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Blastocystis is the most commonly found eukaryote in the gut of humans and other
animals. This protist is extremely heterogeneous genetically and is classified into 28
subtypes (STs) based on the small subunit ribosomal RNA (SSU rRNA) gene. Numerous
studies exist on prevalence of the organism, which usually focus on either humans
or animals or the environment, while only a handful investigates all three sources
simultaneously. Consequently, understanding of Blastocystis transmission dynamics
remains inadequate. Our aim was to explore Blastocystis under the One Health
perspective using a rural community in northern Thailand as our study area. We
surveyed human, other animal and environmental samples using both morphological
and molecular approaches. Prevalence rates of Blastocystis were 73% in human hosts
(n = 45), 100% in non-human hosts (n = 44) and 91% in environmental samples (n = 35).
Overall, ten subtypes were identified (ST1, ST2, ST3, ST4 ST5, ST6, ST7, ST10, ST23,
and ST26), eight of which were detected in humans (ST1, ST2, ST3, ST4, ST5, ST7,
ST10, and ST23), three in other animals (ST6, ST7, and ST23), while seven (ST1, ST3,
ST6, ST7, ST10, ST23, and ST26) were found in the environment. In our investigation
of transmission dynamics, we assessed various groupings both at the household
and community level. Given the overall high prevalence rate, transmission amongst
humans and between animals and humans are not as frequent as expected with
only two subtypes being shared. This raises questions on the role of the environment
on transmission of Blastocystis. Water and soil comprise the main reservoirs of the
various subtypes in this community. Five subtypes are shared between humans and the
environment, while three overlap between the latter and animal hosts. We propose soil
as a novel route of transmission, which should be considered in future investigations.
This study provides a thorough One Health perspective on Blastocystis. Using this
type of approach advances our understanding on occurrence, diversity, ecology and
transmission dynamics of this poorly understood, yet frequent gut resident.
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INTRODUCTION

Blastocystis is the most ubiquitous protist inhabiting the
gastrointestinal tract of human and other animal hosts (Roberts
et al., 2013; Beghini et al., 2017; Stensvold and van der Giezen,
2018). Historically, diagnosis of Blastocystis has been based
on light microscopy of fecal smears or in vitro cultures. The
organism has four morphological forms: vacuolar, granular,
amoeboid, and cyst (Tan, 2008; Parija and Jeremiah, 2013).
The lack of distinct morphological features had, in the past,
blurred the extent of Blastocystis diversity. Based on the genetic
heterogeneity of the small subunit ribosomal RNA (SSU rRNA),
Blastocystis is currently divided into at least 28 subtypes (STs)
consisting of ST1-ST17, ST21, and ST23-ST32, all of which
have been found in mammalian and avian hosts and are likely
separate species (Stensvold et al., 2012; Alfellani et al., 2013b;
Zhao et al., 2017; Maloney et al., 2020, 2021a,b; Stensvold and
Clark, 2020; Higuera et al., 2021). Several genetically distinct
Blastocystis lineages have also been identified in amphibian, insect
and reptilian hosts, however, these are not part of the subtyping
nomenclature as yet (Yoshikawa et al., 2007, 2016).

Despite earlier assumptions, subtypes do not seem to be host
specific. So far, ST1-ST9 and ST12 have been reported in humans
along with a single instance of ST10, ST14, and ST16 (Stensvold
and Clark, 2016; Khaled et al., 2020; Osorio-Pulgarin et al.,
2021). The most frequently encountered subtypes in humans are
ST1-ST4, with the latter being most often reported in Europe
(Deng et al., 2019; Jiménez et al., 2019; Stensvold et al., 2020).
Nonetheless, the subtypes reported in humans have also been
found in non-human hosts. For example, ST1 and ST3 have
been identified from pigs, while ST4 is dominant in rodents
(Yoshikawa et al., 2004; Stensvold et al., 2009a; Alfellani et al.,
2013a; Wang et al., 2018; Betts et al., 2021).

After more than a century of research, the pathogenicity
of Blastocystis remains questionable. Its presence in sufferers
of chronic gastrointestinal illnesses including irritable bowel
syndrome and inflammatory bowel disease has led to speculations
about possible links to these disease states (Dogruman-Al et al.,
2009a; Tan et al., 2010; Poirier et al., 2012; Cifre et al., 2018;
Kesuma et al., 2019; Peña et al., 2020; Shirvani et al., 2020).
However, recent studies have increasingly shown that Blastocystis
is a frequent and stable inhabitant in the gut of hosts without
gastrointestinal symptoms (Scanlan et al., 2014; Mirjalali et al.,
2017; Riabi et al., 2018; Yowang et al., 2018; Kataki et al., 2019;
Lhotská et al., 2020; Padukone et al., 2020). In parallel, this protist
has been linked with increased bacterial richness and diversity in
the human gut (Audebert et al., 2016; Chabé et al., 2017; Laforest-
Lapointe and Arrieta, 2018; Tito et al., 2019; Deng et al., 2021).
Therefore, a plethora of researchers now consider Blastocystis as
a commensal rather than a pathogen.

Understanding various aspects of Blastocystis epidemiology
will contribute significantly toward determining its pathogenicity
and/or virulence of the various subtypes. To that end, elucidating
routes of transmission and contributions of various sources
to these routes is essential. The human-to-human, zoonotic,
and waterborne transmission routes have been explored in
relation to Blastocystis prevalence (Eroglu and Koltas, 2010;

Alfellani et al., 2013b; Maloney et al., 2019). Occurrence of
certain subtypes in both human and other animal hosts has led
to the hypothesis that these are subtypes of zoonotic potential.
For instance, ST5, typically found in pigs, and ST6, ST7 typical
subtypes of avian hosts, have also been found in humans that
handle them extensively (Wang et al., 2014; Greige et al., 2018).
Transmission of ST8 has also been noted between non-human
primates and their human zookeepers (Stensvold et al., 2009a).
Waterborne transmission of Blastocystis has been long recognized
(Li et al., 2012; Andersen and Stensvold, 2016). For instance, ST1
was identified in the water supply of a rural community in central
Thailand and schoolchildren that consumed it (Leelayoova
et al., 2008) and in untreated drinking water in Peninsular
Malaysia (Anuar et al., 2013). Nonetheless, only scant studies
simultaneously consider the contribution of more than one
source to Blastocystis transmission.

In general, investigating transmission dynamics requires
conditions that allow for uninterrupted cycling of an organism in
a community. As such, developing countries comprise ideal areas
to undertake these types of approaches. Herein, we undertook
a One Health approach to examine Blastocystis epidemiology in
a rural community of northern Thailand. We collected samples
from humans, other animals and the environment and screened
them for presence of Blastocystis. Data were analyzed at singular
and community levels. We identified water and soil as the
primary contributing sources to Blastocystis transmission routes
in this particular community. These findings provide a multi-
layered understanding of the transmission dynamics (spreading
and cycling) of this controversial protist.

MATERIALS AND METHODS

Ethics Statement
The ethics committee of Mae Fah Luang University approved
collection of human and animal samples used in this study
(human license approval number REH60103 and animal license
approval number AR01/62). Ethical rules were in accordance to
the Declaration of Helsinki. Data were strictly anonymized and
each sample was assigned an individual barcode.

Study Area
This study took place in a century-old rural community of 500
inhabitants in Chiang Rai Province, Thailand, between 2018 and
2019. The province is located in northern Thailand and borders
Myanmar (Figure 1). The area of study is located across a river
and villagers feed mainly on fish, vegetables and sticky rice.
All residents are Thai nationals with no travel history of going
abroad. There has been no immigration in the community for the
last 20 years. The distance from the closest urban center is 20 km.

Sample Collection
A summary of the methodology used is provided in Figure 2.

Human Fecal Samples
Fecal samples were collected from 45 Thai adults. Each
participant was provided with a sterile sampling kit containing
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FIGURE 1 | Top right panel: Map of Thailand. Black pin has been placed on Chiang Rai Province. Top left panel: Close-up of Chiang Rai Province (in pale yellow) and
the district where sampling took place (in black). Bottom panel: Detail of area of collection used in this study. Geometrical shapes represent households. Stars: Only
human stool was collected. Triangles: human stool, animal stool and water were collected. Squares: Human and animal stool was collected. Circles: Human stool
and water were collected. Red shapes indicate households, where stool samples were collected from all members.

FIGURE 2 | Flow chart of the methodology used in this study.
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collection container, gauze and spatula. Volunteers did not
suffer from gastrointestinal diseases and had no gastrointestinal
symptoms at the time of sampling. Samples were collected from
39 households, six of which housed families. A family was defined
as a group of at least two people living under the same roof.

Other Animal Fecal Samples
Fecal samples were collected from 44 animals including chickens,
buffalo and pigs. These animals are representative of the
livestock present in the community. Several stray dogs wander
freely around the community and cannot be assigned to an
owner, hence these were not sampled. The animals from
which samples were obtained could be traced to specific
households. Chickens (n = 34) were free-range and lived in
tight proximity to the household, while buffalo (n = 4) and
pigs (n = 6) were housed further away from the house.
Animals did not have diarrhea or blood in their stool at the
time of sampling.

Water Samples
Water in the area was surveyed to investigate the possibility of
an environmental reservoir of Blastocystis. A total of 28 water
samples were collected, 17 of which were from rain collection
vessels (Supplementary Figure 1). These are cement containers
(∼ 2 m in height) present in most houses. Most of the water
comes from direct rain run-off from the roof of the house. A pipe
directly connects the roof to the container. Cotton plugs serve
as filters to catch leaves and wood debris. A lid rests over the
containers most of the time. This water is used for drinking and
cooking. The containers are washed once a year during the dry
season. A tap is located at the bottom of each container. One liter
of water was taken from the tap of each container. Water from all
containers was turbid at visual inspection.

Three samples of 1 L each were collected from the single
community supply water-dispensing machine (Supplementary
Figure 2). The water comes from a waterfall, filtered and
dispensed from the machine into 10 L containers. This
water is used for drinking and cooking. The containers are
washed with pressurized water regularly. We sampled three of
those containers.

Two samples of 1 L each were collected from the water
treatment facility, from which water is distributed to every
household through pipes (Supplementary Figure 3). The water
is taken directly from the river and occasionally treated with
chlorine. This water is used for bathing and watering plants
(edible and non-edible).

One sample was collected from the community water tower
(Supplementary Figure 3C). The water from the tower comes
from the water treatment facility. The bottom of each tower is
lined with layers of sand and gravel, which serve as additional
filters. Villagers can get their water through a tap located at the
bottom of the tower. The water is used mostly for cooking and
bathing and rarely for drinking. A 1 L sample was taken from the
tap and the water was turbid at visual inspection.

Two samples of 1 L each were collected from the
river stream, which is densely grown with morning glory
plants (Ipomoea aquatica Forssk) and eaten raw or cooked

(Supplementary Figure 4A). At the time of collection, water
depth was 20 cm. Water was collected from the middle of the
stream and was very turbid at visual inspection.

A single sample was collected from an artificial pond with
soil sediment. The pond is used for fish farming (Supplementary
Figure 4B). A 1 L sample was taken from the shallow end of the
pond. Sample was very turbid at visual inspection.

Two samples were taken from a cement container, which
is used for short term holding of live fish and amphibians
(Supplementary Figure 4C). Occasionally, the water from
the pond and the cement container is used for watering
gardens. A 1 L sample was collected and was slightly turbid at
visual inspection.

Soil Samples
Seven soil samples were collected from a depth of no more than
5 cm using sterile spoons. Each sample consisted of 2–3 g of
soil. Four of these came from four separate vegetable gardens
(Supplementary Figures 5A–D). Three of the gardens were field
plots, while one comprised of pots. One soil sample came from
an ephemeral stream, where the local herb Plu Kaow grows
(Houttuynia cordata Thunb). Villagers use this herb extensively
(raw or cooked) for vegetable side dishes accompanying raw
meat. The stream was void of water, but muddy at the time of
collection. One sample was also gathered from river sediment.
One soil sample was picked from the riverbank. Both the
river and the riverbank are overgrown with morning glory
(Supplementary Figure 6).

Blastocystis Cultures
For human and other animal fecal samples, approximately
200 mg of freshly collected feces were placed in LYSGM
(Diamond, 1982) containing 10% horse serum. Water samples
were left to sit for 3 h on a flat surface. Subsequently, 2–4 mL was
taken from the bottom of each sample and placed in LYSGM. Soil
samples were thoroughly mixed and 100 mg placed in LYSGM.
Tubes were incubated at 37◦C for 48–72 h and screened for
Blastocystis using light microscopy.

Genomic DNA Extraction
Human and Other Animal Fecal Samples
In the case of human samples, DNA was extracted from feces
using 200 mg. DNA from animal samples was extracted prior
to the first passage of culture using 250 mL of sediment from
each sample. The Qiagen DNA stool minikit (Qiagen, Hilden,
Germany) was used according to manufacturer’s protocol.

Water Samples
DNA was extracted from 250 mL of culture sediment
using AccuPrep R© Genomic DNA Extraction Kit following the
manufacturer’s protocol.

Soil Samples
DNA from soil was directly extracted from 200 mg of soil using
PowerSoil R© DNA Isolation Kit (Carlsbad, CA United States)
according to manufacturer’s protocol.
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Blastocystis Detection
Three approaches were used to detect Blastocystis from
human samples: microscopy following culturing in LYSGM,
conventional PCR and qPCR (Figure 2). For the rest of the
samples only microscopy and qPCR were used.

Polymerase Chain Reaction and
Sequencing
The broad specificity primer pair RD3 5′-GGGATCCTGA
TCCTTCCGCAGGTTCACCTAC-3′ and RD5 5′-GGAAGC
TTATCTGGTTGATCCTGCCAGTA-3′ (Clark, 1997) was used
for the first PCR reactions with the following conditions: initial
denaturation for 3 min at 94◦C, 35 cycles at 94◦C for 1 min,
annealing 60◦C for 1 min, and extension at 72◦C for 100 s, with
a final elongation step at 72◦C for 7 min. A 600 bp fragment
of SSU rRNA gene region, which is also the barcode region
of Blastocystis was amplified with a second nested PCR. The
PCR reaction was carried out by using the forward BsRD5F
(5′-ATCTGGTTGATCCTGCCAGT-3′) and reverse BhRDr9R
(5′-GAGCTTTTTAACTGCAACAACG-3′) barcoding primers
(Scicluna et al., 2006). The PCR conditions consisted of initial
denaturation for 3 min at 94◦C, 35 cycles at 94◦C for 1 min,
annealing 60◦C for 1 min, and extension at 72◦C for 100 s, with
a final elongation step at 72◦C for 10 min. Positive and negative
controls were included with each batch of samples analyzed.

Quantitative Polymerase Chain Reaction
Blastocystis prevalence was assessed using qPCR to amplify
a 330 bp fragment of the SSU rRNA gene. The qPCR
reactions mixture were performed in 10 µL reaction mixture
volume with 3 µL of water, 4 µL SensiFASTTM SYBR No-
ROX Kit (BIOLINE, United Kingdom), 0.5 µL of each
forward (BL18SPPF1; 5′-AGTAGTCATACGCTCGTCTCAAA-
3′) and reverse (BL18SR2PP; 5′-TCTTCGTTACCCGTTACTGC-
3′) Blastocystis-specific primer and 2 µL of genomic DNA. The
qPCR amplification conditions were as previously described
(Poirier et al., 2011). Reactions were run in 96-well plates in
a CFX96 TouchTM Real-Time PCR Detection System (Bio-Rad,
United States). Positive and negative controls were used in each
qPCR run together with all samples. Each type of sample was
run separately to avoid cross-contamination. For example, soil
sample experiments were executed on separate plates and on
separate days from water, human and animal samples.

Amplicon Purification and Sequencing
All positive PCR and qPCR products were purified using
the GeneJET Gel Extraction Kit (Thermo Fisher Scientific;
Wardmedic, Thailand) according to manufacturer’s instructions
and sequenced at U2Bio (Korea).

Cloning
Twenty-one samples showing long stretches of indistinguishable
peaks were cloned, six of which were PCR products and
15 qPCR. Five samples were human, two buffalo, two pig,
four chickens, four water and four soil. 1.5 µL of amplicon
was used with the pGEM-T easy vector system I (Promega,

Madison, WI, United States) following previously published
cloning protocols (Betts et al., 2018). Up to five colonies per
transformation were screened.

Phylogenetic Analysis
The chromatogram quality of raw reads was checked using the
chromatogram visualization software 4Peaks. Ambiguous bases
at the ends of the reads were removed. The new sequences
were then used as queries to perform blast searches against
the NCBI nr database. Sequences of SSU rRNA spanning the
spectrum of Blastocystis diversity were downloaded and aligned
using mafft v. 7.394 (Katoh and Toh, 2010). Ambiguous positions
were removed using trimal v. 1.4 and gappyout option (Capella-
Gutierrez et al., 2009). The final trimmed alignment consisted of
250 taxa and 1497 sites. Maximum likelihood (ML) analysis was
performed in CIPRES Science Gateway (1Miller et al., 2010) using
RAxML-HPC2 on XSEDE (Stamatakis, 2006). Bootstrap support
was computed from 1,000 pseudoreplicates.

RESULTS

Human Demographic Data
A total of 45 human volunteers participated in this study (31%
male, n = 14 and 69% female, n = 31), with mean age of
59.1± 8.5 years (median = 60).

Comparison of Microscopy and
Molecular Methods in Human Stool
Samples
The prevalence of Blastocystis in all human stool samples was
observed using morphology and molecular techniques (Table 1).
All samples were cultured in LYSGM and of these, 9% (4/45) were
microscopy-positive for Blastocystis. Using conventional PCR,
49% (22/45) of samples were positive, while the number increased
to 73% (33/45), when using qPCR. All microscopy-positive
samples were also positive using molecular detection. Eleven
PCR samples were false positive by Sanger sequencing (plants
and fungi rather than Blastocystis), thus PCR positivity rate of
Blastocystis confirmed by sequencing was 27% (12/45). One qPCR
product was false positive by Sanger sequencing (Fungi; not
included in the prevalence calculation). The prevalence rates

1https://www.phylo.org/portal2/login!input.action

TABLE 1 | Comparison of microscopy and molecular methods.

Methods Prevalence

Positive Negative

Morphology

Light microscopy 4 (8.89%) 41 (91.11%)

Molecular

Polymerase chain reaction (PCR) 12 (26.67%) 33 (73.33%)

quantitative Polymerase chain reaction (qPCR) 33 (73.33%) 12 (26.67%)
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TABLE 2 | Prevalence and subtypes of Blastocystis in human, animal, water and soil samples.

Source B + ve ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST10 ST23 ST26 UNK

Human 33 5 1 2 1 1 – 1 6 12 – 1

Chicken 33 – – – – – 2 31 – – – –

Pig 6 – – – – – – 6 – – – –

Buffalo 4 – – – – – – 2 – 2 – –

Water 26 5 – 13 – – 1 1 1 1 2 2

Soil 6 1 2 – – – 2 – 3 1 –

Total 108 11 1 17 1 7 3 37 7 18 3 3

reported are based only on samples that have been sequenced and
are indeed verified as Blastocystis.

Prevalence and Diversity of Blastocystis
in Animal and Environmental Samples
Forty-four fecal samples were collected from animals as follows:
chickens (n = 34), pigs (n = 6) and buffalo (n = 4). All
animal samples were cultured in LYSGM. Using microscopy, 65%
(22/45) of chicken cultures were positive, while no Blastocystis
was observed in pig and buffalo cultures. Using qPCR and
subsequent sequencing, the prevalence of Blastocystis was 100%
in chickens, pigs and buffalo. Overall, 28 samples of water
and seven samples of soil were cultured and surveyed for
Blastocystis. Two water and one soil sample were false positives
for Cercozoa and bacteria and were not considered for further
analysis. Prevalence using qPCR was 93% (26/28) for water
and 86% (6/7) for soil. The reported prevalence rates are based
solely on samples that have been sequenced and verified as
Blastocystis.

Of the PCR and qPCR Blastocystis positive samples that were
sequenced, 21 were cloned: Cloning yielded 62 clones, of which
17 were from human fecal samples, six from buffalo, nine from
pig, 14 from chicken, nine from water and seven from soil
(Supplementary Material 2). The following subtypes (STs) were
identified: ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST10, ST23, and
ST26 (Table 2). Nine sequences could not be subtyped either
because of poor quality or short length. Eight of the identified
subtypes were found in humans. The dominant subtype was ST23
(12/33, 36%), followed by ST10 (6/33, 18%), ST1 (5/33, 15%),
ST3 (2/33, 6%) and a single occurrence of ST2 (1/33, 3%), ST4
(1/33, 3%), ST5 (1/33, 3%), and ST7 (1/33, 3%). Chickens carried
ST6 (2/33, 3%) and ST7 (31/33, 94%), pigs ST7 (6/6, 100%), and
buffalo ST7 (2/4, 50%) and ST23 (2/4, 100%). Subtype 1 (5/26,
19%), ST3 (13/26, 50%), ST6 (1/26, 4%), ST7 (1/26, 4%), ST23
(1/26, 4%), and ST26 (2/26, 8%) were detected in water, whereas
in the soil samples ST1 (1/6, 17%), ST3 (2/6, 33%), ST7 (2/6,
33%), ST23 (3/6, 50%), and ST26 (2/6, 33%) were found. Three
humans carried both ST10 and ST23. Within subtypes, multiple
genetically diverse strains were present in ST7, while ST1, ST3,
ST5, and ST6 sequences were much more genetically similar
(data not shown).

A detailed account of all newly generated sequences is
provided in Supplementary Material 2. All 149 sequences
generated in this study have been submitted to GenBank under
accession numbers OL351649–OL351797.

Phylogenetic Analysis
All Blastocystis sequences grouped together with maximum
bootstrap support (BS) (Figure 3). Subtypes 15 and 28 along
with sequences from ectothermic hosts placed in the base of the
tree in agreement with previous studies (Higuera et al., 2021).
Subtype 5, ST12, ST13, ST14, ST24, and ST25 formed a clade
sister to the clade formed by ST26, ST21, ST30, and ST32. Distinct
clades of subtypes were as follows: ST6 and ST7; ST1, ST2,
and ST11; ST23 and ST10; and ST4 and ST8. Newly generated
sequences placed within clades consisting of known subtypes
with the exception of the human origin sequence S.NO.07.
Notably, the positions of the new sequences placing with ST10
and ST23 are not entirely robust, suggesting that perhaps these
are new, closely related subtypes. Nonetheless, without full length
sequences further conclusions cannot be drawn (this is currently
under investigation).

Transmission Dynamics
Household Level
Samples were collected from a total of 39 households. In most
cases, a single individual per household was sampled, with the
exception of six households where all samples from all individuals
were collected (Figure 1). Of those, five households were found
positive for Blastocystis. In two of them, only the male occupant
was positive. In the other three households, both occupants were
positive, but carried different subtypes.

Farm Animal Ownership Level
Of the 39 sampled households, eight of them had animals (seven
with chickens and one with buffalo). Blastocystis was found in six
of these households and there was no subtype sharing between
animal and human hosts (Table 3).

Environmental Level
Of the 39 sampled households, 16 were sampled for water
and six for soil, all of which were positive for Blastocystis.
There was subtype overlap between water and humans in one
household (ST3).

Community Level
Out of the 108 Blastocystis positive samples, 33 (31%) were
from humans, 43 (40%) from animals, 26 (24%) from water
and 6 (6%) from soil. Subtype 2 and ST4 were identified only
in humans, whereas ST26 was only found in the environmental
samples (both soil and water). Subtype 7 was the most broadly
distributed as it was found in humans, pig, buffalo and chicken,
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FIGURE 3 | Maximum likelihood phylogenetic tree inferred from 250 taxa and
1,497 sites of the SSU rRNA gene. The tree is artificially rooted to
Proteromonas, Protoopalina, and Karotomorpha sequences. Newly
generated sequences are in bold. Numerical values indicate bootstrap
support. Only values above 70% are depicted.

but also in soil and water. Subtype 1, ST3, ST7, ST10, and
ST23 were found in human and environmental samples. No
subtype was exclusively shared by only humans and other

TABLE 3 | Prevalence of Blastocystis in animals and their animal-keepers.

Household Animals Blastocystis in humans Blastocystis in animals

1 Chicken Negative (n = 2) ST7 (n = 10)

2 Chicken ST1 (n = 1) ST10 (n = 1) ST7 (n = 5)

3 Chicken ST23 (n-1) unknown (n = 1) ST7 (n = 5)

4 Chicken ST23 (n = 1) ST7 (n = 3)

5 Chicken ST3 (n = 1) ST7 (n = 4)

6 Chicken Unknown (n = 1) ST7 (n = 3)

7 Buffalo ST4 (n = 1) ST23, ST7 (n = 4)

8 Chicken Negative (n = 1) ST7 (n = 4)

animals. Subtype 6 was the only one shared between animals and
the environment.

DISCUSSION

The study took place in a century old isolated rural community
in northern Thailand comprising approximately 500 people.
Inhabitants live in very close proximity to their animals,
primarily chickens and secondarily buffalo and pigs. Part of
the community’s water supply comes from the river that runs
through it. The river also provides a major food source for
the villagers, as fish constitutes the primary protein source of
the community, along with vegetables (which also grow inside
the river and the river bank) and locally farmed sticky rice.
The increased influence of westernized diet noted in urban
centers of Thailand has a minor impact in this community.
Collectively, the small population, distance from urban centers,
unique gastronomy (minimal effect from westernization) and
the general lifestyle make this particular community ideal for
local One Health approaches. Herein, we used Blastocystis, a
microbial eukaryote of controversial pathogenicity, to obtain a
comprehensive view of its transmission dynamics.

Blastocystis is the most frequently encountered intestinal
protist of metazoans with most studies focusing on either its
prevalence in humans, other animals and/or the environment.
Nonetheless, only very few investigations explore the organism’s
transmission dynamics using a tripartite approach, whereby all of
the aforementioned factors are considered collectively. In order
to understand the role of this organism in health and disease it
is essential to determine its occurrence simultaneously in human
and non-human hosts and environments.

In humans, the prevalence of Blastocystis has been frequently
reported in those with and without gastrointestinal symptoms
(Dogruman-Al et al., 2009b; Scanlan et al., 2014; Yowang et al.,
2018; Kataki et al., 2019; Lhotská et al., 2020; Padukone et al.,
2020). Overall prevalence of Blastocystis might vary due to
sampling population, region and detection method (Stensvold
et al., 2009b; Tan et al., 2010; Alfellani et al., 2013a; Anuar et al.,
2013; Clark et al., 2013). Herein, the prevalence of Blastocystis
in asymptomatic human hosts was 73%, in asymptomatic
non-human hosts 100% and in environmental samples 91%.
We used microscopy and molecular methods to determine
presence of Blastocystis. The most sensitive detection method was
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qPCR matching previous studies (Poirier et al., 2011; Stensvold
and Nielsen, 2012; Stensvold et al., 2012). After sequencing all
positive samples, a broad diversity of subtypes (STs) was detected:
ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST10, ST23, and a potential
new subtype. Subtype 10 was detected in six human volunteers.
The subtype has been previously found in two Senegalese
children (Khaled et al., 2020), but it is a typical cattle subtype
(Cian et al., 2017; Zhu et al., 2017; Masuda et al., 2018; Wang et al.,
2018). To our great surprise, we found ST23 in 12 human samples
making it the dominant subtype in this host. So far, ST23 has only
been identified in ruminants. The occurrence of ST10 and ST23 in
several adults in an Asian country raises questions regarding the
host range and transmission dynamics of Blastocystis subtypes.

The following transmission routes have been widely discussed
for Blastocystis: human-to-human, animal-to-human and
environment-to-human. The former mode of transmission has
been speculated to occur via the fecal-oral route much like other
common gastrointestinal parasites. Herein, investigation of
individuals within households showed no subtype sharing and
there was even an instance of co-habiting individuals, whereby
one was Blastocystis positive and another negative. This finding
matches previous recent reports derived from family units
elsewhere (Scanlan et al., 2016; Lhotská et al., 2020).

We also aimed to look at the animal-to-human transmission
route. Previous studies have suggested that specific subtypes
are zoonotic (Parkar et al., 2010; Alfellani et al., 2013b; Wang
et al., 2014). For instance, ST5 has been proposed as potentially
zoonotic from pigs (Yan et al., 2007; Wang et al., 2014) and
Blastocystis ST6 and ST7 from poultry (Ramírez et al., 2014;
Cian et al., 2017; Greige et al., 2018; Udonsom et al., 2018).
Subtype 1, ST7, ST10, and ST23 were found in both human
and animal hosts in the studied area giving the impression of
zoonotic transmission. However, when looking at a fine-scale
level there was no sharing of subtypes between animals and their
respective owners. Collective consideration of the evidence points
toward the source of Blastocystis in this specific community
being elsewhere.

This prompted us to look at the two most commonly
encountered environmental sources in the community: water and
soil. Water contamination has been speculated as a risk factor
to acquire Blastocystis. However, only few studies have looked
at presence of Blastocystis in both water and humans that use
it and even fewer have employed subtyping to examine overlap
between the two (Leelayoova et al., 2008; Angelici et al., 2018;
Pawestri et al., 2021). Blastocystis has been detected in drinking
water (Leelayoova et al., 2008), tap water (Eroglu and Koltas,
2010), rain water tanks (Noradilah et al., 2017; Waters et al.,
2019), bodies of freshwater (Ithoi et al., 2011; Khalifa et al., 2014),
drinking water treatment facilities (Richard et al., 2016) and waste
water (Suresh et al., 2005; Banaticla and Rivera, 2011; Stensvold
et al., 2020). Herein, Blastocystis ST1 and ST3 were detected in
community supply water, while ST1, ST3, ST5, ST6, ST7, ST10,
ST23, and ST26 were found in rain collection vessels. Both these
sources comprise the drinking water of this community. The rain
collection vessels contain water that is filtered for large debris,
but the water is untreated and is consumed unboiled (Li et al.,
2007; Leelayoova et al., 2008; Anuar et al., 2013; Wongthamarin
et al., 2018; Waters et al., 2019). The community supply water

is filtered and occasionally treated. Given the exposed nature of
the community water, various wildlife animal hosts harboring
a range of subtypes (known and unknown) can easily access it.
Thus, presence of the organism in these two sources could be due
to a combination of factors including contamination by animal
droppings and/or substandard management (i.e., filtration and
chlorine usage). Water in the vessels is also used to wash
vegetables and tubers hence transfer of cysts of a variety of
subtypes could occur this way. Indeed Blastocystis has been
previously found in vegetables (Al Nahhas and Aboualchamat,
2020; Li et al., 2020). Through fine-scale analysis we identified
a case of ST3 in humans overlapping with the subtypes
found in their rain collection vessels. Presence of Blastocystis
in an environment, where there is continuous circulation of
oxygen supported recently raised hypotheses that this previously
considered strictly anaerobic organism tolerates oxygen (Tsaousis
et al., 2012, 2018). Thus, future studies should aim toward
investigating additional environments including extreme habitats
for the presence of Blastocystis.

To that end, we broadened our approach and also explored
occurrence of Blastocystis in soil. Most collected soil samples were
positive for the organism, while ST1, ST3, ST7, ST23, and ST26
were identified. To our knowledge this is the first report of this
protist being recorded in natural soil. The presence of Blastocystis
in the soil could be due to extensive use of animal excrement
and intestinal contents (especially from fish), which are typically
utilized as garden fertilizer in the community. Nonetheless, while
sampling, care was taken to collect from gardens that had not
been recently fertilized. Moreover, wildlife hosts roaming the
community could also shed Blastocystis. This finding suggests a
new route of transmission that has been previously overlooked.
In that vein, we propose that soil should not only be checked for
presence of the organism in future studies, but that it should also
be included along with water as a transmission route in the life
cycle of Blastocystis (Figure 4).

FIGURE 4 | Blastocystis subtype cycling in the rural community studied
herein. Subtypes present in all sources are in red font.
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Comparison of sequences found in different hosts and
environments indicated that highly similar strains of ST1 and
ST3 are circulating in the community. This suggests a shared
Blastocystis transmission cycle among humans, animals and
the environment for these subtypes. In contrast, ST7 showed
an extraordinary amount of diversity with multiple strains
distributed within and between hosts and the environment. This
indicates that the full extent of ST7 genetic diversity and host
range in the community has yet to be captured. Nonetheless a
cluster of highly similar strains was found in chicken, pig and
buffalo suggesting transmission among the three hosts.

This study has revealed no clear patterns of direct
transmission between human-to-human or animal-to-human
in this community (Figure 4). Instead, it points out to the
existence of multiple independent routes of transmission.
Previous efforts investigating Blastocystis sources of transmission
have been geared toward dissecting dipartite relationships (i.e.,
animal-to-human or environment-to-human). Results from
these studies have enhanced our understanding of the organism
and its epidemiology. Nonetheless, they frequently only provide
pieces of the overall picture, which remains fragmentary. Here,
we have provided a step forward toward integrating a One
Health approach to Blastocystis by considering both living and
non-living sources. In this community, environmental sources
comprise the reservoir of Blastocystis supplying a multitude of
subtypes that circulate in both human and non-human hosts.
Our study is pioneer in that we investigated a rural area, while
taking into account the community structure and environmental
factors toward understanding Blastocystis circulation.

Limited sample size does pose a limitation in our study.
Specifically, the sample size was low, in particular samples
from various animal hosts including stray animals and wildlife.
Thus transmission cycles between and within hosts and the
environment cannot be precisely deduced at this time.

Moving forward, additional communities both rural and
urban should be explored under the One Health umbrella
to determine whether similar patterns occur. Using the same
approach in a temporal context, future studies should also
investigate, whether Blastocystis and its various subtypes are true
colonizers or passengers. Finally, supplementing One Health-
based studies with culturomics and microbiome (pathogenic
and non-pathogenic residents of the gut) and metabolome
investigations will contribute significantly in uncovering the true
roles of Blastocystis in gut health and disease.
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