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ABSTRACT 

A within-day dynamic demand model is formulated, embodying, in addition to the classic 
generation, distribution and modal split stages, an actual demand model taking into account 
departure time choice. The work focuses on this last stage, represented through an extension 
of the discrete choice framework to a continuous choice set. The dynamic multimodal supply 
and equilibrium model based on implicit path enumeration, which have been developed in 
previous work are outlined here, to define within-day dynamic elastic demand stochastic 
multimodal equilibrium as a fixed point problem on users flows and transit line frequencies. 
A MSA algorithm capable, in the case of Logit route choice models, of supplying equilibrium 
flows and frequencies on real dimension networks, is presented, as well as the specific 
procedures implementing the departure time choice and actual demand models. Finally, the 
results obtained on a test network are presented and conclusions are drawn. 
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1 INTRODUCTION 

The dynamic analysis of transportation networks gathered increasing attention through the 
past years. The static models, traditionally used in this field, are in fact unable to represent 
relevant phenomena, such as demand variations over time and temporary over saturation of 
network elements. On the other hand, dynamic models are more complex than static ones: on 
the supply side, they require to ensure temporal consistency, besides spatial consistency, 
among system variables (for instance, see Cascetta, 2001); on the demand side, choice of the 
time when to travel has to be modelled explicitly in order to achieve a correct representation 
of users’ travel behaviour (Mahmassani and Chang, 1986; Van Vuren et al., 1998; 
Mahmassani and Liu, 1999). 
Different approaches to the latter problem can be found in the literature. One of them is to 
regard departure time choice as a discrete choice among temporal intervals and use static 
assignment to characterize the utility of each interval, as in Daly et al. (1990); models based 
on this approach yield a rough representation of travel demand during day time as a sequence 
of static equilibriums. 
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An alternative approach, relying on a more realistic representation of dynamic travel times, 
can be found in De Palma et al. (1983) and Ben-Akiva et al. (1986) where a within day 
dynamic stochastic equilibrium model and a doubly dynamic stochastic model, respectively, 
are presented. Travel, departure time and path choices are addressed through a mixed 
discrete/continuous nested Logit model and travel times are determined by means of a 
deterministic queuing model; however, both models are applied only to single origin 
destination pair idealized networks. 
Another approach is based on the hypothesis that departure time and path choices are made 
jointly, so that, for each origin-destination pair, a discrete choice set is defined whose finite 
number of alternatives is equal to the number of departure intervals multiplied by the number 
of paths (Arnott et al., 1990; Cascetta et al., 1992); models based on this approach require 
explicit path enumeration and the introduction of a diachronic graph, as in Van der Zijpp and 
Lindveld (2000), so they can be hardly applied to congested urban networks. 
An extensive analysis of departure time choice for shopping trips is presented in Bhat (1998) 
and Bhat and Steed (2002). In the first paper, a discrete choice model is proposed, able to 
represent correlation among adjacent departure time periods. In the second paper, a 
continuous-time model of departure time is proposed, accommodating time-varying 
coefficients. Both papers however doesn’t investigate path choice, since travel times and cost 
are assumed exogenously. 
In a recent paper by Bellei, Gentile, Papola (2003) the within-day road Dynamic Traffic 
Assignment (DTA) was regarded as a stochastic dynamic user equilibrium. A new fixed point 
formulation of the problem in terms of time-continuous real valued temporal profiles of arc 
flows and arc performances (travel times and generalized costs) was presented, where the 
concept of network loading map, yielding arc flows for given demand flows consistently with 
certain arc performances, was extended to the dynamic case, thus avoiding the introduction of 
both the dynamic network loading as a sub-problem, and the explicit path enumeration. OD 
flows temporal profiles were taken as given. An implicit path enumeration algorithm was thus 
proposed for the Logit case. 
Based on the above modelling framework, two more papers, namely Gentile, Meschini,  
Papola (2002) and Gentile, Meschini, Papola (2003), focused on a new dynamic transit supply 
model relying on a frequency based approach; the introduction of a diachronic graph is thus 
avoided and implicit path enumeration is allowed. This model is able to represent both intra 
and inter modal congestion effects (i.e. interaction among cars and bus flows). In order to 
define a multimodal within-day DTA, a dynamic mode choice model was introduced in these 
papers, while demand flows were assumed to be rigid with respect to any other choice 
dimension. 
In this paper a mixed discrete/continuous nested Logit dynamic demand model with five 
choice levels is presented, where, besides the usual to travel or not to travel (generation), 
destination, mode and path choices, the departure time choice is introduced. The model is 
conceived to extend previous work to the most general case of elastic demand multimodal 
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within-day DTA. With reference to departure time choice, the proposed demand model adopts 
a continuous approach, thus not requiring to enumerate explicitly the desired departure time 
intervals. The resulting within-day DTA model is then capable of representing both supply 
and demand dynamic phenomena concerning congested multimodal urban networks, and 
leads to a fixed point formulation that can be solved by an efficient implicit path MSA 
algorithm applicable to real networks. 

2 THE CHOICE AND DEMAND MODELS 

In modelling travel demand we follow the behavioural approach based on random utility 
theory, where it is assumed that each user is a rational decision-maker who, when making his 
travel choice: a) considers a positive, finite number of mutually exclusive travel alternatives 
constituting his choice set J; b) associates to each travel alternative j of his choice set a 
perceived utility, not known with certainty, and thus regarded by the analyst as a random 
variable Uj; and c) selects the travel alternative that maximises his utility. With these 
hypotheses the probability of alternative j is formally expressed as: 

Pj = Prob[∩ k∈J εk ≥ Vj -Vk +εj ]  ,  (1) 

where Vj and εj are respectively the systematic utility and the random residual of the generic 
alternative j. The expected value of the maximum perceived utility is called satisfaction: 

W = E[max  j∈J {Vj +εj }]    (2) 

As usual, we assume that it is possible to divide the choice process into a hierarchic sequence 
of decisions; at each level the user has a specific choice set, dependent on the choices made at 
upper levels. The utility associated to each alternative available at a given level is the sum of a 
specific term and of the satisfaction that takes into account the alternatives available at the 
lower levels. The structure of the demand model parallels the structure of the choice model in 
that users’ flows given as input, or having made a choice at an upper level, are split at the 
lower level accordingly to the corresponding choice model. 
The multimodal network, where users departing during the time horizon [0, Θ] are 
represented, is defined as a graph G(N, A) where N is the node set and A is the arc set. The 
generic node is denoted as x, while origin and destinations of trips, belonging to C ⊆ N, are 
denoted as o and d, respectively; the generic arc is denoted as a, TL(a) and HD(a) being, 
respectively, its initial and final nodes. Modal subgraphs Gm(Nm, Am) are implicitly defined 
associating to each arc a set Ma ⊆ M of transport modes. Each travel alternative is 
biunivocally associated with an acyclic path k of graph G from o to d on mode m, belonging 
to an efficient path set Km

od, defined shortly later. 
The proposed demand model is a Nested Logit with five choice levels, specifically: 
generation, distribution, modal split, departure time choice, and path choice. It thus follows, 
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apart from the departure time choice, the Oppenheim (1995) approach to travel demand 
modelling. Such an approach is extended to a dynamic equilibrium framework as follows: 

i) the demand model takes as input the time rate N o(σ΄) ≥ 0, σ΄∈[0, Θ], of potential users 
having σ΄ as their desired departure time, for each origin o; 

ii) the travel behaviour, with regard to the choices of travelling, of destination d and of 
mode m, is represented by models having, for each desired departure time, the same 
functional form and parameters; 

iii) the departure time choice is represented by a model supplying actual departure time 
probabilities in the interval B(σ΄) = [max{σ΄ -ADV, 0} , min{σ΄ + DEL, Θ}], in the 
form of a probability density function of actual departure time τ΄ for each o, d, m 
and σ΄, where ADV and DEL are respectively the maximum delay and advance time 
admitted by users; 

iv) the travel behaviour, with regard to path choice, is represented by mode specific models 
having, for each o, d, and τ΄, the same functional form and parameters. 

It is worth noting that the departure time choice model is defined over an infinite number of 
alternatives belonging to a continuous choice set in ℜ 1, while the overall structure of the 
choice model is that of a discrete choice model. We will deal with this issue in section 2.3.  
Assumptions ii) and iii), are consistent with model specification, but could be easily relaxed if 
needed, for example allowing time varying parameters to better fit experimental data as 
suggested in Bhat (2002). On the contrary, dealing with path choice model, we need 
hypothesis iv) in order to adopt an implicit path enumeration approach where path 
probabilities must be consistent with the arc conditional probabilities of leaving a node x = 
TL(a) through arc a. This is because on a same arc, at a given instant, we can have users 
coming from different origins and departing at different instants. 
The choice model is of the type depicted in Figure 1. The hierarchical order proposed here 
keeps a widely accepted structure and it is consistent, with reference to the position of 
departure time choice, with previous experimental analysis both in De Palma et al. (1983) and 
in Bhat (1998). 
 
[Figure 1 here] 
 
The following part of this section is organized as follows. In subsection 2.1 further definitions 
and notations needed to place the demand model in a dynamic framework will be introduced. 
Then the choice models related to each level will be examined in ascending order, since lower 
level satisfactions are needed when an upper level model is defined. Subsection 2.2 and 2.3 
will be specifically devoted respectively to implicit path choice and departure time choice, 
while we will deal with mode, destination and travelling choice together in subsection 2.4. 
The formal definition of the corresponding demand models, determining demand temporal 
profiles, will follow in the inverse order, since upper level profiles are input to lower level 
models. As for choice models, in subsection 2.5 we will deal with desired demand profiles 



 5

together, defined for each desired departure time and determined by generation, distribution 
and modal split models; sections 2.6 and 2.7 will be specifically devoted to actual demand 
model and to network flow propagation model, supplying actual demand profiles, defined for 
each actual departure time, at mode - od pair level and at arc level, respectively. The arc flow 
obtained are consistent with the dynamic loading to the network of implicit path flows, taking 
the arc performances as given. 
We will denote by g(σ) or g(τ) the generic temporal profile referred to desired or actual 
departure time, respectively; then, g(σ΄) or g(τ΄) denote the value of the temporal profile at 
given instants. When compact form is utilized, vectors of temporal profiles, having the  
appropriate dimension, are identified by the use of bold symbols.  

2.1 Definitions and notations 

As already said, it is assumed that, when travelling from node x to destination d on mode m, 
users consider only the subset Km

xd of efficient paths from x to d, which are defined on the 
basis of node topological order (Nguyen, Pallottino and Inaudi, 1996). With reference to a 
given destination d and mode m, we thus assume that the node topological order TOm

d(x) is 
monotone non-decreasing with some measure, independent of congestion and time, of the 
distance on graph G from x to d. An arc is efficient if its tail has a higher topological order 
than its head, while a path is efficient if all its arcs are efficient. The sets of the efficient arcs 
exiting and entering a given node x are referred to, respectively, as the efficient forward star 
FSE(x)m

d = {a∈A: TL(a) = x, TOm
d(x) > TOm

d(HD(a))} and the efficient backward star 
BSE(x)m

d = {a∈A: HD(a) = x, TOm
d(TL(a)) > TOm

d(x)}.  

At any time τ΄, each mode m is characterized by mode - specific arc entering flows and 
performances: 
fa

m(τ΄)  mode m users flows entering at τ΄ into arc a, 
ca

m(τ΄)  mode m generalized costs on arc a, for users entering at τ΄. 
tam(τ΄)  mode m exit time from arc a, when entering at τ΄. 
If function tam(τ΄) is monotone increasing, its inverse, which also results to be monotone 
increasing, can be defined as: 
tam-1(τ΄)  entering time into arc a when exiting at τ΄. 
The generalized arc cost for users entering at time τ is thus simply assumed to be: 
ca

m(τ΄) = η⋅(ta
m (τ΄) -τ΄) +mca

m(τ΄), (3) 
where mca

m is the temporal profile of the monetary cost, while η is the Value of Time. 

These variables, as all the arc and node variables defined in the following, are defined on a 
time horizon [0, Θ + ∆Θ], ∆Θ being the time needed to complete all trips started at Θ. 

Path performances are defined as a function of time consistently with arc performances by 
utilizing the following arc set notation: 
Ak

xdm   set of the arcs constituting path k∈Km
xd; 
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Ak
xdm

a   set of the arcs constituting the sub-path of path k∈Km
xd between node x and the tail 

of arc a∈Ak
xdm; 

together with the following path notation: 
Ck

xdm(τ΄) generalized cost of path k∈Km
xd for users leaving node x at time τ΄; 

Tk
xdm(τ΄)  time when users following path k∈Km

xd and leaving node x at time τ΄ reach 
destination d; 

Tk
xdm

a (τ΄)  time when users following path k∈Km
xd and leaving node x at time τ΄ enter arc 

a∈Ak
xdm; 

For each path k∈Km
xd and arc a∈Ak

xdm, the travel time of the sub-path between node x and 
node TL(a) at time τ΄ is the sum of the travel times of its arcs b∈Ak

xdm
a , each of them referred 

to the time Tk
xdm

b(τ΄) when users leaving x at τ΄ reach TL(b); that is: 

Tk
xdm

a(τ΄) = τ΄ + ∑b∈Akxdma[tb
m(Tk

xdm
b(τ΄)) - Tk

xdm
b(τ΄)]. (4) 

Assuming additive costs, the generalized cost of path k∈Km
xd at time τ΄ is the sum of the costs 

of its arcs a∈Ak
xdm, each of them referred to the time Tk

xdm
a(τ΄) when users leaving node x at τ  

reach node TL(a); that is: 

Ck
xdm(τ΄) = ∑ a∈Akxdm ca(Tk

xdm
a(τ΄)). (5) 

2.2 Implicit path choice model  
The implicit path choice model presented in this paper is the same introduced and described in 
Bellei, Gentile, Papola (2003), and is founded on the concepts of arc conditional probability 
and node satisfaction, which are respectively defined as follows: 
pa

dm(τ΄) probability that users on mode m follow their trip to destination d with arc a, 
conditional on being at node TL(a) at time τ΄; 

wx
dm(τ΄) expected value of the maximum perceived utility among all paths to d on mode m 

departing from x at time τ΄. 
It is worth noting that, if demand temporal profiles are defined, as in this case, with reference 
to the departure time from the origin, the implicit path choice model, as well as the network 
flow propagation model defined in section 2.7, have necessarily to be formalized with respect 
to destination. A formalization with respect to the origins is required, in fact, when demand 
temporal profiles are defined with respect to the arrival time to the destination, which in this 
case are unknown and are actually obtained from the network flow propagation model. 
Nevertheless, the node satisfaction temporal profiles yield path choice satisfactions for each 
o-d pair and mode m as the node satisfaction wo

dm(τ΄) at o, while the choice probability of the 
generic path k∈Km

od from o to d on mode m at time τ΄ is equal to the product of the 
conditional probabilities of its arcs a∈Ak

odm, each of them referred to the time Tk
odm

a(τ) when 
users leaving o at τ΄ reach TL(a); that is: 
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Pk
odm(τ΄) = ∏ a∈Ak

odm pa
dm(Tk

odm
a(τ΄)) (6) 

With reference to the Logit case, node satisfaction can be expressed in a recursive form and 
used to calculate arc conditional probabilities: 

wd
md(τ΄) = 0  

wx
md(τ΄) = θR ⋅ln(∑a∈FSEmd(x) exp((-ca

m(τ΄) +wHD(a)
md(ta

m(τ΄))) /θR))  ; (7) 

pa
md(τ΄) = exp((-ca

m(τ΄) +wHD(a)
md(ta

m(τ΄)) -wTL(a)
md(τ΄)) /θ 

R)  ; (8) 

which, in compact form, can be formally expressed through the functionals: 

w(τ) = w(c(τ), t(τ))  ; (9) 

p(τ) = p(w(τ), t(τ), c(τ))  . (10) 

Moreover, it can be proven (Bellei, Gentile, Papola, 2003) that path probabilities defined by 
(6) are the same as the path probabilities derived by an explicit path choice model based on 
path costs (5): 

( )

( )

( )

'
exp

'
'

exp
od
m

mod
k

Rmod
k mod

j

Rj K

C

P
C

τ

θ
τ

τ

θ∈

 
− 

 =
 

−  
 

∑
  . (11) 

2.3 Departure time choice model 

With reference to a desired departure time σ΄, we assume, extending, to the continuous choice 
set B(σ΄) the standard assumption of the Logit model, that the random residuals associated to 
the infinitesimal alternatives constituting a partition of B(σ΄) are independently and identically 
distributed (i.i.d.) Gumbel variables as in De Palma et al. (1983). 
Any consideration concerning correlation among alternatives is left to further investigations. 
We choose on purpose a simple and well known choice probability model in order to focus on 
our main objective, that is, to provide a modelling framework for the simulation of elastic 
demand in the context of within-day DTA. In any case, as stated by De Palma et al. (1983), 
there are experimental evidences that the logit model can serve as a reasonable model of 
departure time behaviour. 
Although we refer to users travelling from origin o to destination d by mode m, the 
corresponding indices will be dropped in order to improve readability. Let’s then define: 
p(τ΄/σ΄) probability density of leaving at time τ΄, conditional to desired departure time σ΄; 
V(τ΄,σ΄) specific utility of leaving at time τ΄, when σ΄is the desired departure time; 
w(τ΄) path choice satisfaction, given, for each o-d pair and mode m, by (7) 
The Logit formula can be used to calculate the probability of choosing the generic departure 
interval [τ΄-dτ /2, τ΄+dτ /2] as follows: 
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where, clearly, the summation is replaced by an integration. On the analogy of the discrete 
case, the denominator in equation (12) is directly related to the departure time satisfaction: 

( ) ( ) ( )'

'

V , '
' ln exp d

DEL

DT
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x w x
W x

σ

σ

σ
σ θ

θ

+

−

 + 
= ⋅ ⋅  
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∫  (13) 

Finally we obtain, by assuming that the specific utility is proportional to the departure 
advance or delay: 

( ) ( ) ( ){ }max ADV DELV , b ,bτ σ σ τ τ σ′ ′ ′ ′ ′ ′= − ⋅ − ⋅ −   , (14) 

an explicit expression of the actual departure time τ΄ probability density function, conditional 
to desired departure time σ΄ and dependent on path choice satisfaction at τ΄: 

( )

( ) ( ) ( ){ }

( ) ( ) ( ){ }

max ,
exp

'/ '
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ADV DEL
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DTADV
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σ
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′+

′−
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 =

 ′ ′− ⋅ − ⋅ −
⋅  

 
∫

 (15) 

The departure time choice model is expressed in compact form through the functionals:  

pDT(τ /σ) = p(V(τ, σ), w(τ)) (16) 

WDT(σ) = W(V(τ, σ), w(τ)) (17) 

2.4 Mode, destination and travelling choice models 

Referring to users travelling from origin o toward destination d and to a desired departure 
time σ΄, let’s define:  
Pm

od(σ΄) choice probability of modal alternative m; 
Vm

od(σ΄) specific utility of modal alternative m; 
Wm

od(σ΄) departure time choice satisfaction, given by (13). 
In the Logit case, the mode choice probabilities are: 

( )

( ) ( )

( ) ( )''

'

' '
exp

'
' '

exp

od od
mm

Mod
m od od

mm

m M M

V W

P
V W

σ σ
θ

σ
σ σ

θ∈

 +
 
 =

 +
∑  

 

  , (18) 

in compact form: PM(σ) = P(VM(σ), WDT(σ)) 
and the resulting mode choice satisfaction is: 
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( ) ( ) ( )' '
' ln exp

od od
mmod

M
m M M

V WW
σ σ

σ θ
θ∈

  +
= ⋅ ∑  

   
 (19) 

in compact form: WM(σ) = W(VM(σ), WDT(σ)) 
We assume Vm

od(σ΄) = βM
 T⋅Xm

od(σ΄), where Xm
od(σ΄) is a vector of time-dependent mode m 

attributes for users travelling from o to d and βM is the corresponding vector of coefficients. 
Referring to users departing from origin o and to a desired departure time σ΄, let’s define: 
Pd 

o(σ΄) choice probability of destination alternative d; 
Vod (σ΄) specific utility of destination alternative d, 
while the mode choice satisfaction Wod(σ΄) is given by (19). 
In the Logit case, the destination choice probabilities are:: 

( )

( ) ( )

( ) ( )'

'

' '
exp

'
' '

exp

odod

Do
d odod

d C D

WV

P
WV

σ σ
θ

σ
σ σ

θ∈

 +
 
 =

 +
∑  

 

  , (20) 

in compact form: PD(σ) = P(VD(σ), WM(σ)) 
and the resulting destination choice satisfaction is: 

( ) ( ) ( )' '
' ln exp

o od
do

D
d C D

V WW
τ τ

τ θ
θ∈

  +
= ⋅ ∑  

   
 (21) 

in compact form: WD(σ) = W(VD(σ), WM(σ)) 
We assume: Vod(σ΄) = βD

T⋅Xod(σ΄), where Xod(σ΄) is a vector of time-dependent destination d 
attributes for users travelling from o and βD is the corresponding vector of coefficients. 
Referring to users potentially departing from origin o and to a desired departure time σ΄, let’s 
define: 
P o(σ΄) choice probability of travelling  
V o(σ΄) specific utility of travelling 
while the destination choice satisfaction Wo(σ΄) is given by (21). 
In the Logit case, the travelling choice probabilities are: 

( )

( ) ( )

( ) ( )

' '
exp

'
' '

1 exp

o o

Eo
o o

E

V W

P
V W

σ σ
θ

σ
σ σ

θ

 +
 
 =

 +
+  

 

  , (22) 

in compact form: PE(σ) = P(VE(σ),WD(σ)), 

where utility of not travelling is set to 0 because the model is additive and the resulting 
travelling choice satisfaction, which is the perceived utility of potential users is: 
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( ) ( ) ( )' '
' ln 1 exp

o o
o

E
E

V W
S

σ σ
σ θ

θ

  +
= ⋅ +  

   
  , (23) 

in compact form: S(σ) = S(VE(σ), WD(σ)). 
We assume Vo(σ΄) = βE

T⋅Xo(σ΄), where Xo(σ΄) is a vector of time-dependent choice of 
travelling attributes for potential users in o and βE is the corresponding vector of coefficients. 

2.5 Desired demand models 

We remember that the flow N o(σ΄) of users potentially travelling from origin o at time σ΄ is 
assumed to be known. Let’s denote the desired demand flows by: 
q o(σ΄)  flow from origin o with desired departure time σ΄ 
qod(σ΄)  flow from origin o to destination d with desired departure time σ΄ 
q 

m
od(σ΄)  flow from origin o to destination d on mode m with desired departure time σ΄ 

Thus, the generation model is expressed by: 

q o(σ΄) = N o(σ΄)⋅P 
o(σ΄)  , (24) 

where P 
o(τ΄) has the expression (22), the distribution model by: 

q od(σ΄) = q o(σ΄)⋅Pd 
o(σ΄)  , (25) 

where P 
od(σ΄) has the expression (20), and the modal split model by: 

q 
m

od(σ΄) = q od(σ΄)⋅Pm
od(σ΄)   (26) 

where Pm
od(σ΄) has the expression (18). 

On the basis of relations (24), (25) and (26), it is possible to express the three desired demand 
models together as q 

m
od(σ΄) = N o(σ΄)⋅P 

o(σ΄)⋅P 
od(σ΄)⋅Pm

od(σ΄), or, in compact form, through 
the functional: 

q(σ) = q(N(σ), PE(σ), PD(σ), PM(σ)) (27) 

2.6 Actual demand model 

The role of the actual demand model is to transform the desired demand temporal profile of 
any o-d pair and mode m into the corresponding actual demand temporal profile, on the basis 
of the departure time probabilities produced by the departure time choice model. As in section 
2.3 the o, d and m indices will be dropped. The desired demand profile provided by (24), (25) 
and (26) is thus denoted as q(σ). 
To transform q(σ) into the actual demand temporal profile d(τ) the contributes coming from 
departure time choices corresponding to different desired departure times have to be 
considered. The number of trips started within the infinitesimal departure interval [τ΄-dτ /2, 
τ΄+dτ /2] is thus given by the integral, for each σ΄: τ΄∈B(σ΄), of the flow q(σ΄) of trips with 
desired departure time within the infinitesimal interval [σ΄-dσ /2, σ΄+dσ /2], multiplied by the 
probability p(τ΄/σ΄) that their actual departure time is in [τ΄-dτ /2, τ΄+dτ /2]; that is: 
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( ) ( ) ( )d d p / d
ADV

DEL

d q
τ

τ

τ τ σ σ τ σ τ
′+

′−

′ ′⋅ = ⋅ ⋅ ⋅∫  (28) 

On the basis of (15) and (28) the actual demand profile may be expressed as: 

( ) ( )
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( ) ( ) ( ){ }

max ,
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d
max ,

exp d

ADV DEL

ADV
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DEL
DEL ADV DEL

DTADV

w b b

d q
w x b x b x

x

τ

σ
τ

σ

τ σ τ τ σ
θ

τ σ σ
σ τ

θ

′+

+
′−

−

 ′ ′ ′− ⋅ − ⋅ −
  
 ′ = ⋅ ⋅

 − ⋅ − ⋅ −
⋅  

 

∫
∫

 (29) 

As in general the profiles q(σ), and w(τ) can assume any form, the integrals in equations (15) 
and (29) cannot be solved in closed form. An ad-hoc procedure, based on the assumption that 
the profile q(σ) is piece-wise constant, while the profile w(τ) is piece-wise linear, is presented 
in section 4.2. 
The actual demand model is thus expressed in compact form through the functional: 

d(τ) = d(q(σ), pDT(τ/σ)) = d(q(σ), p(V(τ, σ), w(τ))) (30) 

in fact, when solving the integral in (29) σ΄ disappears, while profile q(σ) does not. 

2.7 Network flow propagation model 

The path flows could be easily derived from the actual demand profiles d(τ), provided by (29) 
for each o, d and m, and by the path choice probabilities (5). This however would lead, to 
ensure consistency with travel times when they are loaded to the network, to the formulation 
of Dynamic Network Loading (DNL) problem. As shown in Bellei, Gentile, Papola (2003), 
an implicit path enumeration approach allows to define an equivalent fixed point DTA 
formulation, not requiring DNL formulation, which is applied to the problem at hand in the 
following section. 
Within this approach, an arc network loading consistent with travel times, actual demand 
profiles and arc conditional probabilities is obtained, trough what we call a network flow 
propagation model, since it describes how arc flow profiles by mode and destination 
propagate from upstream to downstream arcs: 

fa
md(τ΄) = pa

md(τ΄)⋅[dm
TL(a)d(τ΄) + ∑ b∈BSEmd(TL(a)) [ fb

md(tb
m -1(τ΄))⋅∂tb

m -1(τ΄) /∂τ]]  (31) 

where dm
TL(a)d(τ΄) = 0 ∀τ΄∈[0, Θ] if TL(a)∉C. Arc flows by mode are then obtained by simply 

summing over destinations: 

fa
m(τ΄) = ∑ d∈C fa

md(τ΄) (32) 

The network flow propagation model is expressed in compact form through the functional: 

f (τ) = ω(d(τ), p(τ), t(τ)) (33) 
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3 SUPPLY AND EQUILIBRIUM MODELS 

In analogy with the static case, the within-day DTA, regarded as a dynamic user equilibrium, 
can be consistently formalized through a fixed point problem expressed in terms of the 
temporal profiles of arc flows and transit frequencies, by combining the arc performance 
function with the Network Loading Map (NLM) and thus avoiding to introduce the DNL. To 
this purpose, the NLM is here extended to the case of elastic demand with departure time 
choice, as depicted in Figure 2. 
 
[Figure 2 here] 
 
In the following subsections, the arc performance function and the equilibrium model will be 
briefly described only in a qualitative manner, providing references where this matters are 
widely investigated and discussed. 

3.1 Arc performance models 

The concept of equivalent flow va(τ) is introduced first, in order to represent the congestion 
phenomena considered. With reference to the arcs of the transit network, the equivalent flows 
coincide with the user flows, while, with reference to each arc a of the road network, we 
assume that the equivalent flow is given by a linear combination of flows for modes m∈Ma, 
including transit vehicles. Then, equivalent flows are expressed in compact form as: 

v(τ) = v( f(τ), φ(τ)) (34) 

With reference to the road network, the dynamic arc performance function is specified 
through the macroscopic and non-stationary link-node model presented in Bellei, Gentile, 
Papola (2003), where the vehicular flow, considered as a monodimensional partially 
compressible fluid, behave accordingly with the simplified kinematic wave theory and with a 
triangular shaped fundamental diagram. The arc is modelled by considering two serial phases: 
a running phase, modelled through a bottleneck, which simulates the link travel time 
including the delay due to the over-saturated queue; a waiting phase, which represents the 
average delay due to the under-saturated queue proper to an intermittent service (such a 
traffic light). 
With reference to the transit network, the dynamic performance function is specified through 
the transit supply model presented in Gentile, Meschini, Papola (2002) and (2003). With 
reference to the generic line l, the characterizing element of this model is the non separable 
stop model, depicted in Figure 3. 
 
[Figure 3 here] 
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The line arc represents both the dwelling time at the stop corresponding to its tail, and the 
running time between two successive stops. The dwelling time is dependent on the flows that 
are boarding, alighting, and on board the line at the corresponding stop; the running time is 
dependent on the congestion level along the road arcs employed by the line. 
The waiting arc represents the average waiting time for the transit vehicle at the stop, and it is 
assumed to be proportional to the inverse of the line frequency. 
The queue arc, modelled through a bottleneck with variable outgoing capacity, represents the 
additional travel time due to an over saturation of the line, which occurs whenever boarding 
and onboard flows overwhelm the line capacity.  
The stop and waiting arcs, both with no travel time and cost allow expressing the non 
separable dynamic stop model as a function of arc entering flow temporal profiles only. 
The stop access arc allows distinguishing between different stop nodes corresponding to the 
same walking node. 
The alighting and walking arcs are assumed uncongested. 
On the basis of the above outlined models, congestion phenomena are represented assuming 
that, in general, the temporal profiles of exit times depend on the temporal profiles of both the 
arc equivalent flows and the line frequencies: 

t(τ) = t(v(τ), φ(τ)) (35) 

The arc cost is assumed to be the sum of a term proportional to the travel time, and a term 
taking into account the monetary cost. Then, the temporal profiles of arc cost are expressed in 
compact form by the functional: 

c(τ) = c(v(τ), φ(τ)) (36) 

In order to complete the dynamic representation of the supply we need to define a line model, 
which, for given transit frequencies at terminals, yields the frequency pattern along each line. 
Contrary to the static case in fact, the line frequency temporal profiles are generally not 
constant along the line: on one side, there is a translation of the terminal frequency in space 
and time; on the other side, the variation in time of the line travel times makes vehicles spread 
and jam (see for example Figure 4). 
 
[Figure 4 here] 
 
As explained in Gentile, Meschini, Papola (2002) and (2003), an effective representation of 
this phenomenon can be achieved regarding transit frequencies as flows on the network. In 
this way, in analogy with the network flow propagation, the temporal profiles of the 
frequency at each stop of the generic line l is expressed as: 

φa(τ΄) = φFA(l)(Ta
l -1(τ΄)) ⋅(∂Ta

l  -1(τ΄) /∂τ) (37) 

where: φFA(l)(τ) is the temporal profile of the line frequency at terminal (assumed given); 
Ta

l(τ΄) express the time when a vehicle running line l and departed from terminal at time τ΄ 
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reaches TL(a); Ta
l -1(τ) is the inverse of the temporal profile just defined, and express the 

departure time from the terminal for a vehicle running line l and reaching TL(a). Expressing 
profile Ta

l(τ) as a function of arc exit time profiles through equation (4), we have in compact 
form: 

φ(τ) = φ(t(τ)) (38) 

3.2 Formulation of the dynamic assignment model 

Relations (35), (36), and (38) determine a circular dependence between transit frequencies 
and arc performances, in addition to the classical one between user flows and arc 
performances. Then, the DTA is formulated as a fixed-point problem expressed in terms of 
the temporal profiles of arc inflows and transit frequencies on the time horizon [0, Θ + ∆Θ]. 
Formally, combining (9), (10), (16), (17), (18), (19), (20), (21), (22), (27), (30), (33), (34), 
(35), (36) and (38) it is: 

[ f(τ), φ(τ)] = Φ[ f(τ), φ(τ)]  , (39) 

where the functional relation denoted by (39), whose expression is quite complex, is 
explained through the flow-diagram depicted in Figure 5. 
 
[Figure 5 here] 
 
To be notice that, from the point of view of fixed point definition, σ is an auxiliary variable, 
since it just serves to take into account the effects on the demand of the difference between 
actual and desired departure times. 

4 ALGORITHM 

In order to implement the proposed DTA model, the period of analysis is divided into I time 
intervals identified by the sequence of instants (τ 0, … , τ i, … ,τ I ). In the following we 
assume to approximate the generic temporal profile x through either a piece-wise constant or a 
piece-wise linear function defined by the values taken at such instants, so that for the two 
cases we have respectively: 

x(τ 0) = x 0  ,  x(τ) = x i  , τ ∈(τ i-1, τ i]  , i = 1, … , I (40a) 

x(τ 0) = x0  ,  x(τ) = xi-1 + (τ -τ i-1) ⋅(x i -x i-1) /(τ i -τ i-1)  , τ ∈(τ i-1, τ i]  , i = 1, … , I (40b) 

Specifically, the temporal profiles of the flows are assumed piece-wise constant, while the 
temporal profiles of performances, satisfactions and choice probabilities are assumed to be 
piece-wise linear. 
With these assumptions, it is possible to devise an efficient elastic demand DTA solution 
algorithm, outlined in the first section, that requires only some more trivial calculus than a 
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rigid demand DTA with regard to the inclusion of generation, distribution and modal split 
models. Since taking into account the choice of departure time is somewhat more demanding, 
the corresponding procedures for the calculation of choice probabilities and of actual demand 
are illustrated in more detail in the second section. 

4.1 Elastic Demand Dynamic Traffic Assignment 

The resulting fixed point problem formalizing the elastic demand DTA is solved through the 
Method of Successive Averages (MSA). It can be thus defined by the following macro steps: 

0) k = 0  ,  f  k+1 = {0 | f 
iniz} initialization 

1) k = k +1 updates the iteration counter 
2) v k = v( f  k, φ k) calculates equivalent flows 
3) t k = t(v k, φ k)  ,  c k = c(v k, φ k) calculates the arc performances 
4) w k = w(c k, t k)  ,  p k = p(w k, c k, t k) calculates arc conditional probabilities 
5) PDT 

k = P(VDT, w 
k)  ,  WDT 

k = W(VDT, w k) calculates departure time probabilities 
6) PM 

k = P(VM, WDT 
k)  ,  WM 

k = W(VM, WDT 
k) calculates modal choice probabilities 

7) PD 
k = P(VD, WM 

k)  ,  WD 
k = W(VD, WM 

k) calculates distribution probabilities 
8) PE 

k = P(VE, WD 
k)  ,  S 

k = S(VE, WD 
k) calculates generation probabilities 

9) q k = q(N, PG 
k, PD 

k, PM 
k) calculates the desired demand flows 

10) d k = d(q k, WDT 
k, w k) calculates the actual demand flows 

11) fNLM
 k = ω( p k, t k, d k) performs network flow propagation 

12) φNLM 
k = φ(t k) performs line frequency propagation 

13) f  k+1 = f  k +1/k ⋅( fNLM
 k – f  k) updates the arc flows 

14) φ k+1 = φ k +1/k ⋅(φNLM
 k – φ k) updates the line frequencies 

15) if  max a∈A i∈I |ya
i k -fa

i k| > ε  and  k < kmax  then goto 2  stop criterion 
 
Steps 3), 4), 11) and 12) present algorithmic procedures quite specific for the dynamic 
context, and are detailed in Bellei, Gentile, Papola (2003) and in Gentile, Meschini, Papola 
(2003). 

4.2 Departure time choice and actual demand 

Since we approximate flow temporal profiles through piece-wise constant functions over 
predefined time intervals, we are only concerned in determining the time interval in which 
each user actually depart, and not the exact user departure time. Hence, we only need to 
evaluate the probability P((τ i-1, τ i]/σ΄) of departing during interval (τ i-1, τ i], when σ΄ is the 
desired departure time. This can be done integrating equation (15) over the interval (τ i-1, τ i]: 
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 (41) 

Since profile w(τ) is expressed through relation (40b), the arguments of the integrals in 
equation (41) are piece-wise linear. The points Pi

 j = P((τ i-1, τ i]/σ j) and W j, i = 1, …, I,           
j = 1, …, I, which respectively define, coherently with the relation (40b), profiles P((τ i-1, τ 

i]/σ) and W(σ),  can be calculated through the following procedure: 
 
Function departure_time_choice 
  A = 0; D = 0 

For j = 1 To I 
1)  For i = 1 To I 

pi
 j = 0 

Next i 
2)   Do While τ A ≤ σ j –  ADV And A < I 

A = A + 1 
Loop 

3)   Do While τ D < σ j + DEL And D < I 
D = D + 1 

Loop 

4)   
1

1 1
1

i i
i i A

ADV DTi i
w ww bα τ σ θ
τ τ

−
− −

−

 −
= − ⋅ − ⋅ − 

 

1

1

i i

ADV DTi i
w w bβ θ
τ τ

−

−

 −
= + − 

 

PA
 j = ( ) ( ) ( )( )exp exp expA j ADVα β τ β σ β ⋅ ⋅ − − ⋅   

W j = pADV(j)
 j 

5)   For i = A + 1 To j 
1

1 1
1

i i
i i j

ADV DTi i
w ww bα τ σ θ
τ τ

−
− −

−

 −
= − ⋅ − ⋅ − 

 

Pi
 j = ( ) ( ) ( )1exp exp expi iα β τ β τ β− ⋅ ⋅ − ⋅   

W j = W j + pi
 j 

Next i 
6)   For i = j + 1 To D – 1 

1

1

i i

DEL DTi i
w w bβ θ
τ τ

−

−

 −
= − − 
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Pi
 j = ( ) ( ) ( )1exp exp expi iα β τ β τ β− ⋅ ⋅ − ⋅   

W j = W j + pi
 j 

Next i 

7)   
1

1 1
1

i i
i i D

DEL DTi i
w ww bα τ σ θ
τ τ

−
− −

−

 −
= − ⋅ + ⋅ − 

 

PD
 j = ( ) ( )( ) ( )1exp exp expj DDELα β σ β τ β− ⋅ + ⋅ − ⋅   

W j = W j + pD
 i 

 
8)   For i = ADV(j) + 1 To DEL(j) – 1 

pi
 j = pi

 j / W j 
Next i 
W j = θDT ⋅ln(W j) 

Next j 
 
For each desired departure time σ j, step 1) resets the choice probabilities; steps 2) and 3) find 
τ A andτ D, which are, respectively, the first predefined instants after σ j–ADV and σ j+DEL; 
steps 4) through 7) evaluate the numerator of equation (41) for each interval (τ i-1, τ i], i = A, 
…, D; steps 8) finally calculate the probability for each interval (τ i-1, τ i], i = A, …, D. 
The number D i of users actually departed during the generic interval (τ i-1,τ i] is then given by 
the integral, for each instant σ΄ such that σ΄∈[τ i-1–DEL, τ i+ADV], of the desired demand flow 
q(σ΄) multiplied by the related probability P((τ i-1, τ i]/σ΄): 

( ) (( )
1

1,
i

i

ADV
i i i

DEL

D q P d
τ

τ

σ τ τ σ σ
−

+
−

−

= ⋅ ⋅∫  (42) 

Then, coherently with the relation (40a), profile d(τ) is simply given by: 

d(τ΄) = d i = D i /(τ i – τ i-1)  ,    τ΄∈(τ i-1, τ i]  ,  i = 1, …, I (43) 

Since profile P((τ i-1, τ i]/σ) is expressed through relations (40b), the points d i can be 
calculated through the following procedure: 
 
Function actual_demand 

A = 0; D = 0 
For i = 1 To I 

1)   Do While σ D ≤ τ j – DEL And D < I 
D = D + 1 

Loop 
2)   Do While σ A < τ j + ADV And A < I 

A = A + 1 
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Loop 

3)   d i = ( )( ) ( )10 5D D D i i i
iq , P DELτ τ τ τ −⋅ ⋅ ⋅ − − −  

4)   For  j = D + 1 To A – 1 

d i = d i + ( ) ( ) ( )1 1 10 5j j j j j i i
i iq , P P σ σ τ τ− − −⋅ ⋅ + ⋅ − −  

Next j 

5)   d i = d i + ( )( ) ( )1 1 10 5A A i A i i
jq , P ADVτ τ τ τ− − −⋅ ⋅ ⋅ + − −  

Next i 
 
For each actual departure interval (τ i-1, τ i], steps 1) and 2) find σ D and σ A, which are 
respectively the first periodization instant after τ i-1–DEL and τ i+ADV; steps 3) to 5) evaluate 
equation (42) for each interval (σ j-1, σ j], j = D, …, A. 

5 NUMERICAL APPLICATION 

The network of Sioux Falls, consisting of 76 directed arcs and 24 centroids, has been 
considered for a numerical application. In order to investigate the effectiveness of the 
proposed departure time choice model and algorithm, we compare the results of two DTA on 
this network, performed considering both rigid and elastic departure time choice. 
The period of analysis, 6 hours long, was subdivided in 36 time intervals 10 minutes long; the 
known daily demand has been distributed consistently with an arbitrary temporal profile 
simulating a morning peak; suitable values were assigned arbitrarily to all the input 
parameters previously discussed throughout the paper. 
Results obtained appear to be plausible. Figure 6, referring to one of the most congested arc of 
the network, shows flow spreading from congested time intervals toward uncongested ones; 
local increase of flow in congested time intervals, although counterintuitive, does not clash 
with the effectiveness of the model, since travel times (and thus travel costs) are non-
increasing both locally (Figure 7), and globally (Figure 9), when the elasticity with respect to 
the departure time is considered. These results confirm that the departure time elasticity yields 
a more satisfactory flow pattern on the network, thus allowing higher loads on the most 
attractive arcs ( Figure 8). Finally, Figure 10 shows a comparison in terms of the calculation 
time and number of iterations needed to obtain equilibrium, with and without departure time 
choice, on a PC with a 1.9 Ghz CPU. The same convergence criterion, defined above, was 
adopted in both cases: 
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As expected, the case with departure time choice is more resource demanding, although 
calculation times remains quite acceptable for real applications. 
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[Figure 6 here] 
 
[Figure 7 here] 
 
[ Figure 8 here] 
 
[Figure 9 here] 
 
[Figure 10 here] 

6 CONCLUSIONS 

The purpose of this paper was to provide a modelling framework for the simulation of elastic 
demand in the context of within-day dynamic traffic assignment. To this end, a multimodal 
within-day dynamic traffic assignment model is presented with a Nested Logit demand model 
considering combined travel, destination, mode, departure time, and route choices. With 
specific reference to departure time choice, a continuous version of the logit model is adopted, 
so that enumerating explicitly the desired departure time intervals is not needed. 
The resulting dynamic traffic assignment model, which allows us to represent demand and 
supply dynamic phenomena concerning multimodal urban networks under congested 
conditions, is formulated through a fixed-point problem, which can be solved through an 
efficient implicit path MSA algorithm capable of dealing with real networks. 
Both, the model and the devised algorithm, can be easily extended to the multi-class case, so 
overcoming the restrictions due to the hypotheses we assume of constancy over time of the 
functional form as well as of the parameters of the choice models. 
Any question concerning existence and uniqueness of solutions has not been tackled in this 
paper. Yet, we can say that the devised algorithm, applied to a test network, converges to 
plausible solutions. 
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Figure 1 – Choice Tree for potential users from origin o with desired departure time τ' 
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Figure 2 – Flow Diagram of Elastic Demand DTA Fixed Point Problem 
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Figure 3 – Transit stop model 

 

alighting arc
queue arc 

line arc 
line node 

boarding arc 

walking node walking arc 

previous arc 

stop access arc 

stop arc 

waiting arc 

stop node 



 24

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Frequency temporal profiles along the transit line 
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Figure 5 – Functional of the fixed point problem 
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Figure 6 – Inflow temporal profile for a congested arc with and without departure time choice 
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Figure 7 – Travel time temporal profile for a congested arc with and without departure time choice 
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 Figure 8 – Total flow for a congested arc with and without departure time choice 
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Figure 9 – Total travel cost on the network with and without departure time choice 
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Figure 10 – Performances of the algorithm for the two DTA 
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