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Abstract: We aimed to explore longitudinal changes in androgen levels in individuals with spinal
cord injury (SCI) within initial inpatient rehabilitation stay and identify clinical/injury characteristics
associated with hormone levels. Linear regression analysis was applied to explore the association
between personal/injury characteristics and androgen hormones (total testosterone, free testosterone,
sex hormone-binding globulin (SHBG), dehydroepiandrosterone (DHEA), and dehydroepiandros-
terone sulfate (DHEA-S)) at admission to rehabilitation. Longitudinal changes in androgen levels
were studied using linear mixed models. Analyses were stratified by sex and by injury type. We
included 70 men and 16 women with SCI. We observed a non-linear association between age, time
since injury, and androgens at baseline. At admission to initial rehabilitation, mature serum SHBG
(full-length, protein form which lacks the N-terminal signaling peptide) was higher, while DHEA
and DHEA-S were lower among opioid users vs. non-users. Serum levels of total testosterone
and DHEA-S increased over rehabilitation period [β 3.96 (95%CI 1.37, 6.56), p = 0.003] and [β 1.77
(95%CI 0.73, 2.81), p = 0.01], respectively. We observed no significant changes in other androgens.
Restricting our analysis to men with traumatic injury did not materially change our findings. During
first inpatient rehabilitation over a median follow up of 5.6 months, we observed an increase in total
testosterone and DHEA-S in men with SCI. Future studies need to explore whether these hormonal
changes influence neurological and functional recovery as well as metabolic parameters during initial
rehabilitation stay.

Keywords: spinal cord injury; rehabilitation; androgens; testosterone; sex hormone-binding globulin;
dehydroepiandrosterone; dehydroepiandrosterone sulfate

1. Introduction

A decline in androgen hormones and abnormalities of the hypothalamic-pituitary-
gonadal (HPG) axis has been repeatedly reported in individuals with chronic spinal cord
injury (SCI), with more than 40% of men having testosterone levels below normal age-
specific cut-offs [1,2]. Deficiency of androgen hormones primarily influences sexual func-
tion and fertility [3]. Low testosterone, in addition, may accelerate the aging processes
in individuals with SCI by promoting development of sarcopenic obesity, metabolic dis-
orders and hyperinflammatory state [4,5]. Dehydroepiandrosterone (endogenous steroid
hormone precursor), and its sulphated ester (DHEA-S) have been linked with immune
function and inflammation, bone metabolism and physical strength in frailty, as well as
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risk of diabetes [6–8]. Sex hormone-binding globulin (SHBG), which primary role is to
bind testosterone, was inversely associated with insulin resistance, inflammation, diabetes,
and metabolic syndrome [9–13]. In addition, in animal models of SCI, endogenous and
exogenous estradiol were linked with improved recovery post-injury in both sexes [14,15],
while androgens (testosterone and DHEA), on the other hand, may excrete sex-specific
effects in SCI (e.g., high testosterone in women, and low testosterone in men have mirroring
effects on metabolism) [15,16].

Although testosterone decline occurs earlier in life in men with SCI as compared to
able-bodied individuals (ABI) [17,18], the evidence on association between injury duration
and testosterone levels is contradicting [18,19]. Comprehensive studies in the subacute
phase of the injury are scarce, thus making it difficult to understand the trajectory of
early changes in androgen levels following the injury, which is of utmost importance
for understanding the role of androgens in modifying metabolic changes, rehabilitation
outcomes and functioning post-injury [20,21]. In addition, current studies were predom-
inantly focused on testosterone and HPG axis, while studies on DHEA, and DHEA-S,
which is the most abundant steroid hormone with important biological functions, remain
scarce. Further, despite important physiological role of androgens in females, studies in
women are uncommon [22,23]. Women were often purposely excluded from analyses,
further widening the literature gap [24]. Finally, previous studies often did not account
for SCI characteristics, body morphology, physical activity, underlying comorbidities and
medication in their analysis, which all have been shown to influence hormone levels in
SCI [1,20,25,26].

Thus, in the current study, we aimed to: (i) explore the longitudinal changes in andro-
gen levels in men and women with SCI during initial rehabilitation stay and (ii) identify
clinical characteristics associated with hormone levels by using a multicenter SCI cohort
in Switzerland.

2. Materials and Methods
2.1. Study Setting

The inception cohort of the Swiss Spinal Cord Injury cohort (SwiSCI) is a prospective
multicenter study that recruits study participants across four major rehabilitation centers
in Switzerland, namely, Swiss Paraplegic Center (Nottwil), Clinique Romande de Readap-
tation (Sion), Balgrist Spine Center (Zurich), and Basel Rehabilitation Clinic (Basel) [27].
Study participants were involved in interdisciplinary rehabilitation approach tailored to
person’s specific needs and aimed to optimize one’s functioning. The SwiSCI inception
cohort collects numerous demographic, biopsychosocial and clinical parameters at five
time points after the date of SCI diagnosis: at 28 days (range 16–40 days, T1), 84 days
(70–98 days, T2), 168 days (150–186 days, T3), at discharge (10–0 days before discharge,
T4) and one year after diagnosis. In addition, the SwiSCI biobank provides a platform
for conducting research within the Inception Cohort of SwiSCI by cryopreserving serum,
plasma, and peripheral blood mononuclear cells (PBMC), RNA, DNA and urine for re-
search purposes. Biobank sampling (at T1 and T4), started on the 27 of June 2016 in the
largest center (Nottwil), followed by 2 other centers (Basel and Sion) on the 23 of August
2018 and the 15 of January 2019, respectively. Detailed information on the study design
and collected data can be found elsewhere [27].

2.2. Study Population, Inclusion and Exclusion Criteria

The SwiSCI enrolled individuals aged over 16 years with traumatic or non-traumatic
SCI receiving their first specialized rehabilitation in Switzerland. Individuals with injuries
attributable to either a congenital condition, neurodegenerative disorder, or Guillain-Barré
syndrome or who had a new SCI in the context of palliative care were excluded from the
study. All SwiSCI study participants who provided serum samples at both the beginning
and end of rehabilitation between 27 of June 2016 and 20 of January 2021, were eligible for
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inclusion. In addition to SwiSCI exclusion criteria, we excluded individuals with congestive
heart failure, and inflammatory bowel disease and sex hormone therapy users.

2.3. Study Measures
Androgen Hormones

The SwiSCI study participants had blood drawn between 7:00 a.m and 2:00 p.m from
the antecubital vein for serum processing which was spun at 1800× g, separated, and
stored at −80 ◦C until batch processing for subsequent quantification of androgens (that
were not routinely measured in the SwiSCI study). All hormones were measured using
Enzyme-Linked Immunosorbent Assay (ELISA). Total testosterone, free testosterone, and
SHBG were measured using ELISA kits (Abcam, Lucerna-Chem AG, Luzern, Switzerland,
cat.no:ab174569, cat.no:ab178663 and cat.no:ab260070, respectively). DHEA and DHEA-
S were measured using ELISA kits (Abnova, Lucerna-Chem AG, Luzern, Switzerland,
cat.no:KA0315 and cat.no:KA0920, respectively). All plates were scanned on a Beckman
Coulter, Inc., Brea, CA, USA, multimode analysis software and the final levels of the
various sex hormones were determined on Myassays Ltd. online database [28] using a four
parameter logistic fit according to manufacturer’s instructions. Details are provided in
Supplementary Table S1.

2.4. Clinical and SCI Characteristics

Demographic characteristics such as age at baseline, sex, information on comorbidities
and medication use, duration of injury and SCI characteristics were derived from the
patient’s medical records. The level of injury was classified as tetraplegia (at level C2–C8)
and paraplegia (level T1–S5), and the completeness of injury into complete motor injury
(AIS A and B) and incomplete (AIS C and D) based on the International Standards for
Neurological Classification of Spinal Cord Injury (ISNCSCI) [29]. “International SCI Basic
Data Sets” suggested by the International Spinal Cord Injury Society was used to collect
information on sexual dysfunction [30]. Waist circumference (WC) was measured using a
pliable tape measure expressed in cm. Body mass index (BMI) was computed employing
the standard formula [weight in kilograms/(height in meters)2].

2.5. Power Calculation

Three sources helped guide the estimation of the sample size for the study: (1) previous
similar research, (2) general statistical principles, and (3) the “Gpower”(ver. 3.1.9.7; Heinrich-
Heine-Universität Düsseldorf, Düsseldorf, Germany; http://www.gpower.hhu.de/ ac-
cessed on 4 October 2022) power analysis program Sample sizes in similar research ranged
from 20 to 92 SCI participants [20,21,31]. General consensus on principles of statistics
suggests multiple regression analyses should have 10 participants per independent variable
(6 variables in our case). The program “Gpower” estimated a minimum of 57 subjects was
needed to achieve 80% power with an anticipated large Cohen’s f-square effect size of 0.35
for multiple regression.

2.6. Statistical Analyses

We summarized our data using median and interquartile range (IQR), or counts with
percentages, as appropriate. Wilcoxon signed-rank test (continuous data) or Chi-squared
test (nominal/dichotomous data) were used to determine differences in demographic and
clinical profiles between men and women. At baseline, we used linear regression analysis
to determine the association between independent variables: injury characteristics (etiology,
level and completeness), opioid use and corticosteroid use and androgens (dependent
variables). We fit restricted cubic splines to describe the trend between age and androgen
hormones, and between time since injury and androgens. We applied both the paired t-test
and multilevel mixed model using random intercept and residual maximum likelihood
estimation to determine the longitudinal changes in androgens across the period of inpatient
rehabilitation. The model was adjusted for age, BMI, level of injury, completeness of injury,

http://www.gpower.hhu.de/
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time since injury, opioids use, and corticosteroids use in [32]. All analyses were stratified
according to sex and were performed using Stata 16.1 (StataCorp LLC, College Station, TX,
USA) for Windows. All computations were done using two-tailed tests, and a p-value of
<0.05 was considered statistically significant.

3. Results
3.1. Baseline Characteristics

A total of 86 SCI individuals, 70 men (81%) and 16 women (19%), were included in the
study (Figure 1) and the median age of the study population was 51 years (IQR 36–64).
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Traumatic, n (%) 61 (70.9) 52 (74.3) 9 (56.2) 0.15 

Non-traumatic, n (%) 25 (29.1) 18 (25.7) 7 (43.8)  
Completeness of injury     

Motor Complete 33 (38.4) 29 (41.4) 4 (25.0) 0.16 
Motor Incomplete 39 (45.4) 32 (45.7) 7 (43.7)  

Missing 14 (16.3) 9 (12.9) 5 (31.3)  

Figure 1. Flowchart of study participants.

The majority of study participants (n = 61, 70.9%) had traumatic SCI, 33 (38.4%)
individuals had a motor complete injury and the median duration of injury at the moment
of admission to first inpatient rehabilitation was 15.5 days (IQR 10–27). In Table 1, we
present the most important clinical characteristics of study participants at admission to
rehabilitation stratified by sex. Besides statistically significant differences in causes of
TSCI and body weight, other personal and clinical characteristics did not differ between
sexes. In men, median total and free testosterone levels were 12.5 nmol/L (IQR 7.9–17.7)
and 27.5 pmol/L (IQR 16.9–36.6), respectively. Total and free testosterone levels were
significantly lower in women (1.9 nmol/L (IQR 1.4–2.5) and 2.9 pmol/L (2.3–3.7)). No
differences between sexes were observed in other androgens. Median DHEA level was
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20.2 nmol/L (IQR 12.8–40.2) in men and 18.9 nmol/L (IQR 15.7–35.0) in women, while
median DHEA-S was 3.6 µmol/L (IQR 1.6–6.9) and 3.1 µmol/L (IQR 1.5–4.6) in men and
women, respectively. SHBG levels were 2558 pg/mL (IQR 2053–2777) and 2890 pg/mL
(IQR 2020.5–3947) in men and women, respectively. We provide details of the medical
conditions associated with NTSCI in Table S2.

Table 1. Baseline Characteristics of the SCI individuals (beginning of rehabilitation).

Characteristic All Observations
(n = 86)

Males
(n = 70, 81 %)

Females
(n = 16, 19 %) p Value 1

Age, years, median (IQR) 51 (36–64) 52.5 (35–63) 47 (38–73.5) 0.68

Injury characteristics

Tetraplegia, n (%) 29 (33.7) 24 (34.3) 5 (31.3) 0.19
Paraplegia, n (%) 43 (50) 37 (52.9) 6 (37.5)

Missing, n (%) 14 (16.3) 9 (12.9) 5 (31.3)
Time since injury, days 15.5 (10–27) 16 (10–27) 12.5 (8.5–24.5) 0.48

Length of rehabilitation, months 5.6 (4.2–7.5) 5.7 (4.2–7.5) 5.1 (4.3–5.9) 0.29

Cause of injury

Traumatic, n (%) 61 (70.9) 52 (74.3) 9 (56.2) 0.15
Non-traumatic, n (%) 25 (29.1) 18 (25.7) 7 (43.8)

Completeness of injury

Motor Complete 33 (38.4) 29 (41.4) 4 (25.0) 0.16
Motor Incomplete 39 (45.4) 32 (45.7) 7 (43.7)

Missing 14 (16.3) 9 (12.9) 5 (31.3)

Cause of traumatic injury

Vehicular 22 (36.1) 22 (42.3) 0 (0) 0.03
Violence 1 (1.6) 0 (0) 1 (11.1)
Sports 17 (27.9) 12 (23.1) 5 (55.6)
Falls 15 (24.6) 13 (25.0) 2 (22.2)

Medical complication 5 (8.2) 4 (7.7) 1 (11.1)
Unknown 1 (1.6) 1 (1.9) 0 (0)

Cause of non-traumatic injury

Genetic disorders 8 (32.0) 5 (27.8) 3 (42.9) 0.80
Metabolic 9 (36.0) 6 (33.3) 3 (42.9)

Toxic 6 (24.0) 5 (27.8) 1 (14.3)
Infections 1 (4.0) 1 (5.6) 0

Miscellaneous 1 (4.0) 1 (5.6) 0

ISNCSCI Scale

A, n (%) 19 (26.4) 17 (27.9) 2 (18.2) 0.69
B, n (%) 14 (19.4) 12 (19.7) 2 (18.2)
C, n (%) 11 (15.3) 10 (16.4) 1 (9.1)
D, n (%) 28 (38.9) 22 (36.1) 6 (54.6)

Anthropometric measurements

BMI, kg/m2 23.7 (21.3–26.3) 23.7 (21.5–26.0) 23.4 (20.4–26.3) 0.76
Waist circumference, cm 86.5 (79.3–96) 87 (79.5–97) 83 (78–90) 0.63

Androgens

Total testosterone, nmol/L, median (IQR) 10.4 (5.3–17.3) 12.5 (7.9–17.7) 1.9 (1.4–2.5) <0.01
Free testosterone, pmol/L, median (IQR) 24.1 (11.5–33.0) 27.5 (16.9–36.6) 2.9 (2.3–3.7) <0.01

SHBG, pg/mL,
median (IQR) 3 2606 (2053–2944) 2558 (2053–2777) 2890 (2020.5–3947) 0.11

DHEA, nmol/L, median (IQR) 19.7 (13.5–38.0) 20.2 (12.8–40.2) 18.9 (15.7–35.0) 0.50
DHEA-S, umol/L, median (IQR) 3.3 (1.6–6.5) 3.6 (1.6–6.9) 3.1 (1.5–4.6) 0.35
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Table 1. Cont.

Characteristic All Observations
(n = 86)

Males
(n = 70, 81 %)

Females
(n = 16, 19 %) p Value 1

Medication use

Opioids, n (%) 26 (30.2) 23 (32.9) 3 (18.8) 0.27
Corticosteroids, n (%) 8 (9.3) 7 (10.0) 1 (6.3) 0.64

Thyroid hormones, n (%) 4 (4.7) 2 (2.9) 2 (12.5) 0.10

Comorbidities

Cardiovascular diseases 2, n (%) 4 (4.7) 2 (2.9) 2 (12.5) 0.10
Type 2 diabetes/prediabetes, n (%) 6 (7.0) 4 (5.7) 2 (12.5) 0.34

Hypertension, n (%) 8 (9.3) 7 (10.0) 1 (6.3) 0.64
Chronic kidney disease, n (%) 3 (3.5) 1 (1.4) 2 (12.5) 0.03

Normal ranges according to manufacturer: Total Testosterone-Males (6.94–23.94 nmol/L), females
(0.90–4.23 nmol/L); Free testosterone-Men (15.6–145.7 pmol/L), Women (0.35–14.2 pmol/L); SHBG: NA,
DHEA: NA, DHEA-S-Men (2.71–11.40 umol/L), Women (0.27–10.58 umol/L). 1 For difference between men
and women using the Student’s t-test, Wilcoxon signed rank test and chi-square test, as appropriate. 2 Cardiovas-
cular diseases are defined are those with chronic stable angina, acute coronary syndrome (N/STEMI and unstable
angina), venous thrombosis (deep vein thrombosis and pulmonary embolism), post-operative procedure for
cardiovascular diseases (stents or bypass), and other non-coronary atherosclerotic diseases (i.e., aortic aneurysm,
peripheral artery disease, carotid artery disease). 3 the ELISA kit used for research purposes targets the mature,
full-length, protein form which lacks the N-terminal signaling peptide. Abbreviations: BMI: body mass index,
DHEA: Dehydroepiandrosterone, DHEA-S: Dehydroepiandrosterone sulfate, ISNCSCI: International Standards
for Neurological Classification of SCI, SHBG: Sex Hormone Binding Globulin.

Forty-eight men (88.89%) expressed willingness to respond to questions related to sex-
ual function. Orgasmic function, psychogenic erection, reflex erection, and ejaculation were
either absent or reduced among the majority of men who responded to the questionnaire,
Supplementary Figure S1.

3.2. Association between Clinical Characteristics and Androgens at Baseline

The association between age and time since injury and androgen hormones was non-
linear in both men and women, and in men with motor complete traumatic SCI, these
associations were described using restricted cubic splines. Results can be found in the
online supplement (Supplementary Figures S2–S6). In regression analysis, DHEA-S levels
were lower among individuals with incomplete as compared to complete injury (β −1.78
(95%CI −3.43, −0.12) p < 0.05). Men who used opioids as compared to men who did not
receive opioids had lower DHEA (β −9.02 (95%CI −17.01, −1.03) p < 0.001), DHEA-S
(β −2.18 (95%CI −3.58, −0.78) p < 0.001) and higher SHBG levels [β 557.76 (95%CI 281.48,
834.03) p < 0.001). No differences were observed among individuals with traumatic and
non-traumatic injury, tetra- and paraplegia, users, and non-users of corticosteroids (Table 2).
When restricting our analysis to men with traumatic SCI, results did not materially change
(Supplementary Table S3). Women with non-traumatic as compared to traumatic injury
had lower DHEA (β −18.5 (95%CI −35.51, −0.58) p < 0.05). SHBG was higher among
opioid users (β 1158.41 (95%CI 310.59, 2006.23) p < 0.05), whereas lower trends of DHEA
and DHEA-S seen among opioid users did not reach statistical significance, Table 2.

3.3. Longitudinal Changes in Androgen Levels

In the fully adjusted linear mixed model (age, BMI, level and completeness, time
since injury, use of opioids and corticosteroids), we observed a significant increase in total
testosterone (β 3.96 (95%CI 1.37, 6.56) p = 0.003) and DHEA-S (β 1.77 (95%CI 0.73, 2.81)
p = 0.001) in men with SCI when comparing beginning and end of rehabilitation period.
We observed no significant changes in free testosterone, DHEA, or SHBG in men with SCI,
Table 3. The results remained stable when restricting our analyses to men with traumatic
injury, as well as when comparing the results of linear mixed models and paired t-test and
Wilcoxon signed rank test (Supplementary Tables S4 and S5). In women, we observed a
significant decrease in mean DHEA levels comparing the beginning and end of the reha-
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bilitation period (β −11.91 (95%CI −24.39, −4.11) p < 0.001). No significant longitudinal
changes were observed among other hormones, Table 3. Figure 2, and Supplementary
Figures S7 and S8 show individual trajectories in changes in androgen levels.

Table 2. Association between individual patient and injury’s characteristics and hormone levels at
baseline (beginning of rehabilitation).

Men (N = 70)

Parameter TT
(β, 95%CI)

FT
(β, 95%CI)

SHBG
(β, 95%CI)

DHEA
(β, 95%CI)

DHEA-S
(β, 95%CI)

Etiology of injury

Non-traumatic 2.30
(−2.02, 6.61)

21.46
(−67.1, 110.00)

−167.28
(−544.62, 210.06)

6.78
(−4.4, 18.00)

−0.09
(−1.97, 1.80)

Injury level

Paraplegics 2.07
(−1.67, 5.79)

15.30
(−64.58, 95.17)

88.56
(−291.17, 468.29)

−2.32
(−11.39, 6.76)

−1.77
(−3.60, 0.05)

Injury completeness

Incomplete 2.25
(−1.61, 6.12)

21.32
(−55.33, 97.98)

179.33
(−200.05, 558.70)

−3.18
(−11.97, 5.61)

−1.78
(−3.43, −0.12) *

Medication use

Opioids use 1.97
(−1.87, 5.80)

−56.40
(−126.62, 13.82)

557.76
(281.48, 834.03) ***

−9.02
(−17.01, −1.03) *

−2.18
(−3.58, −0.78) **

Corticosteroids use 4.51
(0.08, 8.94)

45.99
( −52.07, 144.05)

31.60
(−568.62, 631.82)

3.66
(−12.15, 19.47)

0.02
(−1.95, 2.00)

Women (N = 16)

Parameter TT
(β, 95%CI)

FT
(β, 95%CI)

SHBG
(β, 95%CI)

DHEA
(β, 95%CI)

DHEA-S
(β, 95%CI)

Etiology of injury

Non-traumatic 0.36
(−1.91, 2.63)

4.65
(−21.98, 31.29)

55.14
(−1131.25, 1241.54)

−18.05
(−35.51, −0.58) *

−1.32
(−3.91, 1.27)

Injury level

Paraplegics 0.97
(−1.98, 3.92)

10.47
(−21.48, 42.42)

132.93
(−1428.11, 1693.97)

0.32
(−18.78, 19.42)

−1.61
(−4.05, 0.83)

Injury completeness

Incomplete 0.12
(−2.54, 2.77)

9.02
(−18.74, 36.77)

−416.18
(−1815.78, 983.43)

−12.79
(−29.09, 3.51)

−0.19
(−2.49, 2.12)

Medication use

Opioids use 0.21
(−1.29, 1.71)

−4.54
(−20.29, 11.22)

1158.41
(310.59, 2006.23) *

−5.70
(−22.46, 11.07)

−1.93
(−3.95, 0.08)

Corticosteroids use 0.38
(−0.71, 1.47)

−5.96
(−18.93, 7.00)

388.13
(−248.53, 1024.80)

7.31
(−3.97, 18.59)

−0.24
(−1.70, 1.22)

TT: Total testosterone, FT: Free testosterone, SHBG: Sex Hormone Binding Globulin, DHEA: Dehydroepiandros-
terone, DHEA-S: Dehydroepiandrosterone sulfate, β = Beta estimate from linear regression. (Traumatic SCI,
Tetraplegics and Complete SCI served as reference groups). * p value < 0.05 ** p < 0.01 *** p < 0.001.

Table 3. Longitudinal changes in androgens.

Admission
to Reha-

bilitation

End of
Rehabilitation p-Value Unadjusted Model p-Value Adjusted Model 1 p-Value

Mean
(SD) Mean (SD) (Paired t

Test) (β, 95%CI) (LMM) (β, 95%CI) (LMM)

Men (N = 70)
TT, nmol/L 13.4 (7.2) 17.0 (6.2) <0.01 3.66 (1.87, 5.46) <0.01 3.96 (1.37, 6.56) 0.003

FT, pmol/L 29.4 (15.8) 30.8 (18.5) 0.32 13.85 (−26.89, 54.59) 0.51 2.99 (−53.56, 59.53) 0.92
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Table 3. Cont.

Admission
to Reha-

bilitation

End of
Rehabilitation p-Value Unadjusted Model p-Value Adjusted Model 1 p-Value

Mean
(SD) Mean (SD) (Paired t

Test) (β, 95%CI) (LMM) (β, 95%CI) (LMM)

SHBG, pg/mL 2360.12
(744.88) 2294.10 (706.31) 0.12 −66.01 (−140.40,

8.37) 0.08 −37.61 (−145.04,
69.81) 0.49

DHEA, nmol/L 26.2 (17.6) 26.9 (21.9) 0.60 0.65 (−3.20, 4.49) 0.74 −1.59 (−7.39, 4.21) 0.59

DHEA-S, umol/L 4.5 (3.3) 5.9 (4.4) <0.01 1.44 (0.76, 2.12) <0.01 1.77 (0.73, 2.81) <0.01
Women (N = 16)

TT, nmol/L 2.1 (1.7) 2.2 (1.9) 0.80 0.06 (−0.47, 0.60) 0.82 0.23 (−0.34, 0.79) 0.43

FT, pmol/L 3.4 (2.2) 3.1(3.2) 0.54 −2.09 (−11.78, 7.60) 0.67 2.71 (−10.22, 15.65) 0.68

SHBG, pg/mL 2770.13
(1079.79) 2767.06 (903.71) 0.60 −3.06 (−322.10,

315.97) 0.99 514.08 (−87.06,
1115.23) 0.09

DHEA, nmol/L 28.2 (18.3) 21.1 (14.0) 0.05 −7.11 (−13.98,
−0.24) 0.04 −11.91 (−24.39,

−4.11) <0.01

DHEA-S, umol/L 3.4 (2.5) 4.4 (3.6) 0.29 1.01 (−0.31, 2.32) 0.13 2.71 (−0.02, 5.43) 0.05

SHBG: Sex Hormone Binding Globulin, DHEA: Dehydroepiandrosterone, DHEA-S: Dehydroepiandrosterone
sulfate, B = Beta estimate from linear mixed model (LMM), 95%CI (95% Confidence Interval). 1 Adjusted for age,
BMI, level and completeness of injury, time since injury, opioid and corticosteroid use.
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Figure 2. Bivariate plots of changes in androgen sex hormone levels in men with spinal cord injury.
The bivariate plot shows individual changes in (A) total testosterone and (B) DHEA-S comparing
the beginning and end of the rehabilitation period. A dotted line represents a line of no change.
Every circle represents a person. A circle above the line indicates that a person had a higher level
of androgen at follow-up as compared to baseline, whereas a circle below the line indicates that a
person had a lower level of androgen at follow-up as compared to baseline.

4. Discussion

Over a period of initial rehabilitation stay (between admission or within 16–40 post-
injury to up to 10 days before discharge), total testosterone and DHEA-S levels increased
significantly, while we observed no significant changes in other hormones (free testosterone,
SHBG, or DHEA). At admission to initial rehabilitation, serum SHBG was higher, while
DHEA and DHEA-S were lower among opioid users vs. non-users. We observed a non-
linear association between age and injury duration and hormone levels. Our findings on
women should be interpreted with caution, considering that only 16 women were available
for analysis.
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4.1. Androgen Changes during Initial Inpatient Rehabilitation

A recent meta-analysis including 37 observational studies reported significantly lower
total testosterone among individuals with chronic SCI compared to ABI, with no differ-
ences in free testosterone nor SHBG between the two groups [33]. Low testosterone levels
reported in the literature varied from 10% to more than 70% of men with SCI [34]. Higher
prevalence of testosterone deficiency was reported among individuals with motor complete
(as compared to motor incomplete) and cervical (as compared to thoracic/lumbosacral)
injuries and among individuals using narcotic medications for pain management [17,19,35].
Although scarce, studies in the subacute phase of the injury show similar patterns in early
testosterone changes. Naftchi et al. measured sex hormones in urine once a week for four
months starting from the onset of the injury [21]. Individuals with paraplegia (as com-
pared to age-matched ABI) had lower luteinizing hormone (LH) and follicle-stimulating
hormone (FSH) for two weeks and lower levels of testosterone for six weeks after the injury,
subsequently reaching normal levels. In individuals with tetraplegia, serum testosterone
concentrations remained significantly lower than those of the controls during the entire
4-month testing period [21]. In a study by Schopp et al., the time since injury was associated
with testosterone levels, with those having an acute injury being more likely to have low
testosterone than those with a chronic injury [20]. Similarly, among men recruited at the
inpatient rehabilitation unit, mean total and free testosterone levels were lower among
individuals ≤12 months post-injury as compared to individuals >12 post-injury [31]. Due
to variability in methods used to measure androgens (ELISA in current study, Levy and
Schwartz (1973) modification of the Bradlow (1968) method or chemiluminescent micropar-
ticle immunoassay and radioimmunoassay in previous studies) it remains challenging to
compare the prevalence of low androgen levels across studies. European Academy of An-
drology (EAA) guidelines on hypogonadism in males suggest liquid chromatography-mass
spectrometry (LC-MS) as a preferred method for androgen assessment [36]. They further
recommend using standardized methods, such as immunoassay, for research purposes,
as they show high correlation with LC-MS/MS within the adult male testosterone range
(although they offer less precision in the hypogonadal range). In our study, at admission to
rehabilitation low total (<8 nmol/L or <231 ng/dL) and free testosterone (<220 pmol/L or
<6.3 ng/dL) were seen among 27% and 36% of men with SCI.

We observed significant increases in total testosterone and DHEA-S over rehabilitation,
while free testosterone, SHBG and DHEA were not significantly changed. Lack of significant
variations in free testosterone could be explained by low albumin levels observed in the
acute phase of the injury. Testosterone is predominantly bound to SHBG (60–70% of total
testosterone), while around 30% to 40% is loosely bound to albumin [37]. Therefore, lower
albumin leaves a higher amount of free testosterone in circulation. Meaning that at baseline,
free testosterone levels in blood may be overestimated. Further, our findings may be at
least partially explained by the decreased prevalence of opioid medication use over the
period of rehabilitation (which decreased from 32.9% to 11.4%). Indeed, at baseline, we
observed significantly lower levels of DHEA and DHEA-S and higher levels of SHBG
among opioid users as compared to non-users (no differences observed in free and total
testosterone). In addition, elevated levels of corticosterone/cortisol (either exogenous or
endogenous) may drive a decrease in testosterone acutely following injury [38]. Cortisol
levels typically reverse to normal within 6 months of injury which is in line with the
improvement in hormonal status within a year since injury as reported earlier or within
on average 5.6 months of follow-up in our study [39]. Finally, an increase in testosterone
levels observed in our study may be as well driven by a thorough exercise prescription
within a rehabilitation program which may stimulate production of testosterone [40].

4.2. Clinical Implications of Our Findings and Directions for Future Research

Within weeks since injury, testosterone level decreases, and thereafter may reach
normal values within 4–6 months post-injury, which is fairly supported by our study that
reported a significant increase in total testosterone and DHEA-S prior to discharge from
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first inpatient rehabilitation. The evidence in chronic SCI indicates that men with SCI may
be a target population for testosterone deficiency screening. However, the timing of such
screening strategies remains debated. For example, Sullivan et al. suggested implementing
a routine testosterone deficiency screening strategy among men with SCI beginning at
least 1-year post-injury and/or by the 3rd decade of life [34]. To develop the SCI-specific
testosterone deficiency screening guidelines, a comprehensive systematic overview of the
literature engaging the GRADE approach [41] should identify subgroups of SCI individuals
that are at a higher risk for developing testosterone/androgen deficiency and provide a
rationale for early testosterone screening. In addition, sex steroids, especially 17β-estradiol
and progesterone, showed neuroprotective effects and led to improvement of functional
deficits in animal models of SCI [14]. Future human studies should investigate whether sex
steroids may influence changes in the metabolic milieu in subacute injury and influence
functional recovery during rehabilitation. In line with this, testosterone treatment alone
or combined with resistance training may be a reasonable strategy to slow down the bone
loss and fat accumulation following the injury and improve muscle size, strength and
contractile properties [42–46], a rationale for engaging testosterone supplementation in
rehabilitation practice should be provided. In addition, DHEA supplementation, which
has been shown to increase levels of downstream sex steroids and, therefore, improves
immune and stress response, glucose metabolism and body fat ratio may be an option to
enhance the performance of existing rehabilitation strategies after the injury [47–50].

We observed significantly lower levels of DHEA and DHEA-S among opioid users.
Previous studies reported a dose-related DHEA-S deficiency in adults who are chronically
consuming sustained-action oral or transdermal opioids [51]. In our study, at baseline,
>30% of study participants used opioids, while only 11% were discharged with those
medications. Opioid-induced endocrinopathy is a common adverse effect of long-term
opioid therapy [52]. In SCI individuals using opioids, symptoms of endocrinopathy (such
as sexual dysfunction, decreased muscle mass, anemia, or low testosterone) may remain
unrecognized and attributed to the injury. Thus, monitoring hormonal levels in this
subpopulation may be crucial.

Our findings in women are only exploratory and were based on limited data. We
observed lower levels of DHEA in women with non-traumatic as compared to traumatic
injury. Furthermore, DHEA levels decreased during the rehabilitation period. In this study,
we did not have information about menopausal or menstruation status and thus, this
makes the interpretation of our findings challenging. Total testosterone levels were above
2.4 nmol/L among 37.5% of women at baseline. In women, hyperandrogenism was associ-
ated with an increase in the prevalence of several metabolic factors (dyslipidemia, insulin
resistance, hypertension, obesity), which could lead to an increased risk of diabetes but
also cardiovascular disease, and stroke [53]. Thus, a detailed hormonal status assessment
in the context of both SCI and women-specific factors (such as menstruation, menopause,
polycystic ovarian syndrome, etc.) is warranted to understand pathophysiological changes
in metabolic milieu post-injury.

4.3. Strengths and Limitations of the Current Study

To our knowledge, this is the first study to explore longitudinal changes in androgen
levels using linear mixed model approach, which is a robust and powerful tool for analyzing
complex datasets with repeated or clustered observations. We adjusted our analyses for
factors such as injury characteristics or medication use and we further restricted the analyses
to individuals with traumatic injury and our results remain stable. In addition, we measured
SHBG and other androgens such as DHEA and DHEA-S that were not often studied in
the SCI population but were identified as key determinants of health and wellbeing in
ABI [5,12,13,54–56].

Our study has some limitations that need to be mentioned. First, androgen levels were
measured using ELISA rather than LC-MS, which is considered the gold diagnostic standard
for steroid hormone monitoring. Although ELISA measurements have high correlation
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with LC-MS/MS within the adult male testosterone range, its precision in hypogonadal
range is lower. Therefore, our measurements in this range may underestimate the true
prevalence of low total and free testosterone. Our study, having a strictly research purpose
did not aim to provide clinical diagnosis of hypogonadism. Instead, the main contribution
of this work is the identification of changes in the longitudinal hormonal trajectories/during
rehabilitation. Importantly, using ELISA, facilitates comparison of our findings to previous
published works on the SCI population, where ELISA or radioimmunoassay (RIA) were
the most commonly applied analytical methods. Furthermore, the ELISA kits from two
manufacturers, Abnova and Abcam, were used to measure androgen levels, thus, the
assessment of correlation between androgen levels was not feasible. Third, the SHBG assay
sensitivity is not optimized for the natural range of the analyte and levels measured in
current study cannot be compared to clinical standard (ELISA kit detection range was
between 62.5 pg/mL and 4000 pg/mL). Finally, we were not able to explore the association
between testicular blood flow, which was previously linked with testicular function and
may be a crucial factor to influence androgen levels [57].

5. Conclusions

In this study we observed an improvement in total testosterone and DHEA-S in men
over first inpatient rehabilitation. Androgens may play a pivotal role in functional recovery
and early metabolic changes in SCI. Thus, to develop timely preventive strategies, future
methodologically sound longitudinal studies are required to disentangle the complex
association between hormone levels and aging, visceral adiposity, physical inactivity and
functional recovery post-injury.
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