
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
7
4
7
0
7

|

d
o
w
n
l
o
a
d
e
d
:

2
1
.
1
1
.
2
0
2
2

SciPost Phys. 12, 039 (2022)

Spiking neuromorphic chip learns entangled quantum states

Stefanie Czischek1,2?, Andreas Baumbach1,3, Sebastian Billaudelle1,
Benjamin Cramer1, Lukas Kades4, Jan M. Pawlowski4, Markus K Oberthaler1,

Johannes Schemmel1, Mihai A. Petrovici3,1, Thomas Gasenzer1,4, Martin Gärttner1,4,5

1 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg,
Im Neuenheimer Feld 227, 69120 Heidelberg, Germany

2 Department of Physics and Astronomy, University of Waterloo, Ontario, N2L 3G1, Canada
3 Department of Physiology, University of Bern, 3012 Bern, Switzerland

4 Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg,
Philosophenweg 16, 69120 Heidelberg, Germany
5 Physikalisches Institut, Universität Heidelberg,

Im Neuenheimer Feld 226, 69120 Heidelberg, Germany

? sczischek@uwaterloo.ca

Abstract

The approximation of quantum states with artificial neural networks has gained a lot
of attention during the last years. Meanwhile, analog neuromorphic chips, inspired by
structural and dynamical properties of the biological brain, show a high energy efficiency
in running artificial neural-network architectures for the profit of generative applica-
tions. This encourages employing such hardware systems as platforms for simulations
of quantum systems. Here we report on the realization of a prototype using the latest
spike-based BrainScaleS hardware allowing us to represent few-qubit maximally entan-
gled quantum states with high fidelities. Bell correlations of pure and mixed two-qubit
states are well captured by the analog hardware, demonstrating an important building
block for simulating quantum systems with spiking neuromorphic chips.

Copyright S. Czischek et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 22-02-2021
Accepted 16-12-2021
Published 26-01-2022

Check for
updates

doi:10.21468/SciPostPhys.12.1.039

Contents

1 Introduction 2

2 Neuromorphic encoding of quantum states 2

3 Encoding an entangled Bell state 5

4 Learning performance 6

5 Deep and partially restricted networks 8

6 Conclusion 9

1

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039
mailto:sczischek@uwaterloo.ca
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.12.1.039&domain=pdf&date_stamp=2022-01-26
https://doi.org/10.21468/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

A Implementation details of BrainScaleS-2 10

B Computation time benchmark for sampling from neural networks 13

C Representation of the Bell state 14

D Training algorithm 16

References 18

1 Introduction

As von-Neumann computers are rapidly approaching fundamental physical limitations of con-
ventional semiconductor technology, a number of alternative computing architectures are cur-
rently being explored. Among them, neuromorphic devices [1,2], which take inspiration from
the way the human brain works, hold promise of having a wide range of applications, in par-
ticular in machine learning and artificial intelligence [3–11]. Here we focus on using them
as a sampling device to emulate measurement outcomes in quantum physics [12], which are
inherently probabilistic in nature. The BrainScaleS neuromorphic system [11] is ideally suited
for this task. The accelerated analog circuit dynamics and the inherently parallel nature of the
neuromorphic substrate enable a rapid generation of samples which carries the potential of
scaling benefits as compared to von-Neumann devices (App. A).

We use neuronal spikes (action potentials) to mark transitions between discrete states
and thereby effectively carry out the sampling process. The all-or-nothing nature of spikes
represents a blessing in disguise. On the one hand, it does have an apparent drawback by
making the computation of gradients – and thus, training – more demanding than in classical
deep neural networks [2]. On the other hand, it also allows us to use a spiking neuromorphic
substrate in the first place, the speed-up of which we harness for efficient Hebbian learning
[13].

Since any quantum state can be mapped to a probability distribution [14, 15], it can, in
turn, be represented using networks of leaky integrate-and-fire (LIF) neurons [16–18]. Here,
we use the BrainScaleS-2 chip [11] as a physical substrate to emulate such networks. This
mixed-signal neuromorphic platform is centered around an analog core: neuro-synaptic states
are represented as voltages and currents in integrated electronic circuits and evolve in con-
tinuous time. Its configurable connectivity of neurons allows us to explore various different
network topologies, including shallow, as well as deep and densely connected ones. With this
substrate, we demonstrate an approximate representation of quantum states with classical
spiking neural networks that is sufficiently precise for encoding states with genuine quantum
correlations.

2 Neuromorphic encoding of quantum states

In classical machine learning, generative models based on artificial neural networks are used to
encode and sample from probability distributions [13]. Similarly, spiking neural networks can
be viewed as approximating Markov-chain Monte-Carlo sampling, albeit with dynamics that
differ fundamentally from standard statistical methods [19]. Here, we encode quantum states

2

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

0 50 100
Time [µs]

12

10

8

6

4

3

2

1

N
eu

ro
n

ID

240

340

V
ol

ta
ge

1

c Spiking neurons

...

v1

v2

v3

v4

h1

h2

hM−1

hM

Wi,j

bj
di

Hidden layer

Visible layer

a Network structure

b Neuromorphic chip

↓↓ ↓↑ ↑↓ ↑↑ ↓↓↓↑
↑↓↑↑
−0.1

0.0
0.1
0.2
0.3

↓↓ ↓↑ ↑↓ ↑↑ ↓↓↓↑
↑↓↑↑
−0.1

0.0
0.1
0.2
0.3

Im (ρ)Re (ρ)

|Ψi 〉 = c↑↑i |↑↑ 〉+ c↓↓i |↓↓ 〉

+ c↑↓i |↑↓ 〉+ c↓↑i |↓↑ 〉

ρ =
∑

i qi |Ψi 〉〈Ψi |
=

∑
{a1 ,a2}

P (a1, a2)Qa1 ,a2

e Quantum spin state

(0,
0)

(0,
3)

(3,
3)

(
a1 , a2

)
0.00

0.05

0.10

0.15

P
(a

1
,a

2
)

a1 = 0

a2 = 3

0

0

1

1

d POVM representation

a = 3

a = 2

a = 0

a = 1

POVM basis

Figure 1: Neuromorphic representation of quantum states. a, Two-layer spiking
network architecture with weight parameters Wi, j between the visible (orange) and
hidden (green) neurons and biases di (b j) for the binary visible (hidden) neurons.
b, Photograph of the BrainScaleS-2 chip used as a substrate for the experiments in
this work. c, Dynamical evolution of the spiking network. Upper panel: membrane
potential evolution of a single LIF neuron integrating synaptic input. Whenever the
potential crosses a threshold a spike is generated and the potential is clamped to pre-
vent immediate refiring (refractory period). Lower panels: Spikes (solid lines) for
4 visible (orange) and 8 hidden (green) neurons with associated z = 1 time frames
(shaded regions). The network state is observed periodically (gray lines showing
only every fifth observation time for visibility reasons). Each observation results in a
binary vector corresponding to a sample drawn from the underlying distribution. d,
The 4-state positive-operator-valued measure (POVM) representation of a qubit state
can be encoded by a pair of visible neurons. A combination of N such neuron pairs
thus serves to represent an N -qubit system. The frequency of occurrence of neuron
configurations drawn from a trained network encodes the POVM probability distri-
bution of a quantum state (lower panel). e, Any quantum state can be represented
as a density matrix ρ, which can be a statistical mixture of states |Ψi〉. For the exam-
ple of two qubits shown here, the complex-valued entries of ρ can be reconstructed
linearly from the sampled probabilities P(a1, a2). For the definition of the operators
Qa1,a2

, see App. C.

using the hierarchical network architecture illustrated in Fig. 1a. The network consists of N
visible and M hidden leaky integrate-and-fire (LIF) neurons arranged in a bipartite graph with
a symmetric connectivity matrix. Such a network can be tuned to approximate the probability
of the visible neurons to be in state v = (v1, . . . , vN), vi ∈ {0, 1}, as the marginal

p (v ;W) = 1
Z (W)

∑

{h}

exp [−E (v , h;W)] , (1)

over all hidden states h = (h1, . . . , hM), where h j ∈ {0, 1}, of the joint Boltzmann distribu-
tion p (v , h;W) = exp [−E (v , h;W)] [19]. The network energy E (v , h;W) = −

∑

i, j viWi, jh j

−
∑

i vidi −
∑

j h j b j depends on the set of network parameters W = (W, b,d) including the
weights Wi, j and biases b j and di . The partition sum Z (W) =

∑

{v ,h} p (v , h;W) ensures
normalization.

The BrainScaleS-2 system, depicted in Fig. 1b, features 512 LIF neuron circuits interacting
through a configurable weight matrix [11]. Similar to biological neurons in the human brain,
LIF neurons communicate via spikes. Each neuron can be viewed as a capacitor integrating the
currents it receives from its synaptic inputs to generate a membrane potential. Whenever this

3

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

membrane potential crosses a threshold from below, the neuron sends a spike to the synaptic
inputs of its efferent partners (Fig. 1c, top panel). After sending a spike, the neuron is set to an
inactive state, in which no additional spike can be triggered for a certain time, referred to as the
refractory period τref. In the spike-based sampling framework, neurons in this refractory state
encode the state z = 1, and z = 0 at all other times (Fig. 1c, lower panel). The stochasticity
required for sampling is induced by adding a random component to the generation of spikes;
for LIF networks, this can be ensured by sufficiently noisy membrane potentials [16, 18]. To
this end, we used on-chip sources to inject pseudo-Poisson spike trains into the network (see
App. A).

As an experimental result, the BrainScaleS-2 chip returns a list of all spike times and as-
sociated neuron IDs. This information is sufficient to reconstruct the network state at any
point in time. We estimated the distribution sampled by the network by observing its state
at regular intervals, as visualized in Fig. 1c. To ensure an optimal estimate, the observation
frequency needs to be at least (τref/2)−1 (see App. A). For our analysis, we used (τref/5)−1,
thereby guaranteeing a large safety margin. The resulting binary configurations are collected
in a histogram as shown in Fig. 1d.

A pure quantum state is described by a vector in Hilbert space and can be represented by a
hermitian density matrix with complex entries. Density matrices can also encode mixed states
and thus account for a possible coupling to an environment, which is relevant for a realistic
description of experiments. Fig. 1e shows an example of a density matrix for a system of two
spin-1/2 degrees of freedom (qubits) corresponding to a Hilbert-space dimension d = 4. The
corresponding probability distribution which we encode in our network is obtained from a
so-called tomographically complete measurement [14]. Such a measurement has d2 possi-
ble outcomes. Mathematically, these outcomes are represented by a set of operators {Ma}a,
forming a so-called positive-operator-valued measure (POVM). The density matrix can be re-
constructed uniquely as ρ =

∑

{a} P(a)Qa from the probabilities P(a) = Tr [ρMa] for obtain-
ing outcome a according to Born’s rule. The operators Qa are given by Qa =

∑

{a′} T−1
a,a′Ma′ ,

with Ta,a′ = Tr [MaMa′] [15]. Hence, any density matrix ρ can be mapped to a probability
distribution P(a), and the information contained in the quantum state can be retrieved from
that distribution. In our two-qubit example (Fig. 1d) we chose Ma = Ma1

⊗ Ma2
, where Mai

(ai = 0, . . . , 3) are projection operators onto the single-qubit states represented as the four
corners of a tetrahedron on the Bloch sphere. As each ai can take four different values, the
encoding of the probabilities P(a) by a spiking network is realized by representing each qubit
by a pair of binary neurons in the visible layer (cf. gray shadings in Fig. 1a). This results in
the distribution p∗(v) over the visible neurons (see App. C).

To approximate p∗(v) through spike-based sampling, the parameters of the spiking net-
work were adjusted in an iterative training procedure. We used the Kullback-Leibler diver-
gence

DKL (p
∗‖p) =

∑

{v}

p∗(v)ln
�

p∗(v)
p(v ;W)

�

, (2)

to measure the quality of the sampled marginal p(v ;W). In each training epoch, the synaptic
weights were updated along the gradient of the DKL (see App. D):

∆Wi, j ∝

vih j

�

target −

vih j

�

model , (3)

which is derived assuming that the distribution p(v ;W) is given by Eq. (1). While the dy-
namical behavior of the spiking hardware approximates this probability distribution, the exact
relation between the network parameters and the encoded distribution cannot be given in a
closed form [18]. Instead, pairwise correlations

vih j

�

model in the network were measured

4

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

0.0 0.2 0.4 0.6 0.8 1.0
1− r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
(π
/

4
)

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π
Θ

−3

−2

−1

0

1

2

3

B
(Θ

) 0 1000 2000
Training epochs

0

2

B
(π
/

4
)

Entangled Separable

Classical limitPure Bell state

Noisy Bell state
1− r = 0.7

Classical regime

Quantum regime

a b cViolation of the classical bound Effects of white noiseMeasurement setup

Source oror

Comparison

Eα,β = 〈Sα
1
S
β
2
〉 − 〈Sα

1
〉〈Sβ

2
〉

Sα = cos (α)σz + sin (α)σx

B (Θ) = E0,Θ + E0,−Θ + E2Θ,Θ − E2Θ,−Θ

Basis choice
β = Θ

β′ = −Θ

Detection

Basis choice
α = 0

α′ = 2Θ

Detection

Party 1 Party 2

Figure 2: Encoding Bell states and Werner states. a, Illustration of a typical Bell-
test scenario. Two correlated qubits emerging from a source are distributed between
two parties. Each of the parties is allowed to choose between two different measure-
ments each characterized by a single common angle Θ. The measurement outcomes
indicate genuine quantum correlations if the combination B(Θ) of the correlations
violates the inequality |B(Θ)| ≤ 2 obeyed by classical states. b, Observable B(Θ)
evaluated on the learned encoding of the Bell state ρB = |Ψ+〉〈Ψ+| on the neuromor-
phic hardware, with M = 20 hidden neurons. Red symbols depict the observable
for different angles Θ, averaged over the last 200 training epochs, where errorbars
here and in the following denote the standard deviation. Note that these data points
have been obtained from the same trained network and the same set of neuron states
sampled from it by evaluating the observable for different angles Θ on this sample
set. Werner states ρW = rρB+(1− r) 1/4 are obtained by adding white noise to the
pure Bell state. Green points correspond to r = 0.3. In both cases, the data capture
the exact values (black lines) well, including the violation of the classical bound in
the pure case r = 1. The inset shows the evolution of the Bell-correlation witness
B(Θ = π/4) during training (red line) and the convergence towards the expected
value (black dashed line). c, Bell-correlation witness B(Θ = π/4) for a Werner state
as a function of the noise strength 1− r. The exact solution (black line) is captured
well for both entangled and separable states.

from the sampled distribution p(v , h;W). Target correlations 〈vih j〉target were also obtained
from the sampled distribution by renormalization to the target marginal distribution:

vih j

�

target =

p∗(v)
p(v ;W)

vih j

·

p(v ,h;W)
. (4)

A similar scheme was used for the neuronal biases b j and di . The performance characteris-
tics of the neuromorphic hardware make computing additional samples cheap compared to
reconfiguration and reinitialization. Hence we can take into account the complete sampled
distribution for the update calculation, rather than relying on few-sample approximations as
in contrastive divergence [13]. This enables a much better estimation of the DKL gradient and
does not rely on layer-wise conditional independence, allowing the exploration of network
topologies other than bipartite graphs. See App. D for an extended discussion of the learning
scheme.

3 Encoding an entangled Bell state

To demonstrate that a spiking neural network can learn to represent entangled quantum states
we focus on a maximally entangled two-qubit state, the Bell state |Ψ+〉 = (|↑↑〉+ |↓↓〉)/

p
2.

5

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

This state is a prototypical example exhibiting quantum mechanical correlations [20,21]. We
trained a network of four visible and 20 hidden neurons to encode the POVM probability
distribution corresponding to ρB = |Ψ+〉〈Ψ+|. For calculating the weight updates in each
epoch of the training procedure, as well as for evaluating expectation values, we drew 125000
samples of neuron states. This number is sufficient for the saturation of the DKL as can be seen
in Fig. 3b and was used for all experiments, if not specified otherwise.

To characterize the learned quantum state, we used the observable B(Θ), which can signal
genuine quantum correlations and is experimentally accessible via measurements as illustrated
and defined in Fig. 2a: The two qubits are distributed to two parties who independently per-
form one of two possible measurements on their respective qubit. We choose the standard
parametrization of the different measurements by a single angle Θ. For a Bell state this pro-
cedure yields correlations violating the inequality |B(Θ)| ≤ 2, which is obeyed by classical
systems [21]. At Θ = π/4 this inequality is maximally violated for the Bell state ρB and thus
yields an experimentally accessible witness for Bell correlations [20,22].

The correlations in the quantum states encoded as probability distributions by the trained
spiking network clearly exceed the classicality bound |B(Θ)| = 2 (red points in Fig. 2b) and
are in agreement with their exact Θ-dependence (black line). The inset shows how the Bell
correlation witness B(Θ = π/4) develops during the training, converging after less than 1000
iterations.

To illustrate the generality of our neuromorphic encoding scheme we consider mixed
quantum states by adding white noise to the pure Bell state resulting in the Werner state
ρW = rρB + (1− r)1/4 with noise strength 0 ≤ 1− r ≤ 1 [23]. Increasing the noise reduces
|B(Θ)| and eventually confines it within the classical regime (cf. green data in Fig. 2b). For
1− r > 1/

p
2 the Bell correlation witness fails to detect entanglement, and for 1− r > 2/3 the

state becomes separable (unentangled). The resulting mixed states are faithfully represented
by our system for any value of r as shown in Fig. 2c. The fluctuations in the experimental
data decrease with increasing noise contribution, allowing a more accurate learning of mixed
states. This counterintuitive effect is due to additional noise leading to an increase in entropy,
which is synonymous with sampling from more uniform distributions. These, in turn, are re-
alized by weaker weights, thus decreasing the influence of imperfect synaptic interactions in
the neuromorphic substrate.

4 Learning performance

We analyzed in detail the convergence of the learning algorithm using the classical Kullback-
Leibler divergence DKL as defined in Eq. (2). In addition, we use the quantum fidelity

F(ρB,ρN) = Tr
�
Æp

ρBρN
p
ρB

�

, (5)

to quantify the distance between the target state ρB and the network-encoded state ρN, which,
for pure states, reduces to the state overlap. As shown in Fig. 3a, the learning converges af-
ter 1000 training epochs. Increasing the number of hidden neurons we find that the fidelity
reaches ≈ 98% (correspondingly DKL ® 10−2) for M ¦ 20 hidden neurons. The limited reach-
able fidelity is a result of many different factors of the physical implementation of the spiking
neural network on the BrainScaleS-2 platform. The synaptic connections are implemented
with 6-bit resolution, limiting the achievable precision of approximating the probability dis-
tribution. Also, uncontrolled environmental changes such as temperature variations or host-
to-system effects influence the performance of the hardware. This manifests in the jumps of
fidelity occurring during learning, as well as in strong noise in the fidelity after the learning
process has saturated, as can be seen in Fig. 3a. These instabilities exceed the anticipated noise

6

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

103 104 105

Samples S

10−2

10−1

D
K
L
` p
∗ ‖
p
´

20 40 60
Hidden Neurons M

0.6

0.8

1.0

F
id

el
ity

0 1000 2000
Training epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
id

el
ity

0 2000
Training epochs

10−1

10−2

10−3

D
K
L

Hidden neurons M
5

10
15
20
25
30

N = 2

N = 3

N = 4

a Training process b Sampling behavior

c Multiple spins

Figure 3: Training performance. a, Dynamics of the learning procedure for the pure
Bell state ρB. The quality of the network-encoded state is measured by the quantum
fidelity, Eq. (5) (main frame), and by the Kullback-Leibler divergence, Eq. (2) (inset),
for different numbers of hidden neurons. For better visibility, the running average
over 50 epochs is shown in the inset as solid lines, with the shaded areas indicat-
ing the corresponding standard deviation. b, Kullback-Leibler divergence in a fixed
trained network with M = 20 hidden neurons as a function of the number of samples
drawn. The dashed line shows the expected trend for exact sampling from the target
distribution. c, Quantum fidelity as a function of the number of hidden neurons for
GHZ states |Ψ〉 = (|↑〉⊗N + |↓〉⊗N)/

p
2 with N = 2 (Bell state), 3, and 4 qubits. We

show the averages over 200 training epochs after convergence (gray shaded area in
a). The dashed line shows the bound for genuine N -partite entanglement.

level due to finite sample statistics used for evaluating observables and calculating gradients
in each epoch. These factors degrade the correspondence between the model assumption un-
derlying the employed learning rule and the actual dynamics of the hardware. Many of the
issues mentioned above can be resolved in future hardware generations.

To ensure that the learning performance is not limited by finite sample statistics, we eval-
uated the Kullback-Leibler divergence as a function of the number of samples in a trained
network with fixed network parameters. Figure 3b shows the expected convergence towards
a minimum value determined by the quality with which the spiking network approximates the
POVM distribution. Typically, for >105 samples the statistical error is negligible compared to
the errors due to hardware noise and limited representational power of the network, causing
the saturation of the DKL observed in Fig. 3b. This justifies our choice of training with 125000
samples per epoch.

Having demonstrated high-fidelity emulation of two-qubit entangled states, we investi-
gated whether states of multiple qubits can also be encoded by our spiking sampling net-
work. Figure 3c shows the fidelity achieved in learning Greenberger-Horne-Zeilinger (GHZ)
states [24], i. e. N -qubit generalizations of a Bell state, as a function of the number of hidden
neurons M . The underlying probability distribution covers a larger state space of the visible
neurons, requiring us to increase the number of samples to 225000 to reach convergence in
the DKL. In all cases the fidelity of the learned state to the perfect GHZ state increases with M ,
reaching values of close to 90% and about 70% for three and four qubits, respectively. As lay-
ered network architectures are known to require a large number of neurons for representing

7

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

GHZ states [15], we assume that larger chip sizes will allow to increase these values further.
Note that a GHZ-state fidelity above F = 1/

p
2 ≈ 70% means that the state exhibits genuine

N -partite entanglement (cf. dashed line in Fig. 3c) [25].

5 Deep and partially restricted networks

Our flexible learning scheme allows the training of network architectures beyond simple bipar-
tite graphs. To explore network architectures with potentially larger representational power
we added connections between the visible neurons, resulting in a more densely connected
network. Figure 4a shows that a Bell state can be encoded successfully with this architecture,
reaching similar fidelities as the two-layer fully restricted spiking network. We also explored
deeper network architectures by adding an additional hidden layer, see Fig. 4b. Again, the Bell
state was learned successfully reaching similar fidelities as in the bipartite case. We note that
the learning performance is not monotonic at small M for M2 = 10 neurons in the second hid-
den layer. This is expected, since the intermediate layer constitutes an information bottleneck
towards the visible layer, which makes learning more difficult. Therefore, the greater repre-
sentational power offered by additional depth [26] does not necessarily translate into a higher
fidelity for M < M2. The overall non-monotonic dependence of the fidelity on the number of
hidden neurons is caused by hardware noise leading to fluctuating training performance.

The fact that the learning performance does not improve when using different architectures
indicates that the reachable fidelity is currently limited by technical imperfections rather than
the representational power of the ansatz. Larger-scale systems may be able to exploit the
greater representational power of these deeper and more complex architectures.

5 10 15 20 25 30
Hidden neurons M

0.7

0.8

0.9

1.0

F
id

el
ity

5 10 15 20 25 30
Hidden neurons M

0.6

0.8

1.0

F
id

el
ity

a Partially-layered network

b Deep network structure

··· ···

······
M2 M N

M2 = 0

M2 = 5

M2 = 10

Figure 4: Extending the network architecture. a, Fidelity between network-
encoded and perfect Bell state, Eq. (5), as a function of the number of hidden neurons
for strictly layered network (blue) and an architecture with additional connections
between the visible neurons (orange). b, Quantum fidelity for states encoded in a
deep network architecture with a second hidden layer containing 5 (orange) and 10
(green) neurons compared to the restricted two-layer network (blue).

8

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

6 Conclusion

We have shown that a spiking neural network implemented on a classical neuromorphic chip
can approximate entangled quantum states of few particles with high quantum fidelity. In
particular states with non-classical Bell correlations can be encoded faithfully, demonstrating
that the representation of quantum states on a classical spiking network can capture their
intrinsic quantum features.

The fidelities and system sizes achieved in this first study on neuromorphic quantum state
encoding should be regarded as a proof of principle. The experienced restrictions are mainly
technical in nature and can be improved in future generations of spiking neuromorphic devices.
Specifically for the BrainScaleS-2 system, both the hardware and its surrounding software
framework are in an ongoing maturation process. The size and fidelity of the approximated
quantum states can be significantly improved upon by optimizing the usage of hardware real-
estate, the signal-to-noise ratio of the analog circuitry and the calibration of the chip. Judging
from the current pace of progress in neuromorphic engineering, significantly larger systems,
both digital and analog, can be expected to become available in the near future [1].

Furthermore, runtime improvements are anticipated, as the current bottleneck is the cal-
culation of the weight updates of the network parameters, which is done “offline” on a conven-
tional computer and only the sampling itself is performed on the chip (see App. A). Using the
on-chip plasticity processor to update synaptic weights has the potential of drastically reducing
the training time by removing the cumbersome chip-host loop [27].

One key advantage of this neuromorphic system as compared with simulated generative
models is that scaling to larger network sizes does not increase the time needed to collect a
desired number of samples. We illustrate this property by comparing the sampling time on a
neuromorphic chip with sampling times achieved in CPU implementations in App. B showing
a gain through neuromorphic sampling already at moderate system sizes. Given the efficient
learnability [28] and representability of important classes of quantum states [29–31], and the
availability of sampling schemes for neuromorphic devices [32,33], we thus expect favorable
scaling properties for our approach. Thus our work opens up a path towards applications of
neuromorphic hardware in quantum many-body physics.

Acknowledgments

We are indebted to the late K. Meier who envisioned and championed the BrainScaleS system
and made seminal contributions to this endeavor. We thank A. Kungl for discussions and the
Electronic Vision(s) group, in particular E. C. Müller, C. Mauch, Y. Stradmann, P. Spilger, J.
Weis, and A. Emmel, for maintaining and providing access to the BrainScaleS-2 system and
for technical support.

Author contributions S.C. and A.B. carried out the experiment, analysed the data and wrote
the paper. S.B., B.C., and A.B. configured the neuromorphic hardware and provided the soft-
ware interface to access it. S.C., M.G., and T.G. developed the theory and designed the neu-
romorphic encoding scheme. All authors contributed to interpreting the data and writing the
manuscript.

Funding Information This work is supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2181/1 –
390900948 (the Heidelberg STRUCTURES Excellence Cluster), by the DFG – project-ID

9

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

273811115 – SFB 1225 (ISOQUANT), by the European Union 7th and Horizon-2020 Frame-
work Programmes, through the ERC Advanced Grant EntangleGen (Project-ID 694561) and
under grant agreements 604102, 720270, 785907, 945539 (HBP), and by the Manfred Stärk
Foundation.

Data availability The data that support the findings of this study, as well as the code to gener-
ate the presented results using the BrainScaleS-2 system, and the scripts to analyze the data are
available at https://github.com/sCzischek128/SpikingNeuromorphicChipLearnsEntangled
QuantumStates

A Implementation details of BrainScaleS-2

The BrainScaleS-2 system is a mixed-signal neuromorphic platform. Its analog core is com-
posed of neuron and synapse circuits with inherent time constants of the order of microsec-
onds. An application-specific integrated circuit (ASIC) for the BrainScaleS-2 system features
512 neuron circuits, which emulate the adaptive exponential integrate-and-fire model. These
individual compartments can be wired to resemble more complex structured neurons. An on-
chip analog parameter memory as well as integrated static random-access memory (SRAM)
cells allow us to individually configure and optimize the dynamics of each circuit. Each neuron
integrates input from 256 dedicated synapses, which carry a 6-bit weight and can be either
excitatory or inhibitory.

The analog core is accompanied by supporting logic, including circuitry for communication
and configuration. Further functionality is provided by high-bandwidth spike sources, which
can emit either regular or Poissonian spike trains of configurable frequency. A routing module
allows mixing these spikes with external stimuli and recurrent events. It allows, in combination
with in-synapse event filtering, the implementation of arbitrary network topologies.

Custom embedded processors allow the modification of the entire configuration space dur-
ing the runtime of an experiment. Tightly coupled to the synaptic arrays, they allow the ef-
ficient and flexible implementation of learning rules based on observables such as neuronal
potentials, firing rates, and synaptic correlations.

A network of leaky integrate-and-fire (LIF) neurons can implement a sampling spiking net-
work (SSN) if the neurons are under stochastic noise influence, their membrane time constant
is sufficiently small and the synaptic and refractory time constants roughly match [18]. A
system-specific calibration is required to configure the analog core of BrainScaleS-2, shown in
Fig. 5a according to these requirements. For ease of implementation we use a simple routing
scheme in which the on-chip network looks like 128 unique sources which can be arbitrarily
connected. This allows the association of each of the 128 synapse drivers with one spike source
while using the double line to implement signed synapses (cf. Fig. 5b).

The stochastic input spikes are generated via two of the eight on-chip linear shift registers
(LSFRs). We assign the spike source IDs 0-63 to the network neurons and split the spike trains
from the LSFRs among the IDs 64-127. For networks smaller than 64 neurons, the upper part of
(0-63) remains unused. Again simplifying the implementation we use the first half of the noise
IDs (64-95) as excitatory and the second half (96-127) as inhibitory sources (cf. Fig. 5c lower
part). This scheme allows in principle all-to-all connectivity within the network. Choosing to
use a layered network structure results in a block structure of the upper part of the synapse
array (cf. Fig. 5c).

Each sampling neuron is connected to 5 randomly chosen excitatory and 5 randomly cho-
sen inhibitory noise sources. This introduces correlations between neurons even without
synaptic connections, but in general does not hinder training [16, 34]. Synaptic connections

10

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039
https://github.com/sCzischek128/SpikingNeuromorphicChipLearnsEntangledQuantumStates
https://github.com/sCzischek128/SpikingNeuromorphicChipLearnsEntangledQuantumStates

SciPost Phys. 12, 039 (2022)

SynapsesSynapse drivers

Neurons

0 1 2 3

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

Spike source
(LSFR)

Signed synapse

0 1 2 3

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

Spike source
(LSFR)

Signed synapse

0 50

Target ID

0

20

40

60

80

100

120

S
o

u
rc

e
ID

Network

Exc. Noise

Inh. Noise

−
6
0

0
6
0

H
W

w
ei

g
h

t
[l

sb
]

Ti
m

e
[s]

0

5

10
Ch

ip
in

it.
Ep

oc
h

1
Ep

oc
h

2

0

1

2

3

4

Ca
lcu

la
te

∆
W

26
×

H
W

-ru
n

0.00

0.01

0.02

0.03

In
Ch

ip
O

ut

220 230 240 250 260 270 280

Time [µs]

200

400

M
em

.
vo

lt
.

[l
sb

]

τ eff
ref

10.4 10.6 10.8

τeff
ref [µs]

F
re

q
u

en
cy

[a
u

]

200 400 600 800 1000

HW bias [lsb]

0

500

1000

O
u

tp
u

t
ra

te
[k

H
z]

102 103 104 105 106

Number of samples

10−1

100

D
K

L

1.0τref

0.7τref

0.5τref

0.3τref

0.1τref

a b

c d

e

f

g

h

Figure 5: Details of the BrainScaleS-2 neuromorphic chip. a, Photograph of
the BrainScaleS-2 chip with circuits of 4×128 AdEx-LIF neurons (green), 2×2×128
synapse drivers (white) and 4 synapse arrays with 256×128 synapses (yellow). b,
Routing schematic used to implement the sampling spiking network. Each synapse
driver projects to two synapse rows in order to allow signed synapses. c, Utilized
logical connectivity matrix projecting onto the 64 neurons used. Network (neuron-
to-neuron) connections are truncated at index 24 (4 visible and 20 hidden) and intra-
layer connections are not used. Each neuron receives noise input from 5 excitatory
(64-95) and 5 inhibitory (96-127) sources, generated by one on-chip LSFR each.
Each connection selects the appropriate synapse row depending on its sign (cf. b) d,
Time usage across a training experiment. The initial configuration (blue) of the chip
is comparable to a single epoch (orange). Each epoch consists of a parameter update
(green), 26 sampling runs (red) and the update calculation (purple). Each hardware
run consists of the construction of the playback program (ruby), the initial buffering
on the FPGA (brown), the actual chip runtime (turquoise) and the readout to the
host (grey). e, Membrane trace of an exemplary neuron at the high-bias end. τeff

ref is
the inter spike interval. f, Histogram of measured τeff

ref. Variations are due to the ana-
log nature of the system. g, Activation functions as a function of the leak potential
under noise input of the 64 neurons used. τeff

ref is estimated by the output frequency
at the high-bias end. h, Sampling performance as a number of samples, rather than
execution time for different sampling time deltas d t. More than two samples per
refractory time τeff

ref ≈ 10µs increase the Kullback-Leibler divergence as the samples
are not independent.

11

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

on BrainScaleS-2 are 6-bit-valued circuits. The dynamical impact of a single network spike
(used to mediate the stochastic response of the receiving sampling unit) onto another neuron
is given by its own strength relative to the total strength of the input provided by the back-
ground sources. The latter defines the transfer function and thereby the excitability of the
neurons (cf. Fig. 5g). Choosing the noise parameters (weight and number of sources) is done
such as to attain the competing goals of allowing the network neurons to drive each other
significantly while allowing for small weight changes within the 6-bit resolution limit. The
particular choice is, in general, problem dependent.

Having chosen the noise parameters, the sampling interface of BrainScaleS-2 becomes a
black box that requires a weight (6-bit) matrix and a (10-bit) bias vector and returns a set of
spike trains. Neurons are assigned a state of z = 1 at time t if they emitted a spike within
their effective refractory period τeff

ref prior to t (cf.Fig. 1c in the main text). We determine τeff
ref

by setting the leak potential of the neurons to its maximum value and measuring the resulting
inter-spike intervals (cf. Fig. 5e). The effective refractory time consists of the clamped part
which is digitally driven and therefore does not vary between different neurons and the drift
part back to the spiking threshold in the end. Due to the circuit variability (e.g. different mem-
brane time constants) of the analog circuits we see some modest variation in τeff

ref (cf. Fig. 5f).
Using the measured τeff

ref we assign a state every 2µs and use the set of these states for the
evaluation and the update calculation.

Figure Fig. 5h demonstrates the correctness of an approximated distribution for a simulated
sampling spiking network (using [35]) as a function of the number of samples for different
state assign times d t (cf. Fig. 1 in the main text). For more than two samples per refractory
period τref the number of samples required to achieve a given performance level increases
due to the correlated states as expected from the Nyquist-Shannon theorem. Both the noise
parameters and the sample frequency were chosen such that they enable sufficiently accurate
sampling, but without performing an exhaustive optimization.

As discussed above, a chip-specific calibration is required but can be reused for each train-
ing. For each experiment the chip needs to be initialized (blue period in Fig. 5d) once. This
ensures that the correct calibration is loaded and the routing is configured correctly before
the training iterations (orange period in Fig. 5d) can start. After the initialization only the
synapse array (weights) and the leak potentials of the neurons (biases) are reconfigured once
per epoch (green period in Fig. 5d). Each training epoch consists of 26 sampling runs (red
section in Fig. 5d) and a single calculation of the parameter update (purple in Fig. 5d). In each
hardware run we build a program for the FPGA to execute (dark red in Fig. 5d), transfer it to
the FPGA with some initial buffering (yellow in Fig. 5d) in order to compensate for network
latencies, perform the actual execution on chip (light blue in Fig. 5d) and transfer the spikes
back to the host computer (grey in Fig. 5d).

In total, an epoch takes about 1.9 s of which roughly half is spent in the sampling and
the other half is used to calculate the parameter updates. While some time was spent to
improve performance, both parts can still be optimized. For example the gradient calculation
is implemented in Python and most of the sampling time is spent buffering and reading back
the results. The actual hardware runtime is only 30 % of the time marked as HW-run in Fig. 5d.
Using a more complex routing setup an increase to at least 256-spike sources is possible and
since BrainScaleS-2 is a physical system the runtime of the hardware part is not affected by
the network size.

12

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

0 1000 2000 3000 4000

number of synapses

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ti
m

e
[s

]

n=2

n=4

n=6

n=8 n=10

Time for generating 106 samples

HX

size limit for 6 qbits

size limit for 10 qbits

CPU measured @1.2GHz

CPU limit @1.2GHz

Figure 6: Measured (dots) and estimated (crosses) sampling times for the generation
of a million samples, for different quantum system size (N = 2, 4, 6, 8, 10 spins,
colours) and hidden layer sizes (M = 20, 40, 60, 80, 100, 120, 140, 160, 180, 200)
on a Intel Xeon E5-2630v4 compared to the constant runtime of the BrainScaleS-
2 system (horizontal line). The software time estimation assumes one FLOP per
clock cycle and one FLOP required per synaptic interaction, bias and state assignment
(see text). The number of neurons on BrainScaleS-2 is limited to (2N) + M < 256
which limits the implementable system size (vertical lines, for 6 spins and 244 hidden
neurons and 10 spins and 236 hidden neurons).

B Computation time benchmark for sampling from neural net-
works

In this section, we provide a speed comparison between the BrainScaleS-2 neuromorphic chip
and a C++-implemented software solution to the sampling from binary Boltzmann machines.
The software implements standard Gibbs sampling, i.e. it sequentially calculates the “mem-
brane potential" ui = bi +

∑

k Wkizk for each neuron and assigns a new state zi = 1 with
probability σ(ui) = 1/(1+ exp[−ui]) and zi = 0 otherwise. This implementation, while fairly
optimized in single-thread performance, does not take into account the potential parallelism
of a layered structure. Since the simulator is optimized for large-scale systems it drops all
terms with Wki = 0, at the price of an additional indirection. The sum now runs over a list
of indices which is harder to optimize than a simple sequential iteration. We executed this on
the bwForCluster NEMO cluster [36] which uses Intel Xeon E5-2630v4 (Broadwell) CPUs.

Generating a new state requires the update of all neurons, and each update of a single
neuron requires the calculation of ui plus a comparison with a random number for the prob-
abilistic update. For the architecture used in the main manuscript, i.e. layered networks with
2N visible and M hidden neurons and assuming a perfect implementation without additional
cost for memory accesses, generating a new update takes 2(2N)M evaluations and additions
of the term Wkizk, besides (2N) +M additions of bi , and (2N) +M comparisons to a random
number. Assuming further that each of these steps takes one clock cycle, we can estimate the
expected time required.

In order to reduce the impact of the initialization of the software sampler (loading of the
network configuration and initialization) we measure the time to generate 106 samples. We
note that the number of operations per update is dominated by the number of connections

13

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

(synapses) 2(2N)M . As such, the time required scales linearly in the number of hidden units
only for a fixed number of visible units, which is given by the size of the physical system
(cf. Fig. 6).

On the other hand, the BrainScaleS-2 implementation, due to its inherently parallel ar-
chitecture, requires a sample generation time that is independent of the size of the sampled
network. With τref/2 = 5µs per sample (cf. Fig. 5h), this leads to a constant time of 5 s. This
constant scaling is only true if the network fits onto the system (up to 256 sampling neurons).
Since the number of visible neurons is given by the size of the physical system that is repre-
sented (N spins), larger physical systems give a greater speedup. Already for the case of 8 spins
(16 visible units and 180 hidden units) the fixed runtime of the BrainScaleS-2 system is ex-
ceeded by our estimation from the idealized software estimate (cf. Fig. 6). Larger system sizes
will skew this comparison further to favor of BrainScaleS-2, which can even implement more
densely connected network topologies without incurring a performance penalty. We also note
that the BrainScaleS-2 chip requires less than 500mW [37,38], while the Intel Xeon E5-2630v4
has a thermal design power (TDP) of 85W for 10 cores. As such BrainScaleS-2 is using com-
parable energy even for the smallest systems we implemented in the prototype system used in
the main manuscript. While the system size at which the BrainScaleS-2 chip outperforms CPU
implementations may shift to larger values when comparing to the fastest currently available
CPUs, the fundamental difference in scaling behavior, i.e. constant v.s. linear, persists.

C Representation of the Bell state

The Bell state, |Ψ+〉= 1/
p

2 (|↑↑〉+ |↓↓〉), is described by the density matrix

ρB =
1
2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

in the standard basis. To encode this state in a spiking neural network, we map it to a POVM
probability distribution.
While several choices of POVM representations are possible, we here focus on the tetrahedral
representation, where each measurement projects a single qubit onto one corner of a tetrahe-
dron in the Bloch sphere [15]. The POVM elements Mai

for each qubit i can hence be expressed
in the form Mai

=
�

1+ s ai
σ
�

/4, with Pauli operators σ = (σx ,σ y ,σz) and sai=0 = (0,0, 1),
sai=1 = 1/3

�

2
p

2,0,−1
�

, sai=2 = 1/3
�

−
p

2,
p

6,−1
�

, sai=3 = 1/3
�

−
p

2,−
p

6,−1
�

. The
POVM elements thus take the form

Mai=0 =
1
2

�

1 0
0 0

�

, Mai=1 =
1
6

�

1
p

2p
2 2

�

,

Mai=2 =
1

12

�

2 −
p

2− i
p

6
−
p

2+ i
p

6 4

�

,

Mai=3 =
1

12

�

2 −
p

2+ i
p

6
−
p

2− i
p

6 4

�

. (6)

14

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

With this, the POVM probability distribution of the Bell state, PB (a1, a2) = Tr
�

ρBMa1
⊗Ma2

�

,
evaluates to

PB =
1
8

1 1/3 1/3 1/3
1/3 1 1/3 1/3
1/3 1/3 1/3 1
1/3 1/3 1 1/3

, (7)

where columns correspond to the index a1 and rows to the index a2.
To reconstruct the density matrix from this probability distribution, the inverse of the full-

system overlap matrix T is needed, which can be constructed as the product of the single-
qubit overlap matrices, T = T1⊗ T2. Each single-qubit overlap matrix consists of the elements
Tai ,a

′
i
= Tr

�

Mai
Ma′i

�

. For the tetrahedral POVM the inverse T−1
i of the single-qubit overlap

matrix takes the form

T−1
i =

5 −1 −1 −1
−1 5 −1 −1
−1 −1 5 −1
−1 −1 −1 5

. (8)

The density matrix can then be reconstructed linearly as ρ =
∑

{a1,a2} P (a1, a2)Qa1,a2
, with

operators Qa1,a2
=
∑

{a′1,a′2}(T
−1
a1,a′1
⊗ T−1

a2,a′2
)(Ma′1

⊗Ma′2
).

Furthermore, expectation values of general operators O can be rewritten in terms of the
probability distribution P (a1, a2),

〈O〉= Tr [ρO] =
∑

{a1,a2}

QO
a1,a2

P (a1, a2) ,

with QO
a1,a2

=
∑

{a′1,a′2} Tr
�

OMa′1
⊗Ma′2

�

T−1
a1,a′1
⊗ T−1

a2,a′2
. This enables an efficient evaluation of

expectation values by sampling configurations from P (a1, a2) in the POVM representation,
where the density matrix does not need to be calculated explicitly. The POVM representations
of important classes of quantum states can be approximated well and in a scalable way by
generative modelling approaches [15]. The computational bottleneck of these methods is the
generation of samples from the model distribution, and can potentially be alleviated using
neuromorphic devices.

The Bell state is encoded in a sampling spiking network as follows. The visible neurons
v are identified with the qubits a in the POVM representation. The network parameters are
trained such that the distribution PB (a1, a2) is represented by the network. To achieve this,
we need to translate the variables a1, a2, which can take four possible values each, into binary
neurons v , where each neuron can take the values 0 or 1. The mapping to four binary visible
neurons v1, . . . , v4 is accomplished by defining

a1 = 2v1 + v2 , a2 = 2v3 + v4 . (9)

From this we can derive the distribution p∗B (v) over the states of the visible neurons and have
all ingredients to encode the Bell state in our spiking network.

Analogously, the probability distribution for the two-qubit Werner state with noise contri-
bution r can be derived from its density matrix [23,39],

ρW =
1
4

1+ r 0 0 2r
0 1− r 0 0
0 0 1− r 0
2r 0 0 1+ r

. (10)

15

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

The same is true for Greenberger-Horne-Zeilinger (GHZ) states of more than two qubits,
described by the density matrices [24],

ρGHZ =
1
2

1 0 . . . 0 1
0 0
... 0 ...
0 0
1 0 . . . 0 1

. (11)

We can then approximate the corresponding probability distributions by a spiking sampling
network.

D Training algorithm

Our goal is to approximate a target distribution p∗ (v) by the model distribution p (v ;W)
encoded by the spiking neuromorphic hardware. The distance between the two distributions
is quantified by the Kullback-Leibler divergence,

DKL (p
∗‖p) =

∑

{v}

p∗ (v) ln
�

p∗ (v)
p (v ;W)

�

=
∑

{v}

p∗ (v)
�

ln [p∗ (v)]− ln [p̃ (v ;W)] + ln [Z (W)]
�

. (12)

Here we assumed that p (v ;W) is well described by the marginal of a Boltzmann distribution
and introduced the unnormalized probability distribution p̃ (v ;W) =

∑

{h} exp [−E (v , h;W)]
as the exponential of the negative network energy, as well as the partition sum
Z (W) =

∑

{v ,h} exp [−E (v , h;W)], which allows us to replace p (v ;W) = p̃ (v ;W)/Z (W)
in the second line of Eq. (12).

The gradient of the Kullback-Leibler divergence with respect to a general connecting weight
Wi, j is given by

∂ DKL

∂Wi, j
=
∑

{v}

p∗ (v)

�

−
1

p̃ (v ;W)
∂ p̃ (v ;W)
∂Wi, j

+
1

Z (W)
∂ Z (W)
∂Wi, j

�

=
∑

{v}

p∗ (v)

−
1

p̃ (v ;W)

∑

{h}

vih je
−E(v ,h;W)

!

+
1

Z (W)

∑

{v ′,h}

v′i h je
−E(v ′,h;W)

!

= −
∑

{v ,h}

p∗ (v)
p (v ;W)

vih j
e−E(v ,h;W)

Z (W)
+
∑

{v ′,h}

v′i h j
e−E(v ′,h;W)

Z (W)

=
∑

{v ,h}

�

1−
p∗ (v)

p (v ;W)

�

vih j
exp [−E (v , h;W)]

Z (W)

=
�

1−
p∗ (v)

p (v ;W)

�

vih j

·

p(v ,h;W)
. (13)

Thus, the weight updates are calculated by drawing a sample set of network states, evaluating
the probability p (v ;W) underlying the configurations in the set, and calculating the expecta-
tion value of the product of the two connected neurons, weighted with 1− p∗ (v)/p (v ;W).
When using the spiking network on the BrainScaleS-2 system, we draw these sample states by

16

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

observing the network at regular points in time spaced by 2µs (for a refractory time of about
10µs, see App. A).

The weight update in training epoch t then reads

W t
i, j =W t−1

i, j −η
�

1−
p∗ (v)

p (v ;W)

�

vih j

·

p(v ,h;W)
, (14)

with learning rate η. Analogously, updates for the biases can be derived,

bt
j = bt−1

j −η
�

1−
p∗ (v)

p (v ;W)

�

h j

·

p(v ,h;W)
,

d t
i = d t−1

i −η
�

1−
p∗ (v)

p (v ;W)

�

vi

·

p(v ,h;W)
. (15)

If connections between the visible neurons exist in the network structure, the updates for
those connecting weights are analogous to Eq. (14), where the weighted expectation value
of the product of the corresponding visible neurons is evaluated. This learning scheme is a
modified version of wake-sleep learning [13].

Since this training algorithm is based on a gradient-descent ansatz, we can apply further
modifications which lead to better convergence, such as a momentum approach to avoid get-
ting stuck at a local minimum. In our simulations, we apply the Adam optimizer scheme.
This scheme combines a momentum approach with an adaptive learning rate which is chosen
for each network parameter individually. The update for a general network parameter Wk is
given, in the Adam optimizer, by

mt
k = β1mt−1

k + (1− β1)
∂ DKL (p∗‖p)
∂Wk

, v t
k = β2v t−1

k + (1− β2)
�

∂ DKL (p∗‖p)
∂Wk

�2

,

m̂t
k =

mt
k

1− β t
1

, v̂ t
k =

v t
k

1− β t
2

,

W t
k =W t−1

k −η
m̂t

k
q

v̂ t
k + ε

, (16)

where mk acts as a momentum and vk sets the adaptive learning rate. Here we follow the
common choice and set the hyper-parameters to β1 = 0.9, β2 = 0.999, and ε = 10−8, [40].
We additionally multiply the adaptive learning rate with an exponentially decaying factor η (t)
from an initial value of ηinit = 1 to a minimum value of ηmin = 0.001,

η (t) =max (ηinitexp [−0.001t] ,ηmin) , (17)

where t counts the training epochs. Note that this learning rate is a hyper-parameter that
needs to be chosen accordingly and requires a special form for the discrete-valued weights
and biases on the neuromorphic hardware. With the exponentially decaying factor we ensure
that the learning rate is large enough to cause changes in the weights at short time scales, but
is small enough to enable convergence at later times.

In general, Hebbian training algorithms are based on minimizing the correlation mismatch
between data and model distributions. The traditional way for estimating this mismatch is
contrastive divergence [13, 41], where the target and model distributions are approximated
by a single layer-wise network update (CD-1). However, the improved performance of con-
trastive divergence relies on the fact that preparing the software network in a defined state
is cheap compared to calculating updates of neuron configurations. Our neuromorphic hard-
ware, as a physical dynamical system, implicitly calculates the neuron updates and the ac-
tual sampling run is cheap compared to the cost of the network initialization with the given

17

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039

SciPost Phys. 12, 039 (2022)

performance characteristics. An implementation of the preparation-dominated contrastive di-
vergence scheme on the spiking neuromorphic hardware hence does not provide any of the
benefits observed in software simulations. In contrast we take advantage of these hardware
characteristics by using the full model distribution to calculate network parameter updates,
which improves the quality of the stochastic gradient estimation. We further optimize the
hardware training implementation by reconstructing the correlations between visible and hid-
den layers from the encoded distribution by reweighting all samples p(v) according to the
target probability p∗(v), see Eq. (14) and Eq. (15). This is in contrast to contrastive diver-
gence learning where the distribution of the visible layer is explicitly enforced to match the
target distribution and only the correlations with the hidden layer are being sampled. Beyond
the optimized implementation on the spiking neuromorphic system, our proposed training al-
gorithm can be used to obtain network parameter updates for arbitrarily connected networks,
while contrastive divergence is limited to strictly layered network structures.

References

[1] C. S. Thakur et al., Large-scale neuromorphic spiking array processors: A quest to mimic
the brain, Front. Neurosci. 12, 891 (2018), doi:10.3389/fnins.2018.00891.

[2] K. Roy, A. Jaiswal and P. Panda, Towards spike-based machine intelligence with neuromor-
phic computing, Nature 575, 607 (2019), doi:10.1038/s41586-019-1677-2.

[3] M. Davies et al., Loihi: A neuromorphic manycore processor with on-chip learning, IEEE
Micro 38, 82 (2018), doi:10.1109/MM.2018.112130359.

[4] P. A. Merolla et al., A million spiking-neuron integrated circuit with a scalable communica-
tion network and interface, Science 345, 668 (2014), doi:10.1126/science.1254642.

[5] J. Pei et al., Towards artificial general intelligence with hybrid Tianjic chip architecture,
Nature 572, 106 (2019), doi:10.1038/s41586-019-1424-8.

[6] F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn and W. D. Lu, A
fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate
operations, Nat. Electron. 2, 290 (2019), doi:10.1038/s41928-019-0270-x.

[7] I. Boybat et al., Neuromorphic computing with multi-memristive synapses, Nat. Commun.
9, 2514 (2018), doi:10.1038/s41467-018-04933-y.

[8] S. Moradi, N. Qiao, F. Stefanini and G. Indiveri, A scalable multicore ar-
chitecture with heterogeneous memory structures for dynamic neuromorphic asyn-
chronous processors (DYNAPs), IEEE Trans. Biomed. Circuits Syst. 12, 106 (2018),
doi:10.1109/TBCAS.2017.2759700.

[9] S. B. Furber, F. Galluppi, S. Temple and L. A. Plana, The SpiNNaker project, Proc. IEEE
102, 652 (2014), doi:10.1109/JPROC.2014.2304638.

[10] M. A. Petrovici et al., Pattern representation and recognition with accelerated analog neuro-
morphic systems, 2017 IEEE International Symposium on Circuits and Systems (ISCAS),
1 (2017), doi:10.1109/ISCAS.2017.8050530.

[11] S. Billaudelle et al., Versatile emulation of spiking neural networks on an accelerated neuro-
morphic substrate, 2020 IEEE International Symposium on Circuits and Systems (ISCAS),
1 (2020), doi:10.1109/ISCAS45731.2020.9180741.

18

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1126/science.1254642
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/s41928-019-0270-x
https://doi.org/10.1038/s41467-018-04933-y
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/ISCAS.2017.8050530
https://doi.org/10.1109/ISCAS45731.2020.9180741

SciPost Phys. 12, 039 (2022)

[12] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21, 467 (1982),
doi:10.1007/BF02650179.

[13] G. E. Hinton, P. Dayan, B. J. Frey and R. M. Neal, The “wake-sleep” algorithm for unsuper-
vised neural networks, Science 268, 1158 (1995), doi:10.1126/science.7761831.

[14] A. Peres, Quantum theory: Concepts and methods, Springer Netherlands, Dordrecht, ISBN
9780792336327 (2002), doi:10.1007/0-306-47120-5.

[15] J. Carrasquilla, G. Torlai, R. G. Melko and L. Aolita, Reconstructing quantum states with
generative models, Nat. Mach. Intell. 1, 155 (2019), doi:10.1038/s42256-019-0028-1.

[16] D. Dold et al., Stochasticity from function — why the Bayesian brain may need no noise,
Neural Netw. 119, 200 (2019), doi:10.1016/j.neunet.2019.08.002.

[17] A. F. Kungl et al., Accelerated physical emulation of bayesian inference in spiking neural
networks, Front. Neurosci. 13, 1201 (2019), doi:10.3389/fnins.2019.01201.

[18] M. A. Petrovici, J. Bill, I. Bytschok, J. Schemmel and K. Meier, Stochastic inference
with spiking neurons in the high-conductance state, Phys. Rev. E 94, 042312 (2016),
doi:10.1103/PhysRevE.94.042312.

[19] M. A. Petrovici, Form versus function: Theory and models for neuronal substrates, Springer
International Publishing, Basel, ISBN 9783319395517 (2016), doi:10.1007/978-3-319-
39552-4.

[20] J. S. Bell and A. Aspect, Speakable and unspeakable in quantum mechanics,
Cambridge University Press, Cambridge, UK, ISBN 9780521523387 (2004),
doi:10.1017/CBO9780511815676.

[21] J. F. Clauser, M. A. Horne, A. Shimony and R. A. Holt, Proposed experi-
ment to test local hidden-variable theories, Phys. Rev. Lett. 23, 880 (1969),
doi:10.1103/PhysRevLett.23.880.

[22] A. Aspect, P. Grangier and G. Roger, Experimental tests of realistic local theories via Bell’s
theorem, Phys. Rev. Lett. 47, 460 (1981), doi:10.1103/PhysRevLett.47.460.

[23] A. Cabello, Á. Feito and A. Lamas-Linares, Bell’s inequalities with realistic
noise for polarization-entangled photons, Phys. Rev. A 72, 052112 (2005),
doi:10.1103/PhysRevA.72.052112.

[24] D. M. Greenberger, M. A. Horne and A. Zeilinger, Going beyond Bell’s theorem, Springer
Netherlands, Dordrecht, ISBN 9789048140589 (1989), doi:10.1007/978-94-017-0849-
4_10.

[25] D. Leibfried et al., Creation of a six-atom ‘Schrödinger cat’ state, Nature 438, 639 (2005),
doi:10.1038/nature04251.

[26] N. Le Roux and Y. Bengio, Representational power of restricted Boltzmann machines and
deep belief networks,NeuralComput. 20,1631(2008),doi:10.1162/neco.2008.04-07-510.

[27] T. Wunderlich et al., Demonstrating advantages of neuromorphic computation: A pilot
study, Front. Neurosci. 13, 260 (2019), doi:10.3389/fnins.2019.00260.

[28] S. Aaronson, The learnability of quantum states, Proc. R. Soc. A. 463, 3089 (2007),
doi:10.1098/rspa.2007.0113.

19

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039
https://doi.org/10.1007/BF02650179
https://doi.org/10.1126/science.7761831
https://doi.org/10.1007/0-306-47120-5
https://doi.org/10.1038/s42256-019-0028-1
https://doi.org/10.1016/j.neunet.2019.08.002
https://doi.org/10.3389/fnins.2019.01201
https://doi.org/10.1103/PhysRevE.94.042312
https://doi.org/10.1007/978-3-319-39552-4
https://doi.org/10.1007/978-3-319-39552-4
https://doi.org/10.1017/CBO9780511815676
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.47.460
https://doi.org/10.1103/PhysRevA.72.052112
https://doi.org/10.1007/978-94-017-0849-4_10
https://doi.org/10.1007/978-94-017-0849-4_10
https://doi.org/10.1038/nature04251
https://doi.org/10.1162/neco.2008.04-07-510
https://doi.org/10.3389/fnins.2019.00260
https://doi.org/10.1098/rspa.2007.0113

SciPost Phys. 12, 039 (2022)

[29] G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial neural
networks, Science 355, 602 (2017), doi:10.1126/science.aag2302.

[30] R. G. Melko, G. Carleo, J. Carrasquilla and J. I. Cirac, Restricted Boltzmann machines in
quantum physics, Nat. Phys. 15, 887 (2019), doi:10.1038/s41567-019-0545-1.

[31] C. Wetterich, Quantum computing with classical bits, Nucl. Phys. B 948, 114776 (2019),
doi:10.1016/j.nuclphysb.2019.114776.

[32] S. Czischek, J. M. Pawlowski, T. Gasenzer and M. Gärttner, Sampling scheme for neu-
romorphic simulation of entangled quantum systems, Phys. Rev. B 100, 195120 (2019),
doi:10.1103/PhysRevB.100.195120.

[33] L. Kades and J. M. Pawlowski, Discrete Langevin machine: Bridging the gap be-
tween thermodynamic and neuromorphic systems, Phys. Rev. E 101, 063304 (2020),
doi:10.1103/PhysRevE.101.063304.

[34] I. Bytschok, D. Dold, J. Schemmel, K. Meier and M. A. Petrovici, Spike-based probabilistic
inference with correlated noise, arXiv:1707.01746.

[35] O. Breitwieser, A. Baumbach, A. Korcsak-Gorzo, J. Klähn, M. Brixner and M. Petrovici,
sbs: Spike-based sampling (v1.8.2), Zenodo (2020), doi:10.5281/zenodo.3686015.

[36] D. von Suchodoletz, B. Wiebelt, K. Meier and M. Janczyk, Proceedings of the 3rd
bwHPC-Symposium: Heidelberg 2016, Heidelberg, ISBN 9783946531708 (2016),
doi:10.11588/heibooks.308.418.

[37] B. Cramer et al., Surrogate gradients for analog neuromorphic computing,
arXiv:2006.07239.

[38] J. Göltz et al., Fast and energy-efficient neuromorphic deep learning with first-spike times,
Nat. Mach. Intell. 3, 823 (2021), doi:10.1038/s42256-021-00388-x.

[39] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-
variable model, Phys. Rev. A 40, 4277 (1989), doi:10.1103/PhysRevA.40.4277.

[40] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980.

[41] G. E. Hinton, Training products of experts by minimizing contrastive divergence, Neural
Comput. 14, 1771 (2002), doi:10.1162/089976602760128018.

20

https://scipost.org
https://scipost.org/SciPostPhys.12.1.039
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1038/s41567-019-0545-1
https://doi.org/10.1016/j.nuclphysb.2019.114776
https://doi.org/10.1103/PhysRevB.100.195120
https://doi.org/10.1103/PhysRevE.101.063304
https://arxiv.org/abs/1707.01746
https://doi.org/10.5281/zenodo.3686015
https://doi.org/10.11588/heibooks.308.418
https://arxiv.org/abs/2006.07239
https://doi.org/10.1038/s42256-021-00388-x
https://doi.org/10.1103/PhysRevA.40.4277
https://arxiv.org/abs/1412.6980
https://doi.org/10.1162/089976602760128018

	1
	Introduction
	Neuromorphic encoding of quantum states
	Encoding an entangled Bell state
	Learning performance
	Deep and partially restricted networks
	Conclusion
	Implementation details of BrainScaleS-2
	Computation time benchmark for sampling from neural networks
	 Representation of the Bell state
	Training algorithm
	References

