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A B S T R A C T   

Passive acoustic monitoring is a powerful tool for monitoring vocally active taxa. Automated signal recognition 
software reduces the expert time needed for recording analyses and allows researchers and managers to manage 
large acoustic datasets. The application of state-of-the-art techniques for automated identification, such as 
Convolutional Neural Networks, may be challenging for ecologists and managers without informatics or engi
neering expertise. Here, we evaluated the use of AudioMoth — a low-cost and open-source sound recorder — to 
monitor a threatened and patchily distributed species, the Eurasian bittern (Botaurus stellaris). Passive acoustic 
monitoring was carried out across 17 potential wetlands in north Spain. We also assessed the performance of 
BirdNET — an automated and freely available classifier able to identify over 3000 bird species — and Kalei
doscope Pro — a user-friendly recognition software — to detect the vocalizations and the presence of the target 
species. The percentage of presences and vocalizations of the Eurasian bittern automatically detected by BirdNET 
and Kaleidoscope Pro software was compared to manual annotations of 205 recordings. The species was effec
tively recorded up to distances of 801–900 m, with at least 50% of the vocalizations uttered within that distance 
being manually detected; this distance was reduced to 601–700 m when considering the analyses carried out 
using Kaleidoscope Pro. BirdNET detected the species in 59 of the 63 (93.7%) recordings with known presence of 
the species, while Kaleidoscope detected the bittern in 62 recordings (98.4%). At the vocalization level, BirdNet 
and Kaleidoscope Pro were able to detect between 76 and 78%, respectively, of the vocalizations detected by a 
human observer. Our study highlights the ability of AudioMoth for detecting the bittern at large distances, which 
increases the potential of that technique for monitoring the species at large spatial scales. According to our 
results, a single AudioMoth could be useful for monitoring the species’ presence in wetlands of up to 150 ha. Our 
study proves the utility of passive acoustic monitoring, coupled with BirdNET or Kaleidoscope Pro, as an ac
curate, repeatable, and cost-efficient method for monitoring the Eurasian bittern at large spatial and temporal 
scales. Nonetheless, further research should evaluate the performance of BirdNET on a larger number of species, 
and under different recording conditions (e.g., more closed habitats), to improve our knowledge about BirdNET’s 
ability to perform bird monitoring. Future studies should also aim to develop an adequate protocol to perform 
effective passive acoustic monitoring of the Eurasian bittern.   

1. Introduction 

Bird monitoring is often based on acoustic cues, mainly by human 
observers performing point counts or transects (Bibby et al., 2000). As 

many birds are highly vocal, passive acoustic monitoring (PAM) has 
become a common technique for bird monitoring. PAM is based on the 
deployment of autonomous recording units (ARUs), programmed to 
record during a period of interest, followed by recording analysis and 
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interpretation. It is a trending technique whose use has exponentially 
increased in the last decade, with birds being the terrestrial group most 
commonly monitored using ARUs (Sugai et al., 2019). Currently, several 
studies have proven the utility of PAM to detect species presence, infer 
bird species richness, and even estimate bird density from sound re
cordings (reviewed by Darras et al., 2018 and Pérez-Granados and 
Traba, 2021). 

Among the main advantages of PAM are the ability to monitor 
nocturnal and cryptic bird species in ecosystems difficult to reach for 
ecologists (e.g. Lambert and McDonald, 2014; Pérez-Granados and 
Schuchmann, 2020). Wetlands are a good example of ecosystems 
logistically complex to monitor owing to the usually damp and boggy 
substrate, and the typically dense, yet fragile, vegetation structure 
(Znidersic et al., 2020). Wetlands are home to many threatened species, 
and therefore the use of ARUs, which avoids the constant presence of 
highly qualified ornithologists in the field, may reduce human distur
bance while improving monitoring of threatened species (Celis-Murillo 
et al., 2009). Moreover, PAM allows researchers to perform monitoring 
at large spatial and temporal scales (Sugai et al., 2019). 

The collection of large acoustic datasets requires substantial time and 
expert knowledge to manage. Combined with the elevated costs asso
ciated with acquiring ARUs, this may be an obstacle that has hampered 
the widespread use of PAM for bird monitoring. However, in the last few 
years, several low-cost ARUs for long-term acoustic monitoring have 
been launched (e.g. Hill et al., 2018; Karlsson et al., 2021), although few 
studies have evaluated the effectiveness of such recorders for bird 
monitoring. Recordings can be listened to or visually processed, but such 
a process can be challenging when the total recording time is several 
hundreds or thousands of hours (Towsey et al., 2018, but see Cameron 
et al., 2020). Many bird species utter clear, distinctive, and consistent 
vocalizations, thus opening the door for using automated signal recog
nition software to efficiently process large acoustic datasets (e.g. Gupta 
et al., 2021; Stowell et al., 2019). Some of the state-of-the-art techniques 
for handling big datasets, such as deep learning and convolutional 
neural networks (Stowell, 2022; Stowell et al., 2019), can be difficult to 
run for ornithologists, managers, and researchers without bioacoustics 
or engineering backgrounds. However, user-friendly and ready-to-use 
machine learning approaches have recently been developed and are 
increasingly accessible to respond to real-life monitoring challenges and 
the general public (Cole et al., 2022). Among these approaches is Bird
NET, a research project between The Cornell Lab of Ornithology and the 
Chemnitz University of Technology. BirdNET facilitates the automated 
detection and classification of bird vocalizations, through a developed 
deep neural network, from sound recordings (Kahl et al., 2021). Bird
NET is able to identify over 3000 bird species (Wood et al., 2021) and is 
available as a mobile application or a platform (https://birdnet.cornell. 
edu/api/) where citizens and researchers may freely upload and analyze 
the collected recordings. Previous studies have already proven the 
ability of BirdNET for detecting and reliably identifying a large pro
portion of bird vocalizations within focal recordings (Arif et al., 2020; 
Kahl et al., 2021). However, there are still few assessments of the ability 
of BirdNET to detect and identify bird vocalizations under real moni
toring conditions. For example, Wood et al. (2021) stated that BirdNET’s 
precision may greatly decrease when identifying species in sound re
cordings collected with omnidirectional microphones, the ones usually 
mounted in ARUs employed for PAM, when compared to focal re
cordings. Likewise, BirdNET’s ability to identify bird vocalizations 
largely differs among species. For example, Cole et al. (2022) found that 
the proportion of annotated calls correctly identified by BirdNET may 
differ from 9% for the Mourning dove (Zenaida macroura) to 68% for the 
California Quail (Callipepla californica). There are also off-the-shelf 
commercially available programs like Kaleidoscope Pro (300$ annual 
license, Wildlife Acoustics, USA) that can be used to detect and to group 
candidate sounds into clusters using Hidden Markov Models (Abrahams 
and Geary, 2020; Pérez-Granados and Schuchmann, 2020). Moreover, 
species-specific classifiers can be created by training Kaleidoscope Pro to 

identify which of the candidate sounds are vocalizations of the desired 
species (e.g. Rycyk et al., 2022). 

In this paper, we used passive acoustic monitoring in a threatened, 
aquatic, and nocturnal cryptic bird species using low-cost ARUs and 
ready-to-use machine learning approaches for automated bird detection 
to: i) estimate the percentage of Eurasian bittern (Botaurus stellaris) 
vocalizations (and presences) automatically detected by BirdNET and 
Kaleidoscope Pro, to ii) evaluate the distance at which the open-source 
and low-cost AudioMoth recorder is able to detect Eurasian bittern vo
calizations, and iii) apply PAM coupled with automated signal recog
nition to a real-world monitoring situation, aiming to detect the 
presence of the Eurasian bittern in potential wetlands of seemingly 
appropriate habitat. Finally, we also aimed to iv) assess the effectiveness 
of the proposed technique when compared to traditional field surveys 
for detecting the species presence. We expect that the evaluation of real 
applications of PAM paves the way for bioacoustic monitoring to be used 
as an attractive monitoring option for future studies with different taxa 
and monitoring scenarios. 

2. Material and methods 

2.1. Study species 

We selected the Eurasian bittern as a study species because it is an 
elusive species, difficult to monitor owing to its cryptic behaviour. The 
species is almost impossible to spot in dense reed vegetation, while most 
vocal activity occurs at night and during the crepuscular periods (Poulin 
and Lefebvre, 2003). However, the very characteristic vocalization of 
the species, a loud boom usually uttered at very low frequency and in 
sequences of a few elements (Frommolt and Tauchert, 2014, Fig. 1), can 
be heard over distances of >1 km (McGregor and Byle, 1992), which 
suggests that PAM would be a suitable technique for monitoring this 
species. Indeed, previous studies with the Eurasian bittern and closely 
related species have already proven the utility of ARUs for detecting 
their presence and even estimating bittern density from sound re
cordings (Frommolt and Tauchert, 2014; Matsubayashi et al., 2022; 
Williams et al., 2018; Znidersic et al., 2020). Frommolt and Tauchert 
(2014) demonstrated the ability of using an array of four ARUs, each 
equipped with four microphones, to count the number of Eurasian bit
terns based on the location of vocalizing birds. Recently, Matsubayashi 
et al. (2022) used an array of eight microphones to locate Eurasian 
bitterns during a single night. Prior research using ARUs for monitoring 
the Eurasian bittern used an array of microphones, and therefore our 
current knowledge to monitor the Eurasian bittern using a single ARU 
equipped with omnidirectional microphones, the most common 
deployement for PAM, is quite limited. In Spain, where the study was 
carried out (see Study area section), the Eurasian bittern is cataloged as 
“Critically endangered” in the Red Book of Birds (Vera, 2021) and facing 
“Extinction risk” according to Spanish legislation (Real Decreto 139/ 
2011). Despite its decline in Spain, on a global scale the species is listed 
as “Least Concern” by the IUCN (BirdLife International, 2016). The most 

Fig. 1. Spectrogram of a typical (A) Eurasian bittern vocalization recorded in 
Pitillas lagoon (Navarra, Spain) using an AudioMoth recorder. 

R. Manzano-Rubio et al.                                                                                                                                                                                                                      

https://birdnet.cornell.edu/api/
https://birdnet.cornell.edu/api/


Ecological Informatics 72 (2022) 101910

3

recent update about the Spanish population size, performed in 2011, 
estimated a total population of 40 breeding territorial males (booming 
males hereafter) and 35 wintering individuals (Garrido and Molina, 
2012). However, population size was estimated using variable counting 
methods, which may have a significant effect on Eurasian bittern pop
ulation size estimates; additionally, not all potential wetlands were 
surveyed, and thus the estimated population size may be incomplete. 
One of the key conclusions of the recent Red Book of Birds of Spain was 
the need to have a precise and comparable counting method for 
detecting the species (Vera, 2021). 

2.2. Study area 

The study was carried out during the spring of 2021 (April–June), in 
the Navarra region (north Spain), at 17 suitable wetlands for the 
Eurasian bittern (Table 1). The species’ population in Navarra has been 
estimated at around 5–10 booming males (Lekuona et al., 2017). As 
potential sites, we considered wetlands with: i) recent presence of 
booming males (from 2015 onwards), ii) historical presence of booming 
males (before 2015), or iii) individuals detected only during the 
migrating period. Site delimitation and recent or historical presence of 
the species were based on previous studies (Bertolero and Soto-Largo, 
2004; García et al., 2015; Soto-Largo et al., 1996; Soto-Largo et al., 

2021), consulting the eBird online database (eBird., 2021), and the 
expert opinion and experience of our research team in the study area. 

2.3. Passive acoustic monitoring 

At each potential wetland we placed between one to four AudioMoth 
recorders (v. 1.2.0, Hill et al., 2018, see Table 1), which operated during 
a minimum of 11 consecutive days in each wetland. Each recorder was 
placed in an Audiomoth IPX7 case (Open Acoustic Devices) and attached 
to a 1–4 m wooden stick to be located at 1.5 m above the vegetation, 
near or inside the reedbed. In one wetland, the recorders were attached 
to a tree, three meters above the natural vegetation. The recorders were 
programmed to record (in mono and .wav format) continuously during 
the two hours after sunset and one hour before and after sunrise, using a 
sampling rate of 16 kHz, gain Med-High, and 16 bits per sample. The 
selected recording period was based on previous species studies that 
showed two peaks of vocal activity, one occurring around 30 min after 
sunset, and a second around 30–60 min before sunrise (Poulin and 
Lefebvre, 2003). 

2.4. Automated recognition software comparison 

To validate the use of automated signal recognition software for 
detecting the Eurasian bittern, we created a database of referenced calls 
using 205 recordings (6-min recordings) of the species that totalled 
1230 min. The recordings were randomly selected among those 
collected during the survey in Pitillas lagoon (the only wetland with 
regular presence of the species in previous years) and thus could be 
considered as representative of the recording conditions of our moni
toring survey, i.e. same ARU and noise created by other bird species, 
similar habitat structure, etc. One experienced researcher (RM) identi
fied acoustically and visually, using spectrograms, a total of 1174 
Eurasian bittern vocalizations within 63 different recordings out of the 
set of 205 recordings (Fig. 2). For each recording, we annotated the total 
number of vocalizations manually detected and these values were used 
as the validation dataset to assess the performance of BirdNET and 
Kaleidoscope Pro. The software performance was evaluated by 
comparing the recall rate and the percentage of occurrences detected 
using each software when compared to the ones obtained in the vali
dation dataset. The recall rate is an index commonly used in bioacoustics 

Table 1 
Potential wetlands monitored using passive acoustic monitoring and traditional 
field surveys for monitoring the presence of the Eurasian bittern in Navarra 
(north Spain), during the spring of 2021. One AudioMoth recorder was located 
per monitored site, excluding Pitillas Lagoon, sites F and G, where four recorders 
were placed in the former and two in the rest. Recorders were programmed to 
record continuously, at least during the two hours after sunset and one hour 
before and after sunrise. Wetland name is anonymized due to threatened status 
of the species. Letters following wetland name refers to the criteria employed for 
selection.  

Potential 
wetland 

Size 
(ha) 

Recording 
period 

Kaleidoscope 
Pro 

Booms Field 
Survey 

Pitillas 
Lagoona, 

b,c 

216.0 29 Apr – 25 
Jun 

YES Not 
counted 

YES 

Site Ac 18 09–24 Jun NO 0 NO 
Site Ba,b 4.3 30 Apr - 13 

May 
NO 0 NO 

Site Ca,b 51.2 27 May - 08 
Jun 

NO 0 NO 

Site Da,b 5.0 30 Apr – 13 
May 

YES 14 YES 

Site Ea,b,c 20.3 30 Apr - 13 
May 

NO 0 NO 

Site Fa,b,c 89.2 28 May - 08 
Jun 

NO 0 NO 

Site Ga,b,c 112.3 14–26 May NO 0 YES 
Site Ha,c 1.0 14–26 May YES 597 YES 
Site Ia,d 3.7 30 Apr - 13 

May 
NO 0 NO 

Site Jb,c 48.0 09–24 Jun NO 0 NO 
Site Kc 5.2 28 May - 08 

Jun 
NO 0 NO 

Site Lb,c 6.4 27 May - 08 
Jun 

NO 0 NO 

Site Mb,c 7.4 09–24 Jun NO 0 NO 
Site N b 10.5 14–26 May NO 0 NO 
Site Oc 2.2 14–26 May NO 0 NO 
Site Pc 2.2 14–26 May, 

09–24 Jun 
YES 344 NO  

a Presence of Eurasian bittern during the breeding period after the year 2015. 
b Presence of Eurasian bittern during the breeding period before the year 

2015. 
c Historical presence of Eurasian bittern just during the migration period. 

Since the Eurasian bittern is listed as an Endangered species in the region, ac
cording to Spanish legislation (Real Decreto 139/2011), the names of the loca
tions have been kept hidden. 

Fig. 2. Sampling procedure applied to estimate the effective distance of 
Eurasian bittern detection. A human observer acoustically located a booming 
male and bird position within the lagoon was acoustically located based on the 
direction and sound pressure of the vocalization. Time when the boom was 
detected was also annotated. Later, the distance in meters, from the position of 
the booming male to four permanent recorders and to one additional recorder 
carried by the observer, was estimated in 100-m categories (i.e. 
1–100, 101–200). 
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that represents the proportion of target vocalizations automatically 
detected by the recognizer (Knight et al., 2017). We estimated the recall 
rate by dividing the number of Eurasian bittern vocalizations detected 
by each of the two software by the total number of bittern vocalizations 
detected within the validation dataset (Knight et al., 2017). 

The 205 recordings were independently scanned using the two types 
of software and were analyzed blindly with respect to whether the 
species had been detected manually. The acoustic analyses in BirdNET 
(LB) and Kaleidoscope Pro (CPG) were performed by different re
searchers than the one manually reviewing the recordings (RMR), to 
avoid any bias. 

2.5. BirdNET (v. 2.1) 

To assess the ability of BirdNET for detecting Eurasian bittern vo
calizations we used the automatic bird sound classifier (Kahl et al., 
2021), which is freely available on GitHub (https://github.com/kahst 
/BirdNET-Analyzer), to evaluate the same recording segments anno
tated by the human observer and assessed used Kaleidoscope Pro. We 
ran BirdNET using Python 3.6.7 (Van Rossum and Drake, 1995), set to 
classify sounds only for the Eurasian bittern. BirdNET divides recordings 
into 3-s non-overlapping segments and outputs a text file that provides 
identities for a maximum of 3 species that BirdNET had the highest 
confidence – measured in a score ranging from 0 (least confident) to 1 
(most confident) – were present on a given segment. Since we set 
BirdNET to use only information from the Eurasian bittern, the software 
provided a confidence score for each vocalization. During inference, 
mainly three settings can be adjusted in BirdNET: the detection sensi
tivity, overlap of prediction segments, and the minimum confidence 
threshold (Kahl et al., 2021). We set these values to 1.5 (highest allowed 
value), 1.5 s of overlap, and 0.4, respectively. The low confidence 
threshold may result in increased recall and false positive rates, but the 
value employed was similar to the one used by Kahl et al. when evalu
ating BirdNET accuracy on 984 bird species (value of 0.5, Kahl et al., 
2021). 

2.6. Kaleidoscope Pro (v 5.4.7) 

To analyze the recordings using Kaleidoscope Pro we needed to 
provide adequate signal parameters for locating candidate sounds that 
matched the proposed parameters. To do this, we parameterized 239 
Eurasian bittern vocalizations from 24 high-quality recordings down
loaded from the xeno-canto online database of sounds. The frequency 
ranges, duration, and time between successive booms of the Eurasian 
bittern were measured from spectrograms using Raven Pro 1.6 (see 
Supplemental Table S1). Based on the minimum (and maximum) values 
of the frequency ranges and call length, we introduced the following 
signal parameters into Kaleidoscope Pro 5.4.7 (Wildlife Acoustics Inc., 
2020): minimum and maximum frequencies (50 and 500 Hz, respec
tively), and minimum and maximum lengths of detection (0.3 and 30 s). 
The introduced maximum intersyllable gap was of 3 s, and the “distance 
from cluster to centre” was set to its maximum value (2.0), since we 
aimed to detect as many bittern vocalizations as possible (see Pérez- 
Granados et al., 2020). Therefore, bittern vocalizations separated by less 
than three seconds were considered to be part of the same vocalization 
(Fig. 1). All candidate sounds that matched the introduced signal pa
rameters were automatically (i.e. done by the software itself) grouped 
into clusters by applying the cluster analysis function in Kaleidoscope 
Pro. Kaleidoscope Pro extracts the Discrete Cosine Transform co
efficients (DCT) of the spectrum of all candidate sounds, and a Hidden 
Markov Model is built from the vector of the DCT of each signal frame. 
Vectors are grouped using K-means clustering. The clusters are 
composed of groups of similar sounds, and thus most of the signals in 
each cluster belonged to a vocalization type of the same species. In the 
last step, the created clusters were manually labelled as “Eurasian 
bittern” or “Others” according to whether there was a bittern vocalization 

within the first 50 candidate sounds of each cluster. Finally, all candi
date sounds of the cluster “Eurasian bittern” were visually and/or 
acoustically checked to separate false positives (sounds mislabelled) 
from true positives (correct classifications), while candidate sounds of 
the cluster “Others” were not checked and not considered on subsequent 
analyses (see validation of the employed approach and full description 
of Kaleidoscope Pro workflow in Pérez-Granados and Schuchmann, 
2020). 

2.7. Effective distance of Eurasian bittern detection 

We performed a series of field tests to estimate the distance at which 
the AudioMoth recorder was able to effectively record the Eurasian 
bittern vocalization. To do this, we conducted three field surveys around 
sunrise (5:30–8:00 a.m.), during 30 April and 14 and 28 of May 2021, in 
the Pitillas lagoon. During the field surveys, an experienced observer 
(ESL) acoustically estimated the location of booming males in the lagoon 
and annotated the the time (minute and second) at which the bittern 
vocalized. The observer watch was synchronized to ARU time at second 
scale. Such a procedure allowed us to acoustically locate 64 boom and 
later estimate the distance, in meters, from the position of booming 
males to the four recorders deployed in the lagoon (Table 2) and to one 
additional recorder at the observer location (Fig. 2). Bird distance to the 
recorder was categorized in 100-m categories (i.e. 1–100, 101–200). 
Field surveys were carried out at the same time as the ARU recording 
schedule and following the recording parameters explained above. 
Therefore, we had a matrix of 64 booms, including the distance from 
bird position to each of the five recorders and whether the species was 
visually detected from sound recordings or automatically detected by 
Kaleidoscope Pro (in both cases following the same procedure explained 
in the section above). A boom was considered detected when there was a 
detection during the three seconds before or after the observer time
stamp. Such a matrix allowed us to assess the relationship between the 
percentage of Eurasian bittern vocalizations, manually or automatically 
detected, as a function of bird distance to the recorder. 

2.8. Potential wetlands monitoring 

Once we assessed the performance of the two types of automated 
signal recognition software, we selected Kaleidoscope Pro to automati
cally scan the whole batch of recordings collected at the 17 potential 
wetlands, following the same procedure and settings explained in the 
section above. For each potential site, we annotated whether the species 
was automatically detected by Kaleidoscope Pro, the number of re
cordings the species was detected per wetland, and the total number of 
booms detected. Due to the large number of booms detected in Pitillas 
lagoon, we did not check every candidate sound recognized by Kalei
doscope Pro, and just annotated that the species was present in the 
wetland (Table 1). Due to threatened status of the species in the region 
according to Spanish legislation (Real Decreto 139/2011), the names of 
the wetlands surveyed have been kept hidden. 

Table 2 
Summary table evaluating the efficiency of Kaleidoscope Pro and BirdNET for 
detecting the occurrence and vocalizations of the Eurasian bittern when 
compared to manual reviewing. The total validation dataset included 205 6-min 
recordings collected in an occupied wetland and manually annotated by a 
researcher. The Eurasian bittern was detected on 63 different recordings and the 
manual reviewing process was used to assess the effectiveness of the number of 
occurrences and vocalizations annotated by Kaleidoscope Pro and BirdNET.  

Reviewing process Occurrences % occurrences Vocalizations Recall 

Manual 62 98.4 1174  
Kaleidoscope Pro 62 98.4 915 0.78 
BirdNET 59 93.7 891 0.76  

R. Manzano-Rubio et al.                                                                                                                                                                                                                      

https://github.com/kahst/BirdNET-Analyzer
https://github.com/kahst/BirdNET-Analyzer


Ecological Informatics 72 (2022) 101910

5

2.9. Traditional bird data censuses 

Two coordinated and simultaneous censuses were carried out 
following acoustic field surveys, with on-site observers in the 17 moni
tored sites to monitor the presence and abundance of the Eurasian 
bittern in the Navarra region (Poulin and Lefebvre, 2003). The censuses 
were carried out from one hour before to 30 min to sunrise, on 27 April 
and 11 May, coinciding with the two periods of maximum vocal activity 
of the species (Poulin and Lefebvre, 2003). The observers acoustically 
estimated the number and location of booming males. The censuses were 
carried out on dry and windless days and were done by experienced 
forest rangers of Navarra, who have been in charge of counting the 
species since 2000 (Gobierno de Navarra, 2021). 

3. Results 

3.1. Automated recognition software comparison 

The probability of detecting Eurasian bittern was high for both types 
of automated software, and ranged between 93.7% (BirdNET) and 
98.4% (Kaleidoscope Pro, Table 2). There was no difference in the 
number of recordings that the species was detected using manual 
reviewing and Kaleidoscope Pro. However, Kaleidoscope Pro was able to 
detect three vocalizations of the species within a recording with no 
manual annotations. On the other hand, there was another recording 
manually annotated with four vocalizations, on which the species was 
not detected by Kaleidoscope Pro. BirdNET detected the Eurasian bittern 
in 59 of the 63 recordings with known presence of the species, but failed 
to detect the species in four recordings with very low vocal activity of 
the species (mean of 3.5 vocalizations per recording, 0.58 vocalizations 
per minute of recording). At the vocalization level, the recall varied from 
0.76 to 0.78 for BirdNET and Kaleidoscope Pro, respectively (Table 2), 
which means that both automated software were able to automatically 
detect over three quarters of the vocalizations detected by a human 
observer. 

3.2. Effective distance of Eurasian bittern detection 

The manual reviewing process showed that the Eurasian bittern was 
effectively recorded in 72.7% of the instances that a booming male was 
detected by the observer, vocalizing in the lagoon (242 out of 333 cases 
detected), while Kaleidoscope Pro detected the species in 57.4% of the 
cases (191 out of 333). The species was effectively recorded up to dis
tances of 801–900 m, since at least 50% of the bittern vocalizations 
uttered within that distance category were manually detected (Fig. 3), 
while that distance was reduced to the category 601–700 m when 
considering the analyses carried out using Kaleidoscope Pro (Fig. 3 and 
see Supplementary Table S2 for a detailed table showing the total and 
percentage of calls detected at each distance category using each 
approach). 

3.3. Potential wetlands monitoring 

Eurasian bittern was automatically detected by Kaleidoscope Pro in 
four of the 17 monitored wetlands, the same number of wetlands as for 
traditional field surveys (Table 1). However, only in three of the wet
lands was it detected using both techniques, since in “site P" the species 
was only detected using passive acoustic monitoring, while in “site G" 
the Eurasian bittern was only detected by human observers, but not by 
ARUs. In “site G" only one booming male was detected by human ob
servers in the first coordinated census carried out in 27 of April, but it 
was not detected in the second coordinated census performed on 11 
May, a few days before the recorder was placed at that wetland 
(Table 1). The Eurasian bittern was detected for the first time in “site P", 
a wetland without previous presence of the species during the breeding 
season and where the species was not detected during the two 

coordinated censuses (Table 1). In that case, the recorder was placed 
almost one month after performing the second, and last, coordinated 
census. 

4. Discussion 

In this study, we validated the use of AudioMoth and both BirdNET 
and Kaleidoscope Pro, as useful tools to effectively monitor the presence 
of the Eurasian bittern using PAM. Our findings open the door for using 
this technique as an accurate and repeatable method for monitoring the 
species at large spatial and temporal scales. The cluster analysis function 
of Kaleidoscope Pro detected over 98% of the occurrences and 78% of 
the booms of the species annotated by a human on sound recordings. 
Similarly, BirdNET was also able to detect 94% of bittern occurrences 
and 76% of the booms in the validation dataset. The recall rate obtained 
using Kaleidoscope Pro is in agreement with previous studies using such 
software for automated bird identification (e.g. Abrahams, 2019; Pérez- 
Granados and Schuchmann, 2021). However, the recall rate obtained 
using BirdNET is among the highest values ever published using this 
technique. For example, Cole et al. (2022) recently evaluated BirdNET 
for detecting 13 bird species in North America and found that the recall 
rate ranged from 9% to 68%. Similarly, the recall rate obtained by 
Tolkova et al. (2021) ranged between 11% and 71% for three common 
bird species. Previous research has claimed that the accuracy of BirdNET 
increases when analysing bird songs of species that BirdNET was more 
familiar with (Arif et al., 2020). The Eurasian bittern is a widespread 
species, with over 900 recordings uploaded to Xeno-canto database and 
the Macaulay library of sounds, which may have contributed to the high 
recall obtained when using BirdNET with that target species. We are 
aware that we did not verify BirdNET detection, and therefore cannot 
rule out some false positives (mislabelled vocalizations) within the 
BirdNET output. However, no BirdNET detection occurred within the 
143 recordings (69.8% of the total) with no annotated presence of the 
species, while the Eurasian bittern was annotated in 58 of the 63 re
cordings with known presence. These findings suggest that the false 
positive rate in our dataset was likely very low and had minimal impact 
on our results. 

Kaleidoscope Pro performed slightly better than BirdNET, but the 
good performance of BirdNET also enables the use of that technique for 
monitoring the Eurasian bittern using PAM. Therefore, the selection of 
one or another recognition software may be decided according to the 
expertise of the personnel in charge of running the analyses and on the 

Fig. 3. Mean percentage of Eurasian bittern vocalizations acoustically detected 
as a function of booming male distance to the recorder. Results are shown 
separately for recordings manually reviewed and reviewed using Kaleidoscope 
Pro, an automated signal recognition software. 
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importance of missing a few occurrences of the species. Kaleidoscope 
Pro is able to detect a larger proportion of occurrences and booms of the 
species, which might be important when working with threatened spe
cies, as is the case. However, the large number of survey replicates 
achievable using PAM may be able to improve detection estimates of the 
species and to provide effective monitoring, even when species’ 
detectability is low (Abrahams and Geary, 2020). Kaleidoscope Pro is a 
proprietary commercial software that contains intuitive user-friendly 
interfaces that enable users to process audio data with little learning 
and without computer skills. However, license expenditure can be 
costly, and limitations of these tools are often not clearly reported by the 
manufacturer (Browning et al., 2017). On the other hand, and unlike 
Kaleidoscope Pro, BirdNET does not allow you to create species-specific 
recognizers, thus cannot be used for detecting species not already 
included in BirdNET, and has limited performance for detecting and 
correctly identifying rare species (Arif et al., 2020). 

AudioMoth recordings allowed for automated detection of the 
Eurasian bittern at distances over 700 m and at distances of around 800 
with visual detection of spectrograms. To the best of our knowledge, our 
estimate is the largest detection distance ever published by AudioMoth 
when using birds as target species, which is mainly due to the target 
species selected. Low-frequency sounds, such as booms of the Eurasian 
bittern, are expected to experience low degradation and propagate over 
long distances with minimal attenuation (Marten and Marler, 1977; 
Podos et al., 2004). Indeed, Eurasian bittern booms can be heard by 
humans over distances farther than 1 km (McGregor and Byle, 1992), 
and low signal degradation could make the boom of the Eurasian bittern 
an adequate signal of interest to detect at far distances, even when using 
signal recognition software. The long detection distance obtained in our 
study is in agreement with prior research using AudioMoth for moni
toring canids (e.g. 800 m for the Golden jackal, Canis aureus, and up to 
3.2 km for wild wolves, Canis lupus, Barber-Meyer et al., 2020, Graf and 
Hatlauf, 2021). For loud sounds, such as gunshots, the probability of 
detecting the audible signal using AudioMoth was up to 93% at ≤1 km 
(Hill et al., 2018). Further research is needed to increase the detection 
distance of AudioMoth in order to acoustically monitor a larger area 
with the same field effort and reduced equipment costs. The distance at 
which a target species is detected is highly influenced by the choice of 
recording equipment. ARUs vary in sound sensitivity, signal-to-noise 
ratio (SNR), the directionality and quality of microphones (Browning 
et al., 2017; Rempel et al., 2013; Turgeon et al., 2017), among others. 
Between these factors, microphone SNR can impact acoustic monitoring 
surveys by affecting the probability that a bird, singing or calling, will be 
audible and identifiable on a recording (Darras et al., 2019; Rempel 
et al., 2013). The latest versions of Audiomoth allows connecting 
external microphones, so the detection range can be potentially 
improved using external microphone with lower SNR, using different 
signal settings, or even using directional or parabolic microphones 
(Hobson et al., 2002). However, a larger detection range may be at cost 
of lower quality recordings (at least for those calls recorded at large 
distances), and therefore result in less accurate estimates of bird distance 
to the recorder (Yip et al., 2020) and difficult the estimate of bird density 
from distance sampling (Buckland et al., 2001). 

PAM allowed us to perform large-scale and long-term monitoring 
surveys and to include in the monitoring scheme potential wetlands with 
appropriate habitat for the species. The species was detected both 
acoustically and using traditional counting methods in three of the 
selected wetlands. However, there were two wetlands where the 
Eurasian bittern was only detected by humans or by Kaleidoscope Pro. 
Interestingly, the species was acoustically detected in one site with un
recorded presence during the breeding period, which may represent a 
first record as a breeding site for the species in Navarra (site P, Table 1). 
These results are in agreement with previous studies using PAM to reveal 
unknown breeding sites of rare and patchily distributed species (e.g. 
Pérez-Granados et al., 2018a). Our results suggest that PAM can be 
considered a viable technique for monitoring the Eurasian bittern at a 

large spatial scale. 
Further studies seeking to monitor the Eurasian bittern using PAM 

should attempt to include information about the number of individuals 
vocalizing around recorders, to extend monitoring beyond detecting 
species’ presence. Frommolt and Tauchert (2014) demonstrated the 
ability of using an array of microphones to count the number of Eurasian 
bitterns based on the location of vocalizing birds. However, budget can 
be a limiting factor for long-term monitoring programmes aiming to 
make use of microphone arrays (Blumstein et al., 2011). A more viable 
option to estimate Eurasian bittern density from sound recordings would 
be to use ARUs equipped with just two microphones. Stereo recordings 
may allow researchers and managers to determine bird density around 
recorders based on the direction (channel employed) and distance 
(sound level) of the recorded bird (see similar approach for the Aus
tralasian bittern, Botaurus poiciloptilus, in Williams et al., 2018). Among 
the methods available for bird density estimation from sound recordings 
collected using one ARU equipped with a single microphone (reviewed 
by Pérez-Granados and Traba, 2021), it is worth highlighting the ability 
to discriminate between individuals based on call parameters, which has 
already been successfully proved with the Eurasian bittern (Gilbert 
et al., 1994, 2002; McGregor and Byle, 1992; Puglisi and Adamo, 2004). 
Indeed, individual recognition of the Eurasian bittern has been used for 
monitoring annual survival and tracking spatial movement of the 
Eurasian bittern in the United Kingdom (Gilbert et al., 2002). However, 
prior research employing individual recognition with the Eurasian 
bittern was carried out using directional microphones, which usually 
have an improved performance than the omnidirectional microphones 
typically mounted in commercially available ARUs, such as AudioMoth. 
Further research should evaluate the utility of ARUs to apply individual 
recognition or recording in stereo, and therefore infer bittern abundance 
from sound recordings (see similar application in Dent and Molles, 
2016). Individual recognition is a promising technique that can be fully 
automated (Ptacek et al., 2016) and might be a valuable tool for esti
mating bird abundance, even if recordings are collected during a 
restricted time period (Puglisi and Adamo, 2004). 

Our study proves the utility of Audiomoth and Kaleidoscope Pro or 
BirdNET to be used on real-world monitoring applications and provide 
an assessment of the efficiency of PAM, when compared to traditional 
field surveys, for monitoring a threatened bird species. We conclude that 
the use of a low-cost ARU, coupled with automatic recognizing software, 
can be a repeatable and cost-effective tool for monitoring the presence of 
the Eurasian bittern. The development of a precise and comparable 
counting method and protocol for detecting the species is a major need 
identified by the researchers working with the species (Vera, 2021). 
According to our results, the deployment of an AudioMoth recorder 
should be enough for detecting over 50% of the vocalizations of the 
species uttered within a radius of 700 m around the recorder, and 
therefore a single AudioMoth could be useful for monitoring the species 
presence in wetlands of up to 150 ha (if placed in the middle of the 
wetland). Further research should determine the minimum recording 
length per monitoring day and the number of monitoring days needed to 
provide a cost-effective acoustic monitoring protocol for detecting the 
species (Pérez-Granados et al., 2018b). We are aware that our assess
ment of BirdNET’s ability to detect bird vocalization was based on a 
single species inhabiting wetlands, an open habitat. Therefore, further 
research should evaluate the performance of BirdNET with a larger 
number of species, species living in more closed habitats (e.g. forests), or 
species with more complex vocalizations, to improve our knowledge 
about under which circumstances BirdNET might be helpful for bird 
monitoring. 
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Pérez-Granados, C., Schuchmann, K.L., Marques, M.I., 2020. Vocal behavior of the 
undulated Tinamou (Crypturellus undulatus) over an annual cycle in the Brazilian 
Pantanal: new ecological information. Biotropica 52 (1), 165–171. 

Podos, J., Huber, S.K., Taft, B., 2004. Bird song: the interface of evolution and 
mechanism. Annu. Rev. Ecol. Evol. Syst. 55–87. 

Poulin, B., Lefebvre, G., 2003. Optimal sampling of booming bitterns Botaurus stellaris. 
Ornis Fennica 80, 11–20. 

Ptacek, L., Machlica, L., Linhart, P., Jaska, P., Muller, L., 2016. Automatic recognition of 
bird individuals on an open set using as-is recordings. Bioacoustics 25 (1), 55–73. 

Puglisi, L., Adamo, C., 2004. Discrimination of individual voices in male great bitterns 
(Botaurus stellaris) in Italy. Auk 121 (2), 541–547. 

Rempel, R.S., Francis, C.M., Robinson, J.N., Campbell, M., 2013. Comparison of audio 
recording system performance for detecting and monitoring songbirds. J. Field 
Ornithol. 84 (1), 86–97. 

Rycyk, A.M., Berchem, C., Marques, T.A., 2022. Estimating Florida manatee (Trichechus 
manatus latirostris) abundance using passive acoustic methods. JASA Express Lett. 2 
(5), 051202. 

Soto-Largo, E., Velasco, T., Sanz-Zuasti, J., González, J.L., 1996. Plan de recuperación del 
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