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Abstract

This thesis aims to improve the solution methods for the unit commitment problem,

a short-term planning problem in the energy industry. In particular, we focus on

Dantzig-Wolfe decomposition with a column generation procedure. Special empha-

sis is placed on approaches based on machine learning, which is of interest when

one needs to solve the unit commitment problem repeatedly.

Firstly, an initialisation method of the column generation procedure based on a

neural network is studied. After offline training, for each unit commitment problem,

the method outputs dual values which can be used to warmstart the solution method,

leading to a significant saving of computational time. The training is done efficiently

by exploiting the decomposable structure of the problem.

Secondly, primal heuristics are discussed. Two novel primal heuristics are pro-

posed: one based on the decomposition and another based on machine learning.

Both of them fix a subset of the binary variable to reduce the problem size. The

remaining variable is optimised quickly by an optimisation solver, which gives primal

feasible solutions with small suboptimality in a short time.

Finally, the column generation procedure is extended to handle incremental

generation of columns. Instead of generating columns for all the components (power

plants in the unit commitment problem) in each iteration, our method generates a

subset of them and update the dual variable using the partially updated restricted

master problem. Convergence analysis of the method is given under various condi-

tions as well as numerical experiments to show the performance of the method.

By combining the above enhancements, we obtain a fast solution method to solve

the unit commitment problem to small tolerances down to 0.1%.
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Lay Abstract

As our society becomes more and more reliant on electricity, the power system

grows both in scale and in complexity. Due to its enormous cost, even a small

improvement in efficiency leads to a striking amount of reduction when expressed

in total numbers. The complex system requires highly sophisticated and reliable

planning methodologies. Various optimisation models and their solution methods

have been studied to aid its operation.

The unit commitment problem is an optimisation problem used to find a cost-

effective operational schedule of power plants. The timing of switching on and off

generators and the amount of power dispatch must be optimised simultaneously.

The discrete nature of the decision renders the problem notoriously hard and it

is often not practical to solve the problem using a general optimisation software.

This thesis studies efficient solution methods for the unit commitment problem and

examines its improvement using recent development in optimisation.

In particular, in this thesis special emphasis is placed on the applications of ma-

chine learning to accelerate the solution methods. Machine learning is a promising

branch of the computer science which aims to extract unknown patterns from data.

The techniques are especially useful when the unit commitment problem is to be

solved repeatedly with the same problem structure but with slightly perturbed pa-

rameter values. When the unit commitment problem is used as a daily planning

problem, the problem is solved in a daily basis. It is demonstrated that effective use

of machine learning can reduce the computational time.
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Chapter 1

Introduction

1.1 Motivation

The unit commitment (UC) problem is a short-term planning problem. Its typi-

cal planning horizon is a single or few days. Given the set of available generators

and demand over the planning horizon, the optimal operating schedules are to be

computed. The timing of switching on and off generators and the amount of power

dispatch must be optimised simultaneously. This gives rise to a large-scale combina-

torial problem and due to its practical importance, it has been actively studied over

the last few decades.

When the UC problem was developed, a typical electricity market was regulated

and the entire system was managed collectively by a single operator [26]. The prob-

lem was solved by the operator to plan how to efficiently deliver electricity. Nowadays

many electricity markets are deregulated and not only energy but also various an-

cillary services are traded in the markets. However, the UC problem is still of use in

such a modern electricity market. The problem has been extended to model such a

market and to determine which generators to provide energy and ancillary services

[32].

This thesis focuses on the deterministic UC problem. That is, we assume that

the demand is known or an accurate and reliable forecast is available. Popular

approaches to the UC problem are decomposition-based, such as Lagrangian relax-

ation and Dantzig-Wolfe decomposition. This thesis examines practical issues of the

1



Pre-trained solution methods for unit commitment 2

methods, taking recent advances in optimisation into account.

The significant advances in the theory and practice of optimisation can be seen

in the performance improvement of general-purpose mixed-integer linear program-

ming (MILP) solvers. Hobbs et al. [32] use CPLEX 3.0 and 6.5 to solve the same UC

instance and observe that the solution time is reduced by approximately 95%. The

solution methods tailored to the UC problem are still faster than general-purpose

solvers applied to the UC problem. However, these improved general-purpose solver

can be used to solve auxiliary problems within the tailored solution methods and

this allows previously intractable problems to be solved.

There has been a growing interest in the use of machine learning within optimi-

sation [5]. It is especially useful if an optimisation problem is solved repeatedly with

perturbed parameters. This is often the case in practice when the UC problem is

solved by an electricity generating company as a day-ahead planning problem. The

UC problem is solved repeatedly with different demand forecasts while the charac-

terisations of the generators, such as generation costs and ramping limits, remain

the same.

It is of interest to improve the efficiency of the solution methods for the UC

problems using such advances. We review previous studies and propose various

enhancements. Each method is extensively tested with UC instances with between

200 and 1000 generators.

We note that in the literature a large number of nature-inspired heuristics are

studied as direct, decomposition-free solution methods for the UC problem. For a

recent survey covering such methods, see Saravanan et al. [60]. However, many of

them have not been tested comprehensively yet and often the quality of solutions

such as their suboptimality is not reported. Since the capability of such methods to

deliver primal feasible solutions with small suboptimality (such as 0.1%) is not yet

clear, we do not consider them further in this thesis.

1.2 Previous research

In the early days, heuristics, such as priority list [28], were dominant as solution

methods for the UC problem. Such methods are capable of delivering a feasible

2
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solution quickly with limited computational resource, but the suboptimality of the

outputs is typically large. Later, dynamic programming gained in popularity [43] as an

exact solution method. However, the computational time of dynamic programming

grows unfavourably as the number of generators in the problem gets larger and

solving a large-scale UC instance with the dynamic programming is impractical.

To solve the UC problem of practical size a decomposition-based method, such

as Lagrangian relaxation, is commonly used. It is based on the observation that the

UC problem has a limited number of complicating constraints (e.g. the load balance

and reserve constraints) and the remaining constraints are operational constraints

that only involve single generators. By relaxing the complicating constraints one

can decompose the problem by generators. Evaluating the Lagrangian involves

solving as many single-generator UC problems as there are generators. Such a single-

generator UC problem is referred to as a subproblem. The value of the Lagrangian

is a lower bound on the optimal objective value of the original UC problem. The

dual problem is the optimisation problem to find the best lower bound. This is

a convex but non-differentiable problem and an optimisation method which can

handle non-differentiability is required.

Muckstadt and Koenig [47] combine Lagrangian relaxation and the branch and

bound algorithm. Instead of the linear programming relaxation (LPR), they use

Lagrangian relaxation in each node of the branch and bound tree to compute a lower

bound. The dual problems are solved with a subgradient method. Compared with

the LPR, Lagrangian relaxation gives tighter lower bounds. This improvement leads

to a reduction of the number of nodes that needs to be explored. However, this is still

a large number of nodes and a dual problem are to be solved at each node, so the

overall computational time is still prohibitively large.

As Bertsekas et al. [6] point out, for an approach based on Lagrangian relaxation

to be practical, branching should not be used at all. It is therefore necessary that

Lagrangian relaxation has a small duality gap (the gap between the optimal objective

value and the best dual lower bound) and that a primal feasible solution of sufficiently

small suboptimality can be found with a suitable primal heuristic without resorting

to branching. A number of numerical experiments have suggested that the duality

gap for the UC problem tends to be small if the number of generators is large [6,

3
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1]. Thus, the remaining issue is the approach used to find a good primal feasible

solution. The behaviour of a primal heuristic depends on the property of the problem

at hand and little theory is known in general. However, it is of critical importance to

have a strong primal heuristic to make the approach practical.

Lauer et al. [40], Bertsekas et al. [6], and Zhuang and Galiana [69] propose two-

stage methods in which the dual problem is solved first and then a primal solution

is constructed from the dual solution. Lauer et al. [40] and Bertsekas et al. [6] solve

the dual problem by approximating the problem with a twice-differentiable problem

which is solved by a Newton-like method. The dual solution of the dual problem

corresponds to a primal solution (i.e. generator schedules) but it does not satisfy

the integrality condition. They obtain an integral primal solution by rounding the

fractional values in the primal solution.

Zhuang and Galiana [69] use a subgradient method to optimise the dual objective

function. After the optimal dual values are found, they construct a primal candidate

solution using the solutions to the subproblems obtained in the last iteration of

the subgradient method. First, they create a candidate primal solution from the

subproblem solutions. Such a solution satisfies all the operational constraints of the

generators, such as the minimum up/downtime constraints, as well as the integrality

constraint. However, it does not necessarily satisfy the relaxed constraints (i.e. the

load balance and reserve constraints). If the candidate solution is infeasible, they

increase the dual values corresponding to the violated constraints and solve the

subproblems with the update dual values again. Larger dual values encourage more

generators to be committed on the time periods with constraint violation, leading

to a primal candidate solution with a smaller constraint violation. They repeat this

adjustment of the dual values until they find a primal feasible solution.

A major drawback of the above approaches is that a primal feasible solution

becomes available only after the dual problem is solved to completion. Instead

of waiting for the dual problem to be solved, Merlin and Sandrin [46] run primal

heuristics in each iteration of a subgradient method applied to the dual problem. In

each iteration of the subgradient method, a candidate primal solution is created from

the subproblem solutions. When the candidate primal solution is infeasible, they

modify the step direction to increase the dual values corresponding to the violated

4
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constraints. This approach provides primal feasible solutions before the termination

of the optimisation method for the dual problem. However, the modification of the

subgradient method is likely to affect the optimisation of the dual problem and the

resulting lower bound is likely to be suboptimal.

Most primal heuristics studied today fix infeasibility by modifying the subproblem

solutions directly instead of manipulating the dual values. As in the above approaches

such methods are run in each subgradient iteration. Guan et al. [29] and Barnhart et

al. [2] apply local search to fix infeasibility of the candidate primal solution obtained

from the subproblem solutions. Takriti et al. [63] combine subproblem solutions

obtained over multiple iterations to find a primal feasible solution. These methods

are studied more closely in Chapter 4.

Most of the papers described above use subgradient methods to solve the dual

problem. The cutting-plane method is an alternative approach to solving the dual

problem. The cutting-plane method for Lagrangian relaxation is the dual of Dantzig-

Wolfe decomposition with a column generation procedure [16]. It suffers from

instability and regularisation is often added to tackle the issue. The cutting-plane

method is used to solve the UC problem by Redondo and Conejo [58] and Madrigal

and Quintana [44]. The bundle method is another solution method that uses a

cutting-plane model with a quadratic regularisation [41]. These methods also solve

the subproblems in each iteration and the aforementioned primal heuristics can be

used to find primal feasible solutions.

1.3 Objective

In this thesis we study Dantzig-Wolfe decomposition with the column generation

procedure to solve the UC problem. Its implementation is examined and various

enhancements are proposed. The aims and main contributions of this thesis are as

follows.

• Initialisation methods to warmstart the column generation procedure are

studied. Initialisation has had little attention in many of the previous works.

However, our numerical experiments show that the initialisation of the column

5
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generation procedure has a critical impact on the performance. We first analyse

a standard initialisation method based on the LPR. This method provides a

good starting point to warmstart the column generation procedure. However

as we later observe in numerical experiments this initialisation method may

take a significant amount time (more than 20% of the total computational

time on average on 1000-generator instances). Given the substantial room

for improvement, we propose a new initialisation method based on using

a neural network. The neural network can be trained efficiently using the

decomposable structure of the problem.

• Two novel primal heuristics are proposed: one integrated with decomposition

and another based on machine learning. Some analysis on the first primal

heuristic is provided to support its scalability. Our numerical experiments show

that in our test instances our primal heuristics find a primal feasible solution

of small suboptimality (e.g. 0.1%) in a short time.

• The column generation procedure is extended to handle incremental gener-

ation of columns. Instead of generating columns for all the components in

each iteration, our method generates ones for a subset of them. Convergence

analysis of the method is given under various conditions. Furthermore, the

numerical experiments are provided to show that the proposed technique

successfully accelerates the method.

• We demonstrate that by combining the above approaches, we obtain a faster

solution method than any of them.

1.4 Structure

The remainder of this thesis is structured as follows. Chapter 2 describes the problem

formulation and its solution methods, Lagrangian relaxation and Dantzig-Wolfe de-

composition. In Chapter 3 initialisation methods for the algorithm are reviewed and

a method based on a neural network is proposed. Chapter 4 discusses primal heuris-

tics. Novel primal heuristics are proposed and their performances are compared.

6
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Chapter 5 extends the column generation procedure to handle incremental updates.

The convergence property of the method is studied and numerical experiments are

given to show the behaviour of the new algorithm. In Chapter 6 the above techniques

(initialisation, primal heuristics and incremental updates) are combined as a single

method and its performance is studied. Finally, Chapter 7 summarises the results

and draws conclusions.

7



Chapter 2

Problem Formulation and

Solution Methods

2.1 Unit commitment

2.1.1 Full problem formulation

In this section we describe the formulation of the UC problem. The formulation

of the UC is still actively studied and new formulations are proposed. For recent

development see [38] In this thesis we closely follow one of the standard formulations

in literature, referred to as the 3-binary variable formulation by Ostrowski et al. [55].

• Load balance: Generators have to meet all the demand in each time period

(generation shedding at 0 cost is allowed).

• Reserve: To deal with contingencies, it is required to keep a sufficient amount

of back up in each time period, which can be activated quickly.

• Power output bounds: Each generator’s power output has to be within its limit.

• Ramp rate bounds: Generators can only change their outputs within the ramp

rates.

• Minimum up/downtime: If switched on (off), each generator has to stay on

(off) for a given minimum period.

8
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The formulation of the model is as follows.

• Parameters

– G : number of generators

– T : number of time periods where decisions are taken

– C nl
g : no-load cost of generator g

– C mr
g : marginal cost of generator g

– C up
g : startup cost of generator g

– P max/min
g : maximum/minimum generation limit of generator g

– P ru/rd
g : operating ramp up/down limits of generator g

– P su/sd
g : startup/shutdown ramp limits of generator g

– T u/d
g : minimum up/downtime of generator g

– P d
t : power demand at time t

– P r
t : reserve requirement at time t

• Variables

– αg t ∈ {0,1}: 1 if generator g is on in period t , and 0 otherwise

– γg t ∈ {0,1}: 1 if generator g starts up in period t , and 0 otherwise

– ηg t ∈ {0,1}: 1 if generator g shuts down in period t , and 0 otherwise

– pg t ≥ 0: power output of generator g in period t

• Total cost (the objective to be minimised)

min
T∑

t=1

G∑
g=1

(
C nl

g αg t +C mr
g pg t +C up

g γg t

)
.

• Load balance
G∑

g=1
pg t ≥ P d

t t = 1,2, . . . ,T.

• Reserve
G∑

g=1
(P max

g αg t −pg t ) ≥ P r
t t = 1,2, . . . ,T.

9
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• Power output bounds

P min
g αg t ≤ pg t ≤ P max

g αg t g = 1,2, . . . ,G , t = 1,2, . . . ,T

• Ramp rate bounds

pg t −pg t−1 ≤ P ru
g αg t−1 +P su

g γg t g = 1,2, . . . ,G , t = 2,3, . . . ,T.

pg t−1 −pg t ≤ P rd
g αg t +P sd

g ηg t g = 1,2, . . . ,G , t = 2,3, . . . ,T.

• Minimum up/downtime

t∑
u=max{t−T u

g +1,1}

γg u ≤αg t g = 1,2, . . . ,G , t = 1,2, . . . ,T

t∑
u=max{t−T u

g +1,1}

ηg u ≤ 1−αg t g = 1,2, . . . ,G , t = 1,2, . . . ,T

• Logical constraints (to enforce binaries to work as we expect)

αg t −αg t−1 = γg t −ηg t g = 1,2, . . . ,G , t = 2,3, . . . ,T

1 ≥ γg t +ηg t g = 1,2, . . . ,G , t = 1,2, . . . ,T

When the initial states of the generators are given, one can define αg t and pg t

for t = 0 and g = 1,2, . . . ,G accordingly and add the ramp rate bounds constraint and

logical constraints for t = 1.

10
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2.1.2 Compact formulation

The UC problem described in the previous section can be written as

min
x1,x2,...,xG

G∑
g=1

cg
T xg (2.1)

s.t.
G∑

g=1
Ag xg = a(ω)

xg ∈ Xg (ω), g = 1,2, . . . ,G ,

whereω is a vector of problem data (e.g. demand), x1, x2, . . . , xG are vectors of decision

variables for each g = 1,2, . . . ,G , and

Xg (ω) = {
xg = (ug , zg ) ∈Rn × {0,1}m | Dg xg ≤ dg (ω)

}
, g = 1,2, . . . ,G .

We assume that Xg (ω) is a nonempty, bounded set and problem (2.1) has a feasible

solution for any ω. We let c∗(ω) to denote the optimal objective value of (2.1) and

x∗(ω) to denote any one of the optimal solutions. To reduce clutter in what follows

we drop the dependence on ω except where this might cause confusion. We also

write x = (xT
1 , xT

2 , . . . , xG
T )T and X = X1 ×X2 ×·· ·×XG .

In the remaining of this chapter we assume that ω is fixed and review solution

methods for the UC problem.

2.2 Linear programming relaxation

The LPR is a relaxation which is obtained by relaxing the integrality in Xg :

min
x1,x2,...,xG

G∑
g=1

cg
T xg (2.2)

s.t.
G∑

g=1
Ag xg = a(ω)

xg ∈ X̄ g (ω), g = 1,2, . . . ,G ,

11
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where

X̄ g (ω) = {
xg = (ug , zg ) ∈Rn × [0,1]m | Dg xg ≤ dg (ω)

}
, g = 1,2, . . . ,G .

Let c̄∗ denote the optimal objective value of (2.2). Since Xg ⊂ X̄ g for each g , this gives

a lower bound on the optimal objective value:

c̄∗ ≤ c∗.

2.3 Lagrangian relaxation

Lagrangian relaxation is another technique to compute lower bounds for problem

(2.1). We note that the first constraint in (2.1) involves with all the variables and makes

the problem difficult to solve. Without this complicating constraint the problem

could be split into G subproblems. In this approach the complicating constraint is

removed from problem (2.1) and a penalty of its violation is added to the objective.

The modified objective function

L(x, y) =
G∑

g=1
cg

T xg − yT

(
G∑

g=1
Ag xg −a

)
=

G∑
g=1

(cg − Ag
T y)T xg +aT y (2.3)

is called the Lagrangian. The dual function is given by

q(y) = min
x∈X

L(x, y) =
G∑

g=1
min

xg∈Xg

(
cg − Ag

T y
)T

xg +aT y =
G∑

g=1
q g (y) (2.4)

where

q g (y) = min
xg∈Xg

(
cg − Ag

T y
)T

xg + 1

G
aT y.

To evaluate component q g we need to solve a single-generator scheduling problem

on generator g . We refer to this single-generator scheduling problem as a subproblem.

In general subproblems can be solved with an MILP solver. If the subproblem has a

special structure, using a method exploiting the structure is likely to speed up the

evaluation of q g . For example, a method based on dynamic programming has been

12
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developed to solve a UC problem with a single thermal generator, which will be

discussed in Section 2.5. However, for simplicity the numerical experiments in this

thesis use an MILP solver to solve the subproblems.

For any value of y the dual function gives a lower bound on the optimal objective

value of the original problem:

q(y) = min
x∈X

L(x, y)

= min
x∈X

{
G∑

g=1
cg

T xg − yT

(
G∑

g=1
Ag xg −a

)}

≤
G∑

g=1
cg

T xg
∗− yT

(
G∑

g=1
Ag xg

∗−a

)

=
G∑

g=1
cg

T xg
∗

= c∗.

The dual problem is the maximisation problem of the lower bound

max
y

{
q(y) =

G∑
g=1

q g (y)

}
. (2.5)

Being the pointwise minimum of a family of concave functions with respect to y ,

q(y) and q g (y) for every ω and g are concave with respect to y [59, Theorem 5.5,

page 35]. Furthermore, it can be shown [52, Theorem 6.2, page 327] that under

the nonemptiness and boundedness assumption of X , the maximum of the dual

problem, denoted by q∗, is attainable and coincide with the optimal objective value

of the following problem:

min
x1,x2,...,xG

G∑
g=1

cg
T xg (2.6)

s.t.
G∑

g=1
Ag xg = a

xg ∈ conv(Xg ), g = 1,2, . . . ,G ,

where conv(Xg ) is the convex hull of Xg for each g . (2.6) is a relaxation of (2.1) since

Xg ⊂ conv(Xg ) for each g . The difference c∗− q∗ ≥ 0 between the optimal primal

13
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and dual objective values is called the duality gap. We note that (2.6) can be written

as an linear programming (LP):

min
p

G∑
g=1

∑
i∈Ig

cT
g xg i pg i (2.7)

s.t.
G∑

g=1

∑
i∈Ig

Ag xg i pg i = a,

∑
i∈Ig

pg i = 1 g = 1,2, . . . ,G ,

pg i ≥ 0 g = 1,2, . . . ,G , i ∈ Ig ,

where {xg i | i ∈ Ig } are the extreme points of Xg for each g .

Simple calculation shows conv(Xg ) ⊂ X̄ g for each g and thus (2.2) is a relaxation

of (2.6) and we have

c̄∗ ≤ q∗ ≤ c∗.

Namely, Lagrangian relaxation gives a lower bound which is not worse than the LPR.

In practice, we often observe that the inequality between c̄∗ and q∗ is strict and

Lagrangian relaxation gives a strictly better lower bound than the LPR.

When the complicating constraint is inequality ≤ (≥), the corresponding dual

variable is constrained to be non-negative (non-positive).

2.3.1 Subgradient methods

In the following (Subsection 2.3.1 and 2.3.2) we review methods to solve the dual

problem (2.5). Many references below study minimisation of a convex function

rather than maximisation of a concave function. To facilitate the comparison we also

consider minimisation of a convex function of the following form:

min
y∈Y

{
f (y) =

G∑
g=1

f g (y)

}
,

where Y is a closed, convex set and f g is a convex function which is finite and

subdifferentiable over Y for any g . We obtain this form from (2.5) by defining f g (y) =
−q g (y) for every g .

14
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Subgradient methods are iterative methods to minimise a convex function [7].

When y is unconstrained, given the current point yk ∈ Y , the next point is computed

by

yk+1 = yk − tk s(yk ),

where s(yk ) is any subgradient of f at y = yk and tk is a positive parameter called the

step size. When y is constrained, we apply the projection:

yk+1 = PY (yk − tk s(yk )),

where PY is the Euclidean projection onto the set Y . If sg (yk ) ∈ ∂ f g (yk ) for each g ,

we have
G∑

g=1
sg (yk ) ∈ ∂ f (yk ),

which follows from the definition of the subgradient. Thus, the algorithm can be

written as Algorithm 1.

Algorithm 1 Subgradient method

select initial point y0 ∈ Y , step size {tk }.
for k in {1,2, . . .} do

Evaluate f g (yk ) and sg (yk ) ∈ ∂ f g (yk ) for all g ∈G .
Let

yk+1 = Py

(
yk − tk

G∑
g=1

sg (yk )

)
.

end for

In the UC problems, given the optimal solution x̂g to subproblem g at y , we get

Ag x̂g − a

G
∈ ∂ fg (y).

Thus, the iteration of the subgradient methods become

yk+1 = PY

(
yk − tk

(
G∑

g=1
Ag x̂g −a

))
.

The subgradient methods have been widely used for convex optimisation prob-

lems due to its simplicity. There is also a rich body of literature to analyse the

convergence property of the methods. However, the subgradient methods often

15
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require a large number of iterations to find a solution of high precision.

2.3.2 Regularised cutting-plane methods

The cutting-plane methods construct a piecewise affine model of the objective func-

tion and compute candidate points {yk } using the model [34, 17]. In the kth iteration,

given that the function and subgradient values are evaluated at the previous points

y0, y1, . . . , yk , the method computes the next point yk+1 by minimising a model

yk+1 = argmin
y∈Y

{
ϕk (y) =

G∑
g=1

ϕk,g (y)

}
, (2.8)

where ϕk,g is a piecewise affine model of the g th component

ϕk,g (y) = max
l=0,1,...,k

f g (yl )+ sg (yl )T (y − yl ), (2.9)

and sg (yl ) is any subgradient of f g at yl (l = 0,1, . . . ,k). The function and subgradient

values of the components are evaluated at the new point yk+1 to update the model

(2.9) and the above process is repeated.

It is known that the plain cutting-plane methods suffer from instability. In the

first iteration, after subgradients of the components are computed, the model is an

affine function and likely to be unbounded. To make the methods working we need

to add suitable cuts in the model. Even when the model is feasible, the progress of

the methods is rather slow due to its instability.

One approach to tackle this issue is regularisation [16]. Instead of computing the

next point by minimising the piecewise affine model, we use the following regularised

model

yk+1 = argmin
y∈Y

G∑
g=1

ϕk,g (y)+ 1

2tk
∥y − ȳk∥2, (2.10)

where tk is a parameter to adjust the strength of the regularisation and ȳk is the

regularisation centre.

The regularisation penalises large deviation of yk+1 from ȳk . When tk is too large,

the method behaves similar to the plain (non-regularised) cutting-plane method and

would show instability, slowing down the progress. On the other hand, if tk is too

16
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small, the effect of the regularisation becomes dominant and the method cannot

update the iterate sufficiently, again slowing down the progress. The appropriate

value of tk depends on the problem at hand. As we will discuss in Chapter 5, tk has a

close relationship to the step size in the subgradient methods so we refer to tk as a

step size in the context of the cutting-plane method as well.

In practice, the regularisation centre ȳk and step size tk are updated adaptively.

Schulze et al. [61] update regularisation centre ȳ to the current dual value yk and

increase tk when the lower bound (2.4) has improved, and keep ȳ and decrease

tk otherwise. Furthermore, it is beneficial to add cuts only if they are unique. We

use these enhancements in our implementation. The algorithm is described in

Algorithm 2. We note that to run the algorithm we need to specify the initial point y0.

As we see in Chapter 3, the choice of the initial point has a significant impact on the

performance of the algorithm. One of the standard methods (which solves LPR to

obtain the initial point) spends more than 20% of the total computational time doing

so. We discuss this point in more depth in Chapter 3.

Algorithm 2 Regularised cutting-plane method

select initial point y0 ∈ Y , step size {tk }.
for k in {1,2, . . .} do

Evaluate f g (yk ) and sg (yk ) ∈ ∂ f g (yk ) for all g = 1,2, . . . ,G .
Update the regularisation centre ȳk and tk .
Let

yk+1 = argmin
y∈Y

ϕ̃k (y), (2.11)

ϕ̃k (y) =
G∑

g=1
ϕk,g (y)+ 1

2tk
∥y − ȳk∥2,

ϕk,g (y) = max
l=0,1,...,k

f g (yl )+ sg (yl )T (y − yl ).

end for

Note that the above algorithm is well-defined: ϕ̃k is a proper closed (1/2tk )-

strongly concave function for each k and a minimise of ϕ̃k exists and is unique [3,

Theorem 5.25].

If the method is applied to the UC problem, the model (2.9) becomes

ϕk,g (y) = max
l=0,1,...,k

(−cg + Ag
T y

)T
x̂ l g −

1

G
aT y, (2.12)

17
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where x̂ l g is the solution to subproblem g in the l th iteration.

Figure 2.1 is a schematic example of an application of the cutting-plane method

to maximise a concave 1-dimensional function. The objective function consists of

a single component (G = 1). The method evaluates the function and supergradient

values of the objective function at the initial point y0 as shown in the figure. The

resulting unregularised model ϕ0 has a single cut which is tangent to the objective

function at y = y0, which is shown by a dotted line. The regularised model ϕ̃0 is

drawn by a dashed line, whose maximiser gives y1. We note that the unregularised

model ϕ0 is unbounded and the maximiser does not exist. In the next iteration the

function and supergradient values are evaluated at y = y1 and another cut is added

to the model. The regularised model ϕ̃1 yields y2, which is closer to the optimal

solution. In the remainder of the thesis, unless it may cause confusion, we drop the

word "regularisation" when we refer to the regularised cutting-plane method.

iteration 0

q(y)y0 y1

unregularised model ϕ0

regularised model ϕ̃0

iteration 1

q(y)y0 y1y2

unregularised model ϕ1

regularised model ϕ̃1

Figure 2.1: Skematic example of the behaviour of the cutting-plane method

18
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2.3.3 Numerical experiments

In this section the subgradient method and the cutting-plane method are applied

to a small 1-dimensional (G = 1) optimisation problem and their behaviour is anal-

ysed numerically. Figure 2.2 shows the objective function to be maximised. It is a

piecewise-affine concave function which has the optimal solution y∗ = 2/3 and the

optimal objective value q∗ = 4/3.

y

q(y)

2/3 1 3/2

4/3

1

O

Figure 2.2: Objective function to be maximised

The initial point is set to y = 0 and the two methods are applied with step size

tk = t0

k
, k = 1,2, . . . ,

where t0 is the initial step size.

The performance of the methods are shown in Figure 2.3. The subgradient

method requires many iterations to achieve a solution with small suboptimality.

When the step size is large (t0 = 0.5), the iterate oscillates significantly and the method

cannot find a solution with suboptimality smaller than 0.1% within 40 iterations. If

the step size is small (t0 = 0.1), the oscillation becomes smaller and the method finds

a solution with suboptimality smaller than 0.1% in 25 iterations. However, even after

the method finds a near-optimal solution, the following iterates keep to oscillate.

When the initial step size is 0.5 or 0.2, the cutting-plane method finds the optimal

solution in 5 or fewer iterations. Moreover, unlike the subgradient method, after the

optimal solution is found, the iterate stays to be optimal in the remaining iterations.
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Figure 2.3: Suboptimality of the iterates

When the step size is too small (0.1%), the progress of the method in early iterations

is identical to that of the subgradient method (with the step size 0.1%). However, it

finds a solution of suboptimality 0.1% in 19 iterations and the iterate stays at optimal

in the following iterations.

Since the two methods have different complexities per iteration, which depends

on the problem to be solved, we cannot draw a definitive conclusion from this result.

However, when evaluation of the objective function is expensive, it is advantageous

for a solution method to require fewer function evaluations. This is typically the case

when one needs to solve the dual of a combinatorial optimisation problem since

evaluating the dual function amounts to solving the subproblems. The cutting-plane

method would be a preferable choice in such a case.

2.4 Dantzig-Wolfe decomposition

Dantzig-Wolfe decomposition was originally proposed as a solution method for a

LP problem by Dantzig and Wolfe [18]. For problems with integer variables, the

Dantzig-Wolfe reformulation is a relaxation of the original problem and it provides a

lower bound for the original problem (2.1). For further background, see Vanderbeck

and Savelsbergh [66].

Replacing Xg with conv(Xg ) for every g , we obtain a relaxation of (2.1), referred

to as the master problem (MP). Let {xg i | i ∈ Ig } be the extreme points of Xg . Given
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the boundedness assumption on Xg , it follows that

conv(Xg ) =
{ ∑

i∈Ig

xg i pg i

∣∣∣ ∑
i∈Ig

pg i = 1, pg i ≥ 0 (i ∈ Ig )

}
, g = 1,2, . . . ,G .

This implies that the MP can be written as an LP with decision variables

{
pg i | g = 1,2, . . . ,G , i ∈ Ig

}
.

However, finding all the extreme points is time consuming and leads to a formulation

that is too large to solve explicitly, so a column generation procedure is used. The

restricted master problem (RMP) is defined by replacing Ig in the MP with a subset

Îg ⊂ Ig for every g . Thus, the RMP is given by

min
p

G∑
g=1

∑
i∈Îg

cg
T xg i pg i (2.13)

s.t.
G∑

g=1

∑
i∈Îg

Ag xg i pg i = a,

∑
i∈Îg

pg i = 1, g = 1,2, . . . ,G ,

pg i ≥ 0, g = 1,2, . . . ,G , i ∈ Îg .

Suppose that the RMP is feasible, which can be ensured by adding some artificial

columns. Then the RMP has an optimal solution. Let y andσg for g = 1,2, . . . ,G be the

optimal dual solution to the RMP corresponding to the first and second constraints

respectively. Then the pricing subproblems are given by

rg (y) = min
xg

{
(cg

T − yT Ag )xg | xg ∈ Xg
}

, g = 1,2, . . . ,G . (2.14)

If rg (y) ≥ σg for all g , the optimal solution to the RMP is also optimal to the MP.

Otherwise, the solutions to the pricing subproblems are added to the set Îg and the

above process is repeated. It follows from LP duality that given dual values y

q(y) = aT y +
G∑

g=1
rg (y) (2.15)
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is a lower bound to the MP, which also bounds the optimal objective value in (2.1).

We note that this lower bound is the same as the one used in Lagrangian relaxation

(2.4).

The dual of (2.13) is

max
y,r

aT y +
G∑

g=1
rg

s.t. rg ≤ (cg − Ag
T y)T xg i , g = 1,2, . . . ,G , i ∈ Îg

y,r : free,

where y and r are the dual variables of the first and second constraints in (2.13). The

above problem is equivalent to (2.8) and the pricing subproblems are the same as the

subproblems to evaluate the dual function up to a constant. That is, the cutting-plane

method for the dual function and the column generation procedure for the RMP is

the dual of each other. Therefore the same discussion on the cutting-plane method,

especially its instability, is applicable to the column generation procedure for the

RMP. By dualising the regularised model (2.10), we obtain a regularised version of

the RMP

min
p,y

G∑
g=1

∑
i∈Îg

cg
T xg i pg i + 1

2tk

(∥y∥2 −∥yk∥2) (2.16)

s.t.
G∑

g=1

∑
i∈Îg

Ag xg i pg i − 1

t
(y − yk ) = a,

∑
i∈Îg

pg i = 1 g = 1,2, . . . ,G ,

pg i ≥ 0 g = 1,2, . . . ,G , i ∈ Îg ,

y : free,

which mitigates the instability of the dual variables.

2.5 Dynamic programming

22
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As discussed earlier, dynamic programming is not a practical approach to solve the

UC problem as a whole. However, it is one of the most efficient method to solve the

UC problem with a single thermal generator given the problem only consists of stan-

dard constraints such as those described in this thesis. A single-generator problem

arises as a subproblem in Lagrangian relaxation or Dantzig-Wolfe decomposition. In

the following we discuss dynamic programming approaches for the single-generator

UC problem.

When the UC problem does not have the ramp rate bounds constraint, the opti-

mal solution can be computed with standard dynamic programming. Without the

ramp rate bounds constraint, when the generator is committed in the time period

t , the optimal amount of power output pg ,t in that time period can be computed

independent of the decisions in other time periods. The resulted cost is added to

the fixed cost of the corresponding commitment decision αg t . Then the optimal

commitment decision αg t is computed by solving a shortest path problem. The

optimal amount of power output can be computed quickly based on the optimal

commitment decision.

The above approach fails when the ramp rate bounds constraint is considered

since the amount of power output pg ,t cannot be optimised independently. Fan

et al. [23] propose a dynamic programming approach to solve the single-generator

UC problem with a piecewise-linear cost function. In this approach a section of

consecutive running or idle hours is considered as a state. The problem to compute

the cost associated with consecutive running time periods is the economic dispatch

problem, which can be solved efficiently by a constructive dynamic programming

method as follows. The economic dispatch problem is first reformulated as a dynamic

programming problem whose state represents the amount of power output in each

time period. When the cost function is piecewise-linear, the cost-to-go functions

in this dynamic programming problem are also piecewise-linear. This allows to

represent the cost-to-go functions exactly and to obtain the optimal power dispatch.

After solving the economic dispatch problems, finding the optimal commitment

decision amounts to the standard shortest path problem.

Frangioni and Gentile [25] study a dynamic programming method which is appli-

cable to problem with a general convex cost function. Their method is particularly
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efficient when the cost function is quadratic. Their dynamic programming method

also defines a state as a consecutive time period of running or idle hours. The eco-

nomic dispatch problem is then solved with a dynamic programming approach

to compute the cost associated with consecutive running hours. When the cost

function is quadratic, the cost-to-go function becomes piecewise-quadratic and the

economic dispatch problem can be solved using a dynamic programming approach.

An implementation of this algorithm by the authors is available on the internet1.

2.6 Primal heuristics

Both of Lagrangian relaxation and Dantzig-Wolfe decomposition are methods to

compute lower bounds for problem (2.1). However, to find feasible solutions it is

necessary to use a primal heuristic. Typically, a primal heuristic based on decompo-

sition is run in each iteration of the solution methods (e.g. the subgradient method

and the column generation procedure). Primal heuristics are discussed in Chapter 4.

2.7 Examples

In the remaining of this chapter we consider small examples.

Example 2.A We first consider a UC instance with a single time period and two

generators (G = 2). The set of the generators are given in Table 2.1. To simplify

the exposition we do not consider the startup cost (C up = 0), the reserve constraint

(P r = 0), the minimum generation limit constraint (P min = 0), the ramp rate bounds

constraint (P ru,P rd,P su,P sd ≫ 0) and the minimum up/downtime constraints (T u =
T d = 0).

For each point x ∈ X the total cost

csum = cT x =
G∑

g=1
cg

T xg

1https://gitlab.com/smspp/ucblock
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Table 2.1: Generators in Example 2.A

generator g 1 2

no-load cost C nl
g 1 2

maximum generation limit P max
g 1 3

and the total power output

psum = Ax =
G∑

g=1
Ag xg

are computed and plotted in the cost-power space in Figure 2.4. Solid lines and the

origin correspond to X . The corresponding commitment schedules α are also shown

in the figure. For example, α= (1,0)T indicates that generator 1 is committed while

generator 2 is not. For any value of demand P d, by reading off the cheapest cost, we

obtain the primal optimal objective value, which is shown in the figure as a function

of the demand. For example, if the demand is 2, the optimal commitment schedule

is α= (0,1)T and the optimal primal objective value is 2.

total power output psum

total cost csum

α= (0,0)T

α= (1,0)T
1

α= (0,1)T
2

α= (1,1)T
3

2

c∗

q∗

L(x̄, ȳ) = cT x̄ − yT Ax + yT P d

q(ȳ) = minx L(x, ȳ)

(cT x̄, Ax̄)

Figure 2.4: X ( , ), optimal primal ( ) objective value and the value of the
dual function with y = ŷ and the optimal dual objective value when P d = 2 (α:
commitment decision)

Now assume that the demand is 2 and fix y , say to ȳ ≥ 0, and pick a point x̄ in X .

The y-coordinate of the intersection of the line of slope ȳ passing the point (Ax̄,cT x̄)
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and the vertical line corresponding to demand P d gives the value of the Lagrangian

L(x̄, ȳ) = cT x̄ − ȳT
(

Ax̄ −P d
)

.

Fix the slope and vary the point x ∈ X to minimise the height of the intersection. The

resulting minimum y-coordinate of the intersection gives the lower bound

q(ȳ) = min
x∈X

L(x, ȳ).

By varying the values of y and repeating the above procedure we can find the optimal

dual objective value

q∗ = max
y≥0

q(y).

The optimal dual objective value q∗ can be also found by using the fact that it is

equal to the optimal objective value of problem (2.6), which is obtained by replacing

Xg with conv(Xg ) for each g in problem (2.1). conv(X ) corresponds to the shaded

area including the boundary in Figure 2.5. For any value of demand P d, by finding

the point with the smallest cost among those which meet the demand, we can find

the optimal dual objective value. In this way we obtain the optimal dual objective

value as a function of the demand, as shown in Figure 2.5.

total power output psum

total cost csum

α= (0,0)T

α= (1,0)T

α= (0,1)T

α= (1,1)T

demand P d

c∗

q∗

Figure 2.5: X ( , ), conv(X ) ( ), optimal primal ( ) and dual ( ) objective
values as functions of demand P d (α: commitment decision)

In this simple example it is possible to compute the dual function explicitly. Since
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the problem does not have the reserve constraint, it can be written as

c∗(P d) = min
α,p

G∑
g=1

T∑
t=1

C nl
g αg t

s.t.
G∑

g=1
pg t ≥ P d

t , t = 1,2, . . . ,T,

(αg , pg ) ∈ Xg ⊂ {0,1}T ×RT ,

where P d is demand, αg is the indicator of the on/off status of generator g and pg is

the power output of generator g . G = 2 and T = 1 in this example. Without the ramp

rate bounds constraints and the minimum up/downtime constraints, there are no

constraints which bind multiple time periods. Thus for each g = 1,2, . . . ,G the set of

the feasible schedules Xg is given by

Xg =
T∏

t=1
Xg t ,

where

Xg t =
{

(α, g ) ∈ {0,1}×R | P min
g α≤ p ≤ P max

g α
}

.

Denoting the dual variables associated to the load balance constraint by y , the dual

function is given by

q(P d, y) =
G∑

g=1

(
min

(αg ,pg )∈Xg

T∑
t=1

(
C nl

g αg t − yt pg t

)
+ 1

G
yT P d

)

=
G∑

g=1

(
T∑

t=1
min

(αg t ,pg t )∈Xg t

(
C nl

g αg t − yt pg t

)
+ 1

G
yT P d

)

for y ≥ 0 and otherwise q(P d, y) =−∞. One can solve the minimisation problem on

the right-hand side by comparing the value of the dual variable yt and the average

generation cost at the maximum output C nl
g /P max

g . The optimal solution is to commit

the generator and output power at its maximum limit if the corresponding dual value

is larger, and to shut down the generator otherwise. For example, the dual function
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with P d = 2 is given by

q(y) =



−∞ y < 0

2y 0 ≤ y ≤ 2
3 ,

2− y 2
3 ≤ y ≤ 1,

3−2y 1 ≤ y.

We note that this is the function used in the numerical experiments in Subsection

2.3.3.

Example 2.B Now we compare the strengths of relaxations (2.2) and (2.6). To this

end we consider a UC instance with a single generator and a single time period.

The generator data is given in Table 2.2. In addition to the constraints considered

in Example 2.A, we consider the ramp rate bounds constraint. We assume that the

generator is off (α10 = p10 = 0) initially. Under this assumption, since the ramp up

limit is 2, the maximum feasible power output at time t = 1 is 2 (α11 = γ11 = 1, η11 = 0

and p11 = 2).

Table 2.2: Generators in Example 2.B

generator g 1

no-load cost C nl
g 1

maximum generation limit P max
g 3

ramp limits P ru/rd/su/sd
g 2

minimum up/downtime T u/d
g 0

initial status αg 0 0

X and the optimal primal and dual objective values as functions of the demand

are drawn in Figure 2.6 in the same fashion as in Example 2.A. If we compute the

optimal objective value of the LPR for various values of the demand, we obtain the

dotted line in the figure. If the demand is larger than 0 but smaller than 2, we obtain

c̄∗ < q∗ < c∗.

Namely, Lagrangian relaxation (2.6) gives a strictly better lower bound than the LPR
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(2.2).

total power output psum

total cost csum

α= 0

α= 1

3/2 2

1/2

1

Figure 2.6: X ( , ), optimal primal ( ), dual ( ) and LPR ( ) objective values
(α: commitment decision)

When the demand is 3/2, the optimal solution to (2.6) is given by α11 = 3/4, p11 =
3/2,γ11 = 3/4,η11 = 0 while the optimal solution to the LPR is given byα11 = 1/2, p11 =
3/2,γ11 = 3/4,η11 = 1/4. We note that none of the points in X , and hence in conv(X ),

has non-zero value of η11. Thus we have

X ⊊ conv(X )⊊ X̄ .

We note that the minimum up/downtime constraints with T u
1 = T d

1 = 1 does not

alter X nor conv(X ). Thus, the constraints does not affect the optimal primal and

dual objective values at all. However, the constraints tighten X̄ significantly. As a

result, with the minimum up/downtime constraints the optimal objective value of

the LPR coincides with the optimal dual objective value for any value of demand P d.

It also modifies the values of the primal and dual optimal solutions to the LPR.

Example 2.C In the previous example, we saw that the LPR provides a looser lower

bound than Lagrangian relaxation. However, the example did not work with the

minimum up/downtime constraints with T u
1 = T d

1 = 1. In this example we explore a

case that works even with the minimum up/downtime constraints with T u
1 = T d

1 = 1.

Consider the 1-generator 2-period UC instance whose generator data is given in

Table 2.3.
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Table 2.3: Generators in Example 2.C

generator g 1

no-load cost C nl
g 1

maximum generation limit P max
g 5

ramp limits P ru/rd/su/sd
g 1

minimum up/downtime T u/d
g 1

initial status αg 0 0

Let psum
1 and psum

2 denote the (total) power output in period 1 and 2 respectively

and csum the sum of the costs in all the time periods. Figure 2.7 shows X in the

3-dimensional space of csum, psum
1 and psum

2 . This is analogous to Figure 2.4 and

Figure 2.6.

The convex hull of X is plotted in the same manner as in Figure 2.8. For each

value of demand P d = (P d
1 ,P d

2 ), find the point of the minimal cost in the convex hull

such that the power outputs meet the demand. In this way the optimal dual objective

value as a function of the demand is obtained. Its contour plot is shown on the left

side of Figure 2.9.

Additionally, for different values of the power outputs, we can formulate the

LPR and obtain their optimal objective values, which are drawn on the right side

of Figure 2.9. We observe that the LPR gives a looser lower bound than Dantzig-

Wolfe decomposition when the power outputs are positive on both time periods. For

example, when the power output is (1,2), the LPR gives 7/5 as a lower bound while

Lagrangian relaxation gives 2.
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Figure 2.7: X (the origin, the line segments and the surrounded area)
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Figure 2.8: Convex hull of X (shown from two different angles)
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Figure 2.9: Contour plots of the optimal dual objective value (left) and the optimal
LPR objective value (right)
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Chapter 3

Initialisation Methods

In the column generation procedure the dual variables y play a key role. Consider

the case where near-optimal dual values are used as the initial point. It can be shown

that the lower bound q(y) is continuous in the dual variables y . Thus the algorithm

would provide a near-optimal lower bound in the first iteration. Assuming that the

lower bound is sufficiently tight, the algorithm would terminate as soon as a primal

feasible solution with sufficiently small suboptimality is found by a primal heuristic.

It is expected that feeding near-optimal dual values as the initial dual values helps

the algorithm to terminate in a shorter time.

One approach to generate such dual values is to solve an approximation of the

original problem and obtain its optimal dual solution. Borghetti et al. [15] and

Schulze et al. [61] relax the integrality constraints and obtain a continuous relaxation

while Takriti et al. [63] further drop other constraints such as minimum up/down time

constraints and minimum power output constraints. However, the continuous relax-

ation has a similar number of the variables and constraints to the original problem,

and solving it even without the integer variables takes a significant computational

time.

Another approach is to use a pre-trained model to generate the initial dual values.

Recall that the dual problem is given by max q(y) where

q(y) = min
x∈X

L(x, y).

Problems of this form are referred to as structure prediction [54]. One method to
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solve this problem is based on surrogate model or Bayesian optimisation [33, 21].

First a surrogate model is fitted to predict the value of q(y) for any y . After the

training, given new values of x, the surrogate model is maximised instead of q(y),

which is expensive to evaluate.

In our setting, since q(y) has a decomposable structure (2.15), it is expected to be

advantageous to use a specialised method. Nair et al. [48] study a method which can

exploit such a structure. In their work neural networks were trained to compute dual

values to yield strong lower bounds on integer two-stage stochastic programming. In

our work we combine the neural network with the column generation procedure to

solve UC and obtain guaranteed lower and upper bounds on the optimal objective

value. After the training, when solving a new instance, the neural network is used

with problem data as input to generate dual values that yield tight initial lower

bounds. The generated dual values are then used to warmstart the column generation

procedure and the column generation procedure allows us to further tighten the

lower bound and obtain feasible solutions. With this approach, we can exploit

the strength of the neural network while maintaining the desirable property of the

solution method, such as exactness.

Even if we find a high quality initial point, regularisation on the dual variables

is crucial [14]. Without appropriate regularisation, even if near-optimal dual values

are used as the initial point, the algorithm is likely to be quite unstable, yielding

dual values with poor lower bounds in the following iterations. Fig 3.1 shows an

example of too weak regularisation. The objective function is −|y | and the norm of a

supergradient is always 1 unless y is equal to 0. In the figure, y0 is set to close to the

optimal solution y∗. However, since the regularisation is too weak, the next point

gets far from the solution. Interestingly, as y0 approaches to y∗, y1 gets worse in a

sense that y1 becomes farther from y∗ and that it yields a looser lower bound.

3.1 Initialisation method based on the LPR

As described at the beginning of this chapter one option to find good dual values is

to solve some approximation of (2.1), such as the LPR. In this section we study the

property of the initialisation based on the LPR. To this end, we assume that we have
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q(y)
regularised model ϕ̃0

y0y1 y∗

Figure 3.1: Example of too weak regularisation

sufficiently large generation capacity to meet the demand and reserve constraints.

That is, there exists x in the relative interior of X̄ such that

G∑
g=1

Ag xg = a.

Since the LPR is a relaxation of problem (2.1), the optimal objective value of

the LPR, denoted by c̄∗, gives a lower bound on the optimal objective value c∗ of

(2.1). Furthermore, being a relaxation of the MP, the LPR gives a lower bound on the

optimal lower bound q∗ given by Dantzig-Wolfe decomposition (and Lagrangian

relaxation). That is, we have

c̄∗ ≤ q∗ ≤ c∗.

Let ȳ be the optimal dual values to the LPR. Using the definition,

q(ȳ) = min
x∈X

L(x, ȳ) ≥ min
x∈X̄

L(x, ȳ).

The standard discussion on duality [8, Proposition 5.3.3] shows that the optimal

solution x̄ to the LPR is also a solution to the minimisation problem on the right-

most hand side

min
x∈X̄

L(x, ȳ) = L(x̄, ȳ) =
G∑

g=1
cg

T x̄g − ȳT

(
G∑

g=1
Ag x̄g −a

)
=

G∑
g=1

cg
T x̄g − ȳT 0 = c̄∗.
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Therefore we established the following relation:

c̄∗ ≤ q(ȳ) ≤ q∗ ≤ c∗.

Namely evaluating the dual function at the dual values obtained from the LPR we get

a lower bound which is not worse than the lower bound given by the LPR.

3.1.1 Examples

In this section we study the performance of the initialisation method based on the

LPR on small examples.

Example 3.A The first example is a 2-generator 1-period UC instance, whose gen-

erator data is given in Table 3.1. For simplicity we do not consider the startup cost

(C up = 0), the reserve constraint (P r = 0), the minimum generation limit constraint

(P min = 0) and the minimum up/downtime constraints (T u = T d = 0). We note that

this is an extension of Example 2.B in Chapter 2.

Table 3.1: Generators in Example 3.A

generator g 1 2

no-load cost C nl
g 2/3 1

maximum generation limit P max
g 1 3

ramp limits P ru/rd/su/sd
g 1 2

minimum up/downtime T u/d
g 0 0

initial status αg 0 0 0

Figure 3.2 shows X in the space of the total cost csum and the total power output

psum. Each of the solid lines and the origin corresponds to a single feasible generator

commitment decision, which is shown aside. The figure also shows the optimal

primal, dual and LPR objective values. The optimal dual and LPR objective values

are piecewise affine convex functions in the demand.

Suppose that the demand is fixed. We can solve the LPR and obtain its optimal

dual solution ȳ to initialise the column generation procedure. The optimal LPR

objective value c̄∗ is a lower bound on the optimal dual objective value q∗. Even if
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total power output psum

total cost csum

α= (0,0)T

α= (1,0)T

α= (0,1)T

α= (1,1)T

1 3/2 2 5/2 3

2/3

1
7/6

5/3

1/2

Figure 3.2: X ( , ), optimal primal ( ), dual ( ) and LPR ( ) objective values
(α: commitment decision)

the LPR provides a loose lower bound, the Lagrangian dual function evaluated at the

optimal dual solution ȳ to the LPR may give a tighter lower bound.

In Figure 3.2 the optimal dual solution to the LPR is given by the slope of the

function of the optimal LPR objective value. More precisely, the optimal dual solution

is any one of the subgradients of the function. The optimal dual and LPR objective

values are parallel between 2 and 5/2 (boundaries are not included in this section).

This observation shows us that if the demand is between 2 and 5/2 the optimal dual

solution ȳ to the LPR is also optimal to the dual problem

c̄ < q(ȳ) = q∗.

In other words, the LPR initialisation gives the dual values optimal to the column

generation procedure and the procedure yields the optimal lower bound in the

first iteration. We note that although the optimal lower bound is found in the first

iteration, the column generation procedure must run a few iterations and generate

enough columns to prove the optimality. If the demand is between 0 and 3/2 or

between 5/2 and 3, evaluating the Lagrangian dual function at the optimal dual

solution to the LPR gives the same lower bound as the LPR

c̄ = q(ȳ) < q∗.
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If the demand is between 3/2 and 2, the Lagrangian dual function evaluated at the

optimal dual solution to the LPR gives a lower bound that is better than the optimal

LPR objective value but not optimal to the Lagrangian dual problem

c̄ < q(ȳ) < q∗.

This example carries the same limitation as Example 2.B in Chapter 2. That is, the

minimum up/downtime constraints with T u = T d = 1 would tighten the LPR and the

optimal LPR objective value c̄∗ would become the same as the optimal dual objective

value q∗. In the next example, we will study another UC instance which works with

the minimum up/downtime constraints.

Example 3.B In this section we consider an example which extends Example 2.C in

Chapter 2. The example consists of two generators and two time periods. The set of

generators are given in Table 3.2. We do not consider the startup cost (C up = 0), the

reserve constraint (P r = 0) and the minimum generation limit constraint (P min = 0).

Table 3.2: Generators in Example 3.B

generator g 1 2

no-load cost C nl
g 1 1

maximum generation limit P max
g 5 1

ramp limits P ru/rd/su/sd
g 1 1

minimum up/downtime T u/d
g 1 1

initial status αg 0 0 0

For each x ∈ X the total cost and power output in each time period are computed

as plotted in Figure 3.3. Similarly conv(X ) is plotted in the same space in Figure 3.4.

Following the same procedure as Example 2.C in Chapter 2, we obtain the optimal

dual and LPR objective values as functions of the demand. They are plotted in Figure

3.5 and 3.6, respectively.

We observe that if the demand is small (i.e. P d
1 ≤ 1 and P d

2 ≤ P d
1 +1), the optimal

dual and LPR objective values coincide with those in Example 2.C. This is because

generator 1, which is the same as the one in Example 2.C, is on average cheaper
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Figure 3.3: X (the origin, the line segments and the surrounded area)
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Figure 3.4: Convex hull of X (shown from two different angles)

39



Pre-trained solution methods for unit commitment 40

psum
1

psum
2

2

csum = 2

2
csum = 2

csum = 3
csum = 4

csum = 3

y = (1,1/2)T

y
= (0

,1
)T

y = (1,1)T

Figure 3.5: The contour plot of the optimal dual objective value
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Figure 3.6: The contour plot of the optimal LPR objective value
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than generator 2. Thus, when the demand is small, only generator 1 is used. When

the demand is large (e.g. P d
1 > 1 and P d

2 > 2), generator 2 must be used to meet the

demand. In both cases the gradient of the optimal dual and LPR objective values are

(1,1). That is, the two functions (the optimal dual and LPR objective value) is parallel.

Therefore the optimal dual solution to the LPR is also optimal to the dual problem:

c̄ < q(ȳ) = q∗.

3.2 Initialisation method based on a neural network

An alternative approach, which we explore below, is to train a model which takes ω

as input and outputs dual values y that provides a tight lower bound. The training

approach is based on the work by Nair et al. [48] where dual decomposition was

applied to solve a parametrized two-stage stochastic programming problem.

Consider a neural network f (ω,θ) which maps problem data ω and model pa-

rameter θ to y . We aim to learn values of the parameter θ so that given ω the model

outputs dual values y = f (ω,θ) for which the lower bound q(y) in (2.15) is tight. In

this section we explicitly state the dependency of the lower bound on ω as q(ω, y),

which was suppressed in (2.15). Assume that the distribution of ω is given (e.g. the

empirical distribution based on historical data). Our goal is to maximise the expected

lower bound

p(θ) = Eω[q(ω, f (ω,θ))].

If subproblem g is sampled uniformly from 1,2, . . . ,G from (2.15) it follows that

q(ω, y) = aT y +
G∑

g=1
rg (y) = 1

|G|
G∑

g=1
(aT y +|G|rg (y)) = Eg [q̃(ω, y, g )],

where

q̃(ω, y, g ) = aT y +|G|rg (y).
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Therefore we get

p(θ) = Eω,g [q̃(ω, f (ω,θ), g )].

We follow the standard approach used for training a neural network which is to use

the stochastic gradient ascent method. That is, we sample ω and g , compute the

gradient of q̃ with respect to θ and make a single gradient ascent step. We then

resample ω and g and repeat the process.

The gradient of q̃ with respect to θ can be computed as follows. Fix problem

data ω and subproblem index g and compute the duals value y = f (ω,θ) and the

component q̃(ω, y, g ) of the lower bound corresponding to subproblem g . Suppose

that the model output f (ω,θ) is differentiable with respect to θ and the optimal value

rg (y) of the pricing subproblem (2.14) are differentiable with respect to y . Then the

gradient of q̃(ω, y, g ) with respect to y is given by

∂q̃

∂y
= a −|G|Ag xg

∗

where xg
∗ is the solution to the pricing subproblem g (2.14). Using the chain rule,

we obtain
∂q̃

∂θ
= J

∂q̃

∂y
, (3.1)

where J is the Jacobian matrix of the neural network output y = f (ω,θ) with respect

to θ, which is typically given by automatic differentiation.

It is important to note that evaluating the above quantity (3.1) is much faster than

solving the original problem or the MP to optimality. This is because it requires the

solution of only a single pricing subproblem, which is typically substantially smaller

than the original problem.

Once a model is trained, it can be used to compute initial dual values for the

regularised column generation procedure. It is expected that unlike solving an

approximation such as the LPR this model will run quickly and we later demonstrate

that it produces near-optimal initial dual values.
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3.3 Numerical experiments

In this section the proposed initialisation method based on a neural network is com-

pared with standard approaches for the UC problem. All methods are implemented

in Python. IBM ILOG CPLEX 20.1.01 is used as the optimisation solver (the barrier

method for the RMP and the branch and bound method for the pricing subproblems)

and PyTorch to implement the neural networks. The experiments are done on a

workstation with 16 cores Intel® Xeon® E5-2670 with 126 GB of RAM.

3.3.1 Problem

In the experiments, we consider a setup in which UC problems are solved repeatedly

with a fixed set of generators but different demand forecasts. To assess the scalability,

we consider 3 different problem sizes; problems with 200, 600 and 1,000 generators.

In all cases, the length of the planning horizon is 48 hours with a time resolution of 1

hour. The generator data is taken from an earlier study on UC problem by Frangioni

and Gentile [25]. It is realistic synthesised data generated to conduct numerical

experiments in the reference. Since their sets of generators contain 200 generators

at most, we combine multiple sets to create larger ones. For example, to create a

UC instance with 1,000 generators, we combine 5 distinct 200-generator sets. Each

generator is unique so combining these sets does not introduce symmetry. The

demand data is based on the historical demand data in the UK published by National

Grid ESO.2

Dantzig-Wolfe decomposition with the regularised column generation procedure

is used to solve the UC problems. Various initialisation methods are compared, and

these are described in the next section. In each iteration of the column generation

procedure, a local search primal heuristic is run to find a primal feasible solution. In

the first 30 iterations we use the one proposed by Guan et al. [29], and later we run

the one used by Takriti and Birge [62] as well. The detail of the primal heuristic is

described in Chapter 4.

1https://www.ibm.com/products/ilog-cplex-optimization-studio
2https://www.nationalgrideso.com/
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3.3.2 Initialisation methods

We consider the following 5 methods to initialise the dual variables.

Neural Network: An initialisation method based on a neural network is imple-

mented as described in Section 3.2. For each set of generators, a single neural

network is trained for 24 hours using 8 CPU cores. We follow the procedure used

by Nair et al. [48], except that only a single neural network is trained for each set of

generators to reduce the computational load.

The model consists of 4 hidden layers of 1000 units per layer, with skip connec-

tions between hidden layers. The tanh function is used as an activation function.

Those hyperparameters are chosen by greedy search in earlier experiments. For ex-

ample, we observed that tanh performed better than ReLU, which is a more standard

activation function. As De and Smith [19] proposed, the weights on the residual

connections are initialised to zero. The other weights are initialised based on the

methods of Glorot and Bengio [27]. All biases are initialised to zero.

Adam (Kingma and Ba [36]) is used to learn the parameters of the neural network.

The learning rate is initialised to 10−4. The model performance is evaluated every

5 minutes, and if it fails to improve for successive 15 minutes, the learning rate is

divided by 1.5.

Random forest: As a baseline of a trainable model, a method based on a random

forest (Briant et al. [16]) is also evaluated. On the same training budget (24 hours on

8 CPU cores), as many training instances as possible are solved to 0.25% optimality

using Dantzig-Wolfe decomposition with the LPR initialisation and the local search

primal heuristic. The parameter values and the corresponding optimal dual values

of the training instances are saved. After the timelimit, a random forest is trained by

supervised learning to predict the optimal dual values given a parameter value. The

training took less than 30 seconds in all cases. Unlike our neural network approach,

this approach requires the solution of many UC instances.

Nearest Neighbour: A nearest neighbour approach is also evaluated to provide an

alternative trainable baseline. We use the dataset that was created to train the random

44



Pre-trained solution methods for unit commitment 45

forest model. At runtime, given a test instance, its parameter is compared against

those of the training instances. The training instance with the closest parameter

value in terms of the Euclidean distance is selected, and the corresponding optimal

dual values are used as initial dual values. As in the random forest approach, this

requires the solution of many UC instances.

LPR: This is the method based on the LPR described in Section 3.1. Given a test

instance, we first solve the LPR by CPLEX. This method does not require any training.

This is the method used by Schulze et al. [61].

Coldstart: As a naive base line, column generation is run from y = 0. This method

does not require any training.

3.3.3 Results

To test the performances of the above methods, 40 test instances of each size were

created and solved by each method. The demand data to construct the test instances

was sampled from a different year than those of the training instances. Each method

was run sequentially on a single CPU core until a solution within 1%, 0.5% and 0.25%

suboptimality was found or the time limit of 10 minutes was reached.

Table 3.3 shows the tightness of the initial lower bound obtained in the first

iteration of the column generation procedure and the required time (all times in this

section are wall clock times) to run the initialisation methods. For each test instance,

a lower bound on the optimal objective value was also computed by running CPLEX

for 4 hours. Then the initial lower bounds obtained from the column generation

procedure were compared with the best lower bound found by CPLEX. For all the test

instances the lower bounds found by CPLEX after 4 hours were better than the initial

lower bounds from the column generation procedure. In the table the average gaps

of the bounds are reported. For comparison, the objective value of the LPR (which is

also a valid lower bound) is shown in the table as well (labelled as LPR alone).

Clearly, coldstart with y = 0 yields poor lower bounds. Although the lower bounds

of the remaining 4 methods are comparable, the lower bounds obtained from the

methods based on machine learning are significantly tighter than LPR. The solution
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Table 3.3: Tightness of the initial lower bounds lb1 (%) and computational time (s).
The tightness of initial lower bounds lb1 is measured by comparing it with the best
known lower bound lb∗ obtained by running CPLEX for 4 hours and is reported as
percentages.

size: 200 600 1000
method lb∗− lb1 time lb∗− lb1 time lb∗− lb1 time
network 0.059 <0.1 0.051 <0.1 0.040 <0.1
forest 0.060 <0.1 0.073 <0.1 0.076 <0.1
nearest 0.048 <0.1 0.060 <0.1 0.063 <0.1
LPR 0.126 4.6 0.108 17.7 0.105 29.2
coldstart 99.854 0.0 99.831 0.0 99.873 0.0
LPR alone 0.179 4.6 0.176 17.7 0.163 29.2

time of the LPR grows and it takes significant time especially on larger problems.

On the other hand, the computational time of the other methods remains small.

Observe that the optimal LPR objective value gives a lower bound, but evaluating the

Lagrangian using the solution to the LPR yields a tighter lower bound.

Table 3.4 shows the number of problems solved by the column generation proce-

dure within the time limit of 10 minutes, the average computational time and the

average number of iterations to close the optimality gap or to reach the time limit.

The computational time reported in this table includes the time to run the initial-

isation methods such as solving LPR as well as the time to solve the RMP and the

pricing subproblems. For the instances that are not solved within the time limit, the

time is set to be 10 minutes and the number of iterations reached by the 10 minute

timelimit is used. For comparison, we also solve the extensive form (2.1) to the same

tolerances without decomposition (i.e. by branch and bound) using CPLEX.

These results show that solving the problems without decomposition is the slow-

est. Among the remaining 5 methods, which are based on the column generation

procedure, solving the problem with coldstart is by far the slowest in every case. The

3 methods based on neural network, random forest and nearest neighbour are faster

in all cases than the method based on the LPR. The nearest neighbour is the slowest

in many cases. The neural network and random forest have a similar performance

on the loose tolerances 1.0% and 0.5% but the neural network outperforms all the

other methods on 0.25% tolerance.
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Table 3.4: Number of problems solved, average computational time (s) and iterations.

1% optimality 0.5% optimality 0.25% optimality
size method solved time iters solved time iters solved time iters
200 network 40 4.6 1.0 40 9.0 1.9 40 37.5 7.4

forest 40 4.3 1.0 40 8.0 1.8 40 42.0 8.2
neighbour 40 4.7 1.0 40 10.0 2.1 40 43.1 8.7

LPR 40 7.8 1.0 40 15.9 3.0 40 53.6 10.8
coldstart 40 103.8 16.6 40 161.1 21.7 40 235.6 27.4

CPLEX 39 235.8 - 39 244.1 - 38 336.9 -
600 network 40 13.4 1.0 40 20.5 1.5 40 48.4 3.4

forest 40 14.0 1.1 40 26.5 2.0 40 55.5 4.2
neighbour 40 13.8 1.1 40 27.6 2.0 40 57.8 4.4

LPR 40 28.7 1.0 40 43.0 2.0 40 86.9 5.4
coldstart 36 413.4 13.8 16 528.2 16.6 9 576.3 17.7

CPLEX 4 594.1 - 4 594.1 - 4 594.1 -
1000 network 40 21.5 1.0 40 34.3 1.5 40 74.2 3.2

forest 40 19.5 1.0 40 37.1 1.8 40 89.7 4.3
neighbour 40 23.5 1.2 40 46.5 2.1 40 96.5 4.4

LPR 40 45.6 1.0 40 67.4 1.8 40 120.4 4.2
coldstart 23 515.8 12.2 7 567.8 13.6 5 584.0 14.0

CPLEX 1 599.0 - 1 599.0 - 1 599.0 -

Table 3.5 shows the 20% and 80% quantiles of computational time. We observe

that all the methods have relatively small variation of computational time. In partic-

ular, we notice that the 80% quantile of the computational time with neural network

is always less than that of LPR. This shows the robustness of our method and many

instances can be solved in a short time.

To observe the effect of the quality of the initial dual values on the time taken by

the column generation procedure more clearly, in Figure 3.7 the total computational

time (0.25% tolerance) for each 1000-generator test instance is plotted against the

tightness of the initial lower bound. The initialisation methods based on a neural

network and the LPR are compared in the plot. We observe a correlation between the

two metrics. That is, if the lower bound computed in the first iteration of the column

generation procedure is tighter then the total computational time required by the

column generation procedure tends to be smaller.

The method to generate initial dual values must balance the time to train, the

quality of the dual values and the computational time on a new instance. One

extreme example is the LPR. It does not require any offline training. However it

produces dual values with a relatively loose lower bound and the solution time grows
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Table 3.5: 20% and 80% quantiles (0.2-q, 0.8-q) of computational time.

1% optimality 0.5% optimality 0.25% optimality
size method 0.2-q mean 0.8-q 0.2-q mean 0.8-q 0.2-q mean 0.8-q
200 network 3.7 4.6 5.5 3.8 9.0 15.2 14.9 37.5 49.3

forest 3.6 4.3 5.1 3.7 8.0 12.4 14.7 42.0 49.9
neighbour 3.8 4.7 5.6 4.0 10.0 15.4 15.6 43.1 46.6

LPR 7.5 7.8 8.1 7.5 15.9 24.4 27.0 53.6 75.1
600 network 11.3 13.4 14.7 11.3 20.5 37.1 36.2 48.4 62.6

forest 10.4 14.0 13.9 10.5 26.5 43.8 36.8 55.5 73.2
neighbour 9.7 13.8 14.9 10.4 27.6 42.9 41.7 57.8 67.5

LPR 26.2 28.7 29.2 26.2 43.0 57.8 60.9 86.9 115.1
1000 network 17.0 21.5 22.1 17.1 34.3 34.9 17.9 74.2 122.1

forest 15.4 19.5 21.0 15.7 37.1 71.2 67.2 89.7 117.1
neighbour 15.1 23.5 21.5 15.2 46.5 82.9 68.0 96.5 117.1

LPR 42.8 45.6 48.6 42.8 67.4 93.1 73.8 120.4 159.4
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Figure 3.7: Tightness of the initial lower bound vs the total computational time
required by the column generation procedure
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Table 3.6: Breakdown of the average computational time (s)

tolerance method Initialisation RMP Subproblem Primal Heuristic
1% network 0.0 0.1 17.1 4.3

LPR 29.2 0.1 11.8 4.5
0.5% network 0.0 0.5 25.1 8.8

LPR 29.2 0.8 25.2 12.2
0.25% network 0.0 1.8 53.6 18.8

LPR 29.2 3.8 61.4 26.1

as the problem size increases. The method based on a neural network needs off-line

training, but it runs very quickly when solving a new instance and outputs dual values

with a tight lower bound, resulting in significant speed up of the time to solve new

instances.

Table 3.6 shows a breakdown of the average computational time of the column

generation procedures based on the neural network and on the LPR for the 1000-

generator instances for the 40 test cases. The column labelled as ‘Initialisation’ shows

the time required to run the initialisation methods. In the LPR-based method, this

is the time to solve the LPR, while the method based on a neural network this is the

time to evaluate the neural network (but does not include the time to train the neural

network). In cases of 1% tolerance, the time required to solve the LPR is longer than

the sum of the time spent on the other routines. However as the tolerance becomes

tighter, the number of iterations and the time spent in the other routines increases,

and by 0.25% tolerance the LPR initialisation time is only 25% of the total time.

We note that all the methods find a solution of a pre-specified suboptimality

(e.g. 0.1%) if they succeed. It is of interest to see whether there are qualitative dif-

ferences in the solutions found by different methods. If there are many solutions

whose suboptimalities are smaller than 0.1%, they may find solutions with different

properties/trends. Such differences may have impacts on downstream decisions if

the solver is used as a part of a larger model/system. However, analysing the quality

of the solutions is outside the scope of this thesis.
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Chapter 4

Primal Heuristics

Since Dantzig-Wolfe decomposition only provides lower bounds, it is necessary

to combine with a primal heuristic to obtain a feasible solution. Typically primal

heuristics are integrated with decomposition are used [46, 69, 29, 62]. Such primal

heuristics gather information from the column generation procedure and use it as a

guide to create primal feasible solutions. Empirically it has been observed that these

methods usually find a primal feasible solution with small suboptimality. However,

primal heuristics integrated with decomposition are not the only options in Dantzig-

Wolfe decomposition. A decomposition-free primal heuristic may be advantageous

since primal heuristics integrated with decomposition typically need a few iterations

of the column generation procedure to collect enough data to create solutions of

high quality. This requires some computational time, which may be avoided if a good

feasible solution can be found earlier.

In recent years there has been a growing interest in the use of machine learn-

ing within primal heuristics. Bello et al. [4], Khalil et al. [35], Nazari et al. [49] and

Kool et al. [39] apply reinforcement learning on various combinatorial problems,

including the travelling salesman problems and the vehicle routine problems. Nair

et al. [48] use reinforcement learning to solve two-stage stochastic programming

approximately. In all of the above studies, machine learning models are designed

to create primal feasible solutions directly. There are also approaches which use

both machine learning and an optimisation solver. Bertsimas and Stellato [11] and

Bertsimas and Stellato [12] propose a method for mixed-integer convex/quadratic
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optimisation problems, where machine learning models are used to simplify the

optimisation problems. They first train a model to predict the tight (active) con-

straints and the values of the integer variables with supervised learning. Given a

new instance, the model is used to delete inactive constraints and fix all the integer

variables and the reduced model is solved quickly. Xavier et al. [68] study the use of

a support vector machine on a security-constrained UC problem where the model

is used to reduce the problem size by fixing a subset of binary variables. They first

train a separate model for each binary variable and then select all models whose

accuracy in predicting their values are higher than a prescribed value. Then given a

new instance the selected models are used to fix their corresponding variables and

the reduced problem is then solved with an MILP solver. Pineda and Morales [56]

work on the same problem but use a nearest neighbour approach. Their method is

simple but achieves impressive results. Wang [67] proposes a similar approach based

on a nearest neighbour method to reduce the problem size of a knapsack problem.

Typically these approaches take a longer time compared to the methods which are

purely based on machine learning models, however they are likely to provide solu-

tions of better quality. We note that many of the above approaches focus on finding a

primal feasible solution and cannot compute the suboptimality of the output.

In our study, we propose two primal heuristics: one integrated with decompo-

sition and one based on machine learning. The primal heuristic integrated with

decomposition uses the fractional solution to the RMP to fix a subset of integer

variables. In each iteration of the column generation procedure, given the fractional

solution to the RMP, the primal heuristic checks whether each binary variable sat-

isfies the integrality constraint and fix those which do. The remaining variables

are then optimised by an MILP solver with the aim of quickly finding a feasible,

near-optimal solution to the original instance.

The other primal heuristic, based on machine learning, is of interest when the

problems are to be solved repeatedly with different demand data but with the same

problem structure. For example, this occurs when the UC problem is solved repeat-

edly on a daily basis by electricity generating companies. In such a case, typically

the structure of the problem is the same and only some of the problem data such as

demand is modified. Under this setup, the primal heuristic can use a pre-trained
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model instead of the RMP to fix a subset of the integer variables. In the training

phase, a model is trained to predict for any demand data and for each binary vari-

able how likely it is that the variable takes each of its two possible values. After the

training, given an instance to be solved, the prediction of the model is used with a

rounding threshold to fix some binary variables and reduce the problem size. Similar

approaches are used by Xavier et al. [68] and Wang [67]. However, in our approach we

adjust the amount of problem size reduction adaptively depending on the solution

progress so as to provide high quality solution quickly. Furthermore, we combine the

primal heuristic with Dantzig-Wolfe decomposition, which allows us to find a primal

feasible solution with proven suboptimality.

4.1 Local search and column combination heuristics

One of the earliest classes of primal heuristics studied in the literature is the feasibility

recovery local search primal heuristic. First of them are Merlin and Sandrin [46], who

solve UC by applying Lagrangian relaxation and using a subgradient method for the

dual problem. In each iteration of the subgradient method, the pricing subproblems

(2.14) are solved. A candidate primal solution is constructed by combining the pricing

subproblem solutions obtained in this iteration and they then test if this is feasible for

(2.1). If the generation capacity is not sufficient to meet the demand or the reserve at

some time periods, they modify the dual step direction to increase the dual variables

corresponding to the violated constraint to encourage more generators to be on at

the shortage periods. We note that this modification affects the optimisation of the

dual variables and the resulting lower bounds may be suboptimal.

Instead of modifying the dual step direction, Guan et al. [29] fix infeasibility of

the primal solutions by applying local search. In each iteration, a primal solution is

constructed from the pricing subproblem solutions. If this is infeasible, the cheapest

available generators are committed until the demand and the reserve are met. After

a feasible commitment decision is found, the amount of power output of each

generator is optimised. That is, the values of the binary variables in the original

problem are fixed to the values corresponding to the feasible commitment and the

resulting LP is solved to compute the amount of power output. This is the variant

52



Pre-trained solution methods for unit commitment 53

of the feasibility recovery local search primal heuristic used later in the numerical

experiments in this paper.

Another heuristic integrated with decomposition is the column combination

primal heuristic [65, 62, 61]. In this heuristic, the solutions to the pricing subproblems

are stored in a pool. Then constraints are added to the problem (2.1) to restrict the

choice of each pricing subproblem solution to one that is already in the pool: Let

{x ′
g i = (u′

g i , z ′
g i ) ∈Rn × {0,1}m | i ∈ Jg } be the pool of solutions to pricing subproblem

g . Then, binary variables wg i (g = 1,2, . . . ,G , i ∈ Jg ) are added to the original problem

(2.1) together with the following constraints

zg = ∑
i∈Jg

wg i z ′
g i , g = 1,2, . . . ,G ,

∑
i∈Jg

wg i = 1, g = 1,2, . . . ,G , (4.1)

wg i ∈ {0,1}, g = 1,2, . . . ,G , i ∈ Jg .

This is referred to as the restricted master IP by Vanderbeck [65]. While this is still

an MILP problem, the solution space is much smaller than the original problem

and a standard MILP solver can be used to solve it. This method is used to solve

the UC problem by Takriti and Birge [62] and to solve a stochastic version of the UC

problems by Schulze et al. [61].

4.2 RMP partial-fixing primal heuristic

In this section we introduce a new primal heuristic which uses the RMP (2.13) to

construct primal feasible solutions. In the following we assume that the RMP is

feasible, which may be ensured by adding artificial columns. First we solve the

RMP without regularisation and for each pricing subproblem g compute a weighted-

average of columns

x̂g := ∑
i∈Îg

xg i pg i , g = 1,2, . . . ,G ,

where Îg is the index set of columns {xg i | i ∈ Îg } used to formulate the RMP for each g .

Using the solution x̂g for each pricing subproblem g , we construct a primal solution
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x̂. Although the integer variables in xg i satisfy the integrality constraint for all g and

i ∈ Îg , those in x̂g may not. In this primal heuristic, we check whether the elements

of x̂g that correspond to the binary decisions satisfy the integrality constraints and

fix those which do. In this way we obtain a partially-fixed UC problem, which is then

solved by an MILP solver. In each iteration of the column generation procedure, we

repeat the above process. We refer this primal heuristic as RMP partial-fixing primal

heuristic.

Figure 4.1 shows an example of the partial-fixing procedure. In the middle of

the diagram an example solution to the RMP is shown. There are 4 variables which

violates the integrality constraints. Those variables are not fixed and optimised by an

MILP solver, while the other variables are fixed according to the value of the RMP

solution.

0.0 0.2 0.5 0.0

1.0 1.0 0.6 0.3

1.0 1.0 1.0 1.0

RMP

fractional on-off status

0.0 ? ? 0.0

1.0 1.0 ? ?

1.0 1.0 1.0 1.0

partially-fixed on-off status

Figure 4.1: Skematic example of RMP partial-fixing on a 3-generator 4-period exam-
ple

An important property of this primal heuristic is that if the RMP is solved by the

Simplex Method (so yielding a basic solution) then the number of elements of x̂

which violate the integrality constraint is bounded by a constant independent of the

number of generators. Thus, the number of integer variables in the partially-fixed

MILP does not grow with the number of generators, which is not true in some other

primal heuristics. For example in the column combination primal heuristic the

number of integer variables is proportional to the number of generators as a result

the difficulty of the problem grows rapidly.

The above property can be shown using an argument similar to the one given

by Bertsekas et al. [6]. Let C be the number of complicating constraints in (2.1), so

a ∈ RC . If we use the formulation shown in Section 2.1, C is double the number of

time periods. In the following we assume that G >C . We note that in the RMP (2.13),

there are G +C equality constraints. Thus, any basic solution to the RMP has at most
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G +C non-zero variables. The second constraint in (2.13) ensures that for each g at

least one variable among {pg i }i∈Îg
is positive. Therefore at most C generators have

two or more positive values among {pg i }i∈Îg
and all the other generators have exactly

one positive value. In these cases, exactly one of {pg i }i∈Îg
is equal to 1 and all of the

others are equal to 0. Thus, x̂g equals exactly same one of {xg i }i∈Îg
and has integer

values.

In practice the number of generators with multiple non-zeros in {pg i }i∈Îg
may be

smaller than C . Furthermore, even if multiple elements in {pg i }i∈Îg
are positive, it

may be that only a small part of x̂g has fractional values.

We note that the RMP (2.13) is not necessarily feasible. Typically we need to run

a few column generation iterations to gather enough columns to ensure the RMP

feasible. Furthermore, even if the RMP is feasible, the partially-fixed MILP (2.1) is not

necessarily feasible. However, in our experiments on UC instances with practical data

(see Section 3.3), we do not observe instances where the partially-fixed schedule is

infeasible and typically the above primal heuristic successfully finds a primal feasible

solution with small suboptimality, such as 0.1%. On some instances, however, such

tight suboptimality is not achieved. To handle such cases, we modify the method as

follows. If the column generation procedure fails to terminate within a prescribed

number of iterations (10 iterations in our implementation), we relax integer variables

which correspond to the time periods adjacent to those with fractional values. For

example, if the on-off status of generator g on time t is set free, we unfix the on-

off status of the same generator in time t − 1 and t + 1. By relaxing more binary

variables, the partially-fixed UC gets harder to solve but is more likely to provide a

better solution.

Figure 4.2 shows an example of such enhancement using the same RMP solution

as Figure 4.1. Although there are only 4 variables which violates the integrality

constraints, we relax 3 additional variables which are ’adjacent’ to the fractional

variables.

We note that [24] (later extended in [20]) study primal heuristics similar to the

one described here in the sense that they use the solution to the regularised RMP.

Fractional solutions obtained from the regularised RMP also have a property that

only a bounded number of variables can be fractional given that the specialised ac-
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Figure 4.2: Skematic example of RMP partial-fixing with additional relaxation

tive set method studied in [37, 37] is used to solve the RMP. Our method works with

the standard Simplex method and hence can be implemented easily. Furthermore,

they interpret the fractional solution as a probability and apply simple rounding

heuristics to obtain an integer feasible solution. We fix the fractional values using

an optimiser and thus it returns a solution no worse than the one returned by their

primal heuristic (up to suboptimality tolerance of the optimiser). However, since

the results reported in their paper are based on different UC instances, it is not

straightforward to compare the performances in terms of solution quality nor com-

putational time. Extensive numerical experiments comparing the performances of

primal heuristics are outside the scope of this thesis.

4.3 Examples

Some primal heuristics described above require more computational time than the

others. In this section we consider small UC instances and compare their behaviours.

To simplify the exposition we do not consider the marginal and startup costs (C mr =
C up = 0), the reserve constraint (P r = 0), the minimum generation limit constraint

(P min = 0), the ramp rate bounds constraint (P ru,P rd,P su,P sd ≫ 0) and the minimum

uptime constraint (T u = 0). We assume that the initial states of the generators are all

off (αg t = pg t = 0 for t = 0 and g = 1,2, . . . ,G).

Example 4.A The first example consists of 2 generators and 1 time period. The data

of the generators is given in Table 4.1. This is the same as that of Example 2.A in

Section 2.7.

Figure 4.3 shows X in the space of the total cost csum and the total power output

psum. Each of the solid lines and the origin corresponds to a single feasible generator
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Table 4.1: Generators in Example 4.A

generator g 1 2

no-load cost C nl
g 1 2

maximum generation limit P max
g 1 3

minimum downtime T d
g 1 1

commitment decision, which is shown aside. The optimal primal and dual objective

values are plotted as functions of the total power output in the same figure.

total power output psum

total cost csum

α= (0,0)T

α= (1,0)T
1

α= (0,1)T
2

α= (1,1)T
3

2

Figure 4.3: X ( , ), optimal primal ( ) and dual ( ) objective values (α: com-
mitment decision)

In Section 2.7 we obtained the dual function explicitly. The dual function with

P d = 2 is plotted in Figure 4.4. The optimal dual bound is attained at y = 2/3.

In the following we apply the column generation procedure and the primal heuris-

tics to the dual function q(2, y). We assume that if there are multiple optimal solu-

tions to a pricing subproblem, the solver returns the first solution in terms of the

lexicographical order. For example, if (1,0)T and (0,1)T are the optimal solutions, the

solver returns (0,1)T . We also assume that the feasibility recovery local search primal

heuristic commits the generators with the smallest non-load costs C nl.

The output of the column generation procedure with the initial point (0,0)T and

the constant step size tk = 1 for all k is shown in Table 4.2. The column labelled as

‘y ’ shows the values of the dual variables in each iteration. The next column shows
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y

q(2, y)

2/3 1 3/2

4/3

1

O

Figure 4.4: Dual function with demand P d = 2

the lower bounds obtained by evaluating the dual function at the given dual values,

followed by a column showing the solution to the pricing subproblems. The next

two columns are the output of the feasibility recovery local search primal heuristic.

The left column shows the feasible schedule found by the primal heuristic, while the

right column shows its cost. The next two columns are the output of the column

combination primal heuristic displayed in the same manner. The last three columns

are the output of the RMP partial-fixing primal heuristic. The left-most column is the

solution to the RMP (i.e. a fractional schedule), the middle column is the solution

obtained by solving the partially fixed UC and the right-most column is the upper

bound computed from the feasible solution found. To reduce clutter only the values

of the commitment decisions α are displayed.

In this small example the column generation procedure finds the optimal dual

solution in 3 iterations. We note that in the third iteration both of (0,0)T and (0,1)T

are the optimal solutions to the pricing subproblems. Since we assume the solver

returns the first one in terms of the lexicographical order, we get (0,0)T .

When the pricing subproblem solution is (0,0)T (that is, all the generators are

shut down), there is no way to meet the demand. The feasibility recovery local search

primal heuristic fixes the shortage by committing generator 1 first, since it has smaller

non-load cost than generator 2. However, the capacity of generator 1 is 1 and it is still

not sufficient to meet the demand. Thus, generator 2 is committed additionally and
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we obtain (1,1)T as a feasible schedule, which provides upper bound 3.

In the first iteration given the single pricing subproblem solution (0,0)T , the

column combination primal heuristic fails to output any feasible solution. In the

second iteration given the pricing subproblem solution (1,1)T , all the four generator

schedules satisfy the column combination constraint (4.1):


w11 ·0+w12 ·1

w21 ·0+w22 ·1

 ∣∣∣∣∣∣ (wg 1, wg 2) ∈∆2 (g = 1,2)

=


0

0

 ,

1

0

 ,

0

1

 ,

1

1

 ,

where

∆n = {w ∈ {0,1}n |w1 +w2 +·· ·+wn = 1}.

Thus the column combination primal heuristic outputs the optimal primal solution

(0,1)T .

The RMP partial-fixing similarly fails to find a feasible solution in the first iteration.

In the second iteration and later the solution to the RMP is (0,2/3)T . The RMP partial-

fixing compares two solutions, (0,0)T and (0,1)T , and outputs the optimal one.

Although the column combination primal heuristic and the RMP partial-fixing

primal heuristic returns the same solution, the column combination primal heuristic

needs to solve a larger MILP to obtain the primal feasible solution. Ignoring the

variables γ,η, the problem to combine columns has 6 binary variables in total: 2

binary variables for commitment decisions α and 4 binary variables for column

combination w . One of the integrality constraints on α and w can be relaxed, but

at least 2 binary variables are required. On the other hand, the RMP partial-fixing

primal heuristic solves a UC problem where the first generator is fixed to be off and

only the second generator is to be scheduled. Thus the partially-fixed MILP has only

1 binary variables.

Example 4.B We next consider a problem with 2 generators and 2 time periods. The

problem data is given in Table 4.3 and Table 4.4.
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Table 4.2: Output of the column generation procedure on Example 4.A

local search col. comb. RMP partial-fixing

it y lb subproblem sol. ub sol. ub RMP sol. ub

1 0 0

(
0
0

) (
1
1

)
3 - - - - -

2 2 -1

(
1
1

) (
1
1

)
3

(
0
1

)
2

(
0

2/3

) (
0
1

)
2

3 2/3 4/3

(
0
0

) (
1
1

)
3

(
0
1

)
2

(
0

2/3

) (
0
1

)
2

Table 4.3: Generators in Example 4.B

generator g 1 2

no-load cost C nl
g 1 2

maximum generation limit P max
g 1 1

minimum downtime T d
g 1 1

Table 4.4: Demand in Example 4.B

time period 1 2

demand 3/2 3/2
reserve 0 0

The only feasible, and hence optimal, generator schedule is to commit the both

generators for all the time periods, which gives the optimal objective value of 6. The

contour plot of the dual function with P d
1 = P d

2 = 3/2 is plotted in Figure 4.5. The plot

shows that the maximum of the dual function is 4, which is attained at y = (2,2)T .

The result of the column generation procedure and the primal heuristics are

shown in Table 4.5. The initial point is set to (5/2,3/2)T and the constant step size

of 1 is used. The column generation procedure finds the optimal dual values in

3 iterations and output the same dual values and pricing subproblem solutions

afterwards. For any iteration the feasibility recovery local search primal heuristic

commit all the generators to find a feasible schedule and obtain the optimal schedule.

After 3 iterations, combination of the pricing subproblem solutions (4.1) yields

the following three generator schedules


 (1 1)

w1(1 0)+w2(0 1)+w3(0 0)

 ∣∣∣∣∣∣ (w1, w2, w3) ∈∆3

=


1 1

1 0

 ,

1 1

0 1

 ,

1 1

0 0

 .
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2.5
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2
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Figure 4.5: Contour plot of the dual function of Example 4.B

The column combination primal heuristic fails to find a feasible solution since any

combination does not satisfy the demand. Interestingly, the RMP partial-fixing

primal heuristic is able to find a fractional feasible schedule

α=
 1 1

1/2 1/2

=
 (1 1)

1/2 · (1 0)+1/2 · (0 1)+0 · (0 0)


By committing generator 2 for all the time periods the RMP partial-fixing primal

heuristic finds the optimal schedule.

Table 4.5: Output of the column generation procedure on Example 4.B with initial
point y = (5/2,3/2)T

local search col. comb. RMP partial-fixing

it y lb subproblem sol. ub sol. ub RMP sol. ub

1

(
5/2
3/2

)
7/2

(
1 1
1 0

) (
1 1
1 1

)
6 - - - - -

2

(
3/2
5/2

)
7/2

(
1 1
0 1

) (
1 1
1 1

)
6 - -

(
1 1

1/2 1/2

) (
1 1
1 1

)
6

3

(
2
2

)
4

(
1 1
0 0

) (
1 1
1 1

)
6 - -

(
1 1

1/2 1/2

) (
1 1
1 1

)
6

The behaviour of the primal heuristics depends on the initial point of the column
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generation procedure. The output of the column generation procedure and the

primal heuristics with the initial point at y = (2.5,2.5)T and the constant step size 1

are shown in Table 4.6. The column generation procedure again takes 3 iterations to

optimise the dual function. However, in this setting the pricing subproblem solutions

in the first iteration is optimal to the original problem and all of the primal heuristics

find the optimal solution in 1 iteration.

Table 4.6: Output of the column generation procedure on Example 4.B with initial
point y = (5/2,5/2)T

local search col. comb. RMP partial-fixing

it y lb subproblem sol. ub sol. ub RMP sol. ub

1

(
5/2
5/2

)
7/2

(
1 1
1 1

) (
1 1
1 1

)
6

(
1 1
1 1

)
6

(
1 1
1 1

) (
1 1
1 1

)
6

2

(
3/2
3/2

)
7/2

(
1 1
0 0

) (
1 1
1 1

)
6

(
1 1
1 1

)
6

(
1 1

1/2 1/2

) (
1 1
1 1

)
6

3

(
2
2

)
4

(
1 1
0 0

) (
1 1
1 1

)
6

(
1 1
1 1

)
6

(
1 1

1/2 1/2

) (
1 1
1 1

)
6

Example 4.C In the previous two examples the RMP partial-fixing primal heuristic

outperformed the other primal heuristics. In this example we explore a case when it

fails to find a better solution. We consider a single-period 3-generator UC instance as

shown in Table 4.7. X and the optimal primal and dual objective values are plotted

in the cost-power space in Figure 4.6. When demand is 3, the optimal solution is (0,

1, 0) with the optimal objective value 24. Using the similar argument as before, we

obtain the dual function, which is shown in Figure 4.7.

Table 4.7: Generators in Example 4.C

generator g 1 2 3

no-load cost C nl
g 12 24 42

maximum generation limit P max
g 2 3 6

minimum downtime T d
g 1 1 1
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total power output psum

total cost csum

α= (1,0,0)T
12

α= (0,1,0)T
24

α= (1,1,0)T
36α= (0,0,1)T
42

α= (1,0,1)T
54

2 3 5 6 8

Figure 4.6: X ( , ), optimal primal ( ) and dual ( ) objective values

y1

y2

6 7 8 39/4

18
19

14

Figure 4.7: The dual function of Example 4.C with demand P d = 3
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Assume that the initial dual value is 3 and the step size is 3/2. The output of

the column generation procedure is shown in Table 4.8. The column generation

procedure finds the optimal dual value after 3 iterations.

Table 4.8: Output of the column generation procedure on Example 4.C

local search col. comb. RMP partial-fixing

it y lb subproblem sol. ub sol. ub RMP sol. ub

1 3 9

0
0
0

 1
1
0

 36 - - - - -

2 15/2 16

1
0
1

 1
0
1

 54

0
0
1

 42

 1
0

1/6

 1
0
1

 54

3 7 19

1
0
0

 1
1
0

 36

0
0
1

 42

 1
0

1/6

 1
0
1

 54

In the first iteration, the pricing subproblem solution is (0,0,0)T . The feasibility

recovery local search primal heuristics commits generator 1 and 2 and finds a feasible

solution (1,1,0)T , which gives the best upper bound 36.

On the other hand, after 3 iterations, the column combination primal heuristic

gathers pricing subproblem solutions (0,0,0)T , (1,0,1)T and (1,0,0)T . Therefore the

possible combinations of the columns are




w11 ·0+w12 ·1

0

w31 ·0+w32 ·1


∣∣∣∣∣∣∣∣∣∣
(wg 1, wg 2) ∈∆2 (g = 1,3)

=




0

0

0

 ,


1

0

0

 ,


0

0

1

 ,


1

0

1




and the column combination primal heuristic outputs (0,0,1)T as the best primal

feasible solution with upper bound 42.

After the second iteration, the solution to the RMP is (1,0,1/6)T . The RMP partial-

fixing has two possible solutions (1,0,0)T and (1,0,1)T and it outputs (1,0,1)T as it is

the only feasible solution.

The difference of the performances of the primal heuristics is due to the criteria

to compare generators. The feasibility recovery local search compares generators
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with the non-load cost and thus generator 2 is cheaper than generator 3. However,

the pricing subproblems and the RMP tend to use generators with small average cost

at their maximum power output C nl
g /P max

g . Thus, generator 3 is more likely to be

used than generator 2. In fact, generator 2 never appears in the pricing subproblem

solutions nor the RMP solutions.

Example 4.D In this last example we study another mode of failure of the RMP

partial-fixing primal heuristic. We consider a UC instance with 6 time periods and

2 generators, whose data is given in Table 4.9 and Table 4.10. To meed the demand

in time period 1, 3, 4 and 6, both of the generators must be on, while time period 2

and 5 only requires one of them. Since generator 2 cannot be switched off for 1 time

period, the optimal solution is to keep generator 1 on at time period 1, 3, 4, 6 and

keep generator 2 up for all the time periods

α=
1 0 1 1 0 1

1 1 1 1 1 1

 .

Table 4.9: Generators in Example 4.D

generator g 1 2

no-load cost C nl
g 1 2

maximum generation limit P max
g 1 1

minimum downtime T d
g 1 2

Table 4.10: Demand data of Example 4.D

time period 1 2 3 4 5 6

demand 3/2 1 3/2 3/2 1 3/2
reserve 0 0 0 0 0 0

Table 4.11 is the output of the column generation procedure used with the initial

point

y =
(
5/2 3/2 3/2 5/2 3/2 3/2

)T
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and constant step size t = 1.

Table 4.11: Output of the column generation procedure on Example 4.D

local search col. comb. RMP partial-fixing

it y lb subproblem sol. ub sol. ub RMP sol. ub

1



5/2
3/2
3/2
5/2
3/2
3/2

 9



1 1
1 0
1 0
1 1
1 0
1 0



T 

1 1
1 1
1 1
1 1
1 1
1 1



T

18 - - - - -

2



3/2
3/2
5/2
3/2
3/2
5/2

 9



1 0
1 0
1 1
1 0
1 0
1 1



T 

1 1
1 1
1 1
1 1
1 1
1 1



T

18 - -



1 1/2
1 0
1 1/2
1 1/2
1 0
1 1/2



T

- -

3



2
3/2

2
2

3/2
2

 10



1 0
1 0
1 0
1 0
1 0
1 0



T 

1 1
1 1
1 1
1 1
1 1
1 1



T

18 - -



1 1/2
1 0
1 1/2
1 1/2
1 0
1 1/2



T

- -

In the pricing subproblem solutions in any iterations, generator 1 is always com-

mitted but generator 2 is not. The feasibility recovery local search primal heuristic

finds a primal feasible solution by committing generator 2 for all the time periods.

The column combination primal heuristics fails to find any primal feasible solutions

even after 3 iterations since the only possible combinations are the following three

which are all infeasible:
 (

1 1 1 1 1 1
)

w1
(
1 0 0 1 0 0

)+w2
(
0 0 1 0 0 1

)+w3
(
0 0 0 0 0 0

)
 ∣∣∣∣∣∣ (w1, w2, w3) ∈∆3


=


1 1 1 1 1 1

0 0 0 0 0 0

 ,

1 1 1 1 1 1

1 0 0 1 0 0

 ,

1 1 1 1 1 1

0 0 1 0 0 1

 .

The unregularised RMP is feasible after 2 iterations, but the RMP partial-fixing primal

heuristic fails to find a primal feasible solution. This is because generator 2 is fixed to
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be off on time period 2 and 5.

4.4 Neural network partial-fixing primal heuristic

All of the primal heuristics discussed above use information gathered through the

execution of the column generation procedure or the subgradient methods. In this

section we consider two primal heuristics based on machine learning. We assume

that the problem (2.1) is to be solved repeatedly with different demand data ω.

In the training phase, we sample ω and solve as many training instances as

possible. They may come from historical data or in our case from historical data

with perturbation. In this way, we obtain the dataset for each sample ω and the

corresponding optimal values of the binary variables. Then, we use the dataset

to create a prediction model which takes ω as input and predicts the value of the

binary variables. The two alternatives we consider are a neural network and a nearest

neighbour model.

The neural network is a feed-forward neural network [13]. The model takes ω as

input and outputs a vector each of whose elements is a predicted probability of the

corresponding binary variables being 1. The neural network is trained as a standard

binary classification problem.

The nearest neighbour model compares the new instance with problem param-

eter ω to those in the training dataset and find a prescribed number of the closest

neighbours by the Euclidean distance. The average of the values of the binary vari-

ables in their solutions of these nearest neighbours are computed and used as the

prediction of their probabilities.

The output of a prediction model can be of help when constructing a feasible

solution. The simplest approach is to round the prediction to the nearest integer.

However, such a solution is usually infeasible when the problem is highly constrained.

Instead, as described below, we use the prediction to fix only a subset of binary

variables so that the problem size is reduced. Similar ideas have been explored by

Xavier et al. [68], Pineda and Morales [56], and Wang [67].

Pick a threshold value α ∈ (0.5,1]. If the predicted probability of a binary variable

being 1 is larger than α (smaller than 1−α), fix the corresponding binary variables to
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1 (0), and leave all the other variables unfixed. Then solve the resulting partially-fixed

MILP with an MILP solver.

Choosing a suitable threshold value is a subtle task. If we choose α close to 0.5

we will fix many binary variables the problem will be small and can be solved quickly.

However, fixing too many variables may result in infeasibility or unacceptably large

suboptimality. On the other hand, fixing fewer variables results in a harder problem

which takes longer to solve. Instead of fixing the threshold value to a single value a

priori, we use a sequence of increasing values (0.8, 0.9, 0.95, 0.99 and 1.0 are used in

our implementation). First we try a small threshold value and solve the partially-fixed

MILP. If the resulting problem is infeasible, or if the resulting problem is solved, we

try a larger threshold value.

When using Dantzig-Wolfe decomposition, we can combine the primal heuristics

based on machine learning with the column generation procedure as follows. At the

end of each iteration of the column generation procedure, we run one of the above

primal heuristics and solve partially-fixed MILPs using an optimisation solver. We

impose a limit on the amount of time spent by the primal heuristic in each column

generation iteration. If the solver has not found a solution within the target tolerance

within this time limit, it is halted and the next iteration of the column generation

procedure is executed. In the next iteration the lower bound may have improved

enough to reach the tolerance gap. Otherwise, in the next run of the primal heuristic,

the solver is resumed from where it was interrupted in the previous iteration, essen-

tially splitting the execution of the solver over several column generation iterations.

We refer to the method based on neural network and nearest neighbour as neural

network partial-fixing primal heuristic and nearest neighbour partial-fixing primal

heuristic respectively.

4.5 Numerical experiments

In this section the proposed primal heuristics are evaluated. We use the same envi-

ronment and test instances as described in Section 3.3.
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4.5.1 Time to close gap with Dantzig-Wolfe decomposition

Experimental Setup

In the first experiment we use the primal heuristics alongside Dantzig-Wolfe decom-

position and measure computational time to find a primal feasible solution of a

specified suboptimality.

To prepare the dataset used by the neural network and nearest neighbour partial-

fixing, as many training instances as possible are solved to 0.25% optimality within

a prescribed dataset preparation time budget. To solve each training instance we

use Dantzig-Wolfe decomposition with the feasibility recovery local search primal

heuristic.

After the dataset is constructed, a neural network is trained to predict the values

of the binary variables. We use a feed-forward neural network with 2 hidden-layers

of 400 units per layer with ReLU activation function.

The nearest neighbour method uses the same dataset as the neural network.

When solving a test instance, the parameter of the instance is compared with those of

training instances, and the 50 closest instances by the Euclidean distance are chosen

to compute the average values of the binary variables.

To solve a test instances, Dantzig-Wolfe decomposition is used and the primal

heuristics are run in the end of each column generation iteration. When the iteration

number is large, the lower bound is typically tight and the upper bound provided by

the primal heuristics is loose unless more time is allocated to it. Thus, we allow the

primal heuristics to use more time in later iterations according to the formula

(primal heuristic time limit) = (time spent to solve pricing subproblems) ·
(

k

10
+2

)
,

(4.2)

where k is the iteration number. We note that some primal heuristics may stop before

reaching the time limit. For example, the partially-fixed MILP solved in the RMP

partial-fixing primal heuristic is often solved before the time limit is reached.

For comparison, we also run CPLEX on the original MILP problem without de-

composition.
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Table 4.12: Statistics on the training

200 600 1000

number of training instance 15,419 7,241 4,886
time to train a model (s) 757 1,514 1,837

Results

The training dataset was constructed with the dataset preparation time budget of 24

hours with 8 cores. Table 4.12 reports the number of solved instances as well as the

time used to train a neural network.

To evaluate the primal heuristics, 40 test instances were solved. The demand data

to construct the test instances was sampled from a different year than those of the

instances used to train the neural network and the nearest neighbour model. Table

4.13 shows the number of instances solved within the time limit of 10 minutes, the

average computational time and the average number of column generation iterations

to solve the instances or to reach the time limit. For the instances that are not solved

within the time limit, the time is set to be 10 minutes and the number of iterations

reached by the 10 minute time limit is used.

When the tolerance is loose, such as 0.5% or 0.25%, the neural network partial-

fixing primal heuristic usually performs best. We observe that the number of column

generation iterations in these cases is very small and with averages all less than

2. That is, on typical instances the neural network partial-fixing very quickly find

a primal feasible solution satisfying the suboptimality tolerance with 0.25% and

Dantzig-Wolfe decomposition give a lower bound to assert that the suboptimality

was smaller than 0.25%. The nearest neighbour partial-fixing primal heuristic is

second best in half of the cases. However, for all the cases, the average performance

of the neural network partial-fixing primal heuristic is better than that of the nearest

neighbour partial-fixing primal heuristic, in terms of the computational time and the

number of column generation iterations. The other primal heuristics are integrated

with decomposition and require more column generation iterations to find primal

feasible solutions of acceptable suboptimality. This results in longer computational

time for many instances.
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Table 4.13: Number of problems solved, computational time (s) and iterations

tol: 0.5% 0.25% 0.1%

size method solved time iter solved time iter solved time iter

200 feasibility recovery 40 15.9 3.0 40 56.0 11.3 4 551.8 68.6
column combination 40 32.8 7.1 40 33.6 7.2 30 276.3 35.6
RMP partial-fixing 40 22.8 5.5 40 24.0 5.8 40 37.5 8.4
network partial-fixing 40 9.3 1.0 40 12.0 1.3 40 56.3 5.2
nearest partial-fixing 40 11.6 1.2 40 15.5 1.6 40 74.4 6.3
CPLEX 40 215.8 0.0 37 336.0 0.0 18 558.0 0.0

600 feasibility recovery 40 42.2 2.0 40 84.4 5.4 30 263.5 16.8
column combination 40 83.9 5.2 40 86.1 5.3 40 105.6 6.4
RMP partial-fixing 40 60.7 4.4 40 62.8 4.6 40 76.8 5.7
network partial-fixing 40 39.6 1.3 40 41.7 1.3 40 128.0 4.2
nearest partial-fixing 40 51.8 1.6 40 60.2 1.8 40 136.0 4.3
CPLEX 5 589.7 0.0 5 589.7 0.0 1 593.5 0.0

1000 feasibility recovery 40 66.6 1.8 40 117.9 4.2 37 236.1 9.4
column combination 40 114.1 3.9 40 120.1 4.1 40 166.4 5.6
RMP partial-fixing 40 85.5 3.8 40 91.4 4.1 40 113.7 5.2
network partial-fixing 40 70.8 1.3 40 75.1 1.4 40 181.6 3.9
nearest partial-fixing 40 91.6 1.8 40 94.3 1.9 40 208.8 4.3
CPLEX 1 597.4 0.0 1 597.4 0.0 0 600.0 0.0
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If the target tolerance is tight (0.1%), the results are different. The RMP partial-

fixing primal heuristic outperforms the other methods in all the cases. The neural

network partial-fixing primal heuristic requires a smaller number of column gen-

eration iterations but needs longer computational time. This is because the RMP

partial-fixing primal heuristic does not use all the time allocated to the primal heuris-

tics but the neural network partial-fixing primal heuristic always run as long as the

time limit. The neural network and nearest neighbour partial-fixing primal heuris-

tics found a primal solution with suboptimality smaller than 0.1% for all the test

instances. However, the neural network partial-fixing primal heuristic is on average

slower than the RMP partial-fixing in the all cases and the nearest neighbour partial-

fixing primal heuristic is even slower. The column combination primal heuristic fails

to find a primal solution for some test instances for the 200-generator case. However,

it successfully find a primal solution on all the test instances of size 600 and 1,000

and the average computational time is faster than the neural network partial-fixing

primal heuristic. The feasibility recovery local search primal heuristic also has better

performance for larger test instances but is still inferior to the other primal heuristics.

Table 4.14 shows a breakdown of the average computational time of the proposed

methods applied to the 1000-generator test cases. The format is the same as Table

3.6. The column labelled as primal heuristic shows the average time spent by the

primal heuristics. For RMP partial-fixing primal heuristic it includes the time to solve

the unregularised RMP and the partially fixed UC problem. Since all the methods

use the same initialisation of the dual variables (LPR), the time spent in initialisation

is almost the same. RMP partial-fixing primal heuristic spends most of the time

solving the subproblems. In other words, it is very quick to solve the partially fixed

UC problem in RMP partial-fixing primal heuristic. This indicates that the number of

fractional values in the solution of the unregularised RMP is very small. On the other

hand the other two primal heuristics spend considerable amounts of time to solve

the partially fixed UC problems. This supports the earlier observation: these two

primal heuristics require fewer iterations but at each iteration they spend significant

amounts of time in the primal heuristics.
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Table 4.14: Breakdown of the average computational time (s)

tol method Initialisation RMP Subproblem Primal Heuristic
0.5% RMP partial-fixing 29.6 2.0 50.6 3.4

network partial-fixing 29.7 0.3 17.0 36.1
nearest partial-fixing 29.5 0.4 23.2 51.4

0.25% RMP partial-fixing 29.6 2.3 55.7 4.0
network partial-fixing 29.7 0.3 18.8 38.1
nearest partial-fixing 29.5 0.5 24.7 52.7

0.1% RMP partial-fixing 29.6 3.7 72.7 7.7
network partial-fixing 29.7 1.4 53.7 96.9
nearest partial-fixing 29.5 1.8 59.3 118.2

Analysis of the effect of dataset preparation time budget

In this section we study the effect of the dataset preparation time budget. We con-

sider cases where the time budget is 6, 12, 36 or 48 hours instead of 24 hours and

observe how the performance of the methods is affected. To this end, the neural

network is trained using the dataset generated within each of these time budgets. The

performance of the models is then evaluated as before and the results are reported

in Table 4.15. In all cases, all of the test instances are solved to within 0.1% tolerance.

In many cases, both the neural network and the nearest neighbour model tend to

perform better with a larger training dataset. Comparing the neural networks with

6-hour training, those with 48-hour training are all on average faster. However, there

is not a systematic improvement in the performance beyond 24-hour of training. The

room for additional performance gain seems limited if further dataset preparation

time budget is given. The result of the nearest neighbour model are similar.

Analysis of neural network architecture

In the following the effect of the model architecture is studied. In the previous

experiments, small feed-forward neural networks with 2 hidden-layers of 400 units

per layer were considered. Here, we additionally train deeper neural networks and

measure their performances. A deeper model consists of 4 hidden layers of 1000

units per layer. We use the same training dataset which is generated with the dataset

preparation time budget of 24 hours. The performance of the models are evaluated

similarly and the results are reported in Table 4.16. The difference in performance is
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Table 4.15: Performance of the primal heuristics with different dataset preparation
time budgets

tol: 0.5% 0.25% 0.1%

size method budget solved time iter solved time iter solved time iter

200 network 6 40 7.7 1.1 40 9.4 1.7 40 30.5 6.8
12 40 7.8 1.1 40 8.9 1.5 40 29.5 6.6
24 40 7.5 1.1 40 9.3 1.6 40 27.8 6.3
36 40 7.5 1.1 40 8.6 1.4 40 25.4 6.0
48 40 7.3 1.0 40 8.4 1.4 40 26.3 6.3

neighbour 6 40 8.0 1.2 40 10.2 1.9 40 41.9 8.6
12 40 7.7 1.1 40 10.7 2.1 40 40.8 8.6
24 40 7.6 1.1 40 9.8 1.8 40 38.2 8.2
36 40 7.6 1.1 40 9.3 1.6 40 34.0 7.6
48 40 7.9 1.2 40 10.2 1.9 40 31.4 7.3

600 network 6 40 31.2 1.5 40 33.7 1.8 40 71.2 5.3
12 40 27.8 1.2 40 32.1 1.5 40 65.8 4.8
24 40 27.5 1.1 40 30.3 1.4 40 64.6 4.7
36 40 29.7 1.4 40 30.6 1.4 40 64.0 4.7
48 40 30.2 1.4 40 30.2 1.4 40 64.5 4.7

neighbour 6 40 33.6 1.8 40 37.4 2.1 40 83.7 6.0
12 40 32.7 1.6 40 36.8 2.0 40 75.4 5.6
24 40 32.0 1.5 40 35.0 1.9 40 76.1 5.5
36 40 32.4 1.6 40 35.3 1.9 40 71.7 5.4
48 40 34.2 1.8 40 37.3 2.1 40 73.8 5.6

1000 network 6 40 50.3 1.5 40 53.9 1.7 40 105.7 5.0
12 40 50.5 1.4 40 53.2 1.6 40 97.9 4.5
24 40 44.6 1.2 40 45.1 1.2 40 89.7 4.2
36 40 45.5 1.2 40 45.9 1.3 40 91.3 4.3
48 40 47.2 1.4 40 48.4 1.4 40 89.5 4.2

neighbour 6 40 56.8 1.9 40 63.3 2.4 40 143.5 6.6
12 40 55.2 1.9 40 59.7 2.1 40 122.4 5.7
24 40 62.5 2.1 40 69.5 2.5 40 132.6 6.0
36 40 47.8 1.4 40 52.4 1.6 40 110.7 5.1
48 40 52.1 1.6 40 57.3 1.9 40 112.9 5.2
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Table 4.16: Performance of the original and deeper neural networks

tol: 0.5% 0.25% 0.1%

size model solved time iter solved time iter solved time iter

200 original 40 7.5 1.0 40 9.3 1.6 40 27.8 6.4
deeper 40 7.4 1.0 40 8.6 1.4 40 28.5 6.6

600 original 40 27.5 1.2 40 30.3 1.4 40 64.6 4.7
deeper 40 28.6 1.2 40 33.3 1.6 40 63.1 4.6

1000 original 40 44.6 1.2 40 45.1 1.2 40 89.7 4.2
deeper 40 43.9 1.1 40 44.3 1.2 40 97.5 4.6

relatively small. Although we observed that the performance of the neural network is

noticeably better than the nearest neighbour model, there is no systematic advantage

of using the deeper, more expressive model.

4.5.2 Best upper bound within time limit

Experimental Setup

All of the experiments so far are concerned with finding a primal feasible solution

with guaranteed suboptimality (e.g. 0.1%). In this section we consider a case where

we are only interested in obtaining as good primal feasible solution as possible within

a prescribed time budget. This is of interest when we do not necessarily have enough

time to achieve a given proven tolerance.

To evaluate the performance of the primal heuristics in this setup, we compare

them by the quality (suboptimality) of feasible solutions found within a prescribed

time limit. The neural network and nearest neighbour partial-fixing primal heuristics

do not require Dantzig-Wolfe decomposition to be run. Indeed if we are not inter-

ested in lower bounds provided by Dantzig-Wolfe decomposition, these heuristics

provide feasible solutions faster if they are used as stand-alone methods. We for-

mulate the partially-fixed MILP instances and solve them sequentially (from those

with small threshold values). We note that even though we are not interested in

computing a lower bound, the other primal heuristics still require Dantzig-Wolfe

decomposition to be run and the method used in this section is identical to the one
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used in the previous section.

We use the same neural network and nearest neighbour models as in the previous

experiments (with the dataset preparation time budget of 24 hours). The configura-

tion of the other primal heuristics are the same as well.

Results

For evaluation, the same 40 test instances as in the previous section were used. The

results are shown in Table 4.17. The columns labelled as ‘solved’ are the number

of test instances where the primal heuristics found a feasible solution within the

time limits of 1, 2 and 5 minutes respectively. Among the instances where the primal

heuristics found a feasible solution, the suboptimality is computed as the difference

between the best upper bounds found by the primal heuristics and the best lower

bounds found by running CPLEX for 4 hours.

When the time limit is 1 minute, just finding a primal feasible solution may

not be trivial. On the instances of size 200, all of the primal heuristics can find

feasible solutions. However, on larger instances such as those of size 600 or 1000,

only the neural network partial-fixing primal heuristic and the feasibility recovery

local search primal heuristic found a feasible solution on all of the test instances. The

column combination primal heuristic failed to find any primal feasible solutions on

more than half of the test instances of size 1000 within 1 minute. We also note that

the neural network partial-fixing primal heuristic on average found primal feasible

solutions of smaller suboptimality compared with the feasibility recovery local search

primal heuristic.

With longer time limit, the primal heuristics are more likely to find primal feasible

solutions. For the 200-generator case, the neural network partial-fixing primal heuris-

tic performs best on average on any time limits. However, for the 600-generator and

1000-generator case, given sufficiently long time limit, such as 5 minutes, the RMP

partial-fixing primal heuristic is the best and the neural network partial-fixing primal

heuristic finds the second best solutions. We note that on any setup, the nearest

neighbour partial-fixing primal heuristic performs worse than the neural network

partial-fixing primal heuristic.
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Table 4.17: Suboptimality (%) of feasible solutions found within time limits

1 minute 2 minutes 5 minutes

size method solved subopt. solved subopt. solved subopt.

200 feasibility recovery 40 0.208 40 0.159 40 0.147
column combination 40 0.094 40 0.084 40 0.078
RMP partial-fixing 40 0.056 40 0.050 40 0.047
network partial-fixing 40 0.039 40 0.034 40 0.028
nearest partial-fixing 40 0.054 40 0.043 40 0.032

600 feasibility recovery 40 0.317 40 0.172 40 0.088
column combination 10 0.107 32 0.062 40 0.024
RMP partial-fixing 22 0.117 40 0.028 40 0.021
network partial-fixing 40 0.067 40 0.039 40 0.026
nearest partial-fixing 39 0.242 40 0.046 40 0.032

1000 feasibility recovery 40 0.301 40 0.277 40 0.072
column combination 0 - 23 0.112 40 0.033
RMP partial-fixing 5 0.220 40 0.079 40 0.014
network partial-fixing 40 0.243 40 0.042 40 0.028
nearest partial-fixing 39 0.550 40 0.052 40 0.035
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Chapter 5

Incremental Methods

The focus of this chapter is the column generation procedure. To facilitate the

discussion later, we adopt the dual point of view. That is, we consider the regularised

cutting-plane method applied to the dual problem (2.5), which is the sum of many

convex component functions, one for each generator. The value of each component

function is given as the optimal objective value of the corresponding subproblem.

The regularised cutting-plane method constructs a piecewise affine model for each

component. The method compute the optimal point of the model with regularisation

and evaluates the components at that point to refine the models.

In this chapter, we consider an incremental variant of the regularised cutting-

plane method in a sense that it only evaluates a subset of the components in each

iteration. This study is motivated by the success of other incremental first-order

methods such as the incremental gradient descent method and the incremental

subgradient method [50, 9]. One of the most notable examples is the training of

neural networks with the stochastic gradient method [10], which is closely related

to the incremental gradient descent method. Empirically it has been observed that

incremental methods often converge much faster than non-incremental methods,

especially when the initial point is far from the solution. The incremental method

is further extended to allow random selection of components (i.e. in each step the

component to compute the subgradient is selected randomly based on a nonhomo-

geneous Markov chain) and stochastic errors in subgradient evaluation [57]. [53]

study an extension of the method to handle constraints. They assume that the con-
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straints are expressed as the intersection of the level sets of convex functions and

consider an incremental version of the "subgradient projection". It is also expected

to be advantageous for the cutting-plane method to evaluate only a subset of the

components and update the models and the iterate more frequently if the number of

components is large.

In a typical approach, the cutting-plane model grows indefinitely as the algo-

rithm proceeds. That is, the model incorporates data obtained in all of the previous

iterations and its size increases every time a new point is evaluated. When the model

gets large, it is of interest to delete some data (i.e. delete some cuts) and keep the

model size moderate. Heuristics may be used to select cuts to be deleted, but they are

not supported by any convergence results [14, Remark 9.8]. We study the behaviour

of the regularised cutting-plane method in the limited-memory setup under various

conditions on the regularisation.

Both of the above aspects, incremental but quick steps (update) and a cheaper but

less informative RMP, may affect the performance of the method in an interrelated

way. This flexibility may allow the user to customise the method and improve the

efficiency. However, finding the good balance is a non-trivial task and highly problem

dependent.

These two ideas have been explored for bundle methods as well [31]. The bundle

methods also construct a piecewise affine model of the objective function with

regularisation. The bundle methods support the limited-memory setting thanks

to the technique called cut aggregation. Cut aggregation can be done very cheaply

using the dual solution to the RMP. If the RMP is a bottleneck, reducing the size of

the RMP in this way may be beneficial. Recently, extensions of the bundle methods

to handle an incremental component evaluation have been studied [64, 22, 42].

However, the current approaches have stronger requirements (e.g. evaluation of all

the components before each serious step or knowledge of the Lipschitz constance).

[64] is one of the latest and most flexible method in this direction. However the study

lacks numerical experiments and its actual performance is yet to be seen. We refer

the reader to [64] for further discussion on recent advances in incremental bundle

methods.

When the underlying problem is LP, the cutting-plane method we consider be-
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comes (a regularised version of) Bender’s decomposition. An incremental variant

of Bender’s decomposition is studied in [45]. Although the method requires much

stronger assumptions (e.g. identical constraint coefficients of subproblems), the

study reported impressive performance. Their analysis is based on finiteness of faces

of polyhedra and does not generalise to a limited-memory setup (i.e. dropping cuts).

Since the column procedure for the Dantzig-Wolfe Decomposition is the dual of

the cutting-plane methods for the Lagrangian dual problem, the same technique is

applicable to the column generation procedure. In the incremental column genera-

tion procedure, we only solve a subset of the pricing subproblems and generate the

corresponding columns in each iteration.

The remainder of this chapter is organised as follows. In Section 5.1 we intro-

duce the incremental cutting-plane method. Section 5.2 gives convergence analysis

of the algorithm. Section 5.4 presents numerical experiments to study empirical

performance of the incremental method.

5.1 Incremental regularised cutting-plane method

In this chapter we study the following convex optimisation problem as we did in

Section 2.3.1:

min
y∈Y

{
f (y) =

m∑
i=1

f i (y)

}
. (5.1)

To facilitate the comparison with the references, in this chapter, we use different

notation. The assumption is as follows.

Assumption 5.1.

1. Y ⊂Rn is a nonempty, closed and convex set.

2. f i :Rn →R is a convex function and is finite and subdifferentiable over Y for

i = 1,2, . . . ,m.

3. There exists C > 0 for which

∥si (y)∥ ≤C , ∀i , y ∈ Y , si (y) ∈ ∂ f i (y),

where ∂ f i (y) is the subdifferential of f i at y for each i .
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This is a standard assumption in the study of incremental subgradient method

[50]. We write f ∗ = infy∈Y f (y) ∈ R∪ {−∞} and Y ∗ = {y ∈ Y | f (y) = f ∗}, which may

be empty.

We note that for each i , given the convexity of f i , the boundedness of subgradi-

ents implies that f i is C -Lipschitz continuous. For all i ∈ 1,2, . . . ,m and y1, y2 ∈ Y , it

follows

f i (y1)− f i (y2) ≤ si (y1)T (y1 − y2) ≤C∥y1 − y2∥,

where si (y1) is a subgradient of f i at y1. We note that when Y =Rn , the converse is

true [3, Theorem 3.61]: If f i is C -Lipschitz continuous, the norm of the subgradients

is bounded by C .

The regularised cutting-plane method is an iterative solution method which

computes candidate points {yk } to solve (5.1) approximately. In the kth iteration,

given the previous points y0, y1, . . . , yk , the method computes the next point yk+1 by

minimising a regularised model

yk+1 = argmin
y∈Y

m∑
i=1

ϕk,i (y)+ 1

2tk
∥y − yk∥2,

where ϕk,i is a piecewise affine model of the i th component

ϕk,i (y) = max
l=0,1,...,k

f i (yk−l )+ si (yk−l )T (y − yk−l ), (5.2)

f i (y l ) and si (y l ) are the value and any subgradient of f i at y l (l = 0,1, . . . ,k) and tk

is a parameter to adjust the strength of the regularisation. We refer to tk as the step

size in a reason described later. The values and subgradients of the components are

evaluated at the new point yk+1 to update the model (5.2) and the above process is

repeated.

In this chapter, we consider an incremental variant of the method in a sense

that it only evaluates a subset of the components f i in each iteration. We denote

the index set of components evaluated in the kth iteration by Ik . Since there are m

components,

Ik ⊂ {1,2, . . . ,m}, ∀k.
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We note that the standard cutting-plane method is a special case where Ik = {1,2, . . . ,m}

for all k. We refer to this non-incremental method as the full-step method. The re-

quirement of our analysis is that each component must be evaluated at least once in

W iterations, where W is a prescribed number.

Furthermore, it is of interest to bound the memory requirement of the method.

To this end, we consider a method which may delete some cuts. Our analysis works

as long as each model for each component keeps its newest cut. This allows one to

limit the size of the model by a prescribed value. Deleted cuts may be put back to the

model in later iterations. The algorithm is described in Algorithm 3.

Algorithm 3 Incremental cutting-plane method

select initial point y0 ∈ Y , step size {tk }, evaluation schedule {Ik }.
for i = 1,2, . . . ,m, initialise the model ϕ0,i = 0 and B0,i =;.
for k in {1,2, . . .} do

for i in Ik do
Evaluate f i (yk ) and si (yk ) ∈ ∂ f i (yk ).
Add the following cut to the model ϕk,i

f i (yk )+ si (yk )T (y − yk ).

Add k to Bk,i .
end for
(Optionally) for i in {1,2, . . . ,m}, delete some cuts except the newest one.
Let

yk+1 = argmin
y∈Y

ϕ̃k (y), (5.3)

ϕ̃k (y) =ϕk (y)+ 1

2tk
∥y − yk∥2,

ϕk (y) =
m∑

i=1
ϕk,i (y),

ϕk,i (y) =
{

maxl∈Bk,i f i (y l )+ si (y l )T (y − y l ), if Bk,i ̸= ;,
0, otherwise.

for each i in {1,2, . . . ,m}, copy the model ϕk,i (y) to ϕk+1,i (y) and Bk,i to Bk+1,i .
end for

Note that the above algorithm is well-defined: For each k, ϕ̃k is a proper closed

(1/2tk )-strongly convex function and a minimiser of ϕ̃k exists and is unique [3,

Theorem 5.25].

We assume the following on some analysis below.
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Assumption 5.2. Each component is evaluated at least once in every W iterations

i ∈
W −1⋃
l=0

Ik+l , ∀k ≥ 0, i = 1,2, . . . ,m.

Under this assumption, each model has at least one cut after W iterations. Fur-

thermore, each model has a cut which corresponds to a point not older than W

iterations. That is,

min
{
k − l | l ∈ Bk,i

}<W, ∀k ≥W −1, i = 1,2, . . . ,m.

5.2 Convergence analysis

Corollary VI.4.3.2 from Hiriart-Urruty and Lemaréchal [30] shows that for k ≥ 0 and

i = 1,2, . . . ,m such that Bk,i ̸= ;, it follows

∂ϕk,i (y) ⊂ conv
{

si (y l ) | l ∈ Bk,i
}

, ∀y ∈ Y . (5.4)

Furthermore, by Theorem VI.4.1.1. from Hiriart-Urruty and Lemaréchal [30], we have

∂ϕ̃k (y) = ∂ϕk (y)+ 1

tk
(y − yk ), ∀k ≥ 0, y ∈ Y , (5.5)

and

∂ϕk (y) =
m∑

i=1
∂ϕk,i (y), ∀k ≥ 0, y ∈ Y . (5.6)

Thus, it follows that

∥si
′∥ ≤C , ∀k ≥ 0, i = 1,2, . . . ,m, si

′ ∈ ∂ϕk,i ,

and

∥s′∥ ≤ mC , ∀k ≥ 0, s′ ∈ ∂ϕk .

In particular, ϕk,i is C -Lipschitz continuous for all k ≥ 0 and i = 1,2, . . . ,m.

The next lemma allows us to write the next point using the current point and a
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subgradient of the model.

Lemma 5.3. Let Assumption 5.1 hold. For k = 0,1, . . ., there exists s̄k ∈ ∂ϕk (yk+1),

s̄k,i ∈ ∂ϕk,i (yk+1) and pk ∈ NY (yk+1) such that

yk+1 = yk − tk (s̄k +pk ) = yk − tk

(
m∑

i=1
s̄k,i +pk

)
.

Furthermore, we have

yk+1 = PY (yk − tk s̄k ),

where PY denotes the (Euclidean) projection onto the set Y .

We observe that the iteration resembles that of the projected subgradient method.

(5.4) shows that s̄k,i is a convex combination of the subgradients evaluated in the

previous iterations (or s̄k,i = 0 if Bk,i =;). We sum all s̄k,i , multiply the “step size” tk

and make a “subgradient step” followed by the projection.

Proof. The optimality condition of (5.3) is

0 ∈−∂ϕ̃k (yk+1)+NY (yk+1).

Using (5.5) and (5.6), we get the first relation. Let xk = PY (yk−tk s̄k ). By the definition

of the projection, xk is the unique minimiser of the following minimisation problem:

min
y∈Y

∥y − (yk − tk s̄k )∥2.

The optimality condition gives

0 ∈−(xk − (yk − tk s̄k ))+NY (xk ).

In light of the first relation, we obtain yk+1 = PY (yk − tk s̄k ).

With the preceding lemma, one can estimate the distance between iterates.

Lemma 5.4. Let Assumption 5.1 hold. For any k1 and k2 with 0 ≤ k1 < k2, we have

∥yk2 − yk1∥ ≤ (k2 −k1)mt k1,k2−1C ,
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where t k1,k2−1 = max{tk1 , tk1+1, . . . , tk2−1}.

Proof. Using Lemma 5.3 and the non-expansion property of the projection, for all

k ≥ 0, it follows

∥yk+1 − yk∥ = ∥PY (yk − tk s̄k )− yk∥
≤ ∥yk − tk s̄k − yk∥
≤ mtkC .

Let k1 and k2 be integers such that 0 ≤ k1 < k2. Combining the preceding inequality

with the triangle inequality, we obtain the desired inequality

∥yk2 − yk1∥ =
∥∥∥∥∥k2−k1−1∑

l=0
(yk1+l+1 − yk1+l )

∥∥∥∥∥
≤

k2−k1−1∑
l=0

∥yk1+l+1 − yk1+l∥

≤
k2−k1−1∑

l=0
mtk1+lC

≤ (k2 −k1)mt k1,k2−1C .

Using the notation in Lemma 5.3, define the following affine function

f̄k (y) =ϕk (yk+1)+ s̄T
k (y − yk+1). (5.7)

Since s̄k ∈ ∂ϕk (yk+1), using the definition of the subgradient,

f̄k (y) ≤ϕk (y), ∀k ≥ 0, y ∈ Y ,

with equality at yk+1. In particular, we get

f̄k (y) ≤ϕk (y) ≤ f (y), ∀k ≥W0, y ∈ Y . (5.8)
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Lemma 5.5. Let Assumption 5.1 hold. For any k ≥ 0,

f̄k (yk ) ≥ f̄k (yk+1).

Proof. By definition of f̄k (5.7)

f̄k (yk )− f̄k (yk+1) = s̄T
k (yk − yk+1).

Using Lemma 5.3, we get

s̄T
k (yk − yk+1) =

(
1

tk
(yk − yk+1)−pk

)T

(yk − yk+1)

= 1

tk
∥yk − yk+1∥2 −pT

k (yk − yk+1)

≥−pT
k (yk − yk+1).

Since pk ∈ NY (yk+1) and yk ∈ Y ,

pT
k (yk − yk+1) ≤ 0.

Combining the preceding two relations, we obtain

f̄k (yk )− f̄k (yk+1) ≥ 0.

Now we prove a fundamental inequality which plays a key role in the convergence

analysis of the method.

Lemma 5.6. Let Assumption 5.1 and 5.2 hold. For any x ∈ Y and any k ≥W , we have

∥yk+1 −x∥2 ≤ ∥yk −x∥2 −2tk ( f (yk )− f (x))+3m2t 2
kC 2 +4m2tk t k−W +1,kC 2W.

Proof. Using Lemma 5.3, the non-expansion property of the projection and defini-
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tion of f̄k (5.7), for all k ≥ 0, it follows

∥yk+1 −x∥2 −∥yk −x∥2

= ∥PY (yk − tk s̄k )−x∥2 −∥yk −x∥2

≤ ∥yk − tk s̄k −x∥2 −∥yk −x∥2

=−2tk s̄T
k (yk −x)+ t 2

k∥s̄k∥2

= 2tk
(

f̄k (x)− f̄k (yk )
)+ t 2

k∥s̄k∥2.

We shall bound the two terms in the last line.

For k ≥W −1, using (5.8), Lemma 5.5 and definition of f̄k (5.7),

f̄k (x)− f̄k (yk ) ≤ f (x)− f̄k (yk )

≤ f (x)− f̄k (yk+1)

= f (x)−ϕk (yk+1)

= f (x)−
m∑

i=1
ϕk,i (yk+1)

Fix i and let li = maxBk,i ≥ k −W +1. By the construction of the model, f i (y li ) =
ϕk,i (y li ). Since ϕk,i and f i are C -Lipschitz continuous, we have

ϕk,i (yk+1) =ϕk,i (yk+1)−ϕk,i (y li )+ϕk,i (y li )− f i (yk )+ f i (yk )

≥ f i (yk )−C∥yk+1 − y li ∥−C∥yk − y li ∥
≥ f i (yk )−C∥yk − yk+1∥−2C∥yk − y li ∥
≥ f i (yk )−mtkC 2 −2mt k−W +1,kC 2W.

We have invoked Lemma 5.4 in the last inequality. Combining the preceding two

relations,

f̄k (x)− f̄k (yk ) ≤ f (x)− f (yk )+m2tkC 2 +2m2t k−W +1,kC 2W.
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Now we shall bound the other term. With the triangle inequality, for all k ≥ 0,

∥s̄k∥2 =
∥∥∥∥∥ m∑

i=1
s̄k,i

∥∥∥∥∥
2

≤
(

m∑
i=1

∥s̄k,i∥
)2

≤ m2C 2.

Using the two bounds, we obtain the desired relation.

The preceding lemma is an analogue of Lemma 2.1 from Nedic [50], which is a

basis of the convergence analysis of the incremental subgradient method. Following

their analysis of the incremental subgradient method, now we can obtain various

convergence properties. The three propositions below correspond to Proposition 2.1,

2.4 and 2.6 from Nedic [50], respectively.

Proposition 5.7. Let Assumption 5.1 and 5.2 hold. Assume that step size {tk } is

bounded from both below and above as 0 < tmin ≤ tk ≤ tmax.

1. If f ∗ =−∞, then

liminf
k→∞

f (yk ) =−∞.

2. If f ∗ >−∞, then

liminf
k→∞

f (yk ) ≤ f ∗+ 1

2tmin

(
3m2t 2

maxC 2 +4m2t 2
maxC 2W

)
.

The above lemma estimates the worst-case suboptimality the method may suffer

when the step size is kept bounded away from 0 and bounded from above. The bound

gets smaller as the interval of the evaluation W decreases. Also, when the step size is

constant (tmin = tmax), the bound gets improved as the step size gets smaller.

Proof. We follow the proof of Proposition 2.1 in [51].

Suppose for contradiction that the result does not hold. Then there exists an ϵ> 0

such that

liminf
k→∞

f (yk )− 1

2tmin

(
3m2t 2

maxC 2 +4m2tmaxC 2W
)−2ϵ> f ∗.

Let x̂ ∈ Y be such that

liminf
k→∞

f (yk )− 1

2tmin

(
3m2t 2

maxC 2 +4m2tmaxC 2W
)−2ϵ≥ f (x̂)
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and let k0 ≥W be large enough so that for all k ≥ k0, we have

f (yk ) ≥ liminf
k ′→∞

f (yk ′)−ϵ.

By combining the preceding two relations, we obtain

f (yk )− f (x̂) ≥ 1

2tmin

(
3m2t 2

maxC 2 +4m2tmaxC 2W
)+ϵ, ∀k ≥ k0.

Using Lemma 5.6, where x = x̂, together with the preceding relation, we see that

∥yk+1 − x̂∥2 ≤ ∥yk − x̂∥2 −2ϵtmin, ∀k ≥ k0(≥W ),

implying that

∥yk+1 − x̂∥2 ≤ ∥yk − x̂∥2 −2ϵtmin ≤ ·· · ≤ ∥yk0 − x̂∥2 −2ϵ(k +1−k0)tmin,

which cannot hold for a sufficiently large k.

With a diminishing step size rule, the method is capable of solving the problem

asymptotically.

Proposition 5.8. Let Assumption 5.1 and 5.2 hold. Assume that step size {tk } is such

that

tk > 0 (∀k), tk ≥ tk+1 (∀k), lim
k→∞

tk = 0,
∞∑

k=0
tk =∞.

Then, we have

liminf
k→∞

f (yk ) = f ∗.

Proof. We follow the proof of Proposition 2.4 in [51].

Suppose for contradiction that there exists an ϵ> 0 such that

liminf
k→∞

f (yk )+2ϵ> f ∗.

Let x̂ ∈ Y be such that

liminf
k→∞

f (yk ) ≥ f (x̂)+2ϵ,
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and let k0 ≥W be large enough so that for all k ≥ k0, we have

f (yk ) ≥ liminf
k ′→∞

f (yk ′)−ϵ.

Then, we have

f (yk )− f (x̂) ≥ ϵ, ∀k ≥ k0.

Using Lemma 5.6 with x = x̂, we get

∥yk+1 − x̂∥2 ≤ ∥yk − x̂∥2 − tk (2ϵ−3m2tkC 2 −4m2tk−W +1C 2W ).

Because tk → 0, without loss of generality, we may assume that k0 is large enough so

that ϵ≥ 3m2tkC 2 +4m2tk−W +1C 2W for all k ≥ k0, implying that

∥yk+1 − x̂∥2 ≤ ∥yk − x̂∥2 − tkϵm ≤ ·· · ≤ ∥yk0 − x̂∥2 −ϵ
k∑

j=k0

tk ,

which cannot hold for a sufficiently large k.

Proposition 5.9. Let Assumption 5.1 and 5.2 hold. Assume that step size {tk } is such

that

tk > 0 (∀k), tk ≥ tk+1 (∀k),
∞∑

k=0
tk =∞,

∞∑
k=0

t 2
k <∞,

and assume that the set of optimal solutions Y ∗ is nonempty. Then, the sequence {yk }

converges to some optimal solution.

Proof. We follow the proof of Proposition 2.6 in [51].

By Lemma 5.6, where x = y∗ with y∗ ∈ Y ∗, we have

∥yk+1 − y∗∥2 ≤ ∥yk − y∗∥2 −2tk ( f (yk )− f ∗)+3m2t 2
kC 2 +4m2tk tk−W +1C 2W

≤ ∥yk − y∗∥2 −2tk ( f (yk )− f ∗)+3m2t 2
kC 2 +4m2t 2

k−W +1C 2W. (5.9)

Since f (yk )− f ∗ ≥ 0 for all k and
∑∞

k=0 t 2
k <∞, it follows that the sequence {yk } is

bounded. Furthermore, by Proposition 5.8, we have that

liminf
k→∞

f (yk ) = f ∗.
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Let {yk j } be a subsequence of {yk } along which the above liminf is attained, so that

lim
j→∞

f (yk j ) = f ∗.

The sequence {yk j } is bounded, so it has limit points. Let ȳ be one of them, and

without loss of generality we can assume that yk j → ȳ . By continuity of f , we have

that ȳ ∈ Y ∗, so from (5.9) with y∗ = ȳ , we obtain for any j and any k ≥ k j such that

k j ≥W ,

∥yk+1 − ȳ∥2 ≤ ∥yk − ȳ∥2 +3m2t 2
kC 2 +4m2t 2

k−W +1C 2W

≤ ∥yk j − ȳ∥2 +3m2C 2
k∑

l=k j

t 2
l +4m2C 2W

k∑
l=k j

t 2
l−W +1.

Taking first the limit as k → ∞ and then the limit as j → ∞, from the preceding

relation we obtain

limsup
k→∞

∥yk+1 − ȳ∥2 ≤ lim
j→∞

∥yk j − ȳ∥2 +3m2C 2 lim
j→∞

∞∑
l=k j

t 2
l +4m2C 2W lim

j→∞

∞∑
l=k j

t 2
l−W +1,

which by yk j → ȳ and
∑∞

k=0 t 2
k <∞, implies that

limsup
k→∞

∥yk+1 − ȳ∥2 = 0,

and consequently, yk → ȳ with ȳ ∈ Y ∗.

5.3 Pratical considerations

As we studied in the previous chapter, the incremental regularised cutting-plane

method finds a solution asymptotically given the step size is controlled appropriately.

However, when we apply the method to the dual problem to the UC problem, there

are a few points to be considered.

First, the RMP partial-fixing primal heuristic is still applicable with the incre-

mental method. The primal heuristic does not require any modification and the

property on the boundedness of the number of fractional values still holds. Since the
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incremental steps take a much shorter time than the full-step method, the primal

heuristic may be run less frequently.

Second, the method does not gives a valid lower bound to the UC problem. When

the incremental regularised cutting-plane method is used to solve the dul problem

to the UC problem, a lower bound is necessary to compute a suboptimality gap.

To obtain lower bounds one needs to run full-steps. Alternatively one can use a

model to compute valid lower bounds as discussed in [64] (the reference studies a

minimisation problem and the model is called the upper model).

In the numerical experiments in the next section we consider a simplified setting.

The study on the use of primal heuristics with the incremental method is postponed

until Chapter 6.

5.4 Numerical experiments

In this section the incremental cutting-plane method is applied to the dual problems

of UC problem and is compared with the full-step method. We use the test instances

of size 200. The data is described in Section 3.3. To simplify the discussion we do

not consider primal heuristics in the numerical experiments below.

The incremental cutting-plane method used in this section is the one described

in Algorithm 3. For simplicity, we consider the constant step size rule (tk = t for all k).

Furthermore, although in the previous analysis we consider a setting where we delete

cuts, in our numerical experiments we do not delete any cuts. When adding a new

cut the model checks whether it already contains the same cut or not. The cut is only

added when it is not yet present in the model. When the full-step method is used the

objective value at each point is readily available and this can be used to monitor the

progress. In our numerical experiments we only update the regularisation centre yk

when the objective value gets improved. If the objective value of the point computed

by the model is worse than that of the current point, only the model gets updated

and the regularisation centre is kept at the same point. This modification improves

the performance of the full-step method and is often used in practice (e.g. [61]).

An evaluation schedule {Ik } is chosen based on a permutation. In our experiments

the number of evaluated components per iteration, denoted by p, is fixed to be
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the same in all iterations. Namely, |Ik | = p for all k. We consider a sequence of

component functions where every m elements are a permutation of f 1, f 2, . . . , f m

f h1
1
, f h1

2
, . . . , f h1

m︸ ︷︷ ︸
1st permutation

, f h2
1
, f h2

2
, . . . , f h2

m︸ ︷︷ ︸
2nd permutation

, . . . .

In every iteration, the first p components are removed from the sequence and evalu-

ated. This is a generalisation of the approach taken in the study on the incremental

subgradient method [50], which corresponds to p = 1 where a single component is

evaluated per iteration. Setting p = m we obtain the full-step method which evaluates

all of the components in each step.

For later use, we introduce an adjusted step size t̃ = mt/p where t is the actual

step size. We note that the method with a small value of p makes more steps (i.e.

solves model (5.3) more often) than the method with a large value of p. If all of

the component functions are affine, the method makes roughly the same progress

per component evaluation no matter which p value is used, as long as the adjusted

step size t̃ is the same. Thus, the adjusted step size t̃ facilitates the comparison of

experiments with different values of p.

Two approaches to initialise the cutting-plane method are considered: warmstart

based on the LPR and coldstart with y = 0. Coldstart has to be used when there

is no prior knowledge of the problem to be solved. However, as shown in Chapter

3, warmstart may significantly reduce the computational time if available. We will

observe how the incremental method works on these two setups.

To observe the effect of the incremental update the cutting-plane method is

applied to the test instances with various values for the number of component

evaluations per iteration |Ik | = p. Table 5.1 shows the average computational time,

the average number of component evaluations and the average number of iterations

(the average number of the solutions of model (5.3)) needed to find a solution within

0.1% and 0.05% tolerance. All times in this section are wall-clock times. If the method

is warmstarted, the computational time includes the time spent to solve the LPR,

which is approximately 5 seconds. For each value of p, the adjusted step size t̃ is set

to 0.01 (i.e. the step size is t = 0.01p/m). The incremental method does not compute
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the function value f (yk ) for each iteration so they are evaluated after the experiments

and the time to do this is not included.

Table 5.1: Performance of the cutting-plane method with various evaluation schedule
sizes p and with t̃ = 0.01

tol: 0.1% 0.05%
initialiser p/m time comp. eval. iter. time comp. eval. iter.

warmstart 0.05 14.4 345.0 34.5 19.8 531.2 53.1
0.10 13.8 347.5 17.4 18.9 537.5 26.9
0.20 14.4 375.0 9.4 20.1 585.0 14.6
0.30 15.5 420.0 7.0 20.0 607.5 10.1
0.40 16.7 480.0 6.0 23.3 740.0 9.2
0.50 19.2 587.5 5.9 25.3 825.0 8.2
1.00 22.2 700.0 3.5 30.7 1025.0 5.1

coldstart 0.05 23.5 911.2 91.1 39.0 1226.2 122.6
0.10 20.0 910.0 45.5 32.7 1232.5 61.6
0.20 19.4 950.0 23.8 29.2 1235.0 30.9
0.30 19.9 1005.0 16.8 29.5 1305.0 21.8
0.40 22.3 1110.0 13.9 31.8 1400.0 17.5
0.50 25.6 1237.5 12.4 36.1 1537.5 15.4
1.00 51.2 2075.0 10.4 66.9 2450.0 12.2

As shown in Table 5.1, for any value of p the warmstarted method solves the

problem quicker than the coldstarted method. The reason for this is that the LPR

gives a dual value close to the optimal one which helps the method to find a solution

in a shorter time.

We also note that whichever initialisation method is used, the incremental method

(p/m < 1) performs better than the full-step method (p/m = 1). In general, an incre-

mental first-order method is expected to be more efficient than the full-step method

when the initial point is far from the solution, but the convergence to a solution of

high precision is expected to be slower [9]. However, the incremental cutting-plane

method successfully finds a solution of high precision (e.g. 0.05%) in a shorter time

than the full-step method. We note that as the number of component evaluations per

iteration p gets smaller, the method tends to find a solution with fewer component

evaluations in total. However, at the same time, the number of iterations and hence

the number of solution of model (5.3) gets larger. If p is too small, the time spent to

solve (5.3) becomes significant and the overall computational time increases. The
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best value of p balances the number of component evaluations in total and the

growth of model solution time.

Table 5.2 shows the performances of the methods with various step sizes. As

shown in the table, the performance of the methods depends on the choice of the

step size. When the step size is very small, the numbers of component evaluations

required by the incremental method and the full-step method tend to be close.

With a small step size of t̃ = 0.001, the regularisation in the model (5.3) is strong

and the methods do not make much progress per iteration. The behaviours of the

two methods are similar in this situation. However, in the setup in Table 5.2, the

incremental method with p/m = 0.1 has to solve the model ten times more often

than the full-step method per component evaluation. As a result, it requires slightly

longer computational times. On the other hand, an excessively large step size slows

down the method as well. Although this holds both for the incremental method and

for the full-step method, the growth of the computational time is more significant in

the full-step method. In other words, the incremental method is more robust and

tends to work relatively well even if the step size is set larger than the best value.

Figure 5.1 shows the objective values at the points computed by the method

on one of the test instances. Its (near-optimal) objective value is computed by

running the warmstarted full-step method for 30 minutes and the plotted values

are normalised so that the computed objective value becomes 1. The left and right

figures correspond to the warmstart and the coldstart respectively. In each plot,

the full-step method and incremental method are shown in solid and dashed lines

respectively. The warmstarted method first solves the LPR, which approximately take

5 seconds, while the coldstarted method starts outputting the iterates immediately.

In both cases, the full-step method with step size 0.1 often outputs points whose

objective values are out of the range plotted and do not appear in the figures.

The figure on the left shows that the strength of the regularisation (i.e. the recipro-

cal of the step size) has a significant effect on the behaviour of the full-step method,

which is plotted in the solid lines. We note that all of the cases use the same initial

point which is close to the optimal solution, computed by the LPR. We see that the

full-step method with the weakest regularisation (step size 0.1) is quite unstable and

outputs dual values far away from the optimal one. This is expected behaviour since
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Table 5.2: Performance of the cutting-plane method with various step sizes

tol: 0.1% 0.05%
initialiser p/m t̃ time comp. eval. iter. time comp. eval. iter.

warmstart 0.1 0.100 26.1 677.5 33.9 34.0 907.5 45.4
0.050 20.4 530.0 26.5 28.1 772.5 38.6
0.010 13.8 347.5 17.4 18.9 537.5 26.9
0.005 13.8 360.0 18.0 22.4 690.0 34.5
0.001 27.9 940.0 47.0 77.1 2735.0 136.8

1.0 0.100 65.0 1775.0 8.9 101.1 2650.0 13.2
0.050 46.2 1350.0 6.8 66.0 1950.0 9.8
0.010 22.2 700.0 3.5 30.7 1025.0 5.1
0.005 18.7 600.0 3.0 27.7 975.0 4.9
0.001 26.6 950.0 4.8 70.5 2775.0 13.9

coldstart 0.1 0.100 28.9 975.0 48.8 38.9 1195.0 59.8
0.050 24.4 900.0 45.0 32.7 1095.0 54.8
0.010 20.0 910.0 45.5 32.7 1232.5 61.6
0.005 25.2 1145.0 57.2 56.9 1902.5 95.1
0.001 143.3 4507.5 225.4 416.3 8847.5 442.4

1.0 0.100 267.9 4300.0 21.5 347.9 4850.0 24.2
0.050 186.9 3750.0 18.8 218.8 4050.0 20.2
0.010 51.2 2075.0 10.4 66.9 2450.0 12.2
0.005 35.3 1725.0 8.6 56.5 2350.0 11.8
0.001 98.5 4500.0 22.5 235.2 88r5.0 44.4
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Figure 5.1: Objective values of the iterates by the warmstarted (left) and coldstarted
(right) method. Solid and dashed lines correspond to the full-step method and the
incremental method respectively.
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the model does not have enough cuts in the first few iterations and without suitable

regularisation the model tends to output points far from the solution, even if it is

initialised at a near-optimal point. When the step size is 0.01, the full-step method

still shows instability at first but makes constant progress afterwards. If the step size

decreased to the further smaller value 0.001, the full-step method does not show

such unstable behaviour at all but the entire progress becomes significantly slower.

As a result, the full-step method with step size 0.001 takes longer than that of step

size 0.01.

The same discussion applies to the warmstarted incremental method. However,

the instability of the incremental method observed with step size 0.1 and 0.01 is much

less than with the full-step method. The incremental method does also show unstable

behaviour at first but becomes stable more quickly than the full-step method, and this

leads to the reduction of the overall computational time. However, the incremental

update does not overcome the slow progress caused by the too small step size 0.001,

and the full-step method and incremental method behave quite similarly.

Similar trends are observed with the coldstart case, which is plotted on the right.

We still observe the advantage of the incremental update with the larger step sizes

(0.1 and 0.01). Namely the incremental update mitigate the instability of the cutting-

plane method. However, the incremental method with the small step size (0.001) is

somewhat slower than the full-step method.
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Chapter 6

Integrated Approach

In Chapter 3 we found the initialisation method based on a neural network performs

better than the other initialisation methods, such as the one based on the LPR. Fur-

thermore, the numerical experiments in Chapter 4 showed that the neural network

partial-fixing primal heuristic performs well when the tolerance is loose (0.5% and

0.25%) while the RMP partial-fixing primal heuristic outperforms others when the

suboptimality tolerance is small (0.1%). In Chapter 5 the incremental column gener-

ation procedure showed superior performance compared with the full-step column

generation procedure. A natural question is whether combining these techniques

leads to further speed-up or not. This chapter aims to address this question.

To reduce clutter we refer to a method by combining its initialisation method

name and primal heuristic name. For example, the method which uses the initial-

isation method based on the LPR and the RMP partial-fixing primal heuristic is

referred to as the LPR-RMP method. If not specified, the full-step column genera-

tion procedure is used. When it may cause confusion, we explicitly state the type

of the column generation procedure (e.g. the full network-network method, the

incremental network-RMP method).

6.1 Initialisation method and primal heuristic

In this section we study combinations of the initialisation methods and the primal

heuristics. We consider the initialisation methods based on a neural network and
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the LPR, and the neural network and RMP partial-fixing primal heuristics. All the

methods in this section use the full-step column generation procedure.

The performance of the methods was evaluated on the 40 test instances as de-

scribed before and the result is shown in Table 6.1. In this experiment all the methods

could find a solution with suboptimality smaller than 0.1% on all the test instances

within 10 minutes.

Table 6.1: Average computational time (s) and iterations

0.5% opt. 0.25% opt. 0.1% opt.
size initialiser primal heuristic time iter time iter time iter
200 LPR RMP partial-fixing 22.8 5.5 24.0 5.8 37.5 8.4

network partial-fixing 9.3 1.0 12.0 1.3 56.3 5.2
network RMP partial-fixing 25.2 6.0 25.8 6.1 42.2 9.2

network partial-fixing 6.0 1.0 6.3 1.0 35.8 3.0

600 LPR RMP partial-fixing 60.7 4.4 62.8 4.6 76.8 5.7
network partial-fixing 39.6 1.3 41.7 1.3 128.0 4.2

network RMP partial-fixing 52.5 4.6 54.6 4.8 70.5 5.8
network partial-fixing 23.7 1.1 25.4 1.2 76.5 2.6

1000 LPR RMP partial-fixing 85.5 3.8 91.4 4.1 113.7 5.2
network partial-fixing 70.8 1.3 75.1 1.4 181.6 3.9

network RMP partial-fixing 56.8 3.3 59.5 3.4 85.7 4.6
network partial-fixing 42.5 1.2 42.6 1.2 87.6 2.0

For each primal heuristic the initialisation method based on a neural network is

better than the method based on the LPR in terms of the computational time with

the one exception of the 200-generator test instances where the LPR-RMP method

is better than the network-RMP method. It is less clear cut but the initialisation

method based on a neural network usually requires fewer iterations compared with

the initialisation method based on the LPR.

The preferable choice of the primal heuristic depends on the suboptimality tol-

erance. When the tolerance is loose, such as 0.5% or 0.25%, the neural network

partial-fixing primal heuristic is better than the RMP partial-fixing primal heuristic.

Among all the combinations the initialisation method based on a neural network

combined with the neural network partial-fixing primal heuristic performs best if

the suboptimality tolerance is 0.5% or 0.25%. On the other hand, when the toler-

ance is small (0.1%), the RMP partial-fixing primal heuristic often outperforms the
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neural network partial-fixing primal heuristic. As a result the network-RMP method

often performs best in this case. In no cases does the optimal combination use the

initialisation method based on the LPR.

6.2 Incremental regularised column generation

In the previous section we observed that the network-RMP method, which uses the

initialisation method based on a neural network and the RMP partial-fixing primal

heuristic, tends to have the best performance when the tolerance is small (0.1%). In

the remainder of this chapter we combine this method with the incremental column

generation with the aim of improving the performance of the method for the small

suboptimality gap of 0.1%.

Early experiments showed that naive integration of the incremental column gen-

eration procedure based on cyclic column generation does not speed up the method.

We note that the numerical experiments in Chapter 5 studied the performance of the

incremental method to achieve a dual solution of small suboptimality, such as 0.05%,

while here we are interested in solving the UC problem with 0.1% suboptimality.

Furthermore, since we cannot compute a lower bound after the incremental column

generation, we need to run the full column generation at a certain frequency to

obtain a lower bound, which introduces some overhead.

However, if we are allowed to run offline preparation, we can train a model to

decide which pricing subproblems to solve to generate columns. One of the simplest

approaches would be to train a model for each pricing subproblem to predict whether

it gives a new column or not and only solve those that are predicted to give new

columns. Assume that there are some pricing subproblems that do not give new

columns. This is the case when the pricing subproblem solutions are identical to one

of those obtained in previous iterations. The solutions of such pricing subproblems

do not modify the RMP at all since the identical columns are already included in the

RMP. Hence skipping these pricing subproblem does not affect the optimisation of

the dual variables at all.

Whether this approach is effective or not depends on the property of the problem

to be solved. If the pricing subproblems generate many duplicated columns, it is
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Figure 6.1: Number of new columns generated by the full column generation

of interest to avoid redundant computation. However, if the pricing subproblems

generate few duplicated columns, then there is little interest to apply the aforemen-

tioned approach since all the pricing subproblems need to be solved. To examine the

potential of the aforementioned approach, the number of new columns generated in

each iteration is plotted in Figure 6.1. The result is for the full network-RMP method

applied to one of the 200-generator test instances. Since there are no columns in

the RMP at first, all the pricing subproblems generate new columns in the first it-

eration. However, after the first iteration, only approximately 30% of the pricing

subproblems generate new columns in each iteration. This indicates that we may be

able to save some computational time by avoiding redundant solution of the pricing

subproblems.

Algorithm 4 shows the outline of our approach. Assume that we have a model to

predict the number of iterations required a and probability pki of pricing subproblem

i to give a new column in iteration k. In iteration 1 run the full column generation

since all columns are new. Then in iteration 2,3, . . . a −1, we run the incremental

column generation. If pki is larger than a prescribed threshold, we then solve pricing

subproblem i in iteration k and skip it otherwise. In iteration a and all the subsequent

iterations we run the full column generation and all the pricing subproblems are

solved.

To predict whether a pricing subproblem gives a new column or not, we use

a nearest neighbour approach. In the training phase the full-step column genera-

tion procedure is applied to as many training instances as possible for a predefined
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Algorithm 4 Data-driven incremental column generation procedure

select suboptimality tolerance ϵ, probability thresholds p̄, initial dual values y0.
Initialise the dual values y = y0, the lower and upper bound l =−∞,u =∞.
Predict the number of iterations required a.
for k in {1,2, . . .} do

if 2 ≤ k ≤ a −1 then
// Run the incremental column generation procedure.
for i in {1,2, . . . ,m} do

Predict probability pki of component i to give a new column.
If pki > p̄, then evaluate q i (y) and add a column to the RMP.

end for
else

// Run the full-step column generation procedure.
for i in {1,2, . . . ,m} do

Evaluate q i (y) and add a column to the RMP.
end for
Compute the lower bound q(y) and update l .

end if
Update and solve the regularised RMP and set y to the dual solution.
Run primal heuristics and update u.
If u − l ≤ ϵ, then terminate.

end for

number of iterations. For each training instance we record the number of iterations

required to find a solution whose suboptimality is smaller than the prescribed toler-

ance (0.1% in our implementation). Furthermore, for each combination of training

instance, iteration and pricing subproblem, we check whether the generated column

is new or not.

Given an instance to be solved, we use the dataset of the training instances to

predict the required number of iterations a and probability pki of pricing subprob-

lem i to give a new column in iteration k as follows. First compare the problem

parameters (i.e. demand) of the new instance with those in the training dataset and

retrieve the closest N instances in Euclidean distance. Then take the average of the

required number of iterations of the N nearest neighbours and use the average as the

prediction of the number of required iteration a to solve the new instance. To predict

probability pki for each iteration k and pricing subproblem i , find the number of

nearest neighbours Nki whose pricing subproblem i gave a new column in iteration

k and use the ratio Nki /N as the prediction.
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6.2.1 Numerical experiments

Numerical experiments were conducted to evaluate the performance of the afore-

mentioned approach. In the training phase we ran the full network-RMP method for

10 iterations on as many training instances as possible for 24 hours with 8 cores. Table

6.2 shows the number of training instances gathered in each case. To solve test in-

stances we use N = 50 and threshold p̄ = 0. That is, we only skip pricing subproblem

solution if it returned a duplicated column for all of the 50 nearest neighbours.

Table 6.2: Number of training instances

size training instances
200 12,506
600 4,280

1000 2,756

The performance of the proposed approach was evaluated on the 40 test instances

with suboptimality tolerance 0.1% as shown in Table 6.3. Every method successfully

found a solution with suboptimality smaller than 0.1% on all the test instances within

10 minutes.

Table 6.3: Average iterations (column labelled as “iters”), number of subproblem
solution (“eval”) and computational time (s) with its breakdown

summary time breakdown
size method iters eval total time init. RMP subproblem PH
200 network-network 3.0 600.0 35.8 0.0 0.1 12.3 23.5

network-RMP 9.2 1845.0 42.2 0.0 0.5 37.4 4.4
inc. network-RMP 10.1 1231.4 38.5 0.0 0.5 32.5 5.4

600 network-network 2.6 1530.0 76.5 0.0 0.3 27.5 48.8
network-RMP 5.8 3510.0 70.5 0.0 1.2 64.2 5.1
inc. network-RMP 6.0 2350.2 57.7 0.0 1.2 51.4 5.1

1000 network-network 2.0 2025.0 87.6 0.0 0.5 32.5 54.8
network-RMP 4.6 4625.0 85.7 0.0 2.7 74.5 8.6
inc. network-RMP 4.8 3524.4 75.7 0.0 2.7 64.4 8.6

Compared to the full network-RMP method, the incremental network-RMP

method has shorter computational time while the incremental method requires

slightly more iterations than the full-step method. Recall that if every pricing sub-
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problem which gives a new column is solved, the incremental method computes the

same dual values as the full column generation and requires the same number of

iterations. The discrepancy in the numbers of iterations between the two methods

indicates that the incremental method sometimes skips pricing subproblems which

would give new columns. However, such errors were not observed frequently and

their effect on the number of iterations required were on average minimal. On the

other hand, as shown in the column labelled as “eval”, there is a significant differ-

ence between the two methods in the number of pricing subproblem solutions: The

incremental method requires a much smaller number of pricing subproblem to be

solved, and by solving fewer pricing subproblems the incremental method requires

significantly less computational time.

We note that the behaviour of the incremental regularised cutting-plane method

is significantly different from that of the incremental subgradient method. The

incremental subgradient method typically requires more iterations than the full-

step method. However, since the number of component evaluations per iteration is

smaller, the method requires fewer component evaluations in total and as a result the

method finds a near optimal solution in a shorter time. The incremental regularised

cutting-plane method requires almost the same number of iterations as the full-step

method. The method is accelerated since it skips component evaluation which seems

redundant.

The result of this is that when the tolerance is 0.1% the incremental network-

RMP method is the fastest on test instances of size 600 and 1000. However, on the

200-generator test instances the network-network method slightly better than the

network-RMP method. The incremental network-RMP method is faster than the full

network-RMP, but the full network-network method is faster than both of them.

We note that the network-network method requires fewer iterations and function

evaluations even on 600- and 1000-cases where the method is slower than the others.

This is because the network-network method uses the neural network partial-fixing

primal heuristic, which takes considerably longer time than the RMP partial-fixing

primal heuristic. The RMP partial-fixing solves a partially-fixed UC instance in each

iteration but the solution time of such an instance is very short. On the other hand,

the neural network partial-fixing primal heuristic solves a much harder instance and
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Figure 6.2: Number of new and duplicated columns generated by the incremental
method. The model predicted the problem can be solved (the gap can be closed) in
iteration 8 so all the subproblems are evaluated in the 8 iteration to compute a lower
bound.

spends all the allocated time (4.2) in each iteration.

To gain better understanding of the performance of the incremental column

generation, the number of pricing subproblems solved in each iteration is shown in

Figure 6.2. A single test instance of size 200 is used to produce this plot. The model

predicts that this test instance is likely to be solved in the 8th iteration. Thus, the

algorithm runs the incremental method until the 7th iteration and switches to the

full-step method in the 8th iteration. Between iteration 2 and 7, it only solved around

80 pricing subproblems per iteration. On this instance, indeed tight lower and upper

bounds are found in the 8th iteration and the algorithm is terminated.

For each generated column we examined which were new and which were dupli-

cated. Figure 6.2 shows the numbers of new and duplicated columns by iteration. In

iteration 2 to 7 only about half of the subproblems solved gave new columns, so there

remains some space for improvement in the prediction model. After solving the test

instance, we also solved the pricing subproblems which were skipped by the incre-

mental method and examined whether they actually gave duplicated columns or not.

On this test instance, none of the skipped pricing subproblems indeed generated

new columns.
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Chapter 7

Conclusions

This section reviews the earlier chapters and draws conclusions of this thesis. Sec-

tion 7.1 summarises the contents and conclusions of each chapter and Section 7.2

discusses further research.

7.1 Summary of the contents and conclusions

Chapter 2 described the UC problem and its solution methods. Lagrangian relaxation

was studied and the subgradient methods and the cutting-plane methods were

considered as solution methods for the dual problem. Then the duality between the

cutting-plane methods and Dantzig-Wolfe decomposition with column generation

procedures was discussed. The chapter was concluded with some examples to

demonstrate the properties of the dual problem.

Chapter 3 studied approaches to compute the initial dual values to warmstart

the column generation procedure. An analysis on the strength of the initialisation

method based on the LPR was given, which was followed by numerical examples

of small UC instances to verify the results. Then the initialisation method based on

a neural network and an approach to train a model was introduced. The training

was done efficiently by exploiting the decomposable structure of the UC problem.

The following numerical experiments showed that once the training was completed,

the initialisation method based on a neural network was able to find dual values

that yielded a tight lower bound. The initialisation method yielded equally good or
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even slightly better lower bounds than the method based on the LPR. What’s more,

in contrast to the method based on the LPR, the method based on a neural network

output dual values instantly even on large instances. We also used the dual values

output from the neural network to warmstart the column generation procedure. The

overall computational time was successfully reduced compared with the initialisation

method based on the LPR.

In Chapter 4 primal heuristics were examined. First some existing primal heuris-

tics were reviewed and the RMP partial-fixing primal heuristic, a novel primal heuris-

tic integrated with decomposition, was introduced. The behaviour and performance

of these primal heuristics were compared on small examples. One of the most no-

table takeaway is that none of the primal heuristics always outperforms the others. In

other words, for each primal heuristic we found an UC instance on which the other

primal heuristics worked better. After the examples the neural network partial-fixing

primal heuristic, a primal heuristic based on a neural network, was proposed. All

the above primal heuristics were evaluated on practical, large-scale test instances.

The numerical experiments showed that the RMP partial-fixing was able to find a

primal feasible solution of suboptimality less than 0.1% in a short time. When the

target tolerance is 0.5% or larger, the neural network partial-fixing primal heuristic

was superior.

We also considered the situation where we were only interested in the best primal

solution found in a prescribed time budget. The neural network partial-fixing primal

heuristic was used as a standalone method without Dantzig-Wolfe decomposition

and typically outperformed other primal heuristics when the timelimit was tight (2

minutes or less). If the timelimit was long, such as 5 minutes, the RMP partial-fixing

primal heuristic often performed better.

Chapter 5 studied an extension of the column generation procedure to handle

incremental column generation. To simplify the presentation, we discussed the

dual of the column generation procedure, the cutting-plane methods applied to the

dual problem. The analysis showed the worst-case suboptimality of the incremental

method might suffer if the step size (regularisation parameter) was kept bounded

both from above and from below. However, the convergence in the function value

was shown to be guaranteed when diminishing step size rules are used. One notable
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feature of our analysis is that the results hold when all cuts are kept but also for any

strategy of deleting cuts as long as the latest cut are kept in the model. Such cut

deletion was done heuristically with little theoretical justification. The following

numerical experiments showed the effectiveness of the incremental method to opti-

mise the dual function of large-scale UC instances. The incremental method greatly

improved the stability of the iterates especially in the early iterations, and this led to

a reduction in the overall computational time.

Finally, Chapter 6 considered integration of the aforementioned techniques. First,

combination of the initialisation method based on a neural network and the two

novel primal heuristics was studied. The numerical experiments showed that the

novel primal heuristics usually works better with the initialisation method based on

a network network compared with the initialisation methods based on the LPR. For

example, when the tolerance is tight, i.e. 0.1%, the combination of the initialisation

method based on a neural network and the RMP partial-fixing primal heuristic often

performs best. Finally, the incremental column generation was used within this

method. A data-driven approach to select subproblems to be solved was proposed.

By skipping presumably redundant solution of pricing subproblems the column

generation procedure was successfully accelerated and found a feasible solution with

suboptimality smaller than 0.1% in a shorter time than the full-step counterpart.

7.2 Further research

The experiments conducted in this thesis are preliminary. A more comprehensive

computational study is required to see the performance of the proposed methods in a

more practical setting. For example, the solver for the pricing subproblem has a non-

negligible impact on the overall performance. Combining the proposed methods

with tailored subproblem solvers (see Section 2.5) is of interest but left as a future

work. It is also of interest to compare the performances of the proposed primal

heuristics with those proposed recently (see Section 4.2).

This thesis focused on the deterministic UC problem, which assumes that the

demand is given. Recently, there is a significant interest to extend the UC problem to

incorporate more realistic factors. For example, the stochastic UC problem assumes
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that multiple forecasts of demand are given instead of a single, accurate forecast.

These problems are modelled as two-stage or multi-stage stochastic programmes.

Another example is a security-constrained UC problem. In this extension, we seek

a solution which remains feasible even after some contingency happens, such as

transmission failure.

It is of interest to apply the techniques considered in this thesis to improve solu-

tion methods for a UC problem with such extensions. Typical solution methods to

stochastic or security-constrained UC problem are decomposition-based: the prob-

lem is split into multiple deterministic UC problems and they are solved repeatedly.

For example, one typical solution method to the stochastic UC is scenario decom-

position, which relax the non-anticipativity constraints to bind decision variables

across multiple scenarios. In this approach the deterministic UC problems are solved

with perturbed cost coefficient repeatedly. Some of the techniques studied in this

thesis are readily applicable to deterministic UC problems, while others require some

modification to handle the perturbation in the cost.
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