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Abstract
Chronic obstructive pulmonary disease (COPD) causes lung in-
flammation and airflow blockage leading to a variety of respi-
ratory symptoms; it is also a leading cause of death and affects
millions of individuals around the world. Patients often require
treatment and hospitalisation, while no cure is currently avail-
able. As COPD predominantly affects the respiratory system,
speech and non-linguistic vocalisations present a major avenue
for measuring the effect of treatment. In this work, we present
results on a new COPD dataset of 20 patients, showing that,
by employing personalisation through speaker-level feature nor-
malisation, we can distinguish between pre- and post-treatment
speech with an unweighted average recall (UAR) of up to 82 %
in (nested) leave-one-speaker-out cross-validation. We further
identify the most important features and link them to pathologi-
cal voice properties, thus enabling an auditory interpretation of
treatment effects. Monitoring tools based on such approaches
may help objectivise the clinical status of COPD patients and
facilitate personalised treatment plans.
Index Terms: digital health, pathological speech, COPD, per-
sonalisation, feature interpretation

1. Introduction and related work
Chronic obstructive pulmonary disease (COPD) is a respiratory
disease characterised by a chronically inflamed and obstructed
airway. The long-term exposure to damaging irritants, espe-
cially cigarette smoke, is the predominant cause of COPD [1] –
the third leading cause of death after ischemic heart disease and
stroke [2]. Its prevalence in Europe ranges between 15 and 20 %
for adults aged over 40 years [3]. Thus, the socio-economic bur-
den of COPD is immense and results in a high consumption of
clinical resources and overall costs to society [4]. While the
clinical appearance of COPD varies, the main symptoms are
chronic and progressive dyspnea, as well as coughing. Some-
times, patients suffer from a severe deterioration of their respi-
ratory symptoms, called exacerbation, which leads to a need of
intensified therapy, often under in-patient or even intensive care
treatment. Besides treatment and prevention of exacerbation,
the main objective of COPD therapy is to provide symptomatic
relief. For this purpose, patients receive (mainly inhalative)
medication, such as inhaled corticosteroids (ICS), long-acting
muscarinic antagonists (LAMA) or long-acting beta-2-agonists
(LABA) – often administered in combination. Sometimes, fur-
ther systemic medication, such as systemic corticosteroids, is
needed. The intensity of treatment depends on the severity of

COPD, which is classified according to the recommendations
of the Global Initiative of Chronic Obstructive Lung Disease.
This classification is based on the severity of airflow limitations
and takes into account symptoms and risks of exacerbation [5].
Spirometric examinations and clinical findings are still the rele-
vant diagnostic tools for COPD. Especially for acute exacerba-
tion, clinical practitioners must rely on clinical examination to
monitor treatment success or failure. So far, there are no techni-
cal tools to objectivise clinical symptoms of COPD, especially
during an exacerbation episode. In order to accelerate diagno-
sis and distinguish different respiratory illnesses, new artificial
intelligence (AI)-assisted monitoring tools can be helpful. For
instance, new data shows the potential use of AI speech analy-
sis for respiratory diseases, such as COVID-19 [6]. It is intu-
itive to expand these findings to COPD, since this obstructive
airway disease inevitably affects speech and non-linguistic vo-
calisations, especially during exacerbation.

Due to the widespread prevalence of COPD and its nega-
tive effect on public health, voice-based digital detection and
monitoring tools have recently attracted increased attention [7,
8, 9, 10, 11, 12, 13]. These utilise different types of vocali-
sations, such as breathing [10], coughing [8], sustained vow-
els [11], or read/free speech [7, 11, 12] to distinguish between
COPD patients and healthy individuals and different states of
COPD (such as ‘stable’ vs exacerbation [11]). Yet, most of
these studies are merely identifying acoustic descriptors that are
correlated with COPD and do not build an automatic detection
tool. Instead, we focus on developing a machine learning (ML)-
based voice evaluation tool that distinguishes between pre- and
post-treatment states of patients after exacerbation, based on
read speech. We investigate a set of different feature sets, seg-
mentation strategies, and normalisation procedures. It turns out
that speaker-level feature normalisation is crucial for obtaining
good performance – demonstrating that personalisation is key
for this application. This paves the way for more advanced
personalisation techniques which adapt to specific speakers us-
ing either speaker-dependent models [14] or test-time adapta-
tion [15]. Furthermore, we try to interpret the most important
features, which helps characterise the effect of exacerbation and
the corresponding benefits of treatment on the speakers’ voice.

The remainder of our contribution is organised as follows:
Section 2 describes the dataset used in this study. Section 3
outlines our experimental protocol, followed by our results and
accompanying discussion and interpretation in Section 4. The
work ends with some concluding remarks in Section 5.
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2. Dataset
Our COPD dataset was recorded at the University Hospital
Augsburg between October 2020 and December 2021. Patients
were recruited soon after hospitalisation, if possible, already in
the emergency department or the intensive care unit. Only pa-
tients older than 18 years, able to sit and read a short text with-
out any need of ventilation during the time of recording, were
included, resulting in: 20 (11 male / 9 female) subjects, aged
48 to 82 (median: 70), with a median of 37.5 pack years1 and
an improvement (post- to pre-treatment) between 0 and 7 (me-
dian: 2.39) on a modified Borg scale, a subjective assessment
of dyspnea from 0 (worst) to 10 (best).

The local ethics committee approved the study on June 24,
2020 (BKF 2020-34). Two recordings – one pre-treatment, one
post-treatment – with a distance of 1 to 16 days (median: 5)
took place bedside with the portable recorder H5 from Zoom®

and a Sony lapel mic ECM-144. All patients obtained their
standard and individual home medication, mainly LABA and
LAMA, sometimes in addition to ICS and systemic corticos-
teroids. Some patients needed non-invasive ventilation, which
was paused for the time of recording.

Patients were required to produce: a) a set of sustained vow-
els (/a:/, /e:/, /i:/, /o:/, /u:/ ); b) a few spontaneous utterances;
c) (forced) coughing; d) breathing; e) reading Der Nordwind
und die Sonne [The Northwind and the Sun] (NuS). We assume
no or a negligible habituation effect, as the second recording
took place days after the first one. Here, we deal only with
NuS: it is longer than other sound types (median: 53 s), thus,
resulting in more samples after segmentation, which is bene-
ficial for ML algorithms. This was confirmed by preliminary
experiments with the other sounds.

3. Experimental setup
SEGMENTATION: the North Wind and the Sun [Der Nord-
wind und die Sonne] (NuS) is too long as a unit of analysis
for most speech processing applications, which typically oper-
ate on shorter segments. For a segmentation yielding shorter
units, we use the Munich AUtomatic Segmentation (MAUS)
system [16, 17]. It utilises forced alignment to derive word
and phone boundaries from the text transcriptions, which in
the case of read speech is trivially available. We experiment
with two different types of segmentation resulting in two dif-
ferent units of analysis: Word units, where we keep the orig-
inal word boundaries returned by MAUS, resulting in a total
of 18 × 2 × 188 = 3888 segments; and Phrase units, where
we segmented the story into 20 prosodic phrases for a total of
18× 2× 20 = 720 segments.
FEATURES: We extract a set of acoustic descriptors per unit
(for both words and phrases) that can be used to distinguish be-
tween pre- and post-treatment COPD speech, employing both
expert, handcrafted features, and learnt representations of deep
neural networks, thus contrasting the two dominant ongoing
trends in speech processing applications:

eGeMAPS: The extended Geneva minimalistic acoustic
parameter set (eGeMAPS) [18] is a small set of (88) inter-
pretable acoustic parameters that has previously been shown
to contain relevant information for respiratory diseases, such
as COVID-19 [19]. eGeMAPS is extracted using openS-
MILE [20].

1Pack years are calculated by multiplying the number of packs
of cigarettes smoked per day by the number of years the person has
smoked.

ComParE: The Interspeech Computational Paralinguistics
ChallengE feature set (ComParE) is a large-scale feature set
(6373) that has been successfully used for several compu-
tational paralinguistics tasks, beginning with the 2013 Inter-
speech Computational Paralinguistics Challenge [21], also ex-
tracted using openSMILE [20].

w2v2-xlsr: Substantial progress has been seen through
the use of models trained on vast amounts of data with self-
supervised methods. We use a variant of WAV2VEC2.0 [22],
pre-trained on 53 languages – including German [23]. The
model operates on raw audio and returns contextualised repre-
sentations roughly corresponding to 25 ms of audio with a stride
of 20 ms, which we subsequently average over the time dimen-
sion to obtain the final 1024-dimensional embeddings.
NORMALISATION: We experiment with three different nor-
malisation procedures. In all cases, z-score normalisation on
each feature is performed separately; what changes is the set
over which we compute and apply statistics.

Global: As a standard baseline, we normalise the data on
a global basis – for each fold in our cross-validation setup, we
compute feature statistics on the training set, and subsequently
use those to normalise the development and testing partitions.
This is the prevailing type of normalisation.

Word/Phrase-level: We experiment with a normalisation
procedure targeted at the respective unit of analysis. Using read
speech recordings, we collect identical audio content for each
speaker. This content, however, is influenced by non COPD-
related factors, which can be abstracted away by normalising
each word or phrase unit independently (using data from all
speakers).

Speaker-level: Given our expectation that there are indi-
vidual differences in the manifestation of COPD in human vo-
calisations, we employ a speaker-level normalisation procedure
in an attempt to abstract away from them. This is based on com-
puting (and applying) mean and standard deviation normalisa-
tion independently for each speaker, that is, using all their data
to compute parameters irrespective of whether they are part of
the training, development, or test partition. As such, this form
of normalisation assumes oracle knowledge of the identity of
each speaker. We consider this a realistic assumption for per-
sonalised digital health applications in controlled conditions.
CLASSIFIER: We use support vector machines (SVMs) where
we optimise the cost parameter ({.0001, .0005, .001, .005, .01,
.05, .1, .5, 1}) and kernel function ({linear, polynomial, radial
basis function (RBF)}) in a grid search manner. These parame-
ters are always optimised on the development partition.
EVALUATION PROTOCOL: As the size of our dataset is limited
(20 speakers), we use leave-one-speaker-out cross-validation,
whereby data from every speaker is used exactly once for test-
ing, each time using the data of all other speakers for training.
For each fold, we perform nested cross-validation for optimis-
ing SVM parameters by further splitting the training speakers
into two speaker-disjoint sets. Once the optimal set of pa-
rameters has been identified (based on development set perfor-
mance), we train a final model on the entire training data for
each fold.
METRICS: We use unweighted average recall (UAR), the mean
of the diagonal cells in the confusion matrix in percent. This
balances the sensitivity and specificity of both classes, which in
our case are both equally important (i. e., we have no ‘positive’
and ‘negative’ class)2. We differentiate between three different

2As we always have the same number of instances for both classes,
UAR is identical with accuracy, as well as with (sensitivity + specificity)
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Table 1: UUAR and STUAR using leave-one-speaker-out cross-
validation with 95 % CIs.

Word units Phrase units
Normalisation Features UUAR[%] STUAR[%] UUAR[%] STUAR[%]

eGeMAPS 56 (54-57) 60 (45-75) 56 (52-59) 52 (37-68)
Global ComParE 52 (51-54) 60 (44-76) 53 (49-56) 50 (34-66)

w2v2-xlsr 54 (52-55) 45 (29-61) 59 (55-62) 65 (50-80)

eGeMAPS 56 (55-58) 60 (46-75) 59 (56-62) 57 (42-73)
Word/Phrase ComParE 53 (52-55) 62 (47-78) 53 (49-57) 55 (39-70)

w2v2-xlsr 54 (52-55) 50 (34-65) 55 (51-59) 57 (42-72)

eGeMAPS 60 (58-62) 68 (53-82) 63 (60-66) 80 (67-92)
Speaker ComParE 53 (52-54) 62 (48-79) 55 (51-58) 55 (40-70)

w2v2-xlsr 59 (58-61) 82 (70-94) 66 (63-70) 78 (66-90)

ways of computing UAR: unit-, story-, and speaker-level. The
first (UUAR) quantifies how well the model works over individ-
ual units (instances); the second (STUAR), how well it classifies
speakers into pre- and post-treatment states after aggregating
all individual predictions for each story (the major focus of our
work); the third (SPUAR), how well the model works for an in-
dividual speaker by computing performance over only their in-
stances. Given a set of speakers {s1, ..., sS} (with S = 20 be-
ing the total number of speakers), each producing the NuS story
twice (corresponding to the two classes {(b)efore, (a)fter}),
with each story segmented into Nu units (i. e., words/phrases)
resulting in a total of N units (3888/720) overall and Ns units
per speaker (216/40), we generate a total of N unit-level predic-
tions ŷi using the setup outlined above. We define the different
evaluation protocols as follows:

UUAR =
1

2

∑

c∈{a,b}

|i ∈ [N ] : yi = c, ŷi = c|
|i ∈ [N ] : yi = c|

STUAR =
1

2

∑

c∈{a,b}

|i ∈ [S] : yi = c,maxvote
j∈[Ns]

(ŷj) = c|

|i ∈ [S] : yi = c|

SPUAR =
1

2

∑

c∈{a,b}

|i ∈ [Ns] : yi = c, ŷi = c|
|i ∈ [Ns] : yi = c|

4. Results and discussion
Overall results are presented in Table 1 with UUAR and STUAR

computed over all instances and corresponding 95 % CIs com-
puted over 1000 bootstrap samples; STUAR shows a bigger range
over UUAR, because it is computed with far less samples (36 vs
3888/720). Story-level performance is highest for w2v2-xlsr
and word-level segmentation with a UAR of 82 % (CI: 70 %-
94 %) followed by eGeMAPS and phrase-level segmentation
(STUAR: 80 %; CI: 67 %-92 %) – both using speaker-level nor-
malisation, with phrase-level w2v2-xlsr features trailing close
behind (STUAR: 78 %; CI: 66 %-90 %). The best result with-
out subject-level normalisation is obtained with ComParE with
word-level segmentation and normalisation with a STUAR of
62 % (CI: 47 %-78 %) – a large drop over subject-level normal-
isation which showcases the need for personalisation.

Interpretability is a necessary requirement for digital health
applications in order to explain the outcomes to patients and
medical practitioners. As eGeMAPS yields near-top perfor-
mance, with the features also being easily interpretable due to
their expert-designed nature, we focus our subsequent analysis
on this setting. The 95 % CI for males (52 %-75 %) showed sub-
stantial overlap to that of females (53 %-72 %), indicating that

/ 2, and differs from F1 score throughout just by ±1 percent.

the classifier performs approximately equal for both genders.
We further analysed the performance w. r. t. the available sub-
ject metadata. We first divided speakers into two subsets: those
whose individual performance exceeds the UUAR performance
of 63 % (the phrase-level UUAR for eGeMAPS when using in-
stances from all speakers, see Table 1), and those whose perfor-
mance falls below that threshold, and subsequently compared
the 95 % CIs of the different metadata for those two speaker
groups. This comparison revealed that models work better for
subjects which have a higher post-to-pre-treatment difference
in the BORG scale ([2.12-4.75] vs [1.92-3.16]), are of a higher
age ([63-73] vs [58-67] years), and have smoked more pack
years ([39-75] vs [28-44]). All these factors might contribute
to a worse clinical condition with subjects subsequently gain-
ing more from treatment, thus, accordingly leading to bigger
changes in their voice characteristics and making it easier to
distinguish between their pre- and post-treatment states.

We further analyse the features that have the largest im-
pact on classifier decisions in order to characterise the impact
of treatment on patients’ voices. To that end, SHAP (SHapley
Additive exPlanations) [24] has emerged as a powerful tool for
extracting feature importance values for individual predictions.
SHAP is based on Shapley values, whose theoretical definition
for each feature relies on building surrogate models on all po-
tential feature subsets, and taking the expectation of model out-
put differences for all subsets including the target features vs the
same subsets but excluding that feature [24]. These values can
then be aggregated over an entire (test) dataset to derive global
feature importance values that can be used to interpret model
behaviour. We focus on the ten most important features, de-
fined by their average SHAP values. We computed the mean of
each feature separately (normalised using subject-level normal-
isation) for each subject and phrase for pre- and post-treatment.
We then plotted the resulting 18 × 2 = 36 points relative to
the SPUAR corresponding to each speaker. This allows us to
compare how these individual features change after treatment,
but also to relate this change to speakers for which the predic-
tion fails. To provide a better understanding of the effectiveness
of each individual feature, we additionally used each of them
in isolation to train a (new) model with the same experimental
setup discussed before. Note that this might result in a different
‘measure’ of feature performance as features behave differently
in isolation vs in the presence of other (potentially correlated)
features [25]. In Figure 1, we show the STUAR (and 95 % CIs)
obtained for each of them.

Due to space limitations, we only include 6 of those: As
four of the original ten were merely functionals of pitch (mean,
median, 20th and 80th percentiles – measured in semitones), and
all of them showed a similar trend, we only provide the best
performing one, the mean. Moreover, we exclude the worst-
performing feature, the 3rd MFCC (STUAR: 60 %), showing
slightly lower values for low performing subjects.3 Figure 1
shows the remaining six features.

The bandwidth of the 2nd formant F2 (STUAR: 63 %) and
the bandwidth of the 3rd formant F3 (STUAR, 68 %), above
left and second left in Figure 1, are computed from the roots
of the Linear Predictor (LP) coefficient polynomial. Dyspho-
nic speakers display a broader formant bandwidth [27] meaning
higher formant dispersion and mutual masking of neighbouring
formants and by that, vowels [28].

3We know from other types of atypical speech [26] that the vowel
space is centralised, due to a less tense and less precise articulation.
This might be the case here as well.
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Figure 1: Average normalised feature values (taken over all utterances of a speaker) vs SPUAR for 6 out of 10 most important features
as computed by SHAP values; values before (red, dashed, cross) and after (green, continuous, point) treatment; identical position per
speaker on the x-axis across all plots, with crosses and points sharing the same x-coordinate corresponding to the same speaker; thus,
the rightmost points on the x-axis show the speaker normalised mean feature values corresponding to the best performing speaker with
98 % (39/40) of their phrases classified correctly with eGeMAPS and speaker-level normalisation. Subtitles show STUAR (total and
95 % CI) when using single features for classification (see text for discussion). Linear regression lines fitted to better highlight trends.

Loudness (STUAR: 68 %, above right) is partially controlled
by transglottal airflow [29], which is constricted by COPD [5];
thus, patients before treatment produce on average utterances of
lower loudness; this can be seen when we compare the declining
line for before with the rising line for after in Figure 1.4

The spectral slope (STUAR: 68 %), below left in Figure 1, is
computed by fitting an OLS estimator to the logarithmic power
spectrum and is thus steeper when the higher frequencies have
more energy than the lower ones. This is opposite to the 1st

MFCC (STUAR: 73 %), below middle, that can be interpreted as
the inverse spectral slope, as it is a weighted ratio of the lower
to the higher frequencies. These features show opposing trends,
with the 1st MFCC increasing and the slope decreasing after
treatment – indicating that the ratio of higher to lower frequen-
cies decreases after treatment. A higher ratio of higher to lower
frequencies can be interpreted as higher breathiness [30], which
is then reduced through treatment. Note that higher breathiness
might go together with decreased loudness [31].

Pitch (measured in semitones, STUAR: 78 %) is the most
effective power feature [25]. It shows a strong lowering trend
after treatment – in contrast to Merkus et al. [11], who found
that F0 increases for subjects with stable COPD compared to
those with exacerbation (mean: 190 Hz vs 154 Hz). A potential
confounder is that irregular phonation caused by exacerbated
COPD can lead to more errors in pitch estimation by miss-
ing some voiced segments, especially in laryngealised (creaky)
parts [32, 33]. By default, openSMILE excludes segments with
a value of 0 in its calculation of the mean; thus, the lower pitch
values post-treatment compared to pre-treatment (mean: 150 Hz
vs 160 Hz) might be due to less irregular phonation. When
including 0-valued segments in the calculation of the mean,
we obtain higher values of F0 post-treatment (mean: 89 Hz vs
85 Hz), similar to Merkus et al. [11]. We further investigated
this hypothesis by comparing the average voiced segments per
second before (mean: 24 %) and after treatment (mean: 28 %);
indeed the proportion of segments detected as voiced increases.
As the read text is identical in both conditions, (unaccounted)

4Note that we used a lapel microphone that prevents varying dis-
tances within the same recording session; yet, there might be slight dif-
ferences across sessions which can constitute an intervening factor that
cannot be fully controlled.

pitch estimation errors remain a plausible explanation for the
difference between our findings and those of Merkus et al. [11].
Yet, there might be a ‘cocktail’ of intervening factors: espe-
cially before treatment, patients are more unsettled and stressed,
thus both speech pathology and psychological state might result
in strained voice and higher pitch, and at the same time, in ir-
regular voice partly (mis-) recognised as unvoiced. In the post-
stage, speech pathology is weakened and at the same time, the
patients are relieved and more relaxed, and all this might result
in a less strained voice and lower pitch.

Summing up our interpretation: Subjects after treatment
show improved articulatory precision (as shown by the 3rd

MFCC and F2/F3 bandwidth), decreased airflow blockage (as
shown by the increase in loudness), decreased breathiness (as
shown by the spectral slope and 1st MFCC), and more regular
phonation (thus less pitch errors) and, by that, lowered ‘reg-
ular’ pitch – findings which are consistent with the expected
decrease in symptomatology; as for a comparable voice quality
spectrum for Parkinson’s disease, see [34]. Naturally, although
our present interpretation is consistent with previous phonetic
research and with medical expectations, it should be evaluated
on a larger sample size and tested against human evaluations.

5. Conclusion
We demonstrated that read passages can be successfully utilised
to distinguish between pre- and post-treatment states of COPD
patients. Using a variety of handcrafted and learnt features,
we were able to achieve a top UAR of 82 % (95 % CI: 70 %-
94 %) in a leave-one-speaker-out setup. Speaker-level normali-
sation proved to be crucial, as it removes speaker-related effects,
which prevents generalisation; without it, performance reached
a maximum of 62 %. Future work could be directed to more
data efficient personalisation techniques, which do not require
patient data to normalise with, as well as to detecting COPD in
the presence of other respiratory diseases, such as COVID-19.
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