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Multi-annual to decadal changes in climate are accompanied by changes in

extreme events that cause major impacts on society and severe challenges

for adaptation. Early warnings of such changes are now potentially possible

through operational decadal predictions. However, improved understanding

of the causes of regional changes in climate on these timescales is needed

both to attribute recent events and to gain further confidence in forecasts.

Here we document the Large Ensemble Single Forcing Model Intercomparison
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Project that will address this need through coordinated model experiments

enabling the impacts of di�erent external drivers to be isolated. We highlight

the need to account for model errors and propose an attribution approach

that exploits di�erences between models to diagnose the real-world situation

and overcomes potential errors in atmospheric circulation changes. The

experiments and analysis proposed here will provide substantial improvements

to our ability to understand near-term changes in climate and will support

the World Climate Research Program Lighthouse Activity on Explaining and

Predicting Earth System Change.

KEYWORDS

decadal climate, attribution, external forcings, large ensembles, model

intercomparison, Lighthouse Activity

Introduction

Climate variability and change cause major impacts on

human society and natural ecosystems. Of particular concern

are large-scale changes in atmospheric circulation, since they can

alter rainfall patterns, threatening food and water security, and

increase the chances of extreme events. Prominent examples on

decadal timescales include the United States “Dust Bowl” during

the 1930s (Schubert et al., 2004), the Sahel droughts during the

1970s (Kandji et al., 2006), the mid-1990s increase in Atlantic

hurricane activity (Goldenberg et al., 2001), the early twentieth

century warming (Hegerl et al., 2018) and the early twenty-first

century slowdown in global surface warming (Medhaug et al.,

2017). Recent multi-decadal trends in atmospheric circulation

also likely contributed to several extreme seasonal events

including heatwaves in Europe and Russia, floods in Pakistan,

and wildfires across the west coast of the United States (Teng

et al., 2022) and Australia (Canadell et al., 2021), and even daily

extremes such as rainfall and storms are strongly modulated

by multidecadal fluctuations in large scale patterns such as the

North Atlantic Oscillation (NAO; Scaife et al., 2008; Dawkins

et al., 2016). Some recent extremes are also far outside the range

of previously observed variability, causing severe impacts and

creating serious challenges for climate adaptation (Fischer et al.,

2021). Hence there is an urgent need to understand the causes of

regional multi-annual to decadal changes in climate.

Decadal climate predictions are now issued operationally

by the World Meteorological Organisation (WMO) and offer

the potential to provide early warnings of changes in climate

(Kushnir et al., 2019). By comparing retrospective forecasts

(hindcasts) with observations, it has been established that

decadal predictions can potentially forecast many aspects of

climate over the coming years, including Atlantic Multidecadal

Variability (AMV, Doblas-Reyes et al., 2013; Hermanson et al.,

2014; Yeager and Robson, 2017; Borchert et al., 2021), Atlantic

hurricane activity (Smith et al., 2010; Caron et al., 2018),

Sahel rainfall (Sheen et al., 2017; Yeager et al., 2018), droughts

and wildfires in southwestern United States (Chikamoto et al.,

2017), carbon fluxes (Li et al., 2019; Lovenduski et al., 2019a,b),

European precipitation and temperature in summer (Müller

et al., 2012; Yeager et al., 2018) and winter (Simpson et al.,

2019), summer temperatures in north-east Asia (Monerie et al.,

2018), the occurrence of warm summer temperature extremes

(Borchert et al., 2019), Tibetan Plateau summer rainfall (Hu and

Zhou, 2021), and winter atmospheric circulation in the North

Atlantic (Athanasiadis et al., 2020; Smith et al., 2020). Each year

the WMO issues a Global Annual to Decadal Climate Update

(GADCU, Hermanson et al., 2022) that synthesizes the forecasts

from several international centers. These forecasts show clear

signals for atmospheric circulation and precipitation, as well

as for near surface temperature (Hermanson et al., 2022), but

greater confidence is needed for them to become “actionable”. In

particular, skill in hindcasts does not guarantee skill in forecasts

since the drivers may be different. Similarly, absence of skill in

hindcasts does not necessarily mean absence of skill in forecasts

since the drivers that produce predictable signals may only just

be emerging. Understanding the drivers ofmulti-annual changes

in climate is therefore essential for gaining further confidence

in forecasts.

Despite its importance, our ability to understand and

attribute multi-annual to decadal changes in climate is

immature, as evidenced by the recent debate over the slowdown

in global surface warming (Medhaug et al., 2017). To address

this, the World Climate Research Programme (WCRP) has set

up a Lighthouse Activity on Explaining and Predicting Earth

System Change (LHA-EPESC) with three major themes (Findell

et al., 2022): (i) monitoring and modeling Earth system change;

(ii) integrated attribution, prediction and projection; and (iii)

assessment of current and future hazards. A key component

of this especially for theme (ii) will be the Large Ensemble

Single Forcing Model Intercomparison Project (LESFMIP)

experiments proposed here.
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Potential drivers of multi-annual to
decadal changes in climate

On multi-annual to decadal timescales climate is potentially

influenced by several factors: changes in greenhouse gas

concentrations, anthropogenic aerosols, volcanic aerosols, solar

irradiance, ozone, land use, biomass burning, dust, and internal

variability especially involving the ocean (some of which may

be predictable). In most regions a long-term warming trend

from greenhouse gases has been partially offset by the cooling

effects of anthropogenic aerosols. However, aerosol effects are

much more heterogeneous both in time and space, due to

strong regional patterns of emission changes and indirect effects

through interactions with clouds. Many studies have shown

potential anthropogenic aerosol impacts on decadal climate

including AMV (Booth et al., 2012; Bellucci et al., 2017; Murphy

et al., 2017; Bellomo et al., 2018; Watanabe and Tatebe, 2019),

Atlantic Meridional Overturning Circulation (AMOC, Menary

et al., 2020; Hassan et al., 2021), the Aleutian Low and Pacific

Decadal Variability (PDV, Allen et al., 2014; Smith et al., 2016;

Takahashi and Watanabe, 2016; Oudar et al., 2018; Wilcox

et al., 2019; Dittus et al., 2021; Dow et al., 2021), mid-latitude

atmospheric jets (Wang Y. et al., 2020; Dong et al., 2022),

southern hemisphere atmospheric circulation (Gillett et al.,

2013; Rotstayn et al., 2013; Wang H. et al., 2020), Atlantic

hurricanes (Mann and Emanuel, 2006; Dunstone et al., 2013),

Sahel rainfall (Ackerley et al., 2011; Marvel et al., 2020; Hirasawa

et al., 2022), and monsoon rainfall (Bollasina et al., 2011; Polson

et al., 2014; Ma et al., 2017; Zhou et al., 2020), though aerosol

indirect effects are particularly uncertain and these links are still

debated (Oudar et al., 2018; Zhang R. et al., 2019; Baek et al.,

2022).

Major volcanic eruptions inject aerosols into the

stratosphere, warming the equatorial stratosphere and cooling

global mean surface temperature for several years. Warming of

the equatorial stratosphere strengthens the polar vortex in both

hemispheres with subsequent surface impacts (Robock, 2000;

Shindell et al., 2004), though the size of the response (Azoulay

et al., 2021; DallaSanta and Polvani, 2022) and whether it is

underestimated by climate models (Stenchikov et al., 2006;

Driscoll et al., 2012; Swingedouw et al., 2017; Hermanson et al.,

2020) is debated. Although not predictable in advance, volcanic

eruptions are important for understanding climate variability

and provide predictability for several years after they occur

(Timmreck et al., 2016; Ménégoz et al., 2018). Multi-annual to

decadal impacts of volcanic eruptions include AMV (Otterå

et al., 2010; Knudsen et al., 2014; Swingedouw et al., 2017; Wang

J. et al., 2017; Birkel et al., 2018; Mann et al., 2021), AMOC

(Stenchikov et al., 2009; Mignot et al., 2011; Iwi et al., 2012;

Zanchettin et al., 2013; Swingedouw et al., 2015; Hermanson

et al., 2020), El Niño (Maher et al., 2015; Khodri et al., 2017; Zuo

et al., 2018; Hermanson et al., 2020), PDV (Wang T. et al., 2012;

Gregory et al., 2019), tropical cyclones (Evan, 2012; Pausata

and Camargo, 2019), and global precipitation patterns (Iles

and Hegerl, 2014; Tejedor et al., 2021) including Sahel rainfall

(Haywood et al., 2013), monsoons (Fasullo et al., 2019; Zuo

et al., 2019a) and rainfall in global arid regions (Zuo et al.,

2019b).

Aerosols can also change through biomass burning and

natural variations in dust. Biomass burning has been implicated

in decadal changes in temperature and the hydrological cycle

(Fasullo et al., 2022; Heyblom et al., 2022), and dust variations

have been linked to AMV, Sahel rainfall and tropical cyclones

(Evan et al., 2011; Wang C. et al., 2012; Strong et al., 2018).

Although changes in solar irradiance are small, they

can have significant impacts on climate (Gray et al., 2010).

“Top-down” influences occur through increases in ultra-violet

radiation and associated ozone feedbacks which warm the

tropical stratosphere, strengthening the polar vortex (Kodera

and Kuroda, 2002) and promoting a positive NAO. This is

seen both in the response to the 11-year solar cycle (Ineson

et al., 2011; Gray et al., 2013; Andrews et al., 2015; Thiéblemont

et al., 2015; Ma et al., 2018; Kuroda et al., 2021) and on

multi-decadal timescales (Shindell et al., 2001; Ineson et al.,

2015; Maycock et al., 2015; Chiodo et al., 2016; Spiegl and

Langematz, 2020), potentially influencing the Atlantic Ocean

and the AMOC (Scaife et al., 2013; Menary and Scaife, 2014).

“Bottom-up” influences occur mainly through changes in visible

radiation which particularly affect the tropical Pacific, though

there is uncertainty whether increased solar irradiance causes

a La Niña response (Meehl et al., 2009) or a reduction in the

Walker Circulation more typical of El Niño (Misios et al., 2019),

and whether the response depends on the timescale of the

forcing (Meehl et al., 2013). Furthermore, changes in the tropical

Pacific may generate Rossby waves that could impact the NAO

(Swingedouw et al., 2011; Chiodo et al., 2016). Solar influences

on tropical tropospheric temperatures have also been suggested

to influence multi-decadal variations of the Southern Annular

Mode (Wright et al., 2022).

Since stratospheric ozone warms the stratosphere by

absorbing solar radiation, depletion of ozone over the Antarctic

caused local cooling that increased the meridional temperature

gradient and promoted a positive SAM in austral summer

(Thompson and Solomon, 2002; Son et al., 2010; McLandress

et al., 2011; Polvani et al., 2011; Thompson et al., 2011).

Conversely, ozone recovery tends to shift the SAM toward

the negative phase, opposing the positive SAM signal driven

by greenhouse gases (Perlwitz et al., 2008; Banerjee et al.,

2020). Stratospheric ozone-driven changes in the SAM are

accompanied by changes in the Southern Hemisphere Hadley

cell and associated sub-tropical jet (Jebri et al., 2020) and

precipitation (Kang et al., 2011; Delworth and Zeng, 2014).

Tropospheric ozone may also affect tropical expansion (Allen

et al., 2012) and Southern Ocean warming (Liu et al., 2022).
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Land use changes affect surface albedo, evapotranspiration

and surface roughness, and hence the exchange of heat,

moisture, and momentum between the land surface and

the atmosphere (Findell et al., 2007; Lawrence et al., 2016;

Pongratz et al., 2021). This can result in local changes in

temperature, rainfall, and associated extremes (Mueller et al.,

2016; Findell et al., 2017), and remote impacts are possible

through atmospheric teleconnections (Snyder, 2010; Teng et al.,

2019, 2022; Wang et al., 2019).

Multi-annual to decadal changes in climate may also occur

in the absence of external drivers through natural internal

variability (Cassou et al., 2018), especially in the Atlantic (Knight

et al., 2005; Delworth et al., 2007), Pacific (Power et al.,

2021), and Southern oceans (Zhang L. et al., 2019), but also

the atmosphere (Dimdore-Miles et al., 2022). Moreover, many

multi-annual to decadal changes in climate may occur through

a combination of external forcing and internal variability

(e.g., Huang et al., 2020; Bonnet et al., 2021; Wu et al.,

2021) complicating the separation of forcing’s from the natural

variability in observed changes.

LESFMIP experiments and analysis

Observations alone are insufficient for robust attribution

because it is difficult to separate multiple external drivers and

internal variability, causality cannot be assessed unequivocally,

and they are not yet available to assess forecast signals. Hence,

we propose numerical model experiments that are designed

to isolate the impacts of individual external drivers (Table 1).

To the extent that the representation of the relevant physical

processes in a model can be trusted, these model experiments

can indicate the causal influence of external forcing factors on

historical trends. However, analysis of these experiments must

consider potential model errors (see below), non-additivity of

drivers, potential errors in forcings (Wang et al., 2021; Fasullo

et al., 2022) and potential impacts of missing processes including

glacial melt (Rye et al., 2020; Devilliers et al., 2021). Any changes

that cannot be explained by external factors after accounting for

all of these factors would be assumed to be internal variability.

Experiment set 1 will enable the modeled response to

individual forcings to be determined over the historical period.

Experiments 1.1–1.4 are identical to those proposed by the

Detection and Attribution Model Intercomparison Project

(DAMIP, Gillett et al., 2016) but with increased ensemble size.

Experiment 1.5 (hist-totalO3) has the same ozone prescribed

as that used in the historical and SSP2-4.5 simulations.

In models with interactive ozone chemistry, the simulated

ozone from the historical and SSP2-4.5 simulations should be

prescribed, though we encourage groups that are able to assess

sensitivities to this (Ivanciu et al., 2021). These simulations are

complementary to the hist-stratO3 experiments in DAMIP and

are included here to complete the set of individual forcings and

allow their additivity to be assessed by comparing with All-

forcing simulations (experiment 3.1). We encourage groups to

perform hist-stratO3 with at least 10 ensemble members if they

are able to allow the effects of tropospheric and stratospheric

ozone changes to be separately identified. Experiment 1.6 is

an important addition to assess the impact of land use and

land cover changes in a consistent manner, providing additional

information to the experiments proposed in the Land UseModel

Intercomparison Project (Lawrence et al., 2016).

Experiment set 2 extends set 1 by using updated estimates

and projections of forcings. This will be especially important

in the event of the next future major volcanic eruption, but

will also allow deviations in aerosol and GHG emissions and

other forcings from the scenario used in experiment set 1 to be

assessed, potentially allowing the effects of mitigation measures

to be simulated, and possibly detected in observations (e.g.,

Tebaldi and Friedlingstein, 2013). A focus of LHA-EPESCwill be

to create updated forcing datasets for experiment set 2 in a timely

manner, ensuring their compatibility with the CMIP6 forcings

used in experiment set 1. Experiment set 2 extends up to 10 years

into the future to provide attribution of forecast signals as well

as improved attribution of recent changes.

Experiment set 3 enables the additivity of multiple forcings

to be assessed (Shiogama et al., 2013) by comparing with the

sum of individual forcings from experiment set 1. Note that solar

and volcanic influences on ozone that were applied in the single

forcing DAMIP protocol will need to be accounted for.

Experiment sets 4 and 5 are similar to 1 and 2 except that

each individual forcing is held constant with all others specified

according to the All-forcing simulations (Deser et al., 2020).

Experiments 3.1 and 3.3 are therefore also required to make use

of experiments 4 and 5. By comparing with experiment sets 1

and 2 experiment sets 4 and 5 will allow the influence of changes

in the background climate on attribution to be assessed (Meehl

et al., 2004; Ming and Ramaswamy, 2009; Deng et al., 2020), and

the assumption of linear additivity of the response to forcings to

be tested (e.g., Bindoff et al., 2013).

Large ensembles (ideally 50 members, but a minimum of

10) are requested in order to quantify forced signals on regional

scales in the presence of internal variability. This requirement

exists regardless of model errors, but is amplified by specific

challenges in simulating changes in atmospheric circulation

which are discussed below. Although fully coupled climate

models are needed to simulate the full responses, we also

encourage the use of a hierarchy of models, including slab

oceans, to assess the roles of ocean-atmosphere coupling and

dynamic ocean variability (e.g., Chemke et al., 2022).

A key challenge in analyzing these experiments will be

accounting for model errors (Bellprat et al., 2019). For example,

although some models simulate AMV in response to external

forcings that closely matches observations (Booth et al., 2012;

Murphy et al., 2017; Bellomo et al., 2018) whether they do so for

the right reasons is debated (Zhang R. et al., 2019). In particular,
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TABLE 1 LESFMIP coordinated model experiments.

Experiment name Description Tier Start year End year Notes

1. Single forcing historical simulations

1.1 hist-GHG Well-mixed

greenhouse-gas-only

historical simulations

1 1850 2020 As DAMIP but with larger ensembles (10 members

minimum with a target of 50 members). To fully

capture the effects of volcanic forcing and solar forcing

1.2 hist-aer Anthropogenic-aerosol-

only historical

simulations

1 1850 2020 in models with prescribed ozone, ozone changes

associated with solar and volcanic forcing should be

prescribed in the hist-volc, hist-sol and hist-nat

1.3 hist-sol Solar-only historical

simulations

1 1850 2020 simulations, as in the DAMIP simulations. Note that

ozone changes should not be prescribed in hist-GHG.

1.4 hist-volc Volcanic-only historical

simulations

1 1850 2020

1.5 hist-totalO3 Ozone-only historical

simulations

1 1850 2020

1.6 hist-lu Historical simulations

with only land use

changes

1 1850 2020 New experiment

2. Single forcing projections

2.1 fut-GHG As 1.1 but with updated

forcings

2 2015 onwards 2024 onwards Ongoing start dates (yearly max frequency) as updated

forcings become available. Each simulation to be 10

2.2 fut-Aer As 1.2 but with updated

forcings

2 2015 onwards 2024 onwards years long to enable improved attribution of recent

changes and attribution of forecast signals. This will be

2.3 fut-sol As 1.3 but with updated

forcings

2 2015 onwards 2024 onwards especially important in the event of a future major

volcanic eruption, but will also allow deviations in

2.4 fut-volc As 1.4 but with updated

forcings

2 2015 onwards 2024 onwards aerosol and GHG emissions and other forcings from

the scenario used in experiment set 1 to be assessed.

2.5 fut-totalO3 As 1.5 but with updated

forcings

2 2015 onwards 2024 onwards Note that ozone changes should not be prescribed in

fut-GHG.

2.6 fut-lu As 1.6 but with updated

forcings

2 2015 onwards 2024 onwards

3. Combined forcings simulations

3.1 historical All forcings 3 1850 2020 Standard CMIP6 and DAMIP experiments but with

3.2 hist-nat Natural forcings (solar+

volcanic)

3 1850 2020 larger ensembles, to allow additivity of forcings to be

assessed by comparing with experiment set 1

3.3 fut-All As 3.1 but with updated

forcings

3 2015 onwards 2024 onwards

4. All but one historical simulations

4.1–4.6 As 1.1 to 1.6 but with

single forcing kept

constant at 1850 levels

3 1850 2020 To assess influence of background state when

compared to experiment set 1

5. All but one projections

5.1–5.6 As 2.1 to 2.6 but with

single forcing kept

constant at 1850 levels

3 2015 onwards 2024 onwards To assess influence of background state when

compared to experiment set 2

Target ensemble size for experiments 1–5 is 50 members, with a minimum of 10 members. Forcings are those defined by the 6th Coupled Model Intercomparison Project (CMIP6,

Eyring et al., 2016) along with the ssp245 scenario from 2015 onwards as in the DAMIP simulations (Gillett et al., 2016). Uncertainties in historical forcings may be explored by submitting

additional simulations with a different identifier to the CMIP6 database and documenting the forcings used. Additionally, the impact of forcing uncertainty may be examined by prescribing

CMIP5 forcings: historical-cmip5, hist-nat-cmip5, hist-GHG-cmip5 and hist-aer-cmip5 correspond to historical, hist-nat, hist-GHG and hist-aer, but with CMIP5 forcings, and rcp26-

cmip5, rcp45-cmip5 and rcp85-cmip5 are corresponding scenario simulations (Fyfe et al., 2021). Note that there is no requirement for groups to complete all of the tier 1 experiments in

order to participate and any contributions will be valuable.
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AMV is strongly related to the NAO integrated over previous

decades in observations, but this relationship is much weaker in

models (Peings et al., 2016; O’Reilly et al., 2019; Lai et al., 2022).

Furthermore, models underestimate multi-decadal variability,

including for temperatures (Cheung et al., 2017; Kravtsov, 2017;

Qasmi et al., 2017), especially for the North Atlantic (Wang X.

et al., 2017; Kim et al., 2018), the North Atlantic atmospheric jet

(Bracegirdle et al., 2018; Simpson et al., 2018), and trends in the

NAO (Eade et al., 2022).

A potentially very important model error is the

underestimation of predictable or forced atmospheric

circulation signals. This has been termed the “signal-to-

noise paradox” (SNP, Scaife and Smith, 2018) since a model can

unexpectedly predict the real world better than itself despite

being a perfect representation of itself. First diagnosed in

seasonal forecasts of the NAO (Eade et al., 2014; Scaife et al.,

2014) the SNP has now been found in sub-seasonal (Domeisen

et al., 2020), seasonal (Baker et al., 2018; Dunstone et al.,

2018), interannual (Dunstone et al., 2016, 2020), multi-annual

(Sheen et al., 2017; Yeager et al., 2018; Hu and Zhou, 2021) and

decadal (Smith et al., 2019a, 2020; Athanasiadis et al., 2020)

forecasts. On seasonal timescales the SNP occurs mainly in the

extratropics, especially the North Atlantic where the NAO signal

is underestimated by a factor of 2 to 3 (Eade et al., 2014; Scaife

et al., 2014; Dunstone et al., 2016; Baker et al., 2018). However,

on decadal timescales the SNP appears to be stronger, with the

NAO underestimated by an order of magnitude (Smith et al.,

2020), and more widespread, affecting the tropics as well as the

extratropics (Eade et al., 2014; Smith et al., 2019a). Although the

SNP may vary over time or be model dependent, it appears to

be present whenever the NAO skill is high (Weisheimer et al.,

2019). Where atmospheric signals are underestimated, taking

models at face value (Deser et al., 2017) will give misleading

conclusions about the role of irreducible internal variability.

Importantly, the SNP is also found in uninitialized historical

simulations (Sévellec and Drijfhout, 2019; Zhang and Kirtman,

2019; Klavans et al., 2021; Zhang et al., 2021). It is therefore not

simply an artifact of initialization, and models underestimate

the response to at least some external forcings. This is consistent

with other evidence that modeled responses to volcanoes

(Stenchikov et al., 2006; Driscoll et al., 2012; Swingedouw et al.,

2017; Hermanson et al., 2020) and solar variability (Stott et al.,

2003; Matthes et al., 2004; Gray et al., 2013; Scaife et al., 2013)

may be too weak, and may explain the lack of signals noted in

some studies (Schurer et al., 2014; Chiodo et al., 2019; Azoulay

et al., 2021; DallaSanta and Polvani, 2022).

The cause of the SNP is currently unknown, though

underestimated eddy feedback (Scaife et al., 2019; Hardiman

et al., 2022) and errors in ocean-atmosphere interactions (Ossó

et al., 2020; Zhang et al., 2021) could be important. For

atmospheric circulation patterns such as the NAO, the error

can potentially be overcome by taking the mean of a very large

ensemble to diagnose the modeled signal and then inflating

its variance to match the observed predictable component

(Eade et al., 2014; Smith et al., 2020). The ensemble size

required scales as the square of the signal deficit: an order of

magnitude underestimation of the decadal NAO signal requires

100 times more ensemble members than would a perfect model

(Smith et al., 2020). Hence, LESFMIP requests large ensembles

(Table 1). However, scaling will not overcome SNP-related errors

in variables such as temperature and rainfall, which are impacted

by atmospheric circulation errors (Smith et al., 2020). To

illustrate why, we partition a climate signal (T) into dynamically

(Tdyn) and thermodynamically (Ttherm) driven components:

T = Tdyn + Ttherm + ε (1)

where ε is the residual. In some regions, Tdyn ≫ Ttherm in

reality, but Tdyn ≪ Ttherm in the model ensemble mean if

the atmospheric circulation response to forcings is severely

underestimated. Scaling the ensemble mean will retain the

incorrect ratio
Tdyn
Ttherm

and fail to attribute dynamical signals.

To overcome this error new approaches are needed to

analyse model output. We illustrate this for the extreme

positive NAO period (1986–1997) for which observations show

a clear pattern of warm anomalies over northern Europe

and south-east USA and cold anomalies over northern Africa

and eastern Canada (Figure 1A). The raw ensemble mean of

decadal predictions shows very little signal (Figure 1B) and

scaling tomatch the observed variance shows little improvement

(Figure 1C) because the dynamical signals that produced the

observed extremes are underestimated. A potential solution

is to select ensemble members that, by chance, have the

correct magnitude of dynamical signals. The correct magnitude

is diagnosed by scaling the ensemble mean NAO to match

the observed predictable component, and can be obtained in

forecasts and projections since it only requires the scaling

factor to be diagnosed from past cases. Note that if the

predictable or forced signals are underestimated then no single

ensemble member would be expected to reproduce the observed

timeseries, and the selected ensemble members will likely be

different at each time. This approach, referred to as “NAO-

matching” (Smith et al., 2020), reveals much more realistic

temperature patterns (Figure 1D) and similar improvements

for northern European rainfall (Figures 1E,F). It also improves

AMV (Figures 1G,H) suggesting that NAO variations cannot be

solely attributed to AMV and revealing an important dynamical

influence on AMV that would affect attribution analysis. Note

that other approaches such as using observed regression, analogs

from models or observations (Deser et al., 2016; Sippel et al.,

2019), or ensemble sub-selection based on drivers (Dobrynin

et al., 2018), are also possible and warrant further investigation.

An important aspect of the analysis of LESFMIP

experiments will be to diagnose the real-world response to

individual forcings over the historical period. We propose

to develop “emergent constraints” (Hall et al., 2019) that
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FIGURE 1

The need for new approaches to assess model output. Near surface temperature anomalies for the extreme NAO period (1986–1997) in (A)

observations, and decadal predictions shown as (B) raw ensemble mean, (C) scaled ensemble mean to match the observed variance at each grid

point, (D) NAO-matched ensemble mean. Middle and right columns show observed 8-year mean time-series (black) and decadal predictions

(years 2–9, ensemble mean in red with 5–95% confidence interval shaded) as raw ensemble means (middle) and NAO-matched ensemble

means (right) for (E,F) northern European rainfall (10◦W−25◦E, 55–70◦N) and (G,H) AMV index (Trenberth and Shea, 2006). Decadal predictions

start each year from 1960 to 2005 and consist of a total of 169 ensemble members from 13 di�erent models. (A–D) Show standardized values,

obtained by dividing by the standard deviation of rolling 8-year means at each grid point. (A,B) show signals standardized by the observed

variability, (C,D) show signals standardized by the ensemble mean variability. NAO-matching is achieved by selecting the 20 ensemble members

at each time that are closest to the ensemble mean after scaling this to account for its underestimation of the magnitude of the predictable

signal. All panels show boreal winter (December-March) anomalies relative the average over all year 2–9 predictions. Adapted from Smith et al.

(2020), where further details are available.

exploit differences between models and relate them to observed

quantities. For example, the atmospheric response to future

Arctic sea ice loss depends on atmospheric eddy feedback which

is underestimated by models, constraining the real world toward

the upper end of the model simulations (Smith et al., 2022).

Multi-model LESFMIP simulations are therefore essential, as is

the need to develop constraints directly tied to the underlying

physical processes (Smith et al., 2022).

The optimum analysis procedure will require further

research and will be developed as the experimental results

become available. Based on the discussion above, the key

ingredients must allow for potentially underestimated

atmospheric circulation signals and should therefore not

treat model ensemble members as alternative realizations of the

observations. As a start we suggest the following:

1. For a given event or forecast signal, identify the relevant

patterns of atmospheric circulation.

2. For each model ensemble mean, perform “detection and

attribution” analysis (multiple linear regression) on the

atmospheric circulation patterns to obtain scaling factors for

each driver.

3. Develop emergent constraints to exploit differences in scaling

factors between models to diagnose the influence of each

driver in the real-world.

4. Sub-select ensemble members, or obtain model or observed

analogs, which match the real-world influence of each driver

diagnosed in step 3.

5. For the variable of interest compute the contribution of

each driver using the sub-selected or analogs ensembles from

step 4.

Step 3 in particular is non-trivial and will require

further research to understand the physical reasons for model

differences. Even if constraints cannot be found, the experiments

will still be extremely valuable for assessing model uncertainties

in the potential roles of individual drivers and internal

variability, and for highlighting specific areas where model

improvements are needed. Step 2 assumes linear additivity of

forcings which should be assessed using experiment set 3 or
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other methods. The LESFMIP experiments will also allow the

investigation of pattern recognition to single out the influence

of external forcing in ensemble simulations (Wills et al., 2020).

Step 4 requires further research to extend NAO-matching or

similar techniques to other modes of atmospheric variability.

Further developments will also be required to account for

uncertainties in forcing and observations, and to assess potential

non-linearities and dependencies on the background state. The

analysis plan proposed here could potentially be applied to

extreme events as well as multi-year to decadal signals, enabling

model errors and differences to be taken into account in extreme

event attribution studies (e.g., van Oldenborgh et al., 2022),

though further testing will be required to assess this application.

Data request

The requested diagnostics are the same for all LESFMIP

experiments. Given the large ensemble sizes the data request

is substantially reduced and is the same as for the Polar

Amplification Model Intercomparison Project (PAMIP, Smith

et al., 2019b): Appendix D in Boer et al., 2016 with the addition

of wave activity diagnostics [Table 3 in Smith et al. (2019b),

see Gerber and Manzini (2016), for details on how to compute

these variables]. In addition, we request monthly mean ambient

aerosol optical thickness at 550 nm (od550aer) to assess aerosol

forcing. We stress that the data request is not intended to

exclude other variables and participants are encouraged to retain

variables requested by other MIPs if possible. The model output

from LESFMIP will be distributed through the Earth System

Grid Federation (ESGF).

Summary

There is an urgent need to better understand the drivers

of multi-annual to decadal changes in climate both to attribute

recent events, including extremes, and to gain further confidence

in forecasts that are issued each year by the WMO. Multi-

annual to decadal changes in climate are influenced by multiple

factors including greenhouse gases, aerosols, ozone, land use,

volcanic eruptions, solar variations, and internal variability. The

Large Ensemble Single Forcing Model Intercomparison Project

(LESFMIP) documented here proposes a set of coordinated

model experiments to isolate and assess the impacts of these

different factors. Additional experiments are included to take

advantage of updated estimates of forcings, and to assess

potential non-linearities and dependencies on the background

state. A key part of the analysis will be to account for model

errors. For this, multi-model simulations are needed to diagnose

the real-world situation by exploiting model differences with

constraints based on the key physical processes, though research

will be required to identify these. Large ensembles are also

needed to extract the forced signals which may be too weak in

models, especially for changes in atmospheric circulation. In this

case it will also be necessary to adopt new approaches to analyse

the model output, possibly by selecting those ensemble members

with the required magnitude of atmospheric circulation signals.

The simulations proposed here could lead to a step change in

our ability to understand regional climate variability, change

and predictability, and will be an important contribution to

the WCRP Lighthouse Activity on Explaining and Predicting

Earth System Change goal to develop an operational capability

to attribute multi-annual to decadal changes in climate.
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