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Abstract. This paper addresses a school bus routing problem formu-
lated as a capacitated and time-constrained open vehicle routing problem
with a heterogeneous fleet and single loads. This problem incorporates
several realistic features such as student eligibility, maximum walking
distances, bus stop selection, maximum riding times, different types of
buses, multistops and bus dwell times. A heuristic algorithm based on an
iterated local search approach is proposed for this problem. It determines
the selection of bus stops from a set of potential stops, the assignment of
students to the selected bus stops, and the routes along the selected bus
stops. The main objectives are minimizing the number of buses used, the
total student walking distance, and the total route journey time. Other
aims are balancing route journey times between buses and minimizing
the total number of empty seats. A set of twenty real-world problem in-
stances are used to evaluate the performance of the algorithm. Results
indicate that the algorithm finds high-quality solutions in very short
amounts of computational time.
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1 Introduction

The school bus routing problem (SBRP) is a combinatorial optimization problem
that was first investigated over four decades ago |26] and has since received a lot
of attention within the scientific community (see Section . The problem relates
to the organisation of school bus transportation services for students between
their home addresses and schools.

School bus operations constitute a challenging task from both a logistics and
financial perspective. Typically, a SBRP entails compiling a list of addresses
of all students deemed eligible for school transportation, approving potential
bus stops reachable by the students, determining the stops to be visited by the
buses, assigning students to their respective bus stops, and designing routes that
optimize operational efficiency without sacrificing school bus safety and service
quality. These objectives are often conflicting in nature since an improvement in
the level of service quality can increase the cost of provision, and vice-versa.
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In various countries, school bus transportation forms part of the government’s
administrative mechanism and is funded through taxation. Students who live
at least a certain distance from the school they attend are entitled to free or
subsidized transport. In Malta, for example, school transport is provided free of
charge to all kindergarten, primary, middle and secondary state school students
residing at least 1km away from their school. Given the large amount of funds
being invested in school bus transportation, it is critical for governments to
minimize the total cost of these services.

An important objective is to minimize the number of buses since this reduces
their corresponding acquisition and driver employment costs. Another priority is
to minimize operational costs by keeping route journey times as short as possi-
ble. This also promotes student well-being, particularly for younger children. In
Wales, for example, a maximum 45 and 60 minute journey time is recommended
for primary and secondary school pupils, respectively. Moreover, governments
typically issue a policy concerning the maximum distance that students are ex-
pected to walk between their homes and designated bus stops. For instance, a
walk of 1.6km is deemed reasonable in Wales.

In this paper, we focus on the single-school SBRP in which routes are con-
structed for each school separately. Mixed loads, i.e. students from different
schools travelling on the same bus at the same time, are not considered since
these are usually not permitted in the locations under study. We dedicate our
research to the morning problem, whereby students are picked up from bus stops
and dropped off at school. A solution to the afternoon problem, whereby students
are picked up from school and dropped off at bus stops, is found by reversing
the routes.

The remainder of the paper is organized as follows. Section [2] presents a brief
review of related work on the SBRP. Section [3] then defines our SBRP while
Section [4] describes our heuristic algorithm for this problem. Section [5| describes
the problem instances considered and our computational results. Finally, Section
[6] provides the concluding remarks and some suggestions for future work.

2 Related Work

The SBRP falls into the class of NP-hard vehicle routing problems (VRPs). Ac-
cording to Laporte et al. [22], VRPs aim to design optimal delivery/collection
routes from one or more depots to a finite set of geographically scattered cus-
tomers under a variety of side constraints. A common objective in VRPs is
to minimize the total operating costs of the fleet of vehicles, while typical con-
straints include maximum capacity restrictions on vehicles (the capacitated VRP
(CVRP)) and maximum time/distance restrictions on routes. A taxonomic re-
view of the VRP and its variants is presented by Braekers et al. [10].

The CVRP first appeared over six decades ago in the seminal paper of
Dantzig and Ramser [15]. In their reviews on SBRPs, both Park and Kim [27] and
Ellegood et al. [20] observe that almost all their reviewed publications consider
capacity constraints. Here, we take the same assumption but choose to allow for
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a heterogeneous fleet of buses consisting of several types of buses, with buses
of the same type having the same capacity (as in [5,{13]). In [27] and [20], only
around 20% and 25%, respectively, of SBRP publications are noted to model
a heterogeneous fleet (e.g. [25130%36L/37]). Here, we do the same to extend the
homogeneous fleet SBRP that we previously studied in [35] and to shift our re-
search towards more realistic settings. The adaptation of our algorithm in [35]
to heterogeneous fleets is the main contribution of this paper.

Another variant of the VRP proposed by Sariklis and Powell [32] is the
open. VRP (OVRP), in which routes do not start and end at a depot as in
the classical VRP, but rather either start or end at a depot. Similar to [4],
we model our SBRP as a capacitated and time-constrained OVRP. We do this
since governments put out the designed routes to public tender and thus buses
are kept at bus garages owned by private companies and not at the school.
According to [27] and [20], approximately 66% and 35%, respectively, of SBRP
publications include maximum riding time constraints (e.g. [12,|28]). They also
observe that the majority of the publications on school bus routing also deal
with the single-school SBRP (e.g. [14},/24,133]).

Desrosiers et al. [16] decompose the SBRP into five subproblems. In the first
subproblem, data preparation, a network containing the schools, student resi-
dences, potential bus stop locations and bus depots is constructed. Information
on the number of students at each residence, the school destination of each
student, the types and number of buses available and their capacities are also
specified. The second subproblem, bus stop selection, seeks to select a subset of
bus stops from a set of potential bus stops and assign students to these stops.
Ellegood et al. [20] remark that less than one-quarter of SBRP research tack-
les this subproblem (e.g. [81[291|34]). The third subproblem, route generation, is
the core of the SBRP. It deals with building initial routes through construction
methods such as insertion-based or savings-based heuristics and enhancing them
via improvement methods such as metaheuristics and integer programming. The
last two subproblems, school bell time adjustment and route scheduling, adjust
the schools’ opening/closing times to allow buses to service multiple schools and
establish chains of routes that can be executed by the same vehicle.

In this paper, we cover the first three subproblems stated above. For the
bus stop selection and route generation subproblems, we employ the location-
allocation-routing (LAR) strategy (as in [6,[7,/19]), in which bus stops are first
selected, students are assigned to stops, and then route generation follows. This
strategy may lead to sub-optimal routes since the bus stops selected in the former
subproblem may not be best for the latter subproblem [9]. To address this issue,
we therefore also include an operator that alters the selection of bus stops and
the assignment of students, as discussed in Section [4.4

3 Problem Definition

In our problem, we use parameter m,, to indicate the maximum distance that
students are expected to walk to a bus stop. We also use parameter m, to specify
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the minimum walking distance students should live from school to be eligible for
school transportation. As in [23] and [35], our SBRP can be represented via two
set of vertices, V1 and V5, and two sets of edges, F; and Fs. The vertex set V;
consists of one school, vy, and n potential bus stops v1,vs,...,v,, and the edge
set By contains all n(n 4+ 1) arcs (u,v) where u,v € V; and u # v. Each edge
(u,v) in the complete directed graph (V1, E1) is weighted by the shortest driving
time ¢(u, v) from vertex u to vertex v. Meanwhile, the vertex set V5 consists of
eligible student addresses; i.e., addresses that are within walking distance greater
than m, from the school. Each address w € V3 has a corresponding number s(w)
of students residing at that address and requiring transportation to the school
under consideration. The second edge set Fs is the set {{w,v} :w e Vo Av €
Vi\{vo} A d(w,v) < my}, where d(w, v) represents the shortest walking distance
from address w to bus stop v.

It is assumed that the undirected bipartite graph (Va, Vi \ {vo}, E2) has no
isolated vertices. Otherwise, either an address has no bus stop within walking
distance my, (and therefore a new bus stop must be added to Vi), or a bus
stop has no address within walking distance my, and can be removed from V.
Moreover, a bus stop v € V1 \ {vg} for which there exists an address w € V; with
the single incident edge {w, v} shall be referred to as a compulsory stop. This is
because such a stop v is the only stop within walking distance m,, for students
living in address w. It must therefore be present in any solution.

A feasible solution to our SBRP is given by a set of routes R = {Ry, Ra, ...}
An example is shown in Fig.[I] Each route R € R uses one bus which needs to
have adequate seating capacity for all the students boarding that route. (The
issue of choosing a suitable capacity C(R) for route R will be considered at
the end of this section.) This bus successively visits a subset of bus stops and
terminates at the school vg. The subset of bus stops traversed by at least one
route is denoted by V{ C V4 \ {vg}. This set should cover each address w € V5
at least once, meaning that students in each address w will have at least one
bus stop in V{ within walking distance m. Such a covering shall be referred
to as a complete covering of Vo, whereas a covering that does not satisfy this
property is an incomplete covering of Va. In addition, the total number s(R)
of students boarding the bus on route R should not exceed some pre-defined
maximum bus capacity Cax, and the journey time ¢(R) of route R should not
exceed the maximum journey time my. These constraints can be expressed as
follows:

Ur=w (1)

RER
Vw € Vo, Jv € V/ | {w,v} € By (2)
$(R) < Ciax VReR (3)
t(R) < my VReR. (4)

It is important to note that bus stops in V] can feature in more than one
route in R. For example, there may not be enough spare capacity in a bus to
serve all students waiting at a bus stop v € V{. In that case, bus stop v must
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@ Potential Bus Stop # Student Address & School — Student Walk -+:Bus Route

Fig. 1. A feasible solution with |R| = 2, [V4| = 21, |V{| = 14 and |V2| = 22. Bus stops
marked by * are not used in the solution. All other bus stops are in the set V7.

be visited by more than one bus. Here, a bus stop occurring on more than one
route in a solution is called a multistop. In VRP literature, this characteristic is
referred to as the allowance of split deliveries [17,|18]. It is assumed that each
student boarding at a multistop is only permitted to board one specific route
serving that stop since, otherwise, a bus stopping at that multistop may be too
full to serve a subsequent stop in its route. Generally, students living in the
same address (in particular siblings) are preferably assigned to the same route,
however, in practice, one may encounter unavoidable cases where students from
the same address are assigned to different routes.

The calculation of the journey time ¢(R) of route R € R is composed of two
components: the total bus travel time and the total bus dwell time. Each dwell
time within a route captures the time spent servicing a designated bus stop;
i.e., the time spent stopping the bus, opening the doors, boarding the students
and merging back into traffic. In our case, we estimate the dwell time at stop
v in route R using the linear function d(v, R) = dy + d2s(v, R), where s(v, R)
represents the number of boarding students at stop v onto route R, dy represents
the boarding time per student, and d; is a parameter which accounts for the
remaining servicing time. Here, d; and ds are taken to be 15 and 5 seconds,
respectively. Therefore, given a route R = (v1,vs,...,v;,v0), the route journey
time t(R) is given by

-1
Zt Vi, Vig1) + t(vi,v0) + Z (dl + das(v;, )), (5)
=1

i=1

where the first two terms give the total bus travel time and the last term gives
the total bus dwell time.
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The provision of school transportation involves high costs and is sometimes
characterized by a shortage of buses. For instance, in September 2018, the Mal-
tese Education Ministry was faced with the issue of having almost 1,000 students
without transport arrangements due to a lack of space on buses [31]. As previ-
ously mentioned, the primary objective of our SBRP is to identify an appropriate
subset of bus stops V{ to minimize the number |R| of routes (buses) included in a
solution. In our case, this is achieved by attempting to produce feasible solutions
that use the lower bound of [}, .y, $(w)/Crax| routes needed to serve all stu-
dents. Under the assumption of having enough buses of capacity Ca.x to cater
for all students, a solution satisfying constraints — and meeting this lower
bound of |R| is always guaranteed since multistops are allowed; however, any
one of the routes could potentially violate the maximum riding time constraint
. Thus, there may be cases where additional routes are needed.

In addition to minimizing the number of routes |R|, in this paper, we also
alm to target service efficiency by minimizing the total route journey time in
a solution. Whenever multiple feasible solutions have the same minimum total
route journey time, we also give preference to the one with the smallest dis-
crepancy between the longest and shortest routes. This encourages equity of the
service. Furthermore, we assign students to their closest stop in a selected sub-
set of bus stops. In the future, we would like to incorporate the minimization
of student walking distances into the cost function. This is not considered here,
but is important for the effectiveness of the service.

At the end of the optimization process, one final task is to assign vehicles to
the routes of a solution such that the total number of empty seats is minimized.
This is desirable because larger buses typically consume higher amounts of fuel.
Earlier, we mentioned that an adequate seating capacity is required for each
route. In our case, each route is assigned to the smallest pre-defined bus capacity
that is greater than or equal to the total number of students boarding that
route. We follow this strategy since, as we said before, governments usually
construct the routes before putting them out to tender; hence, each bus type
can be assumed to be available in an unlimited number. If buses of each type
are limited in number, the problem of assigning buses to routes can be modelled
as a minimum-weight maximum-cardinality bipartite matching problem. The
bipartition consists of a set of |R| vertices representing the routes in the solution,
and a set of B vertices representing all available buses. A route vertex is then
linked to a bus vertex if and only if its load is at most the capacity of the given
bus. Such an edge is weighted by the difference between the bus capacity and
the route load (i.e., the number of empty seats). The Hungarian algorithm, with
worst-case complexity O(B?), can then be used to find a matching that contains
as many edges as possible and that has the minimum total weight.

4 Algorithm Description

Our heuristic algorithm for this problem employs the following overall strategy.
To begin, a subset of bus stops representing a complete covering is selected and
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a nearest neighbour heuristic is applied to construct an initial solution using a
fixed number |R| of routes. As mentioned, |R| is initially taken to be the lower
bound stated in the previous section.

Note that the initial assignment of stops to routes allows the violation of
the maximum riding time constraints . A local search routine involving six
improvement heuristics is therefore invoked on the initial solution to try short-
ening the routes without changing the current subset of bus stops. After this
routine has been completed, a procedure is performed whereby the current sub-
set of selected bus stops is altered and the current solution is repaired. The local
search routine is then re-applied. This entire process is repeated until a time
limit is reached. If no solution satisfying (1)-(4) is achieved at this limit, then
the number |R| of routes is increased by one and the algorithm is restarted.

4.1 Construction of Initial Solution

In our approach, the initial subset of bus stops V] is selected as follows. First, all
compulsory stops are added to V. The non-compulsory stops are then arranged
in non-increasing order according to the number of currently uncovered addresses
they serve. The stop with the largest such value is then added to V{, breaking
ties randomly. This ordering and selection procedure is repeated until a complete
covering of V5 is obtained. Each address in V5 is then assigned to the closest bus
stop in Vj. The assignment of addresses to stops determines the number sy (v)
of boarding students at each stop v € V/. It may also be the case that some
stops have no boarding students, in which case they are removed from V.

Next, each bus stop in V7 is assigned to one of the |R| routes such that each
bus is not overloaded. In our case, this assignment follows a parallel backward
implementation of the nearest neighbour constructive heuristic. To start, |R|
empty routes are defined and the remaining capacity ¢; of each route R; € R
is set t0 Crax- The |R]| closest stops to the school are then added at the front
of the routes, one in each route. Closeness to school is measured by the dwell
time at the stop plus the shortest driving time from the stop to the school. In
order to calculate the dwell time at stop v € V{ in route R;, the minimum of
¢; and syy(v) is considered as there may be more than ¢; students boarding
at stop v. In this case, a multistop is created since the remaining svl/(v) — ¢
students boarding at stop v will need to be assigned to a different route R;. The
remaining capacities ¢; are then updated accordingly. This iterative procedure of
determining the closest stop to the most recently added stop in route R;, adding
it to the front of the route and updating the remaining capacity c;, is repeated
until all stops in V] are assigned to a route. On completion, an initial solution
R will have been generated and can be evaluated according to the cost function
described presently.
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4.2 Cost Function

Here, a candidate solution R = {Ry, Ra, ...} is evaluated according to the cost
function

f(R)=>_#(R), (6)

where

(7)

V(R) = t(R) if t(R) < myg,
my +my(1 + t(R) —my) otherwise.

This means that if a route R € R satisfies , then its journey time is unaltered.
On the other hand, if the journey time ¢(R) of route R exceeds my, then this
journey time is scaled up heavily via a penalty. The addition of the value 1 in
the second case of guarantees that two routes both with journey time of at
most my, (and, therefore, a cost of at most 2my) are always preferred over a single
route with a journey time exceeding my.

4.3 Local Search Routine

As mentioned, the intention of our local search routine is to shorten the journey
times of routes in a solution R while maintaining the satisfaction of (1)-(3).
Note that this local search acts on a solution using a fixed subset of bus stops
Vi. It uses a combination of three intra-route and three inter-route local search
operators, with the former being applied to any single route R; € R and the
latter being applied to any pair of routes Ry, Ry € R. Without loss of generality,
assume that Ry = (v1,v9,...,v;,,v9) and Ry = (ug,ue,...,u,,v). The six
operators considered are the following:

e [Exchange: Choose two stops v;,v; in Ry, where 1 <4 < j < [y, and swap
their position.

e Two-Opt: Choose two stops v, v; in Ry, where 1 <7 <343 < j <[y, and
invert sub-route v;,...,v;. Cases j =i+ 1 and j = ¢ + 2 are special cases of
the exchange operator and are thus excluded.

o Generalized Or-Opt: Choose stops v;, v, v, in Ry, where 1 <14 < j <[y and
(I1<k<iorj+1<k<lIl+1). Remove sub-route v;,...,v; and insert
it before stop vy, possibly also inverting the sub-route if this yields a better
cost. If K =11 + 1, then the sub-route is inserted before school vg.

o Or-FEzchange: Choose stops v;,v; in Ry, where 1 <14 < j <y, and stop uy,
in Ry, where 1 < k <l + 1. Remove sub-route v;, ..., v; from R; and insert
it before stop uy in Ro, possibly also inverting the sub-route if this yields a
better cost. If k = I + 1, then the sub-route is inserted before school vy.

o Cross-Exchange: Choose stops v;,,v;, in Ry, where 1 < 4; < j; <y, and
stops us,, U, in Ro, where 1 < iy < jo < ly. Swap sub-routes v;,,...,v; and
Uiy, - - - Uj,, POssibly inverting either sub-route if this yields a better cost.
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e Creating Multistops: If routes Ry and Ry satisfy t(R;) > my and s(Rg) <
Chnax, then choose a stop v; in Ry, where 1 <14 <[y, for which s(v;, Ry) > 2.
If v; is not already in Ry, then insert a copy of v; into Ry before the stop
ug, where 1 < k < g, (or school vy) which causes the smallest increase in
t(R2). Next transfer z = min{s(v;, R1) — 1, Cinax — $(R2)} students from
the occurrence of stop v; in R; to the occurrence of stop v; in Ry. Here,
the value z gives the maximum number of students who can be transferred
(hence, decreasing t(R;) as much as possible) such that both occurrences of
v; have at least one boarding student and both routes Ry and Ry satisfy .

The neighbourhood sizes corresponding to the above operators are O(|V{|?),
O(IV{1?), O(IV{]®), O(IV{]?), O(|V{]*), and O(]V{|?), respectively. These oper-
ators are the same as those used in [23] and [35]. The exchange, two-opt and
cross-exchange operators are also used in a similar context in [13], while the
generalized Or-opt and Or-exchange are extensions (in cases where i # j) of op-
erators used in [13] and [33|. The creating multistops operator was first proposed
in [23].

Note that the intra-route operators do not affect the total number of visited
stops, the dwell time at each stop, or the total number of boarding students on a
route. On the other hand, Or-exchange and cross-exchange moves can lead to a
violation of the capacity constraints . Such moves are therefore not evaluated.
Moreover, the two inter-route operators can result in duplicate stops in the same
route, which are removed as follows. Without loss of generality, assume that sub-
route v;, ..., v; is being transferred from route R; to route Ry and that one stop
vp,t < h < 7, is already present in Rs. Then stop vy, is removed from the sub-
route and the students boarding this occurrence of vy, are all transferred to the
occurrence of vy, in Rs.

Our local search routine follows the direction of steepest descent. In each
iteration, all moves in the union of the six neighbourhoods are evaluated and
the move giving the largest reduction in cost is performed. If multiple moves
give the largest reduction in cost, the one which yields the smallest discrepancy
between the longest and shortest routes in the solution is performed. Such a
breakage of ties aims at balancing the journey times between buses. The local
search routine terminates when a solution whose neighbourhoods contain no
improving moves is reached.

4.4 Generation of Alternative Solutions

As noted, the subset of bus stops V{ is fixed during our local search routine.
However, it may be the case that no solution R for a fixed subset V] is feasible
with respect to the maximum riding time constraints . In this case, altering
V] and re-running local search may lead to a better solution. For this reason,
our algorithm also contains an operator that generates a new subset of bus stops
V', assigns students to these bus stops, and then creates a set of routes that use
these stops. We designed four variants of the algorithm, which differ in the way
they generate V;’. These are:
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(I) Generate V{’ from scratch (with no reference to previous iterations);
(IT) Generate V{ from the subset V{ used in the previous iteration;

(III) Generate V" from the most recent subset Vi that yielded a feasible solution
with the lowest cost found so far;

(IV) Generate V{’ via a trade-off between Variants II and III, whereby V7" has a
50% chance of being generated according to Variant IT and a 50% chance of
being generated according to Variant III.

Note that in Variant III, the subset of stops generated in the previous itera-
tion is used if no subset has yet yielded a feasible solution.

In Variant I, the generation of V|’ follows the same selection strategy as
that discussed in Section and new routes are again produced via nearest
neighbour construction. For the remaining variants, the non-compulsory stops
in V{ are identified and a random selection of these is removed. Assuming a
total number « of non-compulsory stops, in our case the number of removals
is selected according to a Binomial distribution with parameters o and 3/« so
that three stops are removed on average. Upon removal, if we have an incomplete
covering of V3, then additional stops are added to V7. If all addresses not covered
by the stops in V{ are covered by stops that were not originally in V7, then, at
each stage, a stop from the latter set of stops that serves the largest number
of uncovered addresses is added, breaking ties randomly. If, on the other hand,
some address is uncovered by the stops which were not originally in V/, then at
least one of the removed stops must be added back. The same selection strategy
is applied in this case and the whole procedure is repeated until a new complete
covering V;" of V3 is achieved. Each address is then reassigned to the closest stop
in V{'. As before, stops with no addresses assigned to them are then removed
from V.

Having determined a new subset of bus stops, repairs now need to be made to
R so that only bus stops in V}’ feature in the solution. To do this, all occurrences
of stops in V{ \ V{ are first removed from R. For stops v € V" N V] for which
sy (v) < syy(v), syz(v) — sy (v) students are removed from occurrences of
v in R. If this results in an occurrence of v with no boarding students, then
this occurrence is removed from R. For stops v € V{" N V{ for which sy, (v) >
sy;(v), an attempt is made to add students to occurrences of v in R. If not all
sy (v) — sys(v) students can be added, then a new occurrence of v must be
added to R. Stops v € V{" \ V{ must also be added to the solution. A new stop
is inserted in a route having the lowest load, at the position which causes the
least increase in the route journey time. If this insertion does not cater for all
students boarding that stop, then the procedure is repeated.

Having repaired solution R (or generated completely new routes in the case
of Variant I), the local search routine is then re-invoked. This repair-and-improve
process is repeated until the time limit is reached.
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Table 1. Summary statistics for the twenty real-world problem instances, listed in
increasing order of |Vi|. The number S represents the total number of students, calcu-
lated as >°, v, s(w). Distances me and m., are given in km.

Location Country/State Vil |Va S me My
Mgarr Malta 60 110 190 1.0 1.0
Mellieha Malta 86 98 171 1.0 1.0
Porthcawl Wales 153 42 66 3.2 1.6
Qrendi Malta 158 150 255 1.0 1.0
Suffolk England 174 123 209 4.8 1.6
Senglea Malta 186 158 266 1.0 1.0
Victoria Gozo 316 99 171 1.0 1.0
Pembroke Malta 322 200 335 1.0 1.0
Canberra ACT 331 296 499 4.8 1.0
Handaq Malta 393 170 285 1.0 1.0
Valletta Malta 445 159 268 1.0 1.0
Birkirkara Malta 469 181 306 1.0 1.0
Hamrun Malta 518 192 321 1.0 1.0
Cardiff Wales 552 90 156 4.8 1.6
Milton Keynes England 579 149 274 48 1.6
Bridgend Wales 633 221 381 4.82 1.6
Edinburgh-2 Scotland 917 190 320 1.6 1.6
Edinburgh-1 Scotland 959 409 680 1.6 1.6
Adelaide South Australia 1188 342 565 1.6 1.6
Brisbane Queensland 1817 438 757 3.2 1.6

5 Computational Experiments

A total of twenty real-world problem instances are considered here, summarized
in Table[l} The problem instances pertaining to the UK and Australia originate
from [23] and can be downloaded at [1]. The remainder were generated by us and
can be downloaded at [2]. Each problem instance was generated as follows. The
location of a school was first identified and a number of random student addresses
were selected within the school’s catchment area, but more than m, km from the
school. The number of students living at each address was generated randomly
according to the following distribution: 1, 2, 3 and 4 with probabilities 0.45, 0.4,
0.14 and 0.01, respectively. This distribution approximates the relevant statis-
tics in the locations considered. Potential bus stops were then identified through
public records such that each stop has at least one address within walking dis-
tance m,, and each address has at least one stop within walking distance my,.
The shortest driving times between each bus stop pair and shortest walking dis-
tances between each bus stop and address pair were then determined using the
Bing Maps Routes API.

Here, we assume that the maximum journey time m; = 2700 seconds (45
minutes) and that vehicles of different capacities are available, depending on the
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country of the problem instance under studyE| These capacities were selected by
inspecting the fleet of vehicles of several school transport providers in the said
locations.

5.1 Heuristic Algorithm Results

Our heuristic algorithm was coded in C++ and run on a 3.6 GhZ 8-Core Intel
Core 19 processor with 8GB RAM. Variants I to IV were run 25 times on each
instance using a time limit of five minutes per run. Overall, we found that feasible
solutions using the lower bound of [}~ v, s(w)/Cimax| routes were achieved in
nineteen of the twenty instances in all runs. The only instance which required
one additional route was the Bridgend instance. This is probably because the
pairwise travel times have 25th, 50th and 75th percentiles approximately equal
to 9.4, 14.4 and 18.9 minutes, respectively. Since these percentiles are relatively
high, there is a large chance of violating the maximum riding time constraints
1)

Table [2| displays summary statistics on the results achieved by our algorithm
for heterogeneous fleets of buses. Columns 3 to 6 display the average number of
iterations performed by each algorithm variant. For the Suffolk instance, approx-
imately 99.9%, 99.9%, 69% and 81.3% of the iterations performed in Variants I
to IV, respectively, produced infeasible solutions, on average. For Cardiff, these
percentages were 12.6%, 45.6%, 25.5% and 33.3%, whilst those for Bridgend
were 13.8%, 6%, 0.1% and 3.7%. Some infeasible solutions were also produced in
Variants IT and IV for Porthcawl (0.04% and 0.02%, respectively) and Variant I
for Brisbane (0.005%, 1 iteration only). Constraints (1)-(4) were satisfied in all
runs for all remaining fifteen instances.

According to Table [2] Variant II performs the highest average number of
iterations for all instances except Hamrun and Edinburgh-2. As expected, Vari-
ant I performs the lowest average number of iterations for all instances except
Porthcawl. This is because this variant does not use information from previ-
ous iterations when altering the current subset of bus stops. Hence, local search
takes longer in each iteration as it operates on a newly constructed set of routes.
Another observation is that Variant IV performs a higher average number of
iterations than Variant III for all instances except Cardiff. The reason for this is
that 50% of the time, Variant IV uses the subset of bus stops from the previous
iteration. In this case, local search takes a shorter time than when the subset
corresponding to the best feasible solution is used because fewer changes are
made.

! For locations in Malta, the available capacities (excluding the driver) are taken to
be 8, 14, 16, 18, 20, 36, 44 and 53. Capacities higher than 53 are excluded since
very long buses and double-decker buses are not currently used in Malta for school
transport due to unsuitable road infrastructure. For locations in the UK, the assumed
capacities are 8, 12, 16, 23, 25, 27, 29, 33, 37, 39, 43, 45, 49, 51, 53, 55, 57, 61, 63,
65, 70, 74, 78 and 80, whilst those for locations in Australia are 11, 13, 18, 21, 24,
28, 33, 35, 37, 39, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 65, 70, 78 and 80.
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Table 2. Number of iterations performed by our algorithm. All figures are averaged
across the 25 runs, rounded to the nearest integer, plus/minus the standard deviation.

Location |R|  Variant I Variant II Variant III Variant IV

Mgarr 4 29073 £ 69 75839 £ 218 66166 = 233 69455 + 205
Mellieha 4 16408 £ 53 40295 + 152 35578 £ 176 37257 £ 176
Porthcawl 1 94639 £ 346 99574 + 349 87701 4 2481 94631 4 3234
Qrendi 5 16118 &+ 23 52394 £ 225 47665 £ 1446 49906 £ 178
Suffolk 3 4524 £ 24 11086 = 70 7610 = 329 8180 £ 317
Senglea 6 16421 &+ 64 43684 £ 248 40566 £ 1292 42074 £ 1268
Victoria 4 2211 + 16 5066 + 75 4383 £ 301 4616 £ 225
Pembroke 7 6594 £ 10 22950 £ 69 20075 £ 828 20876 £ 757
Canberra 7 2452 £ 7 8851 £ 66 7552 £ 281 7670 £ 362
Handaq 6 4566 £ 38 18381 +202 15584 £ 797 16624 £ 970
Valletta 6 5519 + 40 19850 £ 72 19012 + 356 19419 + 473
Birkirkara 6 4436 = 21 18185 £ 107 16826 = 474 17014 + 463
Hamrun 7 2975 + 10 10419 £ 78 10343 + 290 10731 + 260
Cardiff 2 16809 £ 55 26543 £ 178 26503 £ 104 26503 £ 100
Milton Keynes 4 8919 &+ 11 20670 £ 59 19722 + 469 20097 + 382
Bridgend 6 4186 £ 18 12163 &= 51 10622 £ 110 11053 £ 109
Edinburgh-2 4 5813 + 20 5846 + 20 5848 £ 25 5851 + 22
Edinburgh-1 9 1848 + 2 6637 &+ 27 6384 + 146 6463 = 95
Adelaide 8 1825 + 8 6127 &+ 41 5754 £ 75 5866 £ 87
Brisbane 10 764 £ 3 3379 £ 36 3264 £ 35 3316 £ 42

Boxplots displaying the 25 total journey times (in minutes) reached by each
algorithm variant for each instance are displayed in Fig. 2| In each boxplot, the
horizontal axis represents the total journey time, the endpoints of the whiskers
represent the minimum and maximum of all journey times, the red box displays
the variability between the 25th and 50th percentiles, and the grey box displays
the variability between the 50th and 75th percentiles. Fig. |2 indicates that the
performance varies significantly across variants for all instances except Mgarr.
For the latter instance, all variants provided the same total journey time in
all runs. Variants IIT and IV are seen to perform best for the majority of the
instances.

In order to demonstrate that the results of the four algorithm variants are sta-
tistically significantly different, Kruskal-Wallis and post-hoc Bonferroni-adjusted
pairwise comparison tests were performed. As expected, significant differences
between the variants (all p-values < 0.001) were revealed for all instances except
Mgarr. The pairwise comparison tests indicated that, for 16 instances, the total
journey times of Variants I and II are significantly different at the 0.05 level of
significance than those of Variants III and IV. Ten of these instances also saw a
significant difference between Variants I and II. Two instances (Porthcawl and
Edinburgh-2) saw significant differences between Variant III and all other vari-
ants, whereas the Cardiff instance saw significant differences between Variant I1
and all other variants.
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Fig. 2. Boxplots displaying the performance of the variants on all 20 instances. The
horizontal axis in each boxplot represents the total journey time (in minutes).

Moving on to Table [3] Columns 5 to 8 display each instance’s best total
journey time for Variants I to IV, respectively. Each best total journey time
corresponds to the endpoint of the left whisker in the boxplot (refer to Fig.
. Each instance’s best reported result across all variants is displayed in bold
and the number of runs giving that result is shown in brackets. According to
the table, Variants I to IV produce the best reported results in 3, 4, 15 and 12
instances, respectively. Variants I and II seem to be most appropriate for small-
sized instances, Variant IV for small to moderately-sized instances, while Variant
IIT is more effective for large instances. Furthermore, Variants I to IV produced
best total journey times that are at most 13.93%, 10.54%, 4.28% and 1.31%,
respectively, worse than the best reported results. Our best reported result for
eleven instances was achieved in only one run, whereas multiple runs reached
the best reported result for the other nine instances. Some or all multiple runs
for all the latter instances except Porthcawl and Edinburgh-2 also have different
corresponding subsets of bus stops. The total number of alternative subsets of
bus stops is given in Column 4.
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Column 2 of Table[3|gives the bus capacities assigned to the routes of the best
reported result for each instance. The superscript displayed after each capacity
indicates the required number of buses of that capacity. It must be pointed out
that the capacity assignment of different solutions yielding the best reported
result is not necessarily the same. For example, the two solutions for the Senglea
instance have different assignments; one uses one 14-passenger bus and five 53-
passenger buses, whilst the other uses one 18-passenger bus, one 44-passenger
bus and four 53-passenger buses. In such a case, the assignment which provides
the lowest number of empty seats is presented. This number is displayed in
Column 3 of Table Bl

Recall that our algorithm follows the steepest descent (SD) direction, mean-
ing that the best improving move from all neighbourhoods is executed in each
iteration. In order to evaluate whether a change in this strategy would signifi-
cantly affect the quality of the solutions obtained, the algorithm was altered such
that it follows a variable neighbourhood descent (VND) direction. Specifically, in
each iteration, the first improving move from a randomly selected neighbourhood
out of the six considered, is executed. The process continues until all neighbour-
hoods do not contain improving moves. As expected, this alteration led to an
increase in the average number of iterations performed by each algorithm vari-
ant for the majority of the instances. In fact, eighteen of the twenty instances
saw a percentage increase ranging between 0.44% and 124.88% for all four vari-
ants, implying that VND iterations take less time on average. The Porthcawl
and Edinburgh-2 instances again stand out from the rest, with the former hav-
ing percentage increases in the range [-0.30%,0.04%)] and the latter in the range
[-1.45%,-1.24%]. When the best total route journey times of the SD and VND
strategies were compared, it was observed that these were the same for eleven
instances. For five instances (Pembroke, Canberra, Valletta, Birkirkara and Bris-
bane), the VND’s best solution was worse by 0.02% to 1.86%. On the contrary,
the Victoria, Handaq, Edinburgh-1 and Adelaide instances saw superior best
solutions from the VND strategy by 0.04% to 1.21%. In addition, a sign test
was performed for each instance to determine whether the results of the two
strategies are statistically significantly different at the 0.05 level. Significant dif-
ferences were found for seven instances, with Mellieha registering better results
from VND, and Qrendi, Pembroke, Canberra, Handaq, Birkirkara and Brisbane
registering better results from SD. This suggests that, in our case, SD overall
performs better than VND.

5.2 Mixed Integer Programming Results

An attempt was also made to improve each instance’s best reported result from
our heuristic algorithm. For this purpose, a mixed integer programming (MIP)
model was formulated for our SBRP, as shown in the appendix. This model was
executed using Gurobi 9.1 with a run time limit of two hours per instance.

For each instance, the best reported solution from the heuristic algorithm
was provided as an initial solution. For instances with multiple best solutions,
one solution was chosen randomly. Warm-starting the MIP in this way helps
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Table 3. Best total route journey times (in minutes) achieved by our heuristic algorithm across 25 runs. Column 9 (Inc.) gives the total
route journey time of the best incumbent solution achieved by Gurobi. Column 10 displays the percentage improvement between the
best reported result from our heuristic algorithm and the result in Column 9. The last column gives the relative gap between the result
in Column 9 and the best known lower bound on the optimal total route journey time.

Heuristic Algorithm MIP (Gurobi)
Location Capacities Empty Subsets Variant I Variant I ~ Variant III  Variant IV Inc. Improv. MIP Gap
Mgarr 447 537 4 8  54.1(25) 54.1(25) 54.1(25) 54.1(25) 53.17 1.73%  20.91%
Mellieha 36', 44", 532 15 2 5733 56.3 (1) 56.3(25) 56.3(25) 55.17 2.01%  27.22%
Porthcawl 70 4 1 28.02 28.02 28.02 26.87 (2) 26.87 - 42.49%
Qrendi 53° 10 4 81.87 76.52 75.73 (24) 75.73 (24) 7470  1.36% = 46.72%
Suffolk 652,80" 1 3 121.33 124.52 114.73 (1) 114.73 (6) 114.73 - 50.03%
Senglea 181,44 53* 8 2 T7.67 73.4 71.32 (2) 7177 68.37  4.14%  57.12%
Victoria 36%,44', 532 15 1 100.08 97.02 92.38 91.95 (1) 91.95 - 64.76%
Pembroke 442 53° 18 1 106.08 106.33 102.6 102.58 (1) 100.97  1.58%  56.36%
Canberra 591,611,783 802 15 1 185.95 182.03 178.05 (1) 1786 178.05 - 55.05%
Handaq 441, 535 24 1 101.78 100.67 96.12 96.05 (1) 96.03 0.02%  61.07%
Valletta 141,535 11 1 110.98 109.7 102.38 (1) 103.72 102.38 - 67.04%
Birkirkara 538 12 1 103.83 102.12 93.77 (1) 94.23 93.77 - 61.66%
Hamrun 442 535 32 5 107.95 106.7 97.4 (3) 97.4 (3) 974 - 57.96%
Cardiff 78, 80! 2 6 67.12(19) 67.12 (5) 67.12(25) 67.12(25) 67.12 - 66.08%
Milton Keynes 53%, 70, 782 5 1 63.72 60.65 59.03 (1) 59.53 59.03 - 52.99%
Bridgend 23', 491, 78* 803 9 1 183.57 173.83 170.13 169.95 (1) - - -
Edinburgh-2 80* 0 1 59.13(25) 59.13(25) 59.13 (6) 59.13 (25) 55.85  5.55%  50.04%
Edinburgh-1 651,743, 78" 80" 5 1 162.63 149.77 142.75 (1) 143.37 - - -
Adelaide 39!, 65,782, 80% 15 1 13598 135.72 127.02 (1) 127.47 - - -
Brisbane 65', 70!, 78%,80% 10 1 225.38 230.32 208.35 (1) 209.63 - - -




A SBR Heuristic Algorithm Allowing Heterogeneous Fleets and BSS 17

to speed up the convergence of branch-and-cut, which is the method used by
Gurobi.

The MIP results are presented in Columns 9 to 11 of Table [3] Column 9
gives the total route journey time of the best incumbent solution found. Column
10 displays the percentage improvement between the best reported result from
our heuristic algorithm and the best incumbent result. Finally, Column 11 gives
the relative MIP optimality gap between the best incumbent result and the best
known lower bound on the optimal total route journey time.

We see that Gurobi was able to make improvements for seven instances and
the percentage improvements of these range between 0.02% and 5.55%. On the
other hand, Gurobi was not able to improve the heuristic algorithm solution of
nine instances within the time limit. For the remaining four instances, the solver
could not provide any results before the time limit was reached.

5.3 Comparison to Existing Benchmarks

Further experimentation on the performance of our heuristic algorithm was car-
ried out by applying it to a set of 100 instances generated by Sales et al. [30].
In these instances, the sizes of V1 \ {vg} and V5 range from 25 to 250 bus stops
and from 500 to 5250 addresses (or students, as each address is assumed to cor-
respond to one student). Six assumptions in [30] that differ from the ones we
employ in this paper are the following: (i) routes are defined as cycles that start
and end at the school, (ii) the heterogeneous fleet is limited in size, (iii) fixed
costs are associated with bus usage which vary according to the bus capacities,
(iv) driving distance is taken into account instead of driving time (hence, no
bus dwell time is incorporated), (v) no maximum limit on the routes’ length is
considered, and (vi) students are assigned to the stop, within maximum walk-
ing distance, that is closest to the school. Moreover, the objective in [30] is to
minimize the sum of the total distance travelled by all buses and the fixed costs
associated with the buses used.

In [30], the instances were tackled via a memetic algorithm that we describe
briefly. Initially, each student is assigned to a stop and the stops with at least
one student are identified. An initial population of 100 solutions is constructed
by randomly selecting the initial stop for each solution and then, at each step,
appending a random stop from the three closest stops to the previously visited
stop. Buses are then selected for each solution using the following strategy. If
there are k buses with capacities C1,Cy,...,C and fixed costs Fi, Fs, ..., Fg,
then the bus ¢ € {1,2,...,k} which minimizes (C; — D;)F; is selected, where
D; is the highest accumulated number of students (following the order of the
stops in the solution) not exceeding C;. Subsequently, two parent solutions are
selected through the binary tournament method, and the edge recombination
crossover operator is applied to these solutions to create an offspring. Up to fifty
attempts are made to improve the offspring via the lambda interchange local
search procedure with A = 2. If the offspring is better than the worse parent,
then it replaces the latter in the population; if not, the offspring still has a 2%
chance of replacing the worse parent. This process is repeated for 5000 iterations.
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The following are the changes that were made to our heuristic algorithm to
test it on the above-mentioned instances:

e The cost function @ was changed as in [30]. In particular, we incorporated
fixed bus costs and considered driving distances instead of driving times.
The bus dwell times and maximum riding times were removed, and routes
were also defined as cycles starting and ending at the school, rather than
paths starting at a bus stop and ending at the school.

e Students were assigned to the stop, in a selected subset of bus stops, that is
closest to the school, rather than to the one that is closest to their residence.

e Given that the fleet size is limited, to verify that an inter-route operator
move is feasible, the capacities of the buses performing the two routes as
well as the capacities of the unused buses were checked to see whether there
are two sufficient capacities for the new loads;

e The creating multistops operator was considered for any pair of distinct
routes Ry and R, attempting each possible transfer amount z between 1 and
the difference between the maximum of the capacity of the bus performing
Ry and the highest unused bus capacity, and the load of Ra;

e In Variants IT to IV, whenever the total number « of non-compulsory stops
was positive and at most three, the parameters of the Binomially distributed
number of removals were changed to o and 1/«, and the solution alteration
process was skipped whenever a = 0.

Table {4 displays the results achieved by our heuristic algorithm as well as
those achieved by Sales et al.’s [30] memetic algorithm. Note that the latter
was run 10 times for each instance and average results are reported. Our results
are averaged across 12 runs, with 3 runs per algorithm variant. The computa-
tional time allowed for each run of our algorithm was selected as follows. First,
instances for which an average computational time of fewer than 10 seconds
was reported in [30] were run for 10 seconds. For the remaining instances, the
average computational time reported in [30] was rounded up to the nearest 30
seconds and set as a time limit. This was done to have similar running times for
comparison purposes.

We observe in Table [4] that the results obtained by our algorithm are very
close to those obtained by the memetic algorithm, and sometimes better. The
relative gaps between the results range between -6.25% and 4.69%. We have
found better results for 68 of the 100 instances, with the largest improvements
being seen for Instances 61, 12 and 22. Our algorithm performs the worst in
comparison with the memetic algorithm for Instances 40, 30 and 20. Table
shows an overall pattern in the relative gaps achieved for different maximum
walking distances my,. One can note that, in most cases, the relative gaps increase
with an increase in my,. In fact, our algorithm always performs better for m,, €
{5,10}. For my € {15,20,25}, our algorithm performs better for 17, 7 and 4
instances, respectively. This trend is likely to have occurred due to the different
order of the bus stop selection and student assignment strategies. While our
algorithm first selects bus stops and then assigns students to the stop closest to
the school, the memetic algorithm performs the student assignments before the
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selection of the bus stops. Hence, for large m,, as Sales et al. have observed,
the memetic algorithm “can concentrate students at stops closer to the school”,
thus reducing the total distance travelled by all buses.

6 Concluding Remarks and Suggestions

This paper has addressed a real-world SBRP that incorporates heterogeneous
fleets and bus stop selection. This problem includes several important features
such as student eligibility, maximum walking distances, maximum riding times,
different types of buses, multistops (multiple buses visiting a single bus stop) and
bus dwell times. A heuristic algorithm has been developed which encompasses
the first three subproblems of the SBRP, as defined in [16].

Our heuristic algorithm has been tested on a variety of real-world problem
instances from Malta, the UK and Australia, with sizes upwards of 1800 poten-
tial bus stops and 750 students. For all instances, the algorithm has successfully
found high-quality solutions in short amounts of computational time. A merit
of our algorithm is that it can sometimes provide multiple subsets of bus stops
that yield the same best total journey time. Indeed, here, we have determined
alternative subsets for seven instances. From these alternative subsets, the most
appropriate one can then be identified based on factors such as bus depot loca-
tions, bus stop accessibility and average student walking distance.

We have attempted to improve the best reported results of our heuristic
algorithm through a MIP. An improvement, ranging between 1 and 197 seconds,
has been found for seven of the twenty best results. Higher improvements could
potentially be obtained by allowing a longer time limit for each instance.

We have also applied our heuristic algorithm to 100 instances generated by
Sales et al. [30], with sizes up to 250 potential bus stops and 5250 students. We
have observed that our algorithm compares well with the memetic algorithm
presented in [30] and also provides better results for 68 instances.

In the future, we would like to handle uncertainties in the bus travel times
caused by factors such as weather conditions and traffic congestion (e.g. |3
11,|38]). Due to these uncertainties, solutions may no longer remain the best
or even feasible since, for example, students may arrive late for school. It is of
interest to see how the solutions will change when we apply a robust optimization
and/or a stochastic programming formulation to our SBRP. Another interesting
future development is the incorporation of time windows for arrivals at schools
and multi-tripping. In the latter, several routes, possibly pertaining to different
schools, are linked so that buses can perform multiple routes successively.
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Table 4. Average total cost, rounded to the nearest integer, achieved by our heuristic
algorithm (HA) across 12 runs (3 runs per variant) versus average total cost achieved
by Sales et al. [30]’s memetic algorithm (MA) across 10 runs. Relative gaps between
the two results are also presented for each instance.

ID |Vh| |Va] mw M Aave HAave Gap | ID |Vi| |Va| mw MAue HAuvgs Gap
1 26 500 5 4745 4475 -5.69% | 51 1513000 5 26191 24612 -6.03%
26 500 10 4442 4286 -3.50% | 52 151 3000 10 25195 24092 -4.38%
26 500 15 4176 4062 -2.74% | 53 151 3000 15 23364 23229 -0.58%
26 500 20 4012 3848 -4.09% | 54 151 3000 20 22056 22135 0.36%
26 500 25 3831 3808 -0.59% | 55 151 3000 25 21293 21249 -0.21%
26 750 5 6630 6474 -2.35% | 56 1513300 5 28763 27113 -5.74%
26 750 10 6392 6120 -4.26% | 57 151 3300 10 27293 26441 -3.12%
26 750 15 6017 5894 -2.04% | 58 151 3300 15 25614 25325 -1.13%
9 26 750 20 5726 5615 -1.94% | 59 151 3300 20 24407 24666 1.06%
10 26 750 25 5446 5495 0.89% | 60 151 3300 25 23244 23554 1.33%
11 511000 5 8806 8329 -5.42% | 61 176 3500 5 30482 28577 -6.25%
12 511000 10 8788 8240 -6.24% | 62 176 3500 10 28368 27355 -3.57%
13 511000 15 8127 7913 -2.63% | 63 176 3500 15 26737 26834 0.36%
14 511000 20 7698 7544 -2.00% | 64 176 3500 20 25812 25834 0.09%
15 511000 25 7279 7436 2.16% | 65 176 3500 25 24674 25627 3.86%
16 511250 5 10823 10229 -5.49% | 66 176 3675 5 32212 30307 -5.91%
17 511250 10 10737 10237 -4.66% | 67 176 3675 10 30103 29161 -3.13%
18 511250 15 10078 9698 -3.77% | 68 176 3675 15 28326 28033 -1.03%
19 511250 20 9563 9331 -2.43% | 69 176 3675 20 26892 26956 0.24%
20 511250 25 8925 9309 4.30% | 70 176 3675 25 25840 26485 2.49%
21 761500 5 13492 12755 -5.46% | 71 201 4000 5 35201 33055 -6.10%
22 761500 10 12767 11973 -6.22% | 72 201 4000 10 33024 31797 -3.71%
23 76 1500 15 12066 11795 -2.24% | 73 201 4000 15 31072 30745 -1.05%
24 76 1500 20 11114 11189 0.68% | 74 201 4000 20 29030 29216 0.64%
25 761500 25 10662 10738 0.71% | 75 201 4000 25 28218 28550 1.18%
26 761725 5 15418 14815 -3.91% | 76 201 4200 5 36358 34492 -5.13%
27 76 1725 10 14573 13795 -5.34% | 77 201 4200 10 34607 33604 -2.90%
28 761725 15 13545 13504 -0.30% | 78 201 4200 15 32220 32245 0.08%
29 76 1725 20 12899 12903 0.03% | 79 201 4200 20 30831 31130 0.97%
30 761725 25 12184 12734 4.52% | 80 201 4200 25 29538 29582 0.15%
31 101 2000 5 17496 16510 -5.64% | 81 226 4500 5 39110 37111 -5.11%
32 101 2000 10 16960 16103 -5.05% | 82 226 4500 10 36542 35503 -2.84%
33 101 2000 15 15761 15354 -2.58% | 83 226 4500 15 34771 34568 -0.58%
34 101 2000 20 14825 14783 -0.28% | 84 226 4500 20 32735 33106 1.13%
35 101 2000 25 14278 14540 1.83% | 85 226 4500 25 31810 32087 0.87%
36 101 2300 5 20565 19433 -5.50% | 86 226 4725 5 41065 38970 -5.10%
37 101 2300 10 18966 18160 -4.25% | 87 226 4725 10 38897 37661 -3.18%
38 101 2300 15 17932 17557 -2.09% | 88 226 4725 15 36466 36420 -0.13%
39 101 2300 20 17188 17138 -0.29% | 89 226 4725 20 34391 34743 1.02%
40 101 2300 25 16559 17336 4.69% | 90 226 4725 25 33148 32930 -0.66%
41 126 2500 5 22199 21077 -5.06% | 91 251 5000 5 43289 40925 -5.46%
42 126 2500 10 20502 19706 -3.88% | 92 251 5000 10 40833 39522 -3.21%
43 126 2500 15 19725 19356 -1.87% | 93 251 5000 15 37990 38092 0.27%
44 126 2500 20 18326 18459 0.72% | 94 251 5000 20 36543 37236 1.90%
45 126 2500 25 17699 18106 2.30% | 95 251 5000 25 34850 35614 2.19%
46 126 2750 5 24498 23177 -5.39% | 96 251 5250 5 46289 43854 -5.26%
47 126 2750 10 22911 21946 -4.21% | 97 251 5250 10 42676 41382 -3.03%
48 126 2750 15 21643 21411 -1.07% | 98 251 5250 15 40083 39986 -0.24%
49 126 2750 20 20544 20540 -0.02% | 99 251 5250 20 38037 38594 1.47%
50 126 2750 25 19429 19163 -1.37% [100 251 5250 25 36751 37480 1.98%
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Appendix

The following MIP model produces solutions consisting of cycles that start and
end at the school. The arc from the school to the first bus stop in each route
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is then excluded. This is made possible by assuming that the driving time from
the school to any stop is zero.

The decision variables of our model are as follows. Binary variable z,,r
indicates whether route R € R travels from u to v, where u,v € V; and u # v.
Binary variable y,r indicates whether route R € R visits v € V;. In addition,
binary variable z,,, indicates whether students in address w € V5 walk to stop
v € V1\{vo}. Integer variable s, g € {0,1,..., Cnax} gives the number of students
boarding route R € R at stop v € V1 \ {vg}. Moreover, integer variable l,r €
{0,1,...,Cnax} gives the total load of route R € R just after visiting stop
v € V1 \ {w}. Finally, the continuous variable tg € [0, m;] specifies the total
journey time of route R € R. The MIP formulation is as follows:

min Z tr (8)

RER
s.t. quvR =yr YVEV,RER 9)
ueVy
> Tounr =yor WEV,RER (10)
ueVy
Yuo R >yor Vv EVI\{w}, RER (11)
> Zue =1 Ywe (12)
veVi\{vo}
d(w,v) <mw
Zva > Zwo Yv e Vi \ {UO}, w e Va (13)
RER
Z s(w) 2wy — stR =0 Vo € Vi \ {vo} (14)
weVy RER
YvR <syr YveVi\{w}, RER (15)
Cmaxy’vR 2 SvR Yv S ‘/1 \ {’U()}7 R S R (16)
luR + Syr — Cmax(]- - xuvR) S lvR vu, NS Vi |’U 5& Vo, R € R (17)
luR + svr + Cmax(l - xuvR) 2 l’UR V’LL, v e ‘/1 |’U # Vo, ReR (18)
>t v)zuwr + Y (diyor +dasur)  =tr  VRER. (19)
u,veEV] veVi\{vo}

Here, the objective function (§]) minimizes the total journey time of all routes.
Constraints @D— relate to stop and school visits. Specifically, @ and
ensure that if route R € R visits v € Vi, then route R should enter and leave v
exactly once. Next, forces each route R € R to visit school vy whenever it
visits at least one stop v € V1 \{vg}. Constraints — relate to student walks
and pickups: ensures that students living in each address w € V5 walk to
exactly one stop within walking distance m.y; ensures that no student walks
to an unvisited stop; while guarantees that the total number of students
boarding at stop v € V4 \ {vg} is equal to the total number of students walking
to that stop. Constraints — relate to student boardings. These force the
number of students boarding route R € R at stop v € V1 \ {vo} to be zero if
route R does not visit stop v. If route R visits stop v, then also updates the
lower bound on the number of boarding students to one. In addition, Constraints
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— relate to route loads and also serve as subtour elimination constraints
as proposed in [21]. Note that l,,g = 0 VR € R. These guarantee that no
route contains a subtour disconnected from school vy and that each route load
increases in accordance with the number of students boarding the bus on that
route. In fact, if route R € R goes from u € V; to stop v € V1 \ {u, vp}, then the
load of route R immediately after visiting stop v is set equal to the load of route
R just after visiting u plus the number of students boarding route R at stop v.
Finally, calculates the total journey time of each route R € R.
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