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ABSTRACT

We have observed the Brillouin scattering of light 
from the pure monatomic liquids Argon and Krypton and 
the binary monatomic gas mixtures Argon-Neon .and 
Krypton-Helium.

The spectrum of light scattered from a fluid for 
a scattering process with momentum transfer K and 
frequency to is proportional to the power spectrum,
S (K, to), of fluctuations in the thermodynamic properties 
of the fluid. For a one-component system this reduces 
to the power spectrum of fluctuations in the density of 
the fluid; while for a binary mixture S(K, to) can be 
expressed as the total power spectrum of fluctuations 
in a set of independent thermodynamic variables.

When the fluid is dense the mean free path of the 
atoms (or molecules) is much smaller than the wavelength»
A, associated with the scattering process (A = 2tt/K) and 
the scattering process is dominated by interatomic 
collisions. In this case S(K, to) can be calculated from 
the equations of hydrodynamics.

The spectrum of light scattered from liquid Argon and 
liquid Krypton along their saturated vapour pressure curves 
has been measured. The experiments were performed over 
a range of scattering angles for both liquids. The 
velocities of hypersound in each liquid, calculated from 
the Brillouin shifts of the scattered light, show no 
dispersion over the frequency range measured, i.e.^300-3000 MHz.
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These results also agree with sound velocities measured by 
ultrasonic techniques within the experimental errors.

We have also measured the Brillouin linewidths from 
these liquids, and from these calculated the intrinsic 
bulk viscosities of these liquids.

The spectrum of light scattered from the binary 
monatomic gas mixtures Argon-Neon and Krypton-Helium 
as a function of Neon and Helium concentrations respectively 
has been measured. From the shifts and widths of the 
Brillouin lines we have investigated the propagation 
and attenuation of sound waves in these mixtures. In 
the case of the Krytpon-Helium mixture measurements were 
also made at different scattering angles to investigate 
the dispersion of sound in this mixture.

From the measurements of the attenuation coefficients 
in the binary monatomic gas mixtures we have estimated 
the mutual diffusion coefficients, D12/ in these mixtures. 
The results obtained agree with theoretical calculations 
for atoms with the Lennard-Jones potential.



1
CHAPTER I 

INTRODUCTION

1.1. Brillouin Scattering from a Fluid
The molecules (or atoms) in a fluid in a state of thermal 

equilibrium undergo chaotic random thermal motion. Thus if 
one considers a small volume element in the fluid one finds 
that the molecules (or atoms) move in and out of the volume 
element randomly, (The volume element considered here is 
small compared with the volume of the fluid as a whole but 
large enough to contain a large number of molecules (or atoms)). 
Because of this random movement the number of molecules (or 
atoms) contained in the volume element, and hence its density, 
is continuouslyifluctuating. These statistical density 
fluctuations give rise to sonic disturbances (Debve' waves 
or phonons) which are propagated in all possible directions.
The fluctuations are completely random, hence for every 
sound wave of given amplitude and frequency travelling in 
one direction one expects another wave of equal amplitude 
and frequency travelling in the opposite direction.

In 1922 Brillouin (1) applied the above concept of 
thermally driven elastic sound waves in a macroscopically 
homogeneous transparent medium to analyse the mechanism of 
the interaction of light with such a medium. He showed that 
for constructive interference of the light scattered from the 
sound waves the Bragg condition holds. That is the 
conservation of momentum in the scattering process requires t h e  condition:

K = k - ks (1 .1)
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where K is the wave vector of the scattering sound wave, 
k and kg are the wave vectors of the incident and scattered 
light respectively,

The sound waves in the scattering medium are travelling 
waves, thus the scattered light is Doppler shifted in 
frequency. Since there are two waves of the same amplitude 
and frequency with wave vector K, travelling in opposite 
directions the Doppler shifts Av are:

Av = ±2nv0 (̂ ) sin (-|) (1.2)

where n is the refractive index of the medium, v is the 
phase velocity of the scattering sound waves, Vo and c are 
the frequency and velocity of the incident light and 0 is 
the angle between the incident wave vector and the scattered 
wave vector (i.e. the scattering angle).

In this classical concept one can regard the positively 
Doppler shifted component of the scattered light (in, equation
(1.2)) as being scattered from the wave travelling towards 
the observer and the negatively Doppler shifted component 
as being scattered from the wave travelling away from the 
observer.

Landau and placzek (2) developed the theory further 
using a macroscopic thermodynamic fluctuation theory. They 
showed that the spectrum of the scattered light consists of 
three lines: an unshifted central line and the two shifted 
lines predicted by Brillouin. The presence of the three 
lines has been shown by experimental observation (3).



Landau and Placzek showed that the central line is due 
to non-propagating fluctuations of entropy (or temperature) 
at constant pressure. The shifted 'Brillouin' doublets 
were shown to be due to adiabatic pressure fluctuations, 
i.e. sound waves. The results of the theory show that the 
ratio of the intensities of the unshifted line to that of 
the shifted lines is:

3

Jc + 2ib 
2ib

which is often rewritten in the form:

( 1 . 3 )

(1.4)

In the above equations the symbols are as follows:
Ic and Ig are the intensities of the central line and

Brilloum lines respectively, 8T and Bs are isothermal and
adiabatic compressibilities of the medium, C and C are thep v
specific heats of the medium at constant pressure and volume 
respectively and y is their ratio, Cp/Cv.

The line shapes were calculated by Landau and Placzek 
assuming that the fluctuation decayed back to equilibrium 
exponentially with time. Thus the lineshapes are Lorentzian 
with halfwidths proportional to the reciprocal relaxation 
time, V T / characterising the decay of the fluctuations.
For the central (Rayleigh) line the halfwidth, rc , 
is related to the thermal diffusivity, aT, and is given by:
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where
rc = aT Ik |2 

aT = X/PCp

(1.5)

( 1 .  6)

Here X and p are the thermal conductivity and mass density 
of the medium respectively and K is the wave vector of the 
scattering sound wave.

The linewidth of the shifted Brillouin lines, r_, ,B
is associated with the damping of sound waves. This can 
be calculated from the equations of hydrodynamics and is 
given by (4):

rB (1.7)

where is the shear viscosity of the fluid.
Equation (1.7) gives the ’classical" sound attenuation 

coefficient. Experimental observation showed to be
invariably larger than that given by equation (1.7). The 
‘excess' attenuation is normally attributed to the bulk or 
volume viscosity, g_, of the fluid. Hence the observedJd
halfwidth of the Brillouin lines is represented by:

rB ( 1 . 8 )

In a light scattering experiement rg is measured and 
nB may be obtained from this provided the other thermodynamic 
coefficients in equation (1.8) are known.
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1.2. The Spectrum of the Scattered Light
The advent of the laser towards the middle of the 1960's 

made available light sources of high intensity and narrow 
linewidth which were not previously attainable using any 
conventional optical source. The utilisation of the laser 
together with the improved resolution and detection efficiency 
of modern optical techniques have made it possible to perform 
Brillouin Scattering experiments with higher accuracy than 
was possible before (5, 6, 7)«

The possibility of obtaining much more accurate 
experimental data has led to further refinement of the
theory of light scattering. The original theories of light 
scattering from fluids were based on thermodynamics (1, 3, 8). 
The more recent approach is to treat the scattering process 
in terms of the intermolecular (or interatomic) properties 
of the medium. The spectrum of the scattered light is 
calculated in terms of the correlation functions of the 
transport coefficients of the fluid. Similar techniques 
have been applied to x-ray and Neutron scattering theories.
The spectral distribution of the scattered light can be 
expressed in terms of the space-time correlation function 
of the particles in the system (to first order perturbation) , 
and is given by (9, 10):

i(K.r - o)t)
x // {G(r, t) - Pol e d 3rdt (1.9)



where Ie and coa are the intensity and angular frequency 
of the incident light, R is the distance of the observer 
from the scattering volume containing N molecules, ip is 
the angle between the incident electric field vector and 
the scattering vector, e is the dielectric constant of 
the fluid. The space integration is taken over the 
scattering volume, which is smaller than the fluid volume 
to avoid surface effects. G(r, t) is the space-time 
correlation function, defined by Van Hove as (11):

G(r,t) = ^ < ZZfdr' .6(r+r. (o) - P ’ )6(r-r.(t))> (1.10)ij J

The angular brackets indicate averaging over the
ensemble. Physically the space-time correlation function 
G(r, t) is the probability that there will be a molecule 
at r at time t, given that there was a molecule at the 
origin at time zero.

Equation (1.9) is important since it shows the 
possibility of obtaining G(r, t) from the spectral density 
of the scattered light (10), in a similar way to that of 
obtaining the radial distribution function g(r) from 
Neutron scattering experiments.

Writing the generalised structure factor S(K,w) as:

S(K,w) = f f [ G ( r , t )  - p0]el(K,r " wt)d3r dt (LU) 

one can see that G(r, t) could be obtained by Fourier Inversion

6



7

[G(r,t) - p0] = (jì) 3 I f S(K,w)e-i(K.r - tot)d K dco (1,12)

Thus from (1„12) it is possible to interpret the kinetics 
of molecular motion in terms of the spectral density of 
the scattered light.

For light scattering in fluids, except for dilute 
gases, the wavelength of the sound waves observed is much 
longer than the correlation length of G(r, t) and one 
can use the long-time and large r limit of G(r, t). In 
this limit the from of G(r, t) reduces to the density- 
density auto correlation function (11)s

where p(r, t) is the number density of the fluid particles. 
For dense fluids (liquids and gases at high pressures) the 
wavelengths of the thermal pressure waves (phonons) 
observed by light scattering are much greater than the 
intermolecular spacings or mean free paths of the molecules. 
This means that in these cases the time of decay of the 
fluctuations involved are much longer than the time 
intervals characteristic of molecular scattering processes. 
In this limit the decay of fluctuations of density can be 
adequately described by the equations of linearized 
hydrodynamics. Thus one can conclude that with light 
scattering one can probe the kinetics of microscopic 
fluctuations of macroscopic variables in dense fluids.

G (r, t) = ^ /<p(r'5-r, o) p(r',t)> dar* (1.13)
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1.3. Simple Liquids
The derivation of an expression for the generalised 

structure factor, S(K, to) for fluids using linearized 
hydrodynamic equations has been performed by many authors 
(12 - 16). The degree of sophistication of the resultant 
expression depends on the extent of the exactness carried out 
in the mathematical manipulations. The simplest treatment was 
given by Mountain (12) who obtained an expression showing that 
the spectrum of the scattered light consists of three lines, 
the central line and two shifted Bnllouin lines all of 
Lorentzian shape for a simple liquid. More rigorous treatment 
shows that the shifted lines contain an asymmetric term, 
which makes the lineshape of the Brillouin lines asymmetric 
(12, 15). However, experimentally it is very difficult to 
distinguish the asymmetry introduced by this effect from the

I
distortion of the spectrum in the process of detection. The 
observed spectrum is generally distorted by the overlapping 
of the tails of the central line on the Brillouin lines which 
produces an asymmetry in the observed Brillouin lineshape.
The asymmetry introduced by this effect is of the same 
magnitude or even larger than the effect that would have been 
introduced by the calculated asymmetric term.

In a simple monatomic liquid such as liquid Argon 
there are no molecular internal degrees, of freedom. Hence 
the damping processes which produce attenuation of the sound 
waves are connected with the kinetics of the atoms only, 
through the transport coefficients. The broadening of the 
Brillouin lines of the light scattered from such a system is



9
then due to the viscosity and thermal conductivity of the 
liquid. This enables one to determine the intrinsic bulk 
viscosity of the liquid from the sound attenuation coefficient. 
In the case of a molecular liquid energy exchange between 
external and internal degrees of freedom can also lead to 
additional broadening of the Brillouin lines. However, this 
work deals only with atomic liquids and this effect will not 
be discussed further.

Brillouin scattering experiments on liquid Argon in its 
normal liquid range hajs been performed by Fleury and Boon 
who reported a systematically lower sound velocity, compared 
with the data obtained from ultrasonic experiments, (17). 
However, the magnitude of this negative dispersion of the 
velocity of sound was within their experimental errors.
Hence the presence of a negative dispersion in the sound 
velocity in liquid Argon at hypersonic frequencies (,v»3GHz) 
could not be established from their results.

In this work we have observed Brillouin scattering in 
liquid Argon and liquid Krypton along their saturated vapour 
pressure curves from near their triple points to near their

i
critical points. The measurements were made at various 
scattering angles, 0: 13°35!, 102°47' and 169°51' in liquid
Argon and 93°48' and 169°20' in liquid Krypton, The measured 
sound velocities obtained from the different scattering angles 
in each liquid were compared with each other to establishI
the internal consistency of the measurement and also 
compared with those obtained from ultrasonic methods. In 
this way we were able to make a wider comparison of the data
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to establish whether there is any dispersion of the sound 
velocity in these liquids, since these data cover a large 
range of frequencies. Within the limits of experimental 
error the data showed no systematic dispersion. We also 
made use of a high resolution spherical Fabry-Perot (FPS) 
interferometer to determine the Brillouin linewidths of the 
light scattered in the backward direction in these liquids:
0 = 169°51' in liquid Argon and 0 = 169°20' in liquid 
Krypton. Measurements of the sound attenuation coefficient 
in liquid Argon by ultrasonic methods have been reported 
by Naugle (18) and Cowan (19). Our results obtained by 
light scattering agree with the ultrasonic results within 
experimental accuracy. There is no prior measurement of 
sound attenuation coefficient in liquid Krypton (to the 
author*s knowledge) either by ultrasonic or light scattering 
method.

1.4. Binary Monatomic Gas Mixture
The theoretical investigation of the form of the spectral 

density of ¡light scattered from a multicomponent system via 
the generalised structure factor, S(K, w) has been carried 
out by several authors (20 - 24). For a binary mixture these 
investigations have been performed for both the kinetic 
regime and the hydrodynamic regime. In this work we restrict 
ourselves to the latter case.

In a binary gaseous mixture, especially when the 
molecular (or atomic) masses of the components are very 
different the sound waves are damped not only through overcoming
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viscous forces and energy loss by heat conduction but also 
by inass diffusion through the system„ This is because 
pressure gradients produced by the sound waves in the system 
give rise to different molecular velocities of the components, 
i.e« the molecular velocity of the lighter component will 
be greater than that of the heavier component. Hydrodynamic 
fluctuation theory predicts for such a system that the 
linewidths of the central line and the Brillouin lines 
should contain additional contributions from the mutual 
diffusion coefficient of the mixture:

ru) + r (d ) (1.14)

r (n) + r(x) + r (d ) (145)

where r_ and <r_ are the line widths of the central lime andC r>
Brillouin lines respectively, and T(n), r(i) and r(Q) are the
contributions to the linewidths due to transport coefficients: 
viscosity, thermal conductivity and mutual diffusion 
coefficient respectively .

Thus it is possible to determine the mutual diffusion 
coefficient of a binary mixture from the measurement of

Ithe linewidths of the scattered light« The accuracy of 
the measurement is enhanced in cases where the contribution 
to the Brillouin linewidth from the viscosity and thermal 
conductivity is much smaller than the contribution due to 
diffusion (25).

In this work we have observed Brillouin scattering from
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the binary monatomic gas mixtures Argon-Neon and 
Krypton-Helium. These two mixtures have component mass 
ratios of approximately 2:1 and 20:1. The mutual diffusion 
coefficient of a binary gaseous mixture is inversely 
proportional to the reduced atomic mass of the mixture,ihence the diffusion effect would be expected :to be more 
prominent in the Krypton-Helium mixture.

The experiments on the Argon-Neon mixture were carried 
out at various concentrations (Neon concentration C = 0 - 0.3) 
at one scattering angle only. Thus we have investigated 
the sound velocity in this mixture as a function of 
concentration, The experiments on the Krypton-Helium 
mixture were done at a much lower concentration range 
(Helium concentración C = 0 - 0.03) and at different 
scattering angles at a single concentration (0.01). This 
has enabled us to investigate the sound velocity as a 
function of concentration as well as the dependence of the 
sound velocity on the scattering vector (ice. the dispersion 
of the sound velocity) in this mixture.

Previous light scattering experiments on a binary gas 
mixture in the hydrod ynamic region has been done by Gornal, 
et al, (26) who reported a lowering of the observed sound 
velocity in the mixture Helium-Sulfur Hexafluoride from the 
adiabatic sound velocity. Clarke (27) has investigated 
the system Helium-Xenon in the kinetic region and 
investigated the correctness of the solution to the 
Boltzman Equation.
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le 5. Summary
From the above wé see that Brillouin scattering, applied

to fluids, provides a means of measuring:
(a) the velocity of high frequency sound waves in the 

medium from the Brillouin shifts,
(b) the compressibilities of the medium, calculated 

from the ratio of the intensities of the scattered 
light,

(c) the sound attenuation coefficient, and hence, the 
transport coefficients of the medium; obtained 
from the Brillouin linewidths,

(d) Applied to a mixture, the measurement of the linewidths 
could yield information on the mutual diffusion 
coefficient of the mixture»
The contributions of this work may be summarised

as follows:
Ao In the simple monatomic liquids:

(1) we have determined the hypersonic sound 
velocity in liquid Argon and liquid Krypton 
along their saturated vapour pressure curves, 
at different scattering vectors»

(2) Within the accuracy of our experiments we 
have verified that there is no dispersion of 
sound velocity in these liquids,

(3) We have measured the sound attenuation 
coefficient and hence deduced the bulk 
viscosity in these liquids as a function 
of temperature»
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Bo In the Binary Gaseous Mixtures:

(1) we have attempted to investigate the sound 
velocity as a function of the concentration 
in the mixtures Argon-Neon and Krypton- 
Helium.

(2) We have investigated the dependence of the 
sound velocity and attenuation on the 
scattering vector in the binary mixture 
Krypton-Helium.
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LIGHT SCATTERING IN A PURE MONATOMIC LIQUID

2.1. Introduction
In this chapter an outline of the theory of light 

scattering from isotropic continuous media is given. By 
using the classical theory of scattering of radiation we 
show that the spectrum of the scattered light is determined 
by the generalised structure factor S_(K, w), the Fourier- 
Laplace transform of fluctuations in the local dielectric 
constant of the medium. The generalised structure factor 
is then expressed in terms of the density- density correlation 
function which is derived using the linearized hydrodynamic 
equations and statistical irreversible thermodynamics for 
a one component monatomic liquid.

2.2. Light Scattering in Continuous Isotropic Media
The spectrum of the scattered light from a continuous

medium may be calculated using the equations of hydrodynamics 
and classical irreversible thermodynamics (1). A medium 
can be assumed to be continuous if the intermolecular 
distances or the mean free paths of the molecules are 
smaller than the wavelength of the incident radiation in 
the medium. Such an assumption is valid when applied to 
liquids and moderately high pressure gases.

The medium can be characterised by an equilibrium 
dielectric constant £o• Thermal motion of the molecules 
in the medium givesrise to fluctuations in the local

CHAPTER II
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dielectric constant, Ae. The scattering of light from a 
continuous isotropic medium arises from these local 
inhomogeneities in the dielectric constant. Generally 
the fluctuations in the dielectric constant are position- 
and time-dependent. Thus we can represent the dielectric 
constant of the medium as:

e(r, t) = e0 + Ae(r, t) (2.1)

It is assumed that the fluctuations Ae(r, t) are small 
compared with the equilibrium dielectric constant e0.
The homogeneous equilibrium term in (2.1) does not contribute 
to the scattering of light (except in the forward direction), 
so we can restrict our discussion on the fluctuations 
Ae(r, t) only.

The fluctuations in the dielectric constant may be 
expressed in terms of fluctuations in the mutually 
independent thermodynamic variables of the system such as 
pressure, AP and entropy, AS3or density, Ap and 
temperature, AT (2). In the case of mixtures or solutions 
fluctuations in the concentration, AC also contribute 
to Ae (3) .

The experimental situation in a light scattering 
experiment is depicted in Figure (2.1). The system is 
illuminated with a plane polarized monochromatic 
electromagnetic wave with wave vector k and frequency 
oj/ 2 tt Hz in the medium. The plane of polarization of thei. •• \incident electric field is along the z-axis. The scattered
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Figure 2.1: Experimental Scattering Geometry

Figure 2.2: Momentum Vector diagram of 
scattering process, 
0 is the scattering 
angle

Figure 2.3: Momentum
Conservation diagram.
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field intensity is detected and its frequency analysed at 
a point P on a radius vector R at an angle 9 to the direction 
of the incident wave vector k 0 The detector has a collection 
solid angle dft.

The incident electric field can be represented by

E 0 (r, t) = §Eoe-1(^°r " wt) (2 .2 )

where e is a unit vector along the direction of polarization 
of the electric field and E0 is the amplitude of the 
field»

To evaluate the field at the detector point P we 
consider a volume element v in the scattering region, at 
a distance r “° from an arbitrary (but fixed) origin within 
the scattering volume» The scattering geometry is depicted 
in Figure (2»2)» The incident radiation induces a 
radiating dipole moment p(r% t) in the volume element, 
which gives rise to scattered light» In terms of the 
fluctuations in the dielectric constant Aeir-", t) and 
the incident electric field this induced dipole moment is 
given bys

p ( r \  t) = Ae(r'f t) E 0 (r% t) (2.3)

per unit volume»
Assuming the change in frequency between the incident 

light and the scattered light is small, the field at P can 
be represented bys
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Ê(R, t) = E " (r ) e1 (ks“r ~ wt) (2 o 4)

where E' (r *") Is the amplitude of the field radiated by 
the induced dipole moment of the volume element v, and 
is given by (4)s

ev is the vacuum permitivity. p(r"% t) is reduced by

ev—— since it is surrounded by the medium with dielectric e o
constant eg.

Since the medium is isotropic the direction of 
p(r% t) is along the direction of the polarization of 
the incident electric field (i.e. the z-axis} D Thus we 
haves

where <J> is the angle that the radiation vector R makes 
with the direction of polarization of the incident field 
(refer to Figure 201) 0 In our experiments the detector

The scattered field at the detector point P due 
to the Volume element v is then * from (2„6), (2 0 3) and 
(2.2)s

(2.5)

( 2 . 6 )

is in the scattering plane and <f> = 90°

t]E(R, t) = -
4tt£oR

(2.7)
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From the scattering geometry shown in Figure (2t2) 
we see thats

ks - k = K (2 0 8 )

where K is the scattering vector,,
cSince the frequency shifts involved are small we have 

k - k 0 The magnitude of K can be seen from Figure (2„3) 
to be s

|K| = 2 |k j sin(6 / 2 ) (2 .9 )

where 0 is the scattering angle.
The scattering process can thus be characterised by 

the scattering vector K and the scattered field (2„7) 
becomes s

.2. ik oR
E(R, t) = E °k 6 S ' sin(tf>) Ae ( r \ t)e~l(K,,r"~ ajt) (2.10) 

4‘rre oR

Integrating (2.10) over the scattering volume (over all r ' )  
we gets

2 ik «R
E(R, t) = E0k e s

4ire 0R
sìnici)) ela)t/Ae (r" , t)e“lK°r d3r' (2 011 )

The integration is taken over the scattering volume 
which is much smaller than the volume of the bulk medium= 
However, the scattering volume is much larger than inter- 
molecular parameters and the limits of integration can be 
taken to be infinity. Hence we can recognise that the
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integral is the Kth Fourier component of Ae(r% t)
defined ass

Ae(K# t) = /e lK°r Ae(r, t) dr (2 .1 2 )

and with this definition the scattered field can then be 
written ass

which can be regarded as the Kth Fourier component of 
the scattered field.

In order to obtain the spectral power density (power 
spectrum) of the scattered field E (K, t) we form the 
field correlation function, <E(K, t).E*(K, t + t )>. The 
field correlation function is the ensemble average of the 
product of E (K, t) and E*(K, t + t ) of similar samples. 
Since the system we are investigating is in equilibrium, 
the fluctuations E(K, t.) form a stationary random process; 
and the field correlation function will be independent of 
the starting time t. Thus we can define the correlation 
function C ^ t) assIj

E(K, t) (2.13)

2.3 The Spectrum of the Scattered Field

Ce (t) =< E (K, t).S*(K, t + x) >

= <E(K, 0).E*(K, t )> (2.14)



Putting (2„13) in (2„14) we then have the correlation 
function for the scattered field ass
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| E e j 2 k h . a i n 2(<j,j
c (T) = ■ - ■ ■ <Ae(K, 0)„Ae*(K, x)> (2.15)
E 16tt2 e o 2R2

The quantity that is measured in a light scattering 
experiment is the spectral power distribution of the 
scattered fields The power spectrum S(K, oj) of a 
correlation function C(x) is given by the Wiener- 
Khintchine theorem and defined as (5)s

00

S(Kf u>) =_/ e-1 WTC(x)dx (2.16)

From (2„15) and (2„16) we obtain the power spectrum of 
the scattered field ass

. ,|E.0.|2. .alii2^) „ _± TS (K, u) = ■ / e <Ae(K f 0)o Ae*(K, x)dx (2.17)
16n2eo2 R 2 -°°

Thus the intensity distribution I(w) of the scattered light 
at the scattering vector K is given bys

......'I(w) = - --  I0 sin2{<f>) S„ (K, w) (2.18)
16ifr2 e o 2R2 &

where Io is the incident intensity and we have defined

°0

Se(K, a>) = / e~la)T<Ae (Kf 0)„Ae*(K, x)> dx (2.19)
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(K, w)* is the double Fourier transform of the space- 
time correlation function of fluctuations in the dielectric 
constant Ae(r, t)»

The fluctuations in the dielectric constant in a one 
component fluid can be expressed in terms of fluctuations 
in the local thermodynamic variables of the system^ In 
this section we outline the method of obtaining the 
spectrum of light scattered from a pure monatomic liquid, 
using this assumption This procedure is essentially 
the same as that adopted by Mountain (6 ) for a general
fluido

The dielectric constant is assumed to be a function
r

of the density p and the temperature T 0 We can then 
represent the fluctuations in the dielectric constant 
Ae (r, t) bys

2 o 4 Pure Monatomic Liquid

( 2 o 2 0 )

* Since the fluctuations form a stationary random
process the correlation function C(t) is even in
to Thus, as normally written in the literature
we can write,

00

S (K, cü) - 2Re / dx e 1WT <Ae ( K ,  0 )  A e ( K ,  t ) > *
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the second term in (2 „2 0 ) can be neglected without giving 
rise to serious errors» In the following discussions we 
will not include this term,

In accordance with equation (2012) we can write the 
Kth Fourier component of the fluctuations in the dielectric 
constant as;

The averaging operation in (2»23) is equivalent to 
two ensemble averages» First we obtain the conditional 
ensemble average <Ap*(K, x)> of the values which Ap*(K, x) 
can have at time x̂  given that it had some original value 
Ap*(K, 0) o Secondly we obtain the final ensemble average of

Ae(K, t)
T

/ e iK°r Ap(r, t) d3r

(2 .21)

where we have written;

Ap(K, t) = / e”lK°r Ap(r, t) d3r (2 „2 2 )

The correlation function of the fluctuations in the
dielectric constant can then be written as;

<Ap (K, 0) o Ap *(K, x) > (2.23)
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the weighted products Ap(K, 0 )Ap*(K, x) and all possible 
values of Ap (K, 0) for a given K 0

The conditional average <Ap*(K# x)> may be obtained 
from the equations of motion of the fluctuations„ In the 
long wavelength and small K limit, i0e 0 where the time 
of decay of the fluctuation is much greater than the 
time-scales of molecular collision,, the hydrodynamic 
equations^ for given initial conditions, have been shown 
to adequately provide the conditional ensemble average 
(7, 8 ).

We define the local state variables of the system
by:

A (r, t) = {p i (r, t) , Tj (f, t) , v(r, t) } (2 0 2 4)

The curley brackets indicate a column vector„ The local 
state variables are defined as

Pi (r, t) = p(r, t) - po (2 o 25)
and

T i (?, t) = T(r, t) - To (2 o 26)

Po and T 0 being the equilibrium values and pi(r, t) and 
Tj(r, t) are the fluctuations, which are assumed small, i„e.

Pi(r, t) << p0

and Ti ( r ,  t )  << Tjo
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The average velocity field is assumed to be zero»
The assumption of small fluctuations makes it possible 

to linearize the hydrodynamic equations and it also implies 
that the transverse component of the velocity v(r, t) is 
uncoupled to the sound mode (9)„ The linearized 
hydrodynamic equations for the system are (9 )s 
the continuity equation:

. ,3.p i
—  + Po VoV = 0 (2 o 27)

the longitudinal part of the Narier-Stokes equation:

C 02 ■C.o.2$fpPo
p0 at + 7 " vpl + ~ ~ T--- VTl

V V(VoV) = 0 (2.28)

and the energy transport equation:

p0C
9-Tj CV (Y -1 ) . a.Pi

v a t at AVZT! = 0 (2 o 29)

In the above equations we have used the symbols: 
Cv: the specific heat at constant volume,

C 0s

y :

V nB
A :

the low frequency limit of the adiabatic sound 
velocity,

the ratio of the specific heat at constant pressure
to the specific heat at constant volume = C /C .p v '

the shear and bulk viscosities r 
the termal conductivity»
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Taking the divergence of (2„28) and substituting V„v from 
(2o27) we are left with two coupled equations;

3 Pi Co 32Pi C 0 2 3t Po 32T 1 

“  9?~ "91 9x'

,4 ^ , 1■ + V  pt 9 2 

9x5

3 P i 
3t = 0 (2 o 30)

and

PoC
9Tj 

v T t
Co(Y-l) 3pi 

3t”3T
9 2 T,
9x‘

= 0 (2 o 31)

Following the method adopted by Mountain (6 ) we solve the 
equation^by performing a Laplace transformation on the 
time coordinate and a Fourier transformation on the spatial 
coordinate of equations (2„30) and (2031)„ Assuming the 
statistical independence of the fluctuations of the 
density with its derivative and with the fluctuations of 
the temperature we obtain the Laplace transform of the 
Fourier transform of the density fluctuation, pi (K, s) 
in terms of the initial condition pi(K, O) as;

s 2 + (a+b) K2 s+abK1* +C0 2 (1t|)K2
Pl(K,s) = pi(K, 0)

where

JL
3+ (a+b) K2 s2 + (Co 2K2+abKv) s+aC° 2K**

Y
.00 — „00Pl(K,s) = / dr ;  dt e-iK.r e-st pi(r> t)

Pi<K,0) = / dr e~lK,r p, (J, 0)

S = 10)

>

( 2 „32)

(2.33)

J
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and we have written

a A/poCv (2,34)

b (2,35)

To obtain the inverse Laplace transform of Pj(K, s) we have 
to find the roots of the denominator of (2,32), hence the 
solutions of the dispersion equation;

Even though it is possible to solve (2,36) 
algebraically, it is not very convenient to do so because 
of its complexityo Here we consider approximate solutions 
of D (s) = 0 based on the experimental fact that for liquids 
aK2 << C0K and bK2 << C 0K, Thus we can solve D(s) = 0 
in terms of a power series of aK2/C0K and bK2/CoK, To 
the lowest order in aK2 and bK2 the solutions are found 
to be (6 , 1 0 ):

D ( s ) = s3 + ( a+b ) K2 s 2 + (C0 2Kz + abK ** ) s+ f£i K1* = 0
Y (2,36)

and
s = - (a/y)K2

s = ± i C 0K - ^ ( a  + b - ~ )  K2

(2,37)

We write;

Wo = C o K (2,38)
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rB e ¡i (a + b - ~) K2 (2.39)

rc = (a/y) K2 (2.40)

In terms of the original parameters (2.39) and (2040) 
are:

B
1 __2 p o ( ?  n „  + V + (Y-U/Cp K' (2.41)

and
rr = x/poc k 2u p (2 o 41)

which are the values obtained by Landau and Placzek 
(1.5 r  8 )

Using the solutions (2.3 7) and the definitions 
(2.38 - 40) we find the lowest order term of the inverse 
Laplace transform of px (K, s) or the Kth Fourier 
component of the fluctuation pi (r, t) as: (1 1 )

Px (K, t) = p(K, 0) ^(1 ~) exp (- rct)

+ a  GY L
T t (^Fg-bK2 )_p .e B cos (wot) + — - ■ ■ e B sin (uot)

0)o ]}
The Kth component of the density- density correlation 
function is then:

Cp (K /1 ) = <Pl (K,0) px (K>t) >

<Pi (K) Pi (K) > { (1-i) e"rCt +

1

Y
■r„t , . % . (3rB"biK2) -r.te B cos (o)ot) +

0) o e B sin (o)0t) }J
(2

(2.42)

.43)
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Applying the definition (2,16) to (2.43) we obtain the 
generalized structure factor sp(K/ w):

S (K, œ) = < fi(K) p (K) > \(l-h —  P V T (r
2 I\
) 2 + a) 2

V * V *
(Tg) 2 + (a) + ü)o ) 2 (Tg) 2 + (u - too )

(3Tb - bK2)
yw0

(0+(0 o
( fg) 2 + (w+to 0 ) 2

(0- (Oo(rB) 2+ (to-wo )2 ) (2.44)

From statistical thermodynamic fluctuation theory, for 
a Gaussian probability distribution of fluctuations, we 
have the result (2 ):

<p(K)p(K)> = pokBTeT (2.45)

per unit volume, where k_ is the Poltzman constant and 
8t is the isothermal compressibility.

The first term on the right-hand side of (2.44) is the 
unshifted central line, indicating a non-propagating mode 
which has a linewidth (half width at half height) of Tc , 
which is proportional to the thermal diffusivity 
a = i/poC . This mode arises from density fluctuationsXT
which relax through heat conduction. The two shifted 
(Brillouin) lines contain two terms, a Lorentzian term 
centered at to = ±coo and an asymmetric term with zero cross
over points at oj = ±too • These shifted lines represent



Figure 2.4: Schematic diagram of the spectrum of light scattered from a pure monatomic

liquid showing the important’ components.
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thermally driven propagating density fluctuation modes 
which are the damped acoustic modes„ There are two of 
these because there are waves travelling in opposite 
directions with the same magnitude of wave vector. The 
frequency shift w0 = KC0 is the frequency of the adiabatic 
sound waves of wave vector K, The effect of the asymmetric 
term is to shift the peak of the shifted lines towards the 
lower frequency side and in making the shape of the 
Brillouin lines asymmetric (12) . Consequently the tail 
of the Brillouin lines on the high-frequency side falls 
more sharply than that on the low-frequency side. However, 
the magnitude of the asymmetric term is very small and 
its effect on the line shape is equally small. Further, 
the integral of the asymmetric term vanishes and the ratio 
of intensities of the central line to the Brillouin lines, 
Ic/2Ib = y-1, giving the Landau-Placzek result. Figure (2.4) 
shows schematically the different contributions of the 
terms in equation (2.44) to the spectrum of the scattered 
light.

2.5. Dispersion of Sound Velocity in a Simple Fluid
The equations of hydrodynamics describe the low 

frequency and small wave vector limit of fluctuations in 
a fluid adequately. In this limit the fluctuations in a 
fluid are collision dominated, thus the effects that are 
described by hydrodynamics are the collective effects of 
intermolecular collisions. At frequencies approaching the
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reciprocal collision time of the molecules and at wavelenghts 
approaching the intermolecular distances, the fluid can 
no longer be regarded as a continuum. The phenomena in this 
region have to be looked at in terms of the kinetics of 
the molecules. This region is usually described as the 
transition region between the hydrodynamic and kinetic 
region. Thus the hydrodynamic region can be described by:

lim a) = 0 , lim K = 0 (2.46)

and the transition region can be described as the region:

to/co * 1 , K/K ^ 1 (2.47)v-> U

where wc is the characteristic frequency, of the order of 
the reciprocal collision time and Kc _ 1 is the characteristic 
wavelength which is of the order of the intermolecular 
distance.

In a monatomic liquid such as liquid Argon the
characteristic frequency is of the order of 101 2 Hz and
the characteristic wavelength is of the order of 1 0 ~ 8 cm;
i.e. the characteristic wave vector, K is of the order ofc
108 cm 1. Molecular dynamics calculations ('experiments')
(13) and neutron scattering data (14) show a point of 
inflection in the w(K)curve for a value of K of the order 
of K . This tends to infer the presence of relaxation 
processes in this region.



In light scattering experiments the frequencies 
observed (the Brillouin frequency shifts) are of the order 
of lO10 Hz and the wave vector K is of the order of 
10s cm 1 0 Hence this region, characterised by o)/u) = 10 2

and K/Kc = 1 0  3, can be regarded as an intermediate region. 
Although this is still far away from the transition region 
it is expected that the effects of relaxation processes 
would begin to be observed, i.e. in this region the transport 
coefficients of the liquid, namely the diffusion coefficient, 
the viscosity and the thermal conductivity would be expected 
to show a small but finite frequency dependence.

Theoretical calculations by Boon and Degyent (15) in 
which frequency dependent transport functions from the 
generalised Berne-Boon-Rice model (16) are substituted in 
place of the constant transport functions in the linearized 
hydrodynamic equations produces a modification in the 
spectrum of the scattered light. The modification, however, 
is only a second order effect. In particular Boon and 
Deguent found the first order solutions to the dispersion 
equation (2.36) as:

s = ± iC0K(l - 62 ) - rB(i - 63) 

and (2.48)
s = - rc(i - 61)

where C 0 Tg and Tc are the same as described before; 
and fii, 62 and -63 are the first order corrections which

36
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arise because of the introduction of the frequency 
dependence of the transport coefficients. Applied to 
liquid Argon, Boon and Deguent have shown these 
calculations to obtain the results :

(a)

(b)

The
the Brillouin shift and linewidth implied are considerably 
smaller than that which can be experimentally observed. 
However, the experimental results of Fleury and Boon (17) 
on liquid Argon indicate a finite and systematic difference 
between the hypersonic 3 GHz) and ultrasonic ('v 1 MHz) 
velocities of sound in this liquid. Because these data 
cover only a small range of temperature and were obtained 
at one scattering angle, further investigation into this 
effect is carried out in this work.

the hypersonic velocity at u) 'v* 3X1010 Hz
vs = C0(1 - 3xlO_5> (2.49)

where C0 is the low frequency sound velocity.

the lineshape of the Brillouin lines depart 
from the Lorentzian shape and the width of 
these lines is modified to the extent

<A“b ' A“b 0)/ A“b° “ ±i% (2.50)

where and Aw_.o are the high-frequency and£3 £3
low-frequency limit of the half widths 
respectively.

magnitudes of ‘the modifications to the values of
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CHAPTER III
THEORY OF LIGHT SCATTERING FROM A BINARY 

MONATOMIC GAS MIXTURE

3.1. Introduction
The shape of the spectrum of light scattered from a 

gaseous system in general depends on the ratio of the 
wavelength of the fluctuations which produce the 
scattering (characteristic of the scattering geometry) to 
the collision mean free path of the atoms. The characteristic 
wavelength, A # is that associated with the momentum transfer 
in the scattering process, defined as:

~ 2 sin (9 /2 )

where X is the wavelength of the incident light in the 
medium and 0 is the scattering angle. When A is much greater 
than the mean free path the system can be regarded as a 
continuum, describable by the hydrodynamic equations. When 
A is smaller than the mean free path, interatomic collisions 
are unimportant and the system has to be treated in terms of 
the kinetics of the atoms. In this case the spectrum of the 
scattered light approaches the Doppler lineshape of a 
Gaussian distribution of atomic velocities. In this work 
we consider only the hydrodynamic case, and outline the 
derivation of the form of the spectrum of light scattered 
from a binary mixture of monatomic gases.
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A detailed derivation of the form of the spectrum 
of light scattered from mixtures (1 - 4) was first given 
by Mountain and Deutch (1) for the case of a binary liquid 
mixture. This method of analysis was subsequently applied, 
with more mathematical rigour, by Cohen, et al. (4) to the 
case of a binary gaseous mixture.

Here we outline the method and emphasise only the 
important terms in the calculations.

3.2. Binary Monatomic Gaseous Mixture
In a binary mixture the fluctuations in the local 

dielectric constant, Ae(r, t) may be related (in the same 
way as that outlined for the pure liquid) to the fluctuations 
in the local thermodynamic quantities, with the addition 
of the local concentration fluctuations. Following 
Mountain and Deutch (.1) we choose the statistically 
independent set of variables (P, <j>, C) where

Toa T0a
4> = T 2 -  P i ;  At}) = AT: -  — APX ( 3 . 2 )P°Cp poCp

where P and T are the pressure and temperature of the 
system and C is the mass concentration of the solute.
Zero subscripts indicate the equilibrium values and 
subscript 1 indicates the local fluctuation value. aT is 
the thermal expansion coefficient of the system.

The fluctuations in the local dielectric constant 
Ae(r, t) of the system may then be expressed as:
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Ac (r, t) Ap + (8(f)̂P fcA<̂ (r,t) + (3C^p

(3.3)

Using the state variables (P, 4> / C) and the Gaussian 
distribution approximation, the probability W of establishing 
a fluctuation with changes of (AP, A<j>, AC) from the 
equilibrium values is given by (5):

re
w “ exp 1 -2î t t;O

S
Po (A P ) 2 + !i eTo (At))) (M)ac (AC) (3.4)

P fT

where 3 g is the adiabatic compressibility:

i 3p eT
Ps “ po (9P }S,C “ 7" (3.5)

and y is the chemical potential of the mixture.
From the expression for the fluctuations in the 

dielectric constant (3.3) and the definition of the
generalised structure factor, S£(K, m) , we can write:

S£ (K, w) = 2 Re { (||-) " -i P(K, s) P(-K , 0 ) > +

# 2 < « (K, s)*(-K, 0 ) > +

<!s> 2 < C (K, s)C(-K, 0) > } (3.6)
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ignoring the term in <<j)C> which is assumed to be small*.
For the binary gas mixture we define the following

quantities.
mi = mass of solvent atom 
m 2 = mass of solute atom 
n^ = number of density of component i 
n = n> + n2

xp = number fraction of atoms of component i
= n i / n of the

P = mass density^ mixture
= n;mj + n2m2

C = mass concentration of solute
= n2m 2/p

P = pressure of the system 
y^ = chemical potential of component i 

= kBT ln (n±kET)
y = chemical potential of mixture 

_ P_l_ _
mi m 2

D = the mutual diffusion coefficient 
kT = the thermal diffusion ratio
kp = pressure diffusion coefficient

= C(Po/p2) O p / S O p ^  (3y/3C)PfT

X = the thermal conductivity

(3.7)

y

* This term contributes to the unshifted line only 
(see references (1) and (4)), and since it is small it 
is not expected to affect the shift of the Brillouin
lines.
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3.3. The Hydrodynamic Equations
For a binary mixture in a state of thermal equilibrium 

the deviations of the system from its equilibrium condition 
may be assumed to be small. Thus the linearized 
hydrodynamic equations adequately describe the system.
For a binary fluid mixture the equations of mass 
conservation (continuity equation) and momentum conservation 
(Navier-Stokes equation) are the same as those for a pure 
fluid (2.27 - 28) which we rewrite here for ease of 
reference. Thus the linearised hydrodynamic equations 
for the binary mixture are:
(a) the continuity equation;

(b) the longitudinal part of the Navier-Stokes equation;

9 p i
+ Po V.v 0 (3.8)

(3.9)

(c) the energy transport equation;

T V9C'P,T 9t + PoTq (•
and
(d) the diffusion equation;

(3.11)



44

The time dependence of the correlation functions 
of the local thermodynamic variables are then computed 
according to the linearlized hydrodynamic equations 
(3.8 - 11) .

The procedure is described in detail in references 
(1) and (4). The hydrodynamic equations (3.8 - 11) are
Fourier-Laplace transformed. The dispersion relation,
D(s), for the system is obtained by solving these 
transformed hydrodynamic equations. Writing ip = V.v, 
we use the set of variables, (P , <j>, C, ip) , which 
transform as follows:

P (r, t) jçât P (K, s )

<j>(r, t) ^  <j>(K, s )

C (r, t) ^  C(K, s ) 

i p ( r ,  t) tMK, s )

The transformed variables are expressed in terms 
of the initial conditions P (K, 0 ), <j)(K, 0), C(K, 0 ) 
and ip (K, 0 ) .

The transformed hydrodynamic equations can be written 
in matrix form as:

D (S ) . N(K, S) = T . N(K, 0) (3.12)
A

where N(K, s) is a column vector:

N(K, s) = {C(K, s) P(K, s) cp(K, s) J(K, s) }
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D(s)

D (s) =

and T

T=

where

is a 4 x 4 matrix of the form:

s (9p/9C)p T̂ /Co s(ip/ V p , C  p0

0 -K2/P< 0 S +

s + DK2
k  ot

D K ^ / p o + ^ I  DK2 (kT/T0) (3.13)o

■s (— ) (3y/8C)p^T aK2 (T2aT/p0Cp) s + aK5 

P
0

is a 4 x 4 matrix of the form:

Op/SC)

0

P / T 1/C o 2

O

0

(kT/Cp) Oy/3C)p T̂ 0

(9P/3T)p^c 0

0

0 0

O

(3.14)

a = X/poCp

4
b = (3ns + nB)//p0

as in Chapter II. i
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Mountain and Deutch obtained the lowest order 
non-trivial factorization of the characteristic 
determinant, |d (s)|. This is shown to be:

D(s) * (s + r + ) (s + r _ )  (s -  iu)0 + r B ) (s + iwo + r B ) (3.15) 

where

r ± = J  K2 [a + D j  ± J  K2{[a + D j  2 - 4aDK2} (3.16)

Dc = D[1 + (kT2/T0Cp) Ou/3C)p ^ (3.17)

rB = jK2 {b+a (y-1) +
DC.P 0 ' (9yJP ,t L-('3c )P >T+Cp ^3T^P ,C ( 9y^9C)P ,1?

(3.18)
Thus the roots related to the two propagating modes 
are:

S = ± icoo — rB (3.19)

and the roots related to the non-propagating modes are:

S ± = -r± (3 .20)
In equation (3.15) we see that there are two roots 

corresponding to non-propagating components in the 
spectrum which are unshifted in frequency (3.20). Their 
linewidths are equal to T+. These components arise from 
the coupled energy transport and diffusion in the mixture.
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as can be shovm by solving (3.10) and (3.11) with the 
constraints of constant pressure;

I? - v2p - If - °]

The dispersion relation then becomes:

s2 + (aK2 + DcK2)s + aDK1 = 0  (3.21)

When the coupling between the energy transport 
and diffusion is small, that is when

k 2J L _  (!U)T0Cp oC' p ,T << 1 or Dc D

the roots of (3.21) are

(3.22)

T+ - aK2 (3.23)

and
T_ - DK2 (3.24)

Thus the unshifted line consists of two Lorentzians 
of linewidths arising from thermal damping and
diffusion damping respectively.

Looking at the roots corresponding to the propagating 
modes we note that equation (3.18) for rD contains the~ .D
transport coefficients of a general fluid mixture. Further 
simplification of this equation can be made in the case 
of the binary gas mixture. In a gaseous system the term 
in (3.18) involving the thermal conductivity is much smaller
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than either the viscosity or the diffusion term.
Indeed, Aref'ev has shown that for certain gas mixtures 
both the thermal conductivity and viscosity terms are 
negligible compared with the diffusion term (6). Thus 
we can simplify (3.18) into the form:

With the above roots of the dispersion equation 
(3.23 - 25) we can obtain a simplified form of the 
correlation functions of the thermodynamic variables. 
The simplifications discussed in the last section have 
the effect of decoupling the fluctuations in (f> and C. 
Thus we can write a modified form of the correlation 
function (Cohen, et al. (4)):

r B  =  j K 2 { b  + (3.25)

3.4. The Correlation functions and the Spectrum 
of the Scattered Light

e  ^ B t  c o s ( i o o t )  4 sin(coot) (3.26)

(propagating fluctuations)

<± (Kft)<i> ( - k ) > =  e-r+t 
<|<|>(K) | 2>

(3.27)

>
(non-propagating
fluctuations)

< c ( K , t ) c ( - K ) >  = e - r _ t  

<|C(K)|2>
(3.28)
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The ensemble average values of the Initial 
thermodynamic variables: <|p (K)|2>, < | <j> (K) | 2>and 
<|C(K) j2> are obtained from the probability distribution 
function (3.4). These can be seen to be:

<|p (K)

< i 4> (K)

< i c (K)

kgToPo (3.29)

(3.30)

(3.31)

With the correlation functions(3.26 - 28), the 
ensemble averaged initial values (3.29 - 31) and using 
the definition of the power spectrum (2.16) we obtain 
the generalised structure factor S£ (K, to) :

S£ (K,to) (M)2V3PJ <f>,C
kBT0 po B

(Tg) 2 + (co+too) 2
B

(fB) 2+ (o)-o)o) 2

+ (iLi.) k Tn ( ——)l9C' P,T B 0 P,T
2 r

(r )2 +o)2

+ (!£)'
kBTo2 2 r

3t P,C C (r+)2 +to2

+ (^)Sp <j),c Ps
kBToPo (Tg-bK2) (O'10)0 t0-(0o

0)0 ( Tg )  2 + (o)+to0 ) 2 ( T g )  2 + ( o)—ooo) 2

(3.32)
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The first terms in ( 3 . 3 2 )  give rise to the two 
shifted Brillouin lines of Lorentzian shape, shifted 
in frequency by ± O30 with linewidth 2 r r >.  In the case 
of the mixture Tg contains a contribution arising from 
the mutual diffusion of the components ( 3 . 2 5 ) .  The 
diffusion contribution is present here because sound 
waves give rise to peressure and temperature gradients 
which give rise to irreversible mass diffusion.

The spectrum also contains two non-propagating 
components which are unshifted in frequency, of 
Lorentzian shape. The linewidths of these lines, T+ and 
T_ , are governed by thermal conduction and mass diffusion 
respectively. Since in a gaseous mixture a < D the part 
arising from the heat conduction will appear as a sharp 
narrow peak superimposed on a broader peak arising from 
the diffusion.

The last term in (3.32) gives rise to the two 
shifted asymmetric lines which pass through zero at 
± m .  As is the case in a pure fluid (Chapter II:
Section 2.4), these asymmetric lines have the effect 
of distorting the shape of the Brillouin lines.

The resultant spectrum is the summation of these 
various components and is shown in Figure (3.1)*

* Although it is convenient to use this approach and 'break 
up' the spectrum into the various components, experimentally 
it is the resultant spectrum that is observed and it is not 
an easy task to separate out the components.



FIGURE 3.1: Schematic diagram of the Spectrum of Light scattered from a binary 

gas mixture, showing the important components.



Finally, using the definitions (3.7) we can 
calculate the various derivatives appearing in the
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equations:

For the partial derivative (9y/3C)_ we useP / T

the fact that for a gaseous system we can make the 
approximation P = nkpT. Thus constant P and T implies 
constant n„ Then we have-:

,3y 3 rkBT ln (nikBT) kBT ln (n2kßT)^
^3C) P ,T  = 3C * SÜ in } n

___2____ v t> (̂ n2 \n1n2mim2 B ;n

But
3n2
(3C 1 n nm i m2

Thus we get:

(3jj)V3C;P,T kBTp
nmim2C (1-C) (3

Similarly we find the partial derivatives:

(l£)V3C;P,T
p2 (m2 -mj ) 
nmim2 (3

P / p 2 ( 3 p / 3 C ) PjT

(3y/3C)p
-(m2-mi)C(l-C)n (3

We also have:
(l£)V3T'P,C

3.33)

3.34)

.35)

.36)

.37)

~ P/T (3.38)



Finally, for the adiabatic sound velocity Co in the 
system we can use:
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c  2 5 kBTi f  - ! ->m (3.39)

where m = m-x; + m2x2 • (3.40)

m can be regarded as the mean molecular mass of the 
mixture.

For a binary gaseous mixture the dielectric 
constant at optical frequencies can be adequately 
represented by the Clausius-Mossoti formula:

e-1
£ + 2

4 tt
3

ot2p i + (3.41)

where oc and are the molecular polarizability and 
mass density of component i. In terms of C, the mass 
fraction of the second component (solute), we have:

e-l 4tt I"“* n
£ + 2 3 P Lmi m2 mj _ (3.42)

so that £ = £(p, C) .
Noting that for a gaseous system £ + 2 = 3 we can 
approximate (3.42) to a form:

£ -  1 » 4m p (3.43)
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and the derivatives of the dielectric constant with 
respect to the parameters (P, <|>, C) can be calculated 
accordingly. These derivatives may be evaluated using the 
thermodynamic relations:

and

(— )k3C;P,(j) = (l£)9̂C' p

'3<P PfC = (-^)' 3T;

V8P' <f>,C
i 3 £ 
3P

Ta+ T (11): ' st'

( 3 . 4 4 )

( 3 . 4 5 )

( 3 . 4 6 )

3.5. Dispersion of Sound Velocity in a Binary Gas
Mixture

The equations of hydrodynamics applies in the 
low-frequency long-wavelength region and in this limit 
the velocity of sound in the system is assumed to obey 
the classical adiabatic form. "Hence the Brillouin 
frequency shift is given by u)0 = KC0. However, recent 
observation of Brillouin scattering in the gas mixture 
He - SF by Gornall, et al (7) showed that the BrillouinD
shifts are smaller than that calculated from the adiabatic 
sound velocity. These workers attributed this 
phenomenon to the effect of strong coupling between the 
hydrodynamic modes due to the high diffusion rate in the 
mixture. The observed lowering and broadening of the 
Brillouin lines is attributed to the damping effect of
the diffusion.
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The effects of diffusion on the propagating

modes had been considered by Lekkerkerker and Boon (8).
Neglecting transport phenomena other than diffusion they dispersion
obtained the/equation, D (s) for the binary mixture as:

D ( s) = Ss + DK2 (Cq/C ) 2 s2 + (KC0) 2 S + DK2 (KC0) 2 (3.47)X
where

(i£ )dC P, T /  (3u/3C) P, T (3.48)

For the two limiting cases of (DK2<<KC) and 
(DK2>>KC) these authors obtained the roots of the dispersion 
euqation (3.47) as:

C  2 2

-DK2 ; ±iCoK - ) (-̂ -z---
0 X ) K ‘

and
C__ C o z -C2 2 X±iCxK -

(3.49)

(3.50)

respectively.
For high K values (3.50) shows that the width of the 

Brillouin lines is constant. This is to be compared with 
the K2 dependence of the linewidth for low K values (3.49). 
The results show that the coupling between the diffusion 
mode and the sound modes causes the sound velocity to 
change from the adiabatic value C0 to a lower value Cx .
The broadening in the Brillouin lines which accompanies 
an increase in the concentration of the lighter component 
of the mixture is explained by the increase in the 
thermodynamic quantity (C02 - C 2). This behaviour isX
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(a) (b)

FIGURE 3.2: Qualitative behaviour of the velocity of sound in a gas mixture as a function of 

(a) Concentration and (b) Scattering vector. C refers to the mass fraction of 
the lighter component.
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depicted in Figures (3.2).

We can summarize briefly by stating that the 
linearized hydrodynamic equations yield the spectrum of 
the scattered light from a binary gas mixture in terms 
of the transformed thermodynamic variables of the system. 
The concentration diffusion in the system contributes 
towards the broadening of the Brillouin lines as well as 
towards an additional unshifted line of Lorentzian shape.
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APPARATUS AND EXPERIMENTAL TECHNIQUES 

4.1.1, Introduction
In this chapter we describe the apparatus and experimental 

techniques used to obtain the spectrum of the scattered 
light. We also describe the details of the analysis of the 
spectrum used to obtain information about the properties of 
the scattering medium.

We begin by discussing the conditions under which 
measurements are to be taken and consider the characteristics 
of the apparatus necessary to enable us to do these 
measurements.

In our studies of the rare gas liquids we are 
interested in obtaining from the spectrum of the scattered 
light information on: (a) the sound velocity, (b) the
sound absorption coefficient and (c) whether there is 
evidence of measurable dispersion in the velocity of sound 
in these liquids at hypersonic frequencies.

The experimental investigation to establish the 
presence of dispersion in the sound velocity can be approached 
in two ways. The first is to make a measurement of the sound 
velocity at the hypersonic frequency, i.e. by light 
scattering, at a convenient scattering angle (90° scattering 
being the most convenient in general) and compare the 
results with those of measurements by ultrasonics.
Measurement of sound velocity in the rare gas liquids by 
ultrasonic method has been performed by various workers

CHAPTER IV
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and reported extensively, The second method is to perform 
light scattering measurements at different scattering 
angles (hence different frequencies) and compare the 
results. In the latter case we have to perform measure
ments over as large a range of angles as possible to 
obtain the maximum range in the frequencies of the observed 
sound waves. Furthermore this approach gives us the 
advantage of comparing results obtained from the same 
sample under the same thermodynamic conditions.
Consequently any systematic errors in the different 
measurements due to inaccuracies in the measurement of 
local temperature, etc. are eliminated.

The sound absorption coefficient can be calculated 
from the width of the Brillouin lines. The Brillouin 
linewidth is at least one order of magnitude smaller than 
the Brillouin shifts. Thus measurement of Brillouin 
linewidths requires high resolution instruments. However, 
the Brillouin linewidths have a squared dependence on the 
scattering vector, i.e. a K z. Hence it is easier toJ D
measure the linewidth when the measurement is performed 
in the backward scattering direction, as the linewidth 
will then be at its maximum. This is illustrated in 
Figure (4.1). which shows the significant difference in the 
linewidths of the. forward and backward scattered spectra 
from liquid Krypton (recorded simultaneously).

For the binary gas mixture the objectives of the 
experiments are: (a) to determine the sound velocity and
sound absorption coefficient as a function of concentration 
and (b) to determine the dependence of the sound velocity
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and absorption coefficient on the scattering vector. Thus 
both the experiments on the rare gas liquids and the binary 
gas mixtures have similar geometrical requirements.

The measurements on the rare gas liquids were taken 
along the saturated vapour pressure curve from near the 
triple point to near the critical point. Hence the measure
ments cover a large range of sound velocities in the liquids, 
and consequently a large range of frequency shifts was 
spanned. (The range of frequency shifts measured in the 
gas mixtures was considerably smaller). The range of 
frequencies covered in the whole set of experiments was' 
from v300 MHz to v4 GHz. This governed the choice of 
interferometers which could be used. They are described 
in more detail in sections (4.3) and (4.4).

4.1.2. Outline of Apparatus
Figure (4.2) shows a schematic diagram of a typical 

experimental set-up for observing the spectrum of light 
scattered from the sample. The laser is a 'Coherent 
Radiation Laboratories' (CRL) model 52 Argon ion laser
which can be tuned to operate at several lines in the region

' oof 5000A. The scattered light from the sample is analysed 
with a Fabry-Perot (FP) interferometer, essentially a single 
channel frequency filter. The light transmitted by the 
FP is detected with standard photon counting technique.
Data could be recorded either through a linear rate meter 
ont<3 an x-t chart recorder or through a digital rate meter 
(designed and constructed in this laboratory) and stored on
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paper tape. These two means of recording data could also 
be used simultaneously„

The FP is a periodic instrument, i.e, the transmission 
function of the instrument is repeated every time it is 
scanned through a free spectral range. This periodicity 
of the FP transmission function is used for frequency 
calibration. The recorded spectrum is the result of the 
convolution of the spectrum of the scattered light with 
the transmission function of the FP„

In the rest of this chapter we will describe the 
various parts of the apparatus in more detail..

4.2. The Laser

4.2.1. Introduction
The light source used in the experiments was a Coherent 

Radiation Laboratories (CRL) Model 52 Argon ion laser, which 
has been available commercially for several years. The 
theory of operation of the gas laser has been studied and 
published extensively (1), consequently it is unnecessary 
to discuss them in detail in this work. However, it is 
essential that we recognise the properties of the laser 
which are important for light scattering experiments. These 
include parameters such as the power and frequency stability
of the laser.
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Figure 4.3: Schematic diagram of the 
Laser Cavity

FPP resonance

Figure 4.4j_ Single mode selection with the 
FPP intracavity etalon
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4„2o2„ Operation
Figure (4,3) shows a schematic drawing of the laser 

cavity. The laser cavity is formed by the spherical 
reflectors Ml and M2, which enclose the plasma tube To 
Wavelength selection is obtained with the adjustable 
minimum deviation prism Pc FPP is an intracavity etalonl
which acts as a frequency filter, selecting one of the 
modes in the Doppler profile of the laser, as shown in 
Figure (4 »4)» Hence the system produces highly monochromatic 
light, the wavelengths of which could be any of the laser-
active transitions of the argon ion» In practice either

o othe 4880A or the 5145A lines were used, these lines being 
the strongest available» The optical power output of the 
laser at these lines was about 500 mW„

4.2.3, Power Stability
The instabilities with which we are concerned can be 

classified as long term instabilities (2). Long term here 
means periods greater than the time it takes to record 
a spectrum, typically of the order of twenty minutes to 
half an hour. Fluctuations in the power output of the 
laser are mainly caused by thermal relaxation of the 
mechanical parts of the laser cavity» This manifests itself 
in the 'warming-up" period of the laser» This means that 
the laser requires some time to reach thermal equilibrium 
before it will operate satisfactorily» In the laser used 
this "warming-up" time was generally of the order of one 
and a half to two hours» When the laser has reached 
thermal stabilization the power output was stable to within
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± 10% for periods of four hours or more, as shown in 
Figure (4»5)» This period is long enough compared with 
the measuring time that the laser power is effectively 
constant throughout the recording of a spectrum. This is 
borne out by the observation of constant intensities of 
the successive transmission peaks in the recorded spectrum, 
when the interferometer was scafined through up to 5 free 
spectral ranges» Further, since we did not measure the 
absolute intensities of the scattered light, this stability 
was adequate for our purposes»

4o2o4. Frequency Stability
The frequency stability of the laser can be classified 

into short term stability and long term stability» We 
défine short term stability as the stability in terms of a 
time interval less than the resolving time of the instrument 
(effectively the time to scan the bandwidth)» So we can 
write the short term stability as:

Sf (t) f
Af (t) t < T (4.1)

where t is the 'resolving time® of the instrument, which in 
our case was of the order of 15 - 30 sec. Thus by this 
definition the short term stability is the effective band 
width of the laser output»

For the laser used in the experiments, the short term 
frequency stability, according to the manufacturers' 
specification, is better than 1 part in 108. This implies 
that the bandwidth of the laser output is of the order of
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107 Hz, This figure is somewhat smaller than the transmission 
halfwidth of our FP interferometers (as discussed in 
sections 4„3 and 4,4).

Long term stability can be defined as:

S-(t) = --—Af (t)
t > T (4,2)

where f is the mean frequency and Af(t) is the spread of 
frequencies during the time of measurement. Long term 
stability is not limited by the resolving time of the 
instrument. In this case we choose the time it takes to 
measure and record a spectrum (̂  30 mins,) as the period 
defining the long term stability of the laser frequency.

Long term stability is governed by macroscopic changes 
in the system, mainly thermal relaxation of mechanical parts. 
Hence the long term frequency stability (like the power 
stability) could only be assessed when the laser has reached 
thermal equilibrium.

In this work the long term frequency stability of the 
laser was assessed using the interferometer. This being the 
case it cannot be separated from the long term stability 
and the linearity of the frequency sweep of the interferometer, 
so this will be dealt with in more detail when describing 
the interferometers in the following section.
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Interferometer

4.3,1, Theory of Operation of the FPP
The FPP interferometer is described in many text books 

on geometrical optics (3)„ It is an angular filter which 
consists of two high quality plane mirrors arranged with 
the mirror faces parallel to each other as shown in 
Figure (4„6). Analysis of the path of a ray intersecting 
the mirror at an angle 0, shows that the phase difference 
<|> between successive transmitted beams is given by (3) :

<j) = (2nd cos 0) + 2tt (4.3)

where n is the refractive index of the medium between the 
mirrors, d is the mirror separation and X is the wavelength 
of the incident light» The ratio, M, of the intensity

4 o 3 = The Pressure Scanned Plane Fabry Perot (FPP)

d

Figure 4 »6; Schematic Diagram of an FPP



of the transmitted light to the incident intensity is 
given by
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M T2
(1-R)2

______1
1 + Fsin2 (<j>/2)' -

(4.4)

where T and R are the transmission coefficient and reflectivity 
of the mirrors respectively, and F is the factor:

F 4R
( 1 - R ) 2 (4.5)

From (4.4) we see that the transmitted intensity is 
periodic in (<j>/2) and the separation between adjacent 
maxima in the transmission pattern is called the interorder 
spacing or the free spectral range (FS3*) . The halfwidth 
Ap (full width at half maximum) of the transmitted intensity 
is given by:

A.p x FSR (4.6)

This is the reflectivity halfwidth. The ratio of the FSR 
to the halfwidth of the transmission intensity is called 
the Finesse. Thus from (4.6) the reflectivity finesse 
Fr of the FPP is simply given by

In practice the finesse obtained is lower than the 
reflectivity finesse, F . This is because the transmissionJK

halfwidth depends on the flatness of the mirror surfaces
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(the mirror surface number) , the mirror losses and the 
parallelism of the mirror as well as the mirror reflectivity» 
Modern high precision engineering makes it possible to 
produce mirrors flat to A/200» Absorption in the mirrors 
is minimized using multilayer dielectric coating (4). 
Experimentally the most important factor governing the 
instrumental linewidth is the prallelism of the mirror 
surfaces» This limits the working finesse to <100» The 
instrumental working finesse is defined as:

FSR 
I Af (4.8)

where Af is the instrumental linewidth»
In our experiments it was necessary to use FPP1s with 

different mirror separations» These were 30»07 mm and 
50,01 mm, corresponding to FSRs" of 4=985 GHz and 2»997 GHz 
respectively» The mirror spacers are made of quartz cylinders 
machined to A/50 by Imperial College Optical Systems Company, 
and the mirrors and spacer are held together in a brass 
mounting» The mirror plates are pressed onto the spacer 
with spring loaded feet and screws» The brass mounting is 
shown schematically in Figure (4»7)»

Inour experimental set-up the FPP is set normal to the 
incident beam (0 = 0 in equation 4»3) and the instrument is 
used in the "central spot scanning* mode» The FSR of the 
instrument, in frequency, is then given by:

FSR c
2nd (4.9)



quartz spacer

Figure 4.7: Exploded view of FPP étalon mounting



The FPP is used as an optical filter by sweeping its 
transmission peaks (n or d could be varied) and measuring 
the transmitted light intensity as a function of frequency. 
If the light source analysed is monochromatic the trans
mitted intensity will be just the instrumental profile given 
by equation (4.4). If the source has a spectral 
distribution G(f) the transmitted intensity will be the 
convolution of G(f) with the instrumental profile, M(f).
Thus the transmitted intensity will then be given by:

1(f) a M (f) 0  G(f) (4.10)

where ®  indicates convolution.

4 o3 „ 2 „ Pressure Scanning and Linearity
The resonant frequencies of the FPP are swept by 

changing the refractive index n of the gas in the cavity. 
This is. achieved by changing the pressure of the gas.
Writing n-1 = o(P where P is the pressure of the gas and 
a is a proportionality constant we find

- afN ( 4 o 11)

o3.84 x 10 7/mm (5), and for X = 5145A we have
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AfN
W ~  -

For air a =

AfN
ftp = 0.224 GHz/mm (4.12)



Figure 4.8: Vacuum chamber for the FPP





Thus a FSR of 5 GHz is swept with a pressure change of 
A P * 22,4 mm at constant temperature»

Temperature variations in the gas and the parts of 
the FPP will cause the resonant frequency to fluctuate 
and drift» These fluctuations and drifts in the FPP

t

combined with the long term frequency instability of the 
laser (as described in section 4,2 „ 4 ,) will give rise to 
inaccuracies in the measurement of frequencies» We will 
now consider how these instabilities and drifts affect 
the accuracy of our measurements»

The pressure scanning system is shown schematically 
in Figure(4»8), It consists of an air-tight brass chamber 
with two connecting tubes, one for evacuation and the 
other for gas/air inlet» Optical windows on opposite 
sides are sealed with neoprene O-ring seals. The total 
capacity of the vacuum chamber is about 3»5 1„ The inlet 
gas flow is set and controlled with a differential pressure 
flow controller supplied by Emerson Electrical Co,,
Hatfield, Pensylvania,

In operation, the vacuum chamber is evacuated and
the FPP transmission peaks are swept by allowing air to
flow into the chamber through the flow controller, thus
changing the refractive index of the medium in the FPP
cavity. The rate of air inflow can be set by opening
the flow controller to the required controller setting.
The relationship between the flow controller setting and
the rate of frequency scanning is shown in Figure (4,9) for 

o oA = 5145A» For A = 4880A the rate shown on the graph should be
multiplied by 1,05.
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Th$ linearity of the frequency sweep is tested by

scanning the transmission peaks of the FPP for a
monochromatic source and plotting the transmitted intensity
as a function of time (effectively frequency) on an
x - t chart recorder. The positions of the intensity
peaks mark the frequencies (in units of the FSR) along
the chart and the variation of the separation of
successive adjacent peaks indicates the nonlinearity of
the frequency scan. This result is shown in Figure (4„10)
where AX is the distance along thé chart of the interorder n
spacing of the peaks np along the chart0 It is found that 
there is no systematic drift in the interorder spacings 
when the FPP is swept up to 10 orders0 In this case it 
is meaningful to take the mean AXn of the interorder 
spacings and calculate the accuracy of our measurements in 
terms of the standard deviation of the scatter of AXn
about this mean, The standard deviation of AX about AXn n
is ± 0ol7%„ Also the scatter of AX was found to ben
independent of the scanning rate for the rates of scanning 
used in the experiments0 Because of this scatter in AXn 
the accuracy of our measurements is affected to the extent 
that for a free spectral range of 3 GHz we have an 
ambiguity of about 5 MHz and for a free spectral range of 
5 GHz the ambiguity is about 8.5 MHz„

The scatter in AX * the interorder spacing of the 
frequency sweep, can be attributed to the long term laser 
frequency drifts, temperature fluctuations in the FPP and 
the small temperature changes in the air in the vacuum
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chamber. The error introduced into our measurements 
of frequency due to these fluctuations is ± 0,17%.

4=3=3= Instrumental Profiles and Finesse
The instrumental profiles of the interferometers 

were obtained by scattering light off a solution of 
colloidal silica (Ludox ) in water. The scattering 
geometry and especially the optical collection arrangement 
was the same as in the actual experiment„ This was 
done so that the instrumental profiles were taken with 
the same distribution of light in the interferometers as 
in the experiments,

The transmission function of the FPP is shown in 
Figure (4,11) and the instrumental profile in Figure (4=12). 
The instrumental profile was observably non-Lorentzian=
In order to be able to use an analytic function for the 
numerical convolution of the theoretical spectrum,
S (K, g o )  t w,ith the instrumental function, M(co), a least squares 
fit of the instrumental profile to a function of the form 
(L (to) ) n where L(to) is a Lorentziah centered at to = 0 and 
1=0 < n < 2=0 was obtained. The best fit was found for 
n = 1=40=

The finesse of the FPP was measured from the recorded 
transmission functions. The working instrumental 
finesse of both interferometers was found to be 49, 
corresponding to instrumental line widths of 61 MHz 
and 102 MHz for free spectral ranges of 2=997 GHz and 
4=985 GHz respectively. The characteristics of the FPP 
interferometers are listed in table (4=1)='
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Figure A.12: Transmission profile of the FPP:
dashed curve is Lorentzian, sm ooth  curve

is ( L )
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Table 4„Is Characteristics of the FPP Interferometers

Spacer F SR Af(mm) (GHz) (MHz) F I

30o07 4 o 9 85 102 49

50c 01 2 « 997 61 49

4.4. The Confocal Spherical Fabry-Perot (FPS)
Interferometer

4.4.1. Introduction
The FPP's discussed in the previous section have a 

highly linear frequency sweep which makes them ideal for 
absolute frequency determination. However, the linewidths 
of the transmission functions of these inteferometers 
are > the linewidths of the spectral components in the 
scattered light from the liquids. Consequently it is
difficult to extract accurate linewidth data from the
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spectra obtained using these interferometers. To overcome 
this problem we have used a confocal spherical Fabry-Perot 
(FPS) interferometer.

4.4.2. The Operation of the FPS
The FPS is a resonant cavity (6) comprised of two 

identical high quality spherical mirrors confocally arranged, 
i.e. the mirrors are separated by a distance equal to 
their radius of curvature, as shown in Figure (4.13).

Figure 4.13: Schematic diagram of 
Confocal FPS

Paraxial rays incident on the cavity at A (Figure 4.13) 
are internally reflected in the cavity along the path 
B C D A B and retrace their initial path after traversing 
the cavity four times. Multiple interference is therefore 
produced in the transmitted light. The path length P 
after reflection in the cavity four times is P = 4nr, where 
r is the radius of curvature of the mirrors and n is the 
index of refraction of the medium between the mirrors.
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Constructive interference in the transmitted light occurs 
for wavelengths A^ given by

4nrAn = N = 1, 2, 3 .... (4.13)

and the corresponding resonant frequencies are given by

f  = Nc (4.14)N 4nr

The free spectral range (FSR) of the instrument is 
defined as the spacing in frequency between adjacent 
resonances and is given by:

FSR fN+l "N
c_
4nr (4.15)

The full width at half maximum of the transmitted 
intensity is given by (7):

c
47mRr (1 - R2) (4.16)

From (4.15) and (4.16) we find that the reflectivity
finesse F is given by:R

FR
irR

(I^R^T (4.17)

In practice the instrumental profile of the FPS is 
determined by a number of factors. These include mirror 
reflectivity, mirror surface figure, mirror losses, spherical



aberration, mirror alignment and the aperture of the 
instrument.

The instrumental lineshape is affected most by 
spherical aberration and the size of the iaperture of 
the FPS. Spherical aberration affects the lineshape by 
introducing a distribution of resonant frequencies f 
over the area of the FPS, thus smearing out the transmission 
peak.

The effect of the aperture can be seen by considering 
the path length of a ray intersecting the mirror at a 
distance x from the FPS axis. The difference in the path 
length of a nonparaxial ray from 4nr (the paraxial path 
length) is (8)

AP(X) « —  
r 3

Hence
AP(x) _ x*
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This produces a deviation Af of the resonant frequency f :

Af = fM (— ) (4.20)N 4r **

(4.18)

(4.19)

To keep the deviation or spread of resonant frequencies 
Af small compared with the reflectivity halfwidth,
Af„ = FSR/F , we find the condition:K K

V 4r -) < FSR
FR
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or
x < r (rF,■ ) k

R

(4.21)

This limitation on the size of the aperture limits 
the light gathering ability of the FPS. In practice 
the aperture of the FPS is much larger than the limit 
given by equation (4.21) in order to ensure reasonable 
signal collection.

The FPS has the advantage that it is easy 
to align and is extremely stable. Furthermore it is 
considerably easier with the FPS to obtain an instrumental 
finesse approaching the reflectivity finesse. The 
instrument could be operated with a finesse > 100; even 
with an aperture > than that set by (4.21) (the condition 
for optimum finesse).

4.4.3. Piezo electric Scanning and Linearity
The FPS used in the experiment was a commercially 

available coherent Optics Inc. model 470, with a FSR of 
2.000 GHz. The resonant frequencies of the FPS were 
swept by changing the mirror spacing, d. This was 
achieved by mounting the mirrors on a ceramic cylinder and 
applying a linearly increasing (or decreasing) voltage 
to the ceramic cylinder. The spacing d could be varied 
over a region of v 5A about d = r without any observable 
influence on the profile of the transmission function.

The rate of change of the frequencies with change in 
spacing, Ad, is given by;
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FSR
U/4) Ad (4.22)
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This means that a free spectral range is scanned 
for every A./4 change in mirror spacing.

In our experiment the linearly increasing voltage 
used to sweep the resonant frequencies of the FPS was 
obtained from the ramp output of a Tektronix 531A 
oscilloscope. The sweep rate used during the measurement 
of a spectrum was generally of the order of three minutes 
per FSR.

The frequency sweep characteristics of the FPS is
shown in Figure (4.14). This shows a dispersion of the
interorder spacing, indicating a non-linear variation of
the mirror separation with the applied voltage. However,
since the FPS was used only for the measurement of the
width of the Brillouin lines the effect of this dispersion
is relatively small in absolute terms. This is because
the frequency change Aw, across the width of the line is
small and the errors in absolute frequency measurement
introduced by the nonlinearity is proportional to
Aw_,/FSR. (If the FPS were used for measuring the Brillouin tí
shifts, w~, the absolute error would be an order ofJD
magnitude greater since wB > 10AwB).

The transmission function of the FPS is shown in 
Figure (4.15). (A comparison of Figure (4.15) with 
Figure (4.11) gives an idea of the higher finesse that 
could be obtained with the FPS). The instrumental profile 
of the FPS fitted to a function of the form (L(w))n, where
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Figure 4.15: T ran sm iss io n  function of the FP S .
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L(w) Is a Lorentzian centered at w = 0, is shown in Figure 
(4.16). The best value of n was found to be 1.75.

The characteristics of the FPS are listed in 
Table (4,2)

Table 4.2: Confocal FPS 
Parameters

FSR
(GHz)

Af
(MHz) FI Aperture

(mm)

2 .000 17.75 112 2

4.5. Light Detection System

4.5.1. Detection Techniques
The photons which arrive at the photomultiplier 

cathode produce current pulses at the anode with a 
distribution in magnitude due to the statistical nature 
of the amplification process. This output current can 
be measured in either of two w a y s :

(a) D.C. Detection. Here the integration time of the 
anode circuit is long so that the average current 
can be measured, by measuring the voltage developed
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across a known resistor* This can be perfomed
by using a d-c meter.

(b) Photon Counting. In this technique the integration 
time is short such that discrete pulses corresponding 
to the detection of each photon are produced. The 
output pulses of the PMT are standardized with a 
discriminator and then can eitherbe converted to 
d.c.voltage (representing the average counting 
rate) or stored in digital form.

A photon counting system is more efficient than a 
d.c.detection system because in a photon counting system 
the signal to noise ratio can be optimised by setting 
the discriminator level appropriately. This cannot be 
achieved with a d.c.detection system. Also with a 
photon counting system the data can be digitized. Hence 
the ease with which computer analysis of data may be 
made is greatly enhanced.

In this work a photon counting system was used because 
of the advantages mentioned above. In the following we 
outline the operation of this system.

4.5.2. The Photon Counting System
The photon counting system used to detect the light 

transmitted by the interferometers is shown schematically 
in Figure (42). The PMT was an EMI 6256 SA with a 10 mm 
diameter Cs-̂ Sb cathode. In practice the optics of the
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system governed the size of the cathode area utilised, 
which in this work was a diameter < 0.5 mm. The PMT 
dark current, when the discriminator level was set to 
accept 90% of the amplified pulses from the photoelectron 
emission, was 25 cts/S (counts/second). This could be 
reduced to ^ 3 cts/S when the PMT was cooled to 0°C 
by passing dry cold air through the PMT housing. Cooling 
the PMT is advantageous when the light signal is weak, 
as in the case of the gas mixtures where the signal was 
typically ^ 300 cts/S. Thus cooling the PMT increased the 
signal to noise ratio (S/N) from v 3.5 to ^ 10.

To record a spectrum the output of the detection system 
is recorded as the interferometer is scanned in time.

4.5.3. The Recorded Spectrum
The signal from the PMT contains noise due to the 

statistical nature of the photoelectron emission. This 
statistical noise affects the signal to noise ratio 
(S/N), and hence the accuracy of the measurement. The 
S/N could be improved by introducing an RC filter into 
the system, thus integrating over a large period and 
'smoothing' out the noise. (The RC filter was the ratemeter 
time constant).

The output current of the photon counting system is 
a sum of pulses of constant charge. The duration of 
these pulses is short compared with the duration of the 
impulse response, h(t), of the filter system. Writing the 
output of the PMT as N^(t) and the resultant output of



94

the filter system as No(t) we have the input-output 
relation given by (9, 10):

00

N0(t) = / h(t ) Ni (t - t ) dx (4.23)

For the photoelectron emission process the autocorelation 
function, Co(t), of the output of the filter system is 
given by (11):

00 00
Co (T) = Q n / h (t) dtH 2 + N / h (t) h (t + x) dt

— —L — CO
— oo

(4.24)

where N is the average rate of pulses.
Assuming the impulse response of the filter, h(t), 

is that of an ideal filter, we have

h (t) <

1 e " ^  
T

0

t > 0

t < 0
(4.25)

where T is the filter time constant.

Using (4.25) in (4.24) we obtain the power spectrum of the 
system output as:

S ^ ( oj) =  N2 (2 xr) ^ 6 (to) + - -  , ■=----- - -------  (4.26)N  ( 2 tt) ^ ( ¿ ) 2 + o )2
which consists of a d.c. (signal) part which is proportional 
to N2 and a noise part which is a Lorentzian with
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halfwidth (—). The signal to noise ratio (S/N) is the 
square root of the ratio of the integrated power:

1

S/N
N (4.27)

where Pg and PN are the integrated signal and noise 
power (from 4.26) respectively.

Integrating the two parts of (4.26) we find

From (4.28) we see that the detectability of the 
signal is determined by the average count rate N and the 
system time constant, T. The S/N will vary with the 
transmitted light frequency since the average count rate 
is a function of the spectral information.

The choice of the value of the time constant T is 
important because the recorded spectrum, S (t), is a 
convolution of the actual output current of the system, 
S^(t) with the filter response function, h(t):

Thus in choosing the time constant T we have to 
compromise the signal to noise ratio against the distortion 
of the spectrum, given by (4.29). Experimentally it is 
found that the optimum value of T is given by:

S/N (2NT)^ (4.28)

SR (t) = Si (t)(x)h(t) = 7 drSi (t-x) h (t ) (4.29)
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T < Jq x (line halfwidth)/ (Scan rate) (4.30)

This gives the upper limit of the value of T.

4.6. The Sample Holding System

4.6.1. Introduction
The experiments on the rare gas liquids required 

a cryostat which would satisfy several requirements.
These requirements are:

(1) Large adjustable range of temperatures; the 
temperature range covered by the experiment
was approximately from 85°K to room temperature,

(2) the temperature must be kept stable to 0.05°K 
for long periods (hours),

(3) preferably with a large coolant capacity since each 
experiment takes several weeks to complete;

(4) the sample must be accessible for light scattering 
experiments, and

(5) it must be possible to move the cryostat into and
out of the scattering region easily. This was necessary 
for:
(a) setting up the optic axis of the interferometer 

and light detection system,
(b) changing and measurement of scattering angles.

1
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To fulfill requirements 1 - 4 a liquid Helium 
cryostat fitted with an optical tailpiece and a variable 
temperature insert was obtained from the Oxford Instrument 
Company. The optical tailpiece and variable temperature 
insert were manufactured according to our design.
Efficient temperature control was achieved using a 
'Fisher' proportional controller. Requirement (5) above 
was fulfilled by mounting the cryostat on a mobile 
mount with vertical and lateral moving parts adjustable 
to ± 1 mm.

4.6.2. General Description of the Cryostat
A schematic diagram of the cryostat is shown in 

Figure (4.17). It is an ordinary vacuum insulated double 
resevoir liquid Helium cryostat with an outer liquid 
Nitrogen (or liquid Air) tank enclosing an inner liquid 
Helium tank. (In our use the the inner tank was filled 
only with liquid Nitrogen or liquid Air). The outer tank 
has a capacity of 15 1 and that of the inner tank is 20 1. 
The optical tailpiece and the variable temperature insert 
were bolted to the lower end of the coolant resevoires. The 
overall height of the cryostat was 59 in.* and the diameter

* The units of length used in this section are not standardized; 
large mechanical structures were built in Imperial measurements 
while most small parts were built in metric measurements. It 
was felt unnecessary to convert all measurements to the same 
units as this would only serve to intorduce complicated 
fractions.



Figure  A. 17: Schem atic d iagram  of the cryostat.

<
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of the cryostat body was 12.5 In.
The use of liquid Nitrogen in a liquid Helium cryostat 

had the advantage that the evaporation rate of coolant 
was much reduced. The large cryogenic liquid capacity 
of the cryostat was ideal for the extended period of 
refrigeration involved in these experiments.

As shown in Figure (4.17), the upper end of the 
outside wall of the cryostat ends in a shoulder from which 
the cryostat could be suspended from a platform.

4.6.3. The Optical Tailpiece
A schematic diagram of the optical tailpiece and the 

variable temperature insert with the sample cell clamp is 
shown in Figure (4,18)= The optical tailpiece consists 
of the outer vacuum jacket (A) and the liquid Nitrogen 
heat shield (B). The vacuum jacket was fitted with two 
circular windows of 2k in. diameter and a pair of k in. 
by 4k in. rectangular windows. The liquid Nitrogen heat 
shield was fitted with a pair of circular windows of 
diameter 2 in. and similarly, a pair of rectangular 
windows, k in. by 3^ in. The circular and rectangular 
windows of the heat shield were arranged to correspond 
with the circular and rectangular windows on the vacuum 
jacket respectively. One optical window was constructed at 
the bottom of the vacuum jacket and heat shield for vertical 
illumination of the sample. All the windows were made of 
vitrisil. The vacuum jacket and heat shield envelop the 
variable temperature insert (D) and the sample cell, when



Figure 4.1$: Details of the optical tailpiece an d
variable tem perature insert; A: vacuum  jacket, 
B :liquid N 2 heat shield, C: heat e x c h a n g e r,
D: variab le  temp, in sert, E :sam p le  cell c la m p , 
F: needle valve.
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it is fitted in the sample cell clamp (e ) .

4.6.4, The Variable Temperature Insert
The variable temperature insert consisted of a 

copper flange (d ) (in Figure 4,18) suspended from the 
bottom of the liquid Helium resevoir via a thermal 
resistance (C) which consisted of a 2 in. diameter thin 
walled stainless steel tube. This stainless steel tube 
could be evacuated or filled with exchange gas as required. 
The sample cell clamp (E), made of high conductivity 
copper, was screwed to the bottom of the variable 
temperature flange. An additional coiled heat exchanger, 
for fast cooling of the sample cell, was wound round the 
stainless steel heat exchanger tube. This coiled heat 
exchanger enables cryogenic liquid to flow through it via 
a needle valve (F) in the liquid Helium resevoir operated 
from the top of the cryostat.

When the temperature of the sample cell was to be 
stabilised the needle valve was normally closed because 
the complex two-phase flow in the coll reduced the 
temperature stability of the system.

4.6.5. The Sample Cell
The sample cell, shown schematically in Figure (4.19) 

was made out of a rectangular block of copper 5 cm high,
6 cm wide and 12 cm long. Slits 0.5 cm wide and 4 cm 
long were drilled along the longitudinal faces. Similar



5 
cm

CMOiH

Figure A.19: Schem atic diagram  o f the sam ple cell; A :p y re x  w in d o w , 
B: Ind ium  sea l, C: C opper flan g e , D: PTFE gasket,
E: d e liv e ry  tubes.
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slits 0,5 cm wide and 3 cm long were drilled along the 
end faceso These slits meet in the interior of the 
block, thus forming the cell chamber. The volume of the 
cell chamber was ^ 20 cc. The slit holes were closed with 
\ in., thick optically finished pyrex plates which form the 
cell windows, (A) (refer to Figure (4.19)). The window 
plates were vacuum-pressure sealed to the cell block with 
Indium wire (B) and clamped down with copper flanges (C).
The copper flanges were screwed to the cell block, and 
they were layered with PTFE gaskets (D) to reduce 
mechanical strains on the window plates. Pressure 
measurement and filling of the sample chamber was via 
two k in. O.D, thick-walled stainless steel tubes (E) 
which were silver soldered into the top face of the cell.

The sample cell was held in place in the sample cell 
clamp by screwing the clamp faces onto the cell block.
Heat transfer from the cell to the variable temperature 
insert was via the pressed contact between the cell 
clamp and the sample cell. For this reason the cell 
clamp was designed to obtain the maximum area of contact 
between the cell and clamp faces; care was taken to ensure 
that the contact was evenly distributed over the contact 
area, Low temperature grease was used for packing 
between the clamp and cell block. The grease packing 
helped to improve the thermal conduction between the cell 
block and the cell clamp. At temperatures below the 
freezing point of the grease its effect is probably somewhat 
reduced (12).
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4.6.6. Electrical Wiring
The temperature of the sample cell was controlled 

by balancing the heat loss from the system, with a pair of 
75 w. heating elements embedded in the cell clamp. The 
power for the heaters was supplied from a 'Fisher' 
proportional temperature controller (described in the 
following section). Its sensing element was a thermistor 
probe embedded in a hole drilled in the cell clamp. 
Temperature measurement was carried out using a pair of 
platinum resistance thermometers, embedded in holes in 
the bottom and top of the sample cell respectively. These 
platinum resistance thermometers were separated by a 
distance of 3 cm. across the cell and could be used to 
indicate temperature gradients in the vertical direction 
across the cell.

The electrical leads to the heaters, thermistor 
and platinum resistance thermometers were made approximately 
2 m. long and were wound many times round the bottom flange 
of the liquid Nitrogen tank before being taken out of 
the cryostat through pinseals. This minimised the transfer 
of heat from the room temperature ends of the wires to 
the sample cell.

4.6.7. Temperature Control and Measurement
The temperature of the sample cell was controlled 

using a 'Fisher' proportional temperature controller.
The operation of the temperature controller can be 
described by looking at the simplified block diagram of
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Figure A.20: S im plified  block d iagram  of th e  te m p e ra tu re  c o n tro lle r c irc u it;  
A: p ro p o rtio n a l a m p lif ie r , B: a .c . b r id g e , H: h e a te rs ,
P: p o w e r c o n tro lle r , T: th e rm is to r  p ro b e .
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the controller circuit shown in Figure (4.20). The
temperature controller consisted of an a.c. bridge (B) , a
proportional amplifier (A) and a power controller (P).
The thermistor probe (T) (Th 12 supplied by 'Conax') forms
one arm of the a^c. bridge. The probe arm is balanced
with the variable resistor R whose value could be sets
for the required temperature. The reauired value of Rg 
could be set by refering to the temperature-resistance 
characteristic of the thermistor, supplied by the 
manufacturer.

The off-balance signal from the a.c. bridge is amplified 
by the proportional amplifier which incorporates a high 
gain amplifier (G 'i 2x103) and a demodulator, The output 
of the amplifier is proportional to the off-balance of 
the bridge, and this output is used to activate the power 
controller, supplying electrical power to the pair of 
heating elements (H) in the cell clamp.

The temperature of the sample cell was measured by 
measuring the resistances of a pair of calibrated platinum 
resistance themometers. One of these platinum thermometers 
was calibrated by 'Pitchcott Scientific Calibrations' 
and specified accurate to ± 0.005°K. The other platinum 
thermometer was calibrated in this laboratory using the 
first one as the standard. To measure the resistance of 
the platinum resistance thermometers in the experiment, 
the thermometers were arranged in series with a standard 
10 Q (± 0.001 %) resistor and a stable power supply. The 
voltages developed across the platinum thermometers were



compared with that across the standard resistor. The 
resistance of the platinum thermometer is then given by:
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VTR = 10 i-i) 
S (4,31)

where RT is the resistance of the platinum thermometer,
VT and Vg are the voltages measured across the platinum 
theromemeter and standard resistor respectively, (Contact 
emf's were eliminated in the usual way by reversing the 
supply voltage),

The current flowing through the system was maintained 
at 1mA to prevent any heating up of the platinum 
thermometers, giving rise to false temperature readings. 
The voltages across the resistors were measured with a 
'Croydon Precision Instrument Company* (CROPICO) d.c. 
potentiometer Type P10, with a CROPICO precision d,c.
Null Detector, A schematic diagram of the set-up used 
for the resistance measurement is given in Figure (4,21), 
The Null Detector has a full scale deflection of 1 yV. 
Thus, allowing for vibrations of the needle, measurements 
can be made accurate to ± 0.1 yV. With a current of 1 mA 
passing through the system resistances could therefore be 
measured to an accuracy of ± 1x10  ̂ ÍÍ (comparable with 
the accuracy of the standard resistor). The slope of the 
platinum thermometer calibration curve is approximately 
10°K/Í2, Thus the system is potentially capable of 
measuring temperatures accurate to ± 1x10 3°K. However, 
the accuracy of the temperature measurement was limited
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by the long term temperature stability of the system 
which was better than ± 0.02°K over the whole range 
of temperatureso

reversing switch 
--- AA/NA----

R R„
- r ^ W r ry''/W‘— r

V Nf  \ t ^

(Potentioneter)

Figure 4.21: Circuit for Measuring Resistance 
of Platimun Thermometer

4.6.8. The Pressure Measuring System
We begin this section by distinguishing the different 

roles that pressure measurement played in the liquids 
and gas mixtures experiments. In the liquids experiments 
pressure readings (the saturated vapour pressure of the 
liquids) were used to indicate the temperature of the 
liquids, whereas in the gas mixtures experiments the 
pressure of the system indicated the concentration of the 
mixture. Because of the different uses made of the pressure



readings, the pressure measuring system (the pressure 
lines) in the two cases had slightly different designs 
to fulfill the different: purposes.

A . Liquids
A schematic diagram of the pressure measuring system 

for the liquids experiments is shown in Figure (4.22). The 
pressure line was built of \ in. flexible copper tubes.
Fixed joints were soft soldered and valves and variable 
joints were 0-ring sealed. The valves used were high 
pressure 0-ring sealed metal contact type supplied by 
'Milne and Company', Catalogue No. HM80. The pressure 
measuring system consisted of a series of three standard 
test gauges and a mercury manometer. The test gauges 2cover the pressure ranges: 0-60, 0—300 and 0-1000 lb/in 
respectively and were supplied by 'Budenberg Gauge 
Company Limited'. These test gauges were specified to 
be accurate to ± 0.5% of the maximum pressure reading.
The mercury manometer was a closed tube type and could 
be used to cover pressures 0-1500 mm Hg; measurements 
could be made to ± 0.05 mm Hg,

The two low range test gauges and the mercury 
manometer were connected to the pressure line via high 
pressure valves; which enabled them to be isolated from 
the pressure line when the pressure reached the maximum 
tolerable sustained pressure of the gauges.

As shown in Figure (4.22) the pressure measuring 
instruments were joined to one of the two delivery tubes from
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F ig u re  4. 22: P re ss u re  m easuring system  for th e  liquids exp erim en ts .



0 - 6 0 0 - 3 0 0 0-1000

F ig u re  A. 23: Preassure measuring system  for the gas m ixture experim ents.
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the sample cell, while the other delivery tube was 
connected to the gas cylinder and high vacuum pump.

B, Gas Mixtures
In the gas mixture experiments it was necessary to 

confine the sample to the scattering cell, when mixing 
the components (this is described in detail in section 
4.8.2). This was achieved by modifying the pressure 
line such that only one of the delivery tubes of the 
sample cell was connected to rhe vacuum-pressure line.
This is shown schematically in Figure (4,23),

4,7 o The Cryostat Mounting System
The cryostat was mounted on a mobile stand. The purpse 

of the stand, apart, from holding the cryostat upright, was 
to enable the sample cell to be positioned with high 
precision in the scattering region, and at the same time 
allow the cryostat to be moved out of the scattering 
region, whenever required.

The cryostat mount was constructed with both 
lateral and vertical adjustments, A schematic diagram 
of the mount is shown in Figure (4,24), It consisted of 
a vertical rig (A), 3 ft, wide and 7 ft, high, resting 
on a horizontal base (B), 3 ft. wide and 7.5 ft. long.
The framework of the mount was made of 2 in, angle iron 
(2 in. square steel rube % in, thick). The top of the 
vertical rig ended in a platform (C) on which the cryostat 
was suspended- This platform was constructed with



m

A

Figure 4 .24 : Schem atic d iagram  of the cryostat
m ount; A: vertical r ig , B: base p la tfo rm , 
C: to p  p la tfo rm .
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translational movement in two mutually perpendicular 
directions,

Vertical adjustment and coarse lateral adjustments 
were facilitated by the base of the frame, while fine 
lateral adjustments were performed on the top platform. 
With these facilities adjustments accurate to better 
than ± 1 mm were possible.

4.8. Sample Handling

4 o 8.1. Rare Gas Liquids
Before cooling down the system the vacuum-pressure 

line and the sample cell were evacuated to ^ 10 6 torr 
and flushed with the gas to be used at least twice. The 
gases used in these experiments were research grade gases 
supplied by the 'British Oxygen Company' (BOC) (Argon: 
99.995 % pure and Krypton: 99.98 % pure) and were not 
further purified. Mass spectrometer analysis of the gases 
after use showed no increase in impurity content, insofar 
as the mass spectrum did not show the presence of elements 
other than those in the pure samples.

The gas was liquified directly into the sample cell. 
The procedure was to cool the sample cell and control its 
temperature at about 2°K above the triple point of the gas 
and then allowing the gas to flow slowly into the cell 
using valve A (in Figure 4,22) to control the flow rate. 
Normally it took about a half of an hour to liquify 
enough gas to fill the cell to the required level. Care
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was taken to make sure that the meniscus of the liquid 
was visible through the cell windows. This ensured that 
the liquid was not overpressurised, i.e. the pressure 
indicated by the pressure gauges was the saturated vapour 
pressure of the liquid» Since the gas to liquid volume 
ratio were about 1000 : 1 a standard twenty litre cylinder 
of the gas was sufficient to fill the cell with liquid 
to the required level.

To ensure that the liquid in the sample cell was 
not overpressurised and that the liquid was of acceptable 
purity the vapour pressure of the liquid was measured at 
various temperatures within the normal liquid range and 
above. These pressure-temperature readings were compared 
with SVP data of the gases available in the literature. 
Some of these measurments are given in Table (4.3) for 
liquid Argon (13) and Table (4.4) for liquid Krypton (14). 
From the tables it can be seen that the saturated vapour 
pressure measurements in the present work agree with the 
data refered to within ± 0,05°K.

If the meniscus of the liquid was not visible 
through the window some of the liquid could be evaporated 
by opening the cylinder valve and valve A (Figure 4.22) 
after raising the temperature of the cell to the normal 
boiling point of the liquid or higher. At temperatures 
higher than its normal boiling point confirmation that 
the liquid was not overpressurise*! was obtained by letting 
off some of the gas and noting that the pressure stayed 
the same, after stabilisation. This is an indication that



116

Table 4.3: Saturated Vapour Pressure of
Liquid Argon at settle Temperatures

TR (°K) tP(atmosphere) Tp (°K) AT(°K)

85.54 0.826 85.53 + .01
88.64 1.156 88.68 - .04
90.19 1.340 90.16 4* .03
113.11 8.01 113.09 + .02
130.04 19.86 130.02 + .02
143.37 36 ,03 143.36 + .01

T = temperature measured by Platinum Resistance Thermometer-K
Tp = temperature calculated fromSVP data of reference (13)
AT = (Tr - Tp)

Table 4.4: Saturated Vapour Pressure of Liquid 
Krypton at some Temperatures

T (°K) R P(atmosphere) Tp (°K) AT (°K)

117.12 0.810 117.11 + .01
120.69 1.076 120.67 + .02
126.53 1.652 126.55 - .02
132,35 2.42 132.33 ■f .02
145.35 5.12 145.39 - .04
162.19 11,26 162.23 - .04
181.09 23.00 181.14 - .05

TR is temperature measured by Pt. Resistance Thermometer 
Tp is temperature calculated from SVP curve (Ref. (14))
AT = (Tr - Tp)
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the liquid and vapour are under their equilibirum pressure.

4.8.2. Binary Gas Mixture
The gases used in these experiments were: research 

grade Argon (99.995 % pure), research grade Krypton and |\leon 
(99.98 % pure) and industrial Helium (99.9 % pure).
None of these gases were further purified.

The experiments on the gas mixtures were carried out 
at room temperature. The temperature was stable to ± 1°K 
throughout the experiment.

As in the preparation of the liquid samples, the 
pressure system and the cell were evacuated to 'v* 10 6 torr 
and flushed at least twice with the componet 1 prior 
to commencement of the experiments. The cell was then 
filled with component $1 to a pressure > 3 atmosphere 
to ensure that the system could be classified as in the 
hydrodynamic region. This also ensured that the intensity 
of the scattered light was high enough for the spectrum 
to be easily detected. The hydrodynamic region is 
indicated by the characteristic distinct Brillouin 
Doublet and central Rayleigh lines in the spectrum of the 
scattered light. If the pressure was too low the scattered 
light spectrum was a single broad line due to the Boltzmann 
velocity distribution of the atoms in the scattering 
region. In the case of Krypton and Argon gases the 
scattered intensity was sufficiently strong to be easily 
detectable at pressures > 4 atmosphere.
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For the preparation of the mixtures valve B (refer 
to Figure 4.23) was closed and the whole system was 
evacuated except for the sample cell. The system was then 
similarly flushed with the gas component #2, after 
which the pressure line was filled with component^2 
to the required pressure to obtain the concentration desired. 
This pressure was calculated assuming ideal gas conditions 
and the pressure P to which the system has to be filled up 
is given by,*

P = P0 (1 + C —  ) (4.32)

where Ml and M2 are the molecular weights of the component 
#1 and #2 respectively, C is the concentration, and P0 is 
the original pressure of component used.

Equation (4,32) does not take into account the volume 
of the pressure line and gauges,. When this volume was 
considered we obtain (still assuming ideal gas conditions):

P̂  = P + R(P - Pc) (4.33)

where P̂  is the pressure to which the pressure line needs 
to be raised to obtain a pressure P in the whole system 
(equation 4.32) when valve B was opened. R is the ratio 
of the volume of the sample cell to that of the pressure 
line and P^ is the pressure of the mixture (or component ̂ :1) 
in the sample cell previously. In our system R = 2/7.

* See appendix 111.



The procedure outlined above gives the approximate 
pressure required to obtain a certain concentration C.
The purpose of the procedure was just to simplify 'filling 
up' of the system, The true concentration of the mixture 
was then calculated from the pressures using the virial 
coefficients (15) for the components and mixture.

To obtain the mixture the pressure line was filled 
with the gas component $.2 to the pressure given by 
euqations (4.32 - 33) above and the gas cylinder valve was 
shut. Then valve B was opened and the gas component £2 
was allowed to flow into the cell slowly. Once the pressure 
had stabilised valve B was shut again. It was assumed that 
during the opening of valve B no back-flow of component $1 
took place. The mixture was then allowed to reach equilibration 
of concentration (by diffusion) for 48 hours,

4.9. Setting Up and Measurement of Scattering Angles
The experiments, both on the liquids and the binary 

gas mixtures were performed at various scattering angles.
To facilitate the variation and the measurement of the 
scattering angle the following procedure was adopted.

A permanent beam was set which defined the optical 
axis of the interferometer, light detection system and
the scattering cell, shown schematically in Figure (4.25) .\ \ I ;
Mirror Ml is coated with 96% reflectivity, thus allowing 
enough of the laser beam to pass through to form the 
optical-axis-defining beam. Mirror M2 is kept fixed 
throughout the experiment, while M3 was a 'floating' mirror

119
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Figure 4 „25: Experimental set-up for
defining the scattering angle 9
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whose position could be changed when the scattering angle 
was to be varied. The scattering angle, 0, is defined 
by the angle between the directions of the incident beam 
and the axial beam, taken in clockwise direction (as shown 
in Figure 4=25). The axial beam was screened off during 
measurements of the spectra.

The scattering angle was measured by a method of 
reflections. This involved using a beam reflector fixed 
on a conventional spectrometer table. This had an angular 
vernier with markings of \ minute of an arc. The 
reflector used was a microscope slide, fixed on the top 
of the spectrometer table.

To measure the angle between the axial beam and the 
incident beam (scattering angle) the spectrometer table was 
placed in the scattering region with its vertical axis 
(vertical axis of the rotating table) just below the 
point of intersection of the two beams. The reflector 
will then be at the intersection of the two beams. Three 
specific angular positions of the reflector were then 
obtained. These angular positions were:

(a) The axial beam reflected by the reflector back into 
the laser.

(b) The incident beam reflected back into the laser.
(c) The axial beam reflected back into the laser along 

the path of the incident beam and vice versa.
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The difference in angular positions of (a) and (b) gives 
the full angle (0) between the beams; and the differences 
between (a) and (c) and (b) and (c) give the half angles 
(0/2) between the beams»

It was relatively easy to establish that the reflected 
beam reentered the laser co-axially since when this 
occurred the frequency stability of the laser altered 
drastically,

With the method outlined above angle measurements 
accurate to ± \ minute of arc were achieved.

4 010, Data Analysis

4,10.1, The Measured Spectrum
The measured spectrum of the scattered light is 

distorted by two experimental factors: (1) the finite 
collection angle of the interferometer and (2) the 
instrumental profile of the interferometer. The effect 
of these factors is that the measured spectrum is not 
the’teal" S(K, w) , but the convolution of S(K, w) with 
the aperture function of the collection optics and the 
instrumental profile respectively.

Further, since S(K, w) is the "sum" of the spectral 
densities of the central and Bnllouin lines, the 
overlapping of the tails of the central line on the 
Brillouin lines results in the Brillouin lines being 
pulled in towards the central line. Consequently the
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1

observed positions of the peaks of the Brillouin lines 
are shifted towards the central line, Accordingly the 
observed Brillouin shifts have to be corrected for this 
"line pulling".

We now present a simple analysis of the effects of 
the instrumental distortion and the "line pulling" and 
outline the methods for correcting these effects where 
necessary,

4.10.2 The Aperture Effect
The finite collection solid angle of the interferometer

introduces a range of scattering vectors Ak ks s *
The effect of this distribution of scattering vectors is 
to Introduce a smearing Awô to the Brillouin shift w0:

Awa = C a Akg (4.34)

The scattering geometry is shown in Figure (4,26) 
where we have drawn a two-dimensional projection of a 
three-dimonsional process. The scattering region is at 
the focus of the collecting lens which is stopped with 
the aperture, diameter a. It can be shown that to a 
first approximation the finite collection angle introduces 
a broadening of the Brillouin lines given by (16):

Aw. w (aA6) Cot(-f-)0 ¿L (4.35)
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Figure 4.26: Geometry of Collection Optics
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where Awa is the linewidth due to the aperture alone,
(*>0 is the Erillouin frequency shift and a is a factor,
 ̂< a < 1, characteristic of the aperture. Reference 
(16) quoted the factor for circular aperture as a = 4/5.

Equation (4.35) shows that the broadening effect 
of the aperture diminishes for large scattering angles 
due to the cot(6/2) factor.

In our experiments the aperture diameter a = 0.5 cm 
and the focal length of the collecting lens, f = 100 cm. 
Thus AQ a 2,5 x 10~3 rad.

As an illustration of the effect of the aperture broadening 
we take the case of the backward scattering in liquid argon 
(0 = 169°51’). Thus in this case equation (4.35) gives 
Awa = 0.177 x 10"*3wq . For liquid argon at 85°K, scattering 
angle 0 = 169°51', w “ 4 GHz. Hence Aw “ 0.7 MHz. The 
Brillouin linewidth of liquid argon at this scattering angle 
is ^ 60 MHz. Hence the aperture broadening has a negligible 
contribution to the errors in our measurements of frequency 
shifts and linewidths*.

* The aperture broadening can be assumed to be 
symmetric, so that it does not affect the frequency 
shift. It is negligible in linewidth measurements 
because the accuracy of these measurements is only of 
the order of ± 3 MHz.
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Table (4.5) shows the variation of Aw /un fora
various scattering angles, calculated from equation (4.35).

Table 4.5: Variation of Aw /w0 with Scattering 
Angle a

0° (Au /w ) x 1 0 3
3. O

10 22 .86
90 2 .0 0

170 0 .174

■Â

‘ T. ‘ V Î

4.10.3. The Effects of the Instrumental Profile and 
Line Overlapping

The degree of overlapping of the tails of the central 
line on the Brillouin lines depends on the Brillouin shift 
and linewidth and the resolution of the interferometer.
The presence of significant line overlapping is indicated 
by the difference in the levels of the intensity minima 
on the high-frequency and low-frequency sides of the 
Brillouin line.* When line overlapping is present the 
minimun on the low-frequency side is higher than that on

* This is true only in atomic liquids. In molecular liquids 
the presence of molecular reorientation mode (Mountain Mode) 
can also give rise to this sympton.
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thé high-frequency side, A theoretical investigation 
into this effect has been carried out by La Macchia, 
et al. (17) for Lorentzian line shapes. However, the 
application of this method is quite complicated, and 
in this work an alternative procedure was adopted.

A numerical method of least squares was used to 
find the correct frequency shifts. In this procedure 
the recorded spectrum is assumed to consist of n Lorentzian 
lines of width either Fc or Fg depending on whether the 
line is a central (Rayleigh) line or a Brillouin line 
respectively, (Normally n = 6, i,e. for a FSR the
spectrum contains two central lines and four Brillouin 
lines). An approximation to a data point y on the 
spectrum is given by the sum of the contributions of 
the n lines. Thus we writes

n
S = Za. L , (u. - co.)-L j  J  1 J

where
L^ (coi  -  Wj) - <rc)2

(rc)2 + (ok - coj )2

(4.36)

(4.37)

for a central line and

( V 2
L .  (to. -  to . )  =  ------------------------------- ------ —
1 1  J  ( T ' i 1 + (to, - to. )

(4.38)
B ' J- 3

for a Brillouin line, to. is the centroid of the line.3
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Figure 4.27: Lorentzian fit to a spectrum of light scattered 

from liquid Argon, (by computer)



Figure 4.28: Lorentzian fit to a spectrum of light scattered from Kr-IIe mixture, 

(by computer). 129
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The coefficients have the values 1 for a Rayleigh 
line and the ratio of average peak heights of Brillouin 
lines to Rayleigh lines for a Brillouin line.

The fitted points S, are then optimised iteratively 
by a least squares procedure (18, 19), i.e. by minimising

N
a = Z (S. - Y1)2 (4.39)

i 1

with respect to the variables a) . ' s, Y and r . (N is the
j  C B

number of data points in the recorded spectrum).
To overcome the ill-conditioned nature of the function a 

the iteration is restrained in such a way that the values 
of iû 's, rc and TB are allowed to change with small steps 
only. This prevents the procedure from 'blowing up'.
A listing of the programme is given in Appendix IV.

The initial values of the oo.'s, and are obtained
J  L  B

from the recorded spectrum. Normally for N = 500 a 
satisfactory degree of convergence is obtained in five to 
eight iterations, which takes a maximum of 40 sec. of 
computing time. Typical results indicating the degree 
of fit are illustrated by Figures (4.27) and (4.28).

4.10.4. Measurement of Brillouin Linewldth
The convolution of the instrumental function with the 

spectral distribution of the scattered light introduces a 
broadening in the spectral lines. Hence in order to obtain 
the Brillouin linewidth the instrumental profile has to
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be deconvoluted from the observed spectrum, The deconvolution 
can be performed in two ways:

(1) By direct deconvolution where the instrumental 
function is deconvoluted from the experimental 
data. This can be carried out using an interative 
procedure (20) or by the use of Fourier Transform
(21 ,  22) .

(2) By indirect deconvolution. In this method the 
instrumental function is convoluted with a function 
of standard form and finding one of the standard 
functions that convolutes with the instrumental 
function to give results similar to the observed 
spectrum.

The first method above is theoretically favoured but 
its application is difficult and complicated, while the 
second method is relatively simple and the accuracy of 
the results depends on using the right choice of standard 
function. In this work this latter method was used.

From the theoretical discussions of Chapters II and III 
it is justifiable to assume that the Brillouin lines are 
of Lorentzian shape. Thus a series of Lorentzian lines 
of varying linewidths were nemerically convoluted with 
the instrumental function of the FPS (see section 4.4.3.).
A point S (co) on the convoluted specfrum is given by

N
S (io) = T, M (to . ) L (oa -  0), ) 

i
(4.40)
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where M(w) is the instrumental function,
L(w) is a Lorentzian function, and 
N is an arbitrary number of points,

(in this case N = 500).

Figure (4.29) shows a linear relationship of the 
linewidth of S(uj) , the convoluted linewidth, with that 
of L(w), the real linewidth. This graph was used to 
convert measured linewidths to real linewidths.

4.10.5. Numerical Convolution of Theoretical Spectrum
In order to be able to compare the theoretical spectrum 

with the observed spectrum the theoretical spectrum has 
to be convoluted with the instrumental function. This 
introduces the instrumental broadening to the theoretical 
spectrum.

We have used a direct method of numerical convolution, 
where the theoretical spectrum, S(K, oj) is convoluted with 
the instrumental function, M(to) . The procedure is as 
follows:

The convolution is given by equation (4.40) which 
we rewrite as:

N
F(w) = E M(w.) S (K, w-w.) (4.41)

i

The range of uk is within uk = ± FSR/2. S(K, oj) and 
M(w) have the forms illustrated in Figure (4.30 (a)).
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The instrumental function is periodic, with a 
periodicity of a free spectral range. In order to introduce 
the periodicity into equation (4 „41) S(K, g o )  is 'folded' 
in frequency by setting

S (K, w ± FSR) = S (K, g o )  (4.42)

This is illustrated in Figure (4.30 (b)). This procedure is 
is especially important when the Brillouin shifts, id. > FSR/2 
because in this case if the frequency extension (4.42) is 
not performed equation (4.41) will not produce the Brillouin 
lines.

We divide the frequency range of ok into 500 steps of 
Auk . Thus for a FSR = 3 GHz, the frequency steps Agô  = 6 MHz.

To perform the convolution the functions M(go) and 
S(K, g o )  were first stored in arrays and the convolution can 
then be carried out with maximum saving of computing time. 
Typical computing time for a spectrum is ^ 1.5 minutes.
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Figure 4.30: Numerical convolution (a) Theoretical 
spectrum and instrumental function 
to be convolved (b) 'Folded' 
theoretical spectrum.
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CHAPTER V

EXPERIMENTAL RESULTS AND DISCUSSION

5.1. Pure Monatomic Liquids

5d.l. Introduction
We have measured the spectra of light scattered 

from liquid Argon and liquid Krypton at various temperature 
along the saturated vapour pressure curves of these liquids 
The spectra were taken at various scattering angles:
6 = 13° 35', 102° 47' and 169° 51' in liquid Argon and 
93° 48' and 169° 20' in liquid Krypton. (These were the 
angles of intersection of the incident beam with the 
optic axis of the interferometer in air. The actual 
scattering angles in the liquids were calculated by 
making corrections for the refractive index of the liquids)

From the measured values of the shifts, of the
£ j

Brillouin lines we were able to calculate the sound 
velocities in these liquids at frequencies gjb . The 
accuracy of the measurement of the Brillouin shifts 
depends on the precision with which the Brillouin peak 
positions were determined and the accuracy of the frequency 
scale. The positions of the Brillouin peaks could be 
determined with an accuracy of ± 0.06%. The accuracy 
of the freauency scale (section 4.3.3.) is ± 0.17%.
Thus the nett accuracy of the determination of the 
Brillouin frequency shifts is of the order of ± 0.18%.

By using a high resolution confocal spherical Fabry- 
Perot interferometer we were also able to measure the
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Brillouin linewidths in the back-scattering geometry in 
these liquids. From the measured values of the Brillouin 
linewidths the sound absorption coefficient, a, was 
calculated using the equation (1):

ttAu)-.
a = — -  (5.1)

where V is the sound velocity and Aco_, is the Brillouin13
linewidth in Hz. The Brillouin linewidth, Aw_. could be13
determined to an accuracy of about ± 8%.

We shall now present and discuss these results in 
liquid Argon and liquid Krypton.

5.1.2. Sound Velocity in Liquid Argon
The results of our measurements of Brillouin shifts 

in liquid Argon, obtained at the three scattering angles 
listed above are shown in Table (5.1). Because of the 
presence of a large amount of 'stray' light arising 
from flares on the potieal windows of the cell and 
cryostat encountered■in the forward- and back-scattering 
geometries, measurements at these angles were carried out 
only within a small range of temperatures.

in cases where the spectra showed a difference in the 
levels of the minima on the high- and low- frequency 
sides of che Brillouin lines, i.e. where there is marked 
appearance of overlapping of the tails of the unshifted 
cencral line on the Brillouin lines, the Brillouin shifts 
were corrected for 'line-pulling' in the manner described 
in chapter IV (Section 4.10=3).
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Table 5d: Brillouin Shift and Sound Velocity in Liquid

Argon along the Saturated Vapour Pressure Curve
(b) calculated from polynomial fit in reference (4)

1 T(°K) n e
± 0.5*

w (GHz) 
.006

V(mS^l 
Hypersonic ±2 .0

(b)
Ultrasonic 

± .08
85,25 1.2321 13°35' 0.393 854.8 851.32
87,81 1,2284 II 0.383 832.9 833.79
89-. 28 1.2266 n 0.379 824.5 823.54
97,12 1.2188 It 0.353 766.7 767,73

104,05 1.2115 II 0.328 712.7 715.86
110.12 1.203 8 II 0.308 668.8 667.96
85.28 1.2320 16 9°511 4.06 2 850.2 851.16
89,32 1,2266 II 3.922 824,6 823.31
92.12 1.2236 II 3.813 803.7 803.62
97,91 1.2180 II 3.598 762,0 761.90

101.06 1.2148 II 3.473 737.5 738.53
89.15 1.2267 102°47* 3.033 827.8 824.26
90.72 1.2250 11 2,988 816,5 813.52
93.77 1,2219 II 2.896 793.4 791.92
96.50 1.2194 II 2.829 776.5 772.19
97,12 1.2188 II 2.802 769.5 767.72
98,21 1.2177 II 2.764 759.7 759,68
99,93 1.2160 1» 2.720 748,4 747.01
100.20 1.2157 II 2.717 747,8 744,96
102.99 1.2127 II 2,627 724.7 723,88
104,09 1.2115 II 2.589 714,9 715.54
107.62 1.2075 II 2.492 690.5 687,95
113.11 1.1996 II 2.314 644.9 643.33
124,32 1.1830 It 1.930 544.9 543.99
130.04 1.1742 II 1.705 484.6 487.32
134.52 1.1666 11 1.534 438,6 438.39
139,26 1.1563 II 1,309 377.2 379,96
143.19 1.1442 II 1.111 323.4 323,81
149,11 1.1143 II 0.714 212,9 218.85
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The calculation of the sound velocity from the 
measured value of the Brillouin shift (V = to/K) requires 
a knowledge of the refractive index of the liquid, since 
K is given by equation (2.9):

K = 2 j k|sin (G/2) (2.9)

In equation (2.9) both k, the wave vector of the incident 
light in the liquid, as well as the angle 0 depend on 
the refractive index, n. By incorporating the refractive 
index data for liquid Argon reported by Abbis, et al. (2) 
and those of Sinnock and Smith (3) we obtained, by
interpolation, the temperature dependence of the refractive

oindex at A = 5145 A. These values are also tabulated 
in Table (5.1) for the specific temperatures of the 
measurements,

As can be seen from Table (5.1) the Brillouin shifts 
observed in the forward- and back-scattering differ by 
about one order of magnitude. However, the calculated 
sound velocity obtained at these frequencies at the same 
temperatures agree with each other within the limits of 
experimental accuracy. This is clearly shown in Figure (5.1) 
where the calculated values of sound velocity obtained 
from the different scattering angles are plotted as a 
function of temperature. The ultrasonic sound velocity, 
calculated froma polynomial fit to ultrasonic data given 
by Aziz, et al. (4) are also shown in Table (5.1). A 
comparison of these values with the present results at
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given temperatures agree within the experimental errors.
A fifth order plynomial fit of the velocity data 

(in the least squares sense) as a function of temperature 
was obtainedo The coefficients were as follows:

V (T) = 18968.77 8634 - (804c355632) T
+ (14.416540)T2 - (lo 295415 x 10~J)T3 
+ (5.794631 x 1 0 ~ h) T k - (1.035639 x 10_6)T5.

The function above fits the experimental data within 
the experimental accuracy over the whole range of the 
temperatures covered in the experiment.

5.1.3. Sound Attentuation in Liquid Argon
The results of measurements of the Brillouin linewidths 

in liquid Argon with the high resolution spherical Fabry- 
Perot (FPS) interferometer are shown in Table (5.2). The 
Brillouin linewidths were obtained by convoluting 
Lorentzian lineshapes of various widths with the instrumental 
profile of the FPS to match the widths of the observed 
Brillouin lines (Section 4,10.4). A decortvolution method 
peroposed by La Macchia, et al. (5) was also tried and 
was found to give the same results as the former method 
to within ± 3 MHz.

The sound attenuation coefficient, a ,  is calculated 
using equation (5.1) and is tabulated in Table (5.2) in 
the usual form of a divided by the square of the frequency 
(a/f2). The values of a/f2 obtained in these experiments



Table 5,2: Brillouin Linewidth and Sount Attenuation 
Coefficient in Liquid Argon

145

T(°K) w^(GHz) Au>b (MHz) V(ms-1) a/f2xl016 
(cm 1 s 2 )|

± » 02 ± .010 ± 5 ±2 .0 ±10%

85,68 4.050 61 848.4 1.42
89,32 3.915 63 823.3 1,56
92.12 3,812 62 803.6 1.67
97,91 3.597 56 761.9 1.77
99,08 3.553 59 753.3 1 c 93

101.06 3.478 58 738.5 2 .01
107,78 3.212 57 6 86.7 2.51
108,53 3.181 57 6 80.7 2.59
109.60

L_ _
3.13 8 58 672.1 2.69

Table 5,3: Bulk Viscosity in Liquid Argon

T (°K) (a/f^xiO1 s 
(cm 1 s2) 

±10%

(a/f 2 p ^xlG16 
(cm 1 s2)
±10%

n xio3 s
( gm cm 1
s"1)

±5%

rigXlO3
{gm cm 1

s ~ l )±12%

V ns

±15%

85 1.43 1,14 2.73 1.15 0.42
90 1.55 1.16 2.32 1.53 0.66
95 1.72 1.23 1.99 1,68 0.84
100 1.95 1.30 1,70 1,89 1.11
105 2.28 1.42 1,48 2.15 1,45
110 2.75 1.54

__________

1,30 2.32 1.79
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are accurate to ± 10%.
A comparison of the observed sound attenuation 

coefficient with the so-called classical attenuation 
coefficient is shown in Figure (5,2). The classical 
attenuation coefficient was calculated using equation (1.7) 
and the various thermodynamic parameters in the equation 
were obtained from the available data in the literature
(6), Also shown in Figure (5.2) are the sound attenuation 
coefficients in liquid Argon obtained by ultrasonic 
methods reported by Nangle (7) and Cowan (8). As can be 
seen from the graph the Values obtained in the present 
work agree with these ultrasonic values within the 
experimental errors.

The excess attenuation is usually attributed to the 
bulk viscosity of the medium (9). Thus the bulk 
viscosity of the liquid could be calculated from the 
difference between the observed and theoretical classical 
attenuation coefficients according to the equation:

and classical values respectively. Values of the bulk 
viscosity of liquid Argon, thus calculated, are shown in 
Table (5,3) for various temperatures from 85°K to 110°K. 
The accuracy of the values of n_ is estimated to be aboutJ j

(5. 2)

where the superscripts 0 and c l  indicate the observed

±  12% .
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The results of measurements of the observed Brlllouin 
shifts of the spectra of light scattered from liquid 
Krypton, measured at the two scattering angles, are 
shown in Table (5,4). Because of progressive deterioration 
of the long-term laser frequency stability by the time 
these experiments were performed the accuracy of the 
measured Brillouin shifts in this case was slightly 
lower than that obtained in the liquid Argon experiments. 
However, the absolute accuracy of the measured frequency 
shifts obtained was still better than ±10 MHz.

Available data on the refractive index of liquid 
Krypton are not as extensive as those of liquid Argon, 
especially at the higher temperatures. Most measurements 
have been carried out only within the normal liquid range 
of the substance. Assuming that the index of refraction 
is a function of the density only [n = n ( p ) J  we have used 
the data of Sinnock and Smith (3) and Marcoux (10) to 
extrapolate n to higher temperatures to cover the whole 
range of temperatures of the experiment. Inevitably this 
extrapolation is prone to systematic errors, especially 
towards the upper limit of the temperature range. These 
calculated values of n, (at the temperatures the spectra 
were recorded) are also given in Table (5.4). It is 
expected that there is uncertainty in the last decimal 
figure in the tabulated values of n.

The hypersonic sound velocity, calculated from the 
Brillouin shifts, are shown in Table (5.4). Ultrasonic

5,1.4, Sound Velocity in Liquid Krypton
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Table 5.4: Brillouin Shifts and Sound Velocity in Liquid

Krypton along the Saturated Vapour Pressure curve
(a) calculated from polynomial fit in reference (4)

T(°K)
±„02

n
Calc.

0
± .5'

o>B (GHz) 
± .010

V (ms 
Hypersoni 

±4.0
-1) (a)
c Ultrasonic 

± .06

117.12 1.3026 169°20' 3.526 693.3 695.53
120.44 1.2987 II 3.423 679.8 682.25
121.71 1.2974 II 3.400 675.9 677.11
123.69 1,2954 II 3.329 665.3 669 .05
125.26 1.2938 II 3.307 659.1 662.61
129.07 1,2902 II 3.256 650.8 646.80
131.13 1.2883 II 3.214 643.4 638.15

117.97 1.3016 93°48' 2.536 691.4 692.15
120.69 1.2984 II 2,485 679.3 681.24
126.53 1.2926 II 2.383 654.1 657.37
132.35 1.2871 II 2.289 631.0 632.99
139.39 1.2798 II 2.178 603.8 602.66
145.35 1,2728 II 2 ,072 577.3 576.11
151.10 1.2654 II 1.953 547.1 549.60
157.42 1,2567 II 1.828 515.7 519.31
162.19 1.2501 II 1.732 491.1 495.55
167.99 1,2420 II 1.613 460.4 465.44
174,27 1.2334 II 1.486 427.1 431.07
181.09 1.2236 II 1.331 394.4 391.05
185.65 1.2163 II 1.225 356.9 362.20
191.58 1.2047 II 1.072 319.9 321.23
197.19 1.1901 II 0.916 272.6 272.53
201.48 1.1751 II 0.847 255.2 (239.70)
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T ( °K)F igure 5.3: Velocity o f hypersound in liquid Krypton a s  a  function of tem perature, (error bars are com parable with point size).
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sound velocity calculated from a polynomial fit given in 
reference (4) are also given in Table (5.4) for comparison. 
It can be seen from the table that the hypersonic and 
ultrasonic data agree within the accuracy of the experiment.

The hypersonic data obtained from the two scattering 
angles are plotted as a function of temperature in 
Figure (5.3). This figure illustrates the degree of 
internal consistency of the two sets of data obtained in 
this experiment.

A fifth order polynomial fit to the hypersonic data 
as a function of temperature was obtained. This had the 
form:

V (T) = -843 .063454 + (303.092729)T
- (3.908587)T2 +(2.473525 x 10_2)T3 
-(7.771665 x 10_S)T- +(9.651464 x 10_8)T5

Table 5.5: Brillouin Linewidth and Sound Atténuation 
Coefficient in Liquid Krypton

T (°K) 

± .02

wb (GHz) 

± .010

Aü>b (MHz) 

± 5

V (m s 1 ) 

± 4.0

a/f2 x 1016 
(cm 1 s 2 )
± 10%

117.12 3.501 62 693.0 2.32
120.44 3.423 63 679.8 2.49
121.71 3.400 62 675.9 2.48
125.26 3.307 62 659.1 2.70
126.71 3.276 62 653.8 2.78
129.07 3.256 63 650.8 2.85
132.13 3.214 63 643.4 2.99
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Table (5.5) shows the measured Brillouin linewidths 
of the back-scattering spectra which were frequency 
analysed with the high resolution FPS. The method of 
obtaining the linewidths from the spectra was the same 
as that used in the case of the liquid Argon. The sound 
attenuation coefficients at various temperatures in 
liquid Krypton, calculated using equation (5.1) are also 
shown in Table (5.5). A comparison of the observed 
sound attenuation coefficient with the 'classical' one 
is shown in Figure (5.4) (6). At the time of writing,
as far as the author could ascertain, there is no previous 
report of measurements of the sound attenuation coefficient 
in liquid Krypton either by ultrasonic or light scattering 
method. Thus there is no comparison available for the 
present data,

The bulk viscosity of liquid Krypton at various 
temperatures from 116°K to 130°K was calculated from the 
observed 'excess' attenuation using equation (5.2). These 
are shown in Table (5.6).

5.1.6. Discussion
VTe have analysed the spectra of light scattered 

inelastically from liquid Argon and liquid Krypton in terms 
of the first order approximation as discussed in Chapter II. 
In this approximation the Brillouin shift is a linear 
function of the scattering vector, co0 = KV; and using

5olo5o Sound Attenuation Coefficient in Liquid Krypton
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Table 5o6: Bulk Viscosity in Liquid Krypton

T (°K)
(a/f2)BxlOi6 
(cm 1 s2) 
±10%

(a/f2 ) ̂ x l O 16 
(cm-1 s2) 

±10%

n xlO3 s
(gem 's 1 ) 

±5%

nBxio3 
(gem 1s_1) 
±10%

V s
±15%

116.0 2.29 1.83 4.47 1.94 0.43
118.0 2.36 1.84 4.23 2.13 0.50
120.0 2.44 1.85 4.04 2.27 0.56
125.0 2.67 1.92 3.67 2.62 0.71
130.0 2.93 2.00 3.37' 2.93 0.87

this approximation we calculated the sound velocity in 
these liquids from the measured frequency shifts. The 
frequency shift is taken to be the position of the 
peak of the Brillouin line on the frequency scale. In 
cases where there is visible appearance of line 
overlapping the frequency shift cù0 is taken to be the 
corrected position of the peak. Our results show that 
within the limits of experimental accuracy there is no 
dispersion of the sound velocity in these liquids in the 
frequency range from about 1MHz to about 3 to 4 GHz, 
as evidently shown by the agreement between the hypersonic 
and ultrasonic velocity data. However, it should be 
emphasised that theoretical calculations by Boon and 
De Guent (11) showed that the expected dispersion of the 
sound velocity in liquid Argon at frequencies of the order



Figure 5.5: Typical comparison of theoretical and experimental spectra of light scattered 

from liquid Argon.

_n
.7 1



it
v 

(a
rb
it
ra
r-
'r 

un
ij
ts
)

lr6

Figure 5.6• Typical comparison of theoretical and experimental

spectra of light scattered from liruid Krvpton.
/  l

I •



157

of 3 GHz to be about .001%. This magnitude of dispersion 
is not measurable with the present instrumental 
technique (12).

We have also calculated theoretical spectra, according 
to equation (2.44), for these liquids and compared them 
with the experimentally observed spectra. These are 
shown in Figures (5.5) and (5.6) for liquid Argon and 
liquid Krypton respectively. The theoretical spectra 
has been convoluted with the transmission function profile, 
M(w) of the FPP, which was discussed in Section (4.3.3.)
These figures show that the agreement between the theoretical 
and experimental spectra is quite reasonable, apart from 
the slightly broader central line in the theoretical 
spectra. This can be attributed to an error in the 
representation of the instrumental profile, M(o). The 
shift of the Brillouin line of the theoretical spectra 
and that of the observed agree within the accuracy of the 
experiment. Thus we can conclude that the spectrum of 
light scattered from these simple monatomic liquids can 
be described adequately by the first order approximation 
to the solution of the dispersion equation, D(s).

The bulk viscosities of liquid Argon and liquid Krypton 
increase with temperature, as compared with the shear 
viscosities which decrease with temperature. Thus the 
ratio of bulk to shear viscosities in these liquids 
increases with temperature. In liquid Argon this varies 
from 0.42 at 85°K to 1.79 at 110°K, while in liquid 
Krypton it varies from 0.43 to 0.87 in the temperature 
range 116°K to 130°K.



158

Kinetic theory calculation for a system of 
hard spheres show the ratio of bulk to shear viscosity 
to be 5/3 (13). Rice and Gray have calculated the 
ratio of bulk to shear viscosity in liquid Argon using 
the Rice-Allnatt theory of transport coefficients 
and they found this value to be 1.33 (13). Thus 
quantitative agreement between the theoretical and 
experimental values of the bulk viscosity is fairly good.

The principle of corresponding states could be 
used to compare the properties of these liquids.
According to the principle of corresponding states 
similar properties of substances which interact with 
similar forces of interaction should lie on the same 
line when expressed in reduced form. These monatomic 
liquids have been known to obey closely the Lennard- 
Jones interactiono In Figure (5.7) we have plotted 
the ratio of bulk to shear viscosity of liquid Argon 
and Krypton as a function of the reduced density,

where a is the radius parameter of the Lennard-Jones 
potential and m is the atomic mass of the liquid.
Figure (5.7) shows that the data for Argon and Krypton 
do not lie on the same line but they do lie in 
approximately parallel lines. This discrepency could 
perhaps be attributed to 'quantum effects'. We have also
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plotted In Figure (5,7) the values of the bulk to shear 
viscosity ratio of liquid Neon obtained by Larson, et al. 
using ultrasonic technique (14)„ The inclusion of 
these results seems to indicate a tendency for the ratio 
of bulk to shear viscosity to decrease with increase in 
the so called quantum parameter, A*. A* here is given by

A* =
a (me) (5.4)

where h is the Planck's constant and e is the potential 
well energy parameter. The values of A* for Neon, Argon 
and Krypton are indicated adjacent to the corresponding 
points on the graph (Figure 5.7)

5.2. Binary Gas Mixtures

5.2.1. Introduction
We have observed Brillouin scattering of light in 

two binary monatomic gas mixtures: Krypton-Helium and 
Argon-Neon. In the Kr-He mixture the maximum mass 
concentration of He in the mixture was 0.03 while for the 
A-Ne mixture the maximum Ne concentration was 0.3.

In the case of the Kr-He system we have investigated 
the scattering of light both as a function of the 
concentration of the lighter component as well as a 
function of the scattering vector, K. This involved two 
sets of experiments:
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(a) measurements were made at a fixed scattering 
angle (0 = 88°37* ± 0,5') while the He 
concentration was varied, and

(b) measurements were made at a fixed concentration 
(C = 0,01) at various scattering angles.

In the latter case the wavelength of the laser 
light was also varied. This enabled data to be collected 
over a slightly larger range of scattering vectors. The

0 34880 A and 5145 A lines of the Argon ion laser were used. 
This procedure minimised the need to change the scattering 
angles. The overall range of scattering vectors covered 
was from 0.64 to 2.02 (xlOs cm 1).

Measurements on the A-Ne mixture were performed 
only at one fixed scattering angle, 6 = 104°55' (± 0.5).
This was because theoretical calculations predicted that 
the dispersion of the sound velocity in this system to be 
very small (refer to Chapter III), Section 3.5).

The accuracy of measurements of the Brillouin 
frequency shift is ± 1% and the linewidth ± 10%.

5.2.2. Measurements on Kr-He Mixture
The results of measurments of Brillouin shifts and 

linewidths from the Kr-He mixture as a function of 
concentration are shown in Table (5.7). The velocities 
of sound in the mixture were calculated from the measured 
frequency shifts. These are compared with the adiabatic,
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Vo and theoretical, V , sound velocities in Table (5.7) 
and Figure (5.8). The theoretical sound velocity, Vc
is obtained by solving the dispersion equation (3.47) 
numerically and setting:

Vc = Im (s) K_1 (5.5)

As can be seen from Figure (5.8) the experimental sound 
velocity data agree with the calculated Vc within 
experimental errors.

Table 5.7: Brillouin Shifts and Sound Velocity in Kr-He 
mixture as a function of concentration

Krypton Pressure = 5.21 atm.; K = 1.705xl0scm”i

He
concen-

U)B (MHz) Aw_ (MHz)JJ V (ms""1 ) V (ms 1 ) c Vo (ms 1 )
tration ± 10 ± 5 ± 4 (calculated)

0.00 591 37 218 220 220
0.01 615 96 224 223 239
0.02 623 115 230 231 258
0.03 657 137 242 242 277

The measured linewidth data in Table (5.7) are 
plotted as a function of concentration in Figure (5.9). 
The broken line through the data points is drawn to
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Figure 5 .9 : Brillouin lin ew id th  of light scattered  
from  K r-H e  m ixture  a s  a function  
of c o n c e n tra tio n .
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fülde the eye. The contribution of viscous damping 
to the linewidth, Aw(n) {refer to equation 3.25) is 
represented by the continuous line. The viscosity data of 
Kestin, et al. (15) were used to calculate this 
contribution. The diffusion contribution to the linewidth 
can be obtained by subtracting from the observed linewidth, 
Ao)°, the viscosity contribution, Aw(ri). (This is possible 
because the thermal conductivity contribution can be 
assumed to be small.)

From the calculated values of the diffusion broadening 
we have estimated themutual diffusion coefficient, Di2, for 
the mixture using the equation:

where p0 , (3y /3C)  and (3p/3C)  are calculated from the
definitions (3.7) and equations (3.35) and (3.36). The 
values of Di2 obtained from this procedure are shown in 
Table (5.8) and these are compared with Di2 (calc.), where 
D12 (calc.) is the theoretical value of the mutual 
diffusion coefficient for the Lennard-Jones potential, 
given by the equation (16):

(3 p / 3 C ) 2
(5.6)

D12 (calc.) = 0.002680 (5.7)
P erf 2 (T*)

where T is the temperature
]Vh is the molecular weight of component i
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P is the pressure in atmospheres,
o12 is the averaged radius parameter of the

ointeraction potential in A

is a function of the interaction potential 
of the atomso These are tabulated in Table I-M 
in reference (16)

T* is the reduced temperature = TkTJ/e12B

Table 5.8: Mutual Diffusion Coefficient (Di2) of 
Kr-He mixture

He
Concentration Di2 (calc.) 

(cm2 s l )

Di2 (Expt.)
(cm2 s 1)
± .02

0.01 .100 .17
0.02 .085 .09
0.03 .074 .07

L_____________________

The experimental and theoretical values of Di2 agree
in magnitude and corresponding concentration dependence,
as can be seen from Table (5.8).

The results of the measurements from the Kr-He
mixture at various scattering vectors are shown in Table
(5.9) and plotted in Figure (5.10). The smooth line in
Figure (5.10) is that of the theoretical values of V ,c



Table 5.9: Brillouin Shift and Sound Velocity 
in Kr-He Mixture as a function of K

c = 0.01

KxlO~5 
(cm-1)

u(MHz)

±10

V(ms 1) 

±4

0.64 2 40 236
0.67 254 235
1.11 401 228
1.28 459 224
1.44 507 222
1,52 536 222
1.71 597 219
1.92 660 217
2,02 697 216
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calculated in the way described before (equation 5.5).
As can be seen from Figure (5.10) the observed sound 

velocities agree with Vc within the experimental errors.

5.2.3. Measurements on A-Ne Mixture
Table (5.10) shows the results of measurements on 

the A-Ne mixture. The experimental results were treated 
in the same way as were the results from the Kr-He mixture, 
described in the previous section. The data from the 
sound velocity calculations are plotted in Figure (5.11).

Table 5.10: Brillouin shifts and sound velocity
in A-Ne mixture as a function of 
concentration

Argon Pressure = 6. 45 atm.; K = 1.915x10s cm-1

Ne
Concentra

tion
u B (MHz) Aw B (MHz) V (ms 1 ) Vc(ms 1 ) V0(ms'1)

±.05 ±10 ±5 ±4 (Calculated)

0.00 972 59 319 319 319
0.06 994 64 326 324 326
0.10 1011 72 332 330 334
0.15 1021 90 335 336 342
0.20 1045 97 343 343 349
0.25 1068 116 350 351 356
0.30 1093 120 359 358 364
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The experimental sound velocity data agree with the 
predicted values within the experimental accuracy. This 
is clearly indicated by Figure (5.11).

The measured Brillouin linewidths are plotted as a 
function of concentration in Figure (5.12). The broken 
line through the points is drawn only to guide the eye.
We have also shown the contribution to the linewidth 
expected from the viscosities. This is indicated by 
the smooth line in the graph. The viscosity line in the 
graph may be in error by as much as 15%. This is because 
experimental data are unavailable, and the viscosity of the 
mixture was obtained by direct interpolation of the 
viscosities of the pure components using the euqation:

n = 2 x  tk ( 5 . 8 )i 1 1

where x and are the molar fraction and viscosity 
of component i respectively, This procedure was felt 
justifiable because the contribution of the viscosity term 
to the linewidth varies very slowly with concentration.
This is because the viscosity contributes to the linewidth 
in the form of n/p, and the density, p increase with 
concentration.

The mutual diffusion coefficient, Di2 of the mixture 
was estimated in a similar way as described for the Kr-He 
mixture. The results are tabulated in Table (5.11), where 
the experimental results are compared with the theoretical

171
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values, Di2 (calc.). Table (5.11) shows a deviation of 
the experimental values of Di2 from the theoretical values 
for concentrations greater than 0.1. Further increase in 
concentration produced an increase in the value of Di2 
while it is predicted that D 1 2 should decrease with 
concentration (effectively the pressure).

Table 5.11: Mutual Diffusion Coefficient (Di2) of 
A-Ne Mixture

Ne
Concentra

tion
D-i 2 (calc. ) 
(cm2 s-1)

D 1 2 (Expt. ) 
(cm2 s 1) 

± .01

.05 .042 .04

.10 .040 .04

.15 .036 .04

.20 .032 .05

.25 .029 .05

.30 .025 .06

5.2.4 Discussion

5.2.4.1 Spectrum of light scattered from binary gaseous 
Mixtures

Our experimental results on the Kr-He and A-Ne 
mixtures show that the velocity of propagation of sound
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waves in these mixtures is lower than that calculated 
for the adiabatic sound velocity, V0 . However, the 
agreement of the observed sound velocities in the two 
mixtures with that predicted theoretically assuming 
coupling between the sound modes and the diffusion modes 
is very good. Also in the case of the Kr-He mixture the 
observed dispersion of the sound velocity agrees very 
well with that predicted by the same theory, over the range 
of scattering vectors at which the experiment was 
performed.

In the Kr-He system the range of concentrations 
and scattering vectors over which the experiment could 
be performed were dictated by the properties of the 
mixture. For concentrations higher than 0.03 (the 
maximum in this work) the excessive broadening of the 
lines made it impossible to resolve discrete peaks in 
the spectrum. This is illustrated by the series of 
spectra in Figure (5.13). This led to a difficulty of 
interpreting the spectrum at higher concentrations, i.e. 
we can no longer treat it as being the result of discrete 
energy transport processes.

The limit of the scattering vector, K, is dictated 
by the mean free path of the system. As K is increased 
we observed the transition of the scattering process from 
the hydrodynamic to the kinetic limit, as illustrated by 
the spectra in Figure (5.14). The scattering process can 
then no longer be treated by purely hydrodynamic theories.
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Figure 5.13: S p e c tra  o f light s c a tte re d  fro m  K r -H e  m ixture at various c o n c e n tr a t io n s .
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Figure 5 .14: Spectra of light sca tte red  fro m  K r-H e  m ixture  at various scattering  
ang les  ( i.e. sca tte rin g  v e c to rs ) .
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5.2.4.2. Calculation of Atomic Radius from Di2(17)

From table (5.8) we see that the observed values of DJ2 
for the Kr-He system shows reasonable agreement in 
magnitude as well as corresponding pressure dependence 
with the theoretical values, Di2(calc.).

For the A-Ne mixture, however, the observed D i2, as 
shown in Table (5.11) increases with increasing concentration 
(and pressure) for concentrations greater than 0.1. This 
deviation in the observed values of Di2 arises from a 
deviation in the linewidths of the Brillouin lines. At 
this stage we can only speculate on the cause of this 
effect. There are two factors which could cause this 
deviation. These are the concentration and the ratio of 
atomic masses of the constituents. In the Kr-He mixture 
the concentration was very low and the ratio of atomic 
masses large, while in the A-Ne mixture the concentration 
was high and the ratio of the atomic masses was small.
(The shortage of time has prevented further investigation 
into this effect to be made in this work).

Using the observed mutual diffusion coefficient we 
can (in principle) use equation (5.7) to obtain the atomic 
radius, 0 i2, of the mixture (17). Taking the mean of the 
values of Di2 for the Kr-He mixture and the lower 
concentration values (C < 0.1) of D n  for the A-Ne 
mixture we obtain 0 i2(Kr-He) = (3.6 - 0.5)xl0 8 cm and 
aj z(A-Ne) = (3.1 - 0.5)xlO 8 cm. These are compared with 
the values of %(ax + a2) (16) for the mixtures in Table (5.12).



We have also shown in Table (5.12) the values of Di2 
(reduced to STP) and the values of previous measurements 
quoted by Chapman and Cowling (17).
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Table 5ol2: D i2 reduced to STP and a j2 for 
Kr-He and A-Ne mixtures

Mixture Dj 2(cm2 e _1) 0 ’2xl08 h (Oi+a2)xlO8
Ref (17) This work (cm) (cm) (16)f

± .08 ± .5

Kr-He 0,558 o 9 3,6 3.16
A-Ne 0.276 0.28 3.1 3.11

5.3. Concluding Remarks
/The experimental results in this work show that 

the hydrodynamic equations describe adequately the 
evolution of the correlation functions of the thermodynamic 
parameters in simple liquid systems and gaseous systems 
at moderate pressures. This is illustrated by the agreement 
between theoreticalpredictions and experimental observations 
in the systems investigated.

This work also demonstrated the versatility and 
accuracy of light scattering as a tool applied to fluid 
systems.
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APPENDIX I

The Solution of Differential Equations using 
Laplace and Fourier Transforms

As seen in the text, in Chapters II and III 
(equations 2„27 - 29 and 3.8 - 11) the linearized 
hydrodynamic equations are differential equations 
involving derivatives with respect to r and t. The 
use of integral transforms in solving such equations is 
very well known,

These integral transforms have been introduced in 
the text as a sequential outcome of the discussion towards 
the derivation of the form of the spectrum of the scattered 
light. Hence we introduced the Fourier transform:

X(K) = dre"lK,r X(r) (1.1)—  00

and the Laplace transform:

X(s) = /°° dt e“St X(t) ; s = iw (1.2)o

With the definitions (1.1) and (1.2) differential 
equations are transformed into multiplications by powers 
of -iK and -s; thus we have the transformation relations:
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(1 .3 )

VX (r, t) --> -i K X (K, t j

VX (r, t) --> -i K.X(K, t)

V2X(r, t) --> -K x (K, t)

X (r, t) — > sX(r, s) - X (r, 0)

As an example of the application of these transformations 
we take the energy transport equation (2.29):

¿Tir, t) cy W  1; ^£(rf t)e atp sCv at' ’ 7---v- 1.. w  - XV2 T (r, t) = 0 (1.4)

Applying Laplace transform on the time coordinate in 
(1.4) we obtain:

p ,CV [sT(i, s) - T {r / 0)] - i sP(i- s> - 0)]

- AV2T(r, s) = 0 (1.5)

The spatial coordinate can then be Fourier transformed to 
yield:

c  ( y - l )P 0C [sT(K, s) - T (K, 0)] - - Z — -- £sp(K, s) - p(K, 0)]
8

+ Xk "T(K, s) = 0 (1 .6)
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On rearranging (I,6) we get the familiar form:

CV (Y-1)= T(K, 0) pDCv - p (K, 0) -- (1.7)

Similarly, the transformations can be applied to the 
other hyrdodynamic equations to obtain X(K, s) in terms 
of X(K, 0) .

The inverse Laplace transformation is facilitated,
as described in the text, by solving the dispersion
equation D(s) =0. A scheme for finding the approximate
roots of polynomial equations in a power series of the
coefficients is outlined in appendix II. Having obtained
the roots of the dispersion equation, say, si, S 2 / . .. sn ,
it is then a matter of algebraic manipulations to break
up yS into partial fractions:D ( s )

whose inverse can be obtained from tables of standard

N (s) _ _a + B , ... R
(S —S 2) (S“Sn) (1.8)D(s) (s-Si)

Laplace transform pairs.
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Solution of Polynomial Equations in terms of 
a power series of the Coefficients

Here we outline the scheme for obtaining approximate 
solutions to a polynomial equation in terms of a power 
series of the coefficients. This scheme is applicable 
to polynomial equations whose coefficients are power 
series of certain parameters which we can form the 
solution of, i.e. the equation is of the form:

Xn + AaXn-î + (Ba + ea2)Xn-2 + ... + ar = 0 (II.1)

This scheme is easily illustrated using a specific example. 
To this end we take the dispersion equation (2.36), which 
is of the form:

X3 + AazX2 + (Ba2 + C . a h) X + Da“ = 0 (II.2)

to which we try to find solutions of the form
X = a0 + aja + a2a2 + ... (II.3)

By inspection we can infer that a0 = 0.
Hence we have in this case

X = asa + a2a2 + ... (II.4)

APPENDIX II
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Substituting {11,4) into (II.2) and equating successive 
powers of a to zero we get (for the two lowest powers of
a)

a2 (a-i2 + B) = 0 (II.5)

3 a j 1 a j  + Aa-i * + B a 2 + d  — 0 ( 1 1 , 6 )
(II.5) gives 3 values of a3, which are

0

Substituting these values of a«, into (II.6) we get the 
values of a2 which are

! -D/Ba2 =
Il “%(A - D/B)

Putting these values of aj and a2 into (II.4) we get the 
roots of the equation (II.2) to the second order in a:

X = -(D/B) a2

X^ = +(/-B)a ~ h (A-D/B)a2'T

X_ = - (/-B)a (A-D/B)a2

> (II.7)
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The process can be extended to higher orders if necessary.
The complication increases with increasing order of 

the polynomial equation, however, this scheme yields solutions 
much easier than solving the equation algebraically.
Indeed for polynomial equations of order > 3 where an 
exact algebraic method is not available this scheme is 
very appropriate.
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APPENDIX III

Procedure for Preparing a Gas Mixture of a given 
Concentration

Here we outline the derivation of equations (4.32-33) 
in the text, concerning the relationship of the pressure 
and concentration of the gas mixture. Ideal gas condition 
is assumed throughout this discussion.

For a given volume the partial pressure P^ of the 
component i of the mixture is proportional to the molar 
fraction, x^, of the component. Writing x as the molar 
fraction of the second component, we have

P - P0
x = ------ (III.l)P

or
P = P„/(l - x) (III.2)

where P is the total pressure of the mixture and P0 is the 
pressure of the first component, (already in the sample 
volume).

The concentration, C, of the mixture is defined
as:

mass of component #2 
- mass of component f 1

xMz
(l-x)Mi (III.3)
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where Mi and M2 are the molar masses of the components 
respectivelyo
Rearranging (III,3) we obtain:

CM?
x = -------—

CMi + M2

Putting (III.4) into (III.2) we have the result:

(III.4)

P Mi
+ cm7> (III.5)

Now, as shown in Figure (4,23) the system consists 
of the sample cell and the pressure line. Here we define 
the following:

V-,is -  volume of pressure line,

v c = volume of sample cell,
R - w
pc = pressure in the cell,
p = pressure required in the cell,

v l = pressure required in the pressure

The procedure for changing the concentration of the 
mixture is to introduce enough of the second component into 
the cell to a pressure given by (III.5). To obtain this 
the pressure line is filled up to a pressure P^ and the 
system is then isolated from the gas cylinders. The gas 
in the pressure line is then allowed to flow into the
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sample cell until the pressures in the sample cell and 
pressure line equalise. This process is described by the 
equation:

pivz + pcvc - p<vi + V (III.6)

Rearranging this equation and substituting (III.5) for P 
we finally obtain:

Pl = P + R (P - P )

The value of R has to be determined experimentally.
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FUR" I : =  1 " STEP"1 "UNTI L*'  Np”UU"
11 <~' • / DC I 3 > MAX"THEN"MAX :: =  Y'D C 13 J

F UK" I :  =  1"STEP" 1 "UNT 11.F'Nft"f)G11
DC I 3 :  = Y I J  CI3/MAX )

MIN:-MAX;
"FOB" I : = 1 " STK P" r'UiMTIL’W ' D u "
" I F" Yl) 1‘ I 3 <Ml N"AND" YDC i ] >0 . 0 0 0 0 0 D" TH£N"MI N : = Y0C I 3 ;
K : = 1 .? "FOB" I : =3"STEP" 1 "UNTI L" < NP-ft) "|jQ"
"BEGIN" "IF"YDC I 3 >YDC I - 1 ]"AND"YDC I I > Y DC I + 1 3 "THEN"
"BEG I N" .J : = I ; "I F" Y O U  3 > 1 Oil MX IN" l’HMtv"
"BEGIN" " IF"YDC J- 1 3>YUCJ-ftJ"AND"YDCJ+13>YDCJ + ft3"THEN"
"BEGIN" IMCK3;=JJ YRKAXCK3:=YDCIMCK 3 3; XPEAKCK3;= XDCIMCK3 3;

H ;=K;k ;=K+l; "e n d ";"END";"END";"END";
"Fui\"K : = 1 "STEP" I "! INTI L"R"DLJ"
"PHI NT".'¿ADELINE, ' 'S5' ' , 'PEAK' »K» 'AT' »KPEAKCK3y ' 'L' ' ;
;K‘H : =( YPEAK C ft 3 + Y PEAK [53 ) /ft;
I3H : =< Y PEAK' I 1 3+YPEAKC 3 3+YPEAK I A 3 +YPE AK C 6 3 ) / A ; RET: =GK/EH;
"END";

"¡3EG I N"”REAL"PT; "ARRAY"GC 1 : R3 ;'
"FG.V'K : = 1 "STEP" r'UNTI L'W'DG"
"BEGIN" G C K 3 : = 0 ,• 0; I:=IMCK3; PT:=YDCI3;
J : -1; *
I NO: J :=J+1; "IF"YDCJ3 >PT/ft"THEN""GUTu"INC;
G C K 3 : = J - I ;
J : = I ; i
DEG : J : =.J - 1; "I F"YDC J 3 >PT/2"THEN""GOTO"DEC;
GCK 3:=(GC K 3 + (I -J))/ft;
"END";
"F.OR"K : = 1 "STEP" 1 "UN fl L"H"00"
"PRINT" " S S "  »GCK3» " L "  i
G1 : =C G C ft 3 + G C 3 3) /ft; Gft: = C GC 1 3 + 6 C 3 3 + G C X 3 + G C 63 ) /A;
"END” ;
"PE I N f" SAMEL l-NE»Gl > Gft »XPEAK C 1 3 > XPEAK C 2 3 » X PEAK 133» XPEAK C A 3 » APEAK C 3 3 > 
XPEAKC 6 3 ," L "  ;
"BEGIN" j
" t NT EGER" >60;.
" HE A L'' IJ G 1 > D Gft » DX 1 > OX ft » DX 3 » l)X A > DX 5 > DX 6 > I* N > h 1 » i' ft » t* 3 » I' A > r 5 > F 6 » G 1 > G ft »
B 1» Hft »B3» 8A» B5» 06 » A 1» A2 » X 1»X2 » X3 » X 4» Xb» X6 » GR1» GF\2 » GX 1>GA ft > GX 3 >GX A > 
’gX5»GX6»RES;
XI:=XPEAKCi 3; Aft:=XPEAXCft 3; X3:=XPEAKC33; X A:=XPEAKCA 3; X5:=XPEAK£5 3 
X6:=XPEAKC63;
C 1:=G1; Cft:=Gft;
0: = 0 ;
I TEh T 1 : RES: =1)G 1 ; =DG2 : = 0 • 0 ;
A 1 := G 1 *G 1; Aft:= RET*Gft*Gft i 
"FOR" I : = 1"STEP" 1 "UNTI'L"NP"DU"



IV. 2

••BEGIN"
Fl : = XDE I J-X 1 ;
FF:-XDCI]-XF;
F 3 : = X 0 E I ] - X 3 í 
F A : = A 0 [ I ] - X 4 ¡
F 5 :=X O L I 3 — X !> J 
F6 : =XD C 1 ] -XX ; it 
B 1 : = F1*F1 +GF*Gö’; 
t ìP  : =FF*FF+Ü 1 *G 1 ;
M 3 i —i' 3* I* .3+ 3 P * G P >
3 4 : - F 4 * F 4 + G P * G F ;

1 tí 5 : = F 5 * F 3 + G 1 * G 1 ;
B 6 : = (• 6 * i1 6 + G P. * G F ;

•’ N: =A1 ■■■■(. 1 . 0 /O? + 1 • n/ii'5) + A P . * ( 1 . 0/31 + 1 . 0/33+ i . 0/34+ 1 . 0/06) -/DE I 3;
FE S : = FF S + ï  0 E 1 J * F N * F N ;
!.) G 1 :=0G1+F*G1*C CF 2 *  FF)/CB 2 *  h 2 ) + ( F 5 *  F S)/C 0  5 *  B 5) > *  F N ;
DGF : = D G 2 + 2 * RE T * G F * < CF1*F1 >/<Bl *ü 1 ) +( F3*F3) /< 03*133) + ( F 4* F 4) /( B 4+34) 
+ C F 6 * F 6)/(36*06))*FN;

"END";
GO 1 := G 1-RES/CDG1*NP) ;
G ¡•'P : = G F - R E 3 / ( Ü G2 * N i 1 ) >

H : = 0 J O := 0+ 1 ;
" 1 F ' * A i i .3 ( GF 1 - G 1 ) >0 • 0 1 " AND" G À 1 >C 1 /2.0"ÏKEN"
"BEGIN" "IF”' GR1 <C 1. "THEN"

• "BEG l isi" G 1. : = Gf< 1 ; ¡4: =M+ 1 j "END"; ' "END";
"IF" A3 SC G RF-GF) >0.01 " A¡\jD"GKF >CF/F • 0"THF.N"
'"BEGI N" " I F"6RF<CP. "THEN" ‘
"BEGIN" GP:=GnF; i'-i : = M + 1 J "END"; "END";

" P f< I N ï" S A ME LI NE » G 1 , ' 'S3' ' » ( 5 2 * "L' ' ;
" I F’!-M> 0 " A N | ) " Q <  1 |t"THEN""GÜTü"I TEK Tl ;
0 : = 0 ;

Al :=G1*G1 ; AP :=KET*G8*GP;
I TEKTF : KFS ; = OX1 := 0X 2:=  0 X 3 : =DX4;=0X5 :=0X6 :=0•0 ;

"FOR" I : = 1 "S 1ER" 1 "UNTI L"NP;,0Ü"
"BEGIN"
Fl ;=X0 E I3-X1 ;
F P. : = X DEI ] - a  2  ;
F 3 : =X 0 E I ] - X 3 ;
F4 : = X D E I T-X4;
FS : =X!.)E Í J -X5;
F 6 :=XDEI 1 - X 6 ;
B 1 : = F 1 * F 1 + G F * G P. ;
3 F : = F P + F P. + G 1 * G 1 ;
03 : =F3*F3+GP*GP;
04 :=F4*F4 +GP*GP;
B 5 : = F S * F 5 + G 1 * G 1 ;
06 : = F6*l\6 + GF*'GF î

FN := A 1 *( 1 . 0/BF + Í . 0/BS)+AF*( 1 . 0/B1 + 1 . 0/33+1 . 0/04+1. 0/B6)- YDE I I;
H E S : = R F. S + YOE 1 3*FN*FN;
DX 1 ; = 0X 1 + F * i -I E T * G F * G F * F 1 /CB1*01 ) *FN;
I.) X F : = 0 X F + F * G 1 * G 1 * F P. / ( B 2 * 3F) * F N ;
0X3:=0X3 + S*RE T * GF * G F * F 3/(1<3*B3>*FN;
U X 4 : = D X 4 + 2  *  K E ï  *  GF* GF* F 4/C Ú 4 *  ü 4 ) *  F N ;
OX5:=0X5 + F*G1*G1*F5/CB5 * B 5)* FN ;
DX6:= OX 6 + 2* RET* GF* GF * F6/CB6*B6)*FN;
"END";
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