier divisor over T such that L−(KX +∆)
is big and nef over T . Then L is semiample.

Proof. This is immediate from the klt case, [BMP+20][Theorem 9.26], since semi-ampleness
is local on the base and if L− (KX + ∆) is big and nef over T then LXi − (KXi + ∆i) is
big and nef over Ui for each i.

Theorem 5.2.8 (Existence of rlt flips). Let (X,∆)/T be a threefold rlt R-pair with R-
boundary. Suppose X → Y is a flipping contraction over T then the flip X 99K X+

exists.

Proof. Let φ : X → Y be a flipping contraction for an rlt pair (X,∆). Suppose (X,∆)
is witnessed by (Xi,∆i) and let φi : Xi → Yi be the induced morphism Ui. Then φi is
either still a flipping contraction or an isomorphism. If φi is a flipping contraction, then
the existence of flip X+

i is ensured by [BMP+20][Theorem 9.12], otherwise we take simply
take X+

i = Xi. Hence we have a suitable X+
i for each i. Since flips are unique these X+

i

glue to a variety X+ over T such that X 99K X+ is the required flip.

Theorem 5.2.9 (Termination of rlt flips). Let (X,∆)/T be a threefold rlt R-pair with
R-boundary, then any sequence of (KX + ∆) flips terminates.

Proof. Suppose first KX+∆ is pseudo-effective. Let f i : X i → X i+1 be a sequence of flips
from X = X0 of an rlt pair (KX + ∆). Then (KX + ∆) is witnessed over some finite open
cover Uj and the restriction f ij : X i

j → X i+1
j is a sequence of flips for the klt pair (KXj+∆j)

for each j. In particular for fixed j the sequence eventually terminates by Corollary ??,
but then as there are finitely many j, the global sequence f i also terminates.

Theorem 5.2.10 (MMP for rlt pairs). Let (X,∆)/T be a threefold rlt R-pair with R-
boundary, then we can run a KX + ∆ MMP. If KX + ∆ is pseudo-effective then this
terminates with a good log terminal model, otherwise it ends in a Mori fibre space.

Proof. Existence of the claimed MMPs and their termination is immediate from the above
results. Suppose then φ : X 99K Y is a log terminal model, since semiampleness is checked
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locally over the base we can assume that (X,∆) is klt. Then KY + ∆Y is a good log
terminal model by ??.

5.3 RLT Polytopes

In this section we introduce rlt versions of Shokurov polytopes and provide some key
technical results for their usage in the proof of Finiteness of Minimal Models. In par-
ticular we show that RLA(V ) is in fact a rational polytope. In this section, as in all
subsequent ones, R will always be an excellent ring with dualising complex, T will be a
positive dimensional, quasi-projective R scheme and X will always be an integral scheme
projective and surjective over T . All pairs will be considered as R pairs over T .

Definition 5.3.1. Fix a Q-divisor A ≥ 0. Let V be a finite dimensional, rational affine
subspace of WDivR(X) containing no components of A. Such V is called a coefficient
space (for A).

We have the following.
VA = {A+B : B ∈ V }

LA(V ) = {∆ = A+B ∈ VA : (X,∆)/T is an lc pair}
RLA(V ) = {∆ = A+B ∈ VA : (X,∆)/T is an rlc pair with witnesses in VA}

We call a polytope C inside RLA(V ) rlt if it is rational and contains only boundaries of
rlt pairs.

If C ⊆ RLA(V ) is a rational polytope then we have

E(C) = {∆ ∈ C : KX + ∆ is pseudoeffective}

N (C) = {∆ ∈ C : KX + ∆ is nef}

Given a birational contraction φ : X 99K Y we also define

Wφ(C) = {∆ ∈ E(C) : φ is a weak log canonical (wlc) model of (X,∆)}

and given a rational map ψ : X 99K Z

Aφ(C) = {∆ ∈ E(C) : φ is the ample model of (X,∆)}

Remark 5.3.2. As defined above, RLA(V ) is non-empty only when (X,A) is log canon-
ical. We might wish to allow (X,A) to be rlc with fixed witnesses instead. This quickly
becomes non-trivial because of the overlap of sets in the corresponding open cover.

If we’re interested in a pair (X,A+B) where (X,B) is rlt and A is big and nef then for
suitably small t > 0, and some coefficient space V , we always have that (X, tA + (1 −
t)A + B) is rlt with coefficients in RLtA(V ) by ??. Moreover if we have finitely many
such pairs, we can find t, V suitable for all of them. This is normally enough in practice.
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We consider X → T to be part of the definition of X and omit any mention of T from
the notation for rlt polytopes.

Lemma 5.3.3. Take A ≥ 0 and let V be a coefficient space. Let C ⊆ RLA(V ) be a
rational polytope. Then there is an open cover Ui such that every ∆ ∈ C is witnessed
over Ui. If C is an rlt polytope then we may choose Ui such that every witness is klt.

Proof. We can take the vertices Di of C. Then take witnesses (Xi,j, Bi,j) of Di. Since
there are finitely many Di, we can assume that for all i we have Xi,j = Xj for some Xj not
depending on i, after taking intersections of combinations of the Xi,j and renumbering
as necessary. Now C is the convex hull of the Di and ∆ =

∑
λiDi has witnesses ∆j =∑

λiBi,j as required.

Note that if C is not an rlt polytope and ∆ ∈ C is an rlt boundary, it might be that the
above lemma gives only log canonical witnesses on each Ui.

We will essentially only ever work with rational polytopes containing a klt boundary.
Since the questions are always local we can normally assume these polytopes are simplices.
By the following lemma, it is then enough to work with rlt polytopes.

Lemma 5.3.4. Suppose A is ample, V is a coefficient space and that C ⊆ RLA(V ) is
a rational simplex. If there is some boundary B0 ∈ RLA(V ) with (X,B0) rlt, then there
is an affine bijection f : C → C ′, where C ′ is an rlt polytope inside RLA/2(W ) for some
coefficient space W . Further f, f−1 preserve rationality and Q-linear equivalence.

Proof. To show a rational polytope C ′ ⊆ RLA′(V ′) is rlt it is enough to show that every
vertex boundary Bi of C ′ is rlt with witnesses in V ′.

Indeed if this is the case then for B ∈ C ′ we have B =
∑
λiBi for λi ≥ 0 with

∑
λi = 1.

Let Uj be an open cover such that eachBi is witnessed by (Xj, Bi,j), thenB|Xj ∼
∑
λiBi,j,

so (X,B) must be rlt as claimed.

Write the vertices of C as Bi = A + ∆i for i > 0 and let be B0 = A + ∆0 ∈ RLA(V ) be
the rlt boundary. Now choose Γi = (1− ti)∆i + ti∆0 for ti rational and sufficiently small
that A

2
+ ti(∆i −∆0) is ample. By construction (X,A+ Γi) is rlt.

Further choose Hi ∼Q
A
2

+ ti(∆i−∆0) effective and sharing no support with A. Then by
construction

A+ ∆i ∼Q
A

2
+ Γi +Hi = Di

and (X,Di) is rlt by ??. Reselecting Hi if needed we may suppose that Di is not in the
span of {Dj : i 6= j} for each i. This can always be done since the Hi are all ample.

Let W be a coefficient space containing the components of ∆i, Hi such that each (X,Di)
is rlt with witnesses in W . Now let C ′ be the convex hull of the Di, so that C ′ is an rlt
polytope inside RLA(W ).
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5.3 RLT Polytopes

Since C is a simplex, by assumption, we can write any B ∈ C uniquely as B =
∑
λiBi

where λi ≥ 0 and
∑
λi = 1. Therefore, we can define a bijective affine map f : C → C ′

by sending Bi = A+ ∆i → Di and then writing f(B) =
∑
λiDi.

Clearly B is rational if and only if λi ∈ Q, which happens if and only if f(B) =
∑
λiDi is

rational. So f, f−1 preserve rationality. Equally as Bi ∼Q Di we must have B ∼Q f(B),
and the same holds for f−1.

Remark 5.3.5. With the notation of ??, if S ⊆ C is a rational polytope then f(S) is
also a rational polytope since f is affine and preserves rationality. The converse is also
true since f−1 is also still affine and f−1f(S) = S as f is a bijection.

Given a general rlc polytope we can always take a rational triangulation and define a
piecewise affine bijection, f , by using the above procedure on each simplex. However,
this does not in general preserve convexity, so it easier in practice to work locally on the
polytope and assume it is a simplex. Alternatively, this could be remedied by working
with C ′, the convex hull of f(C), since this must still be an rlt polytope. Then f : C → C ′

is no longer a bijection, but it is still preserves rationality and Q-linear equivalence so
would suffice for applications.

Definition 5.3.6. Take S, S ′ ⊆ RLA(V ). We say S ∼R S
′ if for every ∆ ∈ S there is

∆′ ∈ S ′ with ∆ ∼R ∆′ and vice versa. The linear closure of S is given by

S∗ =
⋃
S′∼S

S ′ = {∆ ∈ RLA(V ) such that ∃∆′ ∈ S with ∆ ∼R ∆′}

.

Lemma 5.3.7. Let V be a finite dimensional, rational affine subspace of WDivR(X) and
fix A ≥ 0. Take S ⊆ RLA(V ) a rational polytope. Then the linear closure, S∗ is also a
rational polytope.

Proof. By translating by −A we can view S as a subset of V . Similarly, after a translation
by say D of V we can suppose that V is a vector space. After these transformations we
have that S∗ = {B + E such that B ∈ S,E ∼ 0 and B + E −D ≥ 0}.

Let N = {E ∈ V : E ∼R 0} and take φ : V → W = V/N ⊆ Pic(X) ⊗ R, then φ(S) =
φ(S∗) is a rational polytope in W and its preimage S+N is still cut out by finitely rational
half spaces, but is no longer compact. Hence we must have that S∗ = (S+N)∩ (∆ ≥ D)
is cut out by finitely many rational half spaces.

However for each point B ∈ S, the set {B}∗ = {B + E ≥ D such that E ∼R 0} is
bounded, since the E ∈ N such that B+E ≥ D are bounded by the coefficients of B and
D. Since S is closed and bounded however we must have that S∗ is bounded too.

In particular RLA(V ) is a rational polytope over a local ring, since it is the linear closure
of LA(V ). To lift from the local case, we essentially find an open cover of T which
witnesses RLA(V ).
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Theorem 5.3.8. Let V be a finite dimensional, rational affine subspace of WDivR(X)
and fix A ≥ 0. Then RLA(V ) is a rational polytope.

Proof. For W an affine subspace, let Ŵ = {w − w′ such that w,w′ ∈ W}.

Take a point p ∈ T , and consider Xp = X × Tp → Tp. Let Ap, Vp be the restrictions of
A, V to Xp and let Di be the vertices of LAp(Vp), then there are open sets Ui around p
such that (X×Ui, Di) are lc when Di is extended over Ui. Moreover we may freely assume
that there are no vertical components of V which meet Up =

⋂
Ui but are not supported

over p, thus ensuring for E in V̂ |XUp where XUp = X × Up, we have E ∼R 0 if and only
if E|Xp ∼R 0. By compactness of T there are finitely many pj such that Uj = Upj is an
open cover of T .

A pair (X,∆) is rlc with witnesses in V if and only if it is witnessed over Uj. Indeed if it
is rlc, then we must be able to find Bj such (Xpj , Bj) is lc and Bj ∼R ∆. By construction
however Bj extends to an lc pair (Xj = X × Upj , Bj). Then (X,∆) is witnessed by
(Xj, Bj) as required.

Consider RLA(V ), by the previous paragraph we may take an open cover Ui such that
every pair (X,B) ∈ RLA(V ) is witnessed by pairs (Xi = X × Ui, Bi). Let Ci = LAi(Vi)∗
where Ai, Vi are the restrictions of A, V to Xi and write Si = {∆ ∈ V : ∆|Xi ∈ Ci}, then
RLA(V ) =

⋂
Si is a rational polytope since each Ci is and there are no divisors D 6= 0

with D|Xi 6= 0 for every i.

In particular then RLA(V ) is closed. Moreover since it is a polytope, if (X,∆i) is a
sequence of rlc pairs with ∆i → ∆, then the witnesses of ∆ may be chosen to be the limit
of witnesses of ∆i.

5.4 Finiteness of Log Terminal Models

In this section we prove our Finiteness of Minimal Models result. Here R will always
be an excellent ring with dualising complex, T will be a quasi-projective R scheme and
X will always be an integral scheme projective over T . All pairs will be considered as
R pairs over T . We assume throughout that X is a scheme of dimension 3, though the
claims and proofs hold in any generality in which subsection 2.2.1 hold.

Lemma 5.4.1. Fix a Q-divisor A ≥ 0 and let C ⊆ LA(V ) be a rational polytope. Then
N (C) = {∆ ∈ C such that KX + ∆ is nef } is also a rational polytope.

Proof. Let Bi be the vertices of C. If B ∈ C then B =
∑
λiBi for 1 ≥ λi ≥ 0 so

(KX + B).C < 0 ensures (KX + Bi).C < 0 for some i. In particular if Ri,j are the
KX + Bi negative extremal rays then KX + B is nef if and only if (KX + B).Ri,j ≥ 0
for all i, j. Indeed, suppose that we have such a KX + B and that R is a KX + B
negative extremal ray, then (KX + Bi).R < 0 for some i and so R = Ri,j for some j,
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a contradiction. Then the condition (KX + B).Ri,j ≥ 0 defines a rational polytope by
[BMP+20, Proposition 9.31].

Since this result does not require A to be ample, we may often avoid the use of Bertini
type theorems, [BCHM10, Lemma 3.7.3] in particular, to substitute a big divisor for an
ample one. Versions of these results are available for rlt polytopes but making use of
them requires extra back and forth between the klt and rlt case.

Lemma 5.4.2. Let φ : X 99K Y be a birational contraction and fix A ≥ 0. Let C ⊆
RLA(V ) be an rlt polytope, then Wφ(C) is a rational polytope.

Proof. We can choose a finite open cover, Ui such that C is witnessed by klt pairs over
Ui. On Xi we can write Ni = {E ∼R 0} ⊆ Vi = V |Xi , Ci = C|Xi and consider the
induced map φi : Xi → Yi. Now let C ′i = LAi(Vi) ∩ C∗i . After perhaps shrinking C ′i we
may suppose it is a klt polytope and Ci ⊆ (C ′)∗i . Thus Wφi(C

′
i) is a rational polytope

by [BCHM10, Corollary 3.11.2] with [BCHM10, Theorem 3.11.1] and [BCHM10, Lemma
3.7.4] replaced by ??.

Therefore Wi = Wφi(Ci) = Wφi(C
′
i)
∗ ∩ Ci is also a rational polytope. For each Wi we

have a rational polytope Ŵi = {∆ ∈ C : ∆|Xi ∈ Wi} ⊆ C. The intersection of these
polytopes is precisely Wφ(C).

Lemma 5.4.3. Let φ : X 99K Y be a birational contraction and fix A ≥ 0. Let C ⊆
RLA(V ) be an rlt polytope and F ⊆ Wφ(C) be a face, possibly with F =Wφ(C). Suppose
f : X 99K Z is an ample model for some B in the interior of F . Then there is a
factorisation f = g ◦φ for some morphism g : Y → Z, and moreover f is an ample model
for every boundary in the interior of F .

Proof. Since φ is a wlc model for B we have an induced map g : Y → Z ′ by ??. However
then g ◦ φ is an ample model for (X,B), so after post-composition with an isomorphism
we may suppose Z = Z ′ and f = g ◦ φ. Suppose B′ ∈ Wφ(C) then f is an ample model
for (X,B′) if and only g is an ample model for (Y, φ∗B

′). Since KY + φ∗B’ is semiample
g is an ample model if and only if the curves contracted by g are precisely those Γ with
(KY + φ∗B

′).Γ = 0.

Suppose then B′ is in the interior of F . Consider Bt = tB + (1− t)B′, so that

KY + φ∗Bt = t(KY + φ∗B) + (1− t)(KY + φ∗B
′).

Then if (KY + φ∗B
′).Γ 6= 0 and (KY + φ∗B).Γ = 0 it must be that (KY + φ∗Bt).Γ < 0

for all t < 0. However for small t we have Bt ∈ F , a contradiction. By symmetry, we see
that Γ is contracted by g if and only if (KY + φ∗B

′).Γ = 0, so f is an ample model for
KX + φ∗B

′ also.

Theorem 5.4.4. [BMP+20, Theorem 9.33] Suppose that X is Q-factorial and let C be
a klt polytope in LA(V ) for A ≥ 0 big. There is a finite collection of log terminal models
φi : X 99K Yi such that every B ∈ E(C) has some j with φj a log terminal model of
(X,B).
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Corollary 5.4.5. Suppose that X is Q-factorial and let C be a klt polytope with A big.
Suppose that every B ∈ C has components which span NS(X), then there are finitely
many birational maps φi : X 99K Yi such that for any B ∈ E(C) if φ : X 99K Y is a wlc
model then φi = f ◦ φ for some i and some isomorphism f : Y → Yi.

Proof. After possibly expanding V , we can take C ′ ⊆ LA
2
(V ) a klt polytope with C ⊆ C ′

such that for any B ∈ C if D is a component of B then B + tD is in C ′ for any |t| < ε,
for some ε > 0 depending only on B. This can be done by taking C ′ to be the convex
hull of small perturbations of the vertices of C.

By the previous theorem there are finitely many birational maps φi : X 99K Yi such that
for every B ∈ E(C ′) there is some φi a log terminal model of (X,∆).

Further are then finitely many morphisms fi,j : Yi → Zj such that ψi,j = fi,j ◦ φi are
ample models such that B ∈ E(C ′) some ψi,j is the (unique) ample model of (X,B). This
is because the fi,j correspond to faces of the rational polytope Wφi(C

′) by ??.

Now pick ∆ ∈ C. Let ψ : X 99K Y be a wlc model for ∆. We can take D in the span
of the components of B such that φ is B + D negative and φ∗D is ample. By shrinking
D, we can suppose that B + D ∈ C ′. Thus we have that ψ is the ample model of some
B+D ∈ Wψ(C ′). Now take a log terminal model of B+D of the form φi for some i,. By
uniqueness of the ample model, up to post-composition with an isomorphism, we have
ψ = fi,j ◦ φi = ψi,j for some j. Thus the family of models {ψi,j} give the required maps.

Theorem 5.4.6. Let A be a big Q-divisor and chose V a coefficient space. Take C be
an rlt polytope inside RLA(V ), then

1. There are finitely many birational maps φj : X 99K Yj such that for any B ∈ E(C)
if φ : X 99K Y is a wlc model then φj = f ◦ φ for some j and some isomorphism
f : Y → Yj.

2. There are finitely many rational maps ψk : X 99K Zk such that if ψ : X 99K Z is
an ample model for some B ∈ E(C) then there is an isomorphism f : Z → Zk with
ψk = f ◦ ψk.

Proof. We prove 1., 2. follows immediately as ample models correspond to the interiors
of faces of the Wφi(C) by ??.

Equally, it is enough to show this in the case that C is a klt polytope. Indeed suppose
it holds for klt polytopes. Then take an open cover Ui of T witnessing C. For each i
we may take a klt polytope C ′i with C ′i ∼ Ci = C|Ui . Given a wlc map φ : X 99K Z
for B ∈ E(C), we can let φi be the induced map on Xi which is a wlc model for some
Bi ∈ C ′i. In particular for fixed i there are finitely many φi,j such that for any B and φ
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5.4 Finiteness of Log Terminal Models

we have fi ◦ φi = φi,j for some j and fi. As Ui is a finite cover there are finitely many
φi,j indexed over i, j.

If we have another map Φ : X L99 Z ′ with isomorphisms gi such that fi◦φi = φi,j = gi◦Φi,
then hi = gi ◦ f−1

i glues to an isomorphism Z ′ → Z over T . Thus there are only finitely
many wlc models up to isomorphism.

Suppose then that C is a klt polytope.

Let π : Y → X be a log resolution of the support of V . Then for any ∆ in C we have
π∗(KX + ∆) +E = (KY + ∆′) where E ≥ is exceptional and shares no components with
∆′ and (Y,∆′) is klt. Sending ∆→ ∆′ as above we can find a new polytope C ′ on which
it is sufficient to check the result holds. By replacing C with C ′, A with π∗A, X with Y
and V with a suitable space, we may suppose that X is regular, though it may no longer
be the case that A shares no support with V .

Let Hk be ample divisors spanning NS(X) and sharing no components with A or V . Let
H =

∑
Hk. Note that for any open U in T we still have the components of H|XU span

NS(XU), since NS(X) surjects on NS(XU) by Q-factoriality of X.

After shrinking H we may take some A′, E ≥ 0 and a small t > 0 such that:

• E ≥ 0 shares no components with H;

• A− E is ample;

• t(A− E)−H ' A′ > 0 is ample and shares no components with V,H or E;

• {A+H +B + tE : A+B ∈ C} is a klt polytope; and

• C ′ = {A′ + (1− t)A+H +B + tE : A+B ∈ C} is an rlt polytope.

That we can choose C ′ to be rlt follows from ??. Note that A′+ (1− t)A+H+B+ tE '
A+ B by construction. Thus it suffices to check the result for C ′ since C ′ ⊆ LH(W ) for
some coefficient space W . As above, by taking an open cover, we may in fact assume
that C ′ is klt. But then the result follows by ??, since the components of H span NS(X)
by construction.

Theorem 5.4.7. Let A be an ample Q-Cartier divisor and C be a rational polytope inside
RLA(V ). Suppose there is a boundary A+B ∈ RLA(V ) such that (X,A+B) is rlt with
witnesses in VA. Then the following hold:

1. There are finitely many birational contractions φi : X 99K Yi such that

E(C) =
⋃
Wi =Wφi(C)

where each Wi is a rational polytope. Moreover if φ : X → Y is a wlc model for any
choice of ∆ ∈ E(C) then φ = φi for some i, up to composition with an isomorphism.
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2. There are finitely many rational maps ψj : X 99K Zj which partition E(C) into
subsets Aψj(C) = Ai.

3. For each Wi there is a j such that we can find a morphism fi,j : Yi → Zj and
Wi ⊆ Aj.

4. E(C) is a rational polytope and Aj is a union of the interiors of finitely many
rational polytopes.

If C is an rlt polytope then A big suffices.

Proof. Since the convexity condition of every sub-polytope in the theorem statement is
clear, it is enough to show that the result holds for every simplex in a rational triangulation
of C. Thus after extending V and changing A as needed we may suppose:

• C is a simplex;

• C is an rlt polytope by ??;

• E(C) is covered by Wφi(C) and has a decomposition into disjoint sets Aψj(C) for
some collection of birational contractions φi and rational maps ψj by ??; and

• There are only finitely many φi and ψj by ??.

Take one of the wlc models φi : X 99K Yi , then just as in Lemma ??, if ∆,∆′ are
in the same face of Wi then they have the same ample model. In particular then let
ψj : X 99K Zj be the ample model corresponding to the interior of Wi, then we have a
morphism fi,j : Yi → Zj and Wi ⊆ Aj as required.

Similarly by ?? we have that Aj ∩ Wi is a union of the interiors of some faces of Wi.
Since there are finitely many Wi and they cover E(C) the result follows.

Remark 5.4.8. In practice since we can always extend V and C it is enough to know
that (X,A) is klt, rather than needing an rlt pair (X,A+B). Similarly if X is klt, we can
always find t > 0 such that (X, tA) is klt. Then if (X,A+ B) = (X, tA+ (1− t)A+ B)
is rlc with coefficients in VA it is also rlc with witnesses in V ′tA for some coefficient space
V ′. By choosing V ′ such that all the vertices of C are rlc with witness in V ′tA, we see that
it is enough to suppose that X is klt.

5.5 Geography of Ample Models

We keep the notation of the previous section, though we denote the closure of Aφ(C)
by Dφ(C). As before R will always be an excellent ring with dualising complex, T will
be a quasi-projective R scheme and all other schemes will be integral and admitting a
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projective, surjective morphism to T over R. All pairs will be considered as R pairs
over T . Like in the previous sections, we will work with A ample throughout. As in
the previous section, we work with schemes of dimension at most 3, however this is a
limitation only of currently known MMP results.

We will say the span of a polytope C is

Span(C) = {λ(B −B′) such that B,B′ ∈ C and λ ∈ R}.

In a slight abuse of notation we say that C ⊆ WDiv(X) spans NS(X) if the span of C
surjects onto NS(X). Equivalently this means if D is a divisor and B is in the interior
of C then for all sufficiently small t > 0 B + tD ≡ D′t for some D′t ∈ C.

Lemma 5.5.1. Let X → T be a Q-factorial, klt threefold over R. Let φ : X 99K Y be a
wlc model of an rlc pair (X,∆)/T . Let A ≥ 0 be an ample Q-divisor and C be a polytope
inside LA(V ). Then we have that Dφ(C) := Aφ(C) ⊆ Wφ(C) is a rational polytope,
moreover if C spans NS(X) and contains an open set around ∆ then this inclusion is an
equality.

Proof. Suppose that B ∈ Aφ(C). Then by [BCHM10, Theorem 3.6.5] we see that in fact

φ is a wlc model for B and thus we have Aφ(C) ⊆ Wφ(C). So Aφ(C) is a union of faces

of Wφ(C) by ?? and ??. However Aφ is convex inside Wφ(C) so it must be that Aφ(C)
is a face of Wφ(C), and thus is a polytope.

Now suppose C spans NS(X) and contains an open set around ∆. Let H be a general
ample divisor on Y . Let W be a common resolution with maps p : W → X, q : W → Y .
Then by assumption there is some H ′ ≡ p∗q

∗H with support contained in the support of
∆, and hence in the support of any B in the interior ofWφ(C). Take such a B, then there
is ε > 0 with (X,B+ εH ′) ∈ C , for any ε′ ∈ ((0, ε]) φ is an ample model of (X,B+ ε′H ′),
such an ε exists since φ is necessarily H ′ non-negative. Thus B + ε′H ′ ∈ Aφ(C). But

then we must have Wφ(C) ⊆ Aφ(C).

Theorem 5.5.2. [HM09, Theorem 3.3] Let C be a polytope inside RLA(V ), then there
are finitely many maps fi : X 99K Yi over T with the following. properties.

1. {Ai = Afi(C)} partition E(C). If fi is birational then Di = Dfi(C) is a rational
polytope.

2. If Aj ∩ Di 6= ∅ then there is a morphism fi,j : Yi → Yj such that fi = fi,j ◦ fj.

Moreover if C spans NS(X) then we also have the following.

3. Pick i such that a connected component, D of Di meets the interior of C. Then the
following are equivalent:

• dimD = dimC.

• Span(D) = Span(C).
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• If B ∈ Ai ∩ D then fi is a log terminal model of (X,B).

• fi is birational and Xi is Q-factorial.

4. Suppose that Di has the same span as C and B is a general point in Aj ∩ Di. If
in fact B is in the interior of C then the relative picard number of Yi/Yj is the
difference in dimension of Di and Dj ∩ Di.

This result is stated for C = LA(V ) in characteristic zero, but the proof goes through
essentially verbatim in this setting.

For brevity we fix some notation, essentially due to Shokurov.

Definition 5.5.3. Take a coefficient space V , an ample divisor A and then let C be a
polytope inside some RLA(V ).

Suppose that 3 and 4 of the previous lemma hold for C, then the triple (C,A, V ) is a said
to be a geography, when A and V are clear we sometimes just call C a geography. The
dimension of (C,A, V ) will be the dimension of C. The Dφ are called classes. If C is a
geography and dimDφ = dimC then Dφ is said to be a country. The codimension 1 faces
of countries are called borders, and a codimension 2 face is called a ridge. If (X,B) is
a pair such that every country in C is induced by a log terminal model of (X,B) then
(C,A, V ) is a geography for (X,B).

?? then says that if (C,A, V ) is a triple such that C spans NS(X) then C is a geography.
This combined with following will be the main method of producing geographies for the
remainder of the section.

Lemma 5.5.4. Let (C,A, V ) be a geography. Take W ⊆ V be a general coefficient space
and let WA = {A+B,B ∈ W} then C ′ = C ∩WA is a geography.

Proof. Index all of the faces of every polytope in the decomposition by Di as Fj. Then
for C ′ to be a geography it is enough to know that intersecting with W preserves the
codimension of the Fj meeting W . For fixed j, however the choices of W such that either
W does not meet Fj or F ′j = Fj ∩WA ⊆ C ′ has the same codimension as F ⊆ CA form
an open set in the Grassmanian. Since there are finitely many faces the result holds for
suitably general choice of W .

Lemma 5.5.5. Suppose V is a coefficient space which spans NS(X). Let C be any
polytope contained RLA(V ), then after perturbing the vertices by an arbitrarily small
amount (C,A, V ) is a geography.

Proof. Since we can perturb the vertices of C we may suppose it is rational and contained
in the interior of RLA(V ). Let W be the minimal coefficient space in V with C ⊆
WA ∩ RLA(V ). Since C is contained in the interior of RLA(V ), we can pick an rlt
polytope C ′ which spans NS(X) with WA ∩ C ′ = C. Then after a small perturbation of
the vertices we may suppose that WA ∩ C ′ is a geography, as required.

116



5.5 Geography of Ample Models

Lemma 5.5.6. [HM09, Lemma 3.6] Let (X,∆)/T be an rlt threefold pair and f : X 99K Y
a birational contraction of Q-factorial projective T -schemes. Suppose that B−∆ is ample
and f is an ample model for KX +B. Then f is a log terminal model for (X,∆).

Lemma 5.5.7. Suppose that fi : (X,∆)→ (Yi,∆i) for i = 1, ..n are a finite collection of
Q-factorial Mori Fibre spaces obtained by running an MMP for a rlt threefold pair (X,∆)
with X regular. Then there is a geography (C,A, V ) for (X,∆) of dimension at most n
such that every Dfi is a country.

Moreover if gi : Yi → Zi are the Mori Fibrations and we write hi = gi ◦ fi. Then we may
choose C such that Dhi are borders of the Dfi and their interiors are connected by a path
through the border of E(C) contained entirely in the interior of C.

Proof. Pick A′i ample on Zi such that g∗iA
′
i − (KYi + ∆i) is ample.

We may choose H ample on X whose components span NS(X) together with A ample
both sufficiently small such that:

• (X,H + A) is klt,

• the Ai = g∗iA
′
i − (KYi + ∆i + fi,∗(A+H)) are ample,

• (X,∆ + A+H) is an rlt pair which is not pseudo-effective, and

• each fi is (KX + ∆ + A+H) negative.

Further, we may pick A such that it avoids the exceptional loci of the fi and shares no
components with H.

By ?? we can take Bi ∼ f ∗i Ai such that each (X,∆+H+A+Bi) is rlt. Moreover we can
choose the Bi such that they share no components with A since the augmented base locus
of Bi is precisely the exceptional locus of fi. Thus the (X,∆ + Bi) all have witnesses in
some W for which (X,∆ +H + A+Bi) have witnesses in WA+H .

By construction, then, after adding the components of H to W we have (X,∆+Bi+H+
A) ∈ RLA(W ), a geography. Further the fi are wlc models of the (X,∆ + Bi + H + A)
and the hi are the ample models.

Let C be the convex hull of the ∆ + Bi + H + A and ∆ + H. Since the components of
H span NS(X), and the fi are wlc models for boundaries in C, we can find boundaries
in RLA(W ) for which the fi is an ample model. Moreover we can find them arbitrarily
close to C. Thus we can freely move the vertices of C an arbitrarily small amount such
that it meets the interior of each of the Dfi and their borders Dhi while ensuring they are
sufficiently general that C is a geography.

By construction, C−∆ is contained in the ample cone and dimC ≤ n. In particular C is
a geography for (X,∆) by ??. It remains to check that Dhi are borders of the Dfi and
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their interiors are connected by a path through the border of E(C) contained entirely in
the interior of C.

Since C contains a vertex D = ∆ +H /∈ E(C) such that C−D is contained in the effective
cone, it is enough to check that for each i the interior of Dhi meets the interior of C, but
this again is ensured by the construction. Thus we may take Ei, Ej in the interiors of
Dhi ,Dhj respectively and both contained in the interior of C. Then the simplex formed
by D,Ei, Ej meets the boundary of E(C) along a path connecting Ei and Ej, wholly
contained in the interior of C.

Lemma 5.5.8. [HM09, Lemma 3.5] Let (C,A, V ) be a geography on X of dimension
2. Take two ample classes Df and Dg corresponding to some maps f : X 99K Y and
g : X 99K Z. Suppose that Df is a country and that they meet along a border B not
contained in the boundary of C. Suppose further that ρ(Y ) ≥ ρ(Z)

Let h : Y 99K Z be the map induced by B. Take B an interior point of B and let ∆ = f∗B,
then one of the following holds.

1. ρ(Y ) = ρ(Z) + 1 and h is a KY + ∆ trivial morphism. Thus either

a) h is a divisorial contraction and B 6= Dg
b) h is a small contraction and B = Dg
c) h is a MFS and B = Dg is contained in the boundary of E(C).

2. ρ(W ) = ρ(Y ) and h is a KY + ∆ flop and B 6= Dg is not contained in the boundary
of E(C).

5.6 Sarkisov Program

Fix a positive dimensional quasi-projective R scheme, T . Suppose that f : X → Z,
g : Y → W are two Mori Fibre Spaces, projective and surjective over T . We say that
they are Sarkisov related if they are both outputs of an MMP from the same Q-factorial
rlt pair. In particular we require X, Y to be Q-factorial.

A Sarkisov link s : X 99K Y is one the following.

X ′ Y X ′ Y ′ X Y ′ X Y

X W X Y Z Y Z W

Z Z W W T

I II III IV

p q

Such that the following holds:
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• There is an rlt pair (X,∆)/T or (X ′,∆′)/T as appropriate such that the horizontal
map is a sequence of flops for this pair

• Every vertical morphism is a contraction

• If the target of a vertical morphism is X or Y then it is an extremal divisorial
contraction

• Either p, q are both Mori Fibre Spaces (this is type IVm) or they are both small
contractions (type IVs)

We realise these Sarkisov links inside two dimensional geographies as follows.

Fix X → T a threefold over R and a geography (C,A, V ) on X of dimension 2.

Let ∆ be a point in the boundary of E(C) but in the interior of C. Let T1 = Df1 , ..., Tk =
Dfk be the countries which meet ∆. Let Bi be the borders Ti meeting ∆ such that after
reordering we have Bi = Ti ∩ Ti+1 for 1 ≤ i ≤ k − 1. Then B0,Bk are contained in the
boundary of E(C). Let gi : X → Zi be the ample models associated to the interiors of Bi

Relabel φ = f0 : X 99K Y , Z = Z0, ψ = fk 99K W and T = Zk. Then we have p, q with
p ◦ φ = g0 and q ◦ ψ = gk.

Theorem 5.6.1. [HM09, Theorem 3.7] With notation as above, suppose B is any divisor
on X with ∆− B ample. Then q : Y → Z and q : W → T are two threefold Mori Fibre
spaces obtained by running (X,B) MMPs and they are connected by Sarkisov links.

Theorem 5.6.2. Fix an integral quasi-projective scheme T over R. Let g1 : Y1 → Z1 and
g2 : Y2 → Z2 be two Sarkisov related, klt Mori fibre spaces of dimension 3, projective T .
If the Yi have positive dimension image in T , then they are connected by Sarkisov links.

Proof. By assumption these Mori fibre spaces are outputs of an MMP for some pair klt
(X,∆)/T . Replacing X with a suitable resolution, we may suppose that X is smooth and
admits morphisms fi : X → Yi. Let hi = gi ◦ fi then by Lemma ?? there is a geography
for (X,∆) of dimension 2 such that the Dfi(C) are countries and the interiors of the Dhi
are connected by a path along the boundary of E(C).

Each ridge in this path corresponds to a Sarkisov link by ??. Thus following the path
gives a (non-unique) decomposition of f2 ◦f−1

1 : Y1 99K Y2 into Sarkisov links. Since E(C)
is a rational polytope, there are finitely many links.
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Chapter 6

The Augmented Base Locus in
Mixed Characteristic

This chapter studies the stable and augmented base loci of nef divisors in mixed charac-
teristic. Generally under the further assumption that the divisor is semiample in charac-
teristic 0. This work is published in [Sti21a].

We give a characterisation of the augmented base locus in this setting.

Theorem 6.0.1 (??). Let X be a projective scheme over an excellent Noetherian base S
with L a nef line bundle on X. Suppose that one of the following holds:

1. SQ has dimension 0;

2. L|XQ is semiample;

Then B+(L) = E(L).

We also extend the semiampleness result of [Wit20] to show that there is an equality of
stable base loci when the characteristic 0 part is semiample.

Theorem 6.0.2 (??). Suppose that X is a projective scheme over an excellent Noetherian
base with L a nef line bundle on X. Then SB(L) = SB(L|E(L)) so long as L|XQ is
semiample.

6.1 Preliminaries

We will work exclusively with line bundles. Since the schemes we work with need not
be normal, line bundles are not the same as Cartier divisors, however we typically use
the traditional notation for divisors as we still sometimes treat line bundles as Cartier
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divisors when appropriate. That is we write the tensor product of L,L′ as L+L′, L⊗k is
often written kL and given f : Y → X, then f ∗L = L|Y is often written OY (L), including
for Y = X, f = id.

Since the questions considered are local on the base, it suffices to work only with affine
bases. In particular, for notational simplicity, H i(X,L) will often be used to denote the
higher derived pushforwards of L by X → S.

Definition 6.1.1. Let L be a line bundle on a projective Noetherian scheme X over some
Noetherian scheme S. Then base locus is given as

B(L) =
⋂

s∈H0(X,L)

Z(s)red

where Z(s) is the zero set of s equipped with the obvious scheme structure. The stable
base locus is then

SB(L) =
⋂
m≥0

B(mL).

Fix an ample line bundle A. The augmented base locus is given as

B+(L) =
⋂
m≥0

SB(mL− A)

and is independent of the choice of A.

We could also write

B+(L) =
⋂

A ample, m≥0

SB(mL− A)

for a definition that involves no choice of ample line bundle. By Noetherianity if we
choose m sufficiently large and divisible then in fact B+(L) = SB(mL− A).

Definition 6.1.2. Let L be a line bundle on a projective scheme X. The exceptional
locus, E(L), is the union of integral subschemes on which L is not big.

The previous two definitions are invariant under scaling by n ∈ N≥0 and line bundles will
frequently be replaced with higher multiples.

Theorem 6.1.3. [Wit20][Theorem 1.10] Suppose that X is a projective scheme over an
excellent Noetherian base S and L is a nef line bundle on X. Then if L|Xred and L|XQ

are semiample so too is L.

Theorem 6.1.4. [Kee03][Theorem 1.5] Let X be a projective scheme over a Noetherian
ring, A an ample line bundle and F a coherent sheaf. Then there is some m0 with

H i(X,F ⊗Am ⊗N ) = 0

for all i > 0,m ≥ m0 and all nef line bundles N .
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Lemma 6.1.5. [CMM14][Lemma 2.2] Let X be an n-dimensional projective scheme over
a field k and L a line bundle on X. For every coherent sheaf F on X, there is C > 0
such that h0(X,F ⊗ Lm) ≤ Cmn for every m ≥ 1.

Lemma 6.1.6. Let X be a reduced projective scheme over a ring R and L,A line bundles
on X with A ample. Then for large m and general s ∈ H0(X,mL−A) and any irreducible
component Y of X with L|Y big we have Y 6⊆ Z(s).

Proof. Let f : X → S be the structure morphism. Suppose for contradiction that
f∗OX(mL− A)→ f∗OY (mL− A) is the zero map for infinitely many m.

Let W be the union of the other components of X so that we have a short exact sequence

0→ OX → OY ⊕OW → OY ∩W → 0

where Y,W are given the reduced subscheme structure. For convenience we write Z =
Y ∩W

Tensoring and pushing forwards we get

0→ f∗OX(mL− A)→ f∗OY (mL− A)⊕ f∗OW (mL− A)→ f∗OZ(mL− A)

In particular if f∗OX(mL − A) → f∗OY (mL − A) is the zero map, we must have an
injection f∗OY (mL−A) ↪→ f∗OZ(mL−A). Let V = f(Y ) and g = f |Y : Y → V . Then
we may view OY (mL− A),OZ(mL− A) as sheaves on Y , then there is a corresponding
injection g∗OY (mL− A) ↪→ g∗OZ(mL− A) since the pushforward is left exact. Since Y
is irreducible so too is V and hence we may pull back to the generic point ν of V .

Now we have that Yν is a projective scheme over K(V ) of dimension say n. Equally Zν
is a closed subscheme of Yν of dimension at most n− 1. We now find a contradiction by
counting sections over K(V ).

On the one hand we have an injection

H0(Yν ,OYν (mL− A)) ↪→ H0(Zν ,OZν (mL− A)),

which ensures that there is C > 0 such that h0(Yν ,OYν (mL − A)) ≤ Cmn−1 for every
m ≥ 1 by ??. On the other, kL|Yν is big, and Yν is integral, thus h0(Yν ,OYν (mL − A))
grows like mn by [Bir17, Lemma 4.2]. This is a contradiction and the result follows.

Remark 6.1.7. When X is a reduced scheme and X = X1 ∪X2 (as topological spaces)
for closed subschemes X1, X2 we have a short exact sequence

0→ OX → OX1 ⊕OX2 → OX1∩X2 → 0

as used above. In particular if L is a line bundle on X with sections s1, s2 on X1, X2

respectively which agree on X1 ∩X2 then they glue to a section of L on X.
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This is not the case when X is reducible. If Xj are given by ideal schemes Ij then it need
not be the case that I1∩I2 = 0. However replacing I1 with a higher power we may suppose
that this is the case, see for instance [Sta, Tag 01YC]. In particular we may always choose
subscheme structures such that the short exact sequence

0→ OX → OX1 ⊕OX2 → OX1∩X2 → 0

still holds. When we work with components of a reducible scheme we can always chose
the subscheme structure in this fashion, and in particular we will always be able to glue
appropriate sections.

Lemma 6.1.8. [EH06][Proposition IV-21] Let X be a scheme and Z ⊆ X a subscheme
with Y → X the blowup of X along Z. If f : X ′ → X is any morphism and we write
Z ′ = f−1Z, then the closure W of π−1

X′ (X
′ \ Z ′) inside X ′ ×X Y is exactly the blowup of

X ′ along Z ′.

Lemma 6.1.9. [Sta, Tag 0808] Let X be a scheme. Let I ⊆ OX be a quasi-coherent sheaf
of ideals. If X is reduced, then the blowup X ′ of X along I is reduced.

Together these tell us that ’the blowup of the reduction is the reduction of the blowup’.
More precisely we have the following.

Lemma 6.1.10. Let X be a scheme and Z a proper closed subscheme of Xred. Let
π : X ′ → X be the blowup of X along Z, viewed as a subscheme of X. Let Y be the
blowup of Xred along Z, then we have isomorphisms

Y ' X ′ ×X Xred ' X ′red

Proof. First we observe that X ′ ×X Xred ' X ′red. Indeed if f : Z → X ′ is a morphism
from a reduced scheme, then we have a composition g = π ◦ f : Z → X. And thus
a unique induced morphism Z → Xred. By definition this induces a unique morphism
Z → X ′ ×X Xred and hence X ′ ×X Xred satisfies the universal property of the reduced
subscheme, ensuring that X ′ ×X Xred ' X ′red.

Now by ?? we have that Y is the closure of (Xred\Z) inside X ′×XXred. However Xred\Z
is a dense subscheme and so Y is precisely the reduced subscheme of X ′ ×X Xred, but
then in fact they are equal as X ′ ×X Xred is already reduced.

Lemma 6.1.11 (Elimination of Indeterminacy by blowups). Let f : X 99K Y be a
rational map of S schemes associated to an S-linear system |V | ⊆ H0(X,L) without fixed
part, then there is Z with maps φ1 : Z → X, φ2 : Z → Y such that φ∗1L = M + F for
M a line bundle globally generated by φ∗1|V |. Here F ≥ 0 is such that OY (−F ) is a line
bundle, φ1(F ) = B|V | as reduced schemes and φ2 = f ◦ φ1. Further we may construct
Z → X as a blowup of X.
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Proof. Consider the following morphism of line bundles V ⊗L−1 → OX and let I be the
image. Then I ⊗L is the image of V ⊗OX → L, in particular the support of I is exactly
B|V |.

Let π : Z → X be the blowup of X along I. We then have π−1I · OZ = OZ(−F ) for
some F an effective Cartier divisor. Hence we have

π∗(V ⊗ L)� OZ(−F ) ↪→ OZ
where the first map is surjective by right exactness of the pullback functor. Tensoring by
π∗L then gives the following.

π∗(V ⊗Oz)� π∗L(−F ) ↪→ π∗L

In particular the line bundle in the middle, which we may write M is globally generated
by sections indexed by π∗|V | and we have M = π∗L(−F ) by construction. Clearly π(F )
is the support of I, which is nothing but B|V |. Since M is globally generated it defines
a morphism φ2 := φπ∗|V | : Z → Y and as φ1 := π is an isomorphism away from F the
sections in π∗|V | agree with those of |V | on this locus. Hence φπ∗|V | agrees with f here,
that is φ2 = f ◦ φ1 as required.

Lemma 6.1.12. Let H be a very ample divisor on X. Suppose that si are sections of H
which induce a closed immersion X → PV . Let V be the submodule generated by the si.

Then for k sufficiently large we have that V ⊗k = H0(X,Hk).

Proof. Thought of as a subscheme of PV , X is cut out by an ideal sheaf I. Hence we
have

0→ I ⊗OPV (k)→ OPV (k)→ Hk → 0.

Since H1(PV , I ⊗ OPV (k)) = 0 for large k, we get a surjection

H0(PV ,OPV (k))→ H0(X,Hk).

However, the image of this map is precisely V ⊗k since we have H0(PV ,OPV (k)) =⊗k
1 H

0(PV ,OPV (1)).

Remark 6.1.13. They key point of this lemma is the following. Suppose we take |V | as
in ?? on X. Then we have a blowup φ∗1 : Z → X such that φ∗1|V | is basepoint free inside
H0(Z,M). Take the induced morphism φ2 : Z → Y and let H be the very ample divisor
on Y induced by |V |. Then we have φ∗2H

0(Y, kH) ⊆ φ∗1|V |⊗k for k >> 1.

This may not be true for k = 1, even without the resolution of indeterminacy. Consider
for example X = P1 and L = OX(4). If we take

|V | =< x4, x3y, y3x, y4 >

then we get an induced morphism X → P3. The image, Y , is not projectively normal
however, since X → Y is an isomorphism but dim |V | = 4 and dimH0(X,L) = 5. In
this example k = 3 suffices.
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6.2 Stable Base Loci

In this section we will examine the stable base locus of line bundles which are semiample
over Q. This is then applied to the case of a big and nef line bundle restricted to its
exceptional locus. We begin with an extension of [Wit20, Theorem 1.10]. The proof
follows the same structure, however more care is needed to keep track of sections.

If L is a line bundle on X, semiample over Q, we would like to claim that SB(L) =
SB(L|Xred). If L or L|Xred is semiample then this follows from [Wit20, Thereom 1.10].
We would then like to prove the general case by blowing up the base locus of L|Xred and
reducing to the case that the line bundle is semiample on the reduction. Unfortunately if
Y → X is a blowup then the pullback map H0(X,L)→ H0(Y, π∗L) is, in general, neither
injective nor surjective if X is not integral. It is the lack of surjectivity that causes the
issues, since we ultimately wish to show the existence of sections on the original scheme.

Suppose for example X is the union of two normal projective schemes X1, X2. Then if
π : Y → X is the blowup of X2, the map factors through the closed immersion X1 ↪→ X.
Of course if L is a line bundle on X then H0(X,L) → H0(X1, L|X1) ' H0(Y, π∗L) is
typically not a surjection.

The idea in [Wit20, Thereom 1.10] is essentially to show that L is semiample by produc-
ing a candidate morphism via pushout. Then one can lift sections back to L by building
them from suitable sections of L|Xred and L|XQ , up to perhaps replacing the line bundle
with a higher power. The key remedy then, is to show that if we blow up the base locus
of L|Xred via π : Y → X, we may build sections of π∗L on Y using only those coming
from Xred and XQ.

Theorem 6.2.1. Let S be an excellent, Noetherian scheme, take X a projective scheme
over S and L a line bundle on X. Write i : Xred → X for the inclusion of the reduced
scheme. Suppose that L|XQ is semiample. Then SB(L) = SB(L|Xred).

Proof. We always have SB(L|Xred) ⊆ SB(L) since we can pull back sections of L, so it
suffices to show the converse. We may also freely localise on S and assume that it is
an affine, Noetherian Z(p) scheme. After replacing L with a sufficiently high mulitple,
we assume that SB(L) = B(L), SB(L|Xred) = B(L|Xred) and SB(L|XQ) = B(L|XQ) as
reduced schemes.

Step 1: Blow-up the base locus.

Fix a generating set si of H0(Xred, L|Xred). By ?? the blowup W → Xred along a sub-
scheme Z eliminates the indeterminacy of Lred, where Z = B(L|Xred) = SB(L|Xred) as
reduced schemes. Let π : Y → X be the blowup along Z, viewed here a subscheme of X.
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Then the reduction of Y is Yred ' W by ??.

Let F be the exceptional divisor and M = π∗L(−F ). Note that since L is semiample
on XQ, we have that YQ = XQ and M |YQ = L|XQ under this identification. We fix a
generating set ti of of H0(YQ,M |YQ), which induces a morphism φQ : YQ → Z ′Q.

By definition the basis si of H0(Xred, L|Xred) now induces ŝi in H0(Yred,M |Yred) which
globally generate the line bundle. These sections induce a morphism ψ : Yred → Z over S.
Note that this may not be the same as the morphism induced by the full basepoint free
linear system H0(Yred,M |Yred) since we need not have H0(Yred,M |Yred) ' H0(Xred, L|Xred)
when X is not irreducible.

We then have an induced morphism ZQ → Z ′Q which is a finite universal homeomor-
phism by [Sta, Tag 02OG]. We write S = π∗redH

0(X,L|Xred) ⊆ H0(Yred,M |Yred), which is
generated by the ŝi by construction.

Now by [?witaszek2020keel, Theorem 1.7, Corollary 4.20 and Lemma 2.20], there is a
scheme Z ′, a universal homeomorphism Z → Z ′ and a line bundle H ′ on Z such that the
following diagram commutes at the level of line bundles.

(Y,M) (YQ,M |YQ)

(Yred,M |Yred) (Yred,Q,M |Yred,Q)

(Z,H) (ZQ, H|ZQ)

(Z ′, H ′) (Z ′Q, H
′|Z′Q)

φQψ ψQ

Step 2: Find compatible sections.

Since ψ is not induced by the full linear system on Yred, it need not be the case that
sections of H0(Z,H) pull back to sections inside the linear system S ⊂ H0(Yred,M |Yred)
which defines ψ. By ?? however, we may replace M,L, S,H,H ′ with higher multiples so
that ψ∗H0(Z,H) ⊆ S. and φ∗QH

0(Z ′Q, H
′|Z′Q) ⊆ H0(YQ,M |YQ). Taking further powers as

needed, we may suppose also that H ′ is very ample.

We fix ui a generating set for H0(Z ′, H ′), then let vi = ui|Z and wi = ui|ZQ . By con-
struction we have π∗vi ⊆ S so we can choose xi ∈ H0(Xred, L|Xred) with π∗xi = ψ∗vi.
Similarly we have yi ∈ H0(XQ, L|XQ) = H0(XQ,M |XQ) with φ∗Qti = yi. Since the above
diagram commutes we have the following identifications.

π∗vi|Yred,Q = ψ∗Q(ui|Zred,Q) = yi|Yred,Q
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Since H ′ is very ample the yi must generate a basepoint free linear system. Similarly the
φ∗vi are basepoint free on Yred. Then as π−1 : X 99K Y is an isomorphism away from
SB(L|Xred), the xi are basepoint free away from it also.

Finally note that since H0(Xred,Q, L|Xred,Q)→ H0(Yred,Q,M |Yred,Q) is an isomorphism, we
must have xi|Xred,Q = yi|Xred,Q .

Step 3: Glue sections on the original scheme.

By [?witaszek2020keel, Proposition 3.5], we have the following commutative diagram.

H0(X,L)perf H0(XQ, L|XQ)perf

H0(Xred, L|Xred)perf H0(Xred,Q, L|Xred,Q)perf

Hence we can again replace L with a higher power, and xi, yi with the corresponding
multiples, such that there are ri ∈ H0(X,L) with ri|Xred = xi and ri|XQ = yi. Once
again then L is globally generated by the ri away from SB(L|Xred), so we must have that
SB(L) ⊆ SB(L|Xred) as claimed.

Remark 6.2.2. In principle the condition that L|XQ is semiample is not completely nec-
essary. The blowup of B(L|Xred), π : Y → X induces an injection

H0(X|red,Q, LX|red,Q)→ H0(Y |red,Q, LY |red,Q)

which is sufficient to allow us to glue sections on the base. Much more care must be taken
when replacing L with a higher power in this case, however.

This would extend the result to the case that L|XQ becomes basepoint free after we blowup
the base locus of L|Xred. However, it is not clear how this condition could be verified in
practice.

We now consider the stable base locus of a big and nef line bundle on restriction to its
exceptional locus, under the assumption that the characteristic 0 part of the line bundle
is semiample.

Lemma 6.2.3. Let L be a nef line bundle on X projective over an excellent Noetherian
base S with and D an effective Cartier divisor such that L(−D) is an ample line bundle.
If L|DQ is semiample then

SB(L) = SB(L|D).

Proof. Clearly SB(L) ⊆ D as L is ample away from D and we have SB(L|D) ⊆ SB(L)
by restriction. Consider the following short exact sequence.

0→ OX(kL−mD)→ OX(kL)→ OmD(kL)→ 0
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By ??, we may choose m >> 0 such that

H1(OX , kL−mD = mA+ (k −m)L) = 0

for k ≥ m. Then by ?? and the semiampleness assumption, we have SB(L|D) =
SB(L|mD) and may pick k >> m with SB(L|D) = B(kL|mD) as reduced subschemes
of X. In particular if P is any closed point of D, we may find a section of kL|mD avoiding
it, and then lift this to a section of kL. Thus SB(L) ∩ D ⊆ SB(L|D) and the result
follows.

Lemma 6.2.4. Suppose that X is a reduced projective scheme over an excellent Noethe-
rian base. Suppose that L,A are line bundles with L nef and A ample. Take Z = Z(s)
for some section s of L− A. If L|DQ is semiample then SB(L) = SB(L|Z).

Proof. Let Y1 be the union of components of X contained in Z and Y2 the union of those
not contained in Z. If either are empty the result is clear so suppose otherwise. As in
??, we give them a subscheme structure and replace L,A, s with higher powers to ensure
we may glue appropriate sections.

Let D = Z ∩ Y2 and L2 = L|Y2 . By assumption D is a Cartier divisor on Y2 with
D = (L− A)|Y2 . As above we have

0→ OY2(kL2 −mD)→ OY2(kL2)→ OmD(kL2)→ 0

and choosing k > m >> 0 this allows us to lift sections from kL2|mD. We then have
B(kL|mZ) = SB(L|mZ) = SB(L|Z) = B(kL|Z) for large enough k by ??. Now, given
any section t of kL|mZ we may restrict it to D and then lift it to t′ a section of kL2. By
construction t′ agrees with t on D = Z ∩ Y2, and since Y1 ⊆ Z it follows we may glue
t|Y1 and t′. In particular then we must have SB(L)∩Z = SB(L|Z), but since L is ample
away from Z the result follows.

Corollary 6.2.5. Suppose that X is a projective scheme over an excellent Noetherian
base with L a nef line bundle on X. Then SB(L) = SB(L|E(L)) so long as L|XQ is
semiample.

Proof. By Noetherian induction we may suppose that this holds on every proper closed
subscheme. By ?? we may suppose that X is reduced and then we may also assume
E(L) 6= X, else the result is trivial. Let X ′ be the union of components on which L is
big and X ′′ the union of those on which it is not.

Let A be an ample line bundle and s a general section of mL− A, then Z = Z(s) must
contain E(L). By ?? we have that Z 6= X, since s does not vanish on any component of
X ′. Since E(L|Z) = E(L) ∩ Z = E(L) we must have SB(L) = SB(L|Z) = SB(L|E(L)) by
the induction hypothesis.
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6.3 Augmented Base Loci

This section considers the augmented base locus of a nef line bundle and its relation to
the exceptional locus. This is done largely under the assumption that they are equal in
characteristic 0, before showing this assumption is satisfied in two key cases.

Lemma 6.3.1. Let X be a projective scheme, L a line bundle and A a very ample line
bundle. Then for m >> 0 large and divisible we have that

B+(L) = B(mL− A).

Proof. Certainly we have n such that B+(L) = SB(nL − A) and thus also B+(L) =
B(nkL− kA) for large divisible k. Conversely however B(nkL− A) ⊆ B(nkL− kA) as
A is very ample. Since B+(L) ⊆ B(nkL− A) by definition, taking m = kn suffices.

Lemma 6.3.2. Let X be a projective scheme over an excellent Noetherian base with L
a nef line bundle on X. If D is an effective Cartier divisor with L(−D) an ample line
bundle and B+(L|kD) = B+(L|D) for all k > 0 then B+(L) = B+(L|D).

Proof. SinceD = L−A we must have that B+(L) ⊆ D, and conversely B+(L|D) ⊆ B+(L)
since we may always pullback sections. It suffices to show then that B+(L) ⊆ B+(L|D)
and we need only check this on points inside D.

By taking multiples we may freely assume L −D = 2A for A very ample. Consider the
short exact sequence

0→ OX(k(mL−D − A))→ OX(kmL− kA)→ OkD(mkL− kA)→ 0.

We have that H1(X, kmL− kD − kA) = H1(X, (k − 1)mL+ kA) = 0 for k >> 0 which
we now fix and for all m > 0.

In particular we may lift sections from OkD(mkL − kA) for any m > 0. By assumption
we have B+(L|kD) = B+(L|D) and so we have that B+(L|kD) = B((mkL − kA)kD)
for sufficiently large and divisible m. Given this choice we may lift sections avoiding
B((mkL− kA)kD) and thus B+(L) ⊆ B+(L|D).

Lemma 6.3.3. Let X be a projective scheme over an excellent Noetherian base with L a
nef line bundle on X and A an ample line bundle. If Z = Z(s) for some s a section of
mL− A and B+(L|kZ) = B+(L|Z) for all k ≥ 0 then B+(L) = B+(L|Z).

Proof. As above we need only prove that B+(L) ⊆ B+(L|Z). Let Y1 the union of compo-
nents on which Z is non-zero and Y2 the union of those on which it is not. From above
we may assume that Y1 6= ∅ else Zred = Xred and the result follows. Let D = Z|Y1 and
write L|Y1 = L′, A|Y1 = A′. As in the proof of previous theorem, after possibly replacing
L,D with a multiples, we may find k such that every section of (mkL′ − kA′)|kD lifts to
one of mkL′ − kA′.
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Similarly for n >> 0 sufficiently divisible we have B((nL − kA)|kZ) = B+(L|kZ) =
B+(L|Z) by assumption. Taking any section s of (mkL − kA)|kZ , we may restrict to a
section on kD and then lift to s′ a section of k(mL′ − A′). By construction s|Y2 , s′ glue
along Y1 ∩ Y2 ⊆ D to give a corresponding section of k(mL − A) and the result follows.
We may perform this gluing by ??.

Lemma 6.3.4. Let X be a projective scheme over an excellent Noetherian base with L a
nef line bundle on X. Suppose that B+(L) = E(L) and that Z is closed subscheme of X
with E(L) ⊆ Z. Then B+(L|Z) = E(L|Z).

Proof. Choose m > 0, and A ample on X with B+(L) = B(mL − A) and B+(L|Z) =
B((mL− A)|Z). Then we have that B((mL− A)|Z) ⊆ B(mL− A) ∩ Z by restriction.

On the other hand, since E(L) ⊆ Z, we have that E(L|Z) = E(L). Hence we have that

B+(L|Z) ⊆ B((mL− A)|Z) ⊆ B(mL− A) ∩ Z = E(L) ∩ Z = E(L|Z).

It is always the case that E(L|Z) ⊆ B+(L|Z) and hence equality holds.

Theorem 6.3.5. Let X be a projective scheme over an excellent Noetherian base S with
L a nef line bundle on X. Suppose that B+(L|XQ) = E(L|XQ). Then in fact B+(L) =
E(L) = B+(L|Xred).

Proof. It is immediate that E(L) ⊆ B+(L). Since E(L) = E(L|Xred) it suffices to show
only that B+(L) ⊆ E(L). We may assume therefore that E(L) 6= X and L is big, or the
result follows immediately.

The proof will be by Noetherian induction. So we assume that the result holds on every
proper closed subscheme of X. The question is local on the base, so we may assume that
S is a Z(p) scheme for some p > 0. Note that by ?? we have that E(L|Xred,Q) = B+(L|Xred,Q)

Step 1: Find a non-vanishing section t of mL− A.

Take A ample and m > 0 with SB(mL − A) = B+(L) and SB((mL − A)|Xred) =
B+(L|Xred). Then we have E(L|Xred,Q) = SB((mL − A)|Xred,Q) also. Suppose first that
SB((mL − A)|XQ) 6= XQ. Then there is some non-zero section t of mL − A which does
not vanish everywhere on Xred.

Otherwise we have E(L) = SB((mL− A)|Xred,Q) = Xred, that is

H0(Xred,Q, k(mL− A)|Xred,Q) = 0

for all k. Since E(L|Xred) = E(L) 6= X, L|Xred is still big. Now by ?? there is a sec-
tion s ∈ H0(Xred, (mL − A)|Xred) which does not vanish on any component on which
L|Xred is big. In particular it does not vanish everywhere. Then since H0(Xred,Q, (mL−
A)|Xred,Q) = 0 we may use [?witaszek2020keel, Proposition 3.5] to lift s to a section t
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of H0(X, pe(mL − A)) for some e > 0 with t|Xred = sp
e
. After replacing L and A with

their pe
th

powers, t is precisely the non-vanishing section we seek.

Step 2: Reduce to Z = Z(t).

By construction we have E(L) ⊆ Z, since B+(L) ⊆ Z. By ??, then, we have that
B+(L|kZQ) = E(L|kZQ) for k ≥ 1, so the hypotheses of the theorem are still satisfied by kZ.
Hence by the induction hypotheses we may assume B+(L|kZ) = E(L|kZ) = B+(L|Zred)
for all k ≥ 1. Therefore we can apply ?? to deduce the result.

Remark 6.3.6. It is not clear in what generality the assumptions of this theorem should
hold. Certainly if SQ is a field they hold by [Bir17]. Even when SQ is of finite type over
a field however it is not known whether the condition holds. The arguments of [Bir17] do
not hold in this relative setting as they rely heavily on certain cohomology groups being
vector spaces over a field. One possible remedy, when SQ is of finite type over a field,
is to find a suitable compactification and reduce to the case that XQ is projective over a
field.

Lemma 6.3.7. Let X be a projective scheme over an excellent base S. Suppose that L is
a semiample line bundle, inducing π : X → Y with π∗OX = OY . Then we have equalities

E(L) = B+(L) = Exc(π)

where Exc(π) is the union of closed, integral subschemes Z ⊆ X such that Z → π(Z) is
not an isomorphism at the generic point.

Proof. The morphism π is proper and it’s own Stein factorisation. So by Zariski’s Main
Theorem [Sta, Tag 03GW], Exc(π) is precisely the complement of the locus on which π
is finite, or equally the locus on which it has finite fibres.

After replacing L with a multiple we have L = π∗A for some ample A on Y .

Take any hyperplane H on X, let I = π∗OX(−H) be the ideal sheaf induced on Y , so
that we have π∗(OX(kL−H)) = OY (kA)⊗ I.

Suppose that x ∈ X \ Exc(π), then we may assume H does not contain x and so the
co-support of I does not contain π(x). Choose k >> 0 such that OY (kA)⊗ I is globally
generated. Hence there is a section s ∈ H0(Y,OY (kA)⊗ I) not vanishing at π(x).

However by adjunction we have natural isomorphisms

H0(Y,OY (kA)⊗ I) ' H0(Y, π∗(OX(kL−H))) ' H0(X, kL−H).

The corresponding section s′ ∈ H0(X, kL−H) does not vanish at x by construction.

Hence we have inclusions E(L) ⊆ B+(L) ⊆ Exc(π) and it remains to show that Exc(π) ⊆
E(L). More precisely it is enough to show that if V is any closed, integral subscheme of
X such that L|V is big then V → π(V ) is generically an isomorphism.
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Suppose then that L′ = L|V is big, so we have a section s of kL′ − A for k >> 0 and
A ample on V . Since V is integral, by assumption, this induces an inclusion OV (A) ↪→
OV (kL′). Now πV : V → π(V ) is generically an isomorphism if and only if it is generically
finite, and hence if and only if it’s Stein factorisation is so. Therefore we may freely
replace πV with its Stein factorisation and assume that πV is induced by generating
sections of kL′. Then the inclusion OV (A) ↪→ OV (kL′) ensures that πV is generically an
isomorphism, completing the proof.

Corollary 6.3.8. Let X be a projective scheme over an excellent Noetherian base S with
L a nef line bundle on X. Suppose that one of the following holds:

1. SQ has dimension 0;

2. L|XQ is semiample;

Then B+(L) = E(L).

Proof. By ??, it is enough to know B+(L|XQ) = E(L|XQ). In case (1) this follows from
[Bir17, Theorem 1.3], since each connected component of XQ is projective over a field. In
case (2) this is the content of ??.
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