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ABSTRACT

The COVID-19 pandemic has caused massive humanitarian and economic damage. Teams of
scientists from a broad range of disciplines have searched for methods to help governments and com-
munities combat the disease. One avenue from the machine learning field which has been explored is
the prospect of a digital mass test which can detect COVID-19 from infected individuals’ respira-
tory sounds. We present a summary of the results from the INTERSPEECH 2021 Computational
Paralinguistics Challenges: COVID-19 Cough, (CCS) and COVID-19 Speech, (CSS).

Keywords COVID-19 ·Machine Learning ·Mass Test · Challenge · Speech · Cough

1 Introduction

Significant work has been conducted exploring the possibility that COVID-19 yields unique audio biomarkers in
infected individuals’ respiratory signals [8, 41, 20, 36, 5, 28, 27, 4, 29, 31, 6, 11, 26, 30]. This has shown promising
results although many still remain sceptical, suggesting that models could simply be relying on spurious bias signals
in the datasets [12, 11]. These worries have been supported by findings that when sources of bias are controlled, the
performance of the classifiers decreases [17, 13]. Along with this, cross dataset experiments have reported a marked
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drop in performance when models trained on one dataset are then evaluated on another dataset, suggesting dataset
specific bias [2].

Last summer, the machine learning community were called upon to address some of these challenges, and help answer
the question whether a digital mass test was possible, through the creation of two COVID-19 challenges within the
Interspeech Computational Paralinguistics challengE (ComParE) series: COVID-19 Cough, (CCS) and COVID-19
Speech, (CSS)[35]. Contestants were tasked to create the best performing COVID-19 classifier from user cough
and speech recordings. We note that another COVID-19 detection from audio challenge was run at a similar time to
ComParE, named DiCOVA [25], and point the inquisitive reader to their blog post 2 which details a summary of the
results.

2 Challenge Methodology

Both COVID-19 cough and speech challenges were binary classification tasks. Given an audio signal of a user coughing
or speaking, challenge participants were tasked with predicting whether the respiratory signal came from a COVID-19
positive or negative user. After signing up to the challenge, teams were sent the audio files along with the corresponding
labels for both the training and development set. Teams were also sent the audio files from the test set without the
corresponding labels. Teams were allowed to submit five predictions for the test set from which the best score was
taken. The number of submissions was limited to avoid overfitting to the test set.

The datasets used in these challenges are two curated subsets of the crowd sourced Cambridge COVID-19 Sounds
database [8, 42]. COVID-19 status was self reported and determined through either a PCR or rapid antigen test. The
number of samples of both positive and negative cases for these selected subsets are detailed in Table 1. The submission
date for both COVID-19 positive and negative case recordings are detailed in Figure 1a. Figure 1b shows the age
distribution for both CSS and CCS challenges.

Table 1: ComParE COVID-19 Sub-Challenges dataset splits. Values specify the number of audio recordings. We note
that disjoint participant train, development, and test splits were ensured.

CCS* CSS †
# Train Dev Test Train Dev Test

COVID-19-positive 71 48 39 72 142 94
COVID-19-negative 215 183 169 243 153 189

Total 286 231 208 315 295 283
*CCS – COVID-19 Cough Sub-Challenge
† CSS – COVID-19 Speech Sub-Challenge

3 Overview of Methodologies Used in Accepted Papers at Interspeech 2021

Last year, 44 teams registered in both the ComParE COVID-19 Cough Sub-Challenge (CCS) and the COVID-19
Speech Sub-Challenge (CSS) of which 19 submitted test set predictions. Five of the 19 teams submitted papers to
INTERSPEECH which were then accepted. Results for both CCS and CSS were reported in two of these papers, while
two papers reported results exclusively for CCS and one paper exclusively for CSS. In this section, we provide a brief
overview of methodologies used in these accepted works which included data augmentation techniques, feature types,
classifier types, and ensemble model strategies. Teams that did not have their work accepted at INTERSPEECH 2021
will be named NN_X to preserve anonymity. NN refers to nomen nescio and X is the order in which they appear
in Figure 2.The performance measured in Unweighted Average Recall (UAR) achieved by these methodologies is
summarised in Table 2; UAR has been used as a standard measure in the Computational Paralinguistics Challenges at
Interspeech since 2009 [34]. It is the mean of the diagonal of the confusion matrices in percent and by that, fair towards
sparse classes.Note that UAR is sometimes called ‘macro-average’, see [24].

3.1 Data Augmentation

To combat the limited size and imbalance of the Cambridge COVID-19 Sounds database, the majority of the teams used
data augmentation techniques in their implementation. Team Casanova, et al. exploited a noise addition method and
SpecAugment to augment the challenge dataset [9]. Team Illium, et al. targeted spectrogram-level augmentations with

2https://dicova2021.github.io
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(a) (b)

Figure 1: Figure 1a is a cumulative plot detailing when COVID-19 positive and negative submission to both the CCS
and CSS were made. Figure 1b details the age distribution of COVID-19 positive and negative participants for the CCS
and CSS Sub-Challenges

Table 2: Summary of methodologies used in accepted papers at Interspeech 2021

Team Name Data
Aug. Feature Type Classifiers Ensemble Cough

UAR [%]
Speech
UAR [%]

Solera-Urena, et al. [37] 7
TDNN-F,
VGGish, PASE+ SVM 3 69.3 –

Casanova, et al. [9] 3
MFCC,
mel-spectrogram

SpiraNet, CNN14,
ResNet-38, MobileNet 3 75.9 70.3

Klumpp, et al. [22] 3 mel-spectrogram CNN, LSTM,
SVM, LR 7 – 64.2

Illium, et al. [19] 3 mel-spectrogram Vision Transformer 7 72.0 –

Baseline [35] 7

openSMILE,
openXBOX, DiFE,
DeepSpectrum,
auDeep

SVM, End2You 3 73.9 72.1

temporal shifting, noise addition, SpecAugment and loudness adjustment [19]. Instead of using a data augmentation
method to manipulate the challenge dataset, team Klumpp, et al. used three auxiliary datasets in different languages
aiming their deep acoustic model to better learn the properties of healthy speech [22].

3.2 Feature Type

The teams chiefly used spectrogram-level features including mel-frequency cepstral coefficients (MFCC) and mel-
spectrograms. For higher-level features, the teams used the common feature extraction toolkits openSMILE [15],
openXBOX [33], DeepSpectrum [3], and auDeep [16], where a simple support vector machine (SVM) model was
built on top of these features. Team Solera-Urena, et al. exploited transfer learning to extract feature embeddings by
using pre-trained TDNN-F[39], VGGish[18], and PASE+[32] models with appropriate fine-tuning on the challenge
dataset. Team Klumpp, et al. targeted to extract their own phonetic features by using an acoustic model consisting of
convolutional neural network (CNN) and long short-term memory (LSTM) parts.

3.3 Classifier Type

Team Solera-Urena, et al. [37] and the challenge baseline [35] fitted a SVM model to high level audio embeddings
extracted using TDNN-F[39], VGGish[18], and PASE+[32] models, and the openSMILE framework [15], respectively.

3
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While the challenge baseline [35] searched for the complexity parameter of the SVM ranging from 10−5 to 1, team
Solera-Urena, et al. [37] explored different kernels (linear, RBF), data normalisations (zero mean and unit variance,
[0,1] range) and class balancing methods (majority class downsampling, class weighting). In addition to the SVM
model, the baseline explored using the multimodel profiling toolkit End2You[38] to train a recurrent neural network
using Gated Recurrent Units (GRUs) with hidden units of 64. Team Casanova, et al. [9] utilised the deep models:
SpiraNet [10], CNN14 [23], ResNet-38 [23], and MobileNetv1 [23] where they explored kernel size, convolutional
dilatation, dropout, number of fully connected layer neurons, learning rate, weight decay and optimizer. Team Klumpp,
et al. [22] trained SVM and logistic regression (LR) models to perform COVID-19 classification on top of phonetic
features extracted by their deep acoustic model. They explored the complexity parameter of the SVM ranging from 10−4

to 1. Team Illium, et al. [19] adapted a vision transformer [14] for mel-spectrogram representations of audio signals.
Tree-structured Parzen Estimator-algorithm (TPE) [1] was exploited in [19] for hyperparameter search mainly exploring
embedding size, learning rate, batch size, dropout, number of heads and head dimension. The teams Solera-Urena, et
al., Casanova, et al., and the baseline also reported classification results by using the fusion of their best features and
classifiers.

Figure 2: Team performance on the held out test set for the COVID-19 Cough Sub-Challenge.

3.4 Assessment of Performance Measures

Figure 4 visualises a two-sided significance test (based on a Z-test concerning two proportions, [21], section 5B)
employing the CCS and CSS Test sets and the corresponding baseline systems [35]. Various levels of significance
(α-values) were used for calculating an absolute deviation with respect to the Test set, being considered as significantly
better or worse than the baseline systems. Due to the fact that a two-sided test is employed, the α-values must be halved
to derive the respective Z-score used to calculate the p-value of a model fulfilling statistical significance for both sides
[21]. Consequently, significantly outperforming the best CCS baseline system (73.9 % and 208 Test set samples) at a
significance level of α = 0.01 requires at least an absolute improvement of 6.7%; for CSS (best baseline system with
72.1 % and 283 Test set samples), the improvement required is 6.0%. Note that Null-Hypothesis-Testing with p-values
as criterion has been criticised from its beginning; see the statement of the American Statistical Association in [40] and
[7].Therefore, we provide this plot with p-values as a service for readers interested in this approach, not as a guideline
for deciding between approaches.

Another way of assessing performance measures as for their ‘uncertainty’ is computing confidence intervals (CIs).
[35] employed two different CIs: first, 1000x bootstrapping for Test (random selection with replacement) and UARs
based on the same model that was trained with Train and Dev; in the following, the CIs for these UARs are given first.

4
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Figure 3: Team performance on the held out test set for the COVID-19 Speech Sub-Challenge.

(a) (b)

Figure 4: Two-sided significance test on the COVID-19 Cough (4a) and Speech (4b) Test sets with various levels of
significance according to a two-sided Z-test.

Then, 100x bootstrapping for the corresponding combination of Train and Dev; the different models obtained from
these combinations were employed to get UARs for Test and subsequently, CIs; these results are given in second place.
Note that for this type of CI, the Test results are often above the CI, sometimes within and in a few cases below, as can
be seen in [35]; obviously, reducing the variability of the samples in the training phase with bootstrapping results on
average in somehow lower performance. For CCS with a UAR of 73.9 %, the first CI was 66.0 %-82.6 %; the second
one could not be computed because this UAR is based on a fusion of different classifiers. For CSS with a UAR of
72.1 %, the CIs were 66.0 %-77.8 % and 70.2 %-71.1 %, respectively. Both Figure 4 and the spread of the CIs reported
demonstrate the uncertainty of the results, caused by the relatively low number of data points in the test set.

4 Results and Discussion

Figures 2 and 3 detail the rankings for the 19 teams which submitted predictions for the test set. We congratulate [9]
for winning the COVID-19 Cough Sub-Challenge with an UAR of 75.9 % on the held out test set. We note that for
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the COVID-19 Speech Sub-Challenge, no team exceeded the performance of the baseline which scored 72.1 % UAR
on the held out test set. To significantly outperform the baseline system for the cough modality, with a significance
level of α = 0.1, as detailed in Figure 4, would require an improvement of 6.7 %, an improvement which the winning
submission fell short of by 4.7 %.

For both Sub-Challenges, teams struggled to outperform the baseline. Postulating why this could be the case one could
suggest one, or a combination, of the following: COVID-19 detection from audio is a particularly hard task, the baseline
score – being already a fusion of several state-of-the-art systems for CCS – represents a performance ceiling and that
higher classification scores are not possible for this dataset, or, as a result of the limited size of the dataset, the task
lends itself to less data hungry algorithms, such as the openSMILE-SVM baseline models for CSS.

It is important to analyse the level of agreement of COVID-19 detection between participant submissions. This is shown
schematically in Figures 5 and 6. From these figures, we can see that there are clearly COVID-19 positive cases which
teams across the board are able to correctly predict, but there are also positive COVID-19 cases which all teams have
missed. These findings are reflected in the minimal performance increase of 0.3 % and 0.8 % for cough and speech
tasks, respectively, obtained when fusing n best submission predictions through majority voting schemes. The results
from fusing n best models using majority voting are detailed in Figures 8 and 9. This suggests that models from all
teams are depending on similar audio features when predicting COVID-19 positive cases.

Figures 5 and 6 b and c detail the level of agreement across submissions for curated subset of the test set, where
participants were selected if they were displaying at least one symptom (b) and when they were displaying no symptoms
(c). These figures can be paired with Figure 7 which details the recall scores for positive cases across these same curated
test sets. From this analysis, it does not appear that there was a trend across teams to perform favourably on cases where
symptoms were being displayed or visa versa. While this does not disprove worries that these algorithms are simply
cough or symptom identifiers, it does not add evidence in support of this claim.

4.1 Limitations

While this challenge was an important step in exploring the possibilities of a digital mass test for COVID-19, it has a
number of limitations. A clear limiting factor of the challenge was the small size of the dataset. While many participants
addressed this through data augmentation and regularisation techniques, it restricted the extent to which conclusions
could be taken from the results, particularly investigating teams’ performance on carefully controlled subsets of the
data. We look forward to the newly released COVID-19 sounds dataset [42] which represents a vastly greater source of
COVID-19 samples.

A further limitation of this challenge is the unforeseen correlation between low sample rate recordings, below 12 kHz,
and COVID-19 status. In fact all low sample rate recordings in the challenge for both CCS and CSS were COVID-19
positive. For CCS and CSS there were 30 and 37 low sample rate cases, respectively. The reason for this is that at the
start of the study the label in the survey for COVID-19 negative was unclear, and could have been interpreted as either
‘not tested’ or ‘tested negative’. For this reason no negative samples from the time period were used. This can be seen
in 1a. This early version of data collection also correlated with the study allowing for lower sample rate recordings, a
feature which later was changed to restrict submissions to higher sample rates. This resulted in all the low sample rate
recordings being COVID-19 positive. As can be seen in Figures 10, 11, 12 and 13, teams’ trained models were able
to pick up on the sample rate bias, with most teams correctly predicting all the low sample rate cases as COVID-19
positive. When this is controlled for and low sample rate recordings are removed from the test set, as shown in Figures
12 and 13, teams’ performances drop significantly. For the challenge baselines this too was the case, with the fusion of
baseline models for CCS falling from 73.8% to 68.6% UAR and the opensmile-SVM baseline for CSS dropping from
72.1% to 70.9% UAR. This is a great example of the effect of overlooked bias which expresses itself as an identifiable
audio feature, leading to inflated classification scores. We regret that this was not found earlier.

As with most machine learning methods, it still remains unclear how to interpret the decision making process at
inference time. This results in it being tricky to determine which acoustic features the model is correlating with
COVID-19. Whether that be true, acoustic features caused by the COVID-19 infection or other acoustic bias is still
an unanswered question [12]. We also note that this is a binary classification task, in that models only had to decide
between COVID-19 positive or negative. This ‘closed word fallacy’ [7] leads to inflated performance as models are
not tasked with discerning between confounding symptoms such as heavy cold or asthma. Tasking models to predict
COVID-19 out of a wide range of possible conditions/symptoms would be a harder task.

In this challenge, participants were provided with the test set recordings (without the corresponding labels). In future
challenges, test set instances should be kept private, requiring participants to submit trained models along with pipeline
scripts for inference. Teams’ test set predictions can then be run automatically by the challenge organisers. This will
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help in reducing the possibility of overfitting and foul play. We note that there was no evidence of foul play, e. g.,
training in an unsupervised manner on the test set, in this challenge.

Another limitation of this challenge was the lack of meta data that organisers could provide to participants. This tied
teams’ hands to some extent in evaluating for themselves the level of bias in the dataset and so their opportunity to
implement methods to combat it. This was not a desired feature. However, we now point teams towards the newly open
sourced COVID-19 Sounds database [42] which also provides collected meta data. It is this dataset from which a subset
of samples was taken for this challenge.

5 Conclusion

This challenge demonstrated that there is a signal in crowdsourced COVID-19 respiratory sounds that allows for machine
learning algorithms to fit a classifier which achieves moderate detection rates of COVID-19 in infected individuals’
respiratory sounds. Exactly what this signal is, however, still remains unclear. Whether these signals are truly audio
biomarkers in respiratory sounds of infected individuals uniquely caused by COVID-19 or rather identifiable bias in the
datasets, such as confounding flu like symptoms, is still an open question to be answered next.
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7 Appendix

Here we present some results from ablation studies of teams’ performances through evaluating performance on curated
subsets of the test set. Figure 7 details the effect of controlling for symptom cofounders on teams’ performance. Figures
12 and 13 repeats this analysis however controlling for sample rate. Figures 10 and 11 details the level of agreement
between teams for the low 10a, 11a and high 10b 11b sample rate test cases. Figures 8 and 9 detail the classification
performance of a fusion of teams’ predictions on the test set.

(a)

(b)

Figure 7: Team performance on the full test set (NoControl) and two curated test sets featuring only test instances where
the participants either had at least one symptom (AnySymptoms) or were displaying no symptoms at all (NoSymptoms).
The metric reported is recall for positive cases. 95 % confidence intervals are shown, calculated via the normal
approximation method. 7a corresponds to the COVID-19 Cough Sub-Challenge, CCS, and 7a the COVID-19 Speech
Sub-Challenge, CSS.

13



ComParE COVID-19 Challenges A PREPRINT

Figure 8: The performance of the fusion model of n-best models for the COVID-19 Cough Sub-Challenge using
majority voting.

Figure 9: The performance of the fusion model of n-best models for the COVID-19 Speech Sub-Challenge using
majority voting..
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(a)

(b)

Figure 12: Team performance on two curated test sets from the COVID-19 Cough Sub-Challenge. 12a controls for test
samples with a sample rate of greater than 12 kHz and 12b controls for test samples with a sample rate of 12 kHz and
below. The metric reported is recall for positive cases. 95 % confidence intervals are shown, calculated via the normal
approximation method.
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(a)

(b)

Figure 13: Team performance on two curated test sets from the COVID-19 Speech Sub-Challenge. 13a controls for test
samples with a sample rate of greater than 12 kHz and 13b controls for test samples with a sample rate of 12 kHz and
below. The metric reported is recall for positive cases. 95 % confidence intervals are shown, calculated via the normal
approximation method.
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