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Abstract

This thesis explores and proposes solutions to address the challenges faced

by Multi-Controller SDN (MCSDN) systems when deploying TE optimisa-

tion on WANs. Despite the interest from the research community, existing

MCSDN systems present limitations. For example, TE optimisation systems

are computationally complex, have high consistency requirements, and need

network-wide state to operate. Because of such requirements, MCSDN sys-

tems can encounter performance overheads and state consistency problems

when implementing TE. Moreover, performance and consistency problems are

more prominent when deploying the system on WANs as these network types

have higher inter-device latency, delaying state propagation.

Unlike existing literature, this thesis presents several design choices that

address all four challenges affecting MCSDN systems (scalability, consistency,

resilience, and coordination). We use the presented design choices to build

Helix, a hierarchical MCSDN system. Helix provides better scalability, perfor-

mance and failure resilience compared to existing MCSDN systems by sharing

minimal state between controllers, offloading operations closer to the data

plane and deploying lightweight tasks.

A challenge that we faced when building Helix was that existing TE algo-

rithms did not meet Helix’s design choices. This thesis presents a new CSPF-

based TE algorithm that needs minimal state to operate and supports offload-

ing inter-area TE to local controllers, fulfilling Helix’s requirements. Helix’s

TE algorithm provides better performance and forwarding stability, address-

ing 1.6x more congestion while performing up to 29x fewer path modifications

than the other algorithms evaluated in our experiments.

While MCSDN literature has explored evaluating different aspects of sys-

tem performance, there is a lack of readily available tools and concrete testing

methodologies. To this end, this thesis provides concrete testing methodolo-

gies and tools readily available to the MCSDN community to evaluate the data

plane failure resilience, control plane failure resilience, and TE optimisation

performance of MCSDN systems.
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Chapter 1

Introduction

1.1 Problem Statement

Multi-Controller SDN (MCSDN) systems address the scalability and perfor-

mance concerns raised when using a single controller to manage a network.

MCSDN systems divide the network into areas and deploy a controller in each

area, reducing the load on controllers and decreasing switch-controller latency.

Despite this, MCSDN systems are far more complex to implement and re-

quire solutions to deal with four challenges: scalability, resilience, consistency,

and coordination. While MCSDN has received significant research attention,

existing systems present performance, scalability and resilience issues when

deploying critical network applications such as Traffic Engineering (TE).

For example, TE optimisation systems (e.g. SWAN [36], Espresso [99],

and SMORE [53]) are computationally complex, have high state consistency

requirements, and need network-wide state to operate. An MCSDN system

can share state between controllers using strong or eventual consistency mech-

anisms. Strong consistency guarantees that state is always up to date (a re-

quirement of TE algorithms) at the expense of introducing performance over-

heads [9, 70]. Strong consistency requires all controllers (quorum) to agree

on state changes before applying them, delaying operations and decreasing

performance. Eventual consistency sacrifices correctness for performance by
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applying updates immediately without quorum agreement. Despite removing

the performance overheads, eventual consistency can cause a system to make

TE decisions based on inconsistent state, causing policy violation, packet loss,

and decreased forwarding stability.

Performance overheads and state consistency problems are more prominent

when deploying the system on a Wide-Area Network (WAN). WANs contain

high inter-device latency, which delays quorum agreement and update prop-

agation. Delaying quorum agreement makes strong consistency mechanisms

slower to apply TE decisions, decreasing performance. Higher latency de-

lays update propagation of eventual consistency mechanisms, increasing the

chances that a controller makes decisions based on inconsistent state. Because

of these problems, deploying TE on WANs is challenging as these networks

strain MCSDN systems.

This thesis explores and proposes solutions to address the challenges faced

by MCSDN systems when deploying TE on WANs. Existing MCSDN systems

raise concerns as they considered the four challenges affecting MCSDN systems

in isolation, making design choices that boast good performance addressing one

challenge at the expense of another. Furthermore, most MCSDN literature has

either not considered TE optimisation or analysed how their system affects TE

performance. Systems often make design choices that degrade performance or

make deploying TE impossible due to architectural constraints. In contrast,

this thesis considered all four challenges, presenting solutions to improve failure

resilience and scalability without sacrificing TE performance.

1.2 Contributions

This thesis provides four main contributions. First, this thesis presents Helix,

a hierarchical MCSDN system that combines various techniques to deploy TE

on WANs. Towards achieving this contribution, this thesis presents a literature

review that contrasts different systems and approaches that address the four
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challenges faced by MCSDN systems. Based on the identified issues with

existing systems, this thesis proposes several design choices to build Helix.

Helix provides better scalability, performance and failure resilience compared

to existing systems by sharing minimal state between controllers, offloading

operations closer to the data plane, and deploying computationally lightweight

tasks. Helix demonstrates how to apply the design choices proposed in this

thesis when building an MCSDN system, proving their feasibility. Moreover,

Helix offers a concrete implementation enabling this thesis to evaluate the

proposed design choices.

Second, this thesis presents a CSPF-based TE optimisation algorithm that

is suitable for use with Helix. A challenge that we faced when building Helix

was that existing TE algorithms require network-wide state to operate, going

against Helix’s design choices. The presented TE algorithm requires less state

and supports offloading inter-area TE optimisation closer to the data plane.

While we tailored the TE algorithm to Helix’s requirements and deployment

conditions, it is easily usable in other systems.

Third, this thesis provides concrete testing methodologies and tools avail-

able to the MCSDN community to evaluate data plane failure resilience, control

plane failure resilience, TE optimisation performance, and forwarding stability

of systems. While MCSDN literature has explored assessing various aspects

of MCSDN systems, there is a lack of tools and concrete testing methodology

available to the research community. Moreover, most presented evaluation ap-

proaches are specifically tailored to a system or do not consider the effects of

the MCSDN system on critical network applications. We used the proposed

evaluation tools to evaluate Helix’s performance.

Finally, this thesis answers two research questions. (1) “What are the

effects of loss of centralised scope on TE optimisation performance?”. (2)

“What are the effects of using multiple versus a single controller on system

performance?”. Literature has identified that SDN’s centralised control-plane

benefits network applications such as TE [61]. Distributed or non-logically



4

centralised MCSDN systems such as Helix lose their centralised scope. These

systems allow controllers deployed in an area to perform decisions locally with-

out needing network-wide state. While offloaded or local operations benefit

resilience and remove the effects of latency on operation completion time, ques-

tions regarding the impact of losing global visibility on performance remain.

This thesis explores the effects of using multiple controllers on performance

by considering the two inter-area operations Helix offloads to local controllers,

causing them to lose global visibility.

We make Helix’s source code, and evaluation frameworks available to the

research community [1, 2]. While Helix is an OpenFlow based controller built

using Ryu, our assessment and proposed design choices are not limited to

OpenFlow systems. The identified challenges, solutions, and presented tools

have broader application to other non-OpenFlow SDN based protocols and

approaches. We will discuss this further in chapter 9.

1.3 Thesis Structure

Chapter 2 introduces the relevant background for this thesis, presenting the

main concepts and themes covered by this work. The chapter introduces data

plane resilience by presenting several failure detections and recovery tech-

niques. Next, it introduces TE optimisation methods and approaches, cov-

ering different trends in literature. Finally, the chapter introduces the four

challenges that affect MCSDN systems and discusses the benefits of using sin-

gle versus multiple controllers.

Chapter 3 contains a literature review of related work that has designed

and implemented MCSDN systems. The literature review proposes several

design choices that avoid the limitations of existing MCSDN systems.

Chapter 4 presents the design and architecture of Helix, an MCSDN system

that uses the proposed design choice to address the issues faced when deploying

TE on WANs. This chapter contrasts Helix’s design choices against existing
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systems, highlighting and discussing the benefits and issues of our approach.

Chapter 5 discuses Helix’s implementation in depth.

Chapters 6 evaluates Helix’s data plane resilience, comparing Helix’s protection-

based failure recovery against restoration-based recovery. While comparing

protection versus restoration is not novel [84, 85], existing work has not inves-

tigated how latency affects a system’s failure recovery performance.

Chapter 7 evaluates Helix’s control plane resilience. While existing MCSDN

literature has evaluated various aspects of MCSDN system performance, con-

trol plane failure resilience has received little attention. To this end, this

chapter provides a concrete testing methodology and tools to evaluate a sys-

tem’s response to control plane failures. The presented emulation framework

helps profile the speed with which an MCSDN system can recover from failures.

The framework also provides insight into the system’s capabilities, calculating

metrics that enable planning for administrative events like restarting instances

to apply upgrades.

Chapter 8 evaluates Helix’s TE optimisation performance and forwarding

stability. The final evaluation experiment of this chapter provides the fourth

contribution of this thesis by collecting results using both a single and multi-

controller deployment. We used the collected results to answer the two research

questions from a TE optimisation perspective.

The three evaluation chapters provide the third contribution of this the-

sis by presenting concrete testing methodologies and tools that the research

community can use to assess the performance of MCSDN systems.

Chapter 9 discusses the applicability of this work to other SDN manage-

ment approaches.

Finally, chapter 10 concludes this thesis by summarising findings and pre-

senting future research directions for this work. This chapter revisits the two

proposed research questions, discussing how using multiple controllers affects

the performance of data plane failure recovery and TE optimisation.



Chapter 2

Background

This chapter introduces the core topics covered in this thesis: data plane fail-

ure resilience, Traffic Engineering (TE), and Multi-Controller SDN (MCSDN).

§2.1 provides a brief introduction to data plane failure resilience, discussing

common failure detection and recovery mechanisms. §2.2 serves as an introduc-

tion to TE, showcasing approaches and trends in TE literature. Finally, §2.3

contains a brief introduction to MCSDN systems, discussing the motivation

and advantages of using either multiple or a single controller.

2.1 Data Plane Failure Resilience

Data plane failures interrupt the flow of packets in the network, causing packet

loss. Data plane failure resilience refers to a system’s ability to tolerate failures

of forwarding devices. We divide failure resilience into two main components:

detection (§2.1.1) and recovery (§2.1.2).

2.1.1 Failure Detection

A system can detect failures using either active or passive mechanisms.

Active Failure Detection: Active detection mechanisms require a sys-

tem to flood probe packets through the topology. A system uses the flooded

probes to validate the network’s forwarding behaviour and locate failures by
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checking that a link or path forwards traffic. Active detection mechanisms

also enable network operators to identify misconfigured devices that cause er-

ratic forwarding behaviour or complex failures such as Byzantine faults [55].

Researchers have used two protocols to perform active detection in traditional

and Software-Defined Networking (SDN) contexts.

First, Bidirectional Forwarding Detection (BFD) [48] is a protocol that

tests forwarding on links or paths. The protocol requires two endpoints to

establish a connection and exchange heartbeat packets at predetermined in-

tervals. An endpoint that receives a heartbeat packet will echo the heartbeat

back to the sender, testing bidirectional connectivity. An endpoint considers

a link or path as failed if it does not receive several consecutive heartbeats.

Second, Link Layer Discovery Protocol (LLDP) [42] is another popular

active detection mechanism used in literature. While LLDP allows detecting

any link failures in a topology, its primary purpose is to perform topology

discovery. LLDP uses heartbeats to detect topology changes.

Because active detection mechanisms rely on probes, they suffer from three

main problems. First, suppose the network is congested and dropping packets;

in this situation, the active detection mechanism can incorrectly declare a link

as failed, despite it still functioning. Second, active probing increases the load

on links, though, in practice, the extra traffic generated by probe packets is

negligible [95]. Third, active detection uses timeouts, delaying failure detection

and decreasing recovery performance. Slow failure recovery increases packet

loss, negatively affecting the systems forwarding performance.

Passive Failure Detection: Unlike active detection, passive failure de-

tection mechanisms do not use heartbeat packets to detect failures. Instead, a

system monitors regular data plane traffic, inferring and locating device fail-

ures from packet loss. In 2009, Friedl et al. [29] proposed a passive failure

detection mechanism for SDN (OpenFlow). The controller installs forwarding

rules for flows with expiration timers. The switch removes the rule and notifies

the controller when a rule does not match packets for a specified timeframe.
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The controller uses the expiry notification to infer and locate data plane fail-

ures. In 2010, Fioccola et al. [26] describe a passive failure detection technique

that uses packet colouring. The method flags packets with different colours by

applying an MPLS or VLAN tag to data plane traffic. A system checks the

count of packets observed on switches at predetermined intervals to determine

where loss has occurred in the topology.

Both passive and active mechanisms can suffer from similar problems. For

example, passive and active failure detection mechanisms rely on packets trav-

elling through the network to detect failures. If a network is congested and

dropping packets, both will report false positive link failures. Like active detec-

tion, passive detection mechanisms can suffer from slow recovery performance

depending on the configured polling interval. A critical difference between the

two approaches is that passive detection generates no extra traffic and thus

does not introduce extra load on links. Some SDN passive detection mech-

anisms use Loss of Signal (LoS) to allow a data plane device to respond to

failures locally. For example, OpenFlow provides fast-failover groups. The

fast-failover group typically uses LoS to decide if a particular link has failed.

Fast-failover groups are affected by neither packet loss nor slow failure detec-

tion time because the detection event occurs locally.

2.1.2 Failure Recovery

The second part of data plane failure resilience is recovery. After the system

has located a failure in the topology, it needs to modify the installed paths

to restore traffic forwarding. Researchers have considered a fast or carrier-

grade recovery [64] where a system restores traffic forwarding within 50ms

as desirable. The 50ms requirement stems from video conferencing traffic,

where a higher delay is considered detrimental to the service. For traditional

networks, Atlas et al. propose fast IP reroute [6], a mechanism that achieves

a carrier-grade recovery by pre-installing multiple paths onto the data plane

and enabling devices to independently reroute traffic in response to failures.
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We divide failure recovery mechanisms into two main categories: restora-

tion and protection recovery.

Restoration Recovery: In restoration-based recovery, the system inter-

venes in the recovery decisions by modifying the installed forwarding paths to

divert traffic away from a failed element. We refer to restoration as reactive

recovery for SDN systems as the process involves the controller in all recov-

ery decisions. In 2011, Staessens et al. [88] implemented a restoration-based

SDN controller that targets a sub 50ms failure recovery time. After testing

their implementation, the authors found that restoration recovery failed to

meet carrier-grade requirements. In 2013, Sharma et al. implemented and

compared protection and restoration-based recovery in an SDN context using

in-band [84] and out-of-band [85] control plane deployments. Similar to the

findings of Staessens et al., the authors found that restoration did not meet

the requirements for a carrier-grade recovery. Moreover, restoration with an

in-band deployment delays recovery time because the controller needs to re-

store control plane connectivity with isolated switches before dealing with the

failure. Based on the literature, restoration recovery presents three flaws:

1. Recovery performance is affected by inter-device latency as the controller

is involved in the recovery decision. A higher control-channel latency

delays recovery, increasing the amount of packet loss and thus decreasing

forwarding performance.

2. Recovery is slower when using in-band deployment because the controller

first needs to restore connectivity with the data plane.

3. Restoration is a reactive task. Reactive tasks introduce dependencies

between the controller and switches, affecting control plane failure re-

silience. If a data plane device loses controller connectivity, the network

will no longer recover from data plane failures.

Moreover, problems are more prominent when considering deploying the

system on Wide Area Networks (WANs). WANs have high inter-device latency
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which contributes to poor recovery performance.

Protection Recovery: Protection-based failure recovery uses precom-

puted paths to restore forwarding. We refer to protection as proactive recovery

for SDN because switches recover from failures without controller intervention.

Researchers have demonstrated that protection can achieve a carrier-grade re-

covery when using an in-band or out-of-band SDN deployment [84, 85].

In 2015 and 2016, Capone et al. [11] and Cascone et al. [12], proposed

and explored implementing a protection-based failure recovery system using

OpenState. OpenState is an extension to OpenFlow that allows switches to

make stateful decisions. An OpenState controller can push flow rules and fi-

nite state machines onto the data plane, enabling switches to make decisions

independent of the controller. The switches perform local failure detection

and recovery based on observed data plane packets. When a switch detects

a link failure, it uses crank-back routing to send packets back to the previ-

ous nodes on the path. The backtracked packets notify nodes of the failure

and allow the system to find an appropriate reroute point. When the back-

tracked packet reaches a node with a backup route, that switch will modify

the installed forwarding rules to make packets use the new path. Despite

the presented systems achieving a carrier-grade recovery, it raises two prob-

lems. First, crank-back routing increases forwarding latency by temporarily

increasing path lengths. Second, the systems can have limited deployability as

OpenState requires switch hardware and software modifications.

Conclusion: Protection provides three main benefits:

1. Latency does not affect proactive operations, making the method suitable

for use in WANs.

2. The system does not need to restore control plane connectivity before

recovering from data plane failures for in-band deployments.

3. Protection allows switches to independently deal with data plane fail-

ures even if they lose control plane connectivity, improving the system’s
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control plane failure resilience.

Based on these observations, we conclude that protection recovery deals

with failures faster, minimising packet loss. A concern with protection re-

covery is the optimality of paths. Protection mechanisms use precomputed

information to deal with failures. Due to topology changes, preinstalled recov-

ery paths can lose optimality. Implementing protection recovery in conjunction

with TE will alleviate some optimality concerns.

2.2 Traffic Engineering (TE)

TE optimises packet forwarding through the modelling characterisation and

control of traffic to achieve a specific performance objective [7]. A TE system

modifies forwarding paths based on gathered metrics to meet current demands

and achieve concrete performance goals. Depending on the selected goal, the

TE system collects different metrics. For example, a TE system that aims

to minimise congestion will collect link usage metrics, while one that aims to

reduce power consumption gathers the power usage of devices.

Multiple longitudinal studies of internet traffic found that bandwidth de-

mand is steadily increasing, putting more strain on TE systems [27, 14, 93].

For example, in their study conducted over five years (2013-2017) at an ISP,

Trevisan et al. found that customers doubled their bandwidth consumption

in 2017 compared to 2013 [93]. Researchers have proposed various approaches

to improve TE optimisation performance to deal with the steady growth of

traffic both in distributed (§2.2.1) and SDN (§2.2.2) contexts.

2.2.1 Distributed TE Systems

We identify three trends in the distributed traffic engineering literature.

Bandwidth Reservation: A common TE optimisation approach is to

reserve bandwidth. Users of a network negotiate and advise how much traffic

they will send to a destination, allowing operators to distribute traffic in the
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topology. Traditional decentralised protocols such as MPLS-TE [87], BGP-TE

[69], and OSPF-TE [47], implement reservation-based TE optimisations.

Predicted Demands: A second common approach to perform TE is

through predicted traffic demands. A network operator generates a prediction

TE matrix based on historical traffic patterns observed in the network. A TE

system uses the predicted demands with a capacity-aware path computation

algorithm to generate offline paths that distribute traffic onto links, targeting

a specific goal. For example, the Constrained Shortest Path First (CSPF)

algorithm can compute paths that do not exceed the network’s link capacity

based on predicted demand. Traditional distributed TE systems such as Mul-

tiprotocol Label Switching (MPLS) use CSPF to perform TE. An alternative

is to use the predicted demands as a constraint for the Multi Commodity Flow

(MCF) problem to generate a routing scheme. Systems use linear program-

ming (e.g. [53]) or heuristic-based approximation (e.g. [99, 41]) to solve the

formulated MCF problem.

Load Balancing: Load balancing algorithms split traffic across multiple

paths to increase the network’s forwarding capacity. Load balancing algo-

rithms do not necessarily perform TE because they do not adapt to metric

changes and are not capacity aware. Despite this, load balancing systems pro-

vide an alternative to TE systems because they aim to improve forwarding

performance by distributing traffic on multiple paths. Equal Cost Multi-Path

(ECMP), Valiant Load Balancing (VLB) [94], and Raeke [73] are examples of

load balancing algorithms. ECMP splits traffic equally across multiple paths,

while VLB and Raeke use random node indirection to split traffic randomly.

There has been significant research effort invested in making load balancing

systems TE-cable by adjusting how much traffic a system sends on each path

to optimise forwarding (e.g. B4 [43], SWAN [36], and SMORE [53]).

Summary: Despite the overall maturity of load balancing and TE meth-

ods, problems that hinder the performance or accuracy of TE systems still

exist today. For example, while a large number of TE systems use predictions
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to make decisions, prediction matrices often contain errors and are difficult to

compute [4]. Moreover, we can identify three issues that still affect traditional

decentralised protocols, degrading TE performance [61]. First, interoperabil-

ity problems are commonplace with traditional systems because they often

use multiple complex protocols to function. Second, traditional systems suf-

fer from delayed or slow TE optimisation because they must propagate state

changes (metrics) to every device. Third, load balancing algorithms that split

traffic often require strict split ratios that are hard to achieve in practice.

2.2.2 SDN TE Systems

The research community has explored deploying TE using SDN systems to

address issues raised with traditional protocols. Literature in the area has

demonstrated that the characteristics offered by SDN are beneficial for TE.

Mendiola et al. [61] presented a taxonomy of current state-of-the-art TE sys-

tems, discussing SDN characteristics that benefit TE. An example in the paper

is that using Resource Reservation Protocol with TE (RSVP-TE) can delay

traffic forwarding due to slow reservation time. Notably, SDN can help address

this limitation by offering centralised network control and by not requiring path

reservation state to be sent across multiple switches.

A significant body of work in the area of SDN has explored deploying TE on

a Data Center (DC) network. Tristain et al. present MiceTrap [92], a scalable

TE system that optimises mice flows in DC networks by grouping multiple

mice flows into a single forwarding aggregate and distributing them on multiple

paths. Other notable works in this area are in-band load-balancing systems

that use P4 [10] to perform TE optimisation. In-band load balancing systems

such as Conga [3], Hula [45], Contra [38], and Dash [39], operate similar to non-

SDN distributed protocols. These P4 systems perform load balancing in DC

networks by splitting traffic on multiple paths based on propagated metrics.

Researchers have also considered deploying TE-capable SDN systems on

other network types, with several notable examples. In 2014, Hong et al. pro-
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posed SWAN, an SDN system that targets resource optimisation on a private

DC WAN. SWAN schedules traffic-heavy tasks during off-peak hours based on

available residual bandwidth. In the same year, Jain et al. presented B4, a

WAN SDN controller that interconnects Google’s DC networks. Like SWAN,

B4 operates in a topology with elastic traffic where the system can defer heavy

flows to off-peak hours. In 2017, Yap et al. presented Espresso, Google’s SDN

peering edge that enables global per-application TE optimisation. Espresso

targets the TE goal of Quality of Experience (QoE) maximisation, performing

decisions based on metrics collected from end-user devices. Espresso operates

in a hybrid SDN network, interacting with traditional routing protocols.

In an attempt to address issues of performance and reliability with existing

systems, in 2018, Praveen et al. presented SMORE [53]. SMORE uses Raeke’s

algorithm to compute multiple paths and load balance traffic. The system per-

forms TE optimisation by dynamically adjusting traffic split ratios to reduce

congestion. A traffic split ratio represents the percentage of the total traffic

that the system will send on each path. SMORE generates traffic split ratios

by using a constrained version of the MCF problem to minimise link usage.

Despite the interest from the research community, TE systems still suffer

from poor performance, scalability, and failure resilience. Furthermore, some

systems pose significant challenges when deploying the system on WANs. For

example, while in-band load balancing systems operate well in a DC net-

work, they perform poorly on WANs. A WAN often contains high inter-device

latency, delaying sharing of metrics and severely constraining performance.

Moreover, in-band load balancers require hierarchical node structures to prop-

agate state, which may not exist in WANs.

A notable limitation of existing systems that perform TE in the literature

is their use of Single-Controller SDN (SCSDN) architectures. Fully centralised

solutions (e.g. SWAN [36] and SMORE [53]) suffer from poor scalability and

raise performance or failure resilience concerns. A solution to scalability, per-

formance and resilience problems is using an MCSDN architecture. However,
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MCSDN systems are more complex and require dealing with challenges such

as sharing state across multiple controllers.

2.3 Multi-Controller SDN

While using an SCSDN system to manage a small network is feasible [33],

deploying SCSDN systems on large topologies that contain high inter-device

latency (e.g. WANs) raises three concerns. First, SCSDN systems move the

network’s “intelligence” to a single central controller. The controller needs

to process and respond to requests generated by every switch in the topology,

raising scalability concerns. Second, a large request load on a controller or high

control-channel latency delays reactive operations, decreasing performance.

Finally, SCSDN systems have poor failure resilience because if the central

controller fails, the system loses all traffic steering capabilities.

Due to these problems, SCSDN systems are not suitable for use in WANs,

and as such, researchers have proposed using multiple controllers to address

these limitations. MCSDN systems separate the network into areas and deploy

a cluster of controllers to manage each site, providing three main benefits:

1. MCSDN systems have better scalability because controllers interact with

a subset of the network’s data plane devices.

2. MCSDN systems improve performance by deploying controllers closer to

the data plane devices, reducing the switch to controller latency.

3. MCSDN systems are better at tolerating control plane failures because

if an area loses its controllers, the system still maintains partial manage-

ment capabilities over the network.

MCSDN systems perform inter-area operations by coordinating between

multiple clusters. We can identify two control plane architectures used by

MCSDN systems from the available literature. First, in a flat control plane
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Figure 2.1: Example of the two MCSDN control plane architectures. Flat (a):

Multiple Local Controller Clusters (LCs) are interconnected and coordinate

with each other to perform inter-area operations. Hierarchical (b): LCs are

connected to a Root Controller Cluster (RC) which manages inter-area op-

erations. Controller clusters contain multiple controller instances to remove

single-point of failures and improve the system’s control plane failure resilience.

architecture (e.g. ONOS [9]), all local controller clusters connect and commu-

nicate with one another to perform inter-area operations such as routing and

TE. Second, in a hierarchical control plane architecture (e.g. Espresso [99]),

the local controllers are no longer inter-connected and instead connect to a

cluster of root controllers. The root controllers communicate with the local

controllers to coordinate and perform inter-area operations.

MCSDN systems improve their control plane failure resilience through

replication (e.g. [50, 99, 25]). Network operators deploy multiple redundant

copies of controllers, thus removing any single-point of failure concerns in the

distributed control plane. For example, when using a hierarchical control plane

architecture, network operators deploy multiple redundant instances of the

root controller. When the primary root controller instance fails, a backup de-

vice takes over the management of the root controller cluster, restoring control

plane connectivity and the system’s ability to perform inter-area operations.

Figure 2.1 presents an example of a flat and hierarchical control plane

architecture. A benefit of using a hierarchical architecture is that the system

can scale better to larger networks by deploying multiple layers. As such, Helix

implements a hierarchical control plane architecture.
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2.3.1 MCSDN System Challenges

MCSDN systems are far more complex to implement than their SCSDN coun-

terparts, requiring solutions to deal with four challenges:

(1) Scalability: The scalability of MCSDN systems primarily relates to

controller workload. As the number of devices in a topology increases, so

does the load on controllers. The scalability of an MCSDN system strongly

correlates to how the switches and controllers interact. For example, SDN

systems can implement two operation types, reactive or proactive. Reactive

operations involve the controller in all decisions, increasing the load placed on

the controller and limiting the system’s scalability. In contrast, the controller

pre-installs instructions onto the switches for proactive operations, enabling

switches to perform forwarding changes without contacting the controller. Be-

cause proactive operations do not involve the controller in decisions, they de-

crease the load placed on controllers, improving the system’s scalability.

In an MCSDN system, each controller interacts with a subset of the net-

work’s devices, inherently reducing the load on controllers. Despite this,

MCSDN systems still need strategies to maintain good scalability. For ex-

ample, suppose an MCSDN system statically assigns switches to controllers

and deploys computationally heavy tasks that require numerous data plane

interactions. Researchers have demonstrated that due to the dynamic nature

of network traffic, load on controllers can change over time [19]. As such, when

statically assigning switches to controllers, the controllers are susceptible to

overloading and increased flow setup time (decreased performance) due to the

system’s inability to adapt to variation in controller load [19, 51]. Changes in

the number of requests generated by switches will lead to load imbalances on

controllers that cause parts of the network to become overused while others

remain idle, slowing down operation completion time and decreasing the sys-

tem’s scalability [20]. MCSDN systems need to address workload imbalances,

ensuring an even spread of tasks to prevent such problems.

(2) Resilience: Resilience refers to the system’s ability to tolerate fail-
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ures. Of particular interest to SDN-based systems is control plane failure

resilience. Control plane failures leave the network in an unmanaged state,

prevent the system from performing TE, leading to poor forwarding perfor-

mance and packet loss. Similar to scalability, MCSDN systems improve control

plane failure resilience; because MCSDN divides the network into areas, only

part of the network becomes unmanaged if a controller fails. Despite this

improvement, partial control plane failures will still disrupt forwarding and

affect performance in some areas of the network. MCSDN systems need mech-

anisms to recover quickly from failures to minimise the time the network is

unmanaged.

(3) Consistency: Because MCSDN systems use a distributed control

plane, multiple devices need to propagate state changes to allow the system

to make coherent routing decisions. If controllers have an inconsistent state,

they can make forwarding decisions that significantly degrade performance.

For example, Levin et al. [57] found that inconsistencies in link utilisation

metrics between controllers when performing load balancing causes MCSDN

systems to make increasingly poorer decisions, introducing imbalances in link

usage (poor performance).

A challenge with ensuring state consistency between controllers is that

existing mechanisms raise several concerns. MCSDN systems can use two

mechanisms to share state, strong or eventual consistency. Strong consistency

guarantees that state is always up to date, a requirement for some network

applications (e.g. TE), at the expense of introducing significant performance

overheads [9]. While eventual consistency removes the performance overheads,

it may cause a system to make decisions based on inconsistent state, leading to

policy violations, congestion and packet loss [57]. Moreover, the used consis-

tency mechanism affects the system’s ability to address the other challenges.

For example, strong consistency mechanisms can impact a system’s scalability

because they require controllers to negotiate state changes, increasing con-

troller workload.
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(4) Coordination: Coordination characterises how controllers interact.

Because MCSDN systems implement distributed control planes, multiple con-

trollers must coordinate to perform inter-area operations and ensure coherent

policy and forwarding rule application. A challenge in coordinating multiple

devices is sharing state. An MCSDN system’s coordination strategy will de-

fine the system’s consistency requirements. For example, MCSDN systems can

use two coordination strategies. First, logically centralised MCSDN systems

(e.g. [50, 71]) share the complete network-wide state between all devices, al-

lowing controllers to make end-to-end decisions. To ensure coherent policy

application and prevent poor performance, logically centralised systems need

to provide all controllers with up to date state, requiring strong consistency.

As a consequence of this requirement, logically centralised systems can have

poor performance as strong consistency mechanisms impose overheads by de-

laying operations [57, 9]. In contrast, distributed MCSDN systems (e.g. [78,

30]) sacrifice some of the benefits of making decisions using a full centralised

scope to improve performance.

The outlined four challenges are not independent of one another. A partic-

ular design choice can excel in addressing one challenge but offer poor perfor-

mance for another [66]. For example, logically centralised systems improve fail-

ure resilience because all controllers can make global traffic steering decisions.

If a controller fails, a neighbouring controller can take over the management

of its area. Despite this benefit, logically centralised systems need to provide

strong consistency to ensure coherent policy application. Strong consistency

mechanisms introduce overheads by delaying state changes, causing logically

centralised systems to perform poorly [9, 70].

2.4 Summary

Data plane failures can be detected using either active or passive detection

mechanisms. Both failure detection mechanisms suffer from similar problems:
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(a) If the topology is congested, the mechanisms can encounter false positive

failure detection. (b) Using a large poll interval or timer timeout values will

delay failure detection leading to decreased performance and increased packet

loss. A difference between the two mechanisms is that passive mechanisms

do not introduce traffic into the network. Moreover, some passive SDN-based

failure detection mechanisms use LoS to locally detect link failures and are not

affected by poor performance or false positive detection issues.

After locating the failure in the topology, a system can use either restora-

tion or protection recovery to deal with the data plane failure. Restoration

recovery is a reactive operation involving the controller in the recovery process.

Restoration recovery is less suitable for use in a WAN as higher latency de-

creases recovery performance. Furthermore, reactive operations decrease the

system’s control plane failure resilience by introducing a dependency between

the data plane and the control plane. In contrast, protection recovery does

not involve the controller in the recovery operation, making the method suit-

able for use in a WAN and removing any dependency between the data plane

and the control plane. A concern with protection recovery is the loss of path

optimality which occurs due to topology changes. Deploying protection in

conjunction with TE will alleviate some of these concerns.

Due to its importance, TE has received significant research attention. De-

spite the overall maturity of existing TE methods, traditional TE systems and

algorithms suffer from problems that affect their performance and accuracy.

A notable limitation of existing SDN-based TE systems is their use of SCSDN

architectures, which can lead to poor scalability, performance, and decreased

control plane failure resilience. Moreover, the requirements of existing TE al-

gorithms make deploying TE on WANs difficult due to the amount of state

the system disseminates between devices and the level of consistency needed to

ensure coherent TE policy application. A solution to address these limitations

is to implement an MCSDN system.

MCSDN systems address the scalability, performance, and failure resilience
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concerns raised by using a single controller to manage the entire network.

MCSDN systems divide a network into areas and deploy a controller to manage

each part. In a flat MCSDN system, all area controllers are interconnected with

each other to share state and coordinate inter-area operations. In contrast, in

a hierarchical MCSDN system, the local area controllers are no longer inter-

connected and instead connect to a cluster of root controllers which perform

inter-area operations. A hierarchical MCSDN system offers better scalability

because: (a) the system can use abstraction to reduce the amount of state

shared between controllers; (b) network operators can define multiple layers

in the control plane hierarchy to better scale the system to larger topologies.

Despite the added benefits, MCSDN systems are far more complex to im-

plement requiring solutions to deal with four challenges: scalability, resilience,

consistency, and coordination. A key factor contributing to the limitation of

existing work in literature is that these four challenges are not independent of

one another. A particular design choice can excel in addressing one challenge

but offer poor performance for another [66].



Chapter 3

Literature Review

This chapter presents a literature review of related work that has designed

and implemented Multi-Controller SDN (MCSDN) systems. Previously, §2.3.1

identified the four challenges MCSDN systems face (scalability, resilience, con-

sistency, coordination). The literature review divides related work into four

sections based on the targeted MCSDN challenge. Later in this thesis, §4.1

discusses how Helix avoids the identified limitations of existing systems. Helix

combines various techniques to reduce the amount of shared state and con-

troller workload, offering improved scalability, performance, and resilience.

3.1 Scalability: Controller Workload

The separation of a network into areas and the location of controllers affect

the scalability and performance of an MCSDN system. Wide Area Networks

(WANs) impose link and topological constraints on inter-device communica-

tions, affecting state propagation and controller reaction time. High latency

delays inter-device coordination messages, thus decreasing the performance of

reactive tasks [33]. Uneven distribution of switches to controllers can overload

controller instances, affecting performance and causing failures. Researchers

have identified this as the Controller Placement Problem (CPP).

CPP solvers [33, 62, 44, 60, 97] consider topological constraints to im-

prove the scalability, performance, and failure resilience of MCSDN systems.
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A CPP solver provides insight into controller locations, the number of areas,

and the assignment of switches to controllers. CPP solvers are complemen-

tary to MCSDN systems because they tell network operators where to deploy

controllers to minimise inter-device latency (improve performance) [33]. In

essence, a CPP solver is a planning tool that answers two questions: “How

many controllers to use?”; “Where to deploy the controllers in the topology?”;

While CPP solvers offer insight into how to divide a network, they gener-

ate a static switch to controller mapping. Because network traffic is dynamic,

the load on controllers may change over time [19]. Variation in controller load

can lead to imbalances where some controllers become overloaded while others

are underutilised, slowing down operation completion time and affecting the

system’s scalability [20, 19]. Researchers have proposed implementing Control

Plane Load Balancing (CPLB) systems in response to these problems. CPLB

systems such as ElastiCon [20], BalCon [13], BalConPlus [96] and others [51,

101, 80, 63, 31, 21, 8] actively monitor controller load and resolve imbalances

by migrating switches to different controller instances. Despite improving scal-

ability, CPLB systems raise three new problems. We will consider the example

scenario illustrated in figure 3.1 to explain these issues.

The example scenario divides a network into two areas and deploys two

controllers. We assume that within an area, a controller has a communication

latency to a switch of 4ms. The two controllers need to communicate via

the inter-area links. As such, the inter-controller communication latency is

20ms (average latency of a WAN calculated in §6.2). In this scenario, a CPLB

system detects that C1 is overloaded (100% usage) while C2 is underutilised

(20% usage). In response to the imbalance in controller workload, the CPLB

system will migrate a (switch generating highest load) to C2. Based on this

example, we can identify the following three problems:

(1) Migrating switches to remote controllers in different network regions

introduces higher switch-to-controller latency, delaying operations and thus de-

creasing the system’s performance. In the example scenario, after the CPLB
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Figure 3.1: Control Plane Load Balancing (CPLB) system example scenario.

The scenario divides the topology into two areas and deploys two controllers.

Controllers have a local latency to switches of 4ms and an inter-controller

latency of 20ms. C1 is overloaded (100% usage) while C2 is underutilised

(20% usage). Switch a generates the most load (50%) in Area 1.

system migrates a to C2, a’s control channel latency increases to 20ms. While

the CPLB system has balanced the controller workload, the increase in la-

tency between a and its controller will delay reactive operations affecting per-

formance. For example, chapter 6 presents experiments that characterise the

effects of latency on restoration-based failure recovery performance. In the

conducted evaluation, when we increased the control-channel latency from 4ms

to 20ms, restoration-based recovery took 3.5x longer to deal with data plane

failures, leading to significantly more packet loss.

(2) Switch blackouts occur while migrating devices because switches enter

a temporary unmanaged state. In the example scenario, while the system

migrates a to C2, it cannot modify a’s forwarding rules, delaying reactive

operations and thus decreasing their performance. BalConPlus [96] proposes

a partial solution to switch blackouts for path installation, where the system

temporarily installs paths for new flow arrivals using alternative nodes that

avoid the non-responsive switch. BalConPlus does not provide solutions for

other reactive operations (e.g. TE) and cannot deal with blackouts for edge

switches. For example, BalConPlus cannot divert traffic arriving at a as it

connects to a host node.

(3) CPBL systems must share metrics and coordinate switch migration,

increasing inter-controller communications. Furthermore, to ensure correct
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policy application and prevent overwritten or lost updates, load balancers need

to provide strong consistency between controllers, slowing down state changes

and decreasing performance [9].

Despite addressing scalability concerns, implementing a CPLB system will

over-complicate controller design and increase controller workload as load bal-

ancing operations are computationally intensive. For example, Cello et al.

[13] prove that identifying an optimal SDN switch migration is impracticable

due to its computational complexity as the controler load balancing problem is

NP-Complete. As a result, both BalCon [13] and BalConPlus [96] use heuristic

approximations to decide where to migrate switches. Moreover, CPLB systems

only benefit reactive operations. Proactive operations do not introduce load

on controllers and will not affect the system’s scalability because they do not

involve the controller in traffic forwarding decisions.

A second factor influencing the scalability of MCSDN systems is the amount

of state (information) maintained by the controllers. As the amount of state

shared between controllers increases, so does the number of inter-controller

messages, placing more load on controllers, thus decreasing the system’s scal-

ability. Abstraction reduces the amount of shared state by hiding parts of the

network from remote controllers. Systems that use abstraction (e.g. [78, 30,

41]) decrease the amount of information shared between controllers, improving

scalability by reducing inter-controller messages and controller workload.

Since all load balancing approaches suffer from problems, we propose to

address scalability concerns for MCSDN systems by decreasing the computa-

tional intensity of tasks executed by the controllers and the amount of state

maintained by the system. We can achieve these two design choices by not

implementing computationally heavy operations (e.g. load balancing) and us-

ing abstraction. Abstraction enables an MCSDN system to hide parts of the

network’s complexity, decreasing inter-controller messages.
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3.2 Failure Resilience: Control Plane

Failure resilience refers to the MCSDN system’s ability to respond to and tol-

erate control plane failures. The majority of MCSDN systems provide control

plane failure resilience through replication [50, 9, 99, 25, 43]. These MCSDN

systems will deploy several copies (instances) of a controller in a cluster, repli-

cating the controller’s state across multiple instances. We can categorise the

controller’s response to failures based on the inter-instance coordination strat-

egy. First, in the single device strategy, a primary instance is elected by the

MCSDN system. Only the primary device can interact with the data plane

and make state changes. When the primary device fails, the MCSDN system

elects a new primary device from the available backup instances, recovering

from the control plane failure.

A second inter-instance coordination strategy is the multi-device strategy.

In this strategy, multiple devices can modify the cluster’s state and perform

traffic steering decisions in parallel. The multi-device cluster strategy will aid

the scalability of the MCSDN system as it effectively increases the compu-

tational capacity of a controller. Despite this, the multi-device strategy is

more prone to state consistency problems; because multiple devices can per-

form changes, all instances must have an up-to-date copy of the cluster’s state

to ensure atomic policy application. State inconsistencies can cause the sys-

tem to install competing forwarding rules that degrade performance and cause

loops [57], or lead to lost updates if multiple instances overwrite the same for-

warding rules. The multi-device strategy needs strong consistency, as eventual

consistency mechanisms do not guarantee the required consistency level (i.e.

atomic updates). Using strong consistency mechanisms decreases performance

by delaying operations [9, 70] (discussed in §3.3).

The second aspect of control plane failure resilience is for the MCSDN

system to ensure that updates are correctly applied even under failure condi-

tions. To achieve this requirement, researchers have explored using transaction

semantics [46, 79, 16].
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In 2015, Katta et al. proposed Ravana [46] a fault-tolerant SDN control

platform that uses transaction semantics to guarantee that OpenFlow mes-

sages are processed once and in order. Ravana improves failure resilience

by providing correct and consistent state changes when faced with controller

and switch failures. Transaction-based systems behave similarly to relational

databases, preventing partial state changes. If part of the state modification

fails, the state is reverted to the initial version, preventing unexpected partial

modifications and providing atomic operations.

In 2016, Schiff et al. [79] presented an in-band centralised synchronisa-

tion system for distributed control planes. Similar to Ravana, the system

uses transaction semantics to ensure atomic state changes without the need

for complex out-of-band consensus protocols (i.e. strong consistency mecha-

nisms). The synchronisation system provides API calls that convert transac-

tion primitives into a sequence of OpenFlow commands. The system allows

controller instances to lock forwarding states by reserving TCAM space for

metadata. A controller can check the status of a particular forwarding rule by

retrieving its metadata field. Compared to Ravana, the system provides better

deployability because it does not require switch or protocol modifications.

In 2019, Curic et al. presented FitSDN [16], a system similar to the proposal

of Schiff et al. [79]. FitSDN applies transaction semantics to the data plane

forwarding state (forwarding rules) by using switches as distributed data stores.

FitSDN requires switches to deploy a module to make them transaction aware

and guarantee atomic operations.

Transaction-based systems such as Ravana [46] and FitSDN [16] ensure

consistency when applying state changes, even under failure conditions. More-

over, these systems allow deploying the multi-device instance coordination

strategy without complex consensus and consistency mechanisms (i.e. strong

consistency). By enabling multiple instances to interact with the data plane,

transaction-based systems increase the computational capacity of the control

plane, improving the MCSDN system’s scalability. Despite these benefits, such
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systems introduce two new critical problems:

1. Transaction-based systems delay operations and increase inter-controller

communications by requiring consensus between devices before applying

changes. For example, controllers will need to frequently communicate to

exchange acknowledgement messages and poll lock status of forwarding

state. Moreover, systems that use switches as distributed data stores

require frequent inter-device communications to retrieve the network’s

state. Accessing information from remote locations increases reaction

time, delaying operations and decreasing performance. Problems related

to performance are more severe when considering deploying these systems

on WANs, where inter-device latency tends to be higher. Chapter 6

conducted experiments that show that higher latency inflates operation

completion time when interacting with remote devices in a WAN.

2. Transaction-based systems generally require data plane support (e.g. [46,

16]), affecting the deployability of the system in production networks.

While researchers have proposed solutions to improve the system’s de-

ployability [79], these systems use TCAM memory to store metadata to

implement transaction semantics. TCAM memory is a limited and ex-

pensive commodity of SDN devices, and as such, using more flow-table

space severely constrains the maximum network size the system tolerates.

Since all transaction-based systems affect performance by delaying opera-

tions and increasing the load on controllers, a far better approach to address

failure resilience concerns of MCSDN systems is through replication. Applying

the single-device coordination strategy to restrict state change to a primary

device will simplify inter-instance interaction and remove strict consistency re-

quirements of controller state. The single-device coordination strategy enables

an MCSDN system to avoiding needing to implement strong consistency and

transaction-based semantics.
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3.3 Consistency: State Synchronisation

Because MCSDN systems distribute the control plane across multiple devices

and replicated instances, controllers and instances need to synchronise their

state and coordinate to ensure coherent policy and forwarding decisions. Exist-

ing work in the literature proposes using either strong or eventual consistency

to share state between controllers [50, 9, 70, 57]. Strong consistency guaran-

tees that state is always up-to-date by requiring devices to obtain complete

consensus before applying any modification, ensuring that controllers always

perform forwarding decisions based on consistent state. Despite preventing in-

consistencies, strong consistency mechanisms introduce performance overheads

by delaying operations [9, 70].

For example, Sakic et al. [77] compared the effects of different consistency

models on the performance of an MCSDN load balancer. In the paper, the

authors found that when serving 1000 subsequent load balancing requests,

strong consistency took 4.5x longer to respond to the requests than eventual

consistency. Similar to this trend, Berde et al. [9] found that using strong

consistency severely affected ONOS’s performance. After evaluating the first

strong consistency ONOS prototype, the authors found that the system took

up to 20s to recover from link failures compared to 116ms for the second

ONOS prototype that used eventual consistency. In response to the introduced

overheads, researchers have endeavoured to improve the performance of strong

consistency mechanisms.

In 2016, Ho et al. proposed FPC (Fast Paxos-based Consensus) [35] a

model that provides strong consistency. FPC provides an average consensus

time that is 35.3% lower than Raft [68]. Compared with other strong con-

sistency algorithms, FPC is 26% faster at retrieving data and 59.7% faster

at storing it. Despite the improved performance, FPC still introduces perfor-

mance overheads by delaying updates. Strong consistency algorithms require

consensus before applying state changes, resulting in slower operations.

In 2018, Aslan et al. [5] presented an adaptive tunable consistency model
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where controllers can specify the required consistency level. The system is

built on Apache Casandra [54] and allows configuring the number of instances

(replicas) required to agree on a modification before the system considers the

change as valid (committed). A controller uses functions to decide on the re-

quired consistency level of a specific datum. While tunable consistency models

offer better flexibility and performance compared to their strong consistency

counterparts, they still increase inter-device communications and delay up-

dates by requiring consensus before applying state changes [77].

As an alternative, eventual consistency removes the overheads imposed

by strong consistency mechanisms, improving the system’s performance and

decreasing the load placed on controllers. In their evaluation, Sakic et al. [77]

found that eventual consistency generated less load on controllers (messages)

and had better performance compared to both strong and adaptive consistency

mechanisms (such as [5]). Eventual consistency relaxes the guarantees of the

model by removing the quorum agreement phase and applying state updates

immediately. After an update is applied, devices use a chatter protocol to

disseminate changes to other instances, eventually reaching consensus.

Despite removing the main performance overheads, eventual consistency

still presents two limitations. First, the chatter protocol may increase inter-

device communications, which can lead to scalability problems and delay op-

erations. Second, using eventual consistency may cause a system to make

routing decisions based on inconsistent state, leading to policy violation, de-

creased forwarding stability, and packet loss [57].

Eventual consistency can still be a promising avenue to reduce performance

overheads when synchronising state between devices. The amount of shared

state and how often the system uses it to make decisions influence the load

introduced by the chatter protocol and the likelihood that the system makes

decisions based on inconsistent network state. As a result, MCSDN systems

can mitigate the issues introduced when using eventual consistency to share

state by applying the following two design principles:
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1. Using abstraction to hide parts of the network from remote devices will

reduce the amount of state shared between controllers. Using abstraction

will also improve the MCSDN system’s scalability by decreasing inter-

controller messages and controller workload.

2. Implementing proactive or offloading operations closer to the data plane

reduces the system’s usage of shared state. Offloaded or proactive oper-

ations use the local state to make decisions and are not subject to state

inconsistency problems.

3.4 Coordination: Control Plane Design

This section discusses different MCSDN coordination strategies that define

how controllers interact. We divide this section into three categories. First,

§3.4.1 discusses logically centralised control plane systems which use strong

consistency to allow multiple controllers to make end-to-end decisions. Second,

§3.4.2 covers distributed single controller frameworks which takes a single con-

troller implementation and automatically deploys it across multiple controllers.

Finally, §3.4.3 discusses distributed control plane systems which introduce the

notion of local and global decisions/state. Distributed systems use abstrac-

tion to hide parts of the network from neighbouring controllers, decreasing the

amount of state shared between controllers. Table 3.1 presents a taxonomy of

the features/mechanisms used by existing MCSDN systems presented in this

section. The table divides work into two groups based on their control plane

coordination strategy.

3.4.1 Logically Centralised Systems

Onix [50] allows network operators to implement controllers as logically cen-

tralised distributed systems. The system uses a distributed transaction aware

data store to provide strong consistency, allowing controllers to operate with

centralised scope. Onix is a framework that provides general-purpose APIs and
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Logically Centralised Systems

Architecture Consistency Failure Resilience TE Comments

Onix [50] Hierarchical Strong Replication x

HyperFlow [91] Flat Strong* Reassignment x (*) Relaxed Guarantee

Kandoo [32] Hierarchical x x x No Inter-Controller Coordination

ONOS [9] Flat Strong; Eventual Reassignment* x (*) Also Supports Replication

DISCO [71] Flat Eventual x x

Google Orion [25] Hierarchical Strong Replication x

Distributed Single Controller Frameworks (Logically Centralised)

Beehive [100] Flat Strong Reassignment x

SCL [70] Flat Eventual Reassignment x

Distributed Systems

D-SDN [78] Hierarchical x x x

Orion [30] Hierarchical Eventual Replication x

Hua et al. [41] Hierarchical Strong Replication X* (*) Bottom-UP TE

Table 3.1: Table summarising systems that implemented a logically centralised

or distributed control plane. The failure resilience column indicates the sys-

tem’s controller failure recovery mechanism (two approaches): Replication =

deploys multiple controller copies; Reassignment = migrates switches to a new

controller on failures. Most systems did not consider TE, or the proposed

method delays TE optimisation.

does not implement network applications such as routing or TE. The system

improves its control plane resilience by allowing the use of replication (§3.2)

coupled with a leader election protocol that enforces a single device instance

coordination strategy. Due to its architecture and design, Onix has poor scal-

ability. For example, Google found that scaling Onix to meet their WAN’s

(B4 [43]) requirements was increasingly difficult due to Onix’s tightly-coupled

architecture in which control apps share a common threading pool [25].

HyperFlow [91] is a flat logically-centralised MCSDN system that enables

controllers to perform end-to-end decisions based on a centralised scope. Hy-

perFlow provides a framework that allows multiple controllers to communicate

and coordinate inter-area operations. The system automatically synchronises

the network state between controllers and proxies OpenFlow requests to ap-

propriate switches if the current controller does not manage them. Controllers

share state and events through a publish-and-subscribe system built using

WheelFS [89]. When a state change occurs, the system propagates relevant

local events to all controllers, allowing them to update their state and become
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globally consistent. HyperFlow deals with controller failures by reassigning

the switches managed by the failed device to an adjacent controller.

Kando is [32] a logically-centralised hierarchical MCSDN system that aims

to improve scalability by offloading independent applications that do not re-

quire global-state closer to switches. The system deploys two controller types

and distinguishes between local and non-local applications. Kandoo offloads

local applications that can operate based on constrained visibility (local state)

to the local controllers (switch proxies). Local controllers do not communicate

or coordinate with other local controllers. The system can offload applications

such as link-failure detection or elephant flow detection to local controllers;

however, it cannot offload operations that require network-wide state such as

routing or TE. Moreover, Kando does not abstract or separate the network into

areas, essentially implementing an SCSDN system because Kandoo performs

non-local applications on a single controller (root controller).

ONOS [9] is a flat logically-centralised MCSDN system. The first presented

prototype of ONOS used strong consistency mechanisms to share state and

coordinate modifications. The authors found that strong consistency imposed

high overheads, affecting performance. The second ONOS prototype moved

from strong to eventual consistency by caching frequently read information

on controllers. Being a flat architecture, ONOS deals with controller failures

by allowing switches to connect to multiple ONOS clusters (reassignment).

ONOS can also use replication to improve its control plane failure resilience.

ONOS distributes network-wide state to all controllers, allowing them to

make end-to-end routing decisions. Because ONOS shares network-wide state

with all controllers, the system is more prone to state inconsistency problems.

DISCO [71] is a flat multi-controller MCSDN system that uses an Advanced

Message Queuing Protocol (AMQP)-based communication channel for inter-

area communication. A controller manages its area and communicates with

other controllers to coordinate inter-area operations. DISCO deploys agents

on controllers to monitor and share aggregated network-wide state allowing
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the system to perform end-to-end operations. The system computes paths

using a modified version of Dijkstra’s algorithm that uses Quality of Service

(QoS) metrics as link weights.

Google’s Orion [25] is a framework that implements a logically-centralised

system, allowing multiple micro-services to coordinate and run in parallel. The

system uses a hierarchical control plane coupled with the idea of micro-services

and intent-based networking. Google developed Orion as a replacement for

Onix, which suffered scaling issues. Orion provides atomic state changes across

areas using a centralised replicated data store.

Using a logically centralised architecture improves the control plane’s fail-

ure resilience of an MCSDN system by allowing multiple controllers to interact

with the same data plane device (i.e. take over when failures occur). Despite

allowing controllers to make end-to-end decisions using a full centralised scope,

logically centralised systems require strong consistency to share network-wide

state. Using strong consistency raises scalability and performance concerns (as

described by the authors of ONOS).

While using eventual consistency to share state between controllers mit-

igates some performance overheads, it raises consistency problems, namely,

performing traffic forwarding changes based on inconsistent state. Because a

logically centralised system shares the complete network-wide state with all

controllers (cannot use abstraction), a controller’s local cached state is more

likely to become inconsistent with the global state. This inconsistency is more

prominent in logically centralised systems because more state needs to be syn-

chronised, resulting in slower propagating time [57]. Furthermore, a logically

centralised system is more likely to perform path changes based on inconsistent

information because controllers frequently use the locally-cached global state.

Making path changes based on inconsistent network state can lead to policy

violation, decrease forwarding stability and cause packet loss [57].

Another issue encountered by logically centralised systems is poor scalabil-

ity. Hu et al. [40] modelled and compared the scalability of different MCSDN
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controller architectures. The authors found that while a logically centralised

system scaled better than an SCSDN system, its scalability was significantly

poorer than a distributed system which does not share complete network-

wide state with all controllers. Logically centralised systems share more state

with controllers than distributed systems, resulting in decreased scalability.

Moreover, because logically centralised systems need to use strong consistency

mechanisms, these systems suffer from poor performance. For example, strong

consistency delays path changes when implementing TE, implying that the

system is slower to perform TE optimisation. As a consequence of the slower

TE optimisation, the network will experience more congestion and packet loss.

3.4.2 Distributed Single Controller Frameworks

Beehive [100] offers a framework to simplify the process of building MCSDN

systems. The framework converts an SCSDN image (application) into an

MCSDN system by distributing it across multiple controllers. To use Bee-

hive, network operators need to develop applications that run as asynchronous

message handlers. The framework partitions application logic and automat-

ically distributes state between sites. Beehive uses RAFT [68] to implement

a transactional dictionary datastore that the system distributes across multi-

ple controller instances. Beehive’s datastore provides strong consistency and

ensures that a key (from the state dictionary) belongs to a single thread.

Beehive implements a CPLB mechanism that monitors application perfor-

mance (bees) and migrates bees to different clusters (hives) once they become

overloaded. Beehive’s CPLB mechanism improves the system’s scalability by

evenly distributing controller workload. Despite this, CPLB systems delay op-

erations and require strong consistency, which can introduce significant over-

heads when implementing critical network operations such as failure recovery

and TE optimisation (discussed in §3.1).

SCL [70] distributes a single controller image on multiple controller in-

stances, acting as a coordination layer for distributed systems. Different from
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Beehive, SCL uses eventual consistency to reduce state synchronisation over-

heads. SCL’s primary focus is to provide control plane failure resilience. The

controllers interact with specialised agents that maintain network event his-

tory. To ensure eventual awareness of the current topology and data plane

state, SCL controllers exchange gossip messages with other controllers every

second and poll the network agents (switches) every 20s. When a network

agent receives a poll request, it will respond with the switch’s current active

links and installed forwarding rules (data plane state).

A key benefit of using a distributed single controller framework is that they

simplify the development of MCSDN systems because SCSDN images are far

easier to implement. While both Beehive and SCL streamline and automate

the development of MCSDN systems, they introduce five new problems:

1. Distributed single controller frameworks are logically centralised, suffer-

ing from poor scalability and performance. Beehive and SCL use a flat

control plane architecture that requires replication of the global network

state across multiple controller instances. Beehive’s strong consistency

introduces delays when performing reactive operations, decreasing the

system’s performance.

2. Neither SCL nor Beehive supports abstracting the network into areas to

improve scalability and mitigate consistency issues. SCL requires all con-

trollers to connect to every data plane device for resilience. The authors

of Beehive argue that the system supports hierarchical structures by for-

matting datastore keys. While this may be the case, Beehive’s CPLB

mechanism prevents network operators from restricting where the sys-

tem deploys keys and applications. Beehive will automatically migrate

applications to different controllers to improve their performance. A

consequence of the CPLB mechanisms is that it is difficult for network

operators to hide parts of the topology from a particular Beehive con-

troller.
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3. A Beehive datastore key belongs to a single thread at any given point.

Implementing other applications, such as TE, would require coordination

between multiple bees. Because multiple remote devices need to interact,

this can delay TE optimisation, increasing congestion and potentially

packet loss.

4. Beehive implements a control plane load-balancing mechanism which in-

troduces performance overheads when considering deploying the system

on a WAN (discussed in §3.1).

5. SCL suffers from deployability issues as it requires switch modification

to deploy the proxy agent portion of the architecture. Furthermore,

SCL’s consistent probing of the proxy agent logs can increase the control-

channel load, which affects the system’s scalability.

3.4.3 Distributed Multi-Controller Systems

D-SDN [78] is a framework that logically and physically distributes the control

plane, offering an example of a distributed MCSDN system. D-SDN targets

security, allowing deployment in environments where different organisations

manage different network parts. The framework uses a hierarchical control

plane and defines two controller types, secondary controllers (SC) and main

controllers (MC). D-SDN does not provide solutions to coordinate or share

state between applications/controllers. Instead, D-SDN uses the MC as an

authentication layer where SCs contact it to receive authorization to interact

with a set of switches. SCs are independent entities with constrained visibility

that do not coordinate with other SCs to perform inter-area operations.

Orion [30] is a hierarchical MCSDN system that minimises the inter-area

path stretch by sharing node count information with the root controller. The

system does not provide solutions to perform TE optimisation and uses a

restoration-based failure recovery. As discussed in §2.1, using restoration-

based recovery may lead to increased packet loss due to slower recovery time.
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Orion abstracts local controller topology information to reduce the load on the

root controller.

Hua et al. [41] describe a hierarchical MCSDN system that performs

routing and optimisation between different organisations. The system uses

a bottom-up TE optimisation mechanism. The root controller notifies and

waits for local controllers to reassign flows on different paths before performing

inter-area TE. While using a bottom-up TE optimisation mechanism ensures

consistency, it introduces three new problems:

1. The root controller optimises the network after the local controllers com-

plete their TE optimisation. This approach delays inter-area TE, increas-

ing congestion and potentially leading to packet loss if the network’s

usage exceeds its capacity.

2. The TE optimisation mechanism requires controllers to coordinate be-

tween layers, introducing a dependency between devices. If a controller

in the chain fails, the TE optimisation request will not propagate to all

relevant controllers, preventing the system from optimising paths.

3. Performing operations at remote locations raise performance concerns as

latency influences the completion time of TE optimisation.

A second problem with the system presented by Hua et al. [41] is its use

of strong consistency mechanisms. Strong consistency mechanisms delay op-

erations, introducing performance overheads. In comparison, Helix (described

in chapter 5) uses eventual consistency to avoid such overheads and provide

better performance. Helix also does not delay inter-area TE optimisation, al-

lowing the system to detect and resolve congestion faster. Compared to Hua

et al. [41], Helix offers better control plane failure resilience and scalability be-

cause it offloads inter-area TE optimisation to the local controllers. Offloaded

operations provide better performance as they are not affected by communi-

cation latency and better control plane failure resilience as they remove the
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dependency between controllers. If the root controller fails, the Helix local con-

trollers can still perform inter-area TE optimisation, improving the system’s

resilience to controller failures. Furthermore, offloaded operations decrease

the load placed on central remote controllers, improving the system’s ability

to scale to larger topologies.

Implementing a distributed MCSDN system is a promising avenue for de-

ploying TE on WANs. Despite this, existing work has either not considered TE

optimisation (e.g. [78, 30]) or proposed approaches that are computationally

intensive and delay TE optimisation (e.g. [41]).

Comparing the two coordination strategies (logically centralised and dis-

tributed), implementing distributed MCSDN systems provides the most ben-

efits. Distributed systems should use eventual consistency to reduce the over-

heads imposed by strong consistency mechanisms, especially when deploying

the system on a WAN. Applying the previously proposed design choices of

reducing shared state through abstraction and offloading operations closer to

the data plane will mitigate the problems raised by eventual consistency mech-

anisms (discussed in §3.3).

3.5 Conclusion

Despite the interest from the research community, existing MCSDN systems

and approaches present performance, scalability, and resilience concerns. A

critical factor contributing to these limitations is that existing work has con-

sidered the four challenges affecting MCSDN systems in isolation. By not

considering all four challenges, current systems have made design choices that

degrade performance or make deploying TE difficult due to architectural con-

straints (e.g. [70, 100]). Problems are further complicated when considering

deploying the system on WANs, which have high latency between devices re-

quiring extra care to provide adequate forwarding performance and stability.

Moreover, the majority of work in the literature has either: (a) not considered
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TE (e.g. [78, 30, 51, 9]); (b) explored deploying TE on SCSDN architectures

(e.g. [36, 53]); (c) proposed TE approaches that delay optimisation, decreas-

ing performance (e.g. [41]); (d) proposed TE methods that will only work for

specific networks as they target specific metrics/resources that are unavailable

in other topologies (e.g. [23, 43, 99]).

MCSDN systems can overcome the limitations affecting existing work by

applying the following three design choices (discussed further in §4.1)

• Minimises the state shared between controllers and inter-controller mes-

sages by using abstraction.

• Use proactive or offload operations closer to the data plane.

• Avoid using computationally heavy operations.



Chapter 4

Helix: Design & Architecture

This chapter presents the design and architecture of Helix, which, unlike pre-

vious work, offers a complete system for deploying TE on WANs by providing

solutions for all four challenges faced by MCSDN systems (scalability, failure

resilience, consistency, and coordination). Considering all four challenges al-

lows Helix to make design choices that provide good scalability and failure

resilience without sacrificing TE performance.

This chapter is structured as follows. §4.1 presents Helix’s design and

discusses how Helix addresses the four challenges faced by MCSDN system.

§4.2 presents an overview of Helix’s architecture and discusses how the system

implements its design choices. Finally, §4.3 concludes this chapter. Further

on in the thesis, chapter 5 discusses Helix’s implementation in depth.

4.1 Helix Design

Helix applies three design choices to address the limitations identified with

existing MCSDN systems (chapter 3):

1. Helix minimises the state shared between controllers and inter-controller

messages by using abstraction.

2. Helix uses proactive operations and offloads critical reactive tasks to

controllers closer to the data plane devices (switches).
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3. Helix deploys computationally lightweight operations and aims to keep

its design simple.

Scalability: Unlike other MCSDN systems that have implemented CPLB

mechanisms (e.g. [20, 13, 96]), Helix improves its scalability by reducing the

number of messages sent between controllers and decreasing controller work-

load. MCSDN systems encounter scalability problems because of two factors:

(a) Controllers exchange a large number of messages.

(b) The system runs computationally intensive tasks on controllers.

Helix’s design addresses scalability problems by targeting both factors:

First, Helix reduces the number of messages exchanged between controllers

by limiting inter-controller interactions. The Helix architecture defines two

controller types (discussed further in §4.2), local controllers (LCs) and root

controllers (RC). Helix LCs do not communicate with other LCs, reducing

inter-controller messages. In the Helix architecture, the LCs will only exchange

inter-controller messages with the RC, which uses the received information to

compute inter-area paths and perform inter-area TE (if the LCs failed to re-

solve inter-area congestion locally). Helix further reduces the number of inter-

controller messages by abstracting areas as single nodes to reduce the size of

the RC’s topology and the number of metrics the LCs will send to the RC.

§5.6 provides an example that quantifies the reduction in the size of the RC’s

topology when applying Helix’s topology abstraction mechanism. When com-

paring the Helix RC against a centralised TE system such as SMORE [53] and

SWAN [36] on the example network, the Helix topology abstraction mecha-

nism reduces the number of metrics the RC collects (receives from the LCs)

by 94%. Centralised TE systems collect metrics for every link in the topology,

implying that the controller maintains a complete view of the network. In the

case of the Helix RC, the RC will only collect and use metrics related to inter-

area links, reducing the amount of state the RC maintains and the number of

inter-controller messages it receives from other controllers.
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Helix also reduces the number of inter-controller messages by implementing

proactive or offloading operations closer to the data plane devices. Because

proactive/offloaded operations make decisions based on local state, the system

does not need to propagate state changes to remote controllers to execute them,

reducing the number of inter-controller messages and improving the system’s

scalability.

Second, Helix reduces the CPU load on controllers by not using computa-

tionally intensive tasks. For example, related work has proposed dealing with

congestion by formulating and solving the MCF problem (e.g. [36, 99, 41]),

which is computationally intensive. In contrast, Helix’s TE algorithm min-

imises its search space to improve performance and reduces the CPU load gen-

erated on controllers. Moreover, because Helix implements proactive/offloads

operations, the system reduces the load placed on remote controllers [32].

Failure Resilience: Helix uses replication with a single-device coordina-

tion strategy to deal with controller failures. The single-device coordination

strategy ensures consistency within a cluster by restricting state changes and

data plane interaction to a single primary instance. Unlike other MCSDN

systems that use replication (e.g. Onix [50] and Google Orion [25]), Helix in-

stances do not use a role assignment phase to negotiate roles. Instead, Helix

instances assign themselves a role based on ID order such that, in response to

a controller failure, the backup device with the lowest ID will take over the

cluster (discussed in §5.5). By not negotiating roles, Helix can recover from

controller failures faster. In contrast, systems that use a role assignment phase

require instances to exchange multiple messages to elect a new primary device.

In essence, the role assignment phase delays the control plane failure recovery

operation and increases the number of inter-instance messages.

Because Helix uses eventual consistency to share network state between

instances, the system must prevent lost updates during controller failures. For

example, suppose that the primary instance of a controller cluster modified the

forwarding rules of the data plane and subsequently failed. If the failure oc-
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curred prior to the chatter protocol disseminating the performed state change

to the backup instances, the primary instance’s forwarding rule updates are

lost. Once a new primary instance is selected, this device will contain incon-

sistent path information that does not reflect the actually installed data plane

forwarding rules. While this problem seems inherent with eventual consistency

mechanisms, Helix avoids this situation altogether. Unlike other MCSDN sys-

tems [9, 70], Helix instances do not use a chatter protocol to synchronise state

changes. Instead, a Helix instance rebuilds its state from the data plane (or

LCs in the case of the RC) when it becomes the primary instance of a cluster.

Recovering state from the data plane implies that the new primary device is

aware of all state changes, solving the lost update problem.

Consistency: Helix uses eventual consistency mechanisms to share state

between devices. Unlike other MCSDN systems that use eventual consistency

(e.g. ONOS [9] and SCL [70]), Helix provides solutions to mitigate the prob-

lems raised by these mechanisms (state inconsistencies and scalability). The

extent of the problems encountered when using an eventual consistency mech-

anism depends on two factors:

(a) How much state the system shares between devices. Suppose a system

needs to maintain a lot of state on multiple controllers. Because there

is more state to keep in sync, the system will generate more update

messages and thus increase the time it takes for all instances to become

consistent.

(b) How often the system uses the shared state to make decisions. If op-

erations frequently use state synchronised from remote controllers, the

system is more likely to perform decisions based on inconsistent state.

The amount of shared state and its volatility also influence the load gen-

erated by the chatter protocol (increase in inter-device communications).

As the amount of state the system needs to maintain grows, so does the

number of inter-device messages.
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In the Helix architecture, an LC performs decisions based on local state

(metrics and topology). Because Helix LCs are oblivious to other local con-

trollers, the LC’s state is not subject to eventual consistency problems. In the

Helix architecture, only the RC is subject to eventual consistency problems as

the RC performs decisions based on messages it receives from the LCs. Helix

mitigates the problems faced when using eventual consistency for the RC’s

state by targeting the previous two factors.

First, Helix hides a large portion of the network from the RC, reducing the

amount of state the LCs send to the RC (discussed in §4.2). By decreasing

the amount of state maintained and used by the RC, Helix can propagate

state changes quicker, reducing the likelihood that the RC makes decisions

based on inconsistent information. Second, Helix offloads critical reactive op-

erations to the LCs to reduce how often the RC uses the state received from

the LCs to make decisions. The RC offloads inter-area failure recovery and TE

optimisation to the LCs.

While systems such as DIFANE [102], Kandoo [32], TurboEPC [81], and

others [17, 83, 82], have explored offloading path installation and authentica-

tion closer to the data plane to improve scalability and performance, previous

work has not explored offloading inter-area TE. Helix’s offloaded inter-area TE

optimisation uses locally gathered metrics to make decisions, implying that the

operation is not affected by eventual consistency issues. While Helix still im-

plements an RC-based TE optimisation, this operation occurs less frequently

than the offloaded LC operation. §8.3.3 presents an evaluation of Helix’s TE

optimisation, which shows that the LC can resolve the majority of encountered

inter-area congestion without involving the RC.

A potential downside to offloading inter-area TE is the loss of global op-

timality, which can cause controllers to make suboptimal inter-area TE deci-

sions. §8.3.3 discusses the effects of offloading inter-area TE to LCs on TE

performance.

Coordination Strategy: One of Helix’s design choices is to decrease
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the number of messages exchanged between controllers to improve the sys-

tem’s performance and scalability. Helix meets this design choice by using a

distributed control plane coordination strategy (§3.4.3) coupled with various

abstraction mechanisms. A distributed MCSDN system can use abstraction

to reduce the amount of state shared between controllers and decrease the

number of inter-controller messages.

As Helix uses abstraction, a hierarchical system is a natural fit for the

control plane architecture. A hierarchical control plane simplifies inter-instance

coordination as all controllers need to coordinate via a primary controller.

Moreover, a hierarchical control plane enables better scalability because the

system can use multiple layers of controllers to further abstract and divide the

network into smaller components, decreasing the load on controllers.

4.2 Architecture

Figure 4.1 presents an example of Helix’s control plane architecture. Similar

to other hierarchical MCSDN systems such as Espresso [99], TurboEPC [81],

and Google’s Orion [25], Helix separates the networks into multiple areas and

defines two controller types. An area contains a subset of the topology (data

plane) and a cluster of local controllers (control plane). A Helix local controller

(LC) performs local operations and is the only controller type that interacts

with the data plane. Local controllers do not directly communicate or connect

to devices in other areas. For example, LCa instances are not connected to

LCb instances or Tb switches (components of Areab).

The root controller (RC) connects to all LC clusters (areas) and coordinates

inter-area operations such as inter-area routing. The Helix RC is a specialised

version of the LC that does not connect to any data plane device. Instead, the

RC relies on the LCs to perform inter-area topology discovery, install paths

and provide metrics for inter-area TE optimisation.

Area Abstraction: Helix’s first design choice states that the system aims
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Figure 4.1: Example of the components found in Helix’s control plane architec-

ture. Helix divides the network into areas (e.g. Areaa). Each area contains a

subset of the topology and a cluster of local controllers (LCs). LCs connect to

a cluster of root controllers (RC). The RC coordinates inter-area operations.

IALa and IALb are inter-area links.

to reduce the amount of state shared between controllers and the number of

inter-controller messages. Helix implements this design choice by hiding parts

of the network from the RC through abstraction. Helix abstracts areas as single

nodes, only exposing the inter-area links to the RC (discussed in §5.6). Helix’s

topology abstraction mechanism reduces the load on the root controller by

shielding the RC from the majority of topology changes and data plane failure

events. The RC is oblivious to any topology changes that occur within an area.

Moreover, the topology abstraction improves the performance of reactive tasks

because it minimises the frequency of LC-RC communications, freeing up RC

processing time and allowing the root controller to respond quicker to other

events such as inter-area congestion.

Cluster Abstraction: Helix uses abstraction to hide the underlying in-

stances in an LC cluster from the RC, further decreasing inter-controller mes-

sages. For example, the RC is unaware that Areaa contains i + n instances.

The RC does not communicate directly with an instance but instead communi-
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cates with an LC cluster. When the RC sends a request to an LC, all instances

in the cluster receive the message, but only the primary instance processes and

responds to the request. When a local cluster failure occurs, the LCs do not

need to propagate role changes or involve the RC in the recovery process, de-

creasing the number of LC-RC messages. Because Helix deploys instances in

the same cluster, inter-instance latency is low, allowing Helix to aggressively

detect and recover from instance failures, improving failure resilience. In com-

parison, involving the root controller in the recovery operation would delay

failure recovery because inter-controller latency in a WAN will be higher than

the inter-instance latency, reducing Helix’s failure recovery performance.

Offloaded Operations: Helix’s second design choice states that the sys-

tem should use proactive or offload operations closer to the data plane. Helix

implements this design choice by offloading computationally intensive reactive

operations from the RC to the LCs. By offloading operations, Helix improves

its performance because LC-RC communication latency no longer delays com-

pletion time. In the Helix architecture, the RC offloads inter-area data plane

recovery and TE optimisation to the LCs. Both operations involve inter-area

links. An inter-area link joins the data planes of two areas via two border

switches (e.g. IALa connects Ta to Tb).

Two management strategies are available for the LCs when interacting

with an inter-area link. First, the Unidirectional Management (UM) strategy

restricts an LC to interact with a single border switch, allowing the controller

to influence traffic in one direction. In the UM strategy, two neighbouring

LCs perform traffic steering decisions on both ends of the link (i.e. single-

device coordination). Second, the Bidirectional Management (BM) strategy

allows an LC to manage both ends of an inter-area link. The BM strategy

effectively extends the diameter of an area to include both border switches of

the link. By extending the diameter, the BM strategy introduces an overlap in

management, where a border switch has two managing controller clusters (i.e.

multi-device coordination). Figure 4.2a shows an example of the UM strategy,
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Figure 4.2: The two inter-area link (IAL) management strategies. We connect

an LC to one border switch in the Unidirectional Management (UM) Strategy.

We connect an LC to both border switches in the Bidirectional Management

(BM) Strategy. Dashed circles represent the control channel connections (ef-

fective area) and shaded area shows overlap in border switch management.

while 4.2b shows an example of the BM strategy, highlighting the overlap in

management.

The BM strategy allows a Helix LC to influence both inbound (ingress)

and outbound (egress) inter-area traffic. Because an LC can change how traf-

fic enters its area based on local conditions (congestion on upstream links),

the LC can make better TE decisions, improving inter-area TE optimisation

performance. Despite this benefit, the BM strategy raises two problems:

• It deploys a multi-device coordination strategy between LCs. Due to

the overlap in management, the neighbouring LCs need to coordinate

to ensure coherent traffic steering decisions and prevent overwriting or

installing competing forwarding rules. As such, the BM strategy requires

strong consistency, decreasing scalability and introducing performance

overheads (discussed in §3.4).

• It does not fully resolve the management problems raised by the UM

strategy. Instead, the BM strategy moves the issue further into the
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neighbouring area’s topology by effectively increasing an area’s diameter.

For example, LCa cannot influence the traffic arriving at b, implying that

the two switches adjacent to b are effectively border switches.

Because the BM strategy presents two new problems, Helix uses the UM

strategy. Using the UM strategy implies that Helix cannot address all inter-

area congestion locally. The LCs perform inter-area TE without upstream

congestion information. A controller may be unaware that a particular path

change would cause congestion in another area (upstream). To resolve this

limitation, Helix implements an RC-based TE optimisation. The RC’s TE

optimisation is triggered when an LC fails to address congestion on an inter-

area link. Once the RC receives an optimisation request from an LC, it will

modify the installed inter-area paths to avoid using a congested area. Because

the RC has visibility over all inter-area links, it can reroute traffic away from

the congested links, avoiding the limitation of the offloaded TE operation.

4.3 Summary and Discussion

By using abstraction, offloading operations closer to the data plane, and not

executing computationally intensive operations on controllers, Helix aims to

improve its performance, scalability and failure resilience.

Helix’s topology abstraction hides a significant portion of the network from

the RC, decreasing the number of inter-controller messages and thus improving

Helix’s scalability. Moreover, the used topology abstraction mechanism also

reduces the number of metrics and links considered when performing inter-

area operations such as computing paths and performing TE optimisation,

decreasing the computational load these operations place on the RC.

Using offloaded or proactive operations provide Helix with four benefits:

1. They have better performance as the system executes the operation lo-

cally, implying that inter-device latency no longer affects completion

time. Because latency no longer affects the completion time, offloaded
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operations are beneficial when deploying the system on WANs, as these

network types have higher inter-device latency.

2. Offloaded operations benefit scalability because they reduce the load on

remote controllers as a central entity does not make decisions.

3. Offloaded operations are not subject to state inconsistency problems as

they make decisions using locally collected state. Moreover, by offloading

operations from the RC to the LC, Helix reduces how often the RC

uses the state received from the LCs to make decisions, decreasing the

system’s chances of making decisions based on inconsistent state.

4. Offloaded operations improve the system’s failure resilience by removing

dependencies between controllers. For example, if all RC instances have

failed, the LCs can still forward traffic, respond to data plane failures

and resolve most inter-area congestion locally.

A potential issue with offloading operations is loss of global visibility, which

can lead to suboptimal decisions (discussed in §10.2).



Chapter 5

Helix: Implementation

This chapter discusses Helix’s implementation in depth. Figure 5.1 presents

a diagram outlining the modules of the Helix local (LC) and root (RC) con-

trollers. The following sections will discuss each module of the controllers.

The Helix LC uses Ryu [75], a Python OpenFlow framework. The LC

connects to and interacts with switches to perform topology discovery, install

paths, collect metrics, and perform TE optimisation. The modules of the LC

are as follows: The topology discovery module (§5.1) detects the local topology

and inter-area links. The path computation module (§5.2) uses the discovered

topology to compute and install paths. The TE module (§5.3) is used to detect

and address local and inter-area congestion. The leader election module (§5.5)

performs instance discovery, failure detection, and instance failure recovery

within an LC or RC controller cluster. The inter-controller communication

module (§5.4) allows instances and controllers to communicate.

The Helix RC is implemented as a standalone Python application. The

RC modules are as follows: The RC topology module (§5.6) stores the topology

information the RC receives from the LCs. The path computation module (§5.7)

uses the received topology information to compute inter-area paths. The TE

module (§5.8) performs inter-area TE optimisation if the LCs fail to resolve

inter-area congestion locally.

The complete Helix system is implemented in Python and contains 7,000
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Figure 5.1: Diagram showing modules (rounded squares) of the Helix con-

trollers (squares). The LC connects to and interacts with the data plane.

The RC does not connect to the data plane, relying on the LCs to provide

information. The LC and RC share several modules and have similar designs.

lines of code divided across 12 Python modules. Along with the Helix system,

we developed a comprehensive testing suite that combines multiple unit tests,

integration tests and emulation-based black-box tests that span 6,700 lines of

Python code. We make all our code, testing suites, and emulation frameworks

available at [1, 2].

5.1 Topology Discovery

The topology discovery module of an LC detects the local area topology by

flooding Link Layer Discovery Protocol (LLDP) packets on the data plane. The

topology discovery module installs special flow rules on switches connected to

the LC. These flow rules instruct a switch to send any received LLDP packets

to the controller using an OpenFlow packet-in message. The LC’s topology

discovery module will generate and flood LLDP packets on the data plane at

predetermined intervals. The generated LLDP packets contain a switch’s data

path ID (e.g. A) and port number (A1), identifying one end of a link. The

module establishes the details of the other end (e.g. port A1 of A connects

to port B1 of B) from the metadata of the packet-in message the LC received

from a switch.
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The module detects topology changes by utilising the LLDP packets as

keep-alive or heartbeat messages. If a particular port does not generate an

LLDP packet within a timeout interval, the module considers the port has

failed. Because Helix recovers from data plane failures using protection-based

recovery, Helix only uses the timeout mechanism to update its topology and

perform path optimisation (§5.2).

Inter-Area Topology Discovery: The LLDP packet flooding mecha-

nism does not distinguish between a local and an inter-area port. Inevitably,

the flooding process will generate and send LLDP packets between areas.

When an LC receives an LLDP packet from an unknown source switch, it

identifies the corresponding link as an inter-area connection. The module

leverages its flooding behaviour to perform inter-area topology discovery with-

out requiring a new mechanism, maintaining Helix’s design simplicity.

When the module detects a new inter-area link, it will send an unknown

neighbour request to the RC. The RC effectively uses the unknown neighbour

request messages to discover the inter-area topology. The LC ensures that the

RC eventually receives any unknown neighbour request messages (deals with

failures) by implementing a retransmission on timeout mechanism. If the RC

does not respond to the LC’s unknown neighbour request within a timeframe,

the module will retransmit the message. The timeout mechanism ensures that

the RC is eventually aware of the discovered inter-area topology.

The LC’s topology discovery module detects inter-area link failures and

topology changes using the standard LLDP timeout mechanism. When the

module detects that an inter-area link has failed, it will notify the RC to

update its topology and optimise the installed inter-area paths. Helix uses its

standard protection-based mechanism to recover from inter-area link failures

without waiting for the RC to intervene.

LLDP Mechanism Impact on Network: The LC topology discovery

module’s LLDP packet flood interval (send rate) is user configurable. By

default, the module uses a packet send rate (τlldp) of 0.4s. This value of τlldp
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implies that an LC will flood 2.5 LLDP packets per second on every port of

every data plane device it manages. Helix’s topology discovery module has

a negligible impact on the network, using a very small amount of the data

plane’s capacity. The size of each flooded LLDP packet is roughly 568 bits

which implies that the topology discovery mechanism will send 1,240 bits per

second of traffic on every link in the network. Assuming that a particular link

has a capacity of 1 gigabit, the topology discovery module will use 0.000142%

of its capacity. Even if τlldp is decreased to 0.1s (4x decrease), the module will

only use 0.000568% of the link’s capacity.

5.2 Path Computation and Protection

The LC path computation module computes and installs paths onto the data

plane. Helix uses protection recovery to deal with data plane failures.

The module deploys protection recovery by pre-installing multiple paths

onto the data plane. Algorithm 5.1 describes how the module computes paths.

For every source-destination pair in the area, the module generates two min-

imally overlapping paths (Pprim and Psec) and a set of path splices (Psplices)

using Dijkstra’s algorithm [18]. The path computation algorithm generates

minimally overlapping paths through link weight manipulation by setting the

weights of links used in Pprim to large values (lines 5-7) and computing a new

path (Psec, line 8) between SRC and DST . Because the links of Pprim have

large weights, the algorithm will avoid using these links when generating Psec,

producing a minimally overlapping path. Finally, the algorithm computes a

path splice for every unique node in Pprim to every unique node in Psec and

vice-versa (lines 9-10). Path splices allow Helix to tolerate simultaneous fail-

ures by offering switches a detour between paths.

An essential aspect that network operators need to consider when using

protection recovery is protection coverage. Protection coverage specifies the

degree of availability or number of alternative ports that a switch can use to
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Algorithm 5.1: Local controller path computation algorithm
Input : Local controller topology T
Input : Path source-destination pair (SRC, DST )
Result: Set of paths to use to forward traffic from node SRC to DST

1 Function computePath(T , SRC, DST ) begin
2 Psplices ← list()
3 T ′ ← T.copy() // Make a copy of the topology
4 Pprim ← T ′.dijkstra(SRC,DST ) // Compute the shortest path
5 foreach L ∈ Pprim do
6 L.cost← intmax // Set link cost to a large value
7 end foreach
8 Psec ← T ′.dijkstra(SRC,DST )

// Compute path splices between unique nodes in Pprim and Psec

9 Psplices.extend(computeSplice(T, Pprim, Psec))
10 Psplices.extend(computeSplice(T, Psec, Pprim))

11 return (Pprim, Psec, Psplices)

12 end function

13 Function computeSplice(T , Pa, Pb) begin
14 Psplices ← list()
15 foreach a ∈ unique(Pa) do
16 Ptmp ← list()
17 foreach b ∈ unique(Pb) do
18 Psp ← T ′.dijkstra(a, b)
19 Ptmp.append(Psp)

20 end foreach
21 Psp ← best(Ptmp) // Select shortest overall path
22 Psplices.append(Psp)

23 end foreach
24 return Psplices

25 end function

divert traffic away from a failure. Improving protection coverage benefits the

system’s failure resilience, as a switch is more likely to resolve failures without

involving the controller. A näıve approach to increase protection coverage is

to compute backup paths for every possible link failure in the topology (e.g.

[59]). While this approach improves protection coverage, it increases path

computation time, TCAM memory requirements, and load on controllers as

the system computes more paths.

In contrast, computing minimally overlapping paths and a set of path

splices cover more links in the topology, thus tolerating more link failures.

Unlike the näıve approach, using path splices allow Helix to tolerate simulta-

neous link failures. Moreover, because Helix computes a path splice only for

unique nodes in Pprim or Psec, it is more likely that Helix will install fewer

paths, requiring less TCAM memory compared to the näıve approach.

Figure 5.2 presents an example of the paths computed by the algorithm.

In the example, Pprim is denoted by blue arrows and Psec by red arrows. The

algorithm will generate and install two splices (black arrows). The algorithm
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Figure 5.2: Example of paths computed by Helix local controller between nodes

SRC and DST . Blue arrows denote the primary path, red dashed arrows the

secondary, and dotted black arrows the path splices.

also computed {SW5, SW3} as a potential path splice but did not install it

because the path splice overlaps with (Psec).

When a failure occurs, the switch adjacent to the failed link will reroute the

traffic via an alternative port. For example, suppose that links a and b fail. In

this situation, SW1 detects that link a has failed and redirects traffic towards

SW4 (Psec). Likewise, SW4 detects that link b has failed and redirects traffic

using a path splice towards SW2 (Pprim). In essence, traffic from SRC to

DST will use path {SW1, SW4, SW2, SW3}.

A limitation of protection recovery and Helix’s path splice mechanism is

optimality. If the network topology changes, the computed protection paths

may no longer provide the shortest route to the destination. Moreover, He-

lix may inadvertently reroute packets on longer than necessary paths when

switches use a path splice to avoid a failed link. Helix addresses the first is-

sue through a reactive path re-optimisation process. When the LC detects a

topology change, the path computation module ensures the installed protection

paths still provide the shortest route to the destination. Helix also optimises

path splices by generating multiple potential splices for every unique node in

the first path (Pa) to every node in the secondary path (Pb, lines 15-20) and

applying selection criteria. The algorithm installs the shortest splice (from the

potential splices) that intersects with Pb closest to DST (line 21). In other

words, the selection criteria aim to minimise the overall length of paths and
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ensure that a splice always moves traffic closer to the destination.

The module deploys the protection mechanism by translating the paths

into a list of ports for each switch and installing them into the data plane

using fast-failover groups. A fast-failover group provides an ordered list of

ports, where a switch forwards traffic using the first active port from the list.

5.3 Local Controller TE Optimisation

The LC TE optimisation module uses active measurement to target the TE

optimisation goal of congestion minimisation. The TE optimisation module

monitors bidirectional link usage on the topology by querying switches within

an area for port and flow statistics. The module uses port statistics (averaged

over the poll interval length) to determine when a particular link is congested

and flow statistics from the ingress switches to determine how much traffic

each source-destination pair (candidate) is sending.

The module considers a link as congested when its transmission rate exceeds

a user-configurable threshold (TEthreshold). The module reduces the load on

a congested link by modifying the installed candidate paths to divert traffic

away from the overutilised link. Helix’s TE optimisation algorithm modifies

candidate paths by performing a Constrained Shortest Path First (CSPF)

prune of the topology and recomputing candidate paths. The algorithm uses

the candidate send rates (flow statistics) to determine how much traffic the

algorithm needs to move away from the overutilised link.

Every τstats (poll) interval, the LC sends statistics requests to every con-

nected switch, which causes the switches to send flow and port statistics to

the LC. When a response is received, the module calculates a port’s send rate

(txrate) based on the amount of traffic forwarded by the port during the poll

interval. A port is congested if its txrate exceeds the TEthreshold. If the port

is congested, the module saves its details and schedules a TE optimisation

consolidation period to group multiple optimisation tasks into a single update
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Algorithm 5.2: Local controller TE optimisation algorithm

1 Function CSPFPrune(T , con, cpath, cusage) begin
2 T.remove(con) // Prune topology of congested link
3 foreach p ∈ T do
4 usage← p.txrate // Get current usage on port
5 if p /∈ cpath then usage← (usage+ cusage) ;
6 if usage > TEthreshold then T.remove(p) ;

7 end foreach

8 end function

9 Function optimisePort(T , con) begin
10 fix← list()
11 candidates← getCandidates(con)
12 candidates.sort(∀c ∈ candidates, sortby : c.usage)
13 conusage ← rebuildUsage(candidates, con)
14 T ′ ← T.copy()
15 foreach c ∈ candidates do
16 if conusage ≤ TEthreshold then break;

17 Ttmp ← T ′.copy()
18 CSPFPrune(Ttmp, con, c.path, c.usage)
19 newp ← recomputePath(Ttmp, c)

20 if |newp| > 0 then
21 fix.add((c, newp))
22 conrate ← conrate − c.usage // Subtract candidate send rate

23 updateUsage(T ′, c, newp) // Update stats to reflect new candidate path

24 end if

25 end foreach

26 if |fix| > 0 & conusage ≤ TEthreshold then
// Found a valid solution. Apply path changes and update link usages

27 applyF ix(fix, T )

28 end if

29 end function

request, decreasing the number of path changes Helix performs. After the

consolidation period timer has elapsed, the module executes algorithm 5.2.

The algorithm iterates through all congested ports and attempts to resolve

congestion by altering candidate paths to avoid using the port (optimisePort(),

line 9). The algorithm will first generate a list of candidates that utilise the

port (line 11), sorted by port usage (line 12). Next, the algorithm calculates

the port’s actual congestion rate as the sum of all candidate usage rates (line

13). Rebuilding the port’s usage rate is essential to ensure that the algorithm

resolves the detected congestion by moving sufficient traffic away, thus reduc-

ing the chances of a re-optimisation trigger occurring during the next poll

interval. The initial port usage rate the module calculated from the statistics

reply may not reflect the total traffic candidates are trying to send over the

port. A port’s actual potential usage (recomputed) can exceed its capacity.

Next, the algorithm iterates over all candidates in the sorted set, stopping

once the port is no longer congested (conusage < TEthreshold). For every candi-
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date, the algorithm will prune unsuitable links (CSPFPrune(), line 1) from

an object containing a copy of the topology (Ttmp). The algorithm’s CSPF

pruning operation removes any links in Ttmp that are congested or do not have

sufficient spare capacity to carry the candidate’s traffic (lines 5-6). Suppose

that the current candidate does not use a particular link from the topology.

If moving the candidate’s traffic to that link introduces new congestion, the

algorithm removes the link from the topology object. The CSPF prune func-

tion ensures that the new candidate paths do not introduce new congestion in

the network. This check prevents the algorithm from shifting traffic back and

forth between links (flapping), which affects the system’s forwarding stability,

actively disrupting the flow of packets and causing packet reordering to occur.

The algorithm will use the pruned topology object to compute a new path

for the current candidate (newp, line 19). If newp is valid, the algorithm adds it

to the potential solution path list (fix). Next, the algorithm adjusts conusage

by subtracting the current candidate’s send rate (line 22) and updates the

topology link usage rates to reflect the new candidate path (line 23).

After the algorithm has considered all candidates of an overutilised port,

or if the port is no longer congested, the algorithm checks if the potential

solution set (fix) is valid. If fix is not empty and the final conusage is under

the TEthreshold, the algorithm applies the found solution (lines 26-28).

Candidate Sort Order & Partial Solutions: Helix provides two ad-

ditional features (controlled by the user) that influence how the algorithm

optimises the network. The first feature allows users to specify if the algo-

rithm should reverse sort candidates. By default, the algorithm sorts the list

of candidates for a port in descending order. Sorting candidates in descend-

ing order implies that the algorithm considers heavy-hitters first (candidates

generating the most traffic). In contrast, when the algorithm performs a re-

verse sort, it will consider heavy-hitter candidates last, decreasing its chances

of modifying these candidate paths and prioritising their forwarding stability.

The second feature is whether or not to accept partial solutions. Suppose
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that an area of the topology has limited spare capacity and observes a signifi-

cant increase in traffic volume. Let us assume that a link’s conusage exceeds its

capacity causing congestion loss to occur. If the algorithm can reduce conusage

under the link’s capacity but not under the TEthreshold, the algorithm will not

apply any path changes despite being able to reduce some of the experienced

congestion. Helix allows the algorithm to deploy partial solutions to address

this scenario. Helix defines a partial solution as a set of potential path changes

that do not fully address congestion but yield an improvement. In essence, if

a set of new candidate paths do not reduce conusage under TEthreshold but

would overall reduce congestion across the network, the algorithm applies the

candidate path modifications. We introduce support for partial solutions by

changing the algorithm’s acceptance criteria and the CSPF prune method be-

haviour to allow using links over TEthreshold but under their capacity. Helix’s

default behaviour is to accept partial solutions (attribute set to true).

Configuration Attributes: The TE optimisation module provides two

user-configurable attributes that control how frequently Helix will collect statis-

tics from the network (τstats) and the amount of spare capacity to reserve on

links (TEthreshold). First, τstats defines how long Helix will wait between sub-

sequent poll intervals. In effect, τstats controls how often Helix will check for

and resolve congestion in the network. A network operator can use τstats to

define how aggressive they wish Helix’s TE optimisation algorithm to be. For

example, setting τstats to 60s implies that Helix will resolve congestion in the

network every minute. Second, TEthreshold indicates the amount of spare ca-

pacity (headroom) Helix’s TE algorithm will reserve on a link. A network

operator can use the TEthreshold value to define how much of the topologies ca-

pacity is reserved to handle unexpected traffic peaks. By default, Helix defines

TEthreshold as 90%, reserving 10% headroom on links.

When deciding on values for both TE attributes, network operators should

ensure that the used values do not make the TE algorithm too aggressive.

For example, using a low τstats value will cause the TE algorithm to no longer
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average-out short peaks in traffic rates, causing Helix to over-optimise the

network, leading to decreased forwarding stability. Suppose that a network

operator configured Helix to reserve 30% headroom (TEthreshold set to 70%)

and defined τstats as 1 second. Let us assume that under normal circumstances,

a particular link (linka) has low utilisation under the defined TEthreshold value.

Next, suppose that the network is experiencing a 1-second burst in traffic

that increases the utilisation of linka over TEthreshold (e.g. 75% usage rate).

Due to the small value assigned to τstats, Helix will consider linka congested

despite linka returning to low utilisation during the next poll interval. By

checking for congestion too aggressively, Helix will decrease its forwarding

stability, disrupting the flow of in-flight packets by causing packet reordering

in the network. In comparison, setting TEthreshold to 60s will promote better

forwarding stability because Helix will not consider linka as congested (the

peak only occurs for 1-second). As a result, both attributes should be assigned

a large enough value to allow the TE algorithm to ignore short-lived peaks in

traffic send rates, promoting better forwarding stability.

5.4 Inter-Controller Communications

The inter-controller communication module allows Helix controllers and in-

stances to share and receive information from other devices. Helix controllers

communicate via messages using the Advanced Message Queuing Protocol

(AMQP) [65] with a publish-and-subscribe model. The Helix publish-and-

subscribe model groups messages into channels based on a routing key. Each

routing key conveys specific information about a relevant topic (e.g. local con-

troller topology information). Helix controllers (subscribers) register to receive

messages on a set of channels (create bindings), depending on the information

they require. Controllers (publishers) will communicate with a device by send-

ing a message with a specific routing key. The AMQP broker uses the routing

key to forward messages to all subscribers of a channel.
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Helix uses a hierarchical routing key syntax to identify a receiving layer

of the control plane and the shared information type. Helix structures the

routing keys to enforce the natural restrictions introduced by the architecture.

For example, the Helix architecture limits the interaction of the root controller

with local controller instances. The RC communicates with a cluster of LC

instances (area), and not a particular device. As a result, all LC instances

operating in a cluster register to receive messages on an area channel (identified

by the area’s ID) and broadcast channel for all local controllers.

5.5 Leader Election Module

The leader election module allows Helix controllers to perform instance failure

detection, discovery, and failure recovery. This section starts by discussing the

leader election module in-depth and concludes by presenting several examples

to illustrate the Helix leader election process.

Failure Detection: Helix uses a keep-alive mechanism to detect instance

failures. The leader election module broadcasts a keep-alive message (heart-

beat) within its cluster every keep-alive interval (τk seconds). The module

keeps track of keep-alive messages it has received from other devices and con-

siders that an instance has failed if several consecutive heartbeats are missing.

The leader election module will declare a heartbeat missing if it has not re-

ceived the message within τtimeout seconds of a keep-alive broadcast interval.

Helix defines τtimeout as half the value of τk.

Instance Discovery: On startup, the leader election module will enter

an initiation phase. During this phase, the module broadcasts a find message

within the cluster to discover other active instances. The initiation phase

allows the module sufficient time to detect active instances before deciding

its role, thus preventing unnecessary role change and state rebuild operations.

The initiation phase lasts for τinit seconds. Helix defines τinit as half the value

of τk. When a controller instance receives a find message, it will immediately
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reset its internal keep-alive timer and respond with a keep-alive message that

advertises its current role. This operation effectively synchronises the keep-

alive intervals of all active devices within a cluster, allowing for more aggressive

instance failure detection.

After the initiation phase has terminated, the leader election module will

either: (a) assign itself a backup role if the module detected a primary device

within the cluster; or (b) assign itself a primary role if the module did not

discover another primary device.

Failure Recovery: The leader election module responds to instance fail-

ures in two ways. First, if a backup instance fails, the module removes the

device from its list of active cluster devices. Second, if the primary device fails,

the module enters the role reassignment phase. In the role reassignment phase,

the leader election module will compare its instance ID against the IDs of the

other active devices in the cluster. If the module has the lowest ID, it will

promote itself to the primary device, taking control of the cluster. Without

intervention, the other active backup devices will perform the same ID check

and modify their roles accordingly.

Attribute Configuration: All Helix attributes are user-configurable. A

network administrator should configure Helix’s timeout attributes based on

network conditions. For example, τk must account for communication delays

between Helix instances. If τk does not account for communication latency,

the leader election module may incorrectly consider that a controller instance

has failed (false positive failure detection). False positive failure detection

events will generate unnecessary role change and state rebuild operations, thus

increasing control channel load.

A network administrator should measure the maximum round-trip-time

(RTT) between instances in a cluster and use this as a minimum value for τk.

We configured τk to 1 second, and implicitly τtimeout and τinit to 0.5s, for the

control plane failure experiments described in chapter 7.
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Figure 5.3: Timeline diagram showing an example of messages exchanged by

the leader election module. In the initiation phase (τinit) an instance will

broadcast a find message to discover other active devices within a cluster.

5.5.1 Example: Instance Discovery

Figure 5.3 presents an example timeline showing an instance (i2) starting up

and joining a cluster that contains another active Helix controller instance (i1).

We separated the timeline into four-keep alive intervals (τk1 to τk4).

In the example, i2 is started during τk2. Once started, i2 will enter its

initiation phase by broadcasting a find message within the cluster. i2’s find

message will be received by i1 during the second keep-alive interval (τk2). In re-

sponse to receiving i2’s message, i1 will reset its keep-alive timer and broadcast

a keep-alive message within the cluster. The broadcasted keep-alive message

will tell i2 that the cluster currently contains another instance (i1). In essence,

the broadcasted find message forces the cluster to enter a new keep-alive in-

terval (τk3). After i2’s initiation period has elapsed (after τinit seconds), i2 will

assign itself a backup role. Both i1 and i2 will continue to broadcast keep-alive

messages every τk seconds.

5.5.2 Example: Failure Detection and Recovery

Figure 5.4 presents an example timeline showing the failure detection process

of the leader election module. i1 and i2 are active at the start of the example.

In the example, i1 will fail during τk2. During the next keep-alive interval

(τk3), i2 detects that i1 has failed after i1’s keep-alive message is not received

within τtimeout seconds of the τk3 timer trigger. After detecting that the i1 has
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Figure 5.4: Timeline diagram showing the instance failure detection process

used by Helix. The leader election module expects to receive a keep-alive

message from another instance within τtimeout seconds. If the module does not

receive a keep-alive message, it assumes an instance has failed.

failed, i2 will enter the role reassignment phase. i2 will compare its instance

ID against the other active device in the cluster. In the example, i2 is the only

active device in the cluster and, as such, will modify its role to take it over.

To better illustrate Helix’s role assignment process, suppose that in the

example outlined in figure 5.4 we have a second instance (i3) active during

τk3. Both i2 and i3 detect that i1 has failed at similar times (due to the timer

synchronisation process). Because i2’s ID is lower than i3’s, i2 will take over

the cluster while i3 remains a backup device.

In the event of a cascading failure where i2 fails after taking over the cluster

(during τk3), i3 will detect the failure of i2 and recover during the next keep-

alive interval (τk4). While the cluster is unmanaged (does not have an active

primary instance), Helix will continue to forward packets and respond to data

plane failures. An unmanaged Helix cluster will, however, lose the ability to

perform reactive operations (e.g. TE optimisation). Because Helix executes

reactive operations infrequently and at a different time scale than instance

failure recovery (instance failure recovery occurs more frequently), the effect

of a cluster becoming unmanaged has minimal impact on performance.

5.6 Root Controller Topology

The RC relies on the local controllers (LCs) to discover the inter-area topology.

Helix reduces inter-controller communications and mitigates consistency issues
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by limiting the state shared with the RC through abstraction. The LCs provide

the RC with a set of hosts (LChost) and a set of switches (LCsw) operating

within their area. The RC uses LChost to compute inter-area paths and LCsw

to map an unknown border switch to a particular area. While we refer to

the contents of LChost as host nodes, these objects can be generalised to any

source/destination node. We do not need to tell Helix of every individual

host device in the network but instead provide the system with a source or

destination for traffic. For example, a host in the Helix system can represent a

group of devices connected by a non-SDN switch or any other routing protocol.

We can also apply this principle to enable Helix to route traffic on the internet

between organisations by considering an organisation as a single host node.

Both LCsw and LChost do not change frequently and as such do not re-

quire consistent synchronisation. When an LC detects an inter-area topology

change, it will send a topology update message to the RC. The topology up-

date message contains the corresponding LChost, LCsw and the set of already

known inter-area links (LCial). The LCs encode an inter-area link as a tuple

consisting of the source switch, source port number, destination switch and

the link’s capacity (speed).

Figure 5.5 presents an example network topology (figure 5.5a) and the

corresponding RC abstracted topology (figure 5.5b). The example topology

contains three areas, Areaa, Areab and Areac. A corresponding local controller

manages each area (e.g. Areaa is managed by LCa). The three LCs provide

the RC with topology information. For example, when LCb first starts up,

it will send a discovery message to the RC. The discovery message contains

the controller’s configuration attributes (e.g. TE threshold value) and area-ID.

Once LCb has discovered its topology, it will send its host (LChost = {H2, H3})

and switch (LCsw = {SW10, SW11, SWb3}) lists to the RC.

After receiving the discovery message from LCb, the RC will save the new

controller information in its active LC list and add a node representing the

area to its topology graph (e.g. Areab). From the received topology messages,
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Figure 5.5: (a) Example network topology. Switches (grey) are labelled SW .

Border switches (red) are labelled SWb. (b) The abstracted root controller

topology for the example network. The root controller preserves the border

switches and abstracts other devices in an area as a single node. Dashed links

represent virtual connections which may not exist in the original topology.

the RC adds the hosts from LChost to the topology graph, attaching them to

the area node using a virtual link. A virtual link represents a connection that

does not reflect a physical data plane link.

The RC does not add LCsw to its topology graph and instead uses LCsw to

respond to unknown neighbour requests it receives from the LCs. For exam-

ple, LCa detects the inter-area link SWb1 − SWb5 and sends a corresponding

unknown neighbour request to the RC. The RC consults its saved LCsw lists

and responds to the LC’s request by telling the controller that SWb5 belongs

to Areab. The LC saves the resolved neighbour information to allow the RC

to rebuild its state after recovering from a control plane failure. The LCs do

not use the resolved neighbour information to route traffic.

The RC discovers inter-area links via the LC’s unknown neighbour request

message. The LC’s request contains the local border switch information (e.g.

SWb1 port a) and the unknown destination border switch (e.g. SWb5). The

RC will add the two border switches to its topology graph and connect them
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to their respective area nodes using a virtual link. Finally, the RC adds a

physical link between the border switches for the newly discovered inter-area

connection. An RC physical link reflects the actual data plane connection,

containing the correct ports joining the two areas on each device.

To evaluate the reduction in the RC’s topology size offered by Helix’s topol-

ogy abstraction, we will compare the size of the RC and complete network

topology outlined in figure 5.5. Helix’s RC topology abstraction has reduced:

• the number of nodes by 39% (8 to 11 nodes)

• the number of links by 62% (29 to 11 links)

• the number of objects by 53% (47 to 22 objects)

Despite using a small topology for the example, Helix’s topology abstrac-

tion has reduced the RC’s topology graph by more than half. This reduction

will grow when deploying Helix on a larger and more complex network. More-

over, most of the links in the RC’s topology are virtual links. In essence,

Helix’s abstraction has decreased the topology by 94% (from 47 links and

switches down to 3 inter-area links). The LCs only send messages to the RC

related to the inter-area links. As a result, the abstraction significantly reduces

the number of metrics and messages the LCs send to the RC.

5.7 Root Controller Path Computation

The root controller’s path computation module computes inter-area paths. Us-

ing a distributed path computation system was a potential approach for Helix

to install inter-area paths. While using distributed path computation systems

such as ParaCon [72], Sparc [58] and HiDCoP [90] would have enabled this

functionality, such systems introduce several problems. Distributed path com-

putation systems share connectivity matrices (e.g. Bellman-Ford link weight

matrix) or complete network state and, as such, were not suitable for use with
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Helix. Moreover, these systems require strong consistency, which decreases

performance by delaying operations (§3.3).

Helix’s inter-area path computation approach differs from distributed path

computation systems. The RC performs four steps to install inter-area paths:

1. The RC’s path computation module uses the abstract topology to com-

pute abstract paths for inter-area source-destination pairs.

2. The module divides the paths into instructions for each LC, advising the

controller which inter-area link to use when forwarding inter-area traffic.

3. The RC sends the instructions to each LC.

4. The LCs use the instructions to compute and deploy an inter-area path

segment onto the area’s data plane.

After receiving the topology information from the LCs, the RC schedules

a path consolidation period to group multiple topology changes into a single

inter-area path update. Once the consolidation timer has elapsed, the module

uses algorithm 5.1 (§5.2) to compute abstract paths for every inter-area source-

destination pair. Unlike the LC, the RC will not compute path splices and

instead only computes two minimally overlapping paths. The RC provides the

LCs with two paths per source-destination pair to allow the LCs to deploy

protection recovery and perform inter-area TE optimisation locally.

Figure 5.6 presents an example of Helix’s inter-area path computation pro-

cess. The RC computes a primary path between H1 and H2 (solid red arrow,

figure 5.6a). Next, the RC uses the link manipulation technique to compute

a minimally overlapping secondary path (blue arrows, figure 5.6b). After the

module computes the two paths, the RC will separate the paths into instruc-

tions that the RC sends to each LC to process and install. For example, LCa

will receive two instructions that specify that traffic originating at H1 can use

the inter-area links SWb1 − SWb5 (primary) or SWb2 − SWb3 (backup) as

egress points to reach H2.
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Figure 5.6: Example of a path the root controller (RC) computes for two inter-

area source-destination pairs (H1 - H2). (a) First, the RC computes a primary

path Pprim for the source-destination pair (solid red arrow). (b) Next, The RC

changes the cost of links in Pprim to large values and recomputes the path

(Psec). Psec is a minimally overlapping backup path (solid blue arrow with a

square cap). Finally, the RC converts Pprim and Psec into a set of instructions,

which it sends to each relevant local controller (LC). (c) The LCs process the

received instructions. Each LC will install a path segment onto the area’s data

plane. The LC computes a primary (solid arrow), backup (dashed arrows), and

a set of path splices using the standard Helix protection mechanism.
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Figure 5.6c shows an example of the path segments computed by the LCs

from the RC’s instructions. The LCs use the standard protection mechanism

described in §5.2 to compute and install a primary path (solid-line arrow fig-

ure), secondary path (dashed-line arrow), and a set of splices (not shown on

the figure) for every received inter-area instruction. The figure colour codes

the paths to match the received instructions. For example, the figure shows the

paths generated from the primary instruction by LCa as red arrows (solid for

primary and dashed for backup locally computed paths) and the secondary as

blue arrows. In the example, LCa will install the start segment of the inter-area

path in Areaa (contains the source), LCb installs the destination segment in

Areab (contains the destination), and LCc installs a transit segment in Areac

(contains neither the source nor the destination).

Protection Coverage: As discussed in §5.2, protection coverage is an

essential factor to consider when deploying protection recovery. To increase

protection coverage, the RC can compute more backup paths for each source-

destination pair. The RC path computation module can reuse the link manipu-

lation technique from algorithm 5.1 to generate multiple minimally overlapping

backup paths for each inter-area pair. The RC can produce an exhaustive set

of inter-area paths by generating backup paths until they are no longer unique

(i.e. the new path has already been computed). When increasing the number

of paths, a factor to consider is TCAM table space. Switches have limited

TCAM memory, constraining the number of paths we can deploy.

5.8 Inter-Area TE

Helix implements two inter-area TE optimisation mechanisms. First, Helix

offloads inter-area TE from the RC to the LCs. LCs can independently resolve

inter-area congestion by changing how inter-area traffic transits their area.

Second, if the offloaded LC operation fails, the LC can request a root controller

TE optimisation. The RC’s TE optimisation modifies inter-area paths based
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on global metrics the RC receives from the LCs.

LC Inter-Area TE: The LCs perform inter-area TE optimisation using

the method outlined in §5.3. In addition to monitoring internal links, an LC

monitors the usage of its inter-area links to detect when they are congested.

When the LC detects that an inter-area link is congested, the LC applies

algorithm 5.2 to modify inter-area candidates to avoid using the overutilised

link. For inter-area link congestion, the LC diverts an inter-area candidate’s

traffic to a backup path. The LC will not distinguish between local and inter-

area candidates when optimising internal links. There are, however, three

subtle differences when the LC’s TE optimisation module addresses inter-area

congestion. First, the module measures inter-area candidate send rates on

the ingress device where the traffic enters the area. Second, when addressing

inter-area congestion, the module only considers inter-area candidates. Finally,

while the optimisation process is the same, the module notifies the RC of any

optimisation failures.

RC Inter-Area TE: The RC reuses algorithm 5.2 to perform inter-area

TE optimisation. Unlike the LC, which has a constrained network view, the

RC will perform TE optimisation using a centralised scope (global view). For

example, the LC cannot influence how inter-area traffic enters its area due to

Helix’s inter-area link management strategy. In contrast, the RC has complete

management capabilities over what area the traffic will use.

To allow the RC to run algorithm 5.2, the LC will provide the RC with

inter-area link usage rates and candidate send rates. The LC sends inter-

area link usage rates to the RC when collecting statistics. The RC saves

this information to its abstract topology. The LC will provide the RC with

candidate usage rates in the TE optimisation request message. Similar to the

LC’s behaviour, when the RC receives a TE optimisation request, it iterates

through the received candidate information, performs a CSPF style prune of

the abstract topology, and recomputes the candidate path. If a valid solution

to resolve the detected congestion is found, the RC converts the new candidate
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paths from the solution list to instructions. The RC sends the instructions to

the LCs, which modify the installed inter-area path segments.

Helix’s two-step inter-area TE optimisation can be affected by lost request

messages. Helix removes this problem by using an LC-based locking and re-

transmissions mechanism for the optimisation request sent to the RC. The

mechanism deals with lost messages and ensures the RC receives optimisation

requests. The mechanism requires the RC to notify the LC when it has fin-

ished optimising the network. If the LC does not receive a notification from

the RC within a timeframe, the LC assumes the TE optimisation request was

lost and resends it.

5.9 Area Failure Detection

The Helix RC uses a keep-alive mechanism to detect area or complete local

controller cluster failures. An area without an active LC enters an unmanaged

state. Unmanaged areas continue to forward traffic and respond to data plane

failures but cannot perform reactive tasks (e.g. TE optimisation). To ensure

good forwarding performance in case of a complete cluster failure, the RC will

modify inter-area paths to avoid using such areas.

The area keep-alive mechanism is similar to the leader election module’s

mechanism. An LC periodically sends a keep-alive message to the RC. The

RC assumes an LC has failed if several consecutive heartbeat messages are

missing. When the RC detects an area as failed, the RC removes the area

from its abstract topology and triggers an inter-area path recomputation.

5.10 Root Controller Path Synchronisation

Because Helix offloads inter-area operations from the RC to the LCs, the LCs

can perform path changes that cause the RC’s installed path information to

become inconsistent with the actual data plane forwarding state. Helix ensures

that the RC’s path information is eventually consistent with the data plane
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forwarding rules by implementing an LC-based notification mechanism. If

the offloaded TE optimisation modifies an inter-area path (changes the egress

link), the LC sends an egress change notification to the RC to update its state.

An inter-area egress change performed by an LC causes a subsequent ingress

change in a neighbouring area. To notify LCs of inter-area ingress changes,

Helix does not propagate the egress change notification and instead implement

a local LC-detection mechanism. A Helix LC installs flow rules to enable

the controller to detect inter-area ingress changes locally. Once an inter-area

ingress change is detected, the LC will notify the RC of the forwarding state

changes. §4.3 discussed the benefits of using local or offloaded operations.

5.11 Summary

This chapter discussed Helix’s implementation details by outlining the modules

implemented in each controller type. The LC contains five modules. The

topology discovery module (§5.1) performs area and inter-area link detection.

The path computation module (§5.2) uses the discovered topology to compute

paths and deploy protection-based recovery. The TE module (§5.3) is used to

detect and address local and inter-area congestion. The leader election module

(§5.5) provides instance detection, failure detection, and role assignment within

an LC or RC controller cluster. The inter-controller communication module

(§5.4) allows instances and controllers to communicate.

The Helix RC has a similar design to the LC, containing five modules.

Both LC and RC controllers share a common leader election. The RC topology

module stores the topology information the RC receives from the LCs (§5.6).

The path computation module (§5.7) uses the received topology information

to compute inter-area paths. The TE module (§5.8) performs inter-area TE

optimisation if the offloaded LC operation fails.



Chapter 6

Evaluation: Data Plane Failure

Resilience

The primary contribution of this chapter is to evaluate Helix’s data plane fail-

ure recovery performance and compare it against restoration recovery. While

existing work has compared protection with restoration recovery (e.g. [84,

85]), those experiments did not consider the effects of control channel latency

on performance. In contrast, this evaluation collected results using latency

values representative of an average WAN and a small network to highlight the

impact of latency on recovery time. This evaluation provides a concrete testing

methodology and introduces tools to assess the failure recovery performance

of SDN systems. The conducted experiments directly compare reactive and

proactive operations, showing that latency inflates the completion time of re-

active operations, decreasing their performance. We extrapolate the results of

our experiments to show that offloading operations improves their performance

when considering deploying the system on a WAN.

This chapter is structured as follows. §6.1 presents the testing methodology

and data plane failure emulation framework used to evaluate Helix. §6.2 offers

a description of the performed experiments while §6.3 presents the results of

this evaluation. Finally, §6.4 concludes this chapter by summarising results

and discussing the applicability of our findings to offloaded versus centralised
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Multi-Controller SDN (MCSDN) operations.

6.1 Testing Methodology

All evaluation results presented in this thesis were collected using a virtual

machine running Ubuntu 16.04.6 LTS. The virtual machine was assigned 8GB

of RAM and two cores of a four-core Intel i5-7500 CPU @ 3.40Ghz. Results

were collected using OpenvSwitch 2.11.1 with DB Schema version 7.16.1.

We develop an emulation framework that compares the failure recovery

performance of SDN systems. The framework uses Mininet [56] to emulate a

virtual topology (T ) with realistic network conditions. For example, by apply-

ing NetEm [34] attributes to links, the framework can introduce latency or loss

in the network. The emulation framework produces metrics by measuring the

amount of time it takes a system to recover from a set of link failures (Flink)

defined by a failure scenario (F ).

Under stable network conditions, the framework expects packets sent be-

tween two hosts (SRC and DST ) to use the primary path (Pprim). For an

experiment, the framework generates a constant stream of packets between

the two source-destination nodes using Pktgen [67]. During an experiment,

the framework introduces link failures on the primary path (Flink ∈ Pprim).

When the SDN system detects a failure, it modifies Pprim to avoid using the

failed link, generating a new path (Psec). In the case of restoration-based recov-

ery, the controller detects the failure and intervenes by modifying the current

path. For protection recovery, both Pprim and Psec are pre-installed onto the

data plane. When Flink occurs, the switches modify the active path without

contacting the controller, causing traffic to use Psec. The framework leverages

this expected behaviour of the SDN system to compute recovery metrics.

The emulation framework actively monitors Pktgen packets on both Pprim

and Psec. Figure 6.1 presents an example of the two packet capture probe

locations the framework uses during an experiment. The framework defines
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SRC
Flink

SW1

DST

SW2 SW3

SW4 SW5

A

B

A = Packet capture location on Pprim

B = Packet capture location on Psec

Link Primary Path Secondary Path Failed Link

Figure 6.1: Figure showing emulation framework Pktgen packet capture loca-

tions on an example network. Under normal conditions, traffic uses Pprim to

reach DST from SRC. The emulation framework will fail link Flink causing

packets to use Psec. The framework monitors packets on the adjacent hop after

the failed link (location A) and on unique nodes of Psec (location B).

location A as any unique link in path Pprim after the failed link (Flink). In other

words, the failure of Flink should interrupt the flow of Pktgen packets to probe

A. The framework defines location B as any unique link in path Psec. Probe B

should capture Pktgen packets only after the SDN system has recovered from

the introduced failure (traffic started using Psec).

We define recovery time as the difference between the last Pktgen packet

timestamp observed by probe A (Atime) and the first timestamp observed by

B (Btime). This represents the amount of time it takes the SDN system to

divert packets from Pprim to Psec. The recovery time metric (Trecv) is equal to

Btime − Atime.

The framework uses Pktgen packet timestamps instead of packet capture

time to prevent capture location and system clock differences from skewing

results. For example, because capture time changes depending on how many

nodes the packet has traversed, the capture locations will influence the cal-

culated recovery metric. In contrast, Pktgen timestamps are inserted at the

source host and represent the packet’s creation or send time. The Pktgen

metadata remains consistent while the packet travels through the network,

implying that capturing packets at different locations will not influence the

failure recovery results.

The emulation framework configures Pktgen to introduce a 0.1ms gap be-
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tween consecutive packets (send rate of 10,000 packets per second). This gap

implies that the recovery metrics produced by the framework are accurate to

the closest 0.1ms. The framework also reconciles Trecv with the observed num-

ber of lost packets. The framework calculates the number of lost packets as

the difference between packet A and B’s Pktgen sequence numbers. Assuming

a constant gap between consecutive packets of tsend, the recovery metric is also

equal to (Bseq − Aseq) ∗ tsend. Bseq represents the Pktgen sequence number of

the first packet observed on Psec, while Aseq represents the sequence number

of the last packet observed on Pprim.

While the framework uses an out-of-band deployment for experiments, it

allows users to emulate realistic conditions on the control channel that match

in-band deployment. For example, by applying attributes to the control chan-

nel links, the framework can introduce packet loss or latency that we expect to

encounter within a network. We use this functionality to emulate conditions

found in two different network types for this evaluation.

6.2 Experiment Description

We built a new version of the Helix local controller (LC) that performs controller-

based data plane failure recovery (restoration). The restoration controller

computed a single path per source-destination pair. The restoration controller

used Dijkstra’s algorithm to recompute and modify the installed path after de-

tecting a failure. The restoration controller did not apply a path consolidation

period or deploy a path optimisation phase (§5.2). Instead, the restoration con-

troller immediately recomputed the existing paths once it detected a topology

change. We then compared Helix’s data plane recovery performance against

the restoration controller.

In this evaluation, we used three randomly generated topologies (labelled

Topo 1 - Topo 3) of different sizes and five failure scenarios (labelled F1 - F5).

The three topologies contained between 5-8 nodes, while the failure scenar-
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Scenario
Usable on Topology

# Link Failures
Topo 1 Topo 2 Topo 3

F1 X 1

F2 X 3

F3 X 1

F4 X X 1

F5 X X 1

Table 6.1: This table describes the five scenarios used to evaluate Helix’s data

plane resilience. The table indicates the topology used in conjunction with

each failure scenario and the number of link failures defined in each.

ios specified either a single or a multi-link failure. We used topologies with

small node counts to conduct our experiments to minimise the chances that

emulation overheads slow down the recovery operation. All three topologies

contained a single source-destination pair, SRC/H1 and DST/H2. Topo 1

contained five nodes and is illustrated in figure 6.1. Topo 2 and 3 were extended

versions of Topo 1. These topologies introduced more alternative routes be-

tween SW1 and SW3 by adding a new set of links joining these nodes. Topo

2 contained six switches, while Topo 3 contained eight switches. Table 6.1

outlines the details of the failure scenarios used in this evaluation.

The framework executed multi-link failure scenarios sequentially by per-

forming a failure action, reporting recovery time, and proceeding to the next

link. The system maintained its state (controllers were not restarted) for a

multi-link scenario throughout the experiment. In this evaluation, experiments

were repeated 100 times with the average metric value reported (population

size N = 300 for F2 and N = 100 for the other scenarios). To highlight

the effects of latency on recovery time, we collected results using two control

channel latencies, 4ms and 20ms.

We used a 4ms Round-Trip Time (RTT) latency to represent link char-

acteristics encountered within an area or in a standard small network. In

contrast, we calculated the latency of a WAN by using a medium-sized net-

work from the Internet Topology Zoo Project [49], specifically the USA AT&T

MPLS network. Our method to calculate latency applied the following steps:
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• We calculated the edge-to-edge RTT latency of the furthest two-node

pairs in the topology based on geographic distance and the speed of

light travelling through a fibre cable.

• We scaled the calculated edge-to-edge latency value to account for la-

tency inflation using the 1.5x factor observed by Singla et al. [86].

• Our estimation method assumed that an operator would deploy a con-

troller in the centre of the network to minimise control-channel latency.

Based on this assumption, we halved the calculated latency value to use

for our experiments.

Applying the above method, we estimated that the halfway point latency

for the AT&T MPLS network is 20ms.

To validate the above method, we reconciled estimated latency values with

actual measurements taken on the ESNet topology [22], a research and educa-

tion network. The ESNet network has similar geographic node placement and

distances between nodes as the AT&T MPLS topology, enabling us to perform

a fair comparison. We selected several random link segments from the ESNet

topology, used our method to estimate the latency between the nodes, and

compared our results against the measured latency of these links. Finally, we

calculated the edge-to-edge latency value for the ESNet network (spanning the

USA) using our method. We compared our estimated value against the mea-

sured latency across several link segments that span the entire width of the

ESNet topology. Our comparison found that our method to estimate latency

on a WAN is valid because our calculated latency was similar to the measured

latency values. Moreover, we observed a similar latency inflation factor on the

ESNet network as described in [86].
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Figure 6.2: Graph of data plane failure experiment results that compared Helix

against restoration recovery. Labels represent the average recovery metric

across 100 experiment runs and black error bars indicate the 95% confidence

interval. Restoration recovery is affected by latency while Helix’s recovery time

remains consistent regardless of network latency.

6.3 Evaluation Results

Figure 6.2 presents the average recovery metric for Helix and the restora-

tion controller using the two control-channel latency values. The graph shows

the 95% confidence interval as a black error bar. Helix’s recovery time was

on average 6ms regardless of control-channel latency. Latency does not af-

fect protection-based recovery because switches deal with data plane failures

without involving the controller. Across all experiments, we observed that He-

lix’s recovery time had little variation, evident by the small range of the 95%

confidence interval. Because of emulation overheads, Helix reported a slight

increase in recovery time when evaluating the system using the larger Topo 3

topology. For Topo 3, the framework had to deploy more virtual nodes for this

experiment, increasing CPU load and slowing down the switches’ response.

Restoration-based recovery involves the controller in all recovery decisions.

With a control channel latency of 4ms, restoration took an average of 18ms

to recover from the failure or 3x longer than Helix. With a control-channel
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latency of 20ms, the average restoration recovery metric increased to 64ms or

10x longer than Helix. Unsurprisingly, latency had a direct effect on recovery

time for reactive operations. We also observed that the restoration recovery

metric varied significantly more than Helix. The 95% confidence interval range

for restoration recovery was wider across all experiments.

Limitations: Restoration recovery is affected by other factors not consid-

ered in our evaluation. For example, the number of data plane interactions,

the topology size, and the load on controllers affect the system’s reaction time,

influencing performance. In contrast, none of these factors affects protection

recovery because switches deal with failures without involving the controller.

Another factor not considered in this evaluation is the load on links. For

in-band deployment, congestion on links will delay switch-to-controller com-

munications, further increasing the performance gap between protection and

restoration recovery. While we can mitigate some of this difference by using

an out-of-band SDN deployment, adding extra links to carry controller traffic

may be too costly in some environments [76].

6.4 Discussion and Conclusion

While this chapter evaluates Helix’s failure recovery performance, the experi-

ment and results compare reactive and proactive operations directly. Restora-

tion and protection recovery offer prime examples of applying either a proactive

or reactive strategy to implement the same functionality. Furthermore, we can

extrapolate our evaluation to showcase the difference between local (offloaded)

and centralised MCSDN operations. Because offloaded operations do not in-

volve remote controllers in decisions, we can consider them as proactive (they

occur locally). In contrast, centralised MCSDN operations are reactive, involv-

ing communication with a remote controller. This communication is subject

to latency delays similar to restoration recovery.

Helix offloads both inter-area failure recovery and TE optimisation to the
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LC clusters. We expect to observe similar inflation behaviour when comparing

the performance of locally offloaded with centralised operations. If an MCSDN

system executes operations on a remote controller, inter-controller latency di-

rectly affects performance, delaying operation completion time. Moreover,

centralised operations have a direct impact on control plane resilience. The

MCSDN system introduces a dependency between the devices by performing

tasks on a remote controller. If the parent or root controller fails, the system

cannot execute the centralised operation. Helix removes this dependency by

offloading operations. For example, even if all Helix RC instances have failed,

the LCs can perform inter-area data plane failure recovery and TE.

Despite the outlined benefits, proactive or offloaded operations raise several

concerns, such as lacking global visibility. In the case of protection recovery,

because paths are pre-installed, topology changes can cause the paths to no

longer be optimal (i.e. offer the shortest path). Helix addresses this concern

by implementing a path optimisation mechanism that ensures the installed

protection paths are optimal after a topology change (§5.2).

To conclude this chapter, the presented evaluation and emulation frame-

work provides a means to assess an essential aspect of single and multi-controller

SDN systems, namely data plane failure resilience. Our evaluation results

show that latency affects reactive or centralised operation performance. We

observed that restoration-based recovery was up to 10x slower than Helix to

restore data plane forwarding. Based on the small range in the 95% confident

interval, we concluded that Helix’s recovery time was consistent across exper-

iments regardless of the network size or latency. Using proactive or offloaded

operations benefits completion time and improves performance. As latency

increases, the gap in performance between reactive and proactive operations

grows. Based on this observation, we can conclude that using offloaded or

proactive operations benefit Helix’s performance, making the system suitable

for deployment on a WAN.



Chapter 7

Evaluation: Control Plane

Failure Resilience

The primary contribution of this chapter is to evaluate Helix’s control plane

failure recovery performance and provides insight into Helix’s ability to cope

with administrative tasks (e.g. restarting instances to perform upgrades). This

chapter provides a concrete testing methodology and introduces tools that

allow network operators to assess the control plane failure resilience of Multi-

Controller SDN (MCSDN) systems.

This chapter is structured as follows. §7.1 introduces an emulation frame-

work we developed to evaluate the failure recovery performance of MCSDN

systems. §7.2 and §7.3 outlines the testing methodology used to collect ex-

periment results and discusses how the framework uses collected events to

compute metrics and components using an example failure scenario. §7.4 and

§7.5 present an evaluation of Helix’s failure resilience performance using two

failure scenarios that contained simultaneous and cascading controller failures.

§7.7 discusses the limitations with our evaluation. §7.8 presents two models

that estimate Helix’s failure recovery performance. Finally, §7.9 concludes

this chapter by assessing and comparing Helix’s failure recovery performance

against a root controller-based failure recovery approach commonly used by

MCSDN systems that have flat control plane architectures (e.g. ONOS [9]).
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7.1 Emulation Framework

While existing MCSDN literature has evaluated various aspects of MCSDN

system performance, control plane failure resilience has received little atten-

tion. To this end, we develop an emulation framework to evaluate the control

plane failure resilience of Helix and MCSDN systems. Control plane failure

resilience refers to a system’s ability to recover from controller failures. The

emulation framework measures an MCSDN system’s reaction to control plane

failures, evaluating the time it takes for the system to recover. Moreover, the

framework offers insight into the startup performance of controllers, allowing

network operators to plan for administrative tasks such as restarting instances

to perform upgrades.

The framework also checks system behaviour under a predefined failure

scenario. In essence, the framework provides a black-box testing tool that

checks if an MCSDN system exhibits correct behaviour.

The framework uses Mininet [56] to conduct experiments with realistic

network conditions, such as introducing latency or loss on links. To run an

experiment, a user needs to provide the framework with four inputs:

• T specifies the topology to use for the experiment

• Amap provide the framework with a switch to controller mapping

• F specifies the failure scenario for the experiment

• Eexpected specifies a set of expected events for an experiment

The framework uses Amap to divide T into areas. Amap specifies which

cluster of controllers manage each node n of the topology. Amap also states

how many instances i the MCSDN system will deploy in each cluster. Let

c represent a cluster of controllers, while LC is the set of all local controller

clusters. Formally, the emulation framework defines Amap as:
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∀n ∈ T,∀c ∈ LC Amap : n 7→ c

∀i ∈ c Amap : i 7→ c

We separate failure scenarios into multiple stages (Fstage) to allow the

framework to attribute (group) events to a sequence of actions. The framework

executes the actions of a stage sequentially, maintaining the MCSDN system’s

control plane and data plane state throughout the experiment. The stages of a

failure scenario are not independent. A previously completed Fstage influences

the future behaviour of the MCSDN system. An Fstage represents a logical

separation of the experiment when the framework computes metrics.

During each stage, the framework generates a timeline of observed events

(Eobserved). The framework groups and attributes Eobserved to an Fstage by

waiting for several seconds of inactivity before proceeding with the experi-

ment. Grouping events promote deterministic behaviour because the frame-

work waits for the system to stabilise before advancing to the next stage.

Moreover, grouping events allows the framework to validate the MCSDN sys-

tem’s behaviour. An MCSDN system exhibits correct behaviour if all event

types from Eobserved are present in Eexpected, and vice-versa.

7.1.1 Supported Actions

The emulation framework implements three action types:

• Fail a controller instance from a cluster

• Start or restart a controller instance in a cluster

• Introduce a delay (wait n seconds)

We emulate simultaneous and cascading instance failures by combining

these action types. For example, chaining together multiple failure actions

emulates simultaneous instance failures. Combining failure and delay actions
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emulates cascading failures, which are often caused by overloading instances

when the system migrates the request load from one controller to another in

response to a previous failure event [98].

7.1.2 Collected Events

The emulation framework collects two types of events: control channel and

local events. Control channel events describe the interaction of the MCSDN

system with the data plane. The framework gathers control channel events by

capturing and processing OpenFlow Protocol (OFP) packets on the control

channel/switch-to-controller links. Control channel events occur irrespective

of the evaluated MCSDN system. The emulation framework requires control

channel events to be generated by an MCSDN system in order to compute

metrics.

Local events represent internal controller state changes that occur within

the MCSDN system. Unlike control channel events, local events require mod-

ification or support from the system because controllers need to push specific

information to their logs when an internal state change occurs. For example,

the Helix local controller will write a local event to its log once it detects

the failure of a controller instance. The framework captures local events by

monitoring the logs of the MCSDN system.

Event Use: The framework uses control channel events to compute met-

rics and local events to compute component values. As an example, the frame-

work uses local events to calculate the failure detection (δFD) and role change

(δRC) components of the instance failure recovery metric (∆recv = δFD + δRC).

Components offer better insight into a system’s failure resilience performance

and are subject to local event availability. We designed the emulation frame-

work to consider local events as optional to improve compatibility with other

MCSDN systems. Even if an MCSDN system does not push local events to

its logs, the framework will still produce metrics based on captured control

channel events.
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Event Metadata: An event stored in Eobserved contains associated meta-

data such as the capture time, the type of event, and the ID of the instance

that created the event. For control channel events, the framework uses TShark

[15] to gather OFP packets and extract metadata from their payload. In con-

trast, the MCSDN system needs to provide the required metadata fields in its

log output of local events. The framework defines a local event as a formatted

variable-length CSV line where tokens map to different metadata depending

on the local event type.

Latency: When calculating metrics, the framework considers the effects of

latency on performance by capturing OFP packets as they arrive at a switch.

In essence, the capture time of control channel events includes the time it

takes for a controller’s OFP request to arrive at a switch. By considering

latency when collecting events, the framework generates metrics that allows

users to compare the failure recovery performance of different MCSDN system

architectures.

7.1.3 Generated Metrics

After completing an Fstage, the framework will report unexpected behaviour

and output Eobserved to allow the calculation of metrics and components. A

metric represents the time it takes a system to respond to an event such as a

failure, while a component is the amount of time it takes an MCSDN system

to perform a particular step towards responding to an event. For example,

instance failure recovery time is a metric with two components, failure detec-

tion time (the time it takes the system to detect the instance failure) and role

change time (the time it takes a backup instance to take over a cluster).

The framework generates two primary metrics: instance failure recovery

time and area failure recovery time.

The instance failure recovery metric profiles an MCSDN system’s ability to

deal with failures in a cluster, representing the time it takes a backup instance

to detect a failure and modify its role. The framework calculates the instance
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failure recovery metric as the time difference between the final action executed

by the framework and the last role change request event in Eobserved.

An area failure occurs when a controller cluster no longer contains active

instances. The area failure recovery metric represents the time it takes an

MCSDN system to detect the failure of a controller cluster (area) and recover

from the event by modifying its inter-area paths to avoid the unmanaged area.

For this evaluation of Helix, we calculate the area failure recovery metric as

the difference between the final action executed by the framework and the last

observed path installation event generated by the local controllers.

The framework can also generate instance and area join metrics. These

two metrics allow network operators to assess how well an MCSDN system

copes with administrative tasks. Area and instance join time help characterise

the overheads of the system when adding new controllers to scale the network

to cope with increased traffic or when restarting devices to perform upgrades.

Performing failure recovery experiments can also provide insight into the

stability of a system. Suppose we compare two systems by emulating a single

instance failure that we expect not to cause an area failure. If the framework

reportes that one of the systems modified its paths, this indicates that this

system has poorer forwarding stability because it could not tolerate the failure

without performing a path change.

7.2 Testing Methodology

This evaluation used a control channel latency of 20ms for all performed exper-

iments. We repeated experiments 100 times and reported the average metric

and component values along with the 95% confidence intervals. It was in-

tractable to evaluate Helix under all possible failure scenarios. As a result, we

defined several hard-to-solve simultaneous (§7.4) and cascading failure (§7.5)

scenarios that we used to evaluate Helix’s control plane failure resilience. The

used failure scenarios assessed Helix’s failure recovery performance, dynamic
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scaling capabilities (e.g. adding an area to increase forwarding capacity), and

response to administrative tasks (e.g. restarting instances to deploy upgrades).

The evaluation undertaken in this chapter provided insight into the capabilities

and limitations of Helix and its design choices.

This evaluation did not consider the failure of inter-controller links when

performing experiments. If a connection between two controllers fails, the

two devices will no longer share state and coordinate. We assume that Helix’s

protection mechanism will deal with such failures when using an in-band inter-

controller connection strategy (evaluated in chapter 6). For this deployment

approach, the system treats inter-controller communications as data plane

traffic. For an out-of-band deployment, we assume these links provide enough

resilience to minimise such failures.

7.3 Emulation Framework Example

This section outlines the notation used in this evaluation and presents an

example failure scenario. All local and root controller instances use the same

naming convention. An instance label contains the area/cluster ID (i.e. CX)

followed by a dot and the instance ID.

The example failure scenario in this section assumes that T contains several

areas numbered 1 through X. Suppose that Area1 of T contains three local

controller instances. The instances are labelled C1.0, C1.1 and C1.2. We

assume that the framework selects the instance with the lowest ID to manage

a cluster at the start of the experiment. As such, instance C1.0 is the primary

instance of the Area1 cluster, while C1.1 and C1.2 are backup instances.

Figure 7.1 shows a portion of a timeline diagram that indicates the stage

completion time (recovery metric) and its relevant components. Labelled time-

line points show actions and events in chronological order.

The example Fstage outlined in this section contains two actions, fail in-

stance C1.0 and C1.1. The framework will begin observing and recording
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Figure 7.1: Timeline diagram showing an example experiment stage. The

timeline shows the failure recovery metric (∆recv) along with its detection

(δFD) and role change (δRC) component values.

events at the start of the Fstage. During the experiment, C1.2 detects the fail-

ures of C1.0 and C1.1. The framework will capture two local failure detection

events generated by C1.2 (DF points on the timeline).

In response to the failures, C1.2 will modify its role to take over the Area1

cluster by sending role change requests to every switch in the area (RCP point

on the timeline). To group events to the current Fstage, the framework waits

for n-seconds of inactivity (Timeout Time in figure 7.1) before generating the

results and proceeding with the experiment.

For the example Fstage, the framework computes one metric and two-

component values based on the observed events. First, δFD represents the

failure detection component for C1.2. δFD is the time difference between the

final failure action executed by the framework and the last DF event. Second,

δRC represents the role change component, which the framework calculates as

the difference between the last DF event and the last RCP event. Finally,

the framework calculates the failure recovery metric or stage completion time

(∆recv) as the difference between the final action and the last RCP event. ∆recv

indicates the time it took the system to detect and recover from the introduced

control plane failures.
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Figure 7.2: Diagram showing the topology used for the Failure Scenario 1

evaluation experiments. The network contained five areas, with two instances

deployed in the C1, C2 and C3 cluster. The C4 and C5 local controller clusters

contained a single deployed instance.

7.4 Scenario 1: Simultaneous Device Failures

Failure Scenario 1 emulated simultaneous device failures within a topology sep-

arated into five areas, illustrated in figure 7.2. Area1, Area2, and Area3 each

contain two controller instances. Area4 and Area5 contain a single instance

per controller cluster. We separated Failure Scenario 1 into five stages con-

taining actions that targeted the Area1, Area2 and Area3 controller clusters.

The actions of the failure scenario stages (1 through 5) were as follow:

1. Fail the primary instances of the C1, C2, and C3 clusters (e.g. C3.0)

2. Restart instance C2.0

3. Fail instance C2.1

4. Fail instance C2.0

5. Restart instance C2.1
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Metric (Time)
Time (s) over 100 iterations
Average CI (95%) CI Range

(a) Multi-Device: Instance Failure Recovery 1.609 0.181 1.428 - 1.790

Failure Detection 1.003 0.033 0.970 - 1.036

Role Change 0.036 0.002 0.034 - 0.038

(b) Instance Join Time 0.959 0.056 0.903 - 1.015
Controller Start 0.426 0.005 0.421 - 0.431

Initiation Phase 0.005 0.000 0.005 - 0.005

Switch Enter 0.522 0.056 0.466 - 0.578
Role Change 0.011 0.000 0.011 - 0.011

(c) Single-Device: Instance Failure Recovery 1.106 0.116 0.990 - 1.222

Failure Detection 0.958 0.058 0.900 - 1.016

Role Change 0.037 0.003 0.034 - 0.040

(d) Area Failure Recovery 3.426 0.084 3.342 - 3.510

Failure Detection 2.365 0.084 2.281 - 2.449
Root Compute Path 1.002 0.000 1.002 - 1.002

Root Path Installation 0.059 0.002 0.057 - 0.061

(e) Area Join Time 13.228 0.035 13.193 - 13.263

Controller Start 0.411 0.004 0.407 - 0.415
Initiation Phase 0.501 0.000 0.501 - 0.501

Switch Enter 0.586 0.058 0.528 - 0.644

Role Change 0.026 0.004 0.022 - 0.03
Root Compute Path 13.164 0.035 13.129 - 13.199

Root Path Installation 0.064 0.002 0.062 - 0.066

Table 7.1: Average (over 100 iterations) Helix metric and component values

collected using Failure Scenario 1 (simultaneous device failures). Failure de-

tection made up over 95% of Helix’s failure recovery metrics. Helix delayed

area recovery and instance join operations to improve forwarding stability.

Table 7.1 contains Helix’s average metric and component values recorded

over 100 experiment iterations. Each stage of the failure scenario evaluated a

particular aspect of Helix’s control plane resilience, producing different metrics.

§7.4.1 - §7.4.5 discuss each stage individually.

7.4.1 Stage 1: Multi-Device Instance Failure Recovery

Stage 1 (S1) emulated simultaneous controller failures in multiple clusters.

This stage evaluated the efficiency of Helix’s instance abstraction, which shields

the root controller from local instance recovery events. As long as a cluster

contained an active instance, Helix did not propagate failure events to the

root controller and did not recompute paths. During the experiment, instances

C3.1, C2.1 and C1.1 detected the failure of the primary instances and modified

their roles to take over their clusters.

For S1, the framework recorded three failure recovery events. Helix’s aver-

age failure recovery metric was 1.609 seconds (metric a). The average failure
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detection component of the metric was 1.003s, while the average role change

time was 0.036s. The failure recovery metric (a) represents the time it took

Helix to recover from all three instance failures. Conversely, the component

values represent an individual cluster’s failure detection and role change time

averaged across all three affected areas.

We observed that failure detection made up most of Helix’s failure recovery

metric, accounting for over 95% of its value. In our experiments, the configured

leader election module attributes and stage alignment with internal controller

timers affected Helix’s failure detection metric (discussed in §7.8).

7.4.2 Stage 2: Instance Join Time

Stage 2 (S2) emulated adding a new instance to a cluster, providing insight

into the time it takes to add or restart a Helix controller instance. A sys-

tem administrator may add a new instance to a controller cluster to improve

resilience, respond to a failure (restart a failed instance), or perform upgrades.

During this stage, instance C2.0 started up and entered its initiation phase.

C2.0 established a connection with every switch in Area2 after the initiation

phase elapsed. Next, C2.0 assigned itself a backup role.

Helix’s average instance join metric (b) was 0.959s. It took C2.0 an average

of 0.426s to start up, while its initiation phase lasted for 0.011s. Usually, an

instance’s initiation phase should take at least τinit seconds (0.5s); however,

during S2, C2.0 exited its initiation phase early because the Area2 cluster

contained other active instances, triggering a startup optimisation condition.

This optimisation improves an instance’s startup time, allowing it to join its

cluster faster to avoid false-positive area failure detection events. All Area2

switches took an average of 0.522s from the controller start action to establish

a connection with the new local controller. During S2, C2.0’s average role

change time was 0.011s.

The instance join metric is essential in planning administrative tasks. For

example, based on our measurements, if a network operator performs an up-
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grade, we expect the controller to take 1s to restart and join its cluster. While

the initiation phase is a component of the instance join metric, because C2.0

exited its initiation phase early, the used configuration attributes did influence

Helix’s performance.

7.4.3 Stage 3: Single-Device Instance Failure Recovery

Stage 3 (S3) emulated a single instance failure and produced the same metric

as S1 (§7.4.1). Collecting results for both stages enabled us to identify any

emulation overheads or factors that can delay Helix’s failure recovery process

when multiple areas are involved. S1 emulated a more complex failure scenario

compared to S3, performing three simultaneous instance failures. Helix’s be-

haviour during this stage was consistent with the observed behaviour during

S1 (§7.4.1).

Helix’s average instance failure recovery metric was 1.106s (c). The av-

erage failure detection component was 0.958s, while the average role change

component was 0.037s. Similar to our findings in §7.4.1, failure detection

made up a large portion of Helix’s instance failure recovery metric (97%). The

component and metric values observed during this stage were consistent with

§7.4.1, despite those experiments emulating a more complex failure. Based on

these observations, we draw two conclusions regarding Helix and the emula-

tion framework. First, the framework did not introduce significant emulation

overheads to inflate the recovery metric. Second, a Helix LC was not affected

by failures in other clusters.

7.4.4 Stage 4: Area Failure Recovery

Stage 4 (S4) emulated a complete cluster failure, evaluating the root con-

troller’s area failure detection and path recomputation performance. For S4,

we considered that Helix recovered from an area failure once the system mod-

ified the installed inter-area paths. In normal circumstances, responding to

area failures is a manual process. A network operator will respond to area
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failures by restarting failed controller instances (evaluated in the next stage).

After C2.0 had failed, the Area2 cluster no longer contained an active in-

stance, the area becoming unmanaged. During this time, Area2’s data plane

continued to forward packets and respond to data plane failures; however, He-

lix lost the ability to perform reactive operations in the area, such as TE and

topology discovery. As a result, the Area1 and Area3 controllers no longer re-

ceived heartbeat packets on inter-area links leading to Area2, causing them to

eventually timeout the links and notify the root controller (R0) of the failure.

In response to the failed link notifications, R0 removed the failed inter-area

links, recomputed its paths to avoid using Area2 (after applying a 1-second

path consolidation period), and sent instructions to the local controllers. Al-

though Area2 still maintained some capabilities, Helix opted to avoid using

the area because it could not guarantee optimal traffic forwarding. After the

LCs applied R0’s inter-area path changes onto the data plane, we considered

Helix recovered from the area failure.

In the evaluation experiments, R0 detected that Area2 failed after Helix

recovered from the introduced control plane failure (recomputed the inter-

area paths to avoid using Area2). The configuration attributes we assigned

to Helix for the evaluation caused this behaviour. We configured Helix to

recover from inter-area link failures aggressively. Detecting area failures via the

root controller’s timeout mechanism or using dead inter-area link notifications

produces the same result (discussed further in §7.8).

Across all 100 experiment iterations, the average Helix area recovery metric

(d) was 3.426s. Helix’s average failure detection time was 2.365s or 70% of (d)’s

value. It took Helix an average of 0.059s to modify the inter-area paths to avoid

the unmanaged area. R0 recomputed its inter-area paths within 1.002s from

detecting the failure of Area2 (last received dead inter-area link notifications).

Consistent with the findings in §7.4.1 and §7.4.3, failure detection time made

up a large portion of the recovery metric (98% when we ignoring the 1s path

consolidation period).
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7.4.5 Stage 5: Area Join Time

Stage 5 (S5) evaluated Helix’s ability to detect and use a new area. Like S2,

S5 generated metrics that are useful for planning administrative tasks, such as

adding a new cluster to increase the network’s forwarding capacity.

During this stage, C2.0 started up and entered its initiation phase. C2.0

went through the complete initiation phase during S5 because the Area2 cluster

did not contain other active instances. After the initiation phase elapsed, C2.0

established connections with the switches of Area2 and modified its role to take

over the cluster. After taking over the cluster, C2.0 advertised its presence to

neighbouring areas and the root controller. R0 discovered the new area and

recomputed its inter-area paths to use Area2.

Helix’s average startup and initiation components for S5 were 0.411s and

0.501s. On average, the new Helix instance modified its role in 0.026s. He-

lix’s average area join metric (e) was 13.164s. Consistent with §7.4.4, Helix’s

average inter-area path change time was 0.064s.

For this evaluation, we configured Helix to respond quickly to area failures

but delay detecting and using new areas to improve the system’s forwarding

stability. Helix’s average area join metric was 3.8x larger than its area recov-

ery metric. An aggressive area failure recovery is desirable to ensure consistent

TE policy application. Helix cannot perform TE optimisation in a particular

area when a cluster failure occurs. As a direct consequence, the system cannot

guarantee the forwarding performance of transiting traffic. We opted to con-

figure Helix to recover from cluster failures quickly to maintain the system’s

TE capabilities, sacrificing stability for performance.

Delaying adding a new area has the opposite effect, improving forwarding

stability by reducing the number of path changes. Helix assumes that the

currently active areas provide adequate capacity to forward traffic. Due to

this assumption, detecting and using a new area is not critical to providing

congestion-free forwarding. Moreover, techniques such as capacity planning of

links minimise packet loss due to congestion. We can consider area failures
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as rare events because they entail multiple devices failing. Because Helix

reduces the load on controllers, it minimises the chances that recovering from

an instance failure will cascade into an area failure. Based on this observation,

we can view S5 as having assessed Helix’s performance when faced with a

worst-case scenario.

7.4.6 Summary of Results

Helix took up to 1.6s to recover from instance failures, with failure detection

making up over 95% (1s) of the metric value and role change time taking only

0.035s. Helix’s average instance join metric was under 1s when a new instance

joined a cluster with active devices. When recovering from area failures, Helix

took an average of 3.5s to recover from the failure, with the detection com-

ponent making up 2.365s or 70% of the metric (98% if we ignore the path

consolidation period). Helix deployed an inter-area path modification to the

data plane in under 0.065s.

The framework calculated the role change component as the difference be-

tween the final role change request sent by a controller and the last switch con-

nection event. Because switches established connections with the controller in

parallel and independently, the framework observed slight variation in switch

connection events between experiment runs. We observed a slight variation in

role change time in our experiments, which we can attribute to differences in

the switch connection events.

7.5 Scenario 2: Cascading Device Failures

Cascading failures can occur when migrating load from one instance to another,

overwhelming the primary instance and eventually causing all instances within

a controller cluster to fail. The cascading failure actions defined in this scenario

verified Helix’s behaviour and capability to compartmentalise complex failures

to clusters without needing root controller intervention. For this scenario, we
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Metric (Time)
Time (s) over 100 iterations
Average CI (95%) CI Range

(a) Cascading Failure: Stage Completion 5.500 0.120 5.620 - 5.380

Failure Detection 1.074 0.031 1.105 - 1.043

Role Change 0.036 0.002 0.038 - 0.034
Controller Start (Restart) 0.431 0.005 0.436 - 0.426

Initiation Phase (Restart) 0.501 0.000 0.501 - 0.501

Switch Enter (Restart) 0.593 0.067 0.660 - 0.526
Role Change (Restart) 0.026 0.003 0.029 - 0.023

(b) Multi-Device: Instance Join Time 1.095 0.097 1.192 - 0.998

Controller Start 0.512 0.008 0.520 - 0.504

Initiation Phase 0.006 0.000 0.006 - 0.006
Switch Enter 0.485 0.040 0.525 - 0.445

Role Change 0.011 0.000 0.011 - 0.011

(c) Multi-Device: Area Failure Recovery 3.178 0.026 3.204 - 3.152

Failure Detection 2.117 0.026 2.143 - 2.091
Root Compute path 1.002 0.000 1.002 - 1.002

Root Path Installation 0.060 0.002 0.062 - 0.058

Table 7.2: Average (over 100 iterations) Helix metric and component values

collected using Failure Scenario 2 (cascading device failures). The results and

trends were consistent with the first scenario.

used a similar topology to the previous experiments (figure 7.2). The Area1

and Area3 controller clusters contained two instances in this evaluation, while

Area2 contained three instances. We separated Scenario 2 into three stages:

1. Fail the primary instance of the C2 cluster (C2.0). After 2 seconds, fail

C2.1. After a further 2 seconds fail instance C2.2 and simultaneously

restart C2.0.

2. Restart instances C2.1 and C2.2.

3. Fail instance C2.0 and C2.1. After 4 seconds, fail instance C2.2.

Table 7.2 contains Helix’s average metric and component values calculated

over 100 experiment iterations using Failure Scenario 2.

7.5.1 Stage 1: Cascading Failure Recovery

Stage 1 (S1) emulated a cascading multi-device controller failure. This stage

evaluated Helix’s ability to respond to multiple failure events without causing

a false-positive area failure detection.

After the first failure action, both C2.1 and C2.2 detected the failure of

C2.0. Because C2.1 had the lowest instance ID, it took over the Area2 cluster,
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while C2.2 maintained its backup role. After the framework executed the

second failure action, C2.2 took over the cluster.

The final part of S1 assessed if a Helix instance could take over the clus-

ter without the root controller declaring the area as failed. This part of the

experiment validated the used configuration attributes, ensuring we correctly

configured the area failure detection timeouts to prevent false-positive detec-

tion. During the experiments, C2.0 started up and took over its cluster before

R0 declared Area2 as failed.

The average stage completion time (a) for the experiments was 5.5s. Helix’s

average failure recovery metric across all three failure events was 1.11s. Consis-

tent with the trend observed in §7.4, failure detection made up a large portion

of the metric value (97% or 1.074s), while role change time contributed a small

amount (0.036s). We observed an average controller startup and role change

time after the initiation phase of 0.431s and 0.026s. C2.0 went through the

complete initiation phase during this stage, which lasted 0.501s. The average

startup metric and component values were consistent with §7.4.

7.5.2 Stage 2: Multi-device Instance Join Time

Stage 2 (S2) emulated restarting several failed instances from a cluster.

Helix’s average instance join metric (b) for both instances was 1.095s. The

two instances took an average of 0.512s to startup, with their initiation phase

lasting 0.006s. Consistent with the behaviour observed in §7.4.2, C2.1 and

C2.2 exited their initiation phase early because the Area2 cluster contained

active instances. Helix’s average role change time for S2 was 0.011s.

Helix’s behaviour, metric, and component values were consistent with the

results observed in §7.4.2, despite this stage emulating more actions. Based on

this observation, we draw two conclusions. First, we can verify the previous

observation made in §7.4 that the framework did not introduce significant

overheads during emulation. While the experiments performed in S2 contained

more actions increasing the load on the framework, the results were consistent
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with previous experiments. Second, adding a new instance to a Helix cluster

did not affect the other active instances, and simultaneously restarting multiple

instances did not affect their startup performance.

7.5.3 Stage 3: Multi-Device Area Failure Recovery

Stage 3 (S3) emulated a cascading failure that triggered a complete cluster

failure. S3 may be encountered in real-world situations when moving resources

from several failed instances to a backup instance.

After the first failure action, C2.2 detected the instance failure and took

over the Area2 cluster. After 4 seconds, the framework failed instance C2.2,

causing the Area2 cluster to become unmanaged. Similar to the behaviour

observed in §7.4.4, R0 detected the failure of the area via failed inter-area link

notifications received from the Area1 and Area3 clusters. The root controller

applied a 1s path consolidation period, recomputed the inter-area paths to

avoid using Area2, and sent instructions to the LC. Consistent with the be-

haviour observed in §7.4.4, Helix recovered from the area failure before R0

declared Area2 as failed.

Helix’s average area failure recovery metric (c) was 3.178s, with an average

detection component of 2.117s and an average path installation component

of 0.060s. Consistent with the trend observed in §7.4, failure detection time

made up a large portion of the area recovery metric (97% if we ignore R0’s

path consolidation period).

7.5.4 Summary of Results

Despite emulating more complex cascading failures, Helix’s metric and compo-

nent values for these experiments were consistent with §7.4. Helix’s instance

failure recovery metric was 1.11s, with failure detection making up 98% of the

metric value (1.074s) and role change taking only 0.036s. Similarly, the area

failure recovery metric was 3.178s, with the detection component making up

66% (98% if we ignore the consolidation timeout) and path installation taking
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just 0.060s. Based on the observed results during these experiments, we can

verify the previous assertions made for Helix and draw several conclusions:

• Failure detection time made up a large portion of Helix’s instance and

area failure recovery metrics.

• Helix’s architecture and design choices enabled instances to quickly re-

cover from area failures and modify their role.

• Helix’s instance/role abstraction mechanism promoted stability by avoid-

ing unnecessary path changes.

7.6 Root Controller Cluster Failure

The Helix RC performs three distinct operations: (a) inter-area path com-

putation, (b) inter-area TE optimisation, and (c) area failure detection and

recovery. Because Helix uses replication to improve the failure resilience of all

controller clusters, an RC cluster failure is rare as it will involve multiple de-

vices failing simultaneously. Despite this, Helix’s design choices and architec-

ture limit the effects of an RC cluster failure. Helix offloads critical inter-area

operations to the LCs to improve the failure resilience of the system by re-

moving dependencies between devices. The RC offloads inter-area data plane

failure recovery and TE optimisation to the LCs. In the event of a complete

RC cluster failure, the LCs maintain their ability to forward inter-area traffic,

resolve inter-area data plane failures, and perform TE optimisation. While

Helix still implements an RC-based TE optimisation operation, this operation

occurs less frequently. Moreover, the TE evaluation experiments outlined in

chapter 8 found that the Helix LCs will address most inter-area congestion

locally without RC intervention. Because Helix will still perform inter-area

TE optimisation and resolve data plane failures, a complete RC cluster failure

has minimal impact on traffic forwarding performance.

When a complete RC cluster failure occurs, Helix will lose the ability to
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respond to area failures (complete LC cluster failures). If both an area and

the RC fail, Helix will not be able to guarantee the performance of traffic

transiting the area. The affected area will become unmanaged, Helix losing its

ability to perform TE optimisation. While Helix cannot improve the forward-

ing performance of traffic in an unmanaged area, the system will still deal with

data plane failures. It is also worth noting that this scenario is very unlikely

as all instances in an LC and the RC cluster need to fail. Moreover, good

capacity planning of links will minimise the chances that an unmanaged area

experiences congestion even if there is a peak in traffic volumes.

7.7 Limitations of Experiments

The computed role change component of the experiments measured how long

it took a local instance to send role change requests to every connected switch.

A limitation of our evaluation was that it did not consider how the number

of switches in an area affected the role change component. The number of

switches connected to a controller will influence the observed role change time.

Because the local controllers use asynchronous mechanisms when generating

and sending OFP packets, intuition would suggest that role change time will

slightly increase as the number of switches in an area grows.

7.8 Modelling Helix’s Performance

The used configuration attributes and experiment stage alignment with con-

troller timers affected several of Helix’s metrics and component values. This

section discusses these effects and proposes two models to estimate Helix’s

failure recovery performance.
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7.8.1 Instance Failure Recovery

The notation used in this section is as follows. τk represent the leader election

keep-alive interval. τtimeout represents the amount of time the module waits

before considering a keep-alive message as missing. Finally, τinit represents

the local controller’s initiation phase length. The local controller applies the

initiation phase on startup to allow the device to detect active instances before

assigning itself a role. For the evaluation experiments, we used a τk of 1 second.

Helix defines τtimeout as half the keep-alive interval (0.5 seconds). Finally, the

initiation phase was configured to the same value as τtimeout.

The Helix leader election module broadcasted a keep-alive message (heart-

beat) every keep-alive interval (τk seconds). The keep-alive messages enabled

the module to discover other active instances and detect failures. Because He-

lix synchronised the keep-alive send-timers of all devices, we assume that each

cluster had a single keep-alive interval. In essence, all controller instances

broadcasted heartbeats at the same time. Despite this, Helix implemented

mechanisms to prevent false-positive failure detection, tolerating slight timer

variations and inter-instance latency. The module waited up to τtimeout seconds

before declaring a heartbeat as missing. When Nk consecutive heartbeats for

a device were missing, the module considered the instance failed.

We configured Helix to declare an instance as failed after missing one heart-

beat. We were able to use an Nk = 1 without encountering false-positive

failure detection in our experiments due to two factors. First, Helix deployed

instances within the same cluster to minimise inter-instance latency by ensur-

ing that the module received heartbeats within the allocated τtimeout. Second,

Helix removed variation in the keep-alive timers by ensuring instances broad-

casted heartbeat messages at similar times.

The emulation framework treated MCSDN systems as black-boxes and,

as such, did not align stages with internal controller timers. Suppose that

an instance failed before the keep-alive interval elapsed. In this situation,

the cluster would detect the failure after τtimeout seconds, implying the failure
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detection time is small. Next, suppose that an instance failed after a new

keep-alive interval starts. In this case, the cluster would detect the instance’s

failure during the next τk, implying that the failure detection time is larger.

Because of this variability, we cannot calculate an exact value for the failure

detection component. We can, however, define a maximum expected failure

detection time based on the used Helix configuration attributes. Both τk and

implicitly τtimeout affect the failure detection component of the instance re-

covery metric. Effectively, Helix has a maximum instance failure detection

time of τk ∗ Nk + τtimeout. Assuming that τtimeout = τk
2

, we expect that Helix

instances will take at most (τk ∗ Nk) + τk
2

seconds to detect a local instance

failure. Based on the configuration attributes used in this evaluation, instance

failure detection should take no more than 1.5 seconds. Referring back to §7.4

and §7.5, we see that all instance failure detection components adhere to this

maximum constraint.

Helix’s instance failure recovery metric can be approximated as ∆recv ≈

δFD+δRC , where δFD represents the instance failure detection time and δRC the

role change time. In our evaluation, the instance role change time was under

0.04s (40ms). While role change time depended on factors such as latency and

the size of the area, the role change component represented a small portion

of the overall recovery metric value (2%). As such, errors in estimating role

change time will have a small impact on the overall estimated metric value.

We can approximate Helix’s local instance failure recovery metric as:

∆recv ≈ (τk ∗Nk +
τk
2

) + 0.04

7.8.2 Area Failure Recovery

The notation used in this section is as follows. τiap represent Helix’s inter-

area link timeout, while τlldp the local controller’s LLDP packet-send interval.

τrk represents the root controller’s keep-alive interval. τrtimeout represents the

amount of time the root controller (RC) waits before considering a keep-alive
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message from a local controller as missing.

Similar to instance failure detection time, stage alignment and Helix’s con-

figuration attribute values affected Helix’s area failure detection time. Our

experiments showed that Helix detected area failures using failed inter-area

link notifications. Helix employed two mechanisms to detect area failures:

First, the Helix root controller detected area failures via failed inter-area

link notifications received from the local controllers. The Helix local controller

used the standard LLDP mechanism to detect inter-area link failures (discussed

in §5.1). The topology discovery module expected to receive a heartbeat from

a neighbouring area on an inter-area link within τiap seconds. Helix assigned

τiap as five LLDP send-intervals, implying that a local controller considered an

inter-area link as failed after five consecutive heartbeats were missing. After

an area lost all controller instances, the area stopped sending LLDP packets to

neighbouring areas, causing neighbouring controllers to declare the inter-area

links as failed and notify the root controller.

Second, the RC employed a timeout mechanism similar to the instance

failure detection mechanism. Local controllers send keep-alive messages to the

root controller every τrk seconds. The root controller waited up to τrtimeout

seconds before declaring a heartbeat as missing. We assigned τrtimeout a large

enough value to account for inter-controller communication latency and timer

differences to prevent false-positive area failure detection events. The root

controller considered an area had failed when Nrk consecutive heartbeats for a

controller were missing. Helix defined τrtimeout as half the keep-alive interval.

For this evaluation, we used a τlldp of 0.4s, implying that τiap was 2 seconds.

In contrast, we configured τrk to 4 seconds and Nrk to 1.

Because Helix local controllers did not synchronise LLDP-send intervals,

the controllers generated LLDP packets at different times. We expect that

the variation in LLDP timers is at most τlldp seconds. We can approximate

Helix’s maximum inter-area link failure detection as τiap + τlldp or 2.4 seconds.

Referring back to §7.4 and §7.5, all area failure detection components adhered
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to this maximum constraint.

When using the second area failure detection method, Helix should detect

an area failure within τrk ∗Nrk + τrtimeout seconds (6s based on the used con-

figuration attributes for the experiments). We can estimate Helix’s maximum

area failure detection time as the smallest value of either f(x) or g(x):

f(x) = (τrk ∗ τnk) +
τrk
2

g(x) = (τiap + τlldp)

We can approximate Helix’s area failure recovery metric as ∆Arecv ≈ δAFD+

τRConsolidate+δPI , where δAFD represents the area failure detection time, τRConsolidate

the root controller path computation timeout and δPI Helix’s inter-area path

installation time. In this evaluation, Helix took under 0.07 seconds to modify

the inter-area paths in response to failures. We used a τRConsolidate of 1 for our

experiments. Based on the more aggressive inter-area link failure detection,

we can approximate Helix’s local area failure recovery metric as:

∆Arecv ≈ (τiap + τlldp) + 1.4

7.9 Conclusion

This section concludes the control plane evaluation chapter by assessing Helix’s

design choices related to the failure recovery of areas and instances. We use the

experiment results and models to discuss how different design decisions impact

recovery performance. Assuming a hierarchical control plane architecture, we

can identify two possible methods to detect and recover from instance failures:

• Replication: A system can perform instance failure detection and recov-

ery locally within a cluster (i.e. Helix’s approach).

• Reassignment: A system can use the RC as an orchestrator.

The replication method describes an offloaded or proactive operation. In

contrast, the reassignment method is a centralised or reactive operation that
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involves a remote entity in the decision process. Helix uses replication to deal

with controller failures. Using the root controller as an orchestrator (reas-

signment method) is a common approach used by systems that deploy a flat

control plane architecture (e.g. ONOS [9]) and deal with controller failures by

allowing any controller to take over any switch in the network.

We used a control channel latency of 20ms (average WAN latency) and

conservative Helix timeout attributes for the conducted experiments. Despite

Helix deploying instances within the same cluster, the emulation framework

applied the defined control channel latency to all controller devices. As such,

instances deployed in the same cluster experienced inter-area WAN latency

when communicating. Based on this factor, we assume that our evaluation

results would mimic the performance we expect to see from the reassignment

method. If Helix were to apply the reassignment method, we would need to

configure Helix’s timeout attributes to large enough values to prevent false-

positive failure detection. For example, if τtimeout is too low, the backup in-

stances may take over the cluster despite the primary device still functioning,

causing back-and-forth role change operations.

In our evaluation experiments, Helix’s average instance recovery time was

1.6s. We can improve Helix’s instance failure recovery performance by using

a lower τk and τtimeout value. Because Helix deployed instances in the same

cluster (low communication latency) and synchronised keep-alive timers, we

can configure a more aggressive failure detection without encountering false-

positive detection events. For example, decreasing τk to 0.2s will reduce Helix’s

failure detection time to 0.3s. The new failure detection time is 5x times faster

compared to the average δFD we observed for the experiments. Using the lower

τk will decrease instance failure recovery to 0.34s (4.5x faster). Comparing the

two failure recovery methods, we assume that using the root controller as an

orchestrator would yield a failure recovery metric of 1.6s. By adjusting Helix’s

configuration attributes, the system can recover from failures up to 4.5x faster

without experiencing false-positive failure detection events.
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If Helix experienced false-positive instance failure detection, Helix’s design

choices would minimise the impact of these events. Helix instances recover

state from the data plane to prevent unnecessary path changes. When a

Helix instance takes over a cluster, it will not recompute paths. As such,

false-positive failure detection will only cause a role change operation without

affecting the system’s forwarding stability.

Area Failure Recovery: We can apply a similar approach to improve

Helix’s area failure recovery. Unlike instance recovery, accounting for inter-

controller latency in Helix’s configuration attributes is critical for this op-

eration. False-positive area failure detection affects the system’s forwarding

stability because the RC recomputes inter-area paths in response to area fail-

ures. We can improve Helix’s area failure recovery by targeting the inter-area

link failure detection mechanism. Inter-area link failure detection involves

neighbouring devices. Because areas are adjacent, inter-area latency will be

smaller than the LC-RC communication latency, allowing us to configure a

more aggressive failure detection. In contrast, the RC’s keep-alive mechanism

will take longer to detect failures as it needs to account for higher latency. By

setting τlldp to 0.1s, we can reduce Helix’s inter-area link failure detection to

0.6s. The new inter-area link failure detection is 4x faster compared to Helix’s

δAFD observed in the experiments. If we use a τRConsolidate of 1 second, Helix

will recover from area failures within 1.67s (2x faster).

An MCSDN system that detects area failures using a keep-alive mecha-

nism (similar to the Helix RC) will have slower failure recovery performance

compared to Helix. These systems need to account for higher inter-area la-

tency between controllers to prevent false-positive detection. If Helix used its

keep-alive mechanism to detect area failures, Helix’s area recovery time would

increase to 7.4s (4.4x slower). Even if we decrease τrk to 1s, area failure recov-

ery will still be slower (2.4s or 1.5x higher). Because of Helix’s design choices,

we can configure Helix to quickly recover from area failures while avoiding the

risk of introducing false-positive area failure detection events.



Chapter 8

Evaluation: TE Optimisation

The primary contribution of this chapter is to evaluate Helix’s Traffic Engineer-

ing (TE) performance and compare Helix against several other systems. This

chapter evaluates TE performance by conducting experiments using YATES

[52], a simulation framework. This chapter also provides a concrete testing

methodology and presents our extensions to YATES to add support for eval-

uating reactive TE optimisation systems (e.g. Helix).

Helix offloads inter-area TE from the root to the local controllers. The

main concern with offloaded operations is the loss of global visibility, which

may cause Helix to make suboptimal TE decisions. To this end, this chapter

sets out to answer two research questions: (1) “What are the effects of using

multiple versus a single controller on TE performance?”; (2) “What are the

effects of loss of centralised scope on TE optimisation performance?”.

This chapter is structured as follows. First, §8.1 contains a brief introduc-

tion of YATES and discusses our modifications to the framework to add sup-

port for evaluating reactive TE optimisation systems. §8.2 discusses our testing

methodology, topologies, and algorithms used in our experiments. Next, §8.3

presents the evaluation results collected across three topologies, and §8.4 dis-

cusses the limitations of this evaluation. Finally, §8.5 concludes this chapter.
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8.1 Simulation Framework

YATES is a simulation framework that enables network operators to develop

and assess offline TE optimisation systems. The framework simulates a net-

work’s forwarding behaviour by keeping track of aggregated traffic on links.

YATES divides experiments into runs, which last for a predetermined number

of iterations (Tsimtime). In every iteration, the framework advances packets

to their next hop and applies fair queueing, keeping track of metrics such as

dropped packets. YATES requires four user inputs to run an experiment:

• a topology graph that specifies the network to use for the simulation

• a TE algorithm to evaluate

• a set of traffic demands to use during the experiment (sent traffic)

• a set of predicted traffic demands to provide to the TE algorithm

YATES expects demands encoded as a list of traffic matrices where each

row represents one TE matrix that coincides with a particular experiment run.

The columns of the demand TE matrix represent the amount of traffic a source

node from the topology will send to a destination node during the experiment.

In contrast, the prediction matrix specifies how much traffic we expect each

source-destination pair to send. YATES provides the prediction matrices to

the TE algorithm, which uses them to compute routing schemes.

YATES only supports simulating offline TE systems because the framework

calls the TE algorithm it is evaluating to generate routing schemes between

experiment runs. YATES does not collect metrics or introduce traffic into

the topology while the algorithm computes its paths. In contrast, Helix’s TE

algorithm makes real-time decisions based on collected metrics. As such, we

added several new functions to YATES’ default algorithm interface. These new

functions enable a TE algorithm to gather live metrics from the topology and

perform decisions during the experiment. The new functions are as follows:
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• fA provides an algorithm with the current link usage information. The

framework triggers the method for every link during an iteration.

• fB notifies the system when the current iteration has finished.

• fC allows YATES to check for and apply a routing scheme update gener-

ated by the algorithm. If a routing scheme update is available, the frame-

work uses it to forward traffic during the next iteration. The framework

triggers fC after fB.

We built a new YATES algorithm module for Helix to conduct our experi-

ments. The algorithm module maintains local network information (e.g. met-

rics) and simulates the system’s behaviour. For example, the module simulates

Helix’s polling behaviour by aggregating and averaging link usage statistics af-

ter a predetermined number of iterations have elapsed (i.e. τstats). Unlike the

other algorithm modules provided by YATES, the Helix module implements

a routing scheme update timeout to simulate the effects of control channel

latency on decisions. Both the statistics polling and routing update time-

outs are user-configurable. Finally, we built a shallow wrapper of each Helix

controller type that runs Helix’s path computation and TE optimisation algo-

rithms. The YATES module calls the controller wrappers to trigger specific

events. We will go through the six steps involved when resolving congestion

to explain how YATES, the module, and the controller wrapper interact:

1. fA provides the Helix module with the current traffic on links. The

module adds the traffic information to a link’s total observed usage.

2. After the framework forwards traffic on every link, it will trigger fB. The

method tells the Helix module that the current iteration has finished.

If the current poll interval has elapsed, the module averages the link

statistics and checks for congestion.

3. If the module has detected congestion in the network, it will call the

Helix controller wrapper to resolve it. The module provides the wrapper
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with all relevant metrics required to perform TE optimisation.

4. The wrapper executes Helix’s TE algorithm, providing a new routing

scheme (path changes) to the module.

5. The module processes the path changes and triggers the update timeout.

6. Once the timeout elapses, fC returns the new routing scheme to the

framework. The framework uses the new scheme to forward traffic during

the next iteration.

8.2 Testing Methodology

This evaluation introduced congestion in a network and measured the per-

centage of traffic lost during an experiment to evaluate the TE performance

of systems by assessing how much of the introduced congestion the system

resolved. We also considered forwarding stability in our experiments by look-

ing at the path change churn metric or the number of path modifications the

system performed. Frequently changing paths disrupts the flow of packets by

causing packet reordering, which negatively affects performance. A TE system

needs to balance TE performance with stability to avoid such problems.

For these experiments, we used a Tsimtime of 500, a TE threshold of 95%,

and a Helix poll interval of 100. Helix processed link statistics five times per

experiment run. The TE threshold limited TE algorithms to use up to 95% of

a link’s capacity before considering the link congested.

Evaluated Algorithms: We compared the performance of Helix against

three load balancing (ECMP [37], VLB [94], and Raeke [73]) and three TE al-

gorithms (CSPF, MCF [28], and Semi-MCF-KSP) provided by YATES. Semi-

MCF-KSP is an approximation of a centralised TE optimisation system (e.g.

SWAN [36]). This algorithm formulated a constrained MCF problem to gener-

ate traffic ratios, which the system used to split and forward traffic on multiple

paths.
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Experiment Topologies: We collected results using three topologies of

different complexity and size from the Topology Zoo Project [49]. First, we

collected results using the AT&T MPLS topology, which is representative of

an average-sized Wide Area Network (WAN). The AT&T MPLS topology

contained 25 nodes and 56 links. Second, we collected results using the Abilene

topology, representative of a small-sized network. The Abilene topology had

11 nodes and 14 links. Finally, we collected results using the Hibernia Atlantic

network, an example of a large inter-continental WAN. The Hibernia network

contained 55 nodes and 81 links. Using topologies that vary in size allowed

us to evaluate Helix’s ability to scale and cope with an increasing number

of metrics and links. For example, the Hibernia topology contains 25x more

source-destination pairs than the Abilene network (3025 vs 121) and almost 5x

more than the AT&T MPLS network (3025 versus 625). Using more source-

destination pairs increased the TE algorithm’s search space and the number

of factors it considered when computing new paths.

Experiment Demand: We used YATES to generate synthetic demands

for all three topologies in our experiments. YATES produced TE matrices

with realistic traffic patterns using the gravity model [74]. For example, figure

8.1 shows the total traffic sent between source-destination pairs of the AT&T

MPLS topology. The used demands contained diurnal patterns, simulating

peak and off-peak usage commonly encountered in real networks. All the

tested TE algorithms used predictions to compute an offline routing scheme.

YATES allows scaling the provided traffic demand for an experiment by

a specific multiplication factor. The framework applies the traffic multiplier

to the generated traffic and prediction matrices. To perform our experiments,

we found a traffic multiplier that was sufficiently large to introduce congestion

into a specific network. We use this multiplier to collect results and compare

the performance of the TE algorithms. To showcase the ability of the tested

systems to scale and adapt to increasing traffic demands, we gathered results

using three gradually increasing scale factors. Increasing the traffic multipliers
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Figure 8.1: Graph showing the total traffic sent between hosts for the AT&T

MPLS Topology evaluation results. Demand contains diurnal patterns, simu-

lating peak and off-peak usage.

used for the experiments caused the framework to send more traffic through

the topology, placing more strain on the TE systems.

8.3 Evaluation Results

This section discusses results for the AT&T MPLS (§8.3.1), Abilene (§8.3.2),

and the Hibernia Global topologies (§8.3.3). We repeated each experiment

three times using gradually increasing traffic multipliers. Because YATES is

a simulation framework, it did not introduce delays when executing TE al-

gorithms. Moreover, YATES maintained consistent traffic rates based on the

provided demands implying that the evaluated systems had consistent be-

haviour and performance during experiments. Unlike the previous evaluation

chapters that used emulation frameworks to collect results, we did not need to

repeat experiments as repeated experiments would produce the same results.

All results presented in this chapter are reproducible. To encourage further

development in this area, we provide all of our collection scripts, along with

raw and processed results for all experiments outlined in this section [2].

All load balancing algorithms performed poorly in our experiments com-
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pared to the evaluated TE systems. This poor performance is unsurprising

because load balancing algorithms did not divide traffic based on predicted

demands or congestion information. In our experiment, the load balancing al-

gorithms split traffic equally (i.e. ECMP) or used random node indirection to

randomly forward traffic on several paths (i.e. VLB and Raeke). For example,

ECMP experienced congestion loss during all experiments with a maximum

loss rate of 21% for the AT&T MPLS topology. In contrast, SWAN (i.e. Semi-

MCF-KSP) did not experience any congestion loss for 56% of runs and had a

maximum loss rate of 14.1%. Because we observed a significant gap in system

performance across our evaluation, this chapter will discuss and present results

for the top-three best performing TE systems.

8.3.1 AT&T MPLS Network Results

Figure 8.2 shows a CDF graph of congestion loss (top row) and the number of

path changes (bottom row) observed on the AT&T MPLS topology.

TE Performance: With a 500x traffic multiplier (figure 8.2a) Helix ex-

perienced no congestion loss for 90.5% of experiment runs compared to 92.5%

for CSPF. While Helix encountered congestion during more runs, Helix per-

formed better than CSPF. The average loss rate across all runs for Helix was

0.5%, with 99% of its runs reporting up to 0.9% loss. In comparison, CSPF’s

average loss rate was 0.07%, with 99% of its runs reporting up to 1.5% loss

(1.6x higher). Despite this, Helix’s maximum recorded loss rate was higher

than CSPF’s (3.0% versus 1.8%). This loss rate was recorded at the start of

the experiment (first run) when Helix started with unoptimised paths. Dur-

ing this run, Helix forwarded 20% of all traffic using shortest path forwarding

before modifying the routing scheme.

In contrast, because CSPF is an offline TE algorithm, it performed its op-

timisation before YATES forwarded traffic through the topology. The second-

highest loss rate value for Helix was only 1.7%. Both Helix and CSPF per-

formed better than MCF. MCF reported no congestion loss for 83.5% of ex-



118

0.6

0.7

0.8

0.9

1

0 4 8 12 16

C
D

F

Loss %

CSPF
MCF
Helix

0

0.2

0.4

0.6

0.8

1

12000 400 800

C
D

F

# Path Changes

(a) 500x

0.6

0.7

0.8

0.9

1

0 4 8 12 16

C
D

F

Loss %

0

0.2

0.4

0.6

0.8

1

12000 400 800
C

D
F

# Path Changes

(b) 550x

0.6

0.7

0.8

0.9

1

0 4 8 12 16

C
D

F

Loss %

0

0.2

0.4

0.6

0.8

1

12000 400 800

C
D

F

# Path Changes

(c) 600x

Figure 8.2: AT&T MPLS Topology: CDF graphs showing congestion loss

rate and the number of path changes per run using three traffic multipliers.

Helix experienced less congestion loss and performed up to 12x fewer changes

compared to CSPF and 29x compared to MCF.

periment runs and had a maximum loss rate of 5.7%.

When we increased the traffic multiplier to 550x (figure 8.2b), we observed

a slight performance improvement for Helix. Helix had a loss rate of up to 2.4%

for 97.5% of runs compared to 3.9% for CSPF (1.6x higher) and 7.5% for MCF

(2.5x higher). Moreover, when increasing traffic in the experiment, Helix had

a lower maximum loss rate than CSPF (4.6% versus 5.6%). The lower loss

rate suggests that Helix’s TE algorithm was better at finding solutions for

congestion when dealing with higher traffic demands.

Consistent with the trend observed in the 500x traffic multiplier results,

CSPF and Helix resolved more congestion than MCF, despite MCF being a

more complex algorithm. While this may not seem intuitive, we attribute

the poor performance of MCF to MCF’s accuracy targets. MCF algorithms

attempt to resolve all congestion in the topology using complex path manip-

ulation techniques, while algorithms such as CSPF are simpler. Because our

experiments placed a high load on links, MCF routed packets on longer paths,

dispersing the introduced congestion across multiple links rather than resolv-
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ing it. MCF’s longest routing scheme path had 17 hops compared to 9 for

CSPF and Helix. MCF introduced minor loss across multiple links by using

longer paths, hindering its ability to deal with high traffic loads.

The difference in performance between Helix and the other systems con-

tinued when using a 600x traffic multiplier (figure 8.2c). Helix’s average loss

rate was 0.62% compared to 0.94% for CSPF (1.5x higher). Consistent with

the 550x results, Helix had the lowest maximum loss rate reported during a

run (6.2% versus 8.1%). Based on the trend in performance, we conclude that

Helix adapted well to increasing traffic demands.

Forwarding Stability: While Helix marginally outperformed the other

evaluated algorithms in terms of addressing congestion, Helix had significantly

better forwarding stability. With a 500x traffic scale factor, Helix performed up

to 36 path changes during a run compared to 414 path changes made by CSPF

(12x higher) and 1034 by MCF (29x higher). We observed a similar difference

when increasing the traffic demands of the experiment. With a 550x and 600x

traffic scale factor, Helix’s maximum path change churn metrics were 60 and 46,

respectively. In contrast, CSPF’s maximum churn metric values were 408 and

400. Like the previous results, MCF performed the most path modifications.

We observed a slight drop in path change churn for Helix and CSPF in the

600x experiment results. This decrease was caused by the experiment placing

more load on links, implying that Helix and CSPF could not address all of the

introduced congestion. As such, Helix and CSPF performed slightly fewer path

modifications. We can confirm this observation by looking at the recorded loss

rate, which was higher for this experiment (4.6% versus 5.2% for Helix).

Discussion: We can attribute Helix’s good forwarding stability to its TE

algorithm, which minimises its solution search space. Helix’s TE algorithm

considered and modified only the source-destination paths that used an over-

utilised port, allowing it to perform fewer path modifications. In contrast,

CSPF and MCF recomputed all source-destination pairs in the network, ex-

ploring a more substantial search space. When recomputing all paths to re-
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generate the routing scheme based on new traffic demands, there is a higher

chance that the system will modify a candidate’s path. Because Helix con-

strained its search space, most forwarding paths were unmodified, increasing

the system’s forwarding stability by reducing path change churn.

Furthermore, the smaller search space allowed Helix to find better solutions

to congestion. The algorithm had to consider moving fewer flows, increasing

the chances of finding a set of potential path changes to reduce usage on

an over-utilised port (fewer variables in the optimisation problem). Helix’s

TE algorithm treated congestion on each link as an independent problem,

accepting partial solutions to address the detected congestion. In contrast,

CSPF tried to simultaneously resolve congestion on every link by recomputing

the network’s routing scheme. CSPF may have ignored potential path changes

that reduced but did not fully resolve all detected congestion, as it could not

fix every congested link in the network.

To better explain the reason for Helix’s improved performance, we will

use an example situation. Figure 8.4 illustrates the Hibernia global network.

Suppose that link a of node A from Area 1 becomes congested. Because node

A is at the edge of the network and is isolated, we assume that link a is

only used by traffic originating from or going to node A. In other words, we

assume that other paths generated by Helix will not use link a as a transit link

to reach a destination. In this example, the algorithm’s search space contains

108 candidates implying that Helix will modify at most 108 paths (worst case).

In contrast, because CSPF recomputes all candidates in the network, it

can perform up to 3025 path changes (worst case). While CSPF may not need

to modify all paths, it is likely to modify more paths than Helix due to the

higher number of recomputations. Moreover, Helix is more likely to resolve

congestion because it considers moving fewer flows than CSPF.

Let us assume that we encounter congestion on two links in the network,

a from the example and b. In this situation, CSPF will modify the routing

scheme (resolve congestion) only if it can address congestion on both links a
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Figure 8.3: Abilene Topology: CDF graphs showing congestion loss and the

number of path changes per run. Results were consistent with §8.3.1.

and b. Suppose there is no viable solution to address congestion on b, but there

is a solution for a. CSPF will not perform any path changes and discard the

generated routing scheme in this situation. In contrast, Helix treats congestion

on a and b as separate problems. Helix will still address congestion on a even

if it could not find a solution for b.

8.3.2 Abilene Network Results

Figure 8.3 shows a CDF graph of congestion loss (top row) and the number of

path changes (bottom row) observed on the Abilene topology.

TE Performance: Our results were consistent with §8.3.1. With a traffic

multiplier of 2.2x (figure 8.3a), 36% of Helix’s runs reported no loss compared

to 28% for CSPF and none for MCF. Helix’s maximum loss rate was 2.1%

compared to 3.2% for CSPF (1.5x higher) and 3.4% for MCF (1.6x higher).

Helix outperformed CSPF and MCF when increasing the traffic demands of

the experiments. Helix’s maximum loss rate was 9.7% when using a traffic

multiplier of 2.8x (figure 8.3b) and 12.7% when using a multiplier of 3.0x

(figure 8.3c). In contrast, CSPF had a maximum loss rate of 13.6% (1.4x
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Figure 8.4: Hibernia Global topology graph showing the two Helix areas (green

and blue circles) used for the multi-controller evaluation results. We divided

the network into two areas, one for each continent.

higher) and 18.6% (1.5x higher), respectively.

Forwarding Stability: Consistent with §8.3.1, Helix had the best for-

warding stability of all evaluated systems. Overall, Helix modified fewer paths

compared to CSPF and MCF. With a traffic multiplier of 2.2x, Helix performed

a maximum of 26 path changes during a run compared to 44 maximum changes

for CSPF (2x higher) and 90 for MCF (3.5x higher). Helix’s maximum path

change churn was 32 with a traffic multiplier of 2.8x and 28 with a multiplier

of 3.0x. Similar to §8.3.1, we observed a slight drop in path change churn

for Helix when using a higher traffic multiplier. While Helix still performed

the least number of path modifications, the difference between Helix and the

other systems decreased. We attribute this reduction in path change churn

difference to the simplicity of the Abilene network. The Abilene topology con-

tained 4x fewer path pairs than the AT&T MPLS network (144 versus 625),

significantly reducing the search space for all algorithms. As a result, CSPF

and MCF recomputed fewer candidate paths, decreasing the number of path

changes. Moreover, because the search space was already constrained, Helix’s

TE algorithm could not reduce it further, diminishing the improvements Helix

offered to stability.
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8.3.3 Hibernia Global Network Results

Figure 8.5 presents a CDF graph of the results collected using the Hiber-

nia Global Network. For our experiments, we collected two sets of Helix re-

sults. One of the experiments used a single controller to manage the complete

topology (SC-Helix), and the second used a multi-controller deployment (MC-

Helix). The Hibernia Global network is an example of an inter-continental

WAN. From a latency standpoint, it is logical to divide the topology into ar-

eas based on the proximity of nodes. MC-Helix separated the topology into

two areas deployed on each continent. Figure 8.4 shows how we divided the

topology for the MC-Helix deployment. Area 1 (green circle) covered all US-

based nodes, while Area 2 (red circle) covered the nodes deployed in Europe.

TE Performance: Consistent with §8.3.1 and §8.3.2, SC-Helix outper-

formed all tested algorithms. With a 300x traffic multiplier (figure 8.5a),

SC-Helix’s average congestion loss rate was 1.89% with a maximum rate of

12.53%. In contrast, CSPF’s average loss rate was 2.38% (1.3x higher) with

a maximum of 15.84% (1.3x higher). With a traffic multiplier of 350x (figure

8.5b) and 400x (figure 8.5c), SC-Helix addressed more of the introduced con-

gestion compared to CSPF and MCF. SC-Helix’s average loss rate was 4.47%

and 7.72%, respectively. CSPF’s average loss rate was 5.60% (1.3x higher)

and 9.87% (1.3x higher), while MCF’s had an average loss rate of 6.23% (1.4x

higher) and 10.90% (1.4x higher).

Forwarding Stability: SC-Helix also had the best forwarding stability.

With a 300x traffic multiplier, SC-Helix performed an average of 64 path

changes during the entire experiment, while CSPF’s average was 1010 (16x

higher) and MCF’s average was 4660 (74x higher). SC-Helix’s maximum num-

ber of path changes performed during a run was slightly higher than CSPF

(3078 versus 2970). The peak in SC-Helix’s path change churn was recorded

during the first run of the experiment when the system started forwarding

traffic using unoptimised paths. As a result, SC-Helix recomputed all paths

during the first run, causing the observed peak in path change churn. Despite
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Figure 8.5: Hibernia Network: CDF graphs showing results collected across

200 experiment runs. We used a single-controller (SC-Helix) and multi-

controller (MC-Helix) Helix deployment. The trend in results was consistent

with §8.3.1 and §8.3.2. Both Helix deployments had similar performance.

the observed peak in the metric value, SC-Helix still modified significantly

fewer paths overall. SC-Helix did not perform any changes for 83% of all runs,

modifying at most 20 paths for 95% of runs. In contrast, CSPF did not modify

any paths during 58% of runs, performing between 2026 and 2562 path changes

during the 59th and 95th percentiles. This trend in path change churn contin-

ued when increasing the experiment’s traffic. SC-Helix performed an average

of 64 (350x traffic multiplier results) and 80 path changes (400x traffic mul-

tiplier results) across all experiment runs. In contrast, CSPF’s average path

change churn was 1511 (24x higher) and 1979 (25x higher), respectively.

SC-Helix vs MC-Helix: In our experiments, SC-Helix and MC-Helix

performed almost identically. With a traffic multiplier of 300x, MC-Helix’s

average loss rate was 1.91% compared to 1.90% recorded for SC-Helix, with

a maximum of 12.59% versus 12.53%. This trend continued when comparing

forwarding stability, with both deployments having a similar average path

change churn metric value (63 for SC-Helix versus 77 for MC-Helix).
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The trend observed for MC-Helix’s performance continued across the 350x

and 400x results. MC-Helix’s average loss rates were 4.38% (versus 4.47%) and

7.64% (versus 7.72%), respectively. MC-Helix and SC-Helix also had similar

average path change churn metric values. Despite this, MC-Helix’s maximum

number of path changes performed during a run was significantly higher than

SC-Helix’s for the 400x scale factor results (6312 versus 3204). While MC-

Helix modifies more paths, a higher path change metric for MC-Helix may not

indicate poorer forwarding stability. YATES computed the path change churn

metric for MC-Helix as the total number of path modifications performed by

all controllers. Suppose that SC-Helix changed two links of a candidate’s path,

interacting with two switches. Despite changing two links, YATES reported

a single path change performed by the system. Let us assume that MC-Helix

made the same overall path modification, with the two links spanning differ-

ent areas. Because two controllers were involved in the path change process,

YATES reported that the system performed two path modifications. As such,

a higher path change churn metric value for MC-Helix did not necessarily cor-

relate with less stable forwarding. Moreover, we conclude that both SC-Helix

and MC-Helix had similar forwarding stability due to two factors: First, this

difference in path change churn was only visible in one of the experiments.

Second, the increase in churn occurred during the first run when Helix needed

to optimise all paths.

Summary: Based on the collected results, we conclude that Helix per-

formed better than the other evaluated systems. This trend in Helix’s per-

formance was consistent throughout our evaluation. This section also demon-

strated that both single and multi-controller Helix deployments had similar

performance. As such, we draw three main conclusions from this evaluation:

1. Using multiple Helix controllers does not negatively affect TE optimisa-

tion performance or forwarding stability.

2. MC-Helix did not perform any root controller TE optimisation requests.
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As such, we can conclude that Helix’s offloaded inter-area TE optimisa-

tion could address the majority of inter-area congestion locally.

3. TE optimisation performance seems to be minimally affected by the loss

of centralised scope.

8.4 Limitations of Results

We evaluated TE optimisation performance and forwarding stability using

YATES, a simulation framework. YATES did not simulate or consider how la-

tency and state distribution affected TE performance. Instead, the framework

opted to collect metrics that provided insight into how well a TE algorithm sat-

isfied a set of traffic demands. Due to this limitation, we assume that YATES

overestimated the performance of the evaluated systems.

YATES did not evaluate how convergence from one routing scheme to an-

other affected the performance of offline TE systems. The time it takes to

compute and deploy the new routing scheme delays how fast the systems re-

spond to congestion, increasing the loss rate. In contrast, because Helix per-

formed real-time traffic steering decisions, our collected results accounted for

convergence time, offering a more realistic evaluation of Helix’s performance.

Researchers have identified that prediction TE matrices often contain errors

[4]. Our experiments collected results with prediction matrices that contained

no estimation errors, implying that all offline TE algorithms were aware of

the actual demand they would encounter, and as such made better TE deci-

sions. Prediction errors can have a detrimental effect on TE performance. For

example, underestimating traffic demands can cause congestion loss if a TE

system does not reserve sufficient spare capacity on links to cope with extra

traffic. On the other hand, overestimating the demand can cause the TE algo-

rithm to reserve too much capacity, constraining links and potentially delaying

forwarding by routing traffic on longer than necessary paths.
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8.5 Conclusion

This chapter evaluated Helix’s TE optimisation performance and presented

experiments that provided insight into the effects of using multiple controllers

on TE performance. This chapter also presented a concrete testing methodol-

ogy to evaluate the TE optimisation performance and forwarding stability of

reactive MCSDN systems.

Across all conducted experiments, we found that Helix performed better

than the other evaluated systems and coped well with increases in traffic de-

mands. Helix’s average loss rate was up to 1.6x lower compared to CSPF

while performing up to 29x fewer path changes. We attribute Helix’s improved

forwarding stability and performance to the system’s TE algorithm, which re-

duced its search space and deployed partial solutions by treating congestion

on links as independent problems.

Because Helix offloads inter-area TE to local controllers, we set out to an-

swer two research questions in this evaluation: (1) “What are the effects of

using multiple versus a single controller on TE performance?”; (2) “What are

the effects of loss of centralised scope on TE optimisation performance?”. We

collected results using two Helix deployments on the Hibernia Global Net-

work to answer these questions. Our experiments found that both single

(SC-Helix) and multi (MC-Helix) controller Helix deployments had almost

identical TE optimisation performance and forwarding stability. Based on

our results, we drew two conclusions. First, because both Helix deployments

had similar performance and forwarding stability, using multiple controllers to

manage an SDN system had minimal effects on TE optimisation performance

(first research question). Second, because MC-Helix did not perform any root

controller-based TE optimisations, we conclude that loss of global visibility

had minimal impact on Helix’s TE performance because the local controllers

resolved most inter-area congestion locally (second research question).



Chapter 9

Application to Other SDN

Systems

This thesis identified and proposed solutions to address the challenges faced

by Multi-Controller SDN (MCSDN) systems when deploying Traffic Engineer-

ing (TE) on Wide Area Networks (WANs). While this thesis evaluated the

design choices using an OpenFlow-based system, we can apply this work to

any existing and emerging SDN-based network management approaches as all

SDN systems face similar challenges to those discussed in this thesis.

We can demonstrate the applicability of this work by discussing how Helix

can be adapted and deployed in conjunction with other non-OpenFlow SDN

approaches. We developed Helix as a modular system that enables easy usage,

replacement of components, and partial deployment of features. Figure 9.1a

presents a simplified overview of the Helix Local Controller (LC), while figure

9.1b presents an overview of the Helix Root Controller (RC). A core part

of all Helix controllers is the module coordinator/event handler component.

The module coordinator is an asynchronous event handler that registers to

receive specific events raised by the underlying data plane framework. The

data plane framework acts as a proxy between the data plane devices and the

Helix local controller. The LC uses Ryu [75] as its data plane framework. Ryu

implements the OpenFlow protocol (OFP) and handles all connectivity and
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LCa

(a) Helix Local Controller (LC) (b) Helix Root Controller (RC)
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Figure 9.1: (a) Components that make up the Helix local controller (LC) and

(b) root controller (RC). The Module coordinator component interacts with

the core Helix modules and transforms Helix controller objects (e.g. paths)

into messages. The module coordinator component is implemented as an asyn-

chronous message handler that receives and forwards messages to and from the

data plane framework component. The data plane framework module (e.g.

Ryu for LC) interacts with the data plane devices.

communication with the physical data plane switches.

When a data plane device sends a message to the Helix controller, the

data plane framework sends an event to the module coordinator, triggering a

specific event handler method. The event handler will transform the event’s

information into a Helix object (e.g. link information) and forward it to a

Helix core module, triggering a particular action (e.g. adding a new link to

the topology). In essence, the Helix module coordinator acts as an interface

between the Helix core modules and the data plane framework, performing any

relevant conversion and mapping of objects. For example, when the Helix path

computation module computes a path, the module coordinator will translate

the Helix path object (encoded as a list of switch IDs) into a set of ports telling
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each switch how to forward traffic.

9.1 Example: Interaction of LC Components

To better explain the interaction between the various components, we will

discuss the ten steps that occurred when the LC performs TE optimisation.

Before addressing congestion, the Helix LC will poll the network for statistics:

1. For every poll interval, the module coordinator will generate a statistics

request OFP message for every active data plane device.

2. The OFP messages are sent to each switch through the data plane frame-

work (Ryu).

3. Once a data plane device receives the statistics request, it will send a

statistics reply OFP message back to the LC.

4. The OFP message is received by Ryu, which triggers the statistics reply

event handler of the module coordinator.

5. The module coordinator extracts relevant usage information for each link

from the OFP message.

6. The module coordinator will send the usage information to the topology

module (which will update the link usage metrics of the topology object)

and the TE module (which checks for congestion).

7. When the TE module detects congestion, it will execute Helix’s TE op-

timisation algorithm (§5.3).

8. The TE module will produce a set of candidate Helix path objects which

it sends to the module coordinator to install. A Helix path object is a

list of switches used to forward traffic for a particular source-destination

pair (e.g. {SRC;SWa;SWb;DEST}).
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9. The module coordinator will convert the Helix path object into a list of

OFP group modification messages that tell each switch how to forward

traffic (e.g. SWa should output traffic on port 2).

10. The OFP messages are sent to Ryu, which forwards the messages to the

physical switches to apply the candidate path changes to the data plane.

9.2 Extending Helix

To use Helix on a non-OpenFlow data plane, we need to modify the event

handler and data plane framework components of the LC. In the current LC

example, the data plane framework component is Ryu, which facilitates con-

nectivity and communication between the control plane (LC) and the data

plane devices. In the current design, Ryu raises primitive events/messages

that the module coordinator registers to receive via an event handler method.

For example, the module coordinator will register to receive statistics reply

events raised by the Ryu framework when a data plane device responds to a

statistics request.

When the module coordinator interacts with a data plane device, it gen-

erates an OFP message object which it sends to the data plane framework.

Ryu will encode the received OFP message object into an OpenFlow packet

and forward it to the relevant data plane switch. The module coordinator gen-

erates message objects and directly interacts with events defined by the data

plane framework. As a result, when we replace the data plane framework com-

ponent, we also need to alter the module coordinator. The modified version

of the module coordinator should register to receive events raised by the new

framework and generate message objects that the framework can understand

and encode. It is worth noting that when changing the data plane framework

and coordinator components, we do not need to modify the core Helix mod-

ules as they are oblivious to the used module coordinator. The helix modules

expose standardised interfaces that require Helix objects. The event handler
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performs all translations to and from Helix objects, allowing us to keep the

core modules unmodified.

For example, the Helix RC is a specialised version of the LC that uses a

different data plane framework and module coordinator compared to the LC

(shown in figure 9.1b). In the case of the Helix RC, the actual data plane

devices are the local controllers. The RC uses an AMQP client (RabbitMQ)

as its data plane framework. The RC’s module coordinator registers to receive

AMQP messages from the LCs and performs all deserialisation and trans-

formation of the AMQP messages into Helix objects. The deserialised Helix

objects are forwarded to the core Helix modules to trigger specific actions (e.g.

add a link to the topology graph object). The module coordinator will also

serialise any Helix objects into messages, which it sends to the LCs via the

data plane framework. The RC provides an example of how we can modify

Helix to support non-OpenFlow data planes.

When extending Helix, the module coordinator needs to provide three ca-

pabilities (requirements) to allow deploying Helix:

1. Helix needs a way to detect the current network topology. We can either:

(a) Allow Helix to flood packets to deploy its topology discovery mech-

anisms

(b) Provide topology information directly to Helix

2. Helix’s path computation and TE optimisation modules compute routing

schemes and modify paths. Helix needs to either:

(a) Interact directly with the data plane to install and modify paths

(b) Provide a routing scheme to an external system that handles for-

warding

3. Helix’s TE optimisation algorithm requires link usage information and

candidate send rates to optimise the topology and detect congestion. We

can either:
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(a) Allow Helix to query the data plane for these metrics directly

(b) Provide this information to the system.

Based on requirements 1-3, we have two concurrent deployment pathways

for Helix. Option (a) of all requirements outlines a standalone deployment

pathway where Helix interacts with the data plane. The module coordinator

for a standalone deployment will use the data plane framework to interact with

the data plane devices. This deployment pathway characterises the current LC

implementation that uses Ryu as the data plane framework.

In contrast, option (b) shows an integrated deployment pathway where He-

lix works alongside other systems or protocols that interact with the physical

data plane devices. The module coordinator for an integrated deployment will

not directly interact with the data plane devices. Instead, the module coordi-

nator will provide information to a separate system that deploys Helix’s paths

on a network. The Helix RC provides an example of an integrated deployment.

For the Helix RC, the module coordinator uses AMQP to communicate with

an external protocol or system information such as paths (the Helix LC). The

external system (i.e. LCs) processes and applies the received instructions from

the RC to the physical data plane.

An integrated Helix deployment allows using Helix on a hybrid-SDN net-

work (e.g. similar deployment as Espresso [99]) where traditional protocols

(e.g. OSPF and BGP) handle routing.

For example, the integrated deployment pathway enables network operators

to use Helix’s TE optimisation on a Segment Routing (SR) network, where an

SR system will handle packet forwarding and interaction with the data plane.

Because the SR system forwards packets on segments to improve scalability,

and not detract from this benefit, Helix should be oblivious to the links in the

topology, keeping both systems separate. As such, the SR system will decide on

the links of a particular segment, while Helix will select the segment that traffic

will use. For this deployment, Helix should use an abstract topology graph

similar to the one described in §5.6. Helix’s abstract topology will contain
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virtual links that map to a particular segment, enabling Helix to decide what

segment traffic will use when performing TE optimisation.

When computing paths or performing TE optimisation, Helix will gener-

ate a routing scheme consisting of a list of segments. Helix should provide the

routing scheme to the SR system, which assigns traffic to the segments based

on the computed paths. The SR system will monitor the traffic on segments,

providing Helix with the required metrics the system needs to perform TE

optimisation. After Helix has resolved congestion in the network, the SR sys-

tem should modify the active paths to deploy Helix’s updated routing scheme.

The integrated Helix deployment pathway is similar to a Path Computation

Element (PCE) system [24].

The YATES Helix controller wrappers described in §8.1 offer a concrete

example of an integrated Helix deployment. We built the controller wrappers

to allow us to evaluate Helix’s TE performance in YATES. The Helix con-

troller wrappers are shallow copies of the controller that receive information

from an external system (i.e. YATES), perform specific operations (e.g. TE

optimisation), and return a routing scheme. The Helix wrappers provide the

routing scheme to YATES, which uses the computed paths to forward traffic

during an experiment.

Summary: When extending Helix to add support for non-OpenFlow data

planes, we need to modify the module coordinator component of the Helix

LC to work in conjunction with the new data plane type. For a standalone

deployment, we need to use a data plane framework that enables Helix to send

packets on the network to deploy its LLDP mechanism, query the data plane

devices for statistics, and install multiple paths on each device. The integrated

deployment simplifies the requirements for the module coordinator. In the

integrated deployment, the module coordinator does not directly interact with

the data plane and instead sends abstract information to an external system

that processes the requests and applies the instructions to the data plane.



Chapter 10

Conclusion

10.1 Summary of Thesis

This thesis explored and proposed solutions to address the challenges faced

by Multi-Controller SDN (MCSDN) systems when deploying TE optimisation

on WANs. While MCSDN has received significant research attention, existing

work presents performance, scalability, and resilience problems when deploying

TE because they considered the four challenges faced by MCSDN systems

in isolation (chapter 3). Moreover, the majority of work in the literature

has either not considered TE (e.g. [78, 30, 51, 9]), explored deploying TE

on SCSDN architectures (e.g. [36, 53]), or made design choices that make

deploying TE difficult due to architectural constraints (e.g. [70, 100]).

This thesis presented Helix, a complete MCSDN system that offered so-

lutions to address the challenges faced when deploying TE on WANs. He-

lix provides better scalability, performance and failure resilience compared to

existing systems by using abstraction to reduce the amount of state shared

between controllers, offloading inter-area operations to local controllers, and

using computationally lightweight tasks.

A challenge that we faced when building Helix was that existing TE algo-

rithms are computationally intensive and require network-wide state to oper-

ate. To meet Helix’s design choices, we developed a CSPF-based TE algorithm
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that requires less state to operate and supports offloading inter-area TE.

This thesis contained three chapters that evaluated Helix’s data plane fail-

ure recovery, control plane failure recovery, and TE optimisation performance.

These chapters also provided concrete testing methodologies and tools that

enable researchers to assess MCSDN system performance.

Chapter 6 evaluated Helix’s data plane failure recovery performance and

compared Helix against restoration-based recovery. The evaluation found that

Helix recovered from data plane failures up to 10x faster compared to restora-

tion recovery. The performed experiments also demonstrated that latency in-

flated the completion time of reactive operations, decreasing their performance.

Using proactive or offloading operations (design choice of Helix) enabled the

system to tolerate high latency, which is vital for deploying TE on WANs.

Chapter 7 evaluated Helix’s control plane failure recovery performance.

The experiments identified that stage alignment and the used configuration

attributes affected Helix’s performance. Based on these two factors, this chap-

ter presented two models that approximated Helix’s failure recovery time. The

chapter used the two models to compare Helix against a reassignment-based

recovery approach (e.g. [9]). Helix’s design choices enabled the system to

recover up to 4.5x faster from instance failures than the proposed alternative.

Chapter 8 evaluated and compared Helix’s TE optimisation performance

and forwarding stability against several other TE systems. In our experiments,

Helix’s average loss rate was up to 1.6x lower compared to CSPF while perform-

ing up to 29x fewer path changes. The evaluation experiments demonstrated

that Helix could scale and adapt well to an increase in traffic demand. We can

attribute Helix’s improved forwarding stability and performance to the sys-

tem’s TE algorithm, which reduced its search space and considered congestion

on links as independent problems.

Based on the conducted evaluation, we conclude that the proposed design

choices will benefit Helix when deploying the system on a WAN.

The presented evaluation experiments also gathered results towards an-
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swering two research questions: (1) “What are the effects of loss of centralised

scope on TE optimisation performance?”. (2) “What are the effects of using

multiple versus a single controller on system performance?”. §10.2 will dis-

cuss the effects of using multiple controllers (i.e. loss of centralised scope) on

system performance, answering these two research questions.

10.2 Effects of MCSDN on Performance

Helix offloads inter-area data plane failure recovery and TE optimisation from

the root to the local controllers. Offloaded operations lose centralised scope,

which can potentially cause Helix to make poor decisions, decreasing the sys-

tem’s performance. This section will discuss the effects of using multiple con-

trollers on performance by considering the two inter-area operations that Helix

offloads to the local controllers.

Data Plane Failure Recovery: When considering data plane failure

recovery, loss of centralised scope will not affect Helix’s failure resilience per-

formance. Helix deals with data plane failures by pre-installing multiple paths

onto the data plane to deploy protection-based recovery. Because switches

make decisions independent from the controller, using multiple controllers will

not influence a switch’s ability to detect and recover from failures.

Despite this, questions arise about the effects of using multiple controllers

on protection coverage and path optimality. The root controller (RC) com-

putes inter-area paths. Because Helix abstracts areas and only exposes inter-

area links to the RC, Helix may lose some protection coverage. We can improve

protection coverage for inter-area paths by increasing the number of paths the

RC computes (discussed in §5.7).

While using multiple controllers will have a minimal impact on protection

coverage (which we can mitigate), Helix may route traffic across longer than

necessary inter-area paths. Because Helix abstracts the RC’s topology, the RC

is unaware of an area’s diameter or the number of nodes between its inter-area
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links. Helix’s abstraction mechanism may cause the RC to generate paths

that transit areas with wider diameters, increasing the overall inter-area path

length. We observed the effects of this increase in the TE evaluation experi-

ments when comparing the single (SC-Helix) and multi-controller (MC-Helix)

Helix deployment (§8.3.3). For our experiment results, MC-Helix’s maximum

computed path length was up to 2 nodes longer than SC-Helix’s (22 versus

24). We can minimise the inter-area path lengths by providing the RC with

an area’s diameter (similar to Orion [30]). We leave exploring the effects of

abstraction on inter-area path length as future work.

TE Optimisation: Helix offloads inter-area TE to the local controllers

(LCs). Because the LCs are oblivious to congestion in other areas, the LCs can

make sub-optimal inter-area TE decisions. §8.3.3 contained experiments that

analysed the effects of using multiple controllers on performance. The experi-

ments found that both SC-Helix and MC-Helix had identical TE performance

and forwarding stability. We concluded that using multiple controllers did not

negatively impact Helix’s TE performance. Moreover, the experiments found

that MC-Helix did not perform any RC TE optimisations, implying that the

LCs could address most inter-area congestion locally.

Conclusion: For a set of representative topologies, we can conclude that

loss of centralised scope has little effect on Helix’s TE optimisation perfor-

mance (first research question).

For the second research question, using multiple controllers will have little

impact on Helix’s failure resilience capabilities as the system uses protection-

based recovery to recover from failures. Loss of global optimality may increase

Helix’s inter-area path lengths as the system abstracts the root controller’s

topology, implying the RC is unaware of an area’s diameter. We can minimise

inter-area path length by providing the RC with the average number of nodes

between an area’s egress ports. Using multiple versus a single Helix controller

has virtually no impact on TE performance and forwarding stability. Although

some operations are affected by the loss of centralised scope, we can deploy
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mechanisms to mitigate these effects. Based on this factor, we conclude that

using multiple controllers will have minimal on performance.

10.3 Future Work

While the loss of centralised scope is not detrimental to protection-based re-

covery performance, questions related to path optimality remain. For example,

the Helix root controller is oblivious to an area’s internal topology and gener-

ates inter-area paths based on how areas are inter-connected. The paths com-

puted by the RC can lose global optimality by no longer offering the shortest

route to a destination. Future research should further investigate the effects

of loss of centralised scope on protection coverage and path optimality.

Chapter 9 discussed the applicability of this work to other non-OpenFlow

SDN management approaches. A potential future research direction is to ex-

tend Helix to support other SDN systems, enabling us to confirm that the

observations and benefits identified in this thesis for an OpenFlow-based de-

ployment of Helix hold for other SDN management approaches.

Chapter 7 presented a control plane failure resilience emulation framework

that enables network operators to evaluate an MCSDN system’s failure recov-

ery and startup performance. A limitation of this framework is its reliance on

Mininet and emulation to conduct experiments. A future research direction for

this work is to further investigate the effects of latency on control plane failure

resilience. To conduct this research, we need to extend the framework to sup-

port evaluating MCSDN systems deployed in production environments. At its

core, the emulation framework is a specialised packet capture and processing

utility that uses different packets to detect events. We can add support for

evaluating other systems by adapting the framework into a passive evaluation

tool.
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[71] Kévin Phemius, Mathieu Bouet, and Jérémie Leguay. 2014. Disco: dis-

tributed multi-domain sdn controllers. In 2014 IEEE Network Oper-

ations and Management Symposium (NOMS). IEEE, New York, NY,

USA, 1–4. https://doi.org/10.1109/NOMS.2014.6838330.

[72] Kun Qiu, Siyuan Huang, Qiongwen Xu, Jin Zhao, Xin Wang, and Ste-

fano Secci. 2017. Paracon: a parallel control plane for scaling up path

computation in sdn. IEEE Transactions on Network and Service Man-

agement, 14, 4, 978–990. https://doi.org/10.1109/TNSM.2017.

2761777.
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