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Abstract
This work presents an outer product-based approach to fuse
the embedded representations learnt from the spectrograms of
cough, breath, and speech samples for the automatic detection of
COVID-19. To extract deep learnt representations from the spec-
trograms, we compare the performance of specific Convolutional
Neural Networks (CNNs) trained from scratch and ResNet18-
based CNNs fine-tuned for the task at hand. Furthermore, we
investigate whether the patients’ sex and the use of contextual
attention mechanisms are beneficial. Our experiments use the
dataset released as part of the Second Diagnosing COVID-19
using Acoustics (DiCOVA) Challenge. The results suggest the
suitability of fusing breath and speech information to detect
COVID-19. An Area Under the Curve (AUC) of 84.06 % is
obtained on the test partition when using specific CNNs trained
from scratch with contextual attention mechanisms. When using
ResNet18-based CNNs for feature extraction, the baseline model
scores the highest performance with an AUC of 84.26 %.
Index Terms: COVID-19 Detection, Respiratory Diagnosis,
Transfer Learning, Information Fusion, Healthcare

1. Introduction
Digital health solutions powered with Artificial Intelligence
(AI) have the potential to revolutionise the health care systems
worldwide, improving the early diagnosis of diseases, and the
monitoring of the patients towards personalised treatment plans.
Previous works in the literature explored the use of AI-based
techniques in a wide range of medical problems, including the
detection of coughs or sneezes [1], or the recognition of men-
tal illnesses, such as depression [2, 3] or Post-Traumatic Stress
Disorder (PTSD) [4]. Such technologies do not aim at replacing
medical diagnostic tools, rather providing scalable, cost-effective
pre-screening solutions to optimise the medical resources.

Motivated by the outbreak of the Coronavirus Disease 2019
(COVID-19) and its symptomatology, which presents affecta-
tions in the human respiratory system, researchers have inves-
tigated the use of AI techniques to detect the virus from the
analysis of chest CT scans [5, 6] or X-ray images [7]. As the
respiratory sounds might also be impacted because of the virus
symptomatology, it seems reasonable to argue about their poten-
tial to contain salient information to detect COVID-19. In this re-
gard, researchers have exploited cough [8, 9, 10], breath [11, 12],
and speech [13, 14] information for this task.

The majority of previous works found in the literature
present mono-type solutions for the automatic detection of
COVID-19 patients. The largest body of knowledge exploits

cough-related information for this task [15, 16, 17, 18]. Other
works also propose mono-type systems, but focusing only on
the analysis of speech signals [19, 20]. The amount of works
exploiting multi-type solutions to enrich and complement the
salient information embedded in individual respiratory sounds is
rather scarce. Despite the multi-type nature of the approach pre-
sented by Nessiem et al. [21], the authors model breathing and
coughing sounds jointly, but only adding heterogeneity to the
training data. Instead, Liu et al. [22] present a multi-type deep
fusion method exploiting breathing and coughing information
for the automatic detection of COVID-19 patients, and Chang
et al. [23] investigate a Transformer-based approach to exploit
breathing and speech information simultaneously.

This work focuses on the automatic detection of patients
with COVID-19 in the context of the Second Diagnosing COVID-
19 using Acoustics (DiCOVA) Challenge [24, 25]. We use the
spectrogram representations of cough, breath, and speech sam-
ples to train neural networks composed of two main blocks: the
first block aims at extracting embedded representations from
the spectrograms, the second block is responsible for the actual
classification. The embedded representations from the different
sound types are extracted with dedicated Convolutional Neural
Networks (CNNs). We explore the use of an outer product-based
approach [26, 27] –to the best of the authors’ knowledge for the
first time in this task– to fuse the extracted representations with
the goal to enrich the information for the final classification. Ad-
ditionally, we also aim to investigate whether using the patients’
sex as a priori information and introducing contextual attention
mechanisms to the network can be beneficial for the task at hand.

The rest of the paper is laid out as follows. Section 2 de-
scribes the dataset analysed, while Section 3 details the method-
ology followed. Section 4 compiles and analyses the results
obtained, and Section 5 concludes the paper.

2. Dataset
In this work, we use the dataset released as part of the Second
DiCOVA Challenge [24, 25]. This dataset contains acoustic sam-
ples of COVID-19 positive and negative (healthy) patients from
three different sound types produced by the human respiratory
system; specifically, from coughs, breaths, and speech. Although
the sampling rate of the acoustic samples provided is 44.1 kHz,
an initial exploration of the dataset revealed the existence of
samples without frequency content in the upper frequencies of
the spectrogram. This observation suggests that some audio sam-
ples were originally recorded at a different, lower sampling rate,
and upsampled before distributing the data. This is a plausible
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Figure 1: Diagram illustrating the system implemented, which receives a cough, breath, and speech sample as input, and outputs the
probability to belong to a COVID-19 or a healthy patient. Patients’ sex is fed into the second layer of the classification block.

Table 1: Data available in the Second DiCOVA Challenge
dataset time-wise per sound type and data partition. The tempo-
ral information is provided in the format (HH:)MM:SS.

Validation Test
∑

Cough 1:41:01 37:58 2:18:59
Breath 4:37:37 2:07:46 6:45:23
Speech 3:56:22 1:44:39 5:41:01
∑

10:15:00 4:30:23 14:45:23

Table 2: Statistics of the Second DiCOVA Challenge dataset in
terms of the patients’ sex and their COVID-19 status. The latter
is blind to the Challenge participants on the test set.

Validation
Test

∑
Positive Negative

∑

Females 53 189 242 119 361
Males 119 604 723 352 1 075
∑

172 793 965 471 1 436

hypothesis given the nature of the dataset, which was recorded
in-the-wild, via crowdsourcing, and using the patients’ own de-
vices. The available samples are distributed in two partitions,
and the Challenge organisers require assessing the performance
of the models on the training partition using a pre-defined 5-fold
cross-validation approach.

Each patient recorded a cough, a breath, and a speech sample.
The total duration of the dataset is 14 h 45 min 23 sec (cf. Table 1).
The dataset contains information from a total of 1 436 patients
(cf. Table 2): 965 belonging to the training partition, and 471,
to the test partition. The training data is imbalanced both in
terms of sex (242 females and 723 males) and COVID-19 status
(172 positives and 793 negatives). Similarly, the test data is
also imbalanced in terms of sex (119 females and 352 males),
whilst the COVID-19 status distribution is blind to the Challenge
participants.

3. Methodology
This section presents the methodology (cf. Figure 1). Section 3.1
details the pre-processing applied to the audio samples, Sec-
tion 3.2 describes the networks implemented, and Section 3.3
summarises their training details.

3.1. Data Preparation

The respiratory sounds are first downsampled to 16 kHz to over-
come the disparity between recording devices, avoiding our net-
works to perform the COVID-19 detection based on the presence
or the absence of frequency content in the upper frequencies of
the spectrogram (cf. Section 2). The duration of the respiratory
sounds recorded by each patient is heterogeneous. To assist in
the fusion, we compute the longest sound from each patient and
use this information to extend the shorter ones via repetition to
homogenise their duration. Next, we window each respiratory
sound separately into frames of 5 sec length with a 50 % overlap.
We compute the magnitude of the Short-Time Fourier Trans-
form (STFT) of each individual frame using a window length of
4 096 samples (256 ms), and a hop size of 128 samples (8 ms) to
obtain its spectrogram representation. The spectrograms use a
logarithmic frequency scale, and the magma colour map. Once
normalised, each spectrogram is stored as a colour image of
224× 224 pixels.

The generated spectrograms are standardised before training.
The standardisation parameters (µ and σ) are computed from
all the spectrograms corresponding to the current sound type
that belong to the training partition. To downsize the effect of
the COVID-19 imbalanced data (cf. Table 2), we augment the
spectrograms corresponding to the COVID-19 positive patients
via replication. Despite considering other data augmentation
strategies, such as filtering or additive noise, we decided not to
alter the original samples in any way, as the relevant acoustic
information for the task at hand is not clear yet. Replication may
introduce redundancy in the training material, but we believe
it can still be useful, as the number of positive and negative
samples is significantly different.

3.2. Models Description

This passage describes the network architectures implemented
and investigated in this work.

3.2.1. Baseline Models

The networks implemented are composed of two main blocks:
the first block extracts deep learnt representations from the spec-
trograms of the cough (fC ), breath (fB), and speech (fS) sam-
ples, while the second block performs the actual classification.
For the feature extraction block, we compare two different ar-
chitectures. The first architecture implements two convolutional
layers with 16 and 4 filters, respectively, with a kernel size of
3× 3 and a stride of 1. Following each convolutional layer, we
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use batch normalisation, and the output is transformed using a
Rectified Linear Unit (ReLU) function. A 2-dimensional max
pooling layer and a 2-dimensional adaptive average pooling layer
are implemented at the end of the first and second convolutional
block, respectively. This way, we force the output of the feature
extraction block to produce 4 features per filter. The second
architecture uses the ResNet18 model [28] without the last layer.
Specifically, we use the pre-trained weights to initialise the net-
work and fine-tune them during training for the task at hand. An
additional linear layer is included in this architecture to reduce
the dimensionality of the features from 512 to 16. When us-
ing the ResNet18 architecture, the spectrograms, represented as
an RGB image, are standardised using the pre-defined param-
eters µ = [0.485, 0.456, 0.406] and σ = [0.229, 0.224, 0.225].
The learnt features from both architectures have the same di-
mensionality, defined as a compromise with the dimensionality
of the fused representation, and are finally flattened into a 1-
dimensional representation.

The deep learnt representations from each sound type are
extracted using a dedicated feature extraction block. In this work,
we investigate the inner fusion of these embedded representations
using an outer product-based approach [26, 27], which can be
mathematically defined as:

fC⊗B⊗S =

[
fC
1

]
⊗
[
fB
1

]
⊗
[
fS
1

]
. (1)

When the three sound types are fused together, the outer product
generates a cube with the following properties: i) the original
representations are preserved in the edges of the cube, ii) each
face of the cube contains information from the fusion of two
sound types, and iii) the inner part of the cube fuses information
from the three sound types all together. The fused representation
is flattened before being fed into the final, classification block
of the network. This fusion layer is implemented when training
multi-type models, which combine at least two sound types,
and omitted when training mono-type models, which consider a
single sound type for predicting COVID-19.

The classification block of the network contains two fully
connected layers, preceded by a dropout layer with probability
0.3. The number of input neurons in this block depends on the
number of sound types to be fused. Nevertheless, the number
of output neurons is fixed to 8. The output of this first layer is
transformed using a ReLU activation function. The transformed
representation is finally fed into the second layer of this block,
which contains two output neurons with a Softmax activation
function. This way, the outputs of the network can be interpreted
as probability scores.

3.2.2. Sex-based Models

This model expands the baseline model described in Section 3.2.1
to consider the sex of the patients when inferring their COVID-
19 status. Specifically, a binary encoded representation of the
patient’s sex is fed into the second layer of the classification
block of the network. The number of input features to the clas-
sification block depends on the number of sound types to be
fused. Introducing the sex information in the first layer of this
block would complicate understanding if the performance of the
network is conditioned by the patient’s sex or by the number of
input features. Thus, we opted for feeding this information into
the second layer of the classification block, where the number of
neurons corresponding to the sound representations is fixed.

3.2.3. Contextual Attention-based Models

This model also expands the baseline model described in Sec-
tion 3.2.1, but, in this case, using a dedicated contextual attention
mechanism at the output of each feature extraction block. The
aim of this mechanism is to help highlight the salient informa-
tion from the embedded representations learnt. Representing the
embedded representations learnt as fN , where N ∈ {C,B, S}
depending on the input sound type, the contextual attention
mechanism is mathematically defined as:

u = tanh(WfN + b), (2)

α =
exp

(
uTuc

)
∑

exp (uTuc)
, (3)

f̃N = αfN , (4)

where W, b, and uc are parameters to be learnt by the network.
The parameter uc can be interpreted as the context vector. The
attention-based representation obtained, f̃N , is then fed into the
classification block of the network when training mono-type
models, or fused when training multi-type models.

3.3. Networks Training

For a fair comparison among the models, these are all trained
under the exact same conditions. We use the Categorical Cross-
Entropy as the loss to minimise, using Adam as the optimiser
with a fixed learning rate of 10−3. As model performances are
assessed in terms of the Area Under the Curve (AUC), we define
LAUC = 1−AUC as the validation loss to monitor during the
training process. Network parameters are updated in batches
of 64 samples and trained during a maximum of 100 epochs.
We implement an early-stopping mechanism to stop training
when the validation loss does not improve for 15 consecutive
epochs. We follow a 5-fold cross-validation approach to evaluate
the models, as defined by the Challenge organisers. Each fold
is trained during a specific number of epochs. Hence, when
modelling all training material and to prevent overfitting, the
training epochs are determined by computing the mean of the
training epochs processed in each fold, rounded up to the next
integer.

4. Experimental Results
The results obtained using specific CNNs and using ResNet18-
based CNNs are summarised in Tables 3 and 4, respectively. One
of the main insights from our experiments is that the fusion of
breath and speech samples outperforms the multi-type models
resulting from the combination of all other sound types and the
mono-type models in 3 out of the 4, and in 2 out of the 4 scenarios
investigated with the specific CNNs, and the ResNet18-based
CNNs, respectively. Likewise, when we look at the mono-type
models (C, B, S), we observe that the models using the breath
and the speech samples score higher results in comparison to the
models using coughs only.

We observe that the mono-type models considering the pa-
tients’ sex only improve the performance of the cough-based
models, while they barely have an effect on the breath-based
models. Patients’ sex negatively impacts the performance of
the speech-based models. Although there is no clear pattern to
determine the suitability of considering patients’ sex and/or us-
ing contextual attention, we note that the models surpassing the
baseline with the specific CNNs use one of the three variants in
most of the cases. The contextual attention-based model fusing
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Table 3: AUC measurements (%) obtained from the mono- and
multi-type models trained using specific CNNs for feature ex-
traction (Baseline). These models consider the patient’s sex for
the analysis (Sex), use contextual attention mechanisms (C. Att.),
and their combination (Sex & C. Att.).

Sound types Set Baseline Sex C. Att. Sex &
C. Att.

C
Val. 63.56 65.16 63.86 67.62
Test 61.56 65.16 64.01 67.71

B
Val. 72.83 73.83 72.73 71.96
Test 79.38 79.85 76.51 76.79

S
Val. 71.90 72.92 72.49 73.52
Test 80.04 75.53 78.35 78.32

C ⊗B Val. 74.68 74.94 74.14 75.41
Test 80.02 80.37 – –

C ⊗ S Val. 72.45 71.59 74.58 74.40
Test – – – –

B ⊗ S Val. 76.74 77.98 76.04 77.92
Test 81.95 83.89 84.06 82.35

C ⊗B ⊗ S Val. 72.91 73.71 78.22 76.77
Test – – 81.98 83.25

breath and speech samples obtains the best performance with an
AUC of 84.06 %. With the ResNet18-based CNNs, the baseline
models obtain the best AUC scores in most of the cases. The
baseline model fusing breath and speech samples scores the best
AUC of 84.26 %.

Although the transfer learning approach obtains the best
performance, the specific CNNs obtain similar results with a
simpler structure. Further experiments are needed to better un-
derstand the impact of patients’ sex in the fused scenarios, as we
hypothesise it is downsized as a result of a magnitude difference
between the sex representation and the deep learnt features at
the intermediate layer of the classification block.

We finally compare in Table 5 the performance of our best
mono- and multi-type models, obtained when using ResNet18-
based CNNs for feature extraction (cf. Table 4), with the per-
formance of the baseline models reported by the Challenge or-
ganisers [25]. The best AUC when using a mono-type model
exploiting the cough samples is obtained with the sex-based
model. When using only the breath and speech samples, our
mono-type baseline models –which neither consider the patients’
sex, nor implement the contextual attention mechanism– obtain
the highest AUC scores. In the multi-type scenario, our baseline
model achieves the best AUC score when fusing the embedded
representations learnt from the breath and speech samples.

As it can be observed from the results reported in Table 5,
neither our mono-type, nor our multi-type models surpass the
Challenge baseline models. Nevertheless, the difference in terms
of the AUC on the test set between the multi-type models is
lower than 1 %, which suggests a similar performance. While
we extract log-spectrogram representations from the input sig-
nals, the Challenge baseline uses 64 mel-spectrogram features,
expanded with their first and second order temporal derivatives.
It is therefore reasonable to argue about the suitability of the log-
spectrogram representations for this task. The multi-type model
proposed by the Challenge organisers averages the probabilities
obtained with their mono-type models, and, as a consequence,
does not exploit the complementarity among the involved sound
types for training their models. This result casts doubt on the
efficacy of the proposed outer product-based fusion. However,
the comparison is not fair, as the inferior performance could be
caused by the different nature of the input features used. Thus,

Table 4: AUC measurements (%) obtained from the mono- and
multi-type models trained using ResNet18-based CNNs for fea-
ture extraction (Baseline). These models consider the patient’s
sex for the analysis (Sex), use contextual attention mechanisms
(C. Att.), and their combination (Sex & C. Att.).

Sound types Set Baseline Sex C. Att. Sex &
C. Att.

C
Val. 76.42 74.48 73.12 73.39
Test 64.69 68.76 66.60 68.15

B
Val. 78.78 79.16 78.62 80.78
Test 80.35 79.91 77.77 80.21

S
Val. 79.02 79.25 78.19 79.10
Test 81.86 75.21 78.89 81.66

C ⊗B Val. 76.35 76.79 74.46 72.48
Test – 75.03 – –

C ⊗ S Val. 75.56 76.19 77.69 76.64
Test – – 77.07 –

B ⊗ S Val. 78.06 79.87 80.12 77.65
Test 84.26 73.48 83.63 81.48

C ⊗B ⊗ S Val. 76.90 75.84 76.79 76.07
Test 76.78 – – –

Table 5: AUC measurements (%) defined as the Challenge base-
lines per sound type compared with the models presented in this
work that obtained the highest performances on the test set.

Set Mono-Type Multi-

C B S Type

Challenge Baseline [25] Val. 75.21 77.25 80.16 81.67
Test 74.89 84.50 84.26 84.70

Our Optimal Models Val. 74.48 78.78 79.02 78.06
Test 68.76 80.35 81.86 84.26

the assessment of the proposed outer product-based approach
using the input features extracted in the Challenge baseline is
necessary to fairly compare the performance of the multi-type
models and draw valid conclusions.

5. Conclusions
We proposed an outer product-based approach to fuse the em-
bedded representations extracted from cough, breath, and speech
samples towards the detection of patients with COVID-19. The
results obtained indicated the suitability of fusing the embed-
ded representations learnt from the spectrograms of breath and
speech samples for this task. The best models fusing these sound
types scored an AUC of 84.06 % and 84.26 % with specific and
ResNet18-based CNNs for extracting deep learnt features from
the spectrograms, respectively.

In addition to exploring other fusion techniques, we would
like to carry on this research by applying dedicated processing
pipelines to each sound type. Furthermore, we hypothesise
whether transforming the spectrograms with contextual attention
mechanisms might contribute to better understand the acoustic
information relevant to detect COVID-19.
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